1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	int compress_level;
88 	refcount_t refs;
89 };
90 
91 enum {
92 	Opt_acl,
93 	Opt_clear_cache,
94 	Opt_commit_interval,
95 	Opt_compress,
96 	Opt_compress_force,
97 	Opt_compress_force_type,
98 	Opt_compress_type,
99 	Opt_degraded,
100 	Opt_device,
101 	Opt_fatal_errors,
102 	Opt_flushoncommit,
103 	Opt_max_inline,
104 	Opt_barrier,
105 	Opt_datacow,
106 	Opt_datasum,
107 	Opt_defrag,
108 	Opt_discard,
109 	Opt_discard_mode,
110 	Opt_ratio,
111 	Opt_rescan_uuid_tree,
112 	Opt_skip_balance,
113 	Opt_space_cache,
114 	Opt_space_cache_version,
115 	Opt_ssd,
116 	Opt_ssd_spread,
117 	Opt_subvol,
118 	Opt_subvol_empty,
119 	Opt_subvolid,
120 	Opt_thread_pool,
121 	Opt_treelog,
122 	Opt_user_subvol_rm_allowed,
123 	Opt_norecovery,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 
129 	/* Debugging options */
130 	Opt_enospc_debug,
131 #ifdef CONFIG_BTRFS_DEBUG
132 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
133 #endif
134 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
135 	Opt_ref_verify,
136 #endif
137 	Opt_err,
138 };
139 
140 enum {
141 	Opt_fatal_errors_panic,
142 	Opt_fatal_errors_bug,
143 };
144 
145 static const struct constant_table btrfs_parameter_fatal_errors[] = {
146 	{ "panic", Opt_fatal_errors_panic },
147 	{ "bug", Opt_fatal_errors_bug },
148 	{}
149 };
150 
151 enum {
152 	Opt_discard_sync,
153 	Opt_discard_async,
154 };
155 
156 static const struct constant_table btrfs_parameter_discard[] = {
157 	{ "sync", Opt_discard_sync },
158 	{ "async", Opt_discard_async },
159 	{}
160 };
161 
162 enum {
163 	Opt_space_cache_v1,
164 	Opt_space_cache_v2,
165 };
166 
167 static const struct constant_table btrfs_parameter_space_cache[] = {
168 	{ "v1", Opt_space_cache_v1 },
169 	{ "v2", Opt_space_cache_v2 },
170 	{}
171 };
172 
173 enum {
174 	Opt_rescue_usebackuproot,
175 	Opt_rescue_nologreplay,
176 	Opt_rescue_ignorebadroots,
177 	Opt_rescue_ignoredatacsums,
178 	Opt_rescue_ignoremetacsums,
179 	Opt_rescue_ignoresuperflags,
180 	Opt_rescue_parameter_all,
181 };
182 
183 static const struct constant_table btrfs_parameter_rescue[] = {
184 	{ "usebackuproot", Opt_rescue_usebackuproot },
185 	{ "nologreplay", Opt_rescue_nologreplay },
186 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
187 	{ "ibadroots", Opt_rescue_ignorebadroots },
188 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
189 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
190 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
191 	{ "idatacsums", Opt_rescue_ignoredatacsums },
192 	{ "imetacsums", Opt_rescue_ignoremetacsums},
193 	{ "isuperflags", Opt_rescue_ignoresuperflags},
194 	{ "all", Opt_rescue_parameter_all },
195 	{}
196 };
197 
198 #ifdef CONFIG_BTRFS_DEBUG
199 enum {
200 	Opt_fragment_parameter_data,
201 	Opt_fragment_parameter_metadata,
202 	Opt_fragment_parameter_all,
203 };
204 
205 static const struct constant_table btrfs_parameter_fragment[] = {
206 	{ "data", Opt_fragment_parameter_data },
207 	{ "metadata", Opt_fragment_parameter_metadata },
208 	{ "all", Opt_fragment_parameter_all },
209 	{}
210 };
211 #endif
212 
213 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
214 	fsparam_flag_no("acl", Opt_acl),
215 	fsparam_flag_no("autodefrag", Opt_defrag),
216 	fsparam_flag_no("barrier", Opt_barrier),
217 	fsparam_flag("clear_cache", Opt_clear_cache),
218 	fsparam_u32("commit", Opt_commit_interval),
219 	fsparam_flag("compress", Opt_compress),
220 	fsparam_string("compress", Opt_compress_type),
221 	fsparam_flag("compress-force", Opt_compress_force),
222 	fsparam_string("compress-force", Opt_compress_force_type),
223 	fsparam_flag_no("datacow", Opt_datacow),
224 	fsparam_flag_no("datasum", Opt_datasum),
225 	fsparam_flag("degraded", Opt_degraded),
226 	fsparam_string("device", Opt_device),
227 	fsparam_flag_no("discard", Opt_discard),
228 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
229 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
230 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
231 	fsparam_string("max_inline", Opt_max_inline),
232 	fsparam_u32("metadata_ratio", Opt_ratio),
233 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
234 	fsparam_flag("skip_balance", Opt_skip_balance),
235 	fsparam_flag_no("space_cache", Opt_space_cache),
236 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
237 	fsparam_flag_no("ssd", Opt_ssd),
238 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
239 	fsparam_string("subvol", Opt_subvol),
240 	fsparam_flag("subvol=", Opt_subvol_empty),
241 	fsparam_u64("subvolid", Opt_subvolid),
242 	fsparam_u32("thread_pool", Opt_thread_pool),
243 	fsparam_flag_no("treelog", Opt_treelog),
244 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
245 
246 	/* Rescue options. */
247 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
248 	/* Deprecated, with alias rescue=usebackuproot */
249 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
250 	/* For compatibility only, alias for "rescue=nologreplay". */
251 	fsparam_flag("norecovery", Opt_norecovery),
252 
253 	/* Debugging options. */
254 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
255 #ifdef CONFIG_BTRFS_DEBUG
256 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
257 #endif
258 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
259 	fsparam_flag("ref_verify", Opt_ref_verify),
260 #endif
261 	{}
262 };
263 
264 /* No support for restricting writes to btrfs devices yet... */
265 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
266 {
267 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
268 }
269 
270 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
271 {
272 	struct btrfs_fs_context *ctx = fc->fs_private;
273 	struct fs_parse_result result;
274 	int opt;
275 
276 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
277 	if (opt < 0)
278 		return opt;
279 
280 	switch (opt) {
281 	case Opt_degraded:
282 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
283 		break;
284 	case Opt_subvol_empty:
285 		/*
286 		 * This exists because we used to allow it on accident, so we're
287 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
288 		 * empty subvol= again").
289 		 */
290 		break;
291 	case Opt_subvol:
292 		kfree(ctx->subvol_name);
293 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
294 		if (!ctx->subvol_name)
295 			return -ENOMEM;
296 		break;
297 	case Opt_subvolid:
298 		ctx->subvol_objectid = result.uint_64;
299 
300 		/* subvolid=0 means give me the original fs_tree. */
301 		if (!ctx->subvol_objectid)
302 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
303 		break;
304 	case Opt_device: {
305 		struct btrfs_device *device;
306 		blk_mode_t mode = btrfs_open_mode(fc);
307 
308 		mutex_lock(&uuid_mutex);
309 		device = btrfs_scan_one_device(param->string, mode, false);
310 		mutex_unlock(&uuid_mutex);
311 		if (IS_ERR(device))
312 			return PTR_ERR(device);
313 		break;
314 	}
315 	case Opt_datasum:
316 		if (result.negated) {
317 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
318 		} else {
319 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
320 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
321 		}
322 		break;
323 	case Opt_datacow:
324 		if (result.negated) {
325 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
326 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
327 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
328 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
329 		} else {
330 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
331 		}
332 		break;
333 	case Opt_compress_force:
334 	case Opt_compress_force_type:
335 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
336 		fallthrough;
337 	case Opt_compress:
338 	case Opt_compress_type:
339 		/*
340 		 * Provide the same semantics as older kernels that don't use fs
341 		 * context, specifying the "compress" option clears
342 		 * "force-compress" without the need to pass
343 		 * "compress-force=[no|none]" before specifying "compress".
344 		 */
345 		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
346 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
347 
348 		if (opt == Opt_compress || opt == Opt_compress_force) {
349 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
350 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
351 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
352 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
353 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
354 		} else if (strncmp(param->string, "zlib", 4) == 0) {
355 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
356 			ctx->compress_level =
357 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
358 							 param->string + 4);
359 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
360 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
361 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
362 		} else if (strncmp(param->string, "lzo", 3) == 0) {
363 			ctx->compress_type = BTRFS_COMPRESS_LZO;
364 			ctx->compress_level = 0;
365 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
366 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
367 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
368 		} else if (strncmp(param->string, "zstd", 4) == 0) {
369 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
370 			ctx->compress_level =
371 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
372 							 param->string + 4);
373 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
374 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
375 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
376 		} else if (strncmp(param->string, "no", 2) == 0) {
377 			ctx->compress_level = 0;
378 			ctx->compress_type = 0;
379 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
380 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
381 		} else {
382 			btrfs_err(NULL, "unrecognized compression value %s",
383 				  param->string);
384 			return -EINVAL;
385 		}
386 		break;
387 	case Opt_ssd:
388 		if (result.negated) {
389 			btrfs_set_opt(ctx->mount_opt, NOSSD);
390 			btrfs_clear_opt(ctx->mount_opt, SSD);
391 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
392 		} else {
393 			btrfs_set_opt(ctx->mount_opt, SSD);
394 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
395 		}
396 		break;
397 	case Opt_ssd_spread:
398 		if (result.negated) {
399 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
400 		} else {
401 			btrfs_set_opt(ctx->mount_opt, SSD);
402 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
403 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
404 		}
405 		break;
406 	case Opt_barrier:
407 		if (result.negated)
408 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
409 		else
410 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
411 		break;
412 	case Opt_thread_pool:
413 		if (result.uint_32 == 0) {
414 			btrfs_err(NULL, "invalid value 0 for thread_pool");
415 			return -EINVAL;
416 		}
417 		ctx->thread_pool_size = result.uint_32;
418 		break;
419 	case Opt_max_inline:
420 		ctx->max_inline = memparse(param->string, NULL);
421 		break;
422 	case Opt_acl:
423 		if (result.negated) {
424 			fc->sb_flags &= ~SB_POSIXACL;
425 		} else {
426 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
427 			fc->sb_flags |= SB_POSIXACL;
428 #else
429 			btrfs_err(NULL, "support for ACL not compiled in");
430 			return -EINVAL;
431 #endif
432 		}
433 		/*
434 		 * VFS limits the ability to toggle ACL on and off via remount,
435 		 * despite every file system allowing this.  This seems to be
436 		 * an oversight since we all do, but it'll fail if we're
437 		 * remounting.  So don't set the mask here, we'll check it in
438 		 * btrfs_reconfigure and do the toggling ourselves.
439 		 */
440 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
441 			fc->sb_flags_mask |= SB_POSIXACL;
442 		break;
443 	case Opt_treelog:
444 		if (result.negated)
445 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
446 		else
447 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
448 		break;
449 	case Opt_norecovery:
450 		btrfs_info(NULL,
451 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
452 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
453 		break;
454 	case Opt_flushoncommit:
455 		if (result.negated)
456 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
457 		else
458 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
459 		break;
460 	case Opt_ratio:
461 		ctx->metadata_ratio = result.uint_32;
462 		break;
463 	case Opt_discard:
464 		if (result.negated) {
465 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
466 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
467 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
468 		} else {
469 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
470 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
471 		}
472 		break;
473 	case Opt_discard_mode:
474 		switch (result.uint_32) {
475 		case Opt_discard_sync:
476 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
477 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 			break;
479 		case Opt_discard_async:
480 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
481 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
482 			break;
483 		default:
484 			btrfs_err(NULL, "unrecognized discard mode value %s",
485 				  param->key);
486 			return -EINVAL;
487 		}
488 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
489 		break;
490 	case Opt_space_cache:
491 		if (result.negated) {
492 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
493 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
494 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
495 		} else {
496 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
497 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
498 		}
499 		break;
500 	case Opt_space_cache_version:
501 		switch (result.uint_32) {
502 		case Opt_space_cache_v1:
503 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
504 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 			break;
506 		case Opt_space_cache_v2:
507 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
508 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
509 			break;
510 		default:
511 			btrfs_err(NULL, "unrecognized space_cache value %s",
512 				  param->key);
513 			return -EINVAL;
514 		}
515 		break;
516 	case Opt_rescan_uuid_tree:
517 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
518 		break;
519 	case Opt_clear_cache:
520 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
521 		break;
522 	case Opt_user_subvol_rm_allowed:
523 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
524 		break;
525 	case Opt_enospc_debug:
526 		if (result.negated)
527 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
528 		else
529 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
530 		break;
531 	case Opt_defrag:
532 		if (result.negated)
533 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
534 		else
535 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
536 		break;
537 	case Opt_usebackuproot:
538 		btrfs_warn(NULL,
539 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
540 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
541 
542 		/* If we're loading the backup roots we can't trust the space cache. */
543 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
544 		break;
545 	case Opt_skip_balance:
546 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
547 		break;
548 	case Opt_fatal_errors:
549 		switch (result.uint_32) {
550 		case Opt_fatal_errors_panic:
551 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
552 			break;
553 		case Opt_fatal_errors_bug:
554 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
555 			break;
556 		default:
557 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
558 				  param->key);
559 			return -EINVAL;
560 		}
561 		break;
562 	case Opt_commit_interval:
563 		ctx->commit_interval = result.uint_32;
564 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
565 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
566 				   ctx->commit_interval);
567 		}
568 		if (ctx->commit_interval == 0)
569 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
570 		break;
571 	case Opt_rescue:
572 		switch (result.uint_32) {
573 		case Opt_rescue_usebackuproot:
574 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
575 			break;
576 		case Opt_rescue_nologreplay:
577 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
578 			break;
579 		case Opt_rescue_ignorebadroots:
580 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
581 			break;
582 		case Opt_rescue_ignoredatacsums:
583 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
584 			break;
585 		case Opt_rescue_ignoremetacsums:
586 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
587 			break;
588 		case Opt_rescue_ignoresuperflags:
589 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
590 			break;
591 		case Opt_rescue_parameter_all:
592 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
593 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
594 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
595 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
596 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
597 			break;
598 		default:
599 			btrfs_info(NULL, "unrecognized rescue option '%s'",
600 				   param->key);
601 			return -EINVAL;
602 		}
603 		break;
604 #ifdef CONFIG_BTRFS_DEBUG
605 	case Opt_fragment:
606 		switch (result.uint_32) {
607 		case Opt_fragment_parameter_all:
608 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
609 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
610 			break;
611 		case Opt_fragment_parameter_metadata:
612 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
613 			break;
614 		case Opt_fragment_parameter_data:
615 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
616 			break;
617 		default:
618 			btrfs_info(NULL, "unrecognized fragment option '%s'",
619 				   param->key);
620 			return -EINVAL;
621 		}
622 		break;
623 #endif
624 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
625 	case Opt_ref_verify:
626 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
627 		break;
628 #endif
629 	default:
630 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
631 		return -EINVAL;
632 	}
633 
634 	return 0;
635 }
636 
637 /*
638  * Some options only have meaning at mount time and shouldn't persist across
639  * remounts, or be displayed. Clear these at the end of mount and remount code
640  * paths.
641  */
642 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
643 {
644 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
645 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
646 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
647 }
648 
649 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
650 			    unsigned long long mount_opt, unsigned long long opt,
651 			    const char *opt_name)
652 {
653 	if (mount_opt & opt) {
654 		btrfs_err(fs_info, "%s must be used with ro mount option",
655 			  opt_name);
656 		return true;
657 	}
658 	return false;
659 }
660 
661 bool btrfs_check_options(const struct btrfs_fs_info *info,
662 			 unsigned long long *mount_opt,
663 			 unsigned long flags)
664 {
665 	bool ret = true;
666 
667 	if (!(flags & SB_RDONLY) &&
668 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
669 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
670 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
671 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
672 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
673 		ret = false;
674 
675 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
676 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
677 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
678 		btrfs_err(info, "cannot disable free-space-tree");
679 		ret = false;
680 	}
681 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
682 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
683 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
684 		ret = false;
685 	}
686 
687 	if (btrfs_check_mountopts_zoned(info, mount_opt))
688 		ret = false;
689 
690 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
691 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
692 			btrfs_info(info, "disk space caching is enabled");
693 			btrfs_warn(info,
694 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
695 		}
696 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
697 			btrfs_info(info, "using free-space-tree");
698 	}
699 
700 	return ret;
701 }
702 
703 /*
704  * This is subtle, we only call this during open_ctree().  We need to pre-load
705  * the mount options with the on-disk settings.  Before the new mount API took
706  * effect we would do this on mount and remount.  With the new mount API we'll
707  * only do this on the initial mount.
708  *
709  * This isn't a change in behavior, because we're using the current state of the
710  * file system to set the current mount options.  If you mounted with special
711  * options to disable these features and then remounted we wouldn't revert the
712  * settings, because mounting without these features cleared the on-disk
713  * settings, so this being called on re-mount is not needed.
714  */
715 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
716 {
717 	if (fs_info->sectorsize < PAGE_SIZE) {
718 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
719 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
720 			btrfs_info(fs_info,
721 				   "forcing free space tree for sector size %u with page size %lu",
722 				   fs_info->sectorsize, PAGE_SIZE);
723 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
724 		}
725 	}
726 
727 	/*
728 	 * At this point our mount options are populated, so we only mess with
729 	 * these settings if we don't have any settings already.
730 	 */
731 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
732 		return;
733 
734 	if (btrfs_is_zoned(fs_info) &&
735 	    btrfs_free_space_cache_v1_active(fs_info)) {
736 		btrfs_info(fs_info, "zoned: clearing existing space cache");
737 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
738 		return;
739 	}
740 
741 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
742 		return;
743 
744 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
745 		return;
746 
747 	/*
748 	 * At this point we don't have explicit options set by the user, set
749 	 * them ourselves based on the state of the file system.
750 	 */
751 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
752 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
753 	else if (btrfs_free_space_cache_v1_active(fs_info))
754 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
755 }
756 
757 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
758 {
759 	if (!btrfs_test_opt(fs_info, NOSSD) &&
760 	    !fs_info->fs_devices->rotating)
761 		btrfs_set_opt(fs_info->mount_opt, SSD);
762 
763 	/*
764 	 * For devices supporting discard turn on discard=async automatically,
765 	 * unless it's already set or disabled. This could be turned off by
766 	 * nodiscard for the same mount.
767 	 *
768 	 * The zoned mode piggy backs on the discard functionality for
769 	 * resetting a zone. There is no reason to delay the zone reset as it is
770 	 * fast enough. So, do not enable async discard for zoned mode.
771 	 */
772 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
773 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
774 	      btrfs_test_opt(fs_info, NODISCARD)) &&
775 	    fs_info->fs_devices->discardable &&
776 	    !btrfs_is_zoned(fs_info))
777 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
778 }
779 
780 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
781 					  u64 subvol_objectid)
782 {
783 	struct btrfs_root *root = fs_info->tree_root;
784 	struct btrfs_root *fs_root = NULL;
785 	struct btrfs_root_ref *root_ref;
786 	struct btrfs_inode_ref *inode_ref;
787 	struct btrfs_key key;
788 	struct btrfs_path *path = NULL;
789 	char *name = NULL, *ptr;
790 	u64 dirid;
791 	int len;
792 	int ret;
793 
794 	path = btrfs_alloc_path();
795 	if (!path) {
796 		ret = -ENOMEM;
797 		goto err;
798 	}
799 
800 	name = kmalloc(PATH_MAX, GFP_KERNEL);
801 	if (!name) {
802 		ret = -ENOMEM;
803 		goto err;
804 	}
805 	ptr = name + PATH_MAX - 1;
806 	ptr[0] = '\0';
807 
808 	/*
809 	 * Walk up the subvolume trees in the tree of tree roots by root
810 	 * backrefs until we hit the top-level subvolume.
811 	 */
812 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
813 		key.objectid = subvol_objectid;
814 		key.type = BTRFS_ROOT_BACKREF_KEY;
815 		key.offset = (u64)-1;
816 
817 		ret = btrfs_search_backwards(root, &key, path);
818 		if (ret < 0) {
819 			goto err;
820 		} else if (ret > 0) {
821 			ret = -ENOENT;
822 			goto err;
823 		}
824 
825 		subvol_objectid = key.offset;
826 
827 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
828 					  struct btrfs_root_ref);
829 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
830 		ptr -= len + 1;
831 		if (ptr < name) {
832 			ret = -ENAMETOOLONG;
833 			goto err;
834 		}
835 		read_extent_buffer(path->nodes[0], ptr + 1,
836 				   (unsigned long)(root_ref + 1), len);
837 		ptr[0] = '/';
838 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
839 		btrfs_release_path(path);
840 
841 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
842 		if (IS_ERR(fs_root)) {
843 			ret = PTR_ERR(fs_root);
844 			fs_root = NULL;
845 			goto err;
846 		}
847 
848 		/*
849 		 * Walk up the filesystem tree by inode refs until we hit the
850 		 * root directory.
851 		 */
852 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
853 			key.objectid = dirid;
854 			key.type = BTRFS_INODE_REF_KEY;
855 			key.offset = (u64)-1;
856 
857 			ret = btrfs_search_backwards(fs_root, &key, path);
858 			if (ret < 0) {
859 				goto err;
860 			} else if (ret > 0) {
861 				ret = -ENOENT;
862 				goto err;
863 			}
864 
865 			dirid = key.offset;
866 
867 			inode_ref = btrfs_item_ptr(path->nodes[0],
868 						   path->slots[0],
869 						   struct btrfs_inode_ref);
870 			len = btrfs_inode_ref_name_len(path->nodes[0],
871 						       inode_ref);
872 			ptr -= len + 1;
873 			if (ptr < name) {
874 				ret = -ENAMETOOLONG;
875 				goto err;
876 			}
877 			read_extent_buffer(path->nodes[0], ptr + 1,
878 					   (unsigned long)(inode_ref + 1), len);
879 			ptr[0] = '/';
880 			btrfs_release_path(path);
881 		}
882 		btrfs_put_root(fs_root);
883 		fs_root = NULL;
884 	}
885 
886 	btrfs_free_path(path);
887 	if (ptr == name + PATH_MAX - 1) {
888 		name[0] = '/';
889 		name[1] = '\0';
890 	} else {
891 		memmove(name, ptr, name + PATH_MAX - ptr);
892 	}
893 	return name;
894 
895 err:
896 	btrfs_put_root(fs_root);
897 	btrfs_free_path(path);
898 	kfree(name);
899 	return ERR_PTR(ret);
900 }
901 
902 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
903 {
904 	struct btrfs_root *root = fs_info->tree_root;
905 	struct btrfs_dir_item *di;
906 	struct btrfs_path *path;
907 	struct btrfs_key location;
908 	struct fscrypt_str name = FSTR_INIT("default", 7);
909 	u64 dir_id;
910 
911 	path = btrfs_alloc_path();
912 	if (!path)
913 		return -ENOMEM;
914 
915 	/*
916 	 * Find the "default" dir item which points to the root item that we
917 	 * will mount by default if we haven't been given a specific subvolume
918 	 * to mount.
919 	 */
920 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
921 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
922 	if (IS_ERR(di)) {
923 		btrfs_free_path(path);
924 		return PTR_ERR(di);
925 	}
926 	if (!di) {
927 		/*
928 		 * Ok the default dir item isn't there.  This is weird since
929 		 * it's always been there, but don't freak out, just try and
930 		 * mount the top-level subvolume.
931 		 */
932 		btrfs_free_path(path);
933 		*objectid = BTRFS_FS_TREE_OBJECTID;
934 		return 0;
935 	}
936 
937 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
938 	btrfs_free_path(path);
939 	*objectid = location.objectid;
940 	return 0;
941 }
942 
943 static int btrfs_fill_super(struct super_block *sb,
944 			    struct btrfs_fs_devices *fs_devices)
945 {
946 	struct btrfs_inode *inode;
947 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
948 	int err;
949 
950 	sb->s_maxbytes = MAX_LFS_FILESIZE;
951 	sb->s_magic = BTRFS_SUPER_MAGIC;
952 	sb->s_op = &btrfs_super_ops;
953 	sb->s_d_op = &btrfs_dentry_operations;
954 	sb->s_export_op = &btrfs_export_ops;
955 #ifdef CONFIG_FS_VERITY
956 	sb->s_vop = &btrfs_verityops;
957 #endif
958 	sb->s_xattr = btrfs_xattr_handlers;
959 	sb->s_time_gran = 1;
960 	sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
961 
962 	err = super_setup_bdi(sb);
963 	if (err) {
964 		btrfs_err(fs_info, "super_setup_bdi failed");
965 		return err;
966 	}
967 
968 	err = open_ctree(sb, fs_devices);
969 	if (err) {
970 		btrfs_err(fs_info, "open_ctree failed: %d", err);
971 		return err;
972 	}
973 
974 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
975 	if (IS_ERR(inode)) {
976 		err = PTR_ERR(inode);
977 		btrfs_handle_fs_error(fs_info, err, NULL);
978 		goto fail_close;
979 	}
980 
981 	sb->s_root = d_make_root(&inode->vfs_inode);
982 	if (!sb->s_root) {
983 		err = -ENOMEM;
984 		goto fail_close;
985 	}
986 
987 	sb->s_flags |= SB_ACTIVE;
988 	return 0;
989 
990 fail_close:
991 	close_ctree(fs_info);
992 	return err;
993 }
994 
995 int btrfs_sync_fs(struct super_block *sb, int wait)
996 {
997 	struct btrfs_trans_handle *trans;
998 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
999 	struct btrfs_root *root = fs_info->tree_root;
1000 
1001 	trace_btrfs_sync_fs(fs_info, wait);
1002 
1003 	if (!wait) {
1004 		filemap_flush(fs_info->btree_inode->i_mapping);
1005 		return 0;
1006 	}
1007 
1008 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1009 
1010 	trans = btrfs_attach_transaction_barrier(root);
1011 	if (IS_ERR(trans)) {
1012 		/* no transaction, don't bother */
1013 		if (PTR_ERR(trans) == -ENOENT) {
1014 			/*
1015 			 * Exit unless we have some pending changes
1016 			 * that need to go through commit
1017 			 */
1018 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1019 				      &fs_info->flags))
1020 				return 0;
1021 			/*
1022 			 * A non-blocking test if the fs is frozen. We must not
1023 			 * start a new transaction here otherwise a deadlock
1024 			 * happens. The pending operations are delayed to the
1025 			 * next commit after thawing.
1026 			 */
1027 			if (sb_start_write_trylock(sb))
1028 				sb_end_write(sb);
1029 			else
1030 				return 0;
1031 			trans = btrfs_start_transaction(root, 0);
1032 		}
1033 		if (IS_ERR(trans))
1034 			return PTR_ERR(trans);
1035 	}
1036 	return btrfs_commit_transaction(trans);
1037 }
1038 
1039 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1040 {
1041 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1042 	*printed = true;
1043 }
1044 
1045 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1046 {
1047 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1048 	const char *compress_type;
1049 	const char *subvol_name;
1050 	bool printed = false;
1051 
1052 	if (btrfs_test_opt(info, DEGRADED))
1053 		seq_puts(seq, ",degraded");
1054 	if (btrfs_test_opt(info, NODATASUM))
1055 		seq_puts(seq, ",nodatasum");
1056 	if (btrfs_test_opt(info, NODATACOW))
1057 		seq_puts(seq, ",nodatacow");
1058 	if (btrfs_test_opt(info, NOBARRIER))
1059 		seq_puts(seq, ",nobarrier");
1060 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1061 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1062 	if (info->thread_pool_size !=  min_t(unsigned long,
1063 					     num_online_cpus() + 2, 8))
1064 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1065 	if (btrfs_test_opt(info, COMPRESS)) {
1066 		compress_type = btrfs_compress_type2str(info->compress_type);
1067 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1068 			seq_printf(seq, ",compress-force=%s", compress_type);
1069 		else
1070 			seq_printf(seq, ",compress=%s", compress_type);
1071 		if (info->compress_level)
1072 			seq_printf(seq, ":%d", info->compress_level);
1073 	}
1074 	if (btrfs_test_opt(info, NOSSD))
1075 		seq_puts(seq, ",nossd");
1076 	if (btrfs_test_opt(info, SSD_SPREAD))
1077 		seq_puts(seq, ",ssd_spread");
1078 	else if (btrfs_test_opt(info, SSD))
1079 		seq_puts(seq, ",ssd");
1080 	if (btrfs_test_opt(info, NOTREELOG))
1081 		seq_puts(seq, ",notreelog");
1082 	if (btrfs_test_opt(info, NOLOGREPLAY))
1083 		print_rescue_option(seq, "nologreplay", &printed);
1084 	if (btrfs_test_opt(info, USEBACKUPROOT))
1085 		print_rescue_option(seq, "usebackuproot", &printed);
1086 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1087 		print_rescue_option(seq, "ignorebadroots", &printed);
1088 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1089 		print_rescue_option(seq, "ignoredatacsums", &printed);
1090 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1091 		print_rescue_option(seq, "ignoremetacsums", &printed);
1092 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1093 		print_rescue_option(seq, "ignoresuperflags", &printed);
1094 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1095 		seq_puts(seq, ",flushoncommit");
1096 	if (btrfs_test_opt(info, DISCARD_SYNC))
1097 		seq_puts(seq, ",discard");
1098 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1099 		seq_puts(seq, ",discard=async");
1100 	if (!(info->sb->s_flags & SB_POSIXACL))
1101 		seq_puts(seq, ",noacl");
1102 	if (btrfs_free_space_cache_v1_active(info))
1103 		seq_puts(seq, ",space_cache");
1104 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1105 		seq_puts(seq, ",space_cache=v2");
1106 	else
1107 		seq_puts(seq, ",nospace_cache");
1108 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1109 		seq_puts(seq, ",rescan_uuid_tree");
1110 	if (btrfs_test_opt(info, CLEAR_CACHE))
1111 		seq_puts(seq, ",clear_cache");
1112 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1113 		seq_puts(seq, ",user_subvol_rm_allowed");
1114 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1115 		seq_puts(seq, ",enospc_debug");
1116 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1117 		seq_puts(seq, ",autodefrag");
1118 	if (btrfs_test_opt(info, SKIP_BALANCE))
1119 		seq_puts(seq, ",skip_balance");
1120 	if (info->metadata_ratio)
1121 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1122 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1123 		seq_puts(seq, ",fatal_errors=panic");
1124 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1125 		seq_printf(seq, ",commit=%u", info->commit_interval);
1126 #ifdef CONFIG_BTRFS_DEBUG
1127 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1128 		seq_puts(seq, ",fragment=data");
1129 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1130 		seq_puts(seq, ",fragment=metadata");
1131 #endif
1132 	if (btrfs_test_opt(info, REF_VERIFY))
1133 		seq_puts(seq, ",ref_verify");
1134 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1135 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1136 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1137 	if (!IS_ERR(subvol_name)) {
1138 		seq_show_option(seq, "subvol", subvol_name);
1139 		kfree(subvol_name);
1140 	}
1141 	return 0;
1142 }
1143 
1144 /*
1145  * subvolumes are identified by ino 256
1146  */
1147 static inline bool is_subvolume_inode(struct inode *inode)
1148 {
1149 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1150 		return true;
1151 	return false;
1152 }
1153 
1154 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1155 				   struct vfsmount *mnt)
1156 {
1157 	struct dentry *root;
1158 	int ret;
1159 
1160 	if (!subvol_name) {
1161 		if (!subvol_objectid) {
1162 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1163 							  &subvol_objectid);
1164 			if (ret) {
1165 				root = ERR_PTR(ret);
1166 				goto out;
1167 			}
1168 		}
1169 		subvol_name = btrfs_get_subvol_name_from_objectid(
1170 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1171 		if (IS_ERR(subvol_name)) {
1172 			root = ERR_CAST(subvol_name);
1173 			subvol_name = NULL;
1174 			goto out;
1175 		}
1176 
1177 	}
1178 
1179 	root = mount_subtree(mnt, subvol_name);
1180 	/* mount_subtree() drops our reference on the vfsmount. */
1181 	mnt = NULL;
1182 
1183 	if (!IS_ERR(root)) {
1184 		struct super_block *s = root->d_sb;
1185 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1186 		struct inode *root_inode = d_inode(root);
1187 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1188 
1189 		ret = 0;
1190 		if (!is_subvolume_inode(root_inode)) {
1191 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1192 			       subvol_name);
1193 			ret = -EINVAL;
1194 		}
1195 		if (subvol_objectid && root_objectid != subvol_objectid) {
1196 			/*
1197 			 * This will also catch a race condition where a
1198 			 * subvolume which was passed by ID is renamed and
1199 			 * another subvolume is renamed over the old location.
1200 			 */
1201 			btrfs_err(fs_info,
1202 				  "subvol '%s' does not match subvolid %llu",
1203 				  subvol_name, subvol_objectid);
1204 			ret = -EINVAL;
1205 		}
1206 		if (ret) {
1207 			dput(root);
1208 			root = ERR_PTR(ret);
1209 			deactivate_locked_super(s);
1210 		}
1211 	}
1212 
1213 out:
1214 	mntput(mnt);
1215 	kfree(subvol_name);
1216 	return root;
1217 }
1218 
1219 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1220 				     u32 new_pool_size, u32 old_pool_size)
1221 {
1222 	if (new_pool_size == old_pool_size)
1223 		return;
1224 
1225 	fs_info->thread_pool_size = new_pool_size;
1226 
1227 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1228 	       old_pool_size, new_pool_size);
1229 
1230 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1231 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1232 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1233 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1234 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1235 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1236 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1237 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1238 }
1239 
1240 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1241 				       unsigned long long old_opts, int flags)
1242 {
1243 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1244 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1245 	     (flags & SB_RDONLY))) {
1246 		/* wait for any defraggers to finish */
1247 		wait_event(fs_info->transaction_wait,
1248 			   (atomic_read(&fs_info->defrag_running) == 0));
1249 		if (flags & SB_RDONLY)
1250 			sync_filesystem(fs_info->sb);
1251 	}
1252 }
1253 
1254 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1255 					 unsigned long long old_opts)
1256 {
1257 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1258 
1259 	/*
1260 	 * We need to cleanup all defragable inodes if the autodefragment is
1261 	 * close or the filesystem is read only.
1262 	 */
1263 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1264 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1265 		btrfs_cleanup_defrag_inodes(fs_info);
1266 	}
1267 
1268 	/* If we toggled discard async */
1269 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1270 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1271 		btrfs_discard_resume(fs_info);
1272 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1273 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1274 		btrfs_discard_cleanup(fs_info);
1275 
1276 	/* If we toggled space cache */
1277 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1278 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1279 }
1280 
1281 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1282 {
1283 	int ret;
1284 
1285 	if (BTRFS_FS_ERROR(fs_info)) {
1286 		btrfs_err(fs_info,
1287 			  "remounting read-write after error is not allowed");
1288 		return -EINVAL;
1289 	}
1290 
1291 	if (fs_info->fs_devices->rw_devices == 0)
1292 		return -EACCES;
1293 
1294 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1295 		btrfs_warn(fs_info,
1296 			   "too many missing devices, writable remount is not allowed");
1297 		return -EACCES;
1298 	}
1299 
1300 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1301 		btrfs_warn(fs_info,
1302 			   "mount required to replay tree-log, cannot remount read-write");
1303 		return -EINVAL;
1304 	}
1305 
1306 	/*
1307 	 * NOTE: when remounting with a change that does writes, don't put it
1308 	 * anywhere above this point, as we are not sure to be safe to write
1309 	 * until we pass the above checks.
1310 	 */
1311 	ret = btrfs_start_pre_rw_mount(fs_info);
1312 	if (ret)
1313 		return ret;
1314 
1315 	btrfs_clear_sb_rdonly(fs_info->sb);
1316 
1317 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1318 
1319 	/*
1320 	 * If we've gone from readonly -> read-write, we need to get our
1321 	 * sync/async discard lists in the right state.
1322 	 */
1323 	btrfs_discard_resume(fs_info);
1324 
1325 	return 0;
1326 }
1327 
1328 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1329 {
1330 	/*
1331 	 * This also happens on 'umount -rf' or on shutdown, when the
1332 	 * filesystem is busy.
1333 	 */
1334 	cancel_work_sync(&fs_info->async_reclaim_work);
1335 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1336 
1337 	btrfs_discard_cleanup(fs_info);
1338 
1339 	/* Wait for the uuid_scan task to finish */
1340 	down(&fs_info->uuid_tree_rescan_sem);
1341 	/* Avoid complains from lockdep et al. */
1342 	up(&fs_info->uuid_tree_rescan_sem);
1343 
1344 	btrfs_set_sb_rdonly(fs_info->sb);
1345 
1346 	/*
1347 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1348 	 * loop if it's already active.  If it's already asleep, we'll leave
1349 	 * unused block groups on disk until we're mounted read-write again
1350 	 * unless we clean them up here.
1351 	 */
1352 	btrfs_delete_unused_bgs(fs_info);
1353 
1354 	/*
1355 	 * The cleaner task could be already running before we set the flag
1356 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1357 	 * sure that after we finish the remount, i.e. after we call
1358 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1359 	 * - either because it was dropping a dead root, running delayed iputs
1360 	 *   or deleting an unused block group (the cleaner picked a block
1361 	 *   group from the list of unused block groups before we were able to
1362 	 *   in the previous call to btrfs_delete_unused_bgs()).
1363 	 */
1364 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1365 
1366 	/*
1367 	 * We've set the superblock to RO mode, so we might have made the
1368 	 * cleaner task sleep without running all pending delayed iputs. Go
1369 	 * through all the delayed iputs here, so that if an unmount happens
1370 	 * without remounting RW we don't end up at finishing close_ctree()
1371 	 * with a non-empty list of delayed iputs.
1372 	 */
1373 	btrfs_run_delayed_iputs(fs_info);
1374 
1375 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1376 	btrfs_scrub_cancel(fs_info);
1377 	btrfs_pause_balance(fs_info);
1378 
1379 	/*
1380 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1381 	 * be still running after we are in RO mode, as after that, by the time
1382 	 * we unmount, it might have left a transaction open, so we would leak
1383 	 * the transaction and/or crash.
1384 	 */
1385 	btrfs_qgroup_wait_for_completion(fs_info, false);
1386 
1387 	return btrfs_commit_super(fs_info);
1388 }
1389 
1390 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1391 {
1392 	fs_info->max_inline = ctx->max_inline;
1393 	fs_info->commit_interval = ctx->commit_interval;
1394 	fs_info->metadata_ratio = ctx->metadata_ratio;
1395 	fs_info->thread_pool_size = ctx->thread_pool_size;
1396 	fs_info->mount_opt = ctx->mount_opt;
1397 	fs_info->compress_type = ctx->compress_type;
1398 	fs_info->compress_level = ctx->compress_level;
1399 }
1400 
1401 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1402 {
1403 	ctx->max_inline = fs_info->max_inline;
1404 	ctx->commit_interval = fs_info->commit_interval;
1405 	ctx->metadata_ratio = fs_info->metadata_ratio;
1406 	ctx->thread_pool_size = fs_info->thread_pool_size;
1407 	ctx->mount_opt = fs_info->mount_opt;
1408 	ctx->compress_type = fs_info->compress_type;
1409 	ctx->compress_level = fs_info->compress_level;
1410 }
1411 
1412 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1413 do {										\
1414 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1415 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1416 		btrfs_info(fs_info, fmt, ##args);				\
1417 } while (0)
1418 
1419 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1420 do {									\
1421 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1422 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1423 		btrfs_info(fs_info, fmt, ##args);			\
1424 } while (0)
1425 
1426 static void btrfs_emit_options(struct btrfs_fs_info *info,
1427 			       struct btrfs_fs_context *old)
1428 {
1429 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1430 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1431 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1432 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1433 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1434 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1435 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1436 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1437 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1438 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1439 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1440 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1441 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1442 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1443 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1444 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1445 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1446 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1447 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1448 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1449 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1450 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1451 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1452 
1453 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1454 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1455 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1456 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1457 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1458 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1459 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1460 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1461 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1462 
1463 	/* Did the compression settings change? */
1464 	if (btrfs_test_opt(info, COMPRESS) &&
1465 	    (!old ||
1466 	     old->compress_type != info->compress_type ||
1467 	     old->compress_level != info->compress_level ||
1468 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1469 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1470 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1471 
1472 		btrfs_info(info, "%s %s compression, level %d",
1473 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1474 			   compress_type, info->compress_level);
1475 	}
1476 
1477 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1478 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1479 }
1480 
1481 static int btrfs_reconfigure(struct fs_context *fc)
1482 {
1483 	struct super_block *sb = fc->root->d_sb;
1484 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1485 	struct btrfs_fs_context *ctx = fc->fs_private;
1486 	struct btrfs_fs_context old_ctx;
1487 	int ret = 0;
1488 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1489 
1490 	btrfs_info_to_ctx(fs_info, &old_ctx);
1491 
1492 	/*
1493 	 * This is our "bind mount" trick, we don't want to allow the user to do
1494 	 * anything other than mount a different ro/rw and a different subvol,
1495 	 * all of the mount options should be maintained.
1496 	 */
1497 	if (mount_reconfigure)
1498 		ctx->mount_opt = old_ctx.mount_opt;
1499 
1500 	sync_filesystem(sb);
1501 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1502 
1503 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1504 		return -EINVAL;
1505 
1506 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1507 	if (ret < 0)
1508 		return ret;
1509 
1510 	btrfs_ctx_to_info(fs_info, ctx);
1511 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1512 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1513 				 old_ctx.thread_pool_size);
1514 
1515 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1516 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1517 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1518 		btrfs_warn(fs_info,
1519 		"remount supports changing free space tree only from RO to RW");
1520 		/* Make sure free space cache options match the state on disk. */
1521 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1522 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1523 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1524 		}
1525 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1526 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1527 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1528 		}
1529 	}
1530 
1531 	ret = 0;
1532 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1533 		ret = btrfs_remount_ro(fs_info);
1534 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1535 		ret = btrfs_remount_rw(fs_info);
1536 	if (ret)
1537 		goto restore;
1538 
1539 	/*
1540 	 * If we set the mask during the parameter parsing VFS would reject the
1541 	 * remount.  Here we can set the mask and the value will be updated
1542 	 * appropriately.
1543 	 */
1544 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1545 		fc->sb_flags_mask |= SB_POSIXACL;
1546 
1547 	btrfs_emit_options(fs_info, &old_ctx);
1548 	wake_up_process(fs_info->transaction_kthread);
1549 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1550 	btrfs_clear_oneshot_options(fs_info);
1551 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1552 
1553 	return 0;
1554 restore:
1555 	btrfs_ctx_to_info(fs_info, &old_ctx);
1556 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1557 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1558 	return ret;
1559 }
1560 
1561 /* Used to sort the devices by max_avail(descending sort) */
1562 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1563 {
1564 	const struct btrfs_device_info *dev_info1 = a;
1565 	const struct btrfs_device_info *dev_info2 = b;
1566 
1567 	if (dev_info1->max_avail > dev_info2->max_avail)
1568 		return -1;
1569 	else if (dev_info1->max_avail < dev_info2->max_avail)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 /*
1575  * sort the devices by max_avail, in which max free extent size of each device
1576  * is stored.(Descending Sort)
1577  */
1578 static inline void btrfs_descending_sort_devices(
1579 					struct btrfs_device_info *devices,
1580 					size_t nr_devices)
1581 {
1582 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1583 	     btrfs_cmp_device_free_bytes, NULL);
1584 }
1585 
1586 /*
1587  * The helper to calc the free space on the devices that can be used to store
1588  * file data.
1589  */
1590 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1591 					      u64 *free_bytes)
1592 {
1593 	struct btrfs_device_info *devices_info;
1594 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1595 	struct btrfs_device *device;
1596 	u64 type;
1597 	u64 avail_space;
1598 	u64 min_stripe_size;
1599 	int num_stripes = 1;
1600 	int i = 0, nr_devices;
1601 	const struct btrfs_raid_attr *rattr;
1602 
1603 	/*
1604 	 * We aren't under the device list lock, so this is racy-ish, but good
1605 	 * enough for our purposes.
1606 	 */
1607 	nr_devices = fs_info->fs_devices->open_devices;
1608 	if (!nr_devices) {
1609 		smp_mb();
1610 		nr_devices = fs_info->fs_devices->open_devices;
1611 		ASSERT(nr_devices);
1612 		if (!nr_devices) {
1613 			*free_bytes = 0;
1614 			return 0;
1615 		}
1616 	}
1617 
1618 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1619 			       GFP_KERNEL);
1620 	if (!devices_info)
1621 		return -ENOMEM;
1622 
1623 	/* calc min stripe number for data space allocation */
1624 	type = btrfs_data_alloc_profile(fs_info);
1625 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1626 
1627 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1628 		num_stripes = nr_devices;
1629 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1630 		num_stripes = rattr->ncopies;
1631 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1632 		num_stripes = 4;
1633 
1634 	/* Adjust for more than 1 stripe per device */
1635 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1636 
1637 	rcu_read_lock();
1638 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1639 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1640 						&device->dev_state) ||
1641 		    !device->bdev ||
1642 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1643 			continue;
1644 
1645 		if (i >= nr_devices)
1646 			break;
1647 
1648 		avail_space = device->total_bytes - device->bytes_used;
1649 
1650 		/* align with stripe_len */
1651 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1652 
1653 		/*
1654 		 * Ensure we have at least min_stripe_size on top of the
1655 		 * reserved space on the device.
1656 		 */
1657 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1658 			continue;
1659 
1660 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1661 
1662 		devices_info[i].dev = device;
1663 		devices_info[i].max_avail = avail_space;
1664 
1665 		i++;
1666 	}
1667 	rcu_read_unlock();
1668 
1669 	nr_devices = i;
1670 
1671 	btrfs_descending_sort_devices(devices_info, nr_devices);
1672 
1673 	i = nr_devices - 1;
1674 	avail_space = 0;
1675 	while (nr_devices >= rattr->devs_min) {
1676 		num_stripes = min(num_stripes, nr_devices);
1677 
1678 		if (devices_info[i].max_avail >= min_stripe_size) {
1679 			int j;
1680 			u64 alloc_size;
1681 
1682 			avail_space += devices_info[i].max_avail * num_stripes;
1683 			alloc_size = devices_info[i].max_avail;
1684 			for (j = i + 1 - num_stripes; j <= i; j++)
1685 				devices_info[j].max_avail -= alloc_size;
1686 		}
1687 		i--;
1688 		nr_devices--;
1689 	}
1690 
1691 	kfree(devices_info);
1692 	*free_bytes = avail_space;
1693 	return 0;
1694 }
1695 
1696 /*
1697  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1698  *
1699  * If there's a redundant raid level at DATA block groups, use the respective
1700  * multiplier to scale the sizes.
1701  *
1702  * Unused device space usage is based on simulating the chunk allocator
1703  * algorithm that respects the device sizes and order of allocations.  This is
1704  * a close approximation of the actual use but there are other factors that may
1705  * change the result (like a new metadata chunk).
1706  *
1707  * If metadata is exhausted, f_bavail will be 0.
1708  */
1709 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1710 {
1711 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1712 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1713 	struct btrfs_space_info *found;
1714 	u64 total_used = 0;
1715 	u64 total_free_data = 0;
1716 	u64 total_free_meta = 0;
1717 	u32 bits = fs_info->sectorsize_bits;
1718 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1719 	unsigned factor = 1;
1720 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1721 	int ret;
1722 	u64 thresh = 0;
1723 	int mixed = 0;
1724 
1725 	list_for_each_entry(found, &fs_info->space_info, list) {
1726 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1727 			int i;
1728 
1729 			total_free_data += found->disk_total - found->disk_used;
1730 			total_free_data -=
1731 				btrfs_account_ro_block_groups_free_space(found);
1732 
1733 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1734 				if (!list_empty(&found->block_groups[i]))
1735 					factor = btrfs_bg_type_to_factor(
1736 						btrfs_raid_array[i].bg_flag);
1737 			}
1738 		}
1739 
1740 		/*
1741 		 * Metadata in mixed block group profiles are accounted in data
1742 		 */
1743 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1744 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1745 				mixed = 1;
1746 			else
1747 				total_free_meta += found->disk_total -
1748 					found->disk_used;
1749 		}
1750 
1751 		total_used += found->disk_used;
1752 	}
1753 
1754 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1755 	buf->f_blocks >>= bits;
1756 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1757 
1758 	/* Account global block reserve as used, it's in logical size already */
1759 	spin_lock(&block_rsv->lock);
1760 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1761 	if (buf->f_bfree >= block_rsv->size >> bits)
1762 		buf->f_bfree -= block_rsv->size >> bits;
1763 	else
1764 		buf->f_bfree = 0;
1765 	spin_unlock(&block_rsv->lock);
1766 
1767 	buf->f_bavail = div_u64(total_free_data, factor);
1768 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1769 	if (ret)
1770 		return ret;
1771 	buf->f_bavail += div_u64(total_free_data, factor);
1772 	buf->f_bavail = buf->f_bavail >> bits;
1773 
1774 	/*
1775 	 * We calculate the remaining metadata space minus global reserve. If
1776 	 * this is (supposedly) smaller than zero, there's no space. But this
1777 	 * does not hold in practice, the exhausted state happens where's still
1778 	 * some positive delta. So we apply some guesswork and compare the
1779 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1780 	 *
1781 	 * We probably cannot calculate the exact threshold value because this
1782 	 * depends on the internal reservations requested by various
1783 	 * operations, so some operations that consume a few metadata will
1784 	 * succeed even if the Avail is zero. But this is better than the other
1785 	 * way around.
1786 	 */
1787 	thresh = SZ_4M;
1788 
1789 	/*
1790 	 * We only want to claim there's no available space if we can no longer
1791 	 * allocate chunks for our metadata profile and our global reserve will
1792 	 * not fit in the free metadata space.  If we aren't ->full then we
1793 	 * still can allocate chunks and thus are fine using the currently
1794 	 * calculated f_bavail.
1795 	 */
1796 	if (!mixed && block_rsv->space_info->full &&
1797 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1798 		buf->f_bavail = 0;
1799 
1800 	buf->f_type = BTRFS_SUPER_MAGIC;
1801 	buf->f_bsize = fs_info->sectorsize;
1802 	buf->f_namelen = BTRFS_NAME_LEN;
1803 
1804 	/* We treat it as constant endianness (it doesn't matter _which_)
1805 	   because we want the fsid to come out the same whether mounted
1806 	   on a big-endian or little-endian host */
1807 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1808 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1809 	/* Mask in the root object ID too, to disambiguate subvols */
1810 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1811 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1812 
1813 	return 0;
1814 }
1815 
1816 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1817 {
1818 	struct btrfs_fs_info *p = fc->s_fs_info;
1819 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1820 
1821 	return fs_info->fs_devices == p->fs_devices;
1822 }
1823 
1824 static int btrfs_get_tree_super(struct fs_context *fc)
1825 {
1826 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1827 	struct btrfs_fs_context *ctx = fc->fs_private;
1828 	struct btrfs_fs_devices *fs_devices = NULL;
1829 	struct block_device *bdev;
1830 	struct btrfs_device *device;
1831 	struct super_block *sb;
1832 	blk_mode_t mode = btrfs_open_mode(fc);
1833 	int ret;
1834 
1835 	btrfs_ctx_to_info(fs_info, ctx);
1836 	mutex_lock(&uuid_mutex);
1837 
1838 	/*
1839 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1840 	 * either a valid device or an error.
1841 	 */
1842 	device = btrfs_scan_one_device(fc->source, mode, true);
1843 	ASSERT(device != NULL);
1844 	if (IS_ERR(device)) {
1845 		mutex_unlock(&uuid_mutex);
1846 		return PTR_ERR(device);
1847 	}
1848 
1849 	fs_devices = device->fs_devices;
1850 	fs_info->fs_devices = fs_devices;
1851 
1852 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1853 	mutex_unlock(&uuid_mutex);
1854 	if (ret)
1855 		return ret;
1856 
1857 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1858 		ret = -EACCES;
1859 		goto error;
1860 	}
1861 
1862 	bdev = fs_devices->latest_dev->bdev;
1863 
1864 	/*
1865 	 * From now on the error handling is not straightforward.
1866 	 *
1867 	 * If successful, this will transfer the fs_info into the super block,
1868 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1869 	 * super, we'll still have fc->s_fs_info populated.  If we error
1870 	 * completely out it'll be cleaned up when we drop the fs_context,
1871 	 * otherwise it's tied to the lifetime of the super_block.
1872 	 */
1873 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1874 	if (IS_ERR(sb)) {
1875 		ret = PTR_ERR(sb);
1876 		goto error;
1877 	}
1878 
1879 	set_device_specific_options(fs_info);
1880 
1881 	if (sb->s_root) {
1882 		btrfs_close_devices(fs_devices);
1883 		/*
1884 		 * At this stage we may have RO flag mismatch between
1885 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1886 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1887 		 * needed.
1888 		 */
1889 	} else {
1890 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1891 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1892 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1893 		ret = btrfs_fill_super(sb, fs_devices);
1894 		if (ret) {
1895 			deactivate_locked_super(sb);
1896 			return ret;
1897 		}
1898 	}
1899 
1900 	btrfs_clear_oneshot_options(fs_info);
1901 
1902 	fc->root = dget(sb->s_root);
1903 	return 0;
1904 
1905 error:
1906 	btrfs_close_devices(fs_devices);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1912  * with different ro/rw options") the following works:
1913  *
1914  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1915  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1916  *
1917  * which looks nice and innocent but is actually pretty intricate and deserves
1918  * a long comment.
1919  *
1920  * On another filesystem a subvolume mount is close to something like:
1921  *
1922  *	(iii) # create rw superblock + initial mount
1923  *	      mount -t xfs /dev/sdb /opt/
1924  *
1925  *	      # create ro bind mount
1926  *	      mount --bind -o ro /opt/foo /mnt/foo
1927  *
1928  *	      # unmount initial mount
1929  *	      umount /opt
1930  *
1931  * Of course, there's some special subvolume sauce and there's the fact that the
1932  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1933  * it's very close and will help us understand the issue.
1934  *
1935  * The old mount API didn't cleanly distinguish between a mount being made ro
1936  * and a superblock being made ro.  The only way to change the ro state of
1937  * either object was by passing ms_rdonly. If a new mount was created via
1938  * mount(2) such as:
1939  *
1940  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1941  *
1942  * the MS_RDONLY flag being specified had two effects:
1943  *
1944  * (1) MNT_READONLY was raised -> the resulting mount got
1945  *     @mnt->mnt_flags |= MNT_READONLY raised.
1946  *
1947  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1948  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1949  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1950  *
1951  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1952  * subtree mounted ro.
1953  *
1954  * But consider the effect on the old mount API on btrfs subvolume mounting
1955  * which combines the distinct step in (iii) into a single step.
1956  *
1957  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1958  * is issued the superblock is ro and thus even if the mount created for (ii) is
1959  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1960  * to rw for (ii) which it did using an internal remount call.
1961  *
1962  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1963  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1964  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1965  * passed by mount(8) to mount(2).
1966  *
1967  * Enter the new mount API. The new mount API disambiguates making a mount ro
1968  * and making a superblock ro.
1969  *
1970  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1971  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1972  *     specific mount or mount tree that is never seen by the filesystem itself.
1973  *
1974  * (4) To turn a superblock ro the "ro" flag must be used with
1975  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1976  *     in fc->sb_flags.
1977  *
1978  * But, currently the util-linux mount command already utilizes the new mount
1979  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1980  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1981  * work with different options work we need to keep backward compatibility.
1982  */
1983 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1984 {
1985 	int ret = 0;
1986 
1987 	if (fc->sb_flags & SB_RDONLY)
1988 		return ret;
1989 
1990 	down_write(&mnt->mnt_sb->s_umount);
1991 	if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
1992 		ret = btrfs_reconfigure(fc);
1993 	up_write(&mnt->mnt_sb->s_umount);
1994 	return ret;
1995 }
1996 
1997 static int btrfs_get_tree_subvol(struct fs_context *fc)
1998 {
1999 	struct btrfs_fs_info *fs_info = NULL;
2000 	struct btrfs_fs_context *ctx = fc->fs_private;
2001 	struct fs_context *dup_fc;
2002 	struct dentry *dentry;
2003 	struct vfsmount *mnt;
2004 	int ret = 0;
2005 
2006 	/*
2007 	 * Setup a dummy root and fs_info for test/set super.  This is because
2008 	 * we don't actually fill this stuff out until open_ctree, but we need
2009 	 * then open_ctree will properly initialize the file system specific
2010 	 * settings later.  btrfs_init_fs_info initializes the static elements
2011 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2012 	 * superblock with our given fs_devices later on at sget() time.
2013 	 */
2014 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2015 	if (!fs_info)
2016 		return -ENOMEM;
2017 
2018 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2019 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2021 		btrfs_free_fs_info(fs_info);
2022 		return -ENOMEM;
2023 	}
2024 	btrfs_init_fs_info(fs_info);
2025 
2026 	dup_fc = vfs_dup_fs_context(fc);
2027 	if (IS_ERR(dup_fc)) {
2028 		btrfs_free_fs_info(fs_info);
2029 		return PTR_ERR(dup_fc);
2030 	}
2031 
2032 	/*
2033 	 * When we do the sget_fc this gets transferred to the sb, so we only
2034 	 * need to set it on the dup_fc as this is what creates the super block.
2035 	 */
2036 	dup_fc->s_fs_info = fs_info;
2037 
2038 	/*
2039 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2040 	 * loop, they were duplicated into dup_fc, we can drop the originals
2041 	 * here.
2042 	 */
2043 	security_free_mnt_opts(&fc->security);
2044 	fc->security = NULL;
2045 
2046 	mnt = fc_mount(dup_fc);
2047 	if (IS_ERR(mnt)) {
2048 		put_fs_context(dup_fc);
2049 		return PTR_ERR(mnt);
2050 	}
2051 	ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2052 	put_fs_context(dup_fc);
2053 	if (ret) {
2054 		mntput(mnt);
2055 		return ret;
2056 	}
2057 
2058 	/*
2059 	 * This free's ->subvol_name, because if it isn't set we have to
2060 	 * allocate a buffer to hold the subvol_name, so we just drop our
2061 	 * reference to it here.
2062 	 */
2063 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2064 	ctx->subvol_name = NULL;
2065 	if (IS_ERR(dentry))
2066 		return PTR_ERR(dentry);
2067 
2068 	fc->root = dentry;
2069 	return 0;
2070 }
2071 
2072 static int btrfs_get_tree(struct fs_context *fc)
2073 {
2074 	/*
2075 	 * Since we use mount_subtree to mount the default/specified subvol, we
2076 	 * have to do mounts in two steps.
2077 	 *
2078 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2079 	 * wrapper around fc_mount() to call back into here again, and this time
2080 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2081 	 * everything to open the devices and file system.  Then we return back
2082 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2083 	 * from there we can do our mount_subvol() call, which will lookup
2084 	 * whichever subvol we're mounting and setup this fc with the
2085 	 * appropriate dentry for the subvol.
2086 	 */
2087 	if (fc->s_fs_info)
2088 		return btrfs_get_tree_super(fc);
2089 	return btrfs_get_tree_subvol(fc);
2090 }
2091 
2092 static void btrfs_kill_super(struct super_block *sb)
2093 {
2094 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2095 	kill_anon_super(sb);
2096 	btrfs_free_fs_info(fs_info);
2097 }
2098 
2099 static void btrfs_free_fs_context(struct fs_context *fc)
2100 {
2101 	struct btrfs_fs_context *ctx = fc->fs_private;
2102 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2103 
2104 	if (fs_info)
2105 		btrfs_free_fs_info(fs_info);
2106 
2107 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2108 		kfree(ctx->subvol_name);
2109 		kfree(ctx);
2110 	}
2111 }
2112 
2113 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2114 {
2115 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2116 
2117 	/*
2118 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2119 	 * our original fc so we can have the subvolume name or objectid.
2120 	 *
2121 	 * We unset ->source in the original fc because the dup needs it for
2122 	 * mounting, and then once we free the dup it'll free ->source, so we
2123 	 * need to make sure we're only pointing to it in one fc.
2124 	 */
2125 	refcount_inc(&ctx->refs);
2126 	fc->fs_private = ctx;
2127 	fc->source = src_fc->source;
2128 	src_fc->source = NULL;
2129 	return 0;
2130 }
2131 
2132 static const struct fs_context_operations btrfs_fs_context_ops = {
2133 	.parse_param	= btrfs_parse_param,
2134 	.reconfigure	= btrfs_reconfigure,
2135 	.get_tree	= btrfs_get_tree,
2136 	.dup		= btrfs_dup_fs_context,
2137 	.free		= btrfs_free_fs_context,
2138 };
2139 
2140 static int btrfs_init_fs_context(struct fs_context *fc)
2141 {
2142 	struct btrfs_fs_context *ctx;
2143 
2144 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2145 	if (!ctx)
2146 		return -ENOMEM;
2147 
2148 	refcount_set(&ctx->refs, 1);
2149 	fc->fs_private = ctx;
2150 	fc->ops = &btrfs_fs_context_ops;
2151 
2152 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2153 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2154 	} else {
2155 		ctx->thread_pool_size =
2156 			min_t(unsigned long, num_online_cpus() + 2, 8);
2157 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2158 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2159 	}
2160 
2161 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2162 	fc->sb_flags |= SB_POSIXACL;
2163 #endif
2164 	fc->sb_flags |= SB_I_VERSION;
2165 
2166 	return 0;
2167 }
2168 
2169 static struct file_system_type btrfs_fs_type = {
2170 	.owner			= THIS_MODULE,
2171 	.name			= "btrfs",
2172 	.init_fs_context	= btrfs_init_fs_context,
2173 	.parameters		= btrfs_fs_parameters,
2174 	.kill_sb		= btrfs_kill_super,
2175 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2176 				  FS_ALLOW_IDMAP | FS_MGTIME,
2177  };
2178 
2179 MODULE_ALIAS_FS("btrfs");
2180 
2181 static int btrfs_control_open(struct inode *inode, struct file *file)
2182 {
2183 	/*
2184 	 * The control file's private_data is used to hold the
2185 	 * transaction when it is started and is used to keep
2186 	 * track of whether a transaction is already in progress.
2187 	 */
2188 	file->private_data = NULL;
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Used by /dev/btrfs-control for devices ioctls.
2194  */
2195 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2196 				unsigned long arg)
2197 {
2198 	struct btrfs_ioctl_vol_args *vol;
2199 	struct btrfs_device *device = NULL;
2200 	dev_t devt = 0;
2201 	int ret = -ENOTTY;
2202 
2203 	if (!capable(CAP_SYS_ADMIN))
2204 		return -EPERM;
2205 
2206 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2207 	if (IS_ERR(vol))
2208 		return PTR_ERR(vol);
2209 	ret = btrfs_check_ioctl_vol_args_path(vol);
2210 	if (ret < 0)
2211 		goto out;
2212 
2213 	switch (cmd) {
2214 	case BTRFS_IOC_SCAN_DEV:
2215 		mutex_lock(&uuid_mutex);
2216 		/*
2217 		 * Scanning outside of mount can return NULL which would turn
2218 		 * into 0 error code.
2219 		 */
2220 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2221 		ret = PTR_ERR_OR_ZERO(device);
2222 		mutex_unlock(&uuid_mutex);
2223 		break;
2224 	case BTRFS_IOC_FORGET_DEV:
2225 		if (vol->name[0] != 0) {
2226 			ret = lookup_bdev(vol->name, &devt);
2227 			if (ret)
2228 				break;
2229 		}
2230 		ret = btrfs_forget_devices(devt);
2231 		break;
2232 	case BTRFS_IOC_DEVICES_READY:
2233 		mutex_lock(&uuid_mutex);
2234 		/*
2235 		 * Scanning outside of mount can return NULL which would turn
2236 		 * into 0 error code.
2237 		 */
2238 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2239 		if (IS_ERR_OR_NULL(device)) {
2240 			mutex_unlock(&uuid_mutex);
2241 			if (IS_ERR(device))
2242 				ret = PTR_ERR(device);
2243 			else
2244 				ret = 0;
2245 			break;
2246 		}
2247 		ret = !(device->fs_devices->num_devices ==
2248 			device->fs_devices->total_devices);
2249 		mutex_unlock(&uuid_mutex);
2250 		break;
2251 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2252 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2253 		break;
2254 	}
2255 
2256 out:
2257 	kfree(vol);
2258 	return ret;
2259 }
2260 
2261 static int btrfs_freeze(struct super_block *sb)
2262 {
2263 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2264 
2265 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2266 	/*
2267 	 * We don't need a barrier here, we'll wait for any transaction that
2268 	 * could be in progress on other threads (and do delayed iputs that
2269 	 * we want to avoid on a frozen filesystem), or do the commit
2270 	 * ourselves.
2271 	 */
2272 	return btrfs_commit_current_transaction(fs_info->tree_root);
2273 }
2274 
2275 static int check_dev_super(struct btrfs_device *dev)
2276 {
2277 	struct btrfs_fs_info *fs_info = dev->fs_info;
2278 	struct btrfs_super_block *sb;
2279 	u64 last_trans;
2280 	u16 csum_type;
2281 	int ret = 0;
2282 
2283 	/* This should be called with fs still frozen. */
2284 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285 
2286 	/* Missing dev, no need to check. */
2287 	if (!dev->bdev)
2288 		return 0;
2289 
2290 	/* Only need to check the primary super block. */
2291 	sb = btrfs_read_disk_super(dev->bdev, 0, true);
2292 	if (IS_ERR(sb))
2293 		return PTR_ERR(sb);
2294 
2295 	/* Verify the checksum. */
2296 	csum_type = btrfs_super_csum_type(sb);
2297 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300 		ret = -EUCLEAN;
2301 		goto out;
2302 	}
2303 
2304 	if (btrfs_check_super_csum(fs_info, sb)) {
2305 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306 		ret = -EUCLEAN;
2307 		goto out;
2308 	}
2309 
2310 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2311 	ret = btrfs_validate_super(fs_info, sb, 0);
2312 	if (ret < 0)
2313 		goto out;
2314 
2315 	last_trans = btrfs_get_last_trans_committed(fs_info);
2316 	if (btrfs_super_generation(sb) != last_trans) {
2317 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318 			  btrfs_super_generation(sb), last_trans);
2319 		ret = -EUCLEAN;
2320 		goto out;
2321 	}
2322 out:
2323 	btrfs_release_disk_super(sb);
2324 	return ret;
2325 }
2326 
2327 static int btrfs_unfreeze(struct super_block *sb)
2328 {
2329 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330 	struct btrfs_device *device;
2331 	int ret = 0;
2332 
2333 	/*
2334 	 * Make sure the fs is not changed by accident (like hibernation then
2335 	 * modified by other OS).
2336 	 * If we found anything wrong, we mark the fs error immediately.
2337 	 *
2338 	 * And since the fs is frozen, no one can modify the fs yet, thus
2339 	 * we don't need to hold device_list_mutex.
2340 	 */
2341 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342 		ret = check_dev_super(device);
2343 		if (ret < 0) {
2344 			btrfs_handle_fs_error(fs_info, ret,
2345 				"super block on devid %llu got modified unexpectedly",
2346 				device->devid);
2347 			break;
2348 		}
2349 	}
2350 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351 
2352 	/*
2353 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354 	 * above checks failed. Since the fs is either fine or read-only, we're
2355 	 * safe to continue, without causing further damage.
2356 	 */
2357 	return 0;
2358 }
2359 
2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361 {
2362 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2363 
2364 	/*
2365 	 * There should be always a valid pointer in latest_dev, it may be stale
2366 	 * for a short moment in case it's being deleted but still valid until
2367 	 * the end of RCU grace period.
2368 	 */
2369 	rcu_read_lock();
2370 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371 	rcu_read_unlock();
2372 
2373 	return 0;
2374 }
2375 
2376 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2377 {
2378 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2379 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2380 
2381 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2382 
2383 	return nr;
2384 }
2385 
2386 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2387 {
2388 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2389 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2390 
2391 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2392 
2393 	/* The extent map shrinker runs asynchronously, so always return 0. */
2394 	return 0;
2395 }
2396 
2397 static const struct super_operations btrfs_super_ops = {
2398 	.drop_inode	= btrfs_drop_inode,
2399 	.evict_inode	= btrfs_evict_inode,
2400 	.put_super	= btrfs_put_super,
2401 	.sync_fs	= btrfs_sync_fs,
2402 	.show_options	= btrfs_show_options,
2403 	.show_devname	= btrfs_show_devname,
2404 	.alloc_inode	= btrfs_alloc_inode,
2405 	.destroy_inode	= btrfs_destroy_inode,
2406 	.free_inode	= btrfs_free_inode,
2407 	.statfs		= btrfs_statfs,
2408 	.freeze_fs	= btrfs_freeze,
2409 	.unfreeze_fs	= btrfs_unfreeze,
2410 	.nr_cached_objects = btrfs_nr_cached_objects,
2411 	.free_cached_objects = btrfs_free_cached_objects,
2412 };
2413 
2414 static const struct file_operations btrfs_ctl_fops = {
2415 	.open = btrfs_control_open,
2416 	.unlocked_ioctl	 = btrfs_control_ioctl,
2417 	.compat_ioctl = compat_ptr_ioctl,
2418 	.owner	 = THIS_MODULE,
2419 	.llseek = noop_llseek,
2420 };
2421 
2422 static struct miscdevice btrfs_misc = {
2423 	.minor		= BTRFS_MINOR,
2424 	.name		= "btrfs-control",
2425 	.fops		= &btrfs_ctl_fops
2426 };
2427 
2428 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2429 MODULE_ALIAS("devname:btrfs-control");
2430 
2431 static int __init btrfs_interface_init(void)
2432 {
2433 	return misc_register(&btrfs_misc);
2434 }
2435 
2436 static __cold void btrfs_interface_exit(void)
2437 {
2438 	misc_deregister(&btrfs_misc);
2439 }
2440 
2441 static int __init btrfs_print_mod_info(void)
2442 {
2443 	static const char options[] = ""
2444 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2445 			", experimental=on"
2446 #endif
2447 #ifdef CONFIG_BTRFS_DEBUG
2448 			", debug=on"
2449 #endif
2450 #ifdef CONFIG_BTRFS_ASSERT
2451 			", assert=on"
2452 #endif
2453 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2454 			", ref-verify=on"
2455 #endif
2456 #ifdef CONFIG_BLK_DEV_ZONED
2457 			", zoned=yes"
2458 #else
2459 			", zoned=no"
2460 #endif
2461 #ifdef CONFIG_FS_VERITY
2462 			", fsverity=yes"
2463 #else
2464 			", fsverity=no"
2465 #endif
2466 			;
2467 
2468 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2469 	if (btrfs_get_mod_read_policy() == NULL)
2470 		pr_info("Btrfs loaded%s\n", options);
2471 	else
2472 		pr_info("Btrfs loaded%s, read_policy=%s\n",
2473 			 options, btrfs_get_mod_read_policy());
2474 #else
2475 	pr_info("Btrfs loaded%s\n", options);
2476 #endif
2477 
2478 	return 0;
2479 }
2480 
2481 static int register_btrfs(void)
2482 {
2483 	return register_filesystem(&btrfs_fs_type);
2484 }
2485 
2486 static void unregister_btrfs(void)
2487 {
2488 	unregister_filesystem(&btrfs_fs_type);
2489 }
2490 
2491 /* Helper structure for long init/exit functions. */
2492 struct init_sequence {
2493 	int (*init_func)(void);
2494 	/* Can be NULL if the init_func doesn't need cleanup. */
2495 	void (*exit_func)(void);
2496 };
2497 
2498 static const struct init_sequence mod_init_seq[] = {
2499 	{
2500 		.init_func = btrfs_props_init,
2501 		.exit_func = NULL,
2502 	}, {
2503 		.init_func = btrfs_init_sysfs,
2504 		.exit_func = btrfs_exit_sysfs,
2505 	}, {
2506 		.init_func = btrfs_init_compress,
2507 		.exit_func = btrfs_exit_compress,
2508 	}, {
2509 		.init_func = btrfs_init_cachep,
2510 		.exit_func = btrfs_destroy_cachep,
2511 	}, {
2512 		.init_func = btrfs_init_dio,
2513 		.exit_func = btrfs_destroy_dio,
2514 	}, {
2515 		.init_func = btrfs_transaction_init,
2516 		.exit_func = btrfs_transaction_exit,
2517 	}, {
2518 		.init_func = btrfs_ctree_init,
2519 		.exit_func = btrfs_ctree_exit,
2520 	}, {
2521 		.init_func = btrfs_free_space_init,
2522 		.exit_func = btrfs_free_space_exit,
2523 	}, {
2524 		.init_func = btrfs_extent_state_init_cachep,
2525 		.exit_func = btrfs_extent_state_free_cachep,
2526 	}, {
2527 		.init_func = extent_buffer_init_cachep,
2528 		.exit_func = extent_buffer_free_cachep,
2529 	}, {
2530 		.init_func = btrfs_bioset_init,
2531 		.exit_func = btrfs_bioset_exit,
2532 	}, {
2533 		.init_func = btrfs_extent_map_init,
2534 		.exit_func = btrfs_extent_map_exit,
2535 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2536 	}, {
2537 		.init_func = btrfs_read_policy_init,
2538 		.exit_func = NULL,
2539 #endif
2540 	}, {
2541 		.init_func = ordered_data_init,
2542 		.exit_func = ordered_data_exit,
2543 	}, {
2544 		.init_func = btrfs_delayed_inode_init,
2545 		.exit_func = btrfs_delayed_inode_exit,
2546 	}, {
2547 		.init_func = btrfs_auto_defrag_init,
2548 		.exit_func = btrfs_auto_defrag_exit,
2549 	}, {
2550 		.init_func = btrfs_delayed_ref_init,
2551 		.exit_func = btrfs_delayed_ref_exit,
2552 	}, {
2553 		.init_func = btrfs_prelim_ref_init,
2554 		.exit_func = btrfs_prelim_ref_exit,
2555 	}, {
2556 		.init_func = btrfs_interface_init,
2557 		.exit_func = btrfs_interface_exit,
2558 	}, {
2559 		.init_func = btrfs_print_mod_info,
2560 		.exit_func = NULL,
2561 	}, {
2562 		.init_func = btrfs_run_sanity_tests,
2563 		.exit_func = NULL,
2564 	}, {
2565 		.init_func = register_btrfs,
2566 		.exit_func = unregister_btrfs,
2567 	}
2568 };
2569 
2570 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2571 
2572 static __always_inline void btrfs_exit_btrfs_fs(void)
2573 {
2574 	int i;
2575 
2576 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2577 		if (!mod_init_result[i])
2578 			continue;
2579 		if (mod_init_seq[i].exit_func)
2580 			mod_init_seq[i].exit_func();
2581 		mod_init_result[i] = false;
2582 	}
2583 }
2584 
2585 static void __exit exit_btrfs_fs(void)
2586 {
2587 	btrfs_exit_btrfs_fs();
2588 	btrfs_cleanup_fs_uuids();
2589 }
2590 
2591 static int __init init_btrfs_fs(void)
2592 {
2593 	int ret;
2594 	int i;
2595 
2596 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2597 		ASSERT(!mod_init_result[i]);
2598 		ret = mod_init_seq[i].init_func();
2599 		if (ret < 0) {
2600 			btrfs_exit_btrfs_fs();
2601 			return ret;
2602 		}
2603 		mod_init_result[i] = true;
2604 	}
2605 	return 0;
2606 }
2607 
2608 late_initcall(init_btrfs_fs);
2609 module_exit(exit_btrfs_fs)
2610 
2611 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2612 MODULE_LICENSE("GPL");
2613 MODULE_SOFTDEP("pre: crc32c");
2614 MODULE_SOFTDEP("pre: xxhash64");
2615 MODULE_SOFTDEP("pre: sha256");
2616 MODULE_SOFTDEP("pre: blake2b-256");
2617