1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "direct-io.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "dev-replace.h" 44 #include "free-space-cache.h" 45 #include "backref.h" 46 #include "space-info.h" 47 #include "sysfs.h" 48 #include "zoned.h" 49 #include "tests/btrfs-tests.h" 50 #include "block-group.h" 51 #include "discard.h" 52 #include "qgroup.h" 53 #include "raid56.h" 54 #include "fs.h" 55 #include "accessors.h" 56 #include "defrag.h" 57 #include "dir-item.h" 58 #include "ioctl.h" 59 #include "scrub.h" 60 #include "verity.h" 61 #include "super.h" 62 #include "extent-tree.h" 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static void btrfs_put_super(struct super_block *sb) 70 { 71 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 72 73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 74 close_ctree(fs_info); 75 } 76 77 /* Store the mount options related information. */ 78 struct btrfs_fs_context { 79 char *subvol_name; 80 u64 subvol_objectid; 81 u64 max_inline; 82 u32 commit_interval; 83 u32 metadata_ratio; 84 u32 thread_pool_size; 85 unsigned long long mount_opt; 86 unsigned long compress_type:4; 87 int compress_level; 88 refcount_t refs; 89 }; 90 91 enum { 92 Opt_acl, 93 Opt_clear_cache, 94 Opt_commit_interval, 95 Opt_compress, 96 Opt_compress_force, 97 Opt_compress_force_type, 98 Opt_compress_type, 99 Opt_degraded, 100 Opt_device, 101 Opt_fatal_errors, 102 Opt_flushoncommit, 103 Opt_max_inline, 104 Opt_barrier, 105 Opt_datacow, 106 Opt_datasum, 107 Opt_defrag, 108 Opt_discard, 109 Opt_discard_mode, 110 Opt_ratio, 111 Opt_rescan_uuid_tree, 112 Opt_skip_balance, 113 Opt_space_cache, 114 Opt_space_cache_version, 115 Opt_ssd, 116 Opt_ssd_spread, 117 Opt_subvol, 118 Opt_subvol_empty, 119 Opt_subvolid, 120 Opt_thread_pool, 121 Opt_treelog, 122 Opt_user_subvol_rm_allowed, 123 Opt_norecovery, 124 125 /* Rescue options */ 126 Opt_rescue, 127 Opt_usebackuproot, 128 129 /* Debugging options */ 130 Opt_enospc_debug, 131 #ifdef CONFIG_BTRFS_DEBUG 132 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 133 #endif 134 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 135 Opt_ref_verify, 136 #endif 137 Opt_err, 138 }; 139 140 enum { 141 Opt_fatal_errors_panic, 142 Opt_fatal_errors_bug, 143 }; 144 145 static const struct constant_table btrfs_parameter_fatal_errors[] = { 146 { "panic", Opt_fatal_errors_panic }, 147 { "bug", Opt_fatal_errors_bug }, 148 {} 149 }; 150 151 enum { 152 Opt_discard_sync, 153 Opt_discard_async, 154 }; 155 156 static const struct constant_table btrfs_parameter_discard[] = { 157 { "sync", Opt_discard_sync }, 158 { "async", Opt_discard_async }, 159 {} 160 }; 161 162 enum { 163 Opt_space_cache_v1, 164 Opt_space_cache_v2, 165 }; 166 167 static const struct constant_table btrfs_parameter_space_cache[] = { 168 { "v1", Opt_space_cache_v1 }, 169 { "v2", Opt_space_cache_v2 }, 170 {} 171 }; 172 173 enum { 174 Opt_rescue_usebackuproot, 175 Opt_rescue_nologreplay, 176 Opt_rescue_ignorebadroots, 177 Opt_rescue_ignoredatacsums, 178 Opt_rescue_ignoremetacsums, 179 Opt_rescue_ignoresuperflags, 180 Opt_rescue_parameter_all, 181 }; 182 183 static const struct constant_table btrfs_parameter_rescue[] = { 184 { "usebackuproot", Opt_rescue_usebackuproot }, 185 { "nologreplay", Opt_rescue_nologreplay }, 186 { "ignorebadroots", Opt_rescue_ignorebadroots }, 187 { "ibadroots", Opt_rescue_ignorebadroots }, 188 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 189 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 190 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 191 { "idatacsums", Opt_rescue_ignoredatacsums }, 192 { "imetacsums", Opt_rescue_ignoremetacsums}, 193 { "isuperflags", Opt_rescue_ignoresuperflags}, 194 { "all", Opt_rescue_parameter_all }, 195 {} 196 }; 197 198 #ifdef CONFIG_BTRFS_DEBUG 199 enum { 200 Opt_fragment_parameter_data, 201 Opt_fragment_parameter_metadata, 202 Opt_fragment_parameter_all, 203 }; 204 205 static const struct constant_table btrfs_parameter_fragment[] = { 206 { "data", Opt_fragment_parameter_data }, 207 { "metadata", Opt_fragment_parameter_metadata }, 208 { "all", Opt_fragment_parameter_all }, 209 {} 210 }; 211 #endif 212 213 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 214 fsparam_flag_no("acl", Opt_acl), 215 fsparam_flag_no("autodefrag", Opt_defrag), 216 fsparam_flag_no("barrier", Opt_barrier), 217 fsparam_flag("clear_cache", Opt_clear_cache), 218 fsparam_u32("commit", Opt_commit_interval), 219 fsparam_flag("compress", Opt_compress), 220 fsparam_string("compress", Opt_compress_type), 221 fsparam_flag("compress-force", Opt_compress_force), 222 fsparam_string("compress-force", Opt_compress_force_type), 223 fsparam_flag_no("datacow", Opt_datacow), 224 fsparam_flag_no("datasum", Opt_datasum), 225 fsparam_flag("degraded", Opt_degraded), 226 fsparam_string("device", Opt_device), 227 fsparam_flag_no("discard", Opt_discard), 228 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 229 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 230 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 231 fsparam_string("max_inline", Opt_max_inline), 232 fsparam_u32("metadata_ratio", Opt_ratio), 233 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 234 fsparam_flag("skip_balance", Opt_skip_balance), 235 fsparam_flag_no("space_cache", Opt_space_cache), 236 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 237 fsparam_flag_no("ssd", Opt_ssd), 238 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 239 fsparam_string("subvol", Opt_subvol), 240 fsparam_flag("subvol=", Opt_subvol_empty), 241 fsparam_u64("subvolid", Opt_subvolid), 242 fsparam_u32("thread_pool", Opt_thread_pool), 243 fsparam_flag_no("treelog", Opt_treelog), 244 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 245 246 /* Rescue options. */ 247 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 248 /* Deprecated, with alias rescue=usebackuproot */ 249 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 250 /* For compatibility only, alias for "rescue=nologreplay". */ 251 fsparam_flag("norecovery", Opt_norecovery), 252 253 /* Debugging options. */ 254 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 255 #ifdef CONFIG_BTRFS_DEBUG 256 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 257 #endif 258 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 259 fsparam_flag("ref_verify", Opt_ref_verify), 260 #endif 261 {} 262 }; 263 264 /* No support for restricting writes to btrfs devices yet... */ 265 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 266 { 267 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 268 } 269 270 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 271 { 272 struct btrfs_fs_context *ctx = fc->fs_private; 273 struct fs_parse_result result; 274 int opt; 275 276 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 277 if (opt < 0) 278 return opt; 279 280 switch (opt) { 281 case Opt_degraded: 282 btrfs_set_opt(ctx->mount_opt, DEGRADED); 283 break; 284 case Opt_subvol_empty: 285 /* 286 * This exists because we used to allow it on accident, so we're 287 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 288 * empty subvol= again"). 289 */ 290 break; 291 case Opt_subvol: 292 kfree(ctx->subvol_name); 293 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 294 if (!ctx->subvol_name) 295 return -ENOMEM; 296 break; 297 case Opt_subvolid: 298 ctx->subvol_objectid = result.uint_64; 299 300 /* subvolid=0 means give me the original fs_tree. */ 301 if (!ctx->subvol_objectid) 302 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 303 break; 304 case Opt_device: { 305 struct btrfs_device *device; 306 blk_mode_t mode = btrfs_open_mode(fc); 307 308 mutex_lock(&uuid_mutex); 309 device = btrfs_scan_one_device(param->string, mode, false); 310 mutex_unlock(&uuid_mutex); 311 if (IS_ERR(device)) 312 return PTR_ERR(device); 313 break; 314 } 315 case Opt_datasum: 316 if (result.negated) { 317 btrfs_set_opt(ctx->mount_opt, NODATASUM); 318 } else { 319 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 320 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 321 } 322 break; 323 case Opt_datacow: 324 if (result.negated) { 325 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 326 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 327 btrfs_set_opt(ctx->mount_opt, NODATACOW); 328 btrfs_set_opt(ctx->mount_opt, NODATASUM); 329 } else { 330 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 331 } 332 break; 333 case Opt_compress_force: 334 case Opt_compress_force_type: 335 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 336 fallthrough; 337 case Opt_compress: 338 case Opt_compress_type: 339 /* 340 * Provide the same semantics as older kernels that don't use fs 341 * context, specifying the "compress" option clears 342 * "force-compress" without the need to pass 343 * "compress-force=[no|none]" before specifying "compress". 344 */ 345 if (opt != Opt_compress_force && opt != Opt_compress_force_type) 346 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 347 348 if (opt == Opt_compress || opt == Opt_compress_force) { 349 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 350 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 351 btrfs_set_opt(ctx->mount_opt, COMPRESS); 352 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 353 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 354 } else if (strncmp(param->string, "zlib", 4) == 0) { 355 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 356 ctx->compress_level = 357 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 358 param->string + 4); 359 btrfs_set_opt(ctx->mount_opt, COMPRESS); 360 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 361 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 362 } else if (strncmp(param->string, "lzo", 3) == 0) { 363 ctx->compress_type = BTRFS_COMPRESS_LZO; 364 ctx->compress_level = 0; 365 btrfs_set_opt(ctx->mount_opt, COMPRESS); 366 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 367 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 368 } else if (strncmp(param->string, "zstd", 4) == 0) { 369 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 370 ctx->compress_level = 371 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 372 param->string + 4); 373 btrfs_set_opt(ctx->mount_opt, COMPRESS); 374 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 375 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 376 } else if (strncmp(param->string, "no", 2) == 0) { 377 ctx->compress_level = 0; 378 ctx->compress_type = 0; 379 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 380 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 381 } else { 382 btrfs_err(NULL, "unrecognized compression value %s", 383 param->string); 384 return -EINVAL; 385 } 386 break; 387 case Opt_ssd: 388 if (result.negated) { 389 btrfs_set_opt(ctx->mount_opt, NOSSD); 390 btrfs_clear_opt(ctx->mount_opt, SSD); 391 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 392 } else { 393 btrfs_set_opt(ctx->mount_opt, SSD); 394 btrfs_clear_opt(ctx->mount_opt, NOSSD); 395 } 396 break; 397 case Opt_ssd_spread: 398 if (result.negated) { 399 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 400 } else { 401 btrfs_set_opt(ctx->mount_opt, SSD); 402 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 403 btrfs_clear_opt(ctx->mount_opt, NOSSD); 404 } 405 break; 406 case Opt_barrier: 407 if (result.negated) 408 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 409 else 410 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 411 break; 412 case Opt_thread_pool: 413 if (result.uint_32 == 0) { 414 btrfs_err(NULL, "invalid value 0 for thread_pool"); 415 return -EINVAL; 416 } 417 ctx->thread_pool_size = result.uint_32; 418 break; 419 case Opt_max_inline: 420 ctx->max_inline = memparse(param->string, NULL); 421 break; 422 case Opt_acl: 423 if (result.negated) { 424 fc->sb_flags &= ~SB_POSIXACL; 425 } else { 426 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 427 fc->sb_flags |= SB_POSIXACL; 428 #else 429 btrfs_err(NULL, "support for ACL not compiled in"); 430 return -EINVAL; 431 #endif 432 } 433 /* 434 * VFS limits the ability to toggle ACL on and off via remount, 435 * despite every file system allowing this. This seems to be 436 * an oversight since we all do, but it'll fail if we're 437 * remounting. So don't set the mask here, we'll check it in 438 * btrfs_reconfigure and do the toggling ourselves. 439 */ 440 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 441 fc->sb_flags_mask |= SB_POSIXACL; 442 break; 443 case Opt_treelog: 444 if (result.negated) 445 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 446 else 447 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 448 break; 449 case Opt_norecovery: 450 btrfs_info(NULL, 451 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 452 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 453 break; 454 case Opt_flushoncommit: 455 if (result.negated) 456 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 457 else 458 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 459 break; 460 case Opt_ratio: 461 ctx->metadata_ratio = result.uint_32; 462 break; 463 case Opt_discard: 464 if (result.negated) { 465 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 466 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 467 btrfs_set_opt(ctx->mount_opt, NODISCARD); 468 } else { 469 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 470 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 471 } 472 break; 473 case Opt_discard_mode: 474 switch (result.uint_32) { 475 case Opt_discard_sync: 476 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 478 break; 479 case Opt_discard_async: 480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 481 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 482 break; 483 default: 484 btrfs_err(NULL, "unrecognized discard mode value %s", 485 param->key); 486 return -EINVAL; 487 } 488 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 489 break; 490 case Opt_space_cache: 491 if (result.negated) { 492 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 493 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 494 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 495 } else { 496 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 497 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 498 } 499 break; 500 case Opt_space_cache_version: 501 switch (result.uint_32) { 502 case Opt_space_cache_v1: 503 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 505 break; 506 case Opt_space_cache_v2: 507 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 508 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 509 break; 510 default: 511 btrfs_err(NULL, "unrecognized space_cache value %s", 512 param->key); 513 return -EINVAL; 514 } 515 break; 516 case Opt_rescan_uuid_tree: 517 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 518 break; 519 case Opt_clear_cache: 520 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 521 break; 522 case Opt_user_subvol_rm_allowed: 523 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 524 break; 525 case Opt_enospc_debug: 526 if (result.negated) 527 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 528 else 529 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 530 break; 531 case Opt_defrag: 532 if (result.negated) 533 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 534 else 535 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 536 break; 537 case Opt_usebackuproot: 538 btrfs_warn(NULL, 539 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 540 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 541 542 /* If we're loading the backup roots we can't trust the space cache. */ 543 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 544 break; 545 case Opt_skip_balance: 546 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 547 break; 548 case Opt_fatal_errors: 549 switch (result.uint_32) { 550 case Opt_fatal_errors_panic: 551 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 552 break; 553 case Opt_fatal_errors_bug: 554 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 555 break; 556 default: 557 btrfs_err(NULL, "unrecognized fatal_errors value %s", 558 param->key); 559 return -EINVAL; 560 } 561 break; 562 case Opt_commit_interval: 563 ctx->commit_interval = result.uint_32; 564 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) { 565 btrfs_warn(NULL, "excessive commit interval %u, use with care", 566 ctx->commit_interval); 567 } 568 if (ctx->commit_interval == 0) 569 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 570 break; 571 case Opt_rescue: 572 switch (result.uint_32) { 573 case Opt_rescue_usebackuproot: 574 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 575 break; 576 case Opt_rescue_nologreplay: 577 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 578 break; 579 case Opt_rescue_ignorebadroots: 580 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 581 break; 582 case Opt_rescue_ignoredatacsums: 583 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 584 break; 585 case Opt_rescue_ignoremetacsums: 586 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 587 break; 588 case Opt_rescue_ignoresuperflags: 589 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 590 break; 591 case Opt_rescue_parameter_all: 592 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 593 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 594 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 595 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 596 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 597 break; 598 default: 599 btrfs_info(NULL, "unrecognized rescue option '%s'", 600 param->key); 601 return -EINVAL; 602 } 603 break; 604 #ifdef CONFIG_BTRFS_DEBUG 605 case Opt_fragment: 606 switch (result.uint_32) { 607 case Opt_fragment_parameter_all: 608 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 609 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 610 break; 611 case Opt_fragment_parameter_metadata: 612 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 613 break; 614 case Opt_fragment_parameter_data: 615 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 616 break; 617 default: 618 btrfs_info(NULL, "unrecognized fragment option '%s'", 619 param->key); 620 return -EINVAL; 621 } 622 break; 623 #endif 624 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 625 case Opt_ref_verify: 626 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 627 break; 628 #endif 629 default: 630 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 631 return -EINVAL; 632 } 633 634 return 0; 635 } 636 637 /* 638 * Some options only have meaning at mount time and shouldn't persist across 639 * remounts, or be displayed. Clear these at the end of mount and remount code 640 * paths. 641 */ 642 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 643 { 644 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 645 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 646 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 647 } 648 649 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 650 unsigned long long mount_opt, unsigned long long opt, 651 const char *opt_name) 652 { 653 if (mount_opt & opt) { 654 btrfs_err(fs_info, "%s must be used with ro mount option", 655 opt_name); 656 return true; 657 } 658 return false; 659 } 660 661 bool btrfs_check_options(const struct btrfs_fs_info *info, 662 unsigned long long *mount_opt, 663 unsigned long flags) 664 { 665 bool ret = true; 666 667 if (!(flags & SB_RDONLY) && 668 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 669 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 670 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 671 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 672 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 673 ret = false; 674 675 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 676 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 677 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 678 btrfs_err(info, "cannot disable free-space-tree"); 679 ret = false; 680 } 681 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 682 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 683 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 684 ret = false; 685 } 686 687 if (btrfs_check_mountopts_zoned(info, mount_opt)) 688 ret = false; 689 690 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 691 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 692 btrfs_info(info, "disk space caching is enabled"); 693 btrfs_warn(info, 694 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 695 } 696 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 697 btrfs_info(info, "using free-space-tree"); 698 } 699 700 return ret; 701 } 702 703 /* 704 * This is subtle, we only call this during open_ctree(). We need to pre-load 705 * the mount options with the on-disk settings. Before the new mount API took 706 * effect we would do this on mount and remount. With the new mount API we'll 707 * only do this on the initial mount. 708 * 709 * This isn't a change in behavior, because we're using the current state of the 710 * file system to set the current mount options. If you mounted with special 711 * options to disable these features and then remounted we wouldn't revert the 712 * settings, because mounting without these features cleared the on-disk 713 * settings, so this being called on re-mount is not needed. 714 */ 715 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 716 { 717 if (fs_info->sectorsize < PAGE_SIZE) { 718 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 719 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 720 btrfs_info(fs_info, 721 "forcing free space tree for sector size %u with page size %lu", 722 fs_info->sectorsize, PAGE_SIZE); 723 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 724 } 725 } 726 727 /* 728 * At this point our mount options are populated, so we only mess with 729 * these settings if we don't have any settings already. 730 */ 731 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 732 return; 733 734 if (btrfs_is_zoned(fs_info) && 735 btrfs_free_space_cache_v1_active(fs_info)) { 736 btrfs_info(fs_info, "zoned: clearing existing space cache"); 737 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 738 return; 739 } 740 741 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 742 return; 743 744 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 745 return; 746 747 /* 748 * At this point we don't have explicit options set by the user, set 749 * them ourselves based on the state of the file system. 750 */ 751 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 752 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 753 else if (btrfs_free_space_cache_v1_active(fs_info)) 754 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 755 } 756 757 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 758 { 759 if (!btrfs_test_opt(fs_info, NOSSD) && 760 !fs_info->fs_devices->rotating) 761 btrfs_set_opt(fs_info->mount_opt, SSD); 762 763 /* 764 * For devices supporting discard turn on discard=async automatically, 765 * unless it's already set or disabled. This could be turned off by 766 * nodiscard for the same mount. 767 * 768 * The zoned mode piggy backs on the discard functionality for 769 * resetting a zone. There is no reason to delay the zone reset as it is 770 * fast enough. So, do not enable async discard for zoned mode. 771 */ 772 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 773 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 774 btrfs_test_opt(fs_info, NODISCARD)) && 775 fs_info->fs_devices->discardable && 776 !btrfs_is_zoned(fs_info)) 777 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 778 } 779 780 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 781 u64 subvol_objectid) 782 { 783 struct btrfs_root *root = fs_info->tree_root; 784 struct btrfs_root *fs_root = NULL; 785 struct btrfs_root_ref *root_ref; 786 struct btrfs_inode_ref *inode_ref; 787 struct btrfs_key key; 788 struct btrfs_path *path = NULL; 789 char *name = NULL, *ptr; 790 u64 dirid; 791 int len; 792 int ret; 793 794 path = btrfs_alloc_path(); 795 if (!path) { 796 ret = -ENOMEM; 797 goto err; 798 } 799 800 name = kmalloc(PATH_MAX, GFP_KERNEL); 801 if (!name) { 802 ret = -ENOMEM; 803 goto err; 804 } 805 ptr = name + PATH_MAX - 1; 806 ptr[0] = '\0'; 807 808 /* 809 * Walk up the subvolume trees in the tree of tree roots by root 810 * backrefs until we hit the top-level subvolume. 811 */ 812 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 813 key.objectid = subvol_objectid; 814 key.type = BTRFS_ROOT_BACKREF_KEY; 815 key.offset = (u64)-1; 816 817 ret = btrfs_search_backwards(root, &key, path); 818 if (ret < 0) { 819 goto err; 820 } else if (ret > 0) { 821 ret = -ENOENT; 822 goto err; 823 } 824 825 subvol_objectid = key.offset; 826 827 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 828 struct btrfs_root_ref); 829 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 830 ptr -= len + 1; 831 if (ptr < name) { 832 ret = -ENAMETOOLONG; 833 goto err; 834 } 835 read_extent_buffer(path->nodes[0], ptr + 1, 836 (unsigned long)(root_ref + 1), len); 837 ptr[0] = '/'; 838 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 839 btrfs_release_path(path); 840 841 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 842 if (IS_ERR(fs_root)) { 843 ret = PTR_ERR(fs_root); 844 fs_root = NULL; 845 goto err; 846 } 847 848 /* 849 * Walk up the filesystem tree by inode refs until we hit the 850 * root directory. 851 */ 852 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 853 key.objectid = dirid; 854 key.type = BTRFS_INODE_REF_KEY; 855 key.offset = (u64)-1; 856 857 ret = btrfs_search_backwards(fs_root, &key, path); 858 if (ret < 0) { 859 goto err; 860 } else if (ret > 0) { 861 ret = -ENOENT; 862 goto err; 863 } 864 865 dirid = key.offset; 866 867 inode_ref = btrfs_item_ptr(path->nodes[0], 868 path->slots[0], 869 struct btrfs_inode_ref); 870 len = btrfs_inode_ref_name_len(path->nodes[0], 871 inode_ref); 872 ptr -= len + 1; 873 if (ptr < name) { 874 ret = -ENAMETOOLONG; 875 goto err; 876 } 877 read_extent_buffer(path->nodes[0], ptr + 1, 878 (unsigned long)(inode_ref + 1), len); 879 ptr[0] = '/'; 880 btrfs_release_path(path); 881 } 882 btrfs_put_root(fs_root); 883 fs_root = NULL; 884 } 885 886 btrfs_free_path(path); 887 if (ptr == name + PATH_MAX - 1) { 888 name[0] = '/'; 889 name[1] = '\0'; 890 } else { 891 memmove(name, ptr, name + PATH_MAX - ptr); 892 } 893 return name; 894 895 err: 896 btrfs_put_root(fs_root); 897 btrfs_free_path(path); 898 kfree(name); 899 return ERR_PTR(ret); 900 } 901 902 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 903 { 904 struct btrfs_root *root = fs_info->tree_root; 905 struct btrfs_dir_item *di; 906 struct btrfs_path *path; 907 struct btrfs_key location; 908 struct fscrypt_str name = FSTR_INIT("default", 7); 909 u64 dir_id; 910 911 path = btrfs_alloc_path(); 912 if (!path) 913 return -ENOMEM; 914 915 /* 916 * Find the "default" dir item which points to the root item that we 917 * will mount by default if we haven't been given a specific subvolume 918 * to mount. 919 */ 920 dir_id = btrfs_super_root_dir(fs_info->super_copy); 921 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 922 if (IS_ERR(di)) { 923 btrfs_free_path(path); 924 return PTR_ERR(di); 925 } 926 if (!di) { 927 /* 928 * Ok the default dir item isn't there. This is weird since 929 * it's always been there, but don't freak out, just try and 930 * mount the top-level subvolume. 931 */ 932 btrfs_free_path(path); 933 *objectid = BTRFS_FS_TREE_OBJECTID; 934 return 0; 935 } 936 937 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 938 btrfs_free_path(path); 939 *objectid = location.objectid; 940 return 0; 941 } 942 943 static int btrfs_fill_super(struct super_block *sb, 944 struct btrfs_fs_devices *fs_devices) 945 { 946 struct btrfs_inode *inode; 947 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 948 int err; 949 950 sb->s_maxbytes = MAX_LFS_FILESIZE; 951 sb->s_magic = BTRFS_SUPER_MAGIC; 952 sb->s_op = &btrfs_super_ops; 953 sb->s_d_op = &btrfs_dentry_operations; 954 sb->s_export_op = &btrfs_export_ops; 955 #ifdef CONFIG_FS_VERITY 956 sb->s_vop = &btrfs_verityops; 957 #endif 958 sb->s_xattr = btrfs_xattr_handlers; 959 sb->s_time_gran = 1; 960 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM; 961 962 err = super_setup_bdi(sb); 963 if (err) { 964 btrfs_err(fs_info, "super_setup_bdi failed"); 965 return err; 966 } 967 968 err = open_ctree(sb, fs_devices); 969 if (err) { 970 btrfs_err(fs_info, "open_ctree failed: %d", err); 971 return err; 972 } 973 974 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 975 if (IS_ERR(inode)) { 976 err = PTR_ERR(inode); 977 btrfs_handle_fs_error(fs_info, err, NULL); 978 goto fail_close; 979 } 980 981 sb->s_root = d_make_root(&inode->vfs_inode); 982 if (!sb->s_root) { 983 err = -ENOMEM; 984 goto fail_close; 985 } 986 987 sb->s_flags |= SB_ACTIVE; 988 return 0; 989 990 fail_close: 991 close_ctree(fs_info); 992 return err; 993 } 994 995 int btrfs_sync_fs(struct super_block *sb, int wait) 996 { 997 struct btrfs_trans_handle *trans; 998 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 999 struct btrfs_root *root = fs_info->tree_root; 1000 1001 trace_btrfs_sync_fs(fs_info, wait); 1002 1003 if (!wait) { 1004 filemap_flush(fs_info->btree_inode->i_mapping); 1005 return 0; 1006 } 1007 1008 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1009 1010 trans = btrfs_attach_transaction_barrier(root); 1011 if (IS_ERR(trans)) { 1012 /* no transaction, don't bother */ 1013 if (PTR_ERR(trans) == -ENOENT) { 1014 /* 1015 * Exit unless we have some pending changes 1016 * that need to go through commit 1017 */ 1018 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1019 &fs_info->flags)) 1020 return 0; 1021 /* 1022 * A non-blocking test if the fs is frozen. We must not 1023 * start a new transaction here otherwise a deadlock 1024 * happens. The pending operations are delayed to the 1025 * next commit after thawing. 1026 */ 1027 if (sb_start_write_trylock(sb)) 1028 sb_end_write(sb); 1029 else 1030 return 0; 1031 trans = btrfs_start_transaction(root, 0); 1032 } 1033 if (IS_ERR(trans)) 1034 return PTR_ERR(trans); 1035 } 1036 return btrfs_commit_transaction(trans); 1037 } 1038 1039 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1040 { 1041 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1042 *printed = true; 1043 } 1044 1045 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1046 { 1047 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1048 const char *compress_type; 1049 const char *subvol_name; 1050 bool printed = false; 1051 1052 if (btrfs_test_opt(info, DEGRADED)) 1053 seq_puts(seq, ",degraded"); 1054 if (btrfs_test_opt(info, NODATASUM)) 1055 seq_puts(seq, ",nodatasum"); 1056 if (btrfs_test_opt(info, NODATACOW)) 1057 seq_puts(seq, ",nodatacow"); 1058 if (btrfs_test_opt(info, NOBARRIER)) 1059 seq_puts(seq, ",nobarrier"); 1060 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1061 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1062 if (info->thread_pool_size != min_t(unsigned long, 1063 num_online_cpus() + 2, 8)) 1064 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1065 if (btrfs_test_opt(info, COMPRESS)) { 1066 compress_type = btrfs_compress_type2str(info->compress_type); 1067 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1068 seq_printf(seq, ",compress-force=%s", compress_type); 1069 else 1070 seq_printf(seq, ",compress=%s", compress_type); 1071 if (info->compress_level) 1072 seq_printf(seq, ":%d", info->compress_level); 1073 } 1074 if (btrfs_test_opt(info, NOSSD)) 1075 seq_puts(seq, ",nossd"); 1076 if (btrfs_test_opt(info, SSD_SPREAD)) 1077 seq_puts(seq, ",ssd_spread"); 1078 else if (btrfs_test_opt(info, SSD)) 1079 seq_puts(seq, ",ssd"); 1080 if (btrfs_test_opt(info, NOTREELOG)) 1081 seq_puts(seq, ",notreelog"); 1082 if (btrfs_test_opt(info, NOLOGREPLAY)) 1083 print_rescue_option(seq, "nologreplay", &printed); 1084 if (btrfs_test_opt(info, USEBACKUPROOT)) 1085 print_rescue_option(seq, "usebackuproot", &printed); 1086 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1087 print_rescue_option(seq, "ignorebadroots", &printed); 1088 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1089 print_rescue_option(seq, "ignoredatacsums", &printed); 1090 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1091 print_rescue_option(seq, "ignoremetacsums", &printed); 1092 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1093 print_rescue_option(seq, "ignoresuperflags", &printed); 1094 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1095 seq_puts(seq, ",flushoncommit"); 1096 if (btrfs_test_opt(info, DISCARD_SYNC)) 1097 seq_puts(seq, ",discard"); 1098 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1099 seq_puts(seq, ",discard=async"); 1100 if (!(info->sb->s_flags & SB_POSIXACL)) 1101 seq_puts(seq, ",noacl"); 1102 if (btrfs_free_space_cache_v1_active(info)) 1103 seq_puts(seq, ",space_cache"); 1104 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1105 seq_puts(seq, ",space_cache=v2"); 1106 else 1107 seq_puts(seq, ",nospace_cache"); 1108 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1109 seq_puts(seq, ",rescan_uuid_tree"); 1110 if (btrfs_test_opt(info, CLEAR_CACHE)) 1111 seq_puts(seq, ",clear_cache"); 1112 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1113 seq_puts(seq, ",user_subvol_rm_allowed"); 1114 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1115 seq_puts(seq, ",enospc_debug"); 1116 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1117 seq_puts(seq, ",autodefrag"); 1118 if (btrfs_test_opt(info, SKIP_BALANCE)) 1119 seq_puts(seq, ",skip_balance"); 1120 if (info->metadata_ratio) 1121 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1122 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1123 seq_puts(seq, ",fatal_errors=panic"); 1124 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1125 seq_printf(seq, ",commit=%u", info->commit_interval); 1126 #ifdef CONFIG_BTRFS_DEBUG 1127 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1128 seq_puts(seq, ",fragment=data"); 1129 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1130 seq_puts(seq, ",fragment=metadata"); 1131 #endif 1132 if (btrfs_test_opt(info, REF_VERIFY)) 1133 seq_puts(seq, ",ref_verify"); 1134 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1135 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1136 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1137 if (!IS_ERR(subvol_name)) { 1138 seq_show_option(seq, "subvol", subvol_name); 1139 kfree(subvol_name); 1140 } 1141 return 0; 1142 } 1143 1144 /* 1145 * subvolumes are identified by ino 256 1146 */ 1147 static inline bool is_subvolume_inode(struct inode *inode) 1148 { 1149 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1150 return true; 1151 return false; 1152 } 1153 1154 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1155 struct vfsmount *mnt) 1156 { 1157 struct dentry *root; 1158 int ret; 1159 1160 if (!subvol_name) { 1161 if (!subvol_objectid) { 1162 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1163 &subvol_objectid); 1164 if (ret) { 1165 root = ERR_PTR(ret); 1166 goto out; 1167 } 1168 } 1169 subvol_name = btrfs_get_subvol_name_from_objectid( 1170 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1171 if (IS_ERR(subvol_name)) { 1172 root = ERR_CAST(subvol_name); 1173 subvol_name = NULL; 1174 goto out; 1175 } 1176 1177 } 1178 1179 root = mount_subtree(mnt, subvol_name); 1180 /* mount_subtree() drops our reference on the vfsmount. */ 1181 mnt = NULL; 1182 1183 if (!IS_ERR(root)) { 1184 struct super_block *s = root->d_sb; 1185 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1186 struct inode *root_inode = d_inode(root); 1187 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1188 1189 ret = 0; 1190 if (!is_subvolume_inode(root_inode)) { 1191 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1192 subvol_name); 1193 ret = -EINVAL; 1194 } 1195 if (subvol_objectid && root_objectid != subvol_objectid) { 1196 /* 1197 * This will also catch a race condition where a 1198 * subvolume which was passed by ID is renamed and 1199 * another subvolume is renamed over the old location. 1200 */ 1201 btrfs_err(fs_info, 1202 "subvol '%s' does not match subvolid %llu", 1203 subvol_name, subvol_objectid); 1204 ret = -EINVAL; 1205 } 1206 if (ret) { 1207 dput(root); 1208 root = ERR_PTR(ret); 1209 deactivate_locked_super(s); 1210 } 1211 } 1212 1213 out: 1214 mntput(mnt); 1215 kfree(subvol_name); 1216 return root; 1217 } 1218 1219 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1220 u32 new_pool_size, u32 old_pool_size) 1221 { 1222 if (new_pool_size == old_pool_size) 1223 return; 1224 1225 fs_info->thread_pool_size = new_pool_size; 1226 1227 btrfs_info(fs_info, "resize thread pool %d -> %d", 1228 old_pool_size, new_pool_size); 1229 1230 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1231 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1232 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1233 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1234 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1235 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1236 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1237 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1238 } 1239 1240 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1241 unsigned long long old_opts, int flags) 1242 { 1243 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1244 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1245 (flags & SB_RDONLY))) { 1246 /* wait for any defraggers to finish */ 1247 wait_event(fs_info->transaction_wait, 1248 (atomic_read(&fs_info->defrag_running) == 0)); 1249 if (flags & SB_RDONLY) 1250 sync_filesystem(fs_info->sb); 1251 } 1252 } 1253 1254 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1255 unsigned long long old_opts) 1256 { 1257 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1258 1259 /* 1260 * We need to cleanup all defragable inodes if the autodefragment is 1261 * close or the filesystem is read only. 1262 */ 1263 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1264 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1265 btrfs_cleanup_defrag_inodes(fs_info); 1266 } 1267 1268 /* If we toggled discard async */ 1269 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1270 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1271 btrfs_discard_resume(fs_info); 1272 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1273 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1274 btrfs_discard_cleanup(fs_info); 1275 1276 /* If we toggled space cache */ 1277 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1278 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1279 } 1280 1281 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1282 { 1283 int ret; 1284 1285 if (BTRFS_FS_ERROR(fs_info)) { 1286 btrfs_err(fs_info, 1287 "remounting read-write after error is not allowed"); 1288 return -EINVAL; 1289 } 1290 1291 if (fs_info->fs_devices->rw_devices == 0) 1292 return -EACCES; 1293 1294 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1295 btrfs_warn(fs_info, 1296 "too many missing devices, writable remount is not allowed"); 1297 return -EACCES; 1298 } 1299 1300 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1301 btrfs_warn(fs_info, 1302 "mount required to replay tree-log, cannot remount read-write"); 1303 return -EINVAL; 1304 } 1305 1306 /* 1307 * NOTE: when remounting with a change that does writes, don't put it 1308 * anywhere above this point, as we are not sure to be safe to write 1309 * until we pass the above checks. 1310 */ 1311 ret = btrfs_start_pre_rw_mount(fs_info); 1312 if (ret) 1313 return ret; 1314 1315 btrfs_clear_sb_rdonly(fs_info->sb); 1316 1317 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1318 1319 /* 1320 * If we've gone from readonly -> read-write, we need to get our 1321 * sync/async discard lists in the right state. 1322 */ 1323 btrfs_discard_resume(fs_info); 1324 1325 return 0; 1326 } 1327 1328 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1329 { 1330 /* 1331 * This also happens on 'umount -rf' or on shutdown, when the 1332 * filesystem is busy. 1333 */ 1334 cancel_work_sync(&fs_info->async_reclaim_work); 1335 cancel_work_sync(&fs_info->async_data_reclaim_work); 1336 1337 btrfs_discard_cleanup(fs_info); 1338 1339 /* Wait for the uuid_scan task to finish */ 1340 down(&fs_info->uuid_tree_rescan_sem); 1341 /* Avoid complains from lockdep et al. */ 1342 up(&fs_info->uuid_tree_rescan_sem); 1343 1344 btrfs_set_sb_rdonly(fs_info->sb); 1345 1346 /* 1347 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1348 * loop if it's already active. If it's already asleep, we'll leave 1349 * unused block groups on disk until we're mounted read-write again 1350 * unless we clean them up here. 1351 */ 1352 btrfs_delete_unused_bgs(fs_info); 1353 1354 /* 1355 * The cleaner task could be already running before we set the flag 1356 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1357 * sure that after we finish the remount, i.e. after we call 1358 * btrfs_commit_super(), the cleaner can no longer start a transaction 1359 * - either because it was dropping a dead root, running delayed iputs 1360 * or deleting an unused block group (the cleaner picked a block 1361 * group from the list of unused block groups before we were able to 1362 * in the previous call to btrfs_delete_unused_bgs()). 1363 */ 1364 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1365 1366 /* 1367 * We've set the superblock to RO mode, so we might have made the 1368 * cleaner task sleep without running all pending delayed iputs. Go 1369 * through all the delayed iputs here, so that if an unmount happens 1370 * without remounting RW we don't end up at finishing close_ctree() 1371 * with a non-empty list of delayed iputs. 1372 */ 1373 btrfs_run_delayed_iputs(fs_info); 1374 1375 btrfs_dev_replace_suspend_for_unmount(fs_info); 1376 btrfs_scrub_cancel(fs_info); 1377 btrfs_pause_balance(fs_info); 1378 1379 /* 1380 * Pause the qgroup rescan worker if it is running. We don't want it to 1381 * be still running after we are in RO mode, as after that, by the time 1382 * we unmount, it might have left a transaction open, so we would leak 1383 * the transaction and/or crash. 1384 */ 1385 btrfs_qgroup_wait_for_completion(fs_info, false); 1386 1387 return btrfs_commit_super(fs_info); 1388 } 1389 1390 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1391 { 1392 fs_info->max_inline = ctx->max_inline; 1393 fs_info->commit_interval = ctx->commit_interval; 1394 fs_info->metadata_ratio = ctx->metadata_ratio; 1395 fs_info->thread_pool_size = ctx->thread_pool_size; 1396 fs_info->mount_opt = ctx->mount_opt; 1397 fs_info->compress_type = ctx->compress_type; 1398 fs_info->compress_level = ctx->compress_level; 1399 } 1400 1401 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1402 { 1403 ctx->max_inline = fs_info->max_inline; 1404 ctx->commit_interval = fs_info->commit_interval; 1405 ctx->metadata_ratio = fs_info->metadata_ratio; 1406 ctx->thread_pool_size = fs_info->thread_pool_size; 1407 ctx->mount_opt = fs_info->mount_opt; 1408 ctx->compress_type = fs_info->compress_type; 1409 ctx->compress_level = fs_info->compress_level; 1410 } 1411 1412 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1413 do { \ 1414 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1415 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1416 btrfs_info(fs_info, fmt, ##args); \ 1417 } while (0) 1418 1419 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1420 do { \ 1421 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1422 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1423 btrfs_info(fs_info, fmt, ##args); \ 1424 } while (0) 1425 1426 static void btrfs_emit_options(struct btrfs_fs_info *info, 1427 struct btrfs_fs_context *old) 1428 { 1429 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1430 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1431 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1432 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1433 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1434 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1435 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1436 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1437 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1438 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1439 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1440 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1441 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1442 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1443 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1444 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1445 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1446 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1447 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1448 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1449 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1450 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1451 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1452 1453 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1454 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1455 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1456 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1457 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1458 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1459 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1460 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1461 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1462 1463 /* Did the compression settings change? */ 1464 if (btrfs_test_opt(info, COMPRESS) && 1465 (!old || 1466 old->compress_type != info->compress_type || 1467 old->compress_level != info->compress_level || 1468 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1469 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1470 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1471 1472 btrfs_info(info, "%s %s compression, level %d", 1473 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1474 compress_type, info->compress_level); 1475 } 1476 1477 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1478 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1479 } 1480 1481 static int btrfs_reconfigure(struct fs_context *fc) 1482 { 1483 struct super_block *sb = fc->root->d_sb; 1484 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1485 struct btrfs_fs_context *ctx = fc->fs_private; 1486 struct btrfs_fs_context old_ctx; 1487 int ret = 0; 1488 bool mount_reconfigure = (fc->s_fs_info != NULL); 1489 1490 btrfs_info_to_ctx(fs_info, &old_ctx); 1491 1492 /* 1493 * This is our "bind mount" trick, we don't want to allow the user to do 1494 * anything other than mount a different ro/rw and a different subvol, 1495 * all of the mount options should be maintained. 1496 */ 1497 if (mount_reconfigure) 1498 ctx->mount_opt = old_ctx.mount_opt; 1499 1500 sync_filesystem(sb); 1501 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1502 1503 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1504 return -EINVAL; 1505 1506 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1507 if (ret < 0) 1508 return ret; 1509 1510 btrfs_ctx_to_info(fs_info, ctx); 1511 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1512 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1513 old_ctx.thread_pool_size); 1514 1515 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1516 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1517 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1518 btrfs_warn(fs_info, 1519 "remount supports changing free space tree only from RO to RW"); 1520 /* Make sure free space cache options match the state on disk. */ 1521 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1522 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1523 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1524 } 1525 if (btrfs_free_space_cache_v1_active(fs_info)) { 1526 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1527 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1528 } 1529 } 1530 1531 ret = 0; 1532 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1533 ret = btrfs_remount_ro(fs_info); 1534 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1535 ret = btrfs_remount_rw(fs_info); 1536 if (ret) 1537 goto restore; 1538 1539 /* 1540 * If we set the mask during the parameter parsing VFS would reject the 1541 * remount. Here we can set the mask and the value will be updated 1542 * appropriately. 1543 */ 1544 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1545 fc->sb_flags_mask |= SB_POSIXACL; 1546 1547 btrfs_emit_options(fs_info, &old_ctx); 1548 wake_up_process(fs_info->transaction_kthread); 1549 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1550 btrfs_clear_oneshot_options(fs_info); 1551 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1552 1553 return 0; 1554 restore: 1555 btrfs_ctx_to_info(fs_info, &old_ctx); 1556 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1557 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1558 return ret; 1559 } 1560 1561 /* Used to sort the devices by max_avail(descending sort) */ 1562 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1563 { 1564 const struct btrfs_device_info *dev_info1 = a; 1565 const struct btrfs_device_info *dev_info2 = b; 1566 1567 if (dev_info1->max_avail > dev_info2->max_avail) 1568 return -1; 1569 else if (dev_info1->max_avail < dev_info2->max_avail) 1570 return 1; 1571 return 0; 1572 } 1573 1574 /* 1575 * sort the devices by max_avail, in which max free extent size of each device 1576 * is stored.(Descending Sort) 1577 */ 1578 static inline void btrfs_descending_sort_devices( 1579 struct btrfs_device_info *devices, 1580 size_t nr_devices) 1581 { 1582 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1583 btrfs_cmp_device_free_bytes, NULL); 1584 } 1585 1586 /* 1587 * The helper to calc the free space on the devices that can be used to store 1588 * file data. 1589 */ 1590 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1591 u64 *free_bytes) 1592 { 1593 struct btrfs_device_info *devices_info; 1594 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1595 struct btrfs_device *device; 1596 u64 type; 1597 u64 avail_space; 1598 u64 min_stripe_size; 1599 int num_stripes = 1; 1600 int i = 0, nr_devices; 1601 const struct btrfs_raid_attr *rattr; 1602 1603 /* 1604 * We aren't under the device list lock, so this is racy-ish, but good 1605 * enough for our purposes. 1606 */ 1607 nr_devices = fs_info->fs_devices->open_devices; 1608 if (!nr_devices) { 1609 smp_mb(); 1610 nr_devices = fs_info->fs_devices->open_devices; 1611 ASSERT(nr_devices); 1612 if (!nr_devices) { 1613 *free_bytes = 0; 1614 return 0; 1615 } 1616 } 1617 1618 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1619 GFP_KERNEL); 1620 if (!devices_info) 1621 return -ENOMEM; 1622 1623 /* calc min stripe number for data space allocation */ 1624 type = btrfs_data_alloc_profile(fs_info); 1625 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1626 1627 if (type & BTRFS_BLOCK_GROUP_RAID0) 1628 num_stripes = nr_devices; 1629 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1630 num_stripes = rattr->ncopies; 1631 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1632 num_stripes = 4; 1633 1634 /* Adjust for more than 1 stripe per device */ 1635 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1636 1637 rcu_read_lock(); 1638 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1639 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1640 &device->dev_state) || 1641 !device->bdev || 1642 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1643 continue; 1644 1645 if (i >= nr_devices) 1646 break; 1647 1648 avail_space = device->total_bytes - device->bytes_used; 1649 1650 /* align with stripe_len */ 1651 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1652 1653 /* 1654 * Ensure we have at least min_stripe_size on top of the 1655 * reserved space on the device. 1656 */ 1657 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1658 continue; 1659 1660 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1661 1662 devices_info[i].dev = device; 1663 devices_info[i].max_avail = avail_space; 1664 1665 i++; 1666 } 1667 rcu_read_unlock(); 1668 1669 nr_devices = i; 1670 1671 btrfs_descending_sort_devices(devices_info, nr_devices); 1672 1673 i = nr_devices - 1; 1674 avail_space = 0; 1675 while (nr_devices >= rattr->devs_min) { 1676 num_stripes = min(num_stripes, nr_devices); 1677 1678 if (devices_info[i].max_avail >= min_stripe_size) { 1679 int j; 1680 u64 alloc_size; 1681 1682 avail_space += devices_info[i].max_avail * num_stripes; 1683 alloc_size = devices_info[i].max_avail; 1684 for (j = i + 1 - num_stripes; j <= i; j++) 1685 devices_info[j].max_avail -= alloc_size; 1686 } 1687 i--; 1688 nr_devices--; 1689 } 1690 1691 kfree(devices_info); 1692 *free_bytes = avail_space; 1693 return 0; 1694 } 1695 1696 /* 1697 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1698 * 1699 * If there's a redundant raid level at DATA block groups, use the respective 1700 * multiplier to scale the sizes. 1701 * 1702 * Unused device space usage is based on simulating the chunk allocator 1703 * algorithm that respects the device sizes and order of allocations. This is 1704 * a close approximation of the actual use but there are other factors that may 1705 * change the result (like a new metadata chunk). 1706 * 1707 * If metadata is exhausted, f_bavail will be 0. 1708 */ 1709 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1710 { 1711 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1712 struct btrfs_super_block *disk_super = fs_info->super_copy; 1713 struct btrfs_space_info *found; 1714 u64 total_used = 0; 1715 u64 total_free_data = 0; 1716 u64 total_free_meta = 0; 1717 u32 bits = fs_info->sectorsize_bits; 1718 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1719 unsigned factor = 1; 1720 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1721 int ret; 1722 u64 thresh = 0; 1723 int mixed = 0; 1724 1725 list_for_each_entry(found, &fs_info->space_info, list) { 1726 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1727 int i; 1728 1729 total_free_data += found->disk_total - found->disk_used; 1730 total_free_data -= 1731 btrfs_account_ro_block_groups_free_space(found); 1732 1733 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1734 if (!list_empty(&found->block_groups[i])) 1735 factor = btrfs_bg_type_to_factor( 1736 btrfs_raid_array[i].bg_flag); 1737 } 1738 } 1739 1740 /* 1741 * Metadata in mixed block group profiles are accounted in data 1742 */ 1743 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1744 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1745 mixed = 1; 1746 else 1747 total_free_meta += found->disk_total - 1748 found->disk_used; 1749 } 1750 1751 total_used += found->disk_used; 1752 } 1753 1754 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1755 buf->f_blocks >>= bits; 1756 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1757 1758 /* Account global block reserve as used, it's in logical size already */ 1759 spin_lock(&block_rsv->lock); 1760 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1761 if (buf->f_bfree >= block_rsv->size >> bits) 1762 buf->f_bfree -= block_rsv->size >> bits; 1763 else 1764 buf->f_bfree = 0; 1765 spin_unlock(&block_rsv->lock); 1766 1767 buf->f_bavail = div_u64(total_free_data, factor); 1768 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1769 if (ret) 1770 return ret; 1771 buf->f_bavail += div_u64(total_free_data, factor); 1772 buf->f_bavail = buf->f_bavail >> bits; 1773 1774 /* 1775 * We calculate the remaining metadata space minus global reserve. If 1776 * this is (supposedly) smaller than zero, there's no space. But this 1777 * does not hold in practice, the exhausted state happens where's still 1778 * some positive delta. So we apply some guesswork and compare the 1779 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1780 * 1781 * We probably cannot calculate the exact threshold value because this 1782 * depends on the internal reservations requested by various 1783 * operations, so some operations that consume a few metadata will 1784 * succeed even if the Avail is zero. But this is better than the other 1785 * way around. 1786 */ 1787 thresh = SZ_4M; 1788 1789 /* 1790 * We only want to claim there's no available space if we can no longer 1791 * allocate chunks for our metadata profile and our global reserve will 1792 * not fit in the free metadata space. If we aren't ->full then we 1793 * still can allocate chunks and thus are fine using the currently 1794 * calculated f_bavail. 1795 */ 1796 if (!mixed && block_rsv->space_info->full && 1797 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1798 buf->f_bavail = 0; 1799 1800 buf->f_type = BTRFS_SUPER_MAGIC; 1801 buf->f_bsize = fs_info->sectorsize; 1802 buf->f_namelen = BTRFS_NAME_LEN; 1803 1804 /* We treat it as constant endianness (it doesn't matter _which_) 1805 because we want the fsid to come out the same whether mounted 1806 on a big-endian or little-endian host */ 1807 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1808 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1809 /* Mask in the root object ID too, to disambiguate subvols */ 1810 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1811 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1812 1813 return 0; 1814 } 1815 1816 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1817 { 1818 struct btrfs_fs_info *p = fc->s_fs_info; 1819 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1820 1821 return fs_info->fs_devices == p->fs_devices; 1822 } 1823 1824 static int btrfs_get_tree_super(struct fs_context *fc) 1825 { 1826 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1827 struct btrfs_fs_context *ctx = fc->fs_private; 1828 struct btrfs_fs_devices *fs_devices = NULL; 1829 struct block_device *bdev; 1830 struct btrfs_device *device; 1831 struct super_block *sb; 1832 blk_mode_t mode = btrfs_open_mode(fc); 1833 int ret; 1834 1835 btrfs_ctx_to_info(fs_info, ctx); 1836 mutex_lock(&uuid_mutex); 1837 1838 /* 1839 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1840 * either a valid device or an error. 1841 */ 1842 device = btrfs_scan_one_device(fc->source, mode, true); 1843 ASSERT(device != NULL); 1844 if (IS_ERR(device)) { 1845 mutex_unlock(&uuid_mutex); 1846 return PTR_ERR(device); 1847 } 1848 1849 fs_devices = device->fs_devices; 1850 fs_info->fs_devices = fs_devices; 1851 1852 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1853 mutex_unlock(&uuid_mutex); 1854 if (ret) 1855 return ret; 1856 1857 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1858 ret = -EACCES; 1859 goto error; 1860 } 1861 1862 bdev = fs_devices->latest_dev->bdev; 1863 1864 /* 1865 * From now on the error handling is not straightforward. 1866 * 1867 * If successful, this will transfer the fs_info into the super block, 1868 * and fc->s_fs_info will be NULL. However if there's an existing 1869 * super, we'll still have fc->s_fs_info populated. If we error 1870 * completely out it'll be cleaned up when we drop the fs_context, 1871 * otherwise it's tied to the lifetime of the super_block. 1872 */ 1873 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1874 if (IS_ERR(sb)) { 1875 ret = PTR_ERR(sb); 1876 goto error; 1877 } 1878 1879 set_device_specific_options(fs_info); 1880 1881 if (sb->s_root) { 1882 btrfs_close_devices(fs_devices); 1883 /* 1884 * At this stage we may have RO flag mismatch between 1885 * fc->sb_flags and sb->s_flags. Caller should detect such 1886 * mismatch and reconfigure with sb->s_umount rwsem held if 1887 * needed. 1888 */ 1889 } else { 1890 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1891 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1892 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1893 ret = btrfs_fill_super(sb, fs_devices); 1894 if (ret) { 1895 deactivate_locked_super(sb); 1896 return ret; 1897 } 1898 } 1899 1900 btrfs_clear_oneshot_options(fs_info); 1901 1902 fc->root = dget(sb->s_root); 1903 return 0; 1904 1905 error: 1906 btrfs_close_devices(fs_devices); 1907 return ret; 1908 } 1909 1910 /* 1911 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1912 * with different ro/rw options") the following works: 1913 * 1914 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1915 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1916 * 1917 * which looks nice and innocent but is actually pretty intricate and deserves 1918 * a long comment. 1919 * 1920 * On another filesystem a subvolume mount is close to something like: 1921 * 1922 * (iii) # create rw superblock + initial mount 1923 * mount -t xfs /dev/sdb /opt/ 1924 * 1925 * # create ro bind mount 1926 * mount --bind -o ro /opt/foo /mnt/foo 1927 * 1928 * # unmount initial mount 1929 * umount /opt 1930 * 1931 * Of course, there's some special subvolume sauce and there's the fact that the 1932 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1933 * it's very close and will help us understand the issue. 1934 * 1935 * The old mount API didn't cleanly distinguish between a mount being made ro 1936 * and a superblock being made ro. The only way to change the ro state of 1937 * either object was by passing ms_rdonly. If a new mount was created via 1938 * mount(2) such as: 1939 * 1940 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1941 * 1942 * the MS_RDONLY flag being specified had two effects: 1943 * 1944 * (1) MNT_READONLY was raised -> the resulting mount got 1945 * @mnt->mnt_flags |= MNT_READONLY raised. 1946 * 1947 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1948 * made the superblock ro. Note, how SB_RDONLY has the same value as 1949 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1950 * 1951 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1952 * subtree mounted ro. 1953 * 1954 * But consider the effect on the old mount API on btrfs subvolume mounting 1955 * which combines the distinct step in (iii) into a single step. 1956 * 1957 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1958 * is issued the superblock is ro and thus even if the mount created for (ii) is 1959 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1960 * to rw for (ii) which it did using an internal remount call. 1961 * 1962 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1963 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1964 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1965 * passed by mount(8) to mount(2). 1966 * 1967 * Enter the new mount API. The new mount API disambiguates making a mount ro 1968 * and making a superblock ro. 1969 * 1970 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1971 * fsmount() or mount_setattr() this is a pure VFS level change for a 1972 * specific mount or mount tree that is never seen by the filesystem itself. 1973 * 1974 * (4) To turn a superblock ro the "ro" flag must be used with 1975 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1976 * in fc->sb_flags. 1977 * 1978 * But, currently the util-linux mount command already utilizes the new mount 1979 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's 1980 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting 1981 * work with different options work we need to keep backward compatibility. 1982 */ 1983 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt) 1984 { 1985 int ret = 0; 1986 1987 if (fc->sb_flags & SB_RDONLY) 1988 return ret; 1989 1990 down_write(&mnt->mnt_sb->s_umount); 1991 if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY)) 1992 ret = btrfs_reconfigure(fc); 1993 up_write(&mnt->mnt_sb->s_umount); 1994 return ret; 1995 } 1996 1997 static int btrfs_get_tree_subvol(struct fs_context *fc) 1998 { 1999 struct btrfs_fs_info *fs_info = NULL; 2000 struct btrfs_fs_context *ctx = fc->fs_private; 2001 struct fs_context *dup_fc; 2002 struct dentry *dentry; 2003 struct vfsmount *mnt; 2004 int ret = 0; 2005 2006 /* 2007 * Setup a dummy root and fs_info for test/set super. This is because 2008 * we don't actually fill this stuff out until open_ctree, but we need 2009 * then open_ctree will properly initialize the file system specific 2010 * settings later. btrfs_init_fs_info initializes the static elements 2011 * of the fs_info (locks and such) to make cleanup easier if we find a 2012 * superblock with our given fs_devices later on at sget() time. 2013 */ 2014 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2015 if (!fs_info) 2016 return -ENOMEM; 2017 2018 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2019 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2020 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2021 btrfs_free_fs_info(fs_info); 2022 return -ENOMEM; 2023 } 2024 btrfs_init_fs_info(fs_info); 2025 2026 dup_fc = vfs_dup_fs_context(fc); 2027 if (IS_ERR(dup_fc)) { 2028 btrfs_free_fs_info(fs_info); 2029 return PTR_ERR(dup_fc); 2030 } 2031 2032 /* 2033 * When we do the sget_fc this gets transferred to the sb, so we only 2034 * need to set it on the dup_fc as this is what creates the super block. 2035 */ 2036 dup_fc->s_fs_info = fs_info; 2037 2038 /* 2039 * We'll do the security settings in our btrfs_get_tree_super() mount 2040 * loop, they were duplicated into dup_fc, we can drop the originals 2041 * here. 2042 */ 2043 security_free_mnt_opts(&fc->security); 2044 fc->security = NULL; 2045 2046 mnt = fc_mount(dup_fc); 2047 if (IS_ERR(mnt)) { 2048 put_fs_context(dup_fc); 2049 return PTR_ERR(mnt); 2050 } 2051 ret = btrfs_reconfigure_for_mount(dup_fc, mnt); 2052 put_fs_context(dup_fc); 2053 if (ret) { 2054 mntput(mnt); 2055 return ret; 2056 } 2057 2058 /* 2059 * This free's ->subvol_name, because if it isn't set we have to 2060 * allocate a buffer to hold the subvol_name, so we just drop our 2061 * reference to it here. 2062 */ 2063 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2064 ctx->subvol_name = NULL; 2065 if (IS_ERR(dentry)) 2066 return PTR_ERR(dentry); 2067 2068 fc->root = dentry; 2069 return 0; 2070 } 2071 2072 static int btrfs_get_tree(struct fs_context *fc) 2073 { 2074 /* 2075 * Since we use mount_subtree to mount the default/specified subvol, we 2076 * have to do mounts in two steps. 2077 * 2078 * First pass through we call btrfs_get_tree_subvol(), this is just a 2079 * wrapper around fc_mount() to call back into here again, and this time 2080 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2081 * everything to open the devices and file system. Then we return back 2082 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2083 * from there we can do our mount_subvol() call, which will lookup 2084 * whichever subvol we're mounting and setup this fc with the 2085 * appropriate dentry for the subvol. 2086 */ 2087 if (fc->s_fs_info) 2088 return btrfs_get_tree_super(fc); 2089 return btrfs_get_tree_subvol(fc); 2090 } 2091 2092 static void btrfs_kill_super(struct super_block *sb) 2093 { 2094 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2095 kill_anon_super(sb); 2096 btrfs_free_fs_info(fs_info); 2097 } 2098 2099 static void btrfs_free_fs_context(struct fs_context *fc) 2100 { 2101 struct btrfs_fs_context *ctx = fc->fs_private; 2102 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2103 2104 if (fs_info) 2105 btrfs_free_fs_info(fs_info); 2106 2107 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2108 kfree(ctx->subvol_name); 2109 kfree(ctx); 2110 } 2111 } 2112 2113 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2114 { 2115 struct btrfs_fs_context *ctx = src_fc->fs_private; 2116 2117 /* 2118 * Give a ref to our ctx to this dup, as we want to keep it around for 2119 * our original fc so we can have the subvolume name or objectid. 2120 * 2121 * We unset ->source in the original fc because the dup needs it for 2122 * mounting, and then once we free the dup it'll free ->source, so we 2123 * need to make sure we're only pointing to it in one fc. 2124 */ 2125 refcount_inc(&ctx->refs); 2126 fc->fs_private = ctx; 2127 fc->source = src_fc->source; 2128 src_fc->source = NULL; 2129 return 0; 2130 } 2131 2132 static const struct fs_context_operations btrfs_fs_context_ops = { 2133 .parse_param = btrfs_parse_param, 2134 .reconfigure = btrfs_reconfigure, 2135 .get_tree = btrfs_get_tree, 2136 .dup = btrfs_dup_fs_context, 2137 .free = btrfs_free_fs_context, 2138 }; 2139 2140 static int btrfs_init_fs_context(struct fs_context *fc) 2141 { 2142 struct btrfs_fs_context *ctx; 2143 2144 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2145 if (!ctx) 2146 return -ENOMEM; 2147 2148 refcount_set(&ctx->refs, 1); 2149 fc->fs_private = ctx; 2150 fc->ops = &btrfs_fs_context_ops; 2151 2152 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2153 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2154 } else { 2155 ctx->thread_pool_size = 2156 min_t(unsigned long, num_online_cpus() + 2, 8); 2157 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2158 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2159 } 2160 2161 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2162 fc->sb_flags |= SB_POSIXACL; 2163 #endif 2164 fc->sb_flags |= SB_I_VERSION; 2165 2166 return 0; 2167 } 2168 2169 static struct file_system_type btrfs_fs_type = { 2170 .owner = THIS_MODULE, 2171 .name = "btrfs", 2172 .init_fs_context = btrfs_init_fs_context, 2173 .parameters = btrfs_fs_parameters, 2174 .kill_sb = btrfs_kill_super, 2175 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | 2176 FS_ALLOW_IDMAP | FS_MGTIME, 2177 }; 2178 2179 MODULE_ALIAS_FS("btrfs"); 2180 2181 static int btrfs_control_open(struct inode *inode, struct file *file) 2182 { 2183 /* 2184 * The control file's private_data is used to hold the 2185 * transaction when it is started and is used to keep 2186 * track of whether a transaction is already in progress. 2187 */ 2188 file->private_data = NULL; 2189 return 0; 2190 } 2191 2192 /* 2193 * Used by /dev/btrfs-control for devices ioctls. 2194 */ 2195 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2196 unsigned long arg) 2197 { 2198 struct btrfs_ioctl_vol_args *vol; 2199 struct btrfs_device *device = NULL; 2200 dev_t devt = 0; 2201 int ret = -ENOTTY; 2202 2203 if (!capable(CAP_SYS_ADMIN)) 2204 return -EPERM; 2205 2206 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2207 if (IS_ERR(vol)) 2208 return PTR_ERR(vol); 2209 ret = btrfs_check_ioctl_vol_args_path(vol); 2210 if (ret < 0) 2211 goto out; 2212 2213 switch (cmd) { 2214 case BTRFS_IOC_SCAN_DEV: 2215 mutex_lock(&uuid_mutex); 2216 /* 2217 * Scanning outside of mount can return NULL which would turn 2218 * into 0 error code. 2219 */ 2220 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2221 ret = PTR_ERR_OR_ZERO(device); 2222 mutex_unlock(&uuid_mutex); 2223 break; 2224 case BTRFS_IOC_FORGET_DEV: 2225 if (vol->name[0] != 0) { 2226 ret = lookup_bdev(vol->name, &devt); 2227 if (ret) 2228 break; 2229 } 2230 ret = btrfs_forget_devices(devt); 2231 break; 2232 case BTRFS_IOC_DEVICES_READY: 2233 mutex_lock(&uuid_mutex); 2234 /* 2235 * Scanning outside of mount can return NULL which would turn 2236 * into 0 error code. 2237 */ 2238 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2239 if (IS_ERR_OR_NULL(device)) { 2240 mutex_unlock(&uuid_mutex); 2241 if (IS_ERR(device)) 2242 ret = PTR_ERR(device); 2243 else 2244 ret = 0; 2245 break; 2246 } 2247 ret = !(device->fs_devices->num_devices == 2248 device->fs_devices->total_devices); 2249 mutex_unlock(&uuid_mutex); 2250 break; 2251 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2252 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2253 break; 2254 } 2255 2256 out: 2257 kfree(vol); 2258 return ret; 2259 } 2260 2261 static int btrfs_freeze(struct super_block *sb) 2262 { 2263 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2264 2265 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2266 /* 2267 * We don't need a barrier here, we'll wait for any transaction that 2268 * could be in progress on other threads (and do delayed iputs that 2269 * we want to avoid on a frozen filesystem), or do the commit 2270 * ourselves. 2271 */ 2272 return btrfs_commit_current_transaction(fs_info->tree_root); 2273 } 2274 2275 static int check_dev_super(struct btrfs_device *dev) 2276 { 2277 struct btrfs_fs_info *fs_info = dev->fs_info; 2278 struct btrfs_super_block *sb; 2279 u64 last_trans; 2280 u16 csum_type; 2281 int ret = 0; 2282 2283 /* This should be called with fs still frozen. */ 2284 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2285 2286 /* Missing dev, no need to check. */ 2287 if (!dev->bdev) 2288 return 0; 2289 2290 /* Only need to check the primary super block. */ 2291 sb = btrfs_read_disk_super(dev->bdev, 0, true); 2292 if (IS_ERR(sb)) 2293 return PTR_ERR(sb); 2294 2295 /* Verify the checksum. */ 2296 csum_type = btrfs_super_csum_type(sb); 2297 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2298 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2299 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2300 ret = -EUCLEAN; 2301 goto out; 2302 } 2303 2304 if (btrfs_check_super_csum(fs_info, sb)) { 2305 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2306 ret = -EUCLEAN; 2307 goto out; 2308 } 2309 2310 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2311 ret = btrfs_validate_super(fs_info, sb, 0); 2312 if (ret < 0) 2313 goto out; 2314 2315 last_trans = btrfs_get_last_trans_committed(fs_info); 2316 if (btrfs_super_generation(sb) != last_trans) { 2317 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2318 btrfs_super_generation(sb), last_trans); 2319 ret = -EUCLEAN; 2320 goto out; 2321 } 2322 out: 2323 btrfs_release_disk_super(sb); 2324 return ret; 2325 } 2326 2327 static int btrfs_unfreeze(struct super_block *sb) 2328 { 2329 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2330 struct btrfs_device *device; 2331 int ret = 0; 2332 2333 /* 2334 * Make sure the fs is not changed by accident (like hibernation then 2335 * modified by other OS). 2336 * If we found anything wrong, we mark the fs error immediately. 2337 * 2338 * And since the fs is frozen, no one can modify the fs yet, thus 2339 * we don't need to hold device_list_mutex. 2340 */ 2341 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2342 ret = check_dev_super(device); 2343 if (ret < 0) { 2344 btrfs_handle_fs_error(fs_info, ret, 2345 "super block on devid %llu got modified unexpectedly", 2346 device->devid); 2347 break; 2348 } 2349 } 2350 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2351 2352 /* 2353 * We still return 0, to allow VFS layer to unfreeze the fs even the 2354 * above checks failed. Since the fs is either fine or read-only, we're 2355 * safe to continue, without causing further damage. 2356 */ 2357 return 0; 2358 } 2359 2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2361 { 2362 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2363 2364 /* 2365 * There should be always a valid pointer in latest_dev, it may be stale 2366 * for a short moment in case it's being deleted but still valid until 2367 * the end of RCU grace period. 2368 */ 2369 rcu_read_lock(); 2370 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2371 rcu_read_unlock(); 2372 2373 return 0; 2374 } 2375 2376 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2377 { 2378 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2379 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2380 2381 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2382 2383 return nr; 2384 } 2385 2386 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2387 { 2388 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2389 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2390 2391 btrfs_free_extent_maps(fs_info, nr_to_scan); 2392 2393 /* The extent map shrinker runs asynchronously, so always return 0. */ 2394 return 0; 2395 } 2396 2397 static const struct super_operations btrfs_super_ops = { 2398 .drop_inode = btrfs_drop_inode, 2399 .evict_inode = btrfs_evict_inode, 2400 .put_super = btrfs_put_super, 2401 .sync_fs = btrfs_sync_fs, 2402 .show_options = btrfs_show_options, 2403 .show_devname = btrfs_show_devname, 2404 .alloc_inode = btrfs_alloc_inode, 2405 .destroy_inode = btrfs_destroy_inode, 2406 .free_inode = btrfs_free_inode, 2407 .statfs = btrfs_statfs, 2408 .freeze_fs = btrfs_freeze, 2409 .unfreeze_fs = btrfs_unfreeze, 2410 .nr_cached_objects = btrfs_nr_cached_objects, 2411 .free_cached_objects = btrfs_free_cached_objects, 2412 }; 2413 2414 static const struct file_operations btrfs_ctl_fops = { 2415 .open = btrfs_control_open, 2416 .unlocked_ioctl = btrfs_control_ioctl, 2417 .compat_ioctl = compat_ptr_ioctl, 2418 .owner = THIS_MODULE, 2419 .llseek = noop_llseek, 2420 }; 2421 2422 static struct miscdevice btrfs_misc = { 2423 .minor = BTRFS_MINOR, 2424 .name = "btrfs-control", 2425 .fops = &btrfs_ctl_fops 2426 }; 2427 2428 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2429 MODULE_ALIAS("devname:btrfs-control"); 2430 2431 static int __init btrfs_interface_init(void) 2432 { 2433 return misc_register(&btrfs_misc); 2434 } 2435 2436 static __cold void btrfs_interface_exit(void) 2437 { 2438 misc_deregister(&btrfs_misc); 2439 } 2440 2441 static int __init btrfs_print_mod_info(void) 2442 { 2443 static const char options[] = "" 2444 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2445 ", experimental=on" 2446 #endif 2447 #ifdef CONFIG_BTRFS_DEBUG 2448 ", debug=on" 2449 #endif 2450 #ifdef CONFIG_BTRFS_ASSERT 2451 ", assert=on" 2452 #endif 2453 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2454 ", ref-verify=on" 2455 #endif 2456 #ifdef CONFIG_BLK_DEV_ZONED 2457 ", zoned=yes" 2458 #else 2459 ", zoned=no" 2460 #endif 2461 #ifdef CONFIG_FS_VERITY 2462 ", fsverity=yes" 2463 #else 2464 ", fsverity=no" 2465 #endif 2466 ; 2467 2468 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2469 if (btrfs_get_mod_read_policy() == NULL) 2470 pr_info("Btrfs loaded%s\n", options); 2471 else 2472 pr_info("Btrfs loaded%s, read_policy=%s\n", 2473 options, btrfs_get_mod_read_policy()); 2474 #else 2475 pr_info("Btrfs loaded%s\n", options); 2476 #endif 2477 2478 return 0; 2479 } 2480 2481 static int register_btrfs(void) 2482 { 2483 return register_filesystem(&btrfs_fs_type); 2484 } 2485 2486 static void unregister_btrfs(void) 2487 { 2488 unregister_filesystem(&btrfs_fs_type); 2489 } 2490 2491 /* Helper structure for long init/exit functions. */ 2492 struct init_sequence { 2493 int (*init_func)(void); 2494 /* Can be NULL if the init_func doesn't need cleanup. */ 2495 void (*exit_func)(void); 2496 }; 2497 2498 static const struct init_sequence mod_init_seq[] = { 2499 { 2500 .init_func = btrfs_props_init, 2501 .exit_func = NULL, 2502 }, { 2503 .init_func = btrfs_init_sysfs, 2504 .exit_func = btrfs_exit_sysfs, 2505 }, { 2506 .init_func = btrfs_init_compress, 2507 .exit_func = btrfs_exit_compress, 2508 }, { 2509 .init_func = btrfs_init_cachep, 2510 .exit_func = btrfs_destroy_cachep, 2511 }, { 2512 .init_func = btrfs_init_dio, 2513 .exit_func = btrfs_destroy_dio, 2514 }, { 2515 .init_func = btrfs_transaction_init, 2516 .exit_func = btrfs_transaction_exit, 2517 }, { 2518 .init_func = btrfs_ctree_init, 2519 .exit_func = btrfs_ctree_exit, 2520 }, { 2521 .init_func = btrfs_free_space_init, 2522 .exit_func = btrfs_free_space_exit, 2523 }, { 2524 .init_func = btrfs_extent_state_init_cachep, 2525 .exit_func = btrfs_extent_state_free_cachep, 2526 }, { 2527 .init_func = extent_buffer_init_cachep, 2528 .exit_func = extent_buffer_free_cachep, 2529 }, { 2530 .init_func = btrfs_bioset_init, 2531 .exit_func = btrfs_bioset_exit, 2532 }, { 2533 .init_func = btrfs_extent_map_init, 2534 .exit_func = btrfs_extent_map_exit, 2535 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2536 }, { 2537 .init_func = btrfs_read_policy_init, 2538 .exit_func = NULL, 2539 #endif 2540 }, { 2541 .init_func = ordered_data_init, 2542 .exit_func = ordered_data_exit, 2543 }, { 2544 .init_func = btrfs_delayed_inode_init, 2545 .exit_func = btrfs_delayed_inode_exit, 2546 }, { 2547 .init_func = btrfs_auto_defrag_init, 2548 .exit_func = btrfs_auto_defrag_exit, 2549 }, { 2550 .init_func = btrfs_delayed_ref_init, 2551 .exit_func = btrfs_delayed_ref_exit, 2552 }, { 2553 .init_func = btrfs_prelim_ref_init, 2554 .exit_func = btrfs_prelim_ref_exit, 2555 }, { 2556 .init_func = btrfs_interface_init, 2557 .exit_func = btrfs_interface_exit, 2558 }, { 2559 .init_func = btrfs_print_mod_info, 2560 .exit_func = NULL, 2561 }, { 2562 .init_func = btrfs_run_sanity_tests, 2563 .exit_func = NULL, 2564 }, { 2565 .init_func = register_btrfs, 2566 .exit_func = unregister_btrfs, 2567 } 2568 }; 2569 2570 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2571 2572 static __always_inline void btrfs_exit_btrfs_fs(void) 2573 { 2574 int i; 2575 2576 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2577 if (!mod_init_result[i]) 2578 continue; 2579 if (mod_init_seq[i].exit_func) 2580 mod_init_seq[i].exit_func(); 2581 mod_init_result[i] = false; 2582 } 2583 } 2584 2585 static void __exit exit_btrfs_fs(void) 2586 { 2587 btrfs_exit_btrfs_fs(); 2588 btrfs_cleanup_fs_uuids(); 2589 } 2590 2591 static int __init init_btrfs_fs(void) 2592 { 2593 int ret; 2594 int i; 2595 2596 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2597 ASSERT(!mod_init_result[i]); 2598 ret = mod_init_seq[i].init_func(); 2599 if (ret < 0) { 2600 btrfs_exit_btrfs_fs(); 2601 return ret; 2602 } 2603 mod_init_result[i] = true; 2604 } 2605 return 0; 2606 } 2607 2608 late_initcall(init_btrfs_fs); 2609 module_exit(exit_btrfs_fs) 2610 2611 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2612 MODULE_LICENSE("GPL"); 2613 MODULE_SOFTDEP("pre: crc32c"); 2614 MODULE_SOFTDEP("pre: xxhash64"); 2615 MODULE_SOFTDEP("pre: sha256"); 2616 MODULE_SOFTDEP("pre: blake2b-256"); 2617