1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/spinlock.h> 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 #include "zoned.h" 18 19 /* 20 * HOW DOES SPACE RESERVATION WORK 21 * 22 * If you want to know about delalloc specifically, there is a separate comment 23 * for that with the delalloc code. This comment is about how the whole system 24 * works generally. 25 * 26 * BASIC CONCEPTS 27 * 28 * 1) space_info. This is the ultimate arbiter of how much space we can use. 29 * There's a description of the bytes_ fields with the struct declaration, 30 * refer to that for specifics on each field. Suffice it to say that for 31 * reservations we care about total_bytes - SUM(space_info->bytes_) when 32 * determining if there is space to make an allocation. There is a space_info 33 * for METADATA, SYSTEM, and DATA areas. 34 * 35 * 2) block_rsv's. These are basically buckets for every different type of 36 * metadata reservation we have. You can see the comment in the block_rsv 37 * code on the rules for each type, but generally block_rsv->reserved is how 38 * much space is accounted for in space_info->bytes_may_use. 39 * 40 * 3) btrfs_calc*_size. These are the worst case calculations we used based 41 * on the number of items we will want to modify. We have one for changing 42 * items, and one for inserting new items. Generally we use these helpers to 43 * determine the size of the block reserves, and then use the actual bytes 44 * values to adjust the space_info counters. 45 * 46 * MAKING RESERVATIONS, THE NORMAL CASE 47 * 48 * We call into either btrfs_reserve_data_bytes() or 49 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 50 * num_bytes we want to reserve. 51 * 52 * ->reserve 53 * space_info->bytes_may_use += num_bytes 54 * 55 * ->extent allocation 56 * Call btrfs_add_reserved_bytes() which does 57 * space_info->bytes_may_use -= num_bytes 58 * space_info->bytes_reserved += extent_bytes 59 * 60 * ->insert reference 61 * Call btrfs_update_block_group() which does 62 * space_info->bytes_reserved -= extent_bytes 63 * space_info->bytes_used += extent_bytes 64 * 65 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 66 * 67 * Assume we are unable to simply make the reservation because we do not have 68 * enough space 69 * 70 * -> __reserve_bytes 71 * create a reserve_ticket with ->bytes set to our reservation, add it to 72 * the tail of space_info->tickets, kick async flush thread 73 * 74 * ->handle_reserve_ticket 75 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 76 * on the ticket. 77 * 78 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 79 * Flushes various things attempting to free up space. 80 * 81 * -> btrfs_try_granting_tickets() 82 * This is called by anything that either subtracts space from 83 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 84 * space_info->total_bytes. This loops through the ->priority_tickets and 85 * then the ->tickets list checking to see if the reservation can be 86 * completed. If it can the space is added to space_info->bytes_may_use and 87 * the ticket is woken up. 88 * 89 * -> ticket wakeup 90 * Check if ->bytes == 0, if it does we got our reservation and we can carry 91 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 92 * were interrupted.) 93 * 94 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 95 * 96 * Same as the above, except we add ourselves to the 97 * space_info->priority_tickets, and we do not use ticket->wait, we simply 98 * call flush_space() ourselves for the states that are safe for us to call 99 * without deadlocking and hope for the best. 100 * 101 * THE FLUSHING STATES 102 * 103 * Generally speaking we will have two cases for each state, a "nice" state 104 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 105 * reduce the locking over head on the various trees, and even to keep from 106 * doing any work at all in the case of delayed refs. Each of these delayed 107 * things however hold reservations, and so letting them run allows us to 108 * reclaim space so we can make new reservations. 109 * 110 * FLUSH_DELAYED_ITEMS 111 * Every inode has a delayed item to update the inode. Take a simple write 112 * for example, we would update the inode item at write time to update the 113 * mtime, and then again at finish_ordered_io() time in order to update the 114 * isize or bytes. We keep these delayed items to coalesce these operations 115 * into a single operation done on demand. These are an easy way to reclaim 116 * metadata space. 117 * 118 * FLUSH_DELALLOC 119 * Look at the delalloc comment to get an idea of how much space is reserved 120 * for delayed allocation. We can reclaim some of this space simply by 121 * running delalloc, but usually we need to wait for ordered extents to 122 * reclaim the bulk of this space. 123 * 124 * FLUSH_DELAYED_REFS 125 * We have a block reserve for the outstanding delayed refs space, and every 126 * delayed ref operation holds a reservation. Running these is a quick way 127 * to reclaim space, but we want to hold this until the end because COW can 128 * churn a lot and we can avoid making some extent tree modifications if we 129 * are able to delay for as long as possible. 130 * 131 * RESET_ZONES 132 * This state works only for the zoned mode. On the zoned mode, we cannot 133 * reuse once allocated then freed region until we reset the zone, due to 134 * the sequential write zone requirement. The RESET_ZONES state resets the 135 * zones of an unused block group and let us reuse the space. The reusing 136 * is faster than removing the block group and allocating another block 137 * group on the zones. 138 * 139 * ALLOC_CHUNK 140 * We will skip this the first time through space reservation, because of 141 * overcommit and we don't want to have a lot of useless metadata space when 142 * our worst case reservations will likely never come true. 143 * 144 * RUN_DELAYED_IPUTS 145 * If we're freeing inodes we're likely freeing checksums, file extent 146 * items, and extent tree items. Loads of space could be freed up by these 147 * operations, however they won't be usable until the transaction commits. 148 * 149 * COMMIT_TRANS 150 * This will commit the transaction. Historically we had a lot of logic 151 * surrounding whether or not we'd commit the transaction, but this waits born 152 * out of a pre-tickets era where we could end up committing the transaction 153 * thousands of times in a row without making progress. Now thanks to our 154 * ticketing system we know if we're not making progress and can error 155 * everybody out after a few commits rather than burning the disk hoping for 156 * a different answer. 157 * 158 * OVERCOMMIT 159 * 160 * Because we hold so many reservations for metadata we will allow you to 161 * reserve more space than is currently free in the currently allocate 162 * metadata space. This only happens with metadata, data does not allow 163 * overcommitting. 164 * 165 * You can see the current logic for when we allow overcommit in 166 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 167 * is no unallocated space to be had, all reservations are kept within the 168 * free space in the allocated metadata chunks. 169 * 170 * Because of overcommitting, you generally want to use the 171 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 172 * thing with or without extra unallocated space. 173 */ 174 175 u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info, 176 bool may_use_included) 177 { 178 ASSERT(s_info); 179 return s_info->bytes_used + s_info->bytes_reserved + 180 s_info->bytes_pinned + s_info->bytes_readonly + 181 s_info->bytes_zone_unusable + 182 (may_use_included ? s_info->bytes_may_use : 0); 183 } 184 185 /* 186 * after adding space to the filesystem, we need to clear the full flags 187 * on all the space infos. 188 */ 189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 190 { 191 struct list_head *head = &info->space_info; 192 struct btrfs_space_info *found; 193 194 list_for_each_entry(found, head, list) 195 found->full = 0; 196 } 197 198 /* 199 * Block groups with more than this value (percents) of unusable space will be 200 * scheduled for background reclaim. 201 */ 202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 203 204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 205 206 /* 207 * Calculate chunk size depending on volume type (regular or zoned). 208 */ 209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 210 { 211 if (btrfs_is_zoned(fs_info)) 212 return fs_info->zone_size; 213 214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 215 216 if (flags & BTRFS_BLOCK_GROUP_DATA) 217 return BTRFS_MAX_DATA_CHUNK_SIZE; 218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 219 return SZ_32M; 220 221 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 223 return SZ_1G; 224 225 return SZ_256M; 226 } 227 228 /* 229 * Update default chunk size. 230 */ 231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 232 u64 chunk_size) 233 { 234 WRITE_ONCE(space_info->chunk_size, chunk_size); 235 } 236 237 static void init_space_info(struct btrfs_fs_info *info, 238 struct btrfs_space_info *space_info, u64 flags) 239 { 240 space_info->fs_info = info; 241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++) 242 INIT_LIST_HEAD(&space_info->block_groups[i]); 243 init_rwsem(&space_info->groups_sem); 244 spin_lock_init(&space_info->lock); 245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 247 INIT_LIST_HEAD(&space_info->ro_bgs); 248 INIT_LIST_HEAD(&space_info->tickets); 249 INIT_LIST_HEAD(&space_info->priority_tickets); 250 space_info->clamp = 1; 251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY; 253 254 if (btrfs_is_zoned(info)) 255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 256 } 257 258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags, 259 enum btrfs_space_info_sub_group id, int index) 260 { 261 struct btrfs_fs_info *fs_info = parent->fs_info; 262 struct btrfs_space_info *sub_group; 263 int ret; 264 265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY); 266 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY); 267 268 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS); 269 if (!sub_group) 270 return -ENOMEM; 271 272 init_space_info(fs_info, sub_group, flags); 273 parent->sub_group[index] = sub_group; 274 sub_group->parent = parent; 275 sub_group->subgroup_id = id; 276 277 ret = btrfs_sysfs_add_space_info_type(fs_info, sub_group); 278 if (ret) { 279 kfree(sub_group); 280 parent->sub_group[index] = NULL; 281 } 282 return ret; 283 } 284 285 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 286 { 287 288 struct btrfs_space_info *space_info; 289 int ret = 0; 290 291 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 292 if (!space_info) 293 return -ENOMEM; 294 295 init_space_info(info, space_info, flags); 296 297 if (btrfs_is_zoned(info)) { 298 if (flags & BTRFS_BLOCK_GROUP_DATA) 299 ret = create_space_info_sub_group(space_info, flags, 300 BTRFS_SUB_GROUP_DATA_RELOC, 301 0); 302 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 303 ret = create_space_info_sub_group(space_info, flags, 304 BTRFS_SUB_GROUP_TREELOG, 305 0); 306 307 if (ret) 308 return ret; 309 } 310 311 ret = btrfs_sysfs_add_space_info_type(info, space_info); 312 if (ret) 313 return ret; 314 315 list_add(&space_info->list, &info->space_info); 316 if (flags & BTRFS_BLOCK_GROUP_DATA) 317 info->data_sinfo = space_info; 318 319 return ret; 320 } 321 322 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 323 { 324 struct btrfs_super_block *disk_super; 325 u64 features; 326 u64 flags; 327 int mixed = 0; 328 int ret; 329 330 disk_super = fs_info->super_copy; 331 if (!btrfs_super_root(disk_super)) 332 return -EINVAL; 333 334 features = btrfs_super_incompat_flags(disk_super); 335 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 336 mixed = 1; 337 338 flags = BTRFS_BLOCK_GROUP_SYSTEM; 339 ret = create_space_info(fs_info, flags); 340 if (ret) 341 goto out; 342 343 if (mixed) { 344 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 345 ret = create_space_info(fs_info, flags); 346 } else { 347 flags = BTRFS_BLOCK_GROUP_METADATA; 348 ret = create_space_info(fs_info, flags); 349 if (ret) 350 goto out; 351 352 flags = BTRFS_BLOCK_GROUP_DATA; 353 ret = create_space_info(fs_info, flags); 354 } 355 out: 356 return ret; 357 } 358 359 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 360 struct btrfs_block_group *block_group) 361 { 362 struct btrfs_space_info *space_info = block_group->space_info; 363 int factor, index; 364 365 factor = btrfs_bg_type_to_factor(block_group->flags); 366 367 spin_lock(&space_info->lock); 368 space_info->total_bytes += block_group->length; 369 space_info->disk_total += block_group->length * factor; 370 space_info->bytes_used += block_group->used; 371 space_info->disk_used += block_group->used * factor; 372 space_info->bytes_readonly += block_group->bytes_super; 373 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable); 374 if (block_group->length > 0) 375 space_info->full = 0; 376 btrfs_try_granting_tickets(info, space_info); 377 spin_unlock(&space_info->lock); 378 379 block_group->space_info = space_info; 380 381 index = btrfs_bg_flags_to_raid_index(block_group->flags); 382 down_write(&space_info->groups_sem); 383 list_add_tail(&block_group->list, &space_info->block_groups[index]); 384 up_write(&space_info->groups_sem); 385 } 386 387 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 388 u64 flags) 389 { 390 struct list_head *head = &info->space_info; 391 struct btrfs_space_info *found; 392 393 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 394 395 list_for_each_entry(found, head, list) { 396 if (found->flags & flags) 397 return found; 398 } 399 return NULL; 400 } 401 402 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 403 { 404 struct btrfs_space_info *data_sinfo; 405 u64 data_chunk_size; 406 407 /* 408 * Calculate the data_chunk_size, space_info->chunk_size is the 409 * "optimal" chunk size based on the fs size. However when we actually 410 * allocate the chunk we will strip this down further, making it no 411 * more than 10% of the disk or 1G, whichever is smaller. 412 * 413 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 414 * as it is. 415 */ 416 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 417 if (btrfs_is_zoned(fs_info)) 418 return data_sinfo->chunk_size; 419 data_chunk_size = min(data_sinfo->chunk_size, 420 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 421 return min_t(u64, data_chunk_size, SZ_1G); 422 } 423 424 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 425 const struct btrfs_space_info *space_info, 426 enum btrfs_reserve_flush_enum flush) 427 { 428 u64 profile; 429 u64 avail; 430 u64 data_chunk_size; 431 int factor; 432 433 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 434 profile = btrfs_system_alloc_profile(fs_info); 435 else 436 profile = btrfs_metadata_alloc_profile(fs_info); 437 438 avail = atomic64_read(&fs_info->free_chunk_space); 439 440 /* 441 * If we have dup, raid1 or raid10 then only half of the free 442 * space is actually usable. For raid56, the space info used 443 * doesn't include the parity drive, so we don't have to 444 * change the math 445 */ 446 factor = btrfs_bg_type_to_factor(profile); 447 avail = div_u64(avail, factor); 448 if (avail == 0) 449 return 0; 450 451 data_chunk_size = calc_effective_data_chunk_size(fs_info); 452 453 /* 454 * Since data allocations immediately use block groups as part of the 455 * reservation, because we assume that data reservations will == actual 456 * usage, we could potentially overcommit and then immediately have that 457 * available space used by a data allocation, which could put us in a 458 * bind when we get close to filling the file system. 459 * 460 * To handle this simply remove the data_chunk_size from the available 461 * space. If we are relatively empty this won't affect our ability to 462 * overcommit much, and if we're very close to full it'll keep us from 463 * getting into a position where we've given ourselves very little 464 * metadata wiggle room. 465 */ 466 if (avail <= data_chunk_size) 467 return 0; 468 avail -= data_chunk_size; 469 470 /* 471 * If we aren't flushing all things, let us overcommit up to 472 * 1/2th of the space. If we can flush, don't let us overcommit 473 * too much, let it overcommit up to 1/8 of the space. 474 */ 475 if (flush == BTRFS_RESERVE_FLUSH_ALL) 476 avail >>= 3; 477 else 478 avail >>= 1; 479 480 /* 481 * On the zoned mode, we always allocate one zone as one chunk. 482 * Returning non-zone size alingned bytes here will result in 483 * less pressure for the async metadata reclaim process, and it 484 * will over-commit too much leading to ENOSPC. Align down to the 485 * zone size to avoid that. 486 */ 487 if (btrfs_is_zoned(fs_info)) 488 avail = ALIGN_DOWN(avail, fs_info->zone_size); 489 490 return avail; 491 } 492 493 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 494 const struct btrfs_space_info *space_info, u64 bytes, 495 enum btrfs_reserve_flush_enum flush) 496 { 497 u64 avail; 498 u64 used; 499 500 /* Don't overcommit when in mixed mode */ 501 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 502 return 0; 503 504 used = btrfs_space_info_used(space_info, true); 505 avail = calc_available_free_space(fs_info, space_info, flush); 506 507 if (used + bytes < space_info->total_bytes + avail) 508 return 1; 509 return 0; 510 } 511 512 static void remove_ticket(struct btrfs_space_info *space_info, 513 struct reserve_ticket *ticket) 514 { 515 if (!list_empty(&ticket->list)) { 516 list_del_init(&ticket->list); 517 ASSERT(space_info->reclaim_size >= ticket->bytes); 518 space_info->reclaim_size -= ticket->bytes; 519 } 520 } 521 522 /* 523 * This is for space we already have accounted in space_info->bytes_may_use, so 524 * basically when we're returning space from block_rsv's. 525 */ 526 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 527 struct btrfs_space_info *space_info) 528 { 529 struct list_head *head; 530 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 531 532 lockdep_assert_held(&space_info->lock); 533 534 head = &space_info->priority_tickets; 535 again: 536 while (!list_empty(head)) { 537 struct reserve_ticket *ticket; 538 u64 used = btrfs_space_info_used(space_info, true); 539 540 ticket = list_first_entry(head, struct reserve_ticket, list); 541 542 /* Check and see if our ticket can be satisfied now. */ 543 if ((used + ticket->bytes <= space_info->total_bytes) || 544 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 545 flush)) { 546 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes); 547 remove_ticket(space_info, ticket); 548 ticket->bytes = 0; 549 space_info->tickets_id++; 550 wake_up(&ticket->wait); 551 } else { 552 break; 553 } 554 } 555 556 if (head == &space_info->priority_tickets) { 557 head = &space_info->tickets; 558 flush = BTRFS_RESERVE_FLUSH_ALL; 559 goto again; 560 } 561 } 562 563 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 564 do { \ 565 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 566 spin_lock(&__rsv->lock); \ 567 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 568 __rsv->size, __rsv->reserved); \ 569 spin_unlock(&__rsv->lock); \ 570 } while (0) 571 572 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 573 { 574 switch (space_info->flags) { 575 case BTRFS_BLOCK_GROUP_SYSTEM: 576 return "SYSTEM"; 577 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 578 return "DATA+METADATA"; 579 case BTRFS_BLOCK_GROUP_DATA: 580 return "DATA"; 581 case BTRFS_BLOCK_GROUP_METADATA: 582 return "METADATA"; 583 default: 584 return "UNKNOWN"; 585 } 586 } 587 588 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 589 { 590 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 591 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 592 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 593 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 594 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 595 } 596 597 static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info, 598 const struct btrfs_space_info *info) 599 { 600 const char *flag_str = space_info_flag_to_str(info); 601 lockdep_assert_held(&info->lock); 602 603 /* The free space could be negative in case of overcommit */ 604 btrfs_info(fs_info, 605 "space_info %s (sub-group id %d) has %lld free, is %sfull", 606 flag_str, info->subgroup_id, 607 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 608 info->full ? "" : "not "); 609 btrfs_info(fs_info, 610 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 611 info->total_bytes, info->bytes_used, info->bytes_pinned, 612 info->bytes_reserved, info->bytes_may_use, 613 info->bytes_readonly, info->bytes_zone_unusable); 614 } 615 616 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 617 struct btrfs_space_info *info, u64 bytes, 618 int dump_block_groups) 619 { 620 struct btrfs_block_group *cache; 621 u64 total_avail = 0; 622 int index = 0; 623 624 spin_lock(&info->lock); 625 __btrfs_dump_space_info(fs_info, info); 626 dump_global_block_rsv(fs_info); 627 spin_unlock(&info->lock); 628 629 if (!dump_block_groups) 630 return; 631 632 down_read(&info->groups_sem); 633 again: 634 list_for_each_entry(cache, &info->block_groups[index], list) { 635 u64 avail; 636 637 spin_lock(&cache->lock); 638 avail = cache->length - cache->used - cache->pinned - 639 cache->reserved - cache->bytes_super - cache->zone_unusable; 640 btrfs_info(fs_info, 641 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 642 cache->start, cache->length, cache->used, cache->pinned, 643 cache->reserved, cache->delalloc_bytes, 644 cache->bytes_super, cache->zone_unusable, 645 avail, cache->ro ? "[readonly]" : ""); 646 spin_unlock(&cache->lock); 647 btrfs_dump_free_space(cache, bytes); 648 total_avail += avail; 649 } 650 if (++index < BTRFS_NR_RAID_TYPES) 651 goto again; 652 up_read(&info->groups_sem); 653 654 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 655 } 656 657 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 658 u64 to_reclaim) 659 { 660 u64 bytes; 661 u64 nr; 662 663 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 664 nr = div64_u64(to_reclaim, bytes); 665 if (!nr) 666 nr = 1; 667 return nr; 668 } 669 670 /* 671 * shrink metadata reservation for delalloc 672 */ 673 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 674 struct btrfs_space_info *space_info, 675 u64 to_reclaim, bool wait_ordered, 676 bool for_preempt) 677 { 678 struct btrfs_trans_handle *trans; 679 u64 delalloc_bytes; 680 u64 ordered_bytes; 681 u64 items; 682 long time_left; 683 int loops; 684 685 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 686 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 687 if (delalloc_bytes == 0 && ordered_bytes == 0) 688 return; 689 690 /* Calc the number of the pages we need flush for space reservation */ 691 if (to_reclaim == U64_MAX) { 692 items = U64_MAX; 693 } else { 694 /* 695 * to_reclaim is set to however much metadata we need to 696 * reclaim, but reclaiming that much data doesn't really track 697 * exactly. What we really want to do is reclaim full inode's 698 * worth of reservations, however that's not available to us 699 * here. We will take a fraction of the delalloc bytes for our 700 * flushing loops and hope for the best. Delalloc will expand 701 * the amount we write to cover an entire dirty extent, which 702 * will reclaim the metadata reservation for that range. If 703 * it's not enough subsequent flush stages will be more 704 * aggressive. 705 */ 706 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 707 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 708 } 709 710 trans = current->journal_info; 711 712 /* 713 * If we are doing more ordered than delalloc we need to just wait on 714 * ordered extents, otherwise we'll waste time trying to flush delalloc 715 * that likely won't give us the space back we need. 716 */ 717 if (ordered_bytes > delalloc_bytes && !for_preempt) 718 wait_ordered = true; 719 720 loops = 0; 721 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 722 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 723 long nr_pages = min_t(u64, temp, LONG_MAX); 724 int async_pages; 725 726 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 727 728 /* 729 * We need to make sure any outstanding async pages are now 730 * processed before we continue. This is because things like 731 * sync_inode() try to be smart and skip writing if the inode is 732 * marked clean. We don't use filemap_fwrite for flushing 733 * because we want to control how many pages we write out at a 734 * time, thus this is the only safe way to make sure we've 735 * waited for outstanding compressed workers to have started 736 * their jobs and thus have ordered extents set up properly. 737 * 738 * This exists because we do not want to wait for each 739 * individual inode to finish its async work, we simply want to 740 * start the IO on everybody, and then come back here and wait 741 * for all of the async work to catch up. Once we're done with 742 * that we know we'll have ordered extents for everything and we 743 * can decide if we wait for that or not. 744 * 745 * If we choose to replace this in the future, make absolutely 746 * sure that the proper waiting is being done in the async case, 747 * as there have been bugs in that area before. 748 */ 749 async_pages = atomic_read(&fs_info->async_delalloc_pages); 750 if (!async_pages) 751 goto skip_async; 752 753 /* 754 * We don't want to wait forever, if we wrote less pages in this 755 * loop than we have outstanding, only wait for that number of 756 * pages, otherwise we can wait for all async pages to finish 757 * before continuing. 758 */ 759 if (async_pages > nr_pages) 760 async_pages -= nr_pages; 761 else 762 async_pages = 0; 763 wait_event(fs_info->async_submit_wait, 764 atomic_read(&fs_info->async_delalloc_pages) <= 765 async_pages); 766 skip_async: 767 loops++; 768 if (wait_ordered && !trans) { 769 btrfs_wait_ordered_roots(fs_info, items, NULL); 770 } else { 771 time_left = schedule_timeout_killable(1); 772 if (time_left) 773 break; 774 } 775 776 /* 777 * If we are for preemption we just want a one-shot of delalloc 778 * flushing so we can stop flushing if we decide we don't need 779 * to anymore. 780 */ 781 if (for_preempt) 782 break; 783 784 spin_lock(&space_info->lock); 785 if (list_empty(&space_info->tickets) && 786 list_empty(&space_info->priority_tickets)) { 787 spin_unlock(&space_info->lock); 788 break; 789 } 790 spin_unlock(&space_info->lock); 791 792 delalloc_bytes = percpu_counter_sum_positive( 793 &fs_info->delalloc_bytes); 794 ordered_bytes = percpu_counter_sum_positive( 795 &fs_info->ordered_bytes); 796 } 797 } 798 799 /* 800 * Try to flush some data based on policy set by @state. This is only advisory 801 * and may fail for various reasons. The caller is supposed to examine the 802 * state of @space_info to detect the outcome. 803 */ 804 static void flush_space(struct btrfs_fs_info *fs_info, 805 struct btrfs_space_info *space_info, u64 num_bytes, 806 enum btrfs_flush_state state, bool for_preempt) 807 { 808 struct btrfs_root *root = fs_info->tree_root; 809 struct btrfs_trans_handle *trans; 810 int nr; 811 int ret = 0; 812 813 switch (state) { 814 case FLUSH_DELAYED_ITEMS_NR: 815 case FLUSH_DELAYED_ITEMS: 816 if (state == FLUSH_DELAYED_ITEMS_NR) 817 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 818 else 819 nr = -1; 820 821 trans = btrfs_join_transaction_nostart(root); 822 if (IS_ERR(trans)) { 823 ret = PTR_ERR(trans); 824 if (ret == -ENOENT) 825 ret = 0; 826 break; 827 } 828 ret = btrfs_run_delayed_items_nr(trans, nr); 829 btrfs_end_transaction(trans); 830 break; 831 case FLUSH_DELALLOC: 832 case FLUSH_DELALLOC_WAIT: 833 case FLUSH_DELALLOC_FULL: 834 if (state == FLUSH_DELALLOC_FULL) 835 num_bytes = U64_MAX; 836 shrink_delalloc(fs_info, space_info, num_bytes, 837 state != FLUSH_DELALLOC, for_preempt); 838 break; 839 case FLUSH_DELAYED_REFS_NR: 840 case FLUSH_DELAYED_REFS: 841 trans = btrfs_join_transaction_nostart(root); 842 if (IS_ERR(trans)) { 843 ret = PTR_ERR(trans); 844 if (ret == -ENOENT) 845 ret = 0; 846 break; 847 } 848 if (state == FLUSH_DELAYED_REFS_NR) 849 btrfs_run_delayed_refs(trans, num_bytes); 850 else 851 btrfs_run_delayed_refs(trans, 0); 852 btrfs_end_transaction(trans); 853 break; 854 case ALLOC_CHUNK: 855 case ALLOC_CHUNK_FORCE: 856 trans = btrfs_join_transaction(root); 857 if (IS_ERR(trans)) { 858 ret = PTR_ERR(trans); 859 break; 860 } 861 ret = btrfs_chunk_alloc(trans, space_info, 862 btrfs_get_alloc_profile(fs_info, space_info->flags), 863 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 864 CHUNK_ALLOC_FORCE); 865 btrfs_end_transaction(trans); 866 867 if (ret > 0 || ret == -ENOSPC) 868 ret = 0; 869 break; 870 case RUN_DELAYED_IPUTS: 871 /* 872 * If we have pending delayed iputs then we could free up a 873 * bunch of pinned space, so make sure we run the iputs before 874 * we do our pinned bytes check below. 875 */ 876 btrfs_run_delayed_iputs(fs_info); 877 btrfs_wait_on_delayed_iputs(fs_info); 878 break; 879 case COMMIT_TRANS: 880 ASSERT(current->journal_info == NULL); 881 /* 882 * We don't want to start a new transaction, just attach to the 883 * current one or wait it fully commits in case its commit is 884 * happening at the moment. Note: we don't use a nostart join 885 * because that does not wait for a transaction to fully commit 886 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 887 */ 888 ret = btrfs_commit_current_transaction(root); 889 break; 890 case RESET_ZONES: 891 ret = btrfs_reset_unused_block_groups(space_info, num_bytes); 892 break; 893 default: 894 ret = -ENOSPC; 895 break; 896 } 897 898 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 899 ret, for_preempt); 900 return; 901 } 902 903 static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 904 const struct btrfs_space_info *space_info) 905 { 906 u64 used; 907 u64 avail; 908 u64 to_reclaim = space_info->reclaim_size; 909 910 lockdep_assert_held(&space_info->lock); 911 912 avail = calc_available_free_space(fs_info, space_info, 913 BTRFS_RESERVE_FLUSH_ALL); 914 used = btrfs_space_info_used(space_info, true); 915 916 /* 917 * We may be flushing because suddenly we have less space than we had 918 * before, and now we're well over-committed based on our current free 919 * space. If that's the case add in our overage so we make sure to put 920 * appropriate pressure on the flushing state machine. 921 */ 922 if (space_info->total_bytes + avail < used) 923 to_reclaim += used - (space_info->total_bytes + avail); 924 925 return to_reclaim; 926 } 927 928 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 929 const struct btrfs_space_info *space_info) 930 { 931 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 932 u64 ordered, delalloc; 933 u64 thresh; 934 u64 used; 935 936 thresh = mult_perc(space_info->total_bytes, 90); 937 938 lockdep_assert_held(&space_info->lock); 939 940 /* If we're just plain full then async reclaim just slows us down. */ 941 if ((space_info->bytes_used + space_info->bytes_reserved + 942 global_rsv_size) >= thresh) 943 return false; 944 945 used = space_info->bytes_may_use + space_info->bytes_pinned; 946 947 /* The total flushable belongs to the global rsv, don't flush. */ 948 if (global_rsv_size >= used) 949 return false; 950 951 /* 952 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 953 * that devoted to other reservations then there's no sense in flushing, 954 * we don't have a lot of things that need flushing. 955 */ 956 if (used - global_rsv_size <= SZ_128M) 957 return false; 958 959 /* 960 * We have tickets queued, bail so we don't compete with the async 961 * flushers. 962 */ 963 if (space_info->reclaim_size) 964 return false; 965 966 /* 967 * If we have over half of the free space occupied by reservations or 968 * pinned then we want to start flushing. 969 * 970 * We do not do the traditional thing here, which is to say 971 * 972 * if (used >= ((total_bytes + avail) / 2)) 973 * return 1; 974 * 975 * because this doesn't quite work how we want. If we had more than 50% 976 * of the space_info used by bytes_used and we had 0 available we'd just 977 * constantly run the background flusher. Instead we want it to kick in 978 * if our reclaimable space exceeds our clamped free space. 979 * 980 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 981 * the following: 982 * 983 * Amount of RAM Minimum threshold Maximum threshold 984 * 985 * 256GiB 1GiB 128GiB 986 * 128GiB 512MiB 64GiB 987 * 64GiB 256MiB 32GiB 988 * 32GiB 128MiB 16GiB 989 * 16GiB 64MiB 8GiB 990 * 991 * These are the range our thresholds will fall in, corresponding to how 992 * much delalloc we need for the background flusher to kick in. 993 */ 994 995 thresh = calc_available_free_space(fs_info, space_info, 996 BTRFS_RESERVE_FLUSH_ALL); 997 used = space_info->bytes_used + space_info->bytes_reserved + 998 space_info->bytes_readonly + global_rsv_size; 999 if (used < space_info->total_bytes) 1000 thresh += space_info->total_bytes - used; 1001 thresh >>= space_info->clamp; 1002 1003 used = space_info->bytes_pinned; 1004 1005 /* 1006 * If we have more ordered bytes than delalloc bytes then we're either 1007 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 1008 * around. Preemptive flushing is only useful in that it can free up 1009 * space before tickets need to wait for things to finish. In the case 1010 * of ordered extents, preemptively waiting on ordered extents gets us 1011 * nothing, if our reservations are tied up in ordered extents we'll 1012 * simply have to slow down writers by forcing them to wait on ordered 1013 * extents. 1014 * 1015 * In the case that ordered is larger than delalloc, only include the 1016 * block reserves that we would actually be able to directly reclaim 1017 * from. In this case if we're heavy on metadata operations this will 1018 * clearly be heavy enough to warrant preemptive flushing. In the case 1019 * of heavy DIO or ordered reservations, preemptive flushing will just 1020 * waste time and cause us to slow down. 1021 * 1022 * We want to make sure we truly are maxed out on ordered however, so 1023 * cut ordered in half, and if it's still higher than delalloc then we 1024 * can keep flushing. This is to avoid the case where we start 1025 * flushing, and now delalloc == ordered and we stop preemptively 1026 * flushing when we could still have several gigs of delalloc to flush. 1027 */ 1028 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 1029 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 1030 if (ordered >= delalloc) 1031 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 1032 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 1033 else 1034 used += space_info->bytes_may_use - global_rsv_size; 1035 1036 return (used >= thresh && !btrfs_fs_closing(fs_info) && 1037 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 1038 } 1039 1040 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 1041 struct btrfs_space_info *space_info, 1042 struct reserve_ticket *ticket) 1043 { 1044 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1045 u64 min_bytes; 1046 1047 if (!ticket->steal) 1048 return false; 1049 1050 if (global_rsv->space_info != space_info) 1051 return false; 1052 1053 spin_lock(&global_rsv->lock); 1054 min_bytes = mult_perc(global_rsv->size, 10); 1055 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1056 spin_unlock(&global_rsv->lock); 1057 return false; 1058 } 1059 global_rsv->reserved -= ticket->bytes; 1060 remove_ticket(space_info, ticket); 1061 ticket->bytes = 0; 1062 wake_up(&ticket->wait); 1063 space_info->tickets_id++; 1064 if (global_rsv->reserved < global_rsv->size) 1065 global_rsv->full = 0; 1066 spin_unlock(&global_rsv->lock); 1067 1068 return true; 1069 } 1070 1071 /* 1072 * We've exhausted our flushing, start failing tickets. 1073 * 1074 * @fs_info - fs_info for this fs 1075 * @space_info - the space info we were flushing 1076 * 1077 * We call this when we've exhausted our flushing ability and haven't made 1078 * progress in satisfying tickets. The reservation code handles tickets in 1079 * order, so if there is a large ticket first and then smaller ones we could 1080 * very well satisfy the smaller tickets. This will attempt to wake up any 1081 * tickets in the list to catch this case. 1082 * 1083 * This function returns true if it was able to make progress by clearing out 1084 * other tickets, or if it stumbles across a ticket that was smaller than the 1085 * first ticket. 1086 */ 1087 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1088 struct btrfs_space_info *space_info) 1089 { 1090 struct reserve_ticket *ticket; 1091 u64 tickets_id = space_info->tickets_id; 1092 const bool aborted = BTRFS_FS_ERROR(fs_info); 1093 1094 trace_btrfs_fail_all_tickets(fs_info, space_info); 1095 1096 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1097 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1098 __btrfs_dump_space_info(fs_info, space_info); 1099 } 1100 1101 while (!list_empty(&space_info->tickets) && 1102 tickets_id == space_info->tickets_id) { 1103 ticket = list_first_entry(&space_info->tickets, 1104 struct reserve_ticket, list); 1105 1106 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1107 return true; 1108 1109 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1110 btrfs_info(fs_info, "failing ticket with %llu bytes", 1111 ticket->bytes); 1112 1113 remove_ticket(space_info, ticket); 1114 if (aborted) 1115 ticket->error = -EIO; 1116 else 1117 ticket->error = -ENOSPC; 1118 wake_up(&ticket->wait); 1119 1120 /* 1121 * We're just throwing tickets away, so more flushing may not 1122 * trip over btrfs_try_granting_tickets, so we need to call it 1123 * here to see if we can make progress with the next ticket in 1124 * the list. 1125 */ 1126 if (!aborted) 1127 btrfs_try_granting_tickets(fs_info, space_info); 1128 } 1129 return (tickets_id != space_info->tickets_id); 1130 } 1131 1132 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info) 1133 { 1134 struct btrfs_fs_info *fs_info = space_info->fs_info; 1135 u64 to_reclaim; 1136 enum btrfs_flush_state flush_state; 1137 int commit_cycles = 0; 1138 u64 last_tickets_id; 1139 enum btrfs_flush_state final_state; 1140 1141 if (btrfs_is_zoned(fs_info)) 1142 final_state = RESET_ZONES; 1143 else 1144 final_state = COMMIT_TRANS; 1145 1146 spin_lock(&space_info->lock); 1147 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1148 if (!to_reclaim) { 1149 space_info->flush = 0; 1150 spin_unlock(&space_info->lock); 1151 return; 1152 } 1153 last_tickets_id = space_info->tickets_id; 1154 spin_unlock(&space_info->lock); 1155 1156 flush_state = FLUSH_DELAYED_ITEMS_NR; 1157 do { 1158 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1159 spin_lock(&space_info->lock); 1160 if (list_empty(&space_info->tickets)) { 1161 space_info->flush = 0; 1162 spin_unlock(&space_info->lock); 1163 return; 1164 } 1165 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1166 space_info); 1167 if (last_tickets_id == space_info->tickets_id) { 1168 flush_state++; 1169 } else { 1170 last_tickets_id = space_info->tickets_id; 1171 flush_state = FLUSH_DELAYED_ITEMS_NR; 1172 if (commit_cycles) 1173 commit_cycles--; 1174 } 1175 1176 /* 1177 * We do not want to empty the system of delalloc unless we're 1178 * under heavy pressure, so allow one trip through the flushing 1179 * logic before we start doing a FLUSH_DELALLOC_FULL. 1180 */ 1181 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1182 flush_state++; 1183 1184 /* 1185 * We don't want to force a chunk allocation until we've tried 1186 * pretty hard to reclaim space. Think of the case where we 1187 * freed up a bunch of space and so have a lot of pinned space 1188 * to reclaim. We would rather use that than possibly create a 1189 * underutilized metadata chunk. So if this is our first run 1190 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1191 * commit the transaction. If nothing has changed the next go 1192 * around then we can force a chunk allocation. 1193 */ 1194 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1195 flush_state++; 1196 1197 if (flush_state > final_state) { 1198 commit_cycles++; 1199 if (commit_cycles > 2) { 1200 if (maybe_fail_all_tickets(fs_info, space_info)) { 1201 flush_state = FLUSH_DELAYED_ITEMS_NR; 1202 commit_cycles--; 1203 } else { 1204 space_info->flush = 0; 1205 } 1206 } else { 1207 flush_state = FLUSH_DELAYED_ITEMS_NR; 1208 } 1209 } 1210 spin_unlock(&space_info->lock); 1211 } while (flush_state <= final_state); 1212 } 1213 1214 /* 1215 * This is for normal flushers, it can wait as much time as needed. We will 1216 * loop and continuously try to flush as long as we are making progress. We 1217 * count progress as clearing off tickets each time we have to loop. 1218 */ 1219 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1220 { 1221 struct btrfs_fs_info *fs_info; 1222 struct btrfs_space_info *space_info; 1223 1224 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1225 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1226 do_async_reclaim_metadata_space(space_info); 1227 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 1228 if (space_info->sub_group[i]) 1229 do_async_reclaim_metadata_space(space_info->sub_group[i]); 1230 } 1231 } 1232 1233 /* 1234 * This handles pre-flushing of metadata space before we get to the point that 1235 * we need to start blocking threads on tickets. The logic here is different 1236 * from the other flush paths because it doesn't rely on tickets to tell us how 1237 * much we need to flush, instead it attempts to keep us below the 80% full 1238 * watermark of space by flushing whichever reservation pool is currently the 1239 * largest. 1240 */ 1241 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1242 { 1243 struct btrfs_fs_info *fs_info; 1244 struct btrfs_space_info *space_info; 1245 struct btrfs_block_rsv *delayed_block_rsv; 1246 struct btrfs_block_rsv *delayed_refs_rsv; 1247 struct btrfs_block_rsv *global_rsv; 1248 struct btrfs_block_rsv *trans_rsv; 1249 int loops = 0; 1250 1251 fs_info = container_of(work, struct btrfs_fs_info, 1252 preempt_reclaim_work); 1253 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1254 delayed_block_rsv = &fs_info->delayed_block_rsv; 1255 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1256 global_rsv = &fs_info->global_block_rsv; 1257 trans_rsv = &fs_info->trans_block_rsv; 1258 1259 spin_lock(&space_info->lock); 1260 while (need_preemptive_reclaim(fs_info, space_info)) { 1261 enum btrfs_flush_state flush; 1262 u64 delalloc_size = 0; 1263 u64 to_reclaim, block_rsv_size; 1264 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1265 1266 loops++; 1267 1268 /* 1269 * We don't have a precise counter for the metadata being 1270 * reserved for delalloc, so we'll approximate it by subtracting 1271 * out the block rsv's space from the bytes_may_use. If that 1272 * amount is higher than the individual reserves, then we can 1273 * assume it's tied up in delalloc reservations. 1274 */ 1275 block_rsv_size = global_rsv_size + 1276 btrfs_block_rsv_reserved(delayed_block_rsv) + 1277 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1278 btrfs_block_rsv_reserved(trans_rsv); 1279 if (block_rsv_size < space_info->bytes_may_use) 1280 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1281 1282 /* 1283 * We don't want to include the global_rsv in our calculation, 1284 * because that's space we can't touch. Subtract it from the 1285 * block_rsv_size for the next checks. 1286 */ 1287 block_rsv_size -= global_rsv_size; 1288 1289 /* 1290 * We really want to avoid flushing delalloc too much, as it 1291 * could result in poor allocation patterns, so only flush it if 1292 * it's larger than the rest of the pools combined. 1293 */ 1294 if (delalloc_size > block_rsv_size) { 1295 to_reclaim = delalloc_size; 1296 flush = FLUSH_DELALLOC; 1297 } else if (space_info->bytes_pinned > 1298 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1299 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1300 to_reclaim = space_info->bytes_pinned; 1301 flush = COMMIT_TRANS; 1302 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1303 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1304 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1305 flush = FLUSH_DELAYED_ITEMS_NR; 1306 } else { 1307 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1308 flush = FLUSH_DELAYED_REFS_NR; 1309 } 1310 1311 spin_unlock(&space_info->lock); 1312 1313 /* 1314 * We don't want to reclaim everything, just a portion, so scale 1315 * down the to_reclaim by 1/4. If it takes us down to 0, 1316 * reclaim 1 items worth. 1317 */ 1318 to_reclaim >>= 2; 1319 if (!to_reclaim) 1320 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1321 flush_space(fs_info, space_info, to_reclaim, flush, true); 1322 cond_resched(); 1323 spin_lock(&space_info->lock); 1324 } 1325 1326 /* We only went through once, back off our clamping. */ 1327 if (loops == 1 && !space_info->reclaim_size) 1328 space_info->clamp = max(1, space_info->clamp - 1); 1329 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1330 spin_unlock(&space_info->lock); 1331 } 1332 1333 /* 1334 * FLUSH_DELALLOC_WAIT: 1335 * Space is freed from flushing delalloc in one of two ways. 1336 * 1337 * 1) compression is on and we allocate less space than we reserved 1338 * 2) we are overwriting existing space 1339 * 1340 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1341 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1342 * length to ->bytes_reserved, and subtracts the reserved space from 1343 * ->bytes_may_use. 1344 * 1345 * For #2 this is trickier. Once the ordered extent runs we will drop the 1346 * extent in the range we are overwriting, which creates a delayed ref for 1347 * that freed extent. This however is not reclaimed until the transaction 1348 * commits, thus the next stages. 1349 * 1350 * RUN_DELAYED_IPUTS 1351 * If we are freeing inodes, we want to make sure all delayed iputs have 1352 * completed, because they could have been on an inode with i_nlink == 0, and 1353 * thus have been truncated and freed up space. But again this space is not 1354 * immediately reusable, it comes in the form of a delayed ref, which must be 1355 * run and then the transaction must be committed. 1356 * 1357 * COMMIT_TRANS 1358 * This is where we reclaim all of the pinned space generated by running the 1359 * iputs 1360 * 1361 * RESET_ZONES 1362 * This state works only for the zoned mode. We scan the unused block group 1363 * list and reset the zones and reuse the block group. 1364 * 1365 * ALLOC_CHUNK_FORCE 1366 * For data we start with alloc chunk force, however we could have been full 1367 * before, and then the transaction commit could have freed new block groups, 1368 * so if we now have space to allocate do the force chunk allocation. 1369 */ 1370 static const enum btrfs_flush_state data_flush_states[] = { 1371 FLUSH_DELALLOC_FULL, 1372 RUN_DELAYED_IPUTS, 1373 COMMIT_TRANS, 1374 RESET_ZONES, 1375 ALLOC_CHUNK_FORCE, 1376 }; 1377 1378 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info) 1379 { 1380 struct btrfs_fs_info *fs_info = space_info->fs_info; 1381 u64 last_tickets_id; 1382 enum btrfs_flush_state flush_state = 0; 1383 1384 spin_lock(&space_info->lock); 1385 if (list_empty(&space_info->tickets)) { 1386 space_info->flush = 0; 1387 spin_unlock(&space_info->lock); 1388 return; 1389 } 1390 last_tickets_id = space_info->tickets_id; 1391 spin_unlock(&space_info->lock); 1392 1393 while (!space_info->full) { 1394 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1395 spin_lock(&space_info->lock); 1396 if (list_empty(&space_info->tickets)) { 1397 space_info->flush = 0; 1398 spin_unlock(&space_info->lock); 1399 return; 1400 } 1401 1402 /* Something happened, fail everything and bail. */ 1403 if (BTRFS_FS_ERROR(fs_info)) 1404 goto aborted_fs; 1405 last_tickets_id = space_info->tickets_id; 1406 spin_unlock(&space_info->lock); 1407 } 1408 1409 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1410 flush_space(fs_info, space_info, U64_MAX, 1411 data_flush_states[flush_state], false); 1412 spin_lock(&space_info->lock); 1413 if (list_empty(&space_info->tickets)) { 1414 space_info->flush = 0; 1415 spin_unlock(&space_info->lock); 1416 return; 1417 } 1418 1419 if (last_tickets_id == space_info->tickets_id) { 1420 flush_state++; 1421 } else { 1422 last_tickets_id = space_info->tickets_id; 1423 flush_state = 0; 1424 } 1425 1426 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1427 if (space_info->full) { 1428 if (maybe_fail_all_tickets(fs_info, space_info)) 1429 flush_state = 0; 1430 else 1431 space_info->flush = 0; 1432 } else { 1433 flush_state = 0; 1434 } 1435 1436 /* Something happened, fail everything and bail. */ 1437 if (BTRFS_FS_ERROR(fs_info)) 1438 goto aborted_fs; 1439 1440 } 1441 spin_unlock(&space_info->lock); 1442 } 1443 return; 1444 1445 aborted_fs: 1446 maybe_fail_all_tickets(fs_info, space_info); 1447 space_info->flush = 0; 1448 spin_unlock(&space_info->lock); 1449 } 1450 1451 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1452 { 1453 struct btrfs_fs_info *fs_info; 1454 struct btrfs_space_info *space_info; 1455 1456 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1457 space_info = fs_info->data_sinfo; 1458 do_async_reclaim_data_space(space_info); 1459 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) 1460 if (space_info->sub_group[i]) 1461 do_async_reclaim_data_space(space_info->sub_group[i]); 1462 } 1463 1464 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1465 { 1466 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1467 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1468 INIT_WORK(&fs_info->preempt_reclaim_work, 1469 btrfs_preempt_reclaim_metadata_space); 1470 } 1471 1472 static const enum btrfs_flush_state priority_flush_states[] = { 1473 FLUSH_DELAYED_ITEMS_NR, 1474 FLUSH_DELAYED_ITEMS, 1475 RESET_ZONES, 1476 ALLOC_CHUNK, 1477 }; 1478 1479 static const enum btrfs_flush_state evict_flush_states[] = { 1480 FLUSH_DELAYED_ITEMS_NR, 1481 FLUSH_DELAYED_ITEMS, 1482 FLUSH_DELAYED_REFS_NR, 1483 FLUSH_DELAYED_REFS, 1484 FLUSH_DELALLOC, 1485 FLUSH_DELALLOC_WAIT, 1486 FLUSH_DELALLOC_FULL, 1487 ALLOC_CHUNK, 1488 COMMIT_TRANS, 1489 RESET_ZONES, 1490 }; 1491 1492 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1493 struct btrfs_space_info *space_info, 1494 struct reserve_ticket *ticket, 1495 const enum btrfs_flush_state *states, 1496 int states_nr) 1497 { 1498 u64 to_reclaim; 1499 int flush_state = 0; 1500 1501 spin_lock(&space_info->lock); 1502 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1503 /* 1504 * This is the priority reclaim path, so to_reclaim could be >0 still 1505 * because we may have only satisfied the priority tickets and still 1506 * left non priority tickets on the list. We would then have 1507 * to_reclaim but ->bytes == 0. 1508 */ 1509 if (ticket->bytes == 0) { 1510 spin_unlock(&space_info->lock); 1511 return; 1512 } 1513 1514 while (flush_state < states_nr) { 1515 spin_unlock(&space_info->lock); 1516 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1517 false); 1518 flush_state++; 1519 spin_lock(&space_info->lock); 1520 if (ticket->bytes == 0) { 1521 spin_unlock(&space_info->lock); 1522 return; 1523 } 1524 } 1525 1526 /* 1527 * Attempt to steal from the global rsv if we can, except if the fs was 1528 * turned into error mode due to a transaction abort when flushing space 1529 * above, in that case fail with the abort error instead of returning 1530 * success to the caller if we can steal from the global rsv - this is 1531 * just to have caller fail immeditelly instead of later when trying to 1532 * modify the fs, making it easier to debug -ENOSPC problems. 1533 */ 1534 if (BTRFS_FS_ERROR(fs_info)) { 1535 ticket->error = BTRFS_FS_ERROR(fs_info); 1536 remove_ticket(space_info, ticket); 1537 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1538 ticket->error = -ENOSPC; 1539 remove_ticket(space_info, ticket); 1540 } 1541 1542 /* 1543 * We must run try_granting_tickets here because we could be a large 1544 * ticket in front of a smaller ticket that can now be satisfied with 1545 * the available space. 1546 */ 1547 btrfs_try_granting_tickets(fs_info, space_info); 1548 spin_unlock(&space_info->lock); 1549 } 1550 1551 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1552 struct btrfs_space_info *space_info, 1553 struct reserve_ticket *ticket) 1554 { 1555 spin_lock(&space_info->lock); 1556 1557 /* We could have been granted before we got here. */ 1558 if (ticket->bytes == 0) { 1559 spin_unlock(&space_info->lock); 1560 return; 1561 } 1562 1563 while (!space_info->full) { 1564 spin_unlock(&space_info->lock); 1565 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1566 spin_lock(&space_info->lock); 1567 if (ticket->bytes == 0) { 1568 spin_unlock(&space_info->lock); 1569 return; 1570 } 1571 } 1572 1573 ticket->error = -ENOSPC; 1574 remove_ticket(space_info, ticket); 1575 btrfs_try_granting_tickets(fs_info, space_info); 1576 spin_unlock(&space_info->lock); 1577 } 1578 1579 static void wait_reserve_ticket(struct btrfs_space_info *space_info, 1580 struct reserve_ticket *ticket) 1581 1582 { 1583 DEFINE_WAIT(wait); 1584 int ret = 0; 1585 1586 spin_lock(&space_info->lock); 1587 while (ticket->bytes > 0 && ticket->error == 0) { 1588 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1589 if (ret) { 1590 /* 1591 * Delete us from the list. After we unlock the space 1592 * info, we don't want the async reclaim job to reserve 1593 * space for this ticket. If that would happen, then the 1594 * ticket's task would not known that space was reserved 1595 * despite getting an error, resulting in a space leak 1596 * (bytes_may_use counter of our space_info). 1597 */ 1598 remove_ticket(space_info, ticket); 1599 ticket->error = -EINTR; 1600 break; 1601 } 1602 spin_unlock(&space_info->lock); 1603 1604 schedule(); 1605 1606 finish_wait(&ticket->wait, &wait); 1607 spin_lock(&space_info->lock); 1608 } 1609 spin_unlock(&space_info->lock); 1610 } 1611 1612 /* 1613 * Do the appropriate flushing and waiting for a ticket. 1614 * 1615 * @fs_info: the filesystem 1616 * @space_info: space info for the reservation 1617 * @ticket: ticket for the reservation 1618 * @start_ns: timestamp when the reservation started 1619 * @orig_bytes: amount of bytes originally reserved 1620 * @flush: how much we can flush 1621 * 1622 * This does the work of figuring out how to flush for the ticket, waiting for 1623 * the reservation, and returning the appropriate error if there is one. 1624 */ 1625 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1626 struct btrfs_space_info *space_info, 1627 struct reserve_ticket *ticket, 1628 u64 start_ns, u64 orig_bytes, 1629 enum btrfs_reserve_flush_enum flush) 1630 { 1631 int ret; 1632 1633 switch (flush) { 1634 case BTRFS_RESERVE_FLUSH_DATA: 1635 case BTRFS_RESERVE_FLUSH_ALL: 1636 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1637 wait_reserve_ticket(space_info, ticket); 1638 break; 1639 case BTRFS_RESERVE_FLUSH_LIMIT: 1640 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1641 priority_flush_states, 1642 ARRAY_SIZE(priority_flush_states)); 1643 break; 1644 case BTRFS_RESERVE_FLUSH_EVICT: 1645 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1646 evict_flush_states, 1647 ARRAY_SIZE(evict_flush_states)); 1648 break; 1649 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1650 priority_reclaim_data_space(fs_info, space_info, ticket); 1651 break; 1652 default: 1653 ASSERT(0); 1654 break; 1655 } 1656 1657 ret = ticket->error; 1658 ASSERT(list_empty(&ticket->list)); 1659 /* 1660 * Check that we can't have an error set if the reservation succeeded, 1661 * as that would confuse tasks and lead them to error out without 1662 * releasing reserved space (if an error happens the expectation is that 1663 * space wasn't reserved at all). 1664 */ 1665 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1666 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1667 start_ns, flush, ticket->error); 1668 return ret; 1669 } 1670 1671 /* 1672 * This returns true if this flush state will go through the ordinary flushing 1673 * code. 1674 */ 1675 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1676 { 1677 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1678 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1679 } 1680 1681 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1682 struct btrfs_space_info *space_info) 1683 { 1684 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1685 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1686 1687 /* 1688 * If we're heavy on ordered operations then clamping won't help us. We 1689 * need to clamp specifically to keep up with dirty'ing buffered 1690 * writers, because there's not a 1:1 correlation of writing delalloc 1691 * and freeing space, like there is with flushing delayed refs or 1692 * delayed nodes. If we're already more ordered than delalloc then 1693 * we're keeping up, otherwise we aren't and should probably clamp. 1694 */ 1695 if (ordered < delalloc) 1696 space_info->clamp = min(space_info->clamp + 1, 8); 1697 } 1698 1699 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1700 { 1701 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1702 flush == BTRFS_RESERVE_FLUSH_EVICT); 1703 } 1704 1705 /* 1706 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1707 * fail as quickly as possible. 1708 */ 1709 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1710 { 1711 return (flush != BTRFS_RESERVE_NO_FLUSH && 1712 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1713 } 1714 1715 /* 1716 * Try to reserve bytes from the block_rsv's space. 1717 * 1718 * @fs_info: the filesystem 1719 * @space_info: space info we want to allocate from 1720 * @orig_bytes: number of bytes we want 1721 * @flush: whether or not we can flush to make our reservation 1722 * 1723 * This will reserve orig_bytes number of bytes from the space info associated 1724 * with the block_rsv. If there is not enough space it will make an attempt to 1725 * flush out space to make room. It will do this by flushing delalloc if 1726 * possible or committing the transaction. If flush is 0 then no attempts to 1727 * regain reservations will be made and this will fail if there is not enough 1728 * space already. 1729 */ 1730 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1731 struct btrfs_space_info *space_info, u64 orig_bytes, 1732 enum btrfs_reserve_flush_enum flush) 1733 { 1734 struct work_struct *async_work; 1735 struct reserve_ticket ticket; 1736 u64 start_ns = 0; 1737 u64 used; 1738 int ret = -ENOSPC; 1739 bool pending_tickets; 1740 1741 ASSERT(orig_bytes); 1742 /* 1743 * If have a transaction handle (current->journal_info != NULL), then 1744 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1745 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1746 * flushing methods can trigger transaction commits. 1747 */ 1748 if (current->journal_info) { 1749 /* One assert per line for easier debugging. */ 1750 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1751 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1752 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1753 } 1754 1755 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1756 async_work = &fs_info->async_data_reclaim_work; 1757 else 1758 async_work = &fs_info->async_reclaim_work; 1759 1760 spin_lock(&space_info->lock); 1761 used = btrfs_space_info_used(space_info, true); 1762 1763 /* 1764 * We don't want NO_FLUSH allocations to jump everybody, they can 1765 * generally handle ENOSPC in a different way, so treat them the same as 1766 * normal flushers when it comes to skipping pending tickets. 1767 */ 1768 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1769 pending_tickets = !list_empty(&space_info->tickets) || 1770 !list_empty(&space_info->priority_tickets); 1771 else 1772 pending_tickets = !list_empty(&space_info->priority_tickets); 1773 1774 /* 1775 * Carry on if we have enough space (short-circuit) OR call 1776 * can_overcommit() to ensure we can overcommit to continue. 1777 */ 1778 if (!pending_tickets && 1779 ((used + orig_bytes <= space_info->total_bytes) || 1780 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1781 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1782 ret = 0; 1783 } 1784 1785 /* 1786 * Things are dire, we need to make a reservation so we don't abort. We 1787 * will let this reservation go through as long as we have actual space 1788 * left to allocate for the block. 1789 */ 1790 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1791 used = btrfs_space_info_used(space_info, false); 1792 if (used + orig_bytes <= space_info->total_bytes) { 1793 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1794 ret = 0; 1795 } 1796 } 1797 1798 /* 1799 * If we couldn't make a reservation then setup our reservation ticket 1800 * and kick the async worker if it's not already running. 1801 * 1802 * If we are a priority flusher then we just need to add our ticket to 1803 * the list and we will do our own flushing further down. 1804 */ 1805 if (ret && can_ticket(flush)) { 1806 ticket.bytes = orig_bytes; 1807 ticket.error = 0; 1808 space_info->reclaim_size += ticket.bytes; 1809 init_waitqueue_head(&ticket.wait); 1810 ticket.steal = can_steal(flush); 1811 if (trace_btrfs_reserve_ticket_enabled()) 1812 start_ns = ktime_get_ns(); 1813 1814 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1815 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1816 flush == BTRFS_RESERVE_FLUSH_DATA) { 1817 list_add_tail(&ticket.list, &space_info->tickets); 1818 if (!space_info->flush) { 1819 /* 1820 * We were forced to add a reserve ticket, so 1821 * our preemptive flushing is unable to keep 1822 * up. Clamp down on the threshold for the 1823 * preemptive flushing in order to keep up with 1824 * the workload. 1825 */ 1826 maybe_clamp_preempt(fs_info, space_info); 1827 1828 space_info->flush = 1; 1829 trace_btrfs_trigger_flush(fs_info, 1830 space_info->flags, 1831 orig_bytes, flush, 1832 "enospc"); 1833 queue_work(system_unbound_wq, async_work); 1834 } 1835 } else { 1836 list_add_tail(&ticket.list, 1837 &space_info->priority_tickets); 1838 } 1839 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1840 /* 1841 * We will do the space reservation dance during log replay, 1842 * which means we won't have fs_info->fs_root set, so don't do 1843 * the async reclaim as we will panic. 1844 */ 1845 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1846 !work_busy(&fs_info->preempt_reclaim_work) && 1847 need_preemptive_reclaim(fs_info, space_info)) { 1848 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1849 orig_bytes, flush, "preempt"); 1850 queue_work(system_unbound_wq, 1851 &fs_info->preempt_reclaim_work); 1852 } 1853 } 1854 spin_unlock(&space_info->lock); 1855 if (!ret || !can_ticket(flush)) 1856 return ret; 1857 1858 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1859 orig_bytes, flush); 1860 } 1861 1862 /* 1863 * Try to reserve metadata bytes from the block_rsv's space. 1864 * 1865 * @fs_info: the filesystem 1866 * @space_info: the space_info we're allocating for 1867 * @orig_bytes: number of bytes we want 1868 * @flush: whether or not we can flush to make our reservation 1869 * 1870 * This will reserve orig_bytes number of bytes from the space info associated 1871 * with the block_rsv. If there is not enough space it will make an attempt to 1872 * flush out space to make room. It will do this by flushing delalloc if 1873 * possible or committing the transaction. If flush is 0 then no attempts to 1874 * regain reservations will be made and this will fail if there is not enough 1875 * space already. 1876 */ 1877 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1878 struct btrfs_space_info *space_info, 1879 u64 orig_bytes, 1880 enum btrfs_reserve_flush_enum flush) 1881 { 1882 int ret; 1883 1884 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1885 if (ret == -ENOSPC) { 1886 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1887 space_info->flags, orig_bytes, 1); 1888 1889 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1890 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1891 } 1892 return ret; 1893 } 1894 1895 /* 1896 * Try to reserve data bytes for an allocation. 1897 * 1898 * @fs_info: the filesystem 1899 * @bytes: number of bytes we need 1900 * @flush: how we are allowed to flush 1901 * 1902 * This will reserve bytes from the data space info. If there is not enough 1903 * space then we will attempt to flush space as specified by flush. 1904 */ 1905 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes, 1906 enum btrfs_reserve_flush_enum flush) 1907 { 1908 struct btrfs_fs_info *fs_info = space_info->fs_info; 1909 int ret; 1910 1911 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1912 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1913 flush == BTRFS_RESERVE_NO_FLUSH); 1914 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1915 1916 ret = __reserve_bytes(fs_info, space_info, bytes, flush); 1917 if (ret == -ENOSPC) { 1918 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1919 space_info->flags, bytes, 1); 1920 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1921 btrfs_dump_space_info(fs_info, space_info, bytes, 0); 1922 } 1923 return ret; 1924 } 1925 1926 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1927 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1928 { 1929 struct btrfs_space_info *space_info; 1930 1931 btrfs_info(fs_info, "dumping space info:"); 1932 list_for_each_entry(space_info, &fs_info->space_info, list) { 1933 spin_lock(&space_info->lock); 1934 __btrfs_dump_space_info(fs_info, space_info); 1935 spin_unlock(&space_info->lock); 1936 } 1937 dump_global_block_rsv(fs_info); 1938 } 1939 1940 /* 1941 * Account the unused space of all the readonly block group in the space_info. 1942 * takes mirrors into account. 1943 */ 1944 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1945 { 1946 struct btrfs_block_group *block_group; 1947 u64 free_bytes = 0; 1948 int factor; 1949 1950 /* It's df, we don't care if it's racy */ 1951 if (list_empty(&sinfo->ro_bgs)) 1952 return 0; 1953 1954 spin_lock(&sinfo->lock); 1955 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1956 spin_lock(&block_group->lock); 1957 1958 if (!block_group->ro) { 1959 spin_unlock(&block_group->lock); 1960 continue; 1961 } 1962 1963 factor = btrfs_bg_type_to_factor(block_group->flags); 1964 free_bytes += (block_group->length - 1965 block_group->used) * factor; 1966 1967 spin_unlock(&block_group->lock); 1968 } 1969 spin_unlock(&sinfo->lock); 1970 1971 return free_bytes; 1972 } 1973 1974 static u64 calc_pct_ratio(u64 x, u64 y) 1975 { 1976 int err; 1977 1978 if (!y) 1979 return 0; 1980 again: 1981 err = check_mul_overflow(100, x, &x); 1982 if (err) 1983 goto lose_precision; 1984 return div64_u64(x, y); 1985 lose_precision: 1986 x >>= 10; 1987 y >>= 10; 1988 if (!y) 1989 y = 1; 1990 goto again; 1991 } 1992 1993 /* 1994 * A reasonable buffer for unallocated space is 10 data block_groups. 1995 * If we claw this back repeatedly, we can still achieve efficient 1996 * utilization when near full, and not do too much reclaim while 1997 * always maintaining a solid buffer for workloads that quickly 1998 * allocate and pressure the unallocated space. 1999 */ 2000 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 2001 { 2002 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 2003 2004 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 2005 } 2006 2007 /* 2008 * The fundamental goal of automatic reclaim is to protect the filesystem's 2009 * unallocated space and thus minimize the probability of the filesystem going 2010 * read only when a metadata allocation failure causes a transaction abort. 2011 * 2012 * However, relocations happen into the space_info's unused space, therefore 2013 * automatic reclaim must also back off as that space runs low. There is no 2014 * value in doing trivial "relocations" of re-writing the same block group 2015 * into a fresh one. 2016 * 2017 * Furthermore, we want to avoid doing too much reclaim even if there are good 2018 * candidates. This is because the allocator is pretty good at filling up the 2019 * holes with writes. So we want to do just enough reclaim to try and stay 2020 * safe from running out of unallocated space but not be wasteful about it. 2021 * 2022 * Therefore, the dynamic reclaim threshold is calculated as follows: 2023 * - calculate a target unallocated amount of 5 block group sized chunks 2024 * - ratchet up the intensity of reclaim depending on how far we are from 2025 * that target by using a formula of unalloc / target to set the threshold. 2026 * 2027 * Typically with 10 block groups as the target, the discrete values this comes 2028 * out to are 0, 10, 20, ... , 80, 90, and 99. 2029 */ 2030 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info) 2031 { 2032 struct btrfs_fs_info *fs_info = space_info->fs_info; 2033 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2034 u64 target = calc_unalloc_target(fs_info); 2035 u64 alloc = space_info->total_bytes; 2036 u64 used = btrfs_space_info_used(space_info, false); 2037 u64 unused = alloc - used; 2038 u64 want = target > unalloc ? target - unalloc : 0; 2039 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2040 2041 /* If we have no unused space, don't bother, it won't work anyway. */ 2042 if (unused < data_chunk_size) 2043 return 0; 2044 2045 /* Cast to int is OK because want <= target. */ 2046 return calc_pct_ratio(want, target); 2047 } 2048 2049 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info) 2050 { 2051 lockdep_assert_held(&space_info->lock); 2052 2053 if (READ_ONCE(space_info->dynamic_reclaim)) 2054 return calc_dynamic_reclaim_threshold(space_info); 2055 return READ_ONCE(space_info->bg_reclaim_threshold); 2056 } 2057 2058 /* 2059 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 2060 * recently seen successful allocations, as we are desperate to reclaim 2061 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 2062 */ 2063 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 2064 { 2065 struct btrfs_fs_info *fs_info = space_info->fs_info; 2066 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2067 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2068 2069 return unalloc < data_chunk_size; 2070 } 2071 2072 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid) 2073 { 2074 struct btrfs_block_group *bg; 2075 int thresh_pct; 2076 bool try_again = true; 2077 bool urgent; 2078 2079 spin_lock(&space_info->lock); 2080 urgent = is_reclaim_urgent(space_info); 2081 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 2082 spin_unlock(&space_info->lock); 2083 2084 down_read(&space_info->groups_sem); 2085 again: 2086 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2087 u64 thresh; 2088 bool reclaim = false; 2089 2090 btrfs_get_block_group(bg); 2091 spin_lock(&bg->lock); 2092 thresh = mult_perc(bg->length, thresh_pct); 2093 if (bg->used < thresh && bg->reclaim_mark) { 2094 try_again = false; 2095 reclaim = true; 2096 } 2097 bg->reclaim_mark++; 2098 spin_unlock(&bg->lock); 2099 if (reclaim) 2100 btrfs_mark_bg_to_reclaim(bg); 2101 btrfs_put_block_group(bg); 2102 } 2103 2104 /* 2105 * In situations where we are very motivated to reclaim (low unalloc) 2106 * use two passes to make the reclaim mark check best effort. 2107 * 2108 * If we have any staler groups, we don't touch the fresher ones, but if we 2109 * really need a block group, do take a fresh one. 2110 */ 2111 if (try_again && urgent) { 2112 try_again = false; 2113 goto again; 2114 } 2115 2116 up_read(&space_info->groups_sem); 2117 } 2118 2119 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2120 { 2121 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2122 2123 lockdep_assert_held(&space_info->lock); 2124 space_info->reclaimable_bytes += bytes; 2125 2126 if (space_info->reclaimable_bytes >= chunk_sz) 2127 btrfs_set_periodic_reclaim_ready(space_info, true); 2128 } 2129 2130 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2131 { 2132 lockdep_assert_held(&space_info->lock); 2133 if (!READ_ONCE(space_info->periodic_reclaim)) 2134 return; 2135 if (ready != space_info->periodic_reclaim_ready) { 2136 space_info->periodic_reclaim_ready = ready; 2137 if (!ready) 2138 space_info->reclaimable_bytes = 0; 2139 } 2140 } 2141 2142 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2143 { 2144 bool ret; 2145 2146 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2147 return false; 2148 if (!READ_ONCE(space_info->periodic_reclaim)) 2149 return false; 2150 2151 spin_lock(&space_info->lock); 2152 ret = space_info->periodic_reclaim_ready; 2153 btrfs_set_periodic_reclaim_ready(space_info, false); 2154 spin_unlock(&space_info->lock); 2155 2156 return ret; 2157 } 2158 2159 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info) 2160 { 2161 int raid; 2162 struct btrfs_space_info *space_info; 2163 2164 list_for_each_entry(space_info, &fs_info->space_info, list) { 2165 if (!btrfs_should_periodic_reclaim(space_info)) 2166 continue; 2167 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) 2168 do_reclaim_sweep(space_info, raid); 2169 } 2170 } 2171 2172 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len) 2173 { 2174 struct btrfs_fs_info *fs_info = space_info->fs_info; 2175 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2176 2177 lockdep_assert_held(&space_info->lock); 2178 2179 /* Prioritize the global reservation to receive the freed space. */ 2180 if (global_rsv->space_info != space_info) 2181 goto grant; 2182 2183 spin_lock(&global_rsv->lock); 2184 if (!global_rsv->full) { 2185 u64 to_add = min(len, global_rsv->size - global_rsv->reserved); 2186 2187 global_rsv->reserved += to_add; 2188 btrfs_space_info_update_bytes_may_use(space_info, to_add); 2189 if (global_rsv->reserved >= global_rsv->size) 2190 global_rsv->full = 1; 2191 len -= to_add; 2192 } 2193 spin_unlock(&global_rsv->lock); 2194 2195 grant: 2196 /* Add to any tickets we may have. */ 2197 if (len) 2198 btrfs_try_granting_tickets(fs_info, space_info); 2199 } 2200