1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	struct {
94 		struct rb_node rb_node;
95 		u64 bytenr;
96 	}; /* Use rb_simle_node for search/insert */
97 	void *data;
98 };
99 
100 struct mapping_tree {
101 	struct rb_root rb_root;
102 	spinlock_t lock;
103 };
104 
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109 	struct {
110 		struct rb_node rb_node;
111 		u64 bytenr;
112 	}; /* Use rb_simple_node for search/insert */
113 	u64 owner;
114 	struct btrfs_key key;
115 	u8 level;
116 	bool key_ready;
117 };
118 
119 #define MAX_EXTENTS 128
120 
121 struct file_extent_cluster {
122 	u64 start;
123 	u64 end;
124 	u64 boundary[MAX_EXTENTS];
125 	unsigned int nr;
126 	u64 owning_root;
127 };
128 
129 /* Stages of data relocation. */
130 enum reloc_stage {
131 	MOVE_DATA_EXTENTS,
132 	UPDATE_DATA_PTRS
133 };
134 
135 struct reloc_control {
136 	/* block group to relocate */
137 	struct btrfs_block_group *block_group;
138 	/* extent tree */
139 	struct btrfs_root *extent_root;
140 	/* inode for moving data */
141 	struct inode *data_inode;
142 
143 	struct btrfs_block_rsv *block_rsv;
144 
145 	struct btrfs_backref_cache backref_cache;
146 
147 	struct file_extent_cluster cluster;
148 	/* tree blocks have been processed */
149 	struct extent_io_tree processed_blocks;
150 	/* map start of tree root to corresponding reloc tree */
151 	struct mapping_tree reloc_root_tree;
152 	/* list of reloc trees */
153 	struct list_head reloc_roots;
154 	/* list of subvolume trees that get relocated */
155 	struct list_head dirty_subvol_roots;
156 	/* size of metadata reservation for merging reloc trees */
157 	u64 merging_rsv_size;
158 	/* size of relocated tree nodes */
159 	u64 nodes_relocated;
160 	/* reserved size for block group relocation*/
161 	u64 reserved_bytes;
162 
163 	u64 search_start;
164 	u64 extents_found;
165 
166 	enum reloc_stage stage;
167 	bool create_reloc_tree;
168 	bool merge_reloc_tree;
169 	bool found_file_extent;
170 };
171 
172 static void mark_block_processed(struct reloc_control *rc,
173 				 struct btrfs_backref_node *node)
174 {
175 	u32 blocksize;
176 
177 	if (node->level == 0 ||
178 	    in_range(node->bytenr, rc->block_group->start,
179 		     rc->block_group->length)) {
180 		blocksize = rc->extent_root->fs_info->nodesize;
181 		btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
182 				     node->bytenr + blocksize - 1, EXTENT_DIRTY,
183 				     NULL);
184 	}
185 	node->processed = 1;
186 }
187 
188 /*
189  * walk up backref nodes until reach node presents tree root
190  */
191 static struct btrfs_backref_node *walk_up_backref(
192 		struct btrfs_backref_node *node,
193 		struct btrfs_backref_edge *edges[], int *index)
194 {
195 	struct btrfs_backref_edge *edge;
196 	int idx = *index;
197 
198 	while (!list_empty(&node->upper)) {
199 		edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
200 					list[LOWER]);
201 		edges[idx++] = edge;
202 		node = edge->node[UPPER];
203 	}
204 	BUG_ON(node->detached);
205 	*index = idx;
206 	return node;
207 }
208 
209 /*
210  * walk down backref nodes to find start of next reference path
211  */
212 static struct btrfs_backref_node *walk_down_backref(
213 		struct btrfs_backref_edge *edges[], int *index)
214 {
215 	struct btrfs_backref_edge *edge;
216 	struct btrfs_backref_node *lower;
217 	int idx = *index;
218 
219 	while (idx > 0) {
220 		edge = edges[idx - 1];
221 		lower = edge->node[LOWER];
222 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
223 			idx--;
224 			continue;
225 		}
226 		edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
227 					list[LOWER]);
228 		edges[idx - 1] = edge;
229 		*index = idx;
230 		return edge->node[UPPER];
231 	}
232 	*index = 0;
233 	return NULL;
234 }
235 
236 static bool reloc_root_is_dead(const struct btrfs_root *root)
237 {
238 	/*
239 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
240 	 * btrfs_update_reloc_root. We need to see the updated bit before
241 	 * trying to access reloc_root
242 	 */
243 	smp_rmb();
244 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
245 		return true;
246 	return false;
247 }
248 
249 /*
250  * Check if this subvolume tree has valid reloc tree.
251  *
252  * Reloc tree after swap is considered dead, thus not considered as valid.
253  * This is enough for most callers, as they don't distinguish dead reloc root
254  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
255  * special case.
256  */
257 static bool have_reloc_root(const struct btrfs_root *root)
258 {
259 	if (reloc_root_is_dead(root))
260 		return false;
261 	if (!root->reloc_root)
262 		return false;
263 	return true;
264 }
265 
266 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
267 {
268 	struct btrfs_root *reloc_root;
269 
270 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
271 		return false;
272 
273 	/* This root has been merged with its reloc tree, we can ignore it */
274 	if (reloc_root_is_dead(root))
275 		return true;
276 
277 	reloc_root = root->reloc_root;
278 	if (!reloc_root)
279 		return false;
280 
281 	if (btrfs_header_generation(reloc_root->commit_root) ==
282 	    root->fs_info->running_transaction->transid)
283 		return false;
284 	/*
285 	 * If there is reloc tree and it was created in previous transaction
286 	 * backref lookup can find the reloc tree, so backref node for the fs
287 	 * tree root is useless for relocation.
288 	 */
289 	return true;
290 }
291 
292 /*
293  * find reloc tree by address of tree root
294  */
295 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
296 {
297 	struct reloc_control *rc = fs_info->reloc_ctl;
298 	struct rb_node *rb_node;
299 	struct mapping_node *node;
300 	struct btrfs_root *root = NULL;
301 
302 	ASSERT(rc);
303 	spin_lock(&rc->reloc_root_tree.lock);
304 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
305 	if (rb_node) {
306 		node = rb_entry(rb_node, struct mapping_node, rb_node);
307 		root = node->data;
308 	}
309 	spin_unlock(&rc->reloc_root_tree.lock);
310 	return btrfs_grab_root(root);
311 }
312 
313 /*
314  * For useless nodes, do two major clean ups:
315  *
316  * - Cleanup the children edges and nodes
317  *   If child node is also orphan (no parent) during cleanup, then the child
318  *   node will also be cleaned up.
319  *
320  * - Freeing up leaves (level 0), keeps nodes detached
321  *   For nodes, the node is still cached as "detached"
322  *
323  * Return false if @node is not in the @useless_nodes list.
324  * Return true if @node is in the @useless_nodes list.
325  */
326 static bool handle_useless_nodes(struct reloc_control *rc,
327 				 struct btrfs_backref_node *node)
328 {
329 	struct btrfs_backref_cache *cache = &rc->backref_cache;
330 	struct list_head *useless_node = &cache->useless_node;
331 	bool ret = false;
332 
333 	while (!list_empty(useless_node)) {
334 		struct btrfs_backref_node *cur;
335 
336 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
337 				 list);
338 		list_del_init(&cur->list);
339 
340 		/* Only tree root nodes can be added to @useless_nodes */
341 		ASSERT(list_empty(&cur->upper));
342 
343 		if (cur == node)
344 			ret = true;
345 
346 		/* Cleanup the lower edges */
347 		while (!list_empty(&cur->lower)) {
348 			struct btrfs_backref_edge *edge;
349 			struct btrfs_backref_node *lower;
350 
351 			edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
352 						list[UPPER]);
353 			list_del(&edge->list[UPPER]);
354 			list_del(&edge->list[LOWER]);
355 			lower = edge->node[LOWER];
356 			btrfs_backref_free_edge(cache, edge);
357 
358 			/* Child node is also orphan, queue for cleanup */
359 			if (list_empty(&lower->upper))
360 				list_add(&lower->list, useless_node);
361 		}
362 		/* Mark this block processed for relocation */
363 		mark_block_processed(rc, cur);
364 
365 		/*
366 		 * Backref nodes for tree leaves are deleted from the cache.
367 		 * Backref nodes for upper level tree blocks are left in the
368 		 * cache to avoid unnecessary backref lookup.
369 		 */
370 		if (cur->level > 0) {
371 			cur->detached = 1;
372 		} else {
373 			rb_erase(&cur->rb_node, &cache->rb_root);
374 			btrfs_backref_free_node(cache, cur);
375 		}
376 	}
377 	return ret;
378 }
379 
380 /*
381  * Build backref tree for a given tree block. Root of the backref tree
382  * corresponds the tree block, leaves of the backref tree correspond roots of
383  * b-trees that reference the tree block.
384  *
385  * The basic idea of this function is check backrefs of a given block to find
386  * upper level blocks that reference the block, and then check backrefs of
387  * these upper level blocks recursively. The recursion stops when tree root is
388  * reached or backrefs for the block is cached.
389  *
390  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
391  * all upper level blocks that directly/indirectly reference the block are also
392  * cached.
393  */
394 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
395 			struct btrfs_trans_handle *trans,
396 			struct reloc_control *rc, struct btrfs_key *node_key,
397 			int level, u64 bytenr)
398 {
399 	struct btrfs_backref_iter *iter;
400 	struct btrfs_backref_cache *cache = &rc->backref_cache;
401 	/* For searching parent of TREE_BLOCK_REF */
402 	struct btrfs_path *path;
403 	struct btrfs_backref_node *cur;
404 	struct btrfs_backref_node *node = NULL;
405 	struct btrfs_backref_edge *edge;
406 	int ret;
407 
408 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
409 	if (!iter)
410 		return ERR_PTR(-ENOMEM);
411 	path = btrfs_alloc_path();
412 	if (!path) {
413 		ret = -ENOMEM;
414 		goto out;
415 	}
416 
417 	node = btrfs_backref_alloc_node(cache, bytenr, level);
418 	if (!node) {
419 		ret = -ENOMEM;
420 		goto out;
421 	}
422 
423 	cur = node;
424 
425 	/* Breadth-first search to build backref cache */
426 	do {
427 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
428 						  node_key, cur);
429 		if (ret < 0)
430 			goto out;
431 
432 		edge = list_first_entry_or_null(&cache->pending_edge,
433 				struct btrfs_backref_edge, list[UPPER]);
434 		/*
435 		 * The pending list isn't empty, take the first block to
436 		 * process
437 		 */
438 		if (edge) {
439 			list_del_init(&edge->list[UPPER]);
440 			cur = edge->node[UPPER];
441 		}
442 	} while (edge);
443 
444 	/* Finish the upper linkage of newly added edges/nodes */
445 	ret = btrfs_backref_finish_upper_links(cache, node);
446 	if (ret < 0)
447 		goto out;
448 
449 	if (handle_useless_nodes(rc, node))
450 		node = NULL;
451 out:
452 	btrfs_free_path(iter->path);
453 	kfree(iter);
454 	btrfs_free_path(path);
455 	if (ret) {
456 		btrfs_backref_error_cleanup(cache, node);
457 		return ERR_PTR(ret);
458 	}
459 	ASSERT(!node || !node->detached);
460 	ASSERT(list_empty(&cache->useless_node) &&
461 	       list_empty(&cache->pending_edge));
462 	return node;
463 }
464 
465 /*
466  * helper to add 'address of tree root -> reloc tree' mapping
467  */
468 static int __add_reloc_root(struct btrfs_root *root)
469 {
470 	struct btrfs_fs_info *fs_info = root->fs_info;
471 	struct rb_node *rb_node;
472 	struct mapping_node *node;
473 	struct reloc_control *rc = fs_info->reloc_ctl;
474 
475 	node = kmalloc(sizeof(*node), GFP_NOFS);
476 	if (!node)
477 		return -ENOMEM;
478 
479 	node->bytenr = root->commit_root->start;
480 	node->data = root;
481 
482 	spin_lock(&rc->reloc_root_tree.lock);
483 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
484 				   node->bytenr, &node->rb_node);
485 	spin_unlock(&rc->reloc_root_tree.lock);
486 	if (rb_node) {
487 		btrfs_err(fs_info,
488 			    "Duplicate root found for start=%llu while inserting into relocation tree",
489 			    node->bytenr);
490 		return -EEXIST;
491 	}
492 
493 	list_add_tail(&root->root_list, &rc->reloc_roots);
494 	return 0;
495 }
496 
497 /*
498  * helper to delete the 'address of tree root -> reloc tree'
499  * mapping
500  */
501 static void __del_reloc_root(struct btrfs_root *root)
502 {
503 	struct btrfs_fs_info *fs_info = root->fs_info;
504 	struct rb_node *rb_node;
505 	struct mapping_node *node = NULL;
506 	struct reloc_control *rc = fs_info->reloc_ctl;
507 	bool put_ref = false;
508 
509 	if (rc && root->node) {
510 		spin_lock(&rc->reloc_root_tree.lock);
511 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
512 					   root->commit_root->start);
513 		if (rb_node) {
514 			node = rb_entry(rb_node, struct mapping_node, rb_node);
515 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
516 			RB_CLEAR_NODE(&node->rb_node);
517 		}
518 		spin_unlock(&rc->reloc_root_tree.lock);
519 		ASSERT(!node || (struct btrfs_root *)node->data == root);
520 	}
521 
522 	/*
523 	 * We only put the reloc root here if it's on the list.  There's a lot
524 	 * of places where the pattern is to splice the rc->reloc_roots, process
525 	 * the reloc roots, and then add the reloc root back onto
526 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
527 	 * list we don't want the reference being dropped, because the guy
528 	 * messing with the list is in charge of the reference.
529 	 */
530 	spin_lock(&fs_info->trans_lock);
531 	if (!list_empty(&root->root_list)) {
532 		put_ref = true;
533 		list_del_init(&root->root_list);
534 	}
535 	spin_unlock(&fs_info->trans_lock);
536 	if (put_ref)
537 		btrfs_put_root(root);
538 	kfree(node);
539 }
540 
541 /*
542  * helper to update the 'address of tree root -> reloc tree'
543  * mapping
544  */
545 static int __update_reloc_root(struct btrfs_root *root)
546 {
547 	struct btrfs_fs_info *fs_info = root->fs_info;
548 	struct rb_node *rb_node;
549 	struct mapping_node *node = NULL;
550 	struct reloc_control *rc = fs_info->reloc_ctl;
551 
552 	spin_lock(&rc->reloc_root_tree.lock);
553 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
554 				   root->commit_root->start);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct mapping_node, rb_node);
557 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
558 	}
559 	spin_unlock(&rc->reloc_root_tree.lock);
560 
561 	if (!node)
562 		return 0;
563 	BUG_ON((struct btrfs_root *)node->data != root);
564 
565 	spin_lock(&rc->reloc_root_tree.lock);
566 	node->bytenr = root->node->start;
567 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
568 				   node->bytenr, &node->rb_node);
569 	spin_unlock(&rc->reloc_root_tree.lock);
570 	if (rb_node)
571 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
572 	return 0;
573 }
574 
575 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
576 					struct btrfs_root *root, u64 objectid)
577 {
578 	struct btrfs_fs_info *fs_info = root->fs_info;
579 	struct btrfs_root *reloc_root;
580 	struct extent_buffer *eb;
581 	struct btrfs_root_item *root_item;
582 	struct btrfs_key root_key;
583 	int ret = 0;
584 	bool must_abort = false;
585 
586 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
587 	if (!root_item)
588 		return ERR_PTR(-ENOMEM);
589 
590 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
591 	root_key.type = BTRFS_ROOT_ITEM_KEY;
592 	root_key.offset = objectid;
593 
594 	if (btrfs_root_id(root) == objectid) {
595 		u64 commit_root_gen;
596 
597 		/* called by btrfs_init_reloc_root */
598 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
599 				      BTRFS_TREE_RELOC_OBJECTID);
600 		if (ret)
601 			goto fail;
602 
603 		/*
604 		 * Set the last_snapshot field to the generation of the commit
605 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
606 		 * correctly (returns true) when the relocation root is created
607 		 * either inside the critical section of a transaction commit
608 		 * (through transaction.c:qgroup_account_snapshot()) and when
609 		 * it's created before the transaction commit is started.
610 		 */
611 		commit_root_gen = btrfs_header_generation(root->commit_root);
612 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
613 	} else {
614 		/*
615 		 * called by btrfs_reloc_post_snapshot_hook.
616 		 * the source tree is a reloc tree, all tree blocks
617 		 * modified after it was created have RELOC flag
618 		 * set in their headers. so it's OK to not update
619 		 * the 'last_snapshot'.
620 		 */
621 		ret = btrfs_copy_root(trans, root, root->node, &eb,
622 				      BTRFS_TREE_RELOC_OBJECTID);
623 		if (ret)
624 			goto fail;
625 	}
626 
627 	/*
628 	 * We have changed references at this point, we must abort the
629 	 * transaction if anything fails.
630 	 */
631 	must_abort = true;
632 
633 	memcpy(root_item, &root->root_item, sizeof(*root_item));
634 	btrfs_set_root_bytenr(root_item, eb->start);
635 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
636 	btrfs_set_root_generation(root_item, trans->transid);
637 
638 	if (btrfs_root_id(root) == objectid) {
639 		btrfs_set_root_refs(root_item, 0);
640 		memset(&root_item->drop_progress, 0,
641 		       sizeof(struct btrfs_disk_key));
642 		btrfs_set_root_drop_level(root_item, 0);
643 	}
644 
645 	btrfs_tree_unlock(eb);
646 	free_extent_buffer(eb);
647 
648 	ret = btrfs_insert_root(trans, fs_info->tree_root,
649 				&root_key, root_item);
650 	if (ret)
651 		goto fail;
652 
653 	kfree(root_item);
654 
655 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
656 	if (IS_ERR(reloc_root)) {
657 		ret = PTR_ERR(reloc_root);
658 		goto abort;
659 	}
660 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
661 	btrfs_set_root_last_trans(reloc_root, trans->transid);
662 	return reloc_root;
663 fail:
664 	kfree(root_item);
665 abort:
666 	if (must_abort)
667 		btrfs_abort_transaction(trans, ret);
668 	return ERR_PTR(ret);
669 }
670 
671 /*
672  * create reloc tree for a given fs tree. reloc tree is just a
673  * snapshot of the fs tree with special root objectid.
674  *
675  * The reloc_root comes out of here with two references, one for
676  * root->reloc_root, and another for being on the rc->reloc_roots list.
677  */
678 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
679 			  struct btrfs_root *root)
680 {
681 	struct btrfs_fs_info *fs_info = root->fs_info;
682 	struct btrfs_root *reloc_root;
683 	struct reloc_control *rc = fs_info->reloc_ctl;
684 	struct btrfs_block_rsv *rsv;
685 	int clear_rsv = 0;
686 	int ret;
687 
688 	if (!rc)
689 		return 0;
690 
691 	/*
692 	 * The subvolume has reloc tree but the swap is finished, no need to
693 	 * create/update the dead reloc tree
694 	 */
695 	if (reloc_root_is_dead(root))
696 		return 0;
697 
698 	/*
699 	 * This is subtle but important.  We do not do
700 	 * record_root_in_transaction for reloc roots, instead we record their
701 	 * corresponding fs root, and then here we update the last trans for the
702 	 * reloc root.  This means that we have to do this for the entire life
703 	 * of the reloc root, regardless of which stage of the relocation we are
704 	 * in.
705 	 */
706 	if (root->reloc_root) {
707 		reloc_root = root->reloc_root;
708 		btrfs_set_root_last_trans(reloc_root, trans->transid);
709 		return 0;
710 	}
711 
712 	/*
713 	 * We are merging reloc roots, we do not need new reloc trees.  Also
714 	 * reloc trees never need their own reloc tree.
715 	 */
716 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
717 		return 0;
718 
719 	if (!trans->reloc_reserved) {
720 		rsv = trans->block_rsv;
721 		trans->block_rsv = rc->block_rsv;
722 		clear_rsv = 1;
723 	}
724 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
725 	if (clear_rsv)
726 		trans->block_rsv = rsv;
727 	if (IS_ERR(reloc_root))
728 		return PTR_ERR(reloc_root);
729 
730 	ret = __add_reloc_root(reloc_root);
731 	ASSERT(ret != -EEXIST);
732 	if (ret) {
733 		/* Pairs with create_reloc_root */
734 		btrfs_put_root(reloc_root);
735 		return ret;
736 	}
737 	root->reloc_root = btrfs_grab_root(reloc_root);
738 	return 0;
739 }
740 
741 /*
742  * update root item of reloc tree
743  */
744 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
745 			    struct btrfs_root *root)
746 {
747 	struct btrfs_fs_info *fs_info = root->fs_info;
748 	struct btrfs_root *reloc_root;
749 	struct btrfs_root_item *root_item;
750 	int ret;
751 
752 	if (!have_reloc_root(root))
753 		return 0;
754 
755 	reloc_root = root->reloc_root;
756 	root_item = &reloc_root->root_item;
757 
758 	/*
759 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
760 	 * the root.  We have the ref for root->reloc_root, but just in case
761 	 * hold it while we update the reloc root.
762 	 */
763 	btrfs_grab_root(reloc_root);
764 
765 	/* root->reloc_root will stay until current relocation finished */
766 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
767 	    btrfs_root_refs(root_item) == 0) {
768 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
769 		/*
770 		 * Mark the tree as dead before we change reloc_root so
771 		 * have_reloc_root will not touch it from now on.
772 		 */
773 		smp_wmb();
774 		__del_reloc_root(reloc_root);
775 	}
776 
777 	if (reloc_root->commit_root != reloc_root->node) {
778 		__update_reloc_root(reloc_root);
779 		btrfs_set_root_node(root_item, reloc_root->node);
780 		free_extent_buffer(reloc_root->commit_root);
781 		reloc_root->commit_root = btrfs_root_node(reloc_root);
782 	}
783 
784 	ret = btrfs_update_root(trans, fs_info->tree_root,
785 				&reloc_root->root_key, root_item);
786 	btrfs_put_root(reloc_root);
787 	return ret;
788 }
789 
790 /*
791  * get new location of data
792  */
793 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
794 			    u64 bytenr, u64 num_bytes)
795 {
796 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
797 	struct btrfs_path *path;
798 	struct btrfs_file_extent_item *fi;
799 	struct extent_buffer *leaf;
800 	int ret;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
807 	ret = btrfs_lookup_file_extent(NULL, root, path,
808 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
809 	if (ret < 0)
810 		goto out;
811 	if (ret > 0) {
812 		ret = -ENOENT;
813 		goto out;
814 	}
815 
816 	leaf = path->nodes[0];
817 	fi = btrfs_item_ptr(leaf, path->slots[0],
818 			    struct btrfs_file_extent_item);
819 
820 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
821 	       btrfs_file_extent_compression(leaf, fi) ||
822 	       btrfs_file_extent_encryption(leaf, fi) ||
823 	       btrfs_file_extent_other_encoding(leaf, fi));
824 
825 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
826 		ret = -EINVAL;
827 		goto out;
828 	}
829 
830 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
831 	ret = 0;
832 out:
833 	btrfs_free_path(path);
834 	return ret;
835 }
836 
837 /*
838  * update file extent items in the tree leaf to point to
839  * the new locations.
840  */
841 static noinline_for_stack
842 int replace_file_extents(struct btrfs_trans_handle *trans,
843 			 struct reloc_control *rc,
844 			 struct btrfs_root *root,
845 			 struct extent_buffer *leaf)
846 {
847 	struct btrfs_fs_info *fs_info = root->fs_info;
848 	struct btrfs_key key;
849 	struct btrfs_file_extent_item *fi;
850 	struct btrfs_inode *inode = NULL;
851 	u64 parent;
852 	u64 bytenr;
853 	u64 new_bytenr = 0;
854 	u64 num_bytes;
855 	u64 end;
856 	u32 nritems;
857 	u32 i;
858 	int ret = 0;
859 	int first = 1;
860 
861 	if (rc->stage != UPDATE_DATA_PTRS)
862 		return 0;
863 
864 	/* reloc trees always use full backref */
865 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
866 		parent = leaf->start;
867 	else
868 		parent = 0;
869 
870 	nritems = btrfs_header_nritems(leaf);
871 	for (i = 0; i < nritems; i++) {
872 		struct btrfs_ref ref = { 0 };
873 
874 		cond_resched();
875 		btrfs_item_key_to_cpu(leaf, &key, i);
876 		if (key.type != BTRFS_EXTENT_DATA_KEY)
877 			continue;
878 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
879 		if (btrfs_file_extent_type(leaf, fi) ==
880 		    BTRFS_FILE_EXTENT_INLINE)
881 			continue;
882 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
883 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
884 		if (bytenr == 0)
885 			continue;
886 		if (!in_range(bytenr, rc->block_group->start,
887 			      rc->block_group->length))
888 			continue;
889 
890 		/*
891 		 * if we are modifying block in fs tree, wait for read_folio
892 		 * to complete and drop the extent cache
893 		 */
894 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
895 			if (first) {
896 				inode = btrfs_find_first_inode(root, key.objectid);
897 				first = 0;
898 			} else if (inode && btrfs_ino(inode) < key.objectid) {
899 				btrfs_add_delayed_iput(inode);
900 				inode = btrfs_find_first_inode(root, key.objectid);
901 			}
902 			if (inode && btrfs_ino(inode) == key.objectid) {
903 				struct extent_state *cached_state = NULL;
904 
905 				end = key.offset +
906 				      btrfs_file_extent_num_bytes(leaf, fi);
907 				WARN_ON(!IS_ALIGNED(key.offset,
908 						    fs_info->sectorsize));
909 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
910 				end--;
911 				/* Take mmap lock to serialize with reflinks. */
912 				if (!down_read_trylock(&inode->i_mmap_lock))
913 					continue;
914 				ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
915 							    end, &cached_state);
916 				if (!ret) {
917 					up_read(&inode->i_mmap_lock);
918 					continue;
919 				}
920 
921 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
922 				btrfs_unlock_extent(&inode->io_tree, key.offset, end,
923 						    &cached_state);
924 				up_read(&inode->i_mmap_lock);
925 			}
926 		}
927 
928 		ret = get_new_location(rc->data_inode, &new_bytenr,
929 				       bytenr, num_bytes);
930 		if (ret) {
931 			/*
932 			 * Don't have to abort since we've not changed anything
933 			 * in the file extent yet.
934 			 */
935 			break;
936 		}
937 
938 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
939 
940 		key.offset -= btrfs_file_extent_offset(leaf, fi);
941 		ref.action = BTRFS_ADD_DELAYED_REF;
942 		ref.bytenr = new_bytenr;
943 		ref.num_bytes = num_bytes;
944 		ref.parent = parent;
945 		ref.owning_root = btrfs_root_id(root);
946 		ref.ref_root = btrfs_header_owner(leaf);
947 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
948 				    btrfs_root_id(root), false);
949 		ret = btrfs_inc_extent_ref(trans, &ref);
950 		if (ret) {
951 			btrfs_abort_transaction(trans, ret);
952 			break;
953 		}
954 
955 		ref.action = BTRFS_DROP_DELAYED_REF;
956 		ref.bytenr = bytenr;
957 		ref.num_bytes = num_bytes;
958 		ref.parent = parent;
959 		ref.owning_root = btrfs_root_id(root);
960 		ref.ref_root = btrfs_header_owner(leaf);
961 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
962 				    btrfs_root_id(root), false);
963 		ret = btrfs_free_extent(trans, &ref);
964 		if (ret) {
965 			btrfs_abort_transaction(trans, ret);
966 			break;
967 		}
968 	}
969 	if (inode)
970 		btrfs_add_delayed_iput(inode);
971 	return ret;
972 }
973 
974 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
975 					       int slot, const struct btrfs_path *path,
976 					       int level)
977 {
978 	struct btrfs_disk_key key1;
979 	struct btrfs_disk_key key2;
980 	btrfs_node_key(eb, &key1, slot);
981 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
982 	return memcmp(&key1, &key2, sizeof(key1));
983 }
984 
985 /*
986  * try to replace tree blocks in fs tree with the new blocks
987  * in reloc tree. tree blocks haven't been modified since the
988  * reloc tree was create can be replaced.
989  *
990  * if a block was replaced, level of the block + 1 is returned.
991  * if no block got replaced, 0 is returned. if there are other
992  * errors, a negative error number is returned.
993  */
994 static noinline_for_stack
995 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
996 		 struct btrfs_root *dest, struct btrfs_root *src,
997 		 struct btrfs_path *path, struct btrfs_key *next_key,
998 		 int lowest_level, int max_level)
999 {
1000 	struct btrfs_fs_info *fs_info = dest->fs_info;
1001 	struct extent_buffer *eb;
1002 	struct extent_buffer *parent;
1003 	struct btrfs_ref ref = { 0 };
1004 	struct btrfs_key key;
1005 	u64 old_bytenr;
1006 	u64 new_bytenr;
1007 	u64 old_ptr_gen;
1008 	u64 new_ptr_gen;
1009 	u64 last_snapshot;
1010 	u32 blocksize;
1011 	int cow = 0;
1012 	int level;
1013 	int ret;
1014 	int slot;
1015 
1016 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1017 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1018 
1019 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1020 again:
1021 	slot = path->slots[lowest_level];
1022 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1023 
1024 	eb = btrfs_lock_root_node(dest);
1025 	level = btrfs_header_level(eb);
1026 
1027 	if (level < lowest_level) {
1028 		btrfs_tree_unlock(eb);
1029 		free_extent_buffer(eb);
1030 		return 0;
1031 	}
1032 
1033 	if (cow) {
1034 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1035 				      BTRFS_NESTING_COW);
1036 		if (ret) {
1037 			btrfs_tree_unlock(eb);
1038 			free_extent_buffer(eb);
1039 			return ret;
1040 		}
1041 	}
1042 
1043 	if (next_key) {
1044 		next_key->objectid = (u64)-1;
1045 		next_key->type = (u8)-1;
1046 		next_key->offset = (u64)-1;
1047 	}
1048 
1049 	parent = eb;
1050 	while (1) {
1051 		level = btrfs_header_level(parent);
1052 		ASSERT(level >= lowest_level);
1053 
1054 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1055 		if (ret < 0)
1056 			break;
1057 		if (ret && slot > 0)
1058 			slot--;
1059 
1060 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1061 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1062 
1063 		old_bytenr = btrfs_node_blockptr(parent, slot);
1064 		blocksize = fs_info->nodesize;
1065 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1066 
1067 		if (level <= max_level) {
1068 			eb = path->nodes[level];
1069 			new_bytenr = btrfs_node_blockptr(eb,
1070 							path->slots[level]);
1071 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1072 							path->slots[level]);
1073 		} else {
1074 			new_bytenr = 0;
1075 			new_ptr_gen = 0;
1076 		}
1077 
1078 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1079 			ret = level;
1080 			break;
1081 		}
1082 
1083 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1084 		    memcmp_node_keys(parent, slot, path, level)) {
1085 			if (level <= lowest_level) {
1086 				ret = 0;
1087 				break;
1088 			}
1089 
1090 			eb = btrfs_read_node_slot(parent, slot);
1091 			if (IS_ERR(eb)) {
1092 				ret = PTR_ERR(eb);
1093 				break;
1094 			}
1095 			btrfs_tree_lock(eb);
1096 			if (cow) {
1097 				ret = btrfs_cow_block(trans, dest, eb, parent,
1098 						      slot, &eb,
1099 						      BTRFS_NESTING_COW);
1100 				if (ret) {
1101 					btrfs_tree_unlock(eb);
1102 					free_extent_buffer(eb);
1103 					break;
1104 				}
1105 			}
1106 
1107 			btrfs_tree_unlock(parent);
1108 			free_extent_buffer(parent);
1109 
1110 			parent = eb;
1111 			continue;
1112 		}
1113 
1114 		if (!cow) {
1115 			btrfs_tree_unlock(parent);
1116 			free_extent_buffer(parent);
1117 			cow = 1;
1118 			goto again;
1119 		}
1120 
1121 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1122 				      path->slots[level]);
1123 		btrfs_release_path(path);
1124 
1125 		path->lowest_level = level;
1126 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1127 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1128 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1129 		path->lowest_level = 0;
1130 		if (ret) {
1131 			if (ret > 0)
1132 				ret = -ENOENT;
1133 			break;
1134 		}
1135 
1136 		/*
1137 		 * Info qgroup to trace both subtrees.
1138 		 *
1139 		 * We must trace both trees.
1140 		 * 1) Tree reloc subtree
1141 		 *    If not traced, we will leak data numbers
1142 		 * 2) Fs subtree
1143 		 *    If not traced, we will double count old data
1144 		 *
1145 		 * We don't scan the subtree right now, but only record
1146 		 * the swapped tree blocks.
1147 		 * The real subtree rescan is delayed until we have new
1148 		 * CoW on the subtree root node before transaction commit.
1149 		 */
1150 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1151 				rc->block_group, parent, slot,
1152 				path->nodes[level], path->slots[level],
1153 				last_snapshot);
1154 		if (ret < 0)
1155 			break;
1156 		/*
1157 		 * swap blocks in fs tree and reloc tree.
1158 		 */
1159 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1160 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1161 
1162 		btrfs_set_node_blockptr(path->nodes[level],
1163 					path->slots[level], old_bytenr);
1164 		btrfs_set_node_ptr_generation(path->nodes[level],
1165 					      path->slots[level], old_ptr_gen);
1166 
1167 		ref.action = BTRFS_ADD_DELAYED_REF;
1168 		ref.bytenr = old_bytenr;
1169 		ref.num_bytes = blocksize;
1170 		ref.parent = path->nodes[level]->start;
1171 		ref.owning_root = btrfs_root_id(src);
1172 		ref.ref_root = btrfs_root_id(src);
1173 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1174 		ret = btrfs_inc_extent_ref(trans, &ref);
1175 		if (ret) {
1176 			btrfs_abort_transaction(trans, ret);
1177 			break;
1178 		}
1179 
1180 		ref.action = BTRFS_ADD_DELAYED_REF;
1181 		ref.bytenr = new_bytenr;
1182 		ref.num_bytes = blocksize;
1183 		ref.parent = 0;
1184 		ref.owning_root = btrfs_root_id(dest);
1185 		ref.ref_root = btrfs_root_id(dest);
1186 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1187 		ret = btrfs_inc_extent_ref(trans, &ref);
1188 		if (ret) {
1189 			btrfs_abort_transaction(trans, ret);
1190 			break;
1191 		}
1192 
1193 		/* We don't know the real owning_root, use 0. */
1194 		ref.action = BTRFS_DROP_DELAYED_REF;
1195 		ref.bytenr = new_bytenr;
1196 		ref.num_bytes = blocksize;
1197 		ref.parent = path->nodes[level]->start;
1198 		ref.owning_root = 0;
1199 		ref.ref_root = btrfs_root_id(src);
1200 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1201 		ret = btrfs_free_extent(trans, &ref);
1202 		if (ret) {
1203 			btrfs_abort_transaction(trans, ret);
1204 			break;
1205 		}
1206 
1207 		/* We don't know the real owning_root, use 0. */
1208 		ref.action = BTRFS_DROP_DELAYED_REF;
1209 		ref.bytenr = old_bytenr;
1210 		ref.num_bytes = blocksize;
1211 		ref.parent = 0;
1212 		ref.owning_root = 0;
1213 		ref.ref_root = btrfs_root_id(dest);
1214 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1215 		ret = btrfs_free_extent(trans, &ref);
1216 		if (ret) {
1217 			btrfs_abort_transaction(trans, ret);
1218 			break;
1219 		}
1220 
1221 		btrfs_unlock_up_safe(path, 0);
1222 
1223 		ret = level;
1224 		break;
1225 	}
1226 	btrfs_tree_unlock(parent);
1227 	free_extent_buffer(parent);
1228 	return ret;
1229 }
1230 
1231 /*
1232  * helper to find next relocated block in reloc tree
1233  */
1234 static noinline_for_stack
1235 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1236 		       int *level)
1237 {
1238 	struct extent_buffer *eb;
1239 	int i;
1240 	u64 last_snapshot;
1241 	u32 nritems;
1242 
1243 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1244 
1245 	for (i = 0; i < *level; i++) {
1246 		free_extent_buffer(path->nodes[i]);
1247 		path->nodes[i] = NULL;
1248 	}
1249 
1250 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1251 		eb = path->nodes[i];
1252 		nritems = btrfs_header_nritems(eb);
1253 		while (path->slots[i] + 1 < nritems) {
1254 			path->slots[i]++;
1255 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1256 			    last_snapshot)
1257 				continue;
1258 
1259 			*level = i;
1260 			return 0;
1261 		}
1262 		free_extent_buffer(path->nodes[i]);
1263 		path->nodes[i] = NULL;
1264 	}
1265 	return 1;
1266 }
1267 
1268 /*
1269  * walk down reloc tree to find relocated block of lowest level
1270  */
1271 static noinline_for_stack
1272 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1273 			 int *level)
1274 {
1275 	struct extent_buffer *eb = NULL;
1276 	int i;
1277 	u64 ptr_gen = 0;
1278 	u64 last_snapshot;
1279 	u32 nritems;
1280 
1281 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1282 
1283 	for (i = *level; i > 0; i--) {
1284 		eb = path->nodes[i];
1285 		nritems = btrfs_header_nritems(eb);
1286 		while (path->slots[i] < nritems) {
1287 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1288 			if (ptr_gen > last_snapshot)
1289 				break;
1290 			path->slots[i]++;
1291 		}
1292 		if (path->slots[i] >= nritems) {
1293 			if (i == *level)
1294 				break;
1295 			*level = i + 1;
1296 			return 0;
1297 		}
1298 		if (i == 1) {
1299 			*level = i;
1300 			return 0;
1301 		}
1302 
1303 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1304 		if (IS_ERR(eb))
1305 			return PTR_ERR(eb);
1306 		BUG_ON(btrfs_header_level(eb) != i - 1);
1307 		path->nodes[i - 1] = eb;
1308 		path->slots[i - 1] = 0;
1309 	}
1310 	return 1;
1311 }
1312 
1313 /*
1314  * invalidate extent cache for file extents whose key in range of
1315  * [min_key, max_key)
1316  */
1317 static int invalidate_extent_cache(struct btrfs_root *root,
1318 				   const struct btrfs_key *min_key,
1319 				   const struct btrfs_key *max_key)
1320 {
1321 	struct btrfs_fs_info *fs_info = root->fs_info;
1322 	struct btrfs_inode *inode = NULL;
1323 	u64 objectid;
1324 	u64 start, end;
1325 	u64 ino;
1326 
1327 	objectid = min_key->objectid;
1328 	while (1) {
1329 		struct extent_state *cached_state = NULL;
1330 
1331 		cond_resched();
1332 		if (inode)
1333 			iput(&inode->vfs_inode);
1334 
1335 		if (objectid > max_key->objectid)
1336 			break;
1337 
1338 		inode = btrfs_find_first_inode(root, objectid);
1339 		if (!inode)
1340 			break;
1341 		ino = btrfs_ino(inode);
1342 
1343 		if (ino > max_key->objectid) {
1344 			iput(&inode->vfs_inode);
1345 			break;
1346 		}
1347 
1348 		objectid = ino + 1;
1349 		if (!S_ISREG(inode->vfs_inode.i_mode))
1350 			continue;
1351 
1352 		if (unlikely(min_key->objectid == ino)) {
1353 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1354 				continue;
1355 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1356 				start = 0;
1357 			else {
1358 				start = min_key->offset;
1359 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1360 			}
1361 		} else {
1362 			start = 0;
1363 		}
1364 
1365 		if (unlikely(max_key->objectid == ino)) {
1366 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1367 				continue;
1368 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1369 				end = (u64)-1;
1370 			} else {
1371 				if (max_key->offset == 0)
1372 					continue;
1373 				end = max_key->offset;
1374 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1375 				end--;
1376 			}
1377 		} else {
1378 			end = (u64)-1;
1379 		}
1380 
1381 		/* the lock_extent waits for read_folio to complete */
1382 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1383 		btrfs_drop_extent_map_range(inode, start, end, true);
1384 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1385 	}
1386 	return 0;
1387 }
1388 
1389 static int find_next_key(struct btrfs_path *path, int level,
1390 			 struct btrfs_key *key)
1391 
1392 {
1393 	while (level < BTRFS_MAX_LEVEL) {
1394 		if (!path->nodes[level])
1395 			break;
1396 		if (path->slots[level] + 1 <
1397 		    btrfs_header_nritems(path->nodes[level])) {
1398 			btrfs_node_key_to_cpu(path->nodes[level], key,
1399 					      path->slots[level] + 1);
1400 			return 0;
1401 		}
1402 		level++;
1403 	}
1404 	return 1;
1405 }
1406 
1407 /*
1408  * Insert current subvolume into reloc_control::dirty_subvol_roots
1409  */
1410 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1411 			       struct reloc_control *rc,
1412 			       struct btrfs_root *root)
1413 {
1414 	struct btrfs_root *reloc_root = root->reloc_root;
1415 	struct btrfs_root_item *reloc_root_item;
1416 	int ret;
1417 
1418 	/* @root must be a subvolume tree root with a valid reloc tree */
1419 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1420 	ASSERT(reloc_root);
1421 
1422 	reloc_root_item = &reloc_root->root_item;
1423 	memset(&reloc_root_item->drop_progress, 0,
1424 		sizeof(reloc_root_item->drop_progress));
1425 	btrfs_set_root_drop_level(reloc_root_item, 0);
1426 	btrfs_set_root_refs(reloc_root_item, 0);
1427 	ret = btrfs_update_reloc_root(trans, root);
1428 	if (ret)
1429 		return ret;
1430 
1431 	if (list_empty(&root->reloc_dirty_list)) {
1432 		btrfs_grab_root(root);
1433 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int clean_dirty_subvols(struct reloc_control *rc)
1440 {
1441 	struct btrfs_root *root;
1442 	struct btrfs_root *next;
1443 	int ret = 0;
1444 	int ret2;
1445 
1446 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1447 				 reloc_dirty_list) {
1448 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1449 			/* Merged subvolume, cleanup its reloc root */
1450 			struct btrfs_root *reloc_root = root->reloc_root;
1451 
1452 			list_del_init(&root->reloc_dirty_list);
1453 			root->reloc_root = NULL;
1454 			/*
1455 			 * Need barrier to ensure clear_bit() only happens after
1456 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1457 			 */
1458 			smp_wmb();
1459 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1460 			if (reloc_root) {
1461 				/*
1462 				 * btrfs_drop_snapshot drops our ref we hold for
1463 				 * ->reloc_root.  If it fails however we must
1464 				 * drop the ref ourselves.
1465 				 */
1466 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1467 				if (ret2 < 0) {
1468 					btrfs_put_root(reloc_root);
1469 					if (!ret)
1470 						ret = ret2;
1471 				}
1472 			}
1473 			btrfs_put_root(root);
1474 		} else {
1475 			/* Orphan reloc tree, just clean it up */
1476 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1477 			if (ret2 < 0) {
1478 				btrfs_put_root(root);
1479 				if (!ret)
1480 					ret = ret2;
1481 			}
1482 		}
1483 	}
1484 	return ret;
1485 }
1486 
1487 /*
1488  * merge the relocated tree blocks in reloc tree with corresponding
1489  * fs tree.
1490  */
1491 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1492 					       struct btrfs_root *root)
1493 {
1494 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1495 	struct btrfs_key key;
1496 	struct btrfs_key next_key;
1497 	struct btrfs_trans_handle *trans = NULL;
1498 	struct btrfs_root *reloc_root;
1499 	struct btrfs_root_item *root_item;
1500 	struct btrfs_path *path;
1501 	struct extent_buffer *leaf;
1502 	int reserve_level;
1503 	int level;
1504 	int max_level;
1505 	int replaced = 0;
1506 	int ret = 0;
1507 	u32 min_reserved;
1508 
1509 	path = btrfs_alloc_path();
1510 	if (!path)
1511 		return -ENOMEM;
1512 	path->reada = READA_FORWARD;
1513 
1514 	reloc_root = root->reloc_root;
1515 	root_item = &reloc_root->root_item;
1516 
1517 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1518 		level = btrfs_root_level(root_item);
1519 		atomic_inc(&reloc_root->node->refs);
1520 		path->nodes[level] = reloc_root->node;
1521 		path->slots[level] = 0;
1522 	} else {
1523 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1524 
1525 		level = btrfs_root_drop_level(root_item);
1526 		BUG_ON(level == 0);
1527 		path->lowest_level = level;
1528 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1529 		path->lowest_level = 0;
1530 		if (ret < 0) {
1531 			btrfs_free_path(path);
1532 			return ret;
1533 		}
1534 
1535 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1536 				      path->slots[level]);
1537 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1538 
1539 		btrfs_unlock_up_safe(path, 0);
1540 	}
1541 
1542 	/*
1543 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1544 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1545 	 * block COW, we COW at most from level 1 to root level for each tree.
1546 	 *
1547 	 * Thus the needed metadata size is at most root_level * nodesize,
1548 	 * and * 2 since we have two trees to COW.
1549 	 */
1550 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1551 	min_reserved = fs_info->nodesize * reserve_level * 2;
1552 	memset(&next_key, 0, sizeof(next_key));
1553 
1554 	while (1) {
1555 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1556 					     min_reserved,
1557 					     BTRFS_RESERVE_FLUSH_LIMIT);
1558 		if (ret)
1559 			goto out;
1560 		trans = btrfs_start_transaction(root, 0);
1561 		if (IS_ERR(trans)) {
1562 			ret = PTR_ERR(trans);
1563 			trans = NULL;
1564 			goto out;
1565 		}
1566 
1567 		/*
1568 		 * At this point we no longer have a reloc_control, so we can't
1569 		 * depend on btrfs_init_reloc_root to update our last_trans.
1570 		 *
1571 		 * But that's ok, we started the trans handle on our
1572 		 * corresponding fs_root, which means it's been added to the
1573 		 * dirty list.  At commit time we'll still call
1574 		 * btrfs_update_reloc_root() and update our root item
1575 		 * appropriately.
1576 		 */
1577 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1578 		trans->block_rsv = rc->block_rsv;
1579 
1580 		replaced = 0;
1581 		max_level = level;
1582 
1583 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1584 		if (ret < 0)
1585 			goto out;
1586 		if (ret > 0)
1587 			break;
1588 
1589 		if (!find_next_key(path, level, &key) &&
1590 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1591 			ret = 0;
1592 		} else {
1593 			ret = replace_path(trans, rc, root, reloc_root, path,
1594 					   &next_key, level, max_level);
1595 		}
1596 		if (ret < 0)
1597 			goto out;
1598 		if (ret > 0) {
1599 			level = ret;
1600 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1601 					      path->slots[level]);
1602 			replaced = 1;
1603 		}
1604 
1605 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1606 		if (ret > 0)
1607 			break;
1608 
1609 		BUG_ON(level == 0);
1610 		/*
1611 		 * save the merging progress in the drop_progress.
1612 		 * this is OK since root refs == 1 in this case.
1613 		 */
1614 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1615 			       path->slots[level]);
1616 		btrfs_set_root_drop_level(root_item, level);
1617 
1618 		btrfs_end_transaction_throttle(trans);
1619 		trans = NULL;
1620 
1621 		btrfs_btree_balance_dirty(fs_info);
1622 
1623 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1624 			invalidate_extent_cache(root, &key, &next_key);
1625 	}
1626 
1627 	/*
1628 	 * handle the case only one block in the fs tree need to be
1629 	 * relocated and the block is tree root.
1630 	 */
1631 	leaf = btrfs_lock_root_node(root);
1632 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1633 			      BTRFS_NESTING_COW);
1634 	btrfs_tree_unlock(leaf);
1635 	free_extent_buffer(leaf);
1636 out:
1637 	btrfs_free_path(path);
1638 
1639 	if (ret == 0) {
1640 		ret = insert_dirty_subvol(trans, rc, root);
1641 		if (ret)
1642 			btrfs_abort_transaction(trans, ret);
1643 	}
1644 
1645 	if (trans)
1646 		btrfs_end_transaction_throttle(trans);
1647 
1648 	btrfs_btree_balance_dirty(fs_info);
1649 
1650 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1651 		invalidate_extent_cache(root, &key, &next_key);
1652 
1653 	return ret;
1654 }
1655 
1656 static noinline_for_stack
1657 int prepare_to_merge(struct reloc_control *rc, int err)
1658 {
1659 	struct btrfs_root *root = rc->extent_root;
1660 	struct btrfs_fs_info *fs_info = root->fs_info;
1661 	struct btrfs_root *reloc_root;
1662 	struct btrfs_trans_handle *trans;
1663 	LIST_HEAD(reloc_roots);
1664 	u64 num_bytes = 0;
1665 	int ret;
1666 
1667 	mutex_lock(&fs_info->reloc_mutex);
1668 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1669 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1670 	mutex_unlock(&fs_info->reloc_mutex);
1671 
1672 again:
1673 	if (!err) {
1674 		num_bytes = rc->merging_rsv_size;
1675 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1676 					  BTRFS_RESERVE_FLUSH_ALL);
1677 		if (ret)
1678 			err = ret;
1679 	}
1680 
1681 	trans = btrfs_join_transaction(rc->extent_root);
1682 	if (IS_ERR(trans)) {
1683 		if (!err)
1684 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1685 						num_bytes, NULL);
1686 		return PTR_ERR(trans);
1687 	}
1688 
1689 	if (!err) {
1690 		if (num_bytes != rc->merging_rsv_size) {
1691 			btrfs_end_transaction(trans);
1692 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1693 						num_bytes, NULL);
1694 			goto again;
1695 		}
1696 	}
1697 
1698 	rc->merge_reloc_tree = true;
1699 
1700 	while (!list_empty(&rc->reloc_roots)) {
1701 		reloc_root = list_first_entry(&rc->reloc_roots,
1702 					      struct btrfs_root, root_list);
1703 		list_del_init(&reloc_root->root_list);
1704 
1705 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1706 				false);
1707 		if (IS_ERR(root)) {
1708 			/*
1709 			 * Even if we have an error we need this reloc root
1710 			 * back on our list so we can clean up properly.
1711 			 */
1712 			list_add(&reloc_root->root_list, &reloc_roots);
1713 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1714 			if (!err)
1715 				err = PTR_ERR(root);
1716 			break;
1717 		}
1718 
1719 		if (unlikely(root->reloc_root != reloc_root)) {
1720 			if (root->reloc_root) {
1721 				btrfs_err(fs_info,
1722 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1723 					  btrfs_root_id(root),
1724 					  btrfs_root_id(root->reloc_root),
1725 					  root->reloc_root->root_key.type,
1726 					  root->reloc_root->root_key.offset,
1727 					  btrfs_root_generation(
1728 						  &root->reloc_root->root_item),
1729 					  btrfs_root_id(reloc_root),
1730 					  reloc_root->root_key.type,
1731 					  reloc_root->root_key.offset,
1732 					  btrfs_root_generation(
1733 						  &reloc_root->root_item));
1734 			} else {
1735 				btrfs_err(fs_info,
1736 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1737 					  btrfs_root_id(root),
1738 					  btrfs_root_id(reloc_root),
1739 					  reloc_root->root_key.type,
1740 					  reloc_root->root_key.offset,
1741 					  btrfs_root_generation(
1742 						  &reloc_root->root_item));
1743 			}
1744 			list_add(&reloc_root->root_list, &reloc_roots);
1745 			btrfs_put_root(root);
1746 			btrfs_abort_transaction(trans, -EUCLEAN);
1747 			if (!err)
1748 				err = -EUCLEAN;
1749 			break;
1750 		}
1751 
1752 		/*
1753 		 * set reference count to 1, so btrfs_recover_relocation
1754 		 * knows it should resumes merging
1755 		 */
1756 		if (!err)
1757 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1758 		ret = btrfs_update_reloc_root(trans, root);
1759 
1760 		/*
1761 		 * Even if we have an error we need this reloc root back on our
1762 		 * list so we can clean up properly.
1763 		 */
1764 		list_add(&reloc_root->root_list, &reloc_roots);
1765 		btrfs_put_root(root);
1766 
1767 		if (ret) {
1768 			btrfs_abort_transaction(trans, ret);
1769 			if (!err)
1770 				err = ret;
1771 			break;
1772 		}
1773 	}
1774 
1775 	list_splice(&reloc_roots, &rc->reloc_roots);
1776 
1777 	if (!err)
1778 		err = btrfs_commit_transaction(trans);
1779 	else
1780 		btrfs_end_transaction(trans);
1781 	return err;
1782 }
1783 
1784 static noinline_for_stack
1785 void free_reloc_roots(struct list_head *list)
1786 {
1787 	struct btrfs_root *reloc_root, *tmp;
1788 
1789 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1790 		__del_reloc_root(reloc_root);
1791 }
1792 
1793 static noinline_for_stack
1794 void merge_reloc_roots(struct reloc_control *rc)
1795 {
1796 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1797 	struct btrfs_root *root;
1798 	struct btrfs_root *reloc_root;
1799 	LIST_HEAD(reloc_roots);
1800 	int found = 0;
1801 	int ret = 0;
1802 again:
1803 	root = rc->extent_root;
1804 
1805 	/*
1806 	 * this serializes us with btrfs_record_root_in_transaction,
1807 	 * we have to make sure nobody is in the middle of
1808 	 * adding their roots to the list while we are
1809 	 * doing this splice
1810 	 */
1811 	mutex_lock(&fs_info->reloc_mutex);
1812 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1813 	mutex_unlock(&fs_info->reloc_mutex);
1814 
1815 	while (!list_empty(&reloc_roots)) {
1816 		found = 1;
1817 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1818 
1819 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1820 					 false);
1821 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1822 			if (WARN_ON(IS_ERR(root))) {
1823 				/*
1824 				 * For recovery we read the fs roots on mount,
1825 				 * and if we didn't find the root then we marked
1826 				 * the reloc root as a garbage root.  For normal
1827 				 * relocation obviously the root should exist in
1828 				 * memory.  However there's no reason we can't
1829 				 * handle the error properly here just in case.
1830 				 */
1831 				ret = PTR_ERR(root);
1832 				goto out;
1833 			}
1834 			if (WARN_ON(root->reloc_root != reloc_root)) {
1835 				/*
1836 				 * This can happen if on-disk metadata has some
1837 				 * corruption, e.g. bad reloc tree key offset.
1838 				 */
1839 				ret = -EINVAL;
1840 				goto out;
1841 			}
1842 			ret = merge_reloc_root(rc, root);
1843 			btrfs_put_root(root);
1844 			if (ret) {
1845 				if (list_empty(&reloc_root->root_list))
1846 					list_add_tail(&reloc_root->root_list,
1847 						      &reloc_roots);
1848 				goto out;
1849 			}
1850 		} else {
1851 			if (!IS_ERR(root)) {
1852 				if (root->reloc_root == reloc_root) {
1853 					root->reloc_root = NULL;
1854 					btrfs_put_root(reloc_root);
1855 				}
1856 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1857 					  &root->state);
1858 				btrfs_put_root(root);
1859 			}
1860 
1861 			list_del_init(&reloc_root->root_list);
1862 			/* Don't forget to queue this reloc root for cleanup */
1863 			list_add_tail(&reloc_root->reloc_dirty_list,
1864 				      &rc->dirty_subvol_roots);
1865 		}
1866 	}
1867 
1868 	if (found) {
1869 		found = 0;
1870 		goto again;
1871 	}
1872 out:
1873 	if (ret) {
1874 		btrfs_handle_fs_error(fs_info, ret, NULL);
1875 		free_reloc_roots(&reloc_roots);
1876 
1877 		/* new reloc root may be added */
1878 		mutex_lock(&fs_info->reloc_mutex);
1879 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1880 		mutex_unlock(&fs_info->reloc_mutex);
1881 		free_reloc_roots(&reloc_roots);
1882 	}
1883 
1884 	/*
1885 	 * We used to have
1886 	 *
1887 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1888 	 *
1889 	 * here, but it's wrong.  If we fail to start the transaction in
1890 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1891 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1892 	 * fine because we're bailing here, and we hold a reference on the root
1893 	 * for the list that holds it, so these roots will be cleaned up when we
1894 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1895 	 * will be cleaned up on unmount.
1896 	 *
1897 	 * The remaining nodes will be cleaned up by free_reloc_control.
1898 	 */
1899 }
1900 
1901 static void free_block_list(struct rb_root *blocks)
1902 {
1903 	struct tree_block *block;
1904 	struct rb_node *rb_node;
1905 	while ((rb_node = rb_first(blocks))) {
1906 		block = rb_entry(rb_node, struct tree_block, rb_node);
1907 		rb_erase(rb_node, blocks);
1908 		kfree(block);
1909 	}
1910 }
1911 
1912 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1913 				      struct btrfs_root *reloc_root)
1914 {
1915 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1916 	struct btrfs_root *root;
1917 	int ret;
1918 
1919 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1920 		return 0;
1921 
1922 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1923 
1924 	/*
1925 	 * This should succeed, since we can't have a reloc root without having
1926 	 * already looked up the actual root and created the reloc root for this
1927 	 * root.
1928 	 *
1929 	 * However if there's some sort of corruption where we have a ref to a
1930 	 * reloc root without a corresponding root this could return ENOENT.
1931 	 */
1932 	if (IS_ERR(root)) {
1933 		DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1934 		return PTR_ERR(root);
1935 	}
1936 	if (root->reloc_root != reloc_root) {
1937 		DEBUG_WARN("unexpected reloc root found");
1938 		btrfs_err(fs_info,
1939 			  "root %llu has two reloc roots associated with it",
1940 			  reloc_root->root_key.offset);
1941 		btrfs_put_root(root);
1942 		return -EUCLEAN;
1943 	}
1944 	ret = btrfs_record_root_in_trans(trans, root);
1945 	btrfs_put_root(root);
1946 
1947 	return ret;
1948 }
1949 
1950 static noinline_for_stack
1951 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1952 				     struct reloc_control *rc,
1953 				     struct btrfs_backref_node *node,
1954 				     struct btrfs_backref_edge *edges[])
1955 {
1956 	struct btrfs_backref_node *next;
1957 	struct btrfs_root *root;
1958 	int index = 0;
1959 	int ret;
1960 
1961 	next = walk_up_backref(node, edges, &index);
1962 	root = next->root;
1963 
1964 	/*
1965 	 * If there is no root, then our references for this block are
1966 	 * incomplete, as we should be able to walk all the way up to a block
1967 	 * that is owned by a root.
1968 	 *
1969 	 * This path is only for SHAREABLE roots, so if we come upon a
1970 	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1971 	 *
1972 	 * Both of these cases indicate file system corruption, or a bug in the
1973 	 * backref walking code.
1974 	 */
1975 	if (unlikely(!root)) {
1976 		btrfs_err(trans->fs_info,
1977 			  "bytenr %llu doesn't have a backref path ending in a root",
1978 			  node->bytenr);
1979 		return ERR_PTR(-EUCLEAN);
1980 	}
1981 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1982 		btrfs_err(trans->fs_info,
1983 			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
1984 			  node->bytenr);
1985 		return ERR_PTR(-EUCLEAN);
1986 	}
1987 
1988 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
1989 		ret = record_reloc_root_in_trans(trans, root);
1990 		if (ret)
1991 			return ERR_PTR(ret);
1992 		goto found;
1993 	}
1994 
1995 	ret = btrfs_record_root_in_trans(trans, root);
1996 	if (ret)
1997 		return ERR_PTR(ret);
1998 	root = root->reloc_root;
1999 
2000 	/*
2001 	 * We could have raced with another thread which failed, so
2002 	 * root->reloc_root may not be set, return ENOENT in this case.
2003 	 */
2004 	if (!root)
2005 		return ERR_PTR(-ENOENT);
2006 
2007 	if (next->new_bytenr) {
2008 		/*
2009 		 * We just created the reloc root, so we shouldn't have
2010 		 * ->new_bytenr set yet. If it is then we have multiple roots
2011 		 *  pointing at the same bytenr which indicates corruption, or
2012 		 *  we've made a mistake in the backref walking code.
2013 		 */
2014 		ASSERT(next->new_bytenr == 0);
2015 		btrfs_err(trans->fs_info,
2016 			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2017 			  node->bytenr, next->bytenr);
2018 		return ERR_PTR(-EUCLEAN);
2019 	}
2020 
2021 	next->new_bytenr = root->node->start;
2022 	btrfs_put_root(next->root);
2023 	next->root = btrfs_grab_root(root);
2024 	ASSERT(next->root);
2025 	mark_block_processed(rc, next);
2026 found:
2027 	next = node;
2028 	/* setup backref node path for btrfs_reloc_cow_block */
2029 	while (1) {
2030 		rc->backref_cache.path[next->level] = next;
2031 		if (--index < 0)
2032 			break;
2033 		next = edges[index]->node[UPPER];
2034 	}
2035 	return root;
2036 }
2037 
2038 /*
2039  * Select a tree root for relocation.
2040  *
2041  * Return NULL if the block is not shareable. We should use do_relocation() in
2042  * this case.
2043  *
2044  * Return a tree root pointer if the block is shareable.
2045  * Return -ENOENT if the block is root of reloc tree.
2046  */
2047 static noinline_for_stack
2048 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2049 {
2050 	struct btrfs_backref_node *next;
2051 	struct btrfs_root *root;
2052 	struct btrfs_root *fs_root = NULL;
2053 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2054 	int index = 0;
2055 
2056 	next = node;
2057 	while (1) {
2058 		cond_resched();
2059 		next = walk_up_backref(next, edges, &index);
2060 		root = next->root;
2061 
2062 		/*
2063 		 * This can occur if we have incomplete extent refs leading all
2064 		 * the way up a particular path, in this case return -EUCLEAN.
2065 		 */
2066 		if (!root)
2067 			return ERR_PTR(-EUCLEAN);
2068 
2069 		/* No other choice for non-shareable tree */
2070 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2071 			return root;
2072 
2073 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2074 			fs_root = root;
2075 
2076 		if (next != node)
2077 			return NULL;
2078 
2079 		next = walk_down_backref(edges, &index);
2080 		if (!next || next->level <= node->level)
2081 			break;
2082 	}
2083 
2084 	if (!fs_root)
2085 		return ERR_PTR(-ENOENT);
2086 	return fs_root;
2087 }
2088 
2089 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2090 						  struct btrfs_backref_node *node)
2091 {
2092 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2093 	struct btrfs_backref_node *next = node;
2094 	struct btrfs_backref_edge *edge;
2095 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2096 	u64 num_bytes = 0;
2097 	int index = 0;
2098 
2099 	BUG_ON(node->processed);
2100 
2101 	while (next) {
2102 		cond_resched();
2103 		while (1) {
2104 			if (next->processed)
2105 				break;
2106 
2107 			num_bytes += fs_info->nodesize;
2108 
2109 			if (list_empty(&next->upper))
2110 				break;
2111 
2112 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2113 						list[LOWER]);
2114 			edges[index++] = edge;
2115 			next = edge->node[UPPER];
2116 		}
2117 		next = walk_down_backref(edges, &index);
2118 	}
2119 	return num_bytes;
2120 }
2121 
2122 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2123 				 struct reloc_control *rc, u64 num_bytes)
2124 {
2125 	struct btrfs_fs_info *fs_info = trans->fs_info;
2126 	int ret;
2127 
2128 	trans->block_rsv = rc->block_rsv;
2129 	rc->reserved_bytes += num_bytes;
2130 
2131 	/*
2132 	 * We are under a transaction here so we can only do limited flushing.
2133 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2134 	 * transaction and try to refill when we can flush all the things.
2135 	 */
2136 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2137 				     BTRFS_RESERVE_FLUSH_LIMIT);
2138 	if (ret) {
2139 		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2140 
2141 		while (tmp <= rc->reserved_bytes)
2142 			tmp <<= 1;
2143 		/*
2144 		 * only one thread can access block_rsv at this point,
2145 		 * so we don't need hold lock to protect block_rsv.
2146 		 * we expand more reservation size here to allow enough
2147 		 * space for relocation and we will return earlier in
2148 		 * enospc case.
2149 		 */
2150 		rc->block_rsv->size = tmp + fs_info->nodesize *
2151 				      RELOCATION_RESERVED_NODES;
2152 		return -EAGAIN;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2159 				  struct reloc_control *rc,
2160 				  struct btrfs_backref_node *node)
2161 {
2162 	u64 num_bytes;
2163 
2164 	num_bytes = calcu_metadata_size(rc, node) * 2;
2165 	return refill_metadata_space(trans, rc, num_bytes);
2166 }
2167 
2168 /*
2169  * relocate a block tree, and then update pointers in upper level
2170  * blocks that reference the block to point to the new location.
2171  *
2172  * if called by link_to_upper, the block has already been relocated.
2173  * in that case this function just updates pointers.
2174  */
2175 static int do_relocation(struct btrfs_trans_handle *trans,
2176 			 struct reloc_control *rc,
2177 			 struct btrfs_backref_node *node,
2178 			 struct btrfs_key *key,
2179 			 struct btrfs_path *path, int lowest)
2180 {
2181 	struct btrfs_backref_node *upper;
2182 	struct btrfs_backref_edge *edge;
2183 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2184 	struct btrfs_root *root;
2185 	struct extent_buffer *eb;
2186 	u32 blocksize;
2187 	u64 bytenr;
2188 	int slot;
2189 	int ret = 0;
2190 
2191 	/*
2192 	 * If we are lowest then this is the first time we're processing this
2193 	 * block, and thus shouldn't have an eb associated with it yet.
2194 	 */
2195 	ASSERT(!lowest || !node->eb);
2196 
2197 	path->lowest_level = node->level + 1;
2198 	rc->backref_cache.path[node->level] = node;
2199 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2200 		cond_resched();
2201 
2202 		upper = edge->node[UPPER];
2203 		root = select_reloc_root(trans, rc, upper, edges);
2204 		if (IS_ERR(root)) {
2205 			ret = PTR_ERR(root);
2206 			goto next;
2207 		}
2208 
2209 		if (upper->eb && !upper->locked) {
2210 			if (!lowest) {
2211 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2212 				if (ret < 0)
2213 					goto next;
2214 				BUG_ON(ret);
2215 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2216 				if (node->eb->start == bytenr)
2217 					goto next;
2218 			}
2219 			btrfs_backref_drop_node_buffer(upper);
2220 		}
2221 
2222 		if (!upper->eb) {
2223 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2224 			if (ret) {
2225 				if (ret > 0)
2226 					ret = -ENOENT;
2227 
2228 				btrfs_release_path(path);
2229 				break;
2230 			}
2231 
2232 			if (!upper->eb) {
2233 				upper->eb = path->nodes[upper->level];
2234 				path->nodes[upper->level] = NULL;
2235 			} else {
2236 				BUG_ON(upper->eb != path->nodes[upper->level]);
2237 			}
2238 
2239 			upper->locked = 1;
2240 			path->locks[upper->level] = 0;
2241 
2242 			slot = path->slots[upper->level];
2243 			btrfs_release_path(path);
2244 		} else {
2245 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2246 			if (ret < 0)
2247 				goto next;
2248 			BUG_ON(ret);
2249 		}
2250 
2251 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2252 		if (lowest) {
2253 			if (bytenr != node->bytenr) {
2254 				btrfs_err(root->fs_info,
2255 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2256 					  bytenr, node->bytenr, slot,
2257 					  upper->eb->start);
2258 				ret = -EIO;
2259 				goto next;
2260 			}
2261 		} else {
2262 			if (node->eb->start == bytenr)
2263 				goto next;
2264 		}
2265 
2266 		blocksize = root->fs_info->nodesize;
2267 		eb = btrfs_read_node_slot(upper->eb, slot);
2268 		if (IS_ERR(eb)) {
2269 			ret = PTR_ERR(eb);
2270 			goto next;
2271 		}
2272 		btrfs_tree_lock(eb);
2273 
2274 		if (!node->eb) {
2275 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2276 					      slot, &eb, BTRFS_NESTING_COW);
2277 			btrfs_tree_unlock(eb);
2278 			free_extent_buffer(eb);
2279 			if (ret < 0)
2280 				goto next;
2281 			/*
2282 			 * We've just COWed this block, it should have updated
2283 			 * the correct backref node entry.
2284 			 */
2285 			ASSERT(node->eb == eb);
2286 		} else {
2287 			struct btrfs_ref ref = {
2288 				.action = BTRFS_ADD_DELAYED_REF,
2289 				.bytenr = node->eb->start,
2290 				.num_bytes = blocksize,
2291 				.parent = upper->eb->start,
2292 				.owning_root = btrfs_header_owner(upper->eb),
2293 				.ref_root = btrfs_header_owner(upper->eb),
2294 			};
2295 
2296 			btrfs_set_node_blockptr(upper->eb, slot,
2297 						node->eb->start);
2298 			btrfs_set_node_ptr_generation(upper->eb, slot,
2299 						      trans->transid);
2300 			btrfs_mark_buffer_dirty(trans, upper->eb);
2301 
2302 			btrfs_init_tree_ref(&ref, node->level,
2303 					    btrfs_root_id(root), false);
2304 			ret = btrfs_inc_extent_ref(trans, &ref);
2305 			if (!ret)
2306 				ret = btrfs_drop_subtree(trans, root, eb,
2307 							 upper->eb);
2308 			if (ret)
2309 				btrfs_abort_transaction(trans, ret);
2310 		}
2311 next:
2312 		if (!upper->pending)
2313 			btrfs_backref_drop_node_buffer(upper);
2314 		else
2315 			btrfs_backref_unlock_node_buffer(upper);
2316 		if (ret)
2317 			break;
2318 	}
2319 
2320 	if (!ret && node->pending) {
2321 		btrfs_backref_drop_node_buffer(node);
2322 		list_del_init(&node->list);
2323 		node->pending = 0;
2324 	}
2325 
2326 	path->lowest_level = 0;
2327 
2328 	/*
2329 	 * We should have allocated all of our space in the block rsv and thus
2330 	 * shouldn't ENOSPC.
2331 	 */
2332 	ASSERT(ret != -ENOSPC);
2333 	return ret;
2334 }
2335 
2336 static int link_to_upper(struct btrfs_trans_handle *trans,
2337 			 struct reloc_control *rc,
2338 			 struct btrfs_backref_node *node,
2339 			 struct btrfs_path *path)
2340 {
2341 	struct btrfs_key key;
2342 
2343 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2344 	return do_relocation(trans, rc, node, &key, path, 0);
2345 }
2346 
2347 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2348 				struct reloc_control *rc,
2349 				struct btrfs_path *path, int err)
2350 {
2351 	LIST_HEAD(list);
2352 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2353 	struct btrfs_backref_node *node;
2354 	int level;
2355 	int ret;
2356 
2357 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2358 		while (!list_empty(&cache->pending[level])) {
2359 			node = list_first_entry(&cache->pending[level],
2360 						struct btrfs_backref_node, list);
2361 			list_move_tail(&node->list, &list);
2362 			BUG_ON(!node->pending);
2363 
2364 			if (!err) {
2365 				ret = link_to_upper(trans, rc, node, path);
2366 				if (ret < 0)
2367 					err = ret;
2368 			}
2369 		}
2370 		list_splice_init(&list, &cache->pending[level]);
2371 	}
2372 	return err;
2373 }
2374 
2375 /*
2376  * mark a block and all blocks directly/indirectly reference the block
2377  * as processed.
2378  */
2379 static void update_processed_blocks(struct reloc_control *rc,
2380 				    struct btrfs_backref_node *node)
2381 {
2382 	struct btrfs_backref_node *next = node;
2383 	struct btrfs_backref_edge *edge;
2384 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2385 	int index = 0;
2386 
2387 	while (next) {
2388 		cond_resched();
2389 		while (1) {
2390 			if (next->processed)
2391 				break;
2392 
2393 			mark_block_processed(rc, next);
2394 
2395 			if (list_empty(&next->upper))
2396 				break;
2397 
2398 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2399 						list[LOWER]);
2400 			edges[index++] = edge;
2401 			next = edge->node[UPPER];
2402 		}
2403 		next = walk_down_backref(edges, &index);
2404 	}
2405 }
2406 
2407 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2408 {
2409 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2410 
2411 	if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2412 				 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2413 		return 1;
2414 	return 0;
2415 }
2416 
2417 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2418 			      struct tree_block *block)
2419 {
2420 	struct btrfs_tree_parent_check check = {
2421 		.level = block->level,
2422 		.owner_root = block->owner,
2423 		.transid = block->key.offset
2424 	};
2425 	struct extent_buffer *eb;
2426 
2427 	eb = read_tree_block(fs_info, block->bytenr, &check);
2428 	if (IS_ERR(eb))
2429 		return PTR_ERR(eb);
2430 	if (!extent_buffer_uptodate(eb)) {
2431 		free_extent_buffer(eb);
2432 		return -EIO;
2433 	}
2434 	if (block->level == 0)
2435 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2436 	else
2437 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2438 	free_extent_buffer(eb);
2439 	block->key_ready = true;
2440 	return 0;
2441 }
2442 
2443 /*
2444  * helper function to relocate a tree block
2445  */
2446 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2447 				struct reloc_control *rc,
2448 				struct btrfs_backref_node *node,
2449 				struct btrfs_key *key,
2450 				struct btrfs_path *path)
2451 {
2452 	struct btrfs_root *root;
2453 	int ret = 0;
2454 
2455 	if (!node)
2456 		return 0;
2457 
2458 	/*
2459 	 * If we fail here we want to drop our backref_node because we are going
2460 	 * to start over and regenerate the tree for it.
2461 	 */
2462 	ret = reserve_metadata_space(trans, rc, node);
2463 	if (ret)
2464 		goto out;
2465 
2466 	BUG_ON(node->processed);
2467 	root = select_one_root(node);
2468 	if (IS_ERR(root)) {
2469 		ret = PTR_ERR(root);
2470 
2471 		/* See explanation in select_one_root for the -EUCLEAN case. */
2472 		ASSERT(ret == -ENOENT);
2473 		if (ret == -ENOENT) {
2474 			ret = 0;
2475 			update_processed_blocks(rc, node);
2476 		}
2477 		goto out;
2478 	}
2479 
2480 	if (root) {
2481 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2482 			/*
2483 			 * This block was the root block of a root, and this is
2484 			 * the first time we're processing the block and thus it
2485 			 * should not have had the ->new_bytenr modified.
2486 			 *
2487 			 * However in the case of corruption we could have
2488 			 * multiple refs pointing to the same block improperly,
2489 			 * and thus we would trip over these checks.  ASSERT()
2490 			 * for the developer case, because it could indicate a
2491 			 * bug in the backref code, however error out for a
2492 			 * normal user in the case of corruption.
2493 			 */
2494 			ASSERT(node->new_bytenr == 0);
2495 			if (node->new_bytenr) {
2496 				btrfs_err(root->fs_info,
2497 				  "bytenr %llu has improper references to it",
2498 					  node->bytenr);
2499 				ret = -EUCLEAN;
2500 				goto out;
2501 			}
2502 			ret = btrfs_record_root_in_trans(trans, root);
2503 			if (ret)
2504 				goto out;
2505 			/*
2506 			 * Another thread could have failed, need to check if we
2507 			 * have reloc_root actually set.
2508 			 */
2509 			if (!root->reloc_root) {
2510 				ret = -ENOENT;
2511 				goto out;
2512 			}
2513 			root = root->reloc_root;
2514 			node->new_bytenr = root->node->start;
2515 			btrfs_put_root(node->root);
2516 			node->root = btrfs_grab_root(root);
2517 			ASSERT(node->root);
2518 		} else {
2519 			btrfs_err(root->fs_info,
2520 				  "bytenr %llu resolved to a non-shareable root",
2521 				  node->bytenr);
2522 			ret = -EUCLEAN;
2523 			goto out;
2524 		}
2525 		if (!ret)
2526 			update_processed_blocks(rc, node);
2527 	} else {
2528 		ret = do_relocation(trans, rc, node, key, path, 1);
2529 	}
2530 out:
2531 	if (ret || node->level == 0)
2532 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2533 	return ret;
2534 }
2535 
2536 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2537 				  struct reloc_control *rc, struct tree_block *block,
2538 				  struct btrfs_path *path)
2539 {
2540 	struct btrfs_fs_info *fs_info = trans->fs_info;
2541 	struct btrfs_root *root;
2542 	u64 num_bytes;
2543 	int nr_levels;
2544 	int ret;
2545 
2546 	root = btrfs_get_fs_root(fs_info, block->owner, true);
2547 	if (IS_ERR(root))
2548 		return PTR_ERR(root);
2549 
2550 	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2551 
2552 	num_bytes = fs_info->nodesize * nr_levels;
2553 	ret = refill_metadata_space(trans, rc, num_bytes);
2554 	if (ret) {
2555 		btrfs_put_root(root);
2556 		return ret;
2557 	}
2558 	path->lowest_level = block->level;
2559 	if (root == root->fs_info->chunk_root)
2560 		btrfs_reserve_chunk_metadata(trans, false);
2561 
2562 	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2563 	path->lowest_level = 0;
2564 	btrfs_release_path(path);
2565 
2566 	if (root == root->fs_info->chunk_root)
2567 		btrfs_trans_release_chunk_metadata(trans);
2568 	if (ret > 0)
2569 		ret = 0;
2570 	btrfs_put_root(root);
2571 
2572 	return ret;
2573 }
2574 
2575 /*
2576  * relocate a list of blocks
2577  */
2578 static noinline_for_stack
2579 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2580 			 struct reloc_control *rc, struct rb_root *blocks)
2581 {
2582 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2583 	struct btrfs_backref_node *node;
2584 	struct btrfs_path *path;
2585 	struct tree_block *block;
2586 	struct tree_block *next;
2587 	int ret = 0;
2588 
2589 	path = btrfs_alloc_path();
2590 	if (!path) {
2591 		ret = -ENOMEM;
2592 		goto out_free_blocks;
2593 	}
2594 
2595 	/* Kick in readahead for tree blocks with missing keys */
2596 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2597 		if (!block->key_ready)
2598 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2599 						   block->owner, 0,
2600 						   block->level);
2601 	}
2602 
2603 	/* Get first keys */
2604 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2605 		if (!block->key_ready) {
2606 			ret = get_tree_block_key(fs_info, block);
2607 			if (ret)
2608 				goto out_free_path;
2609 		}
2610 	}
2611 
2612 	/* Do tree relocation */
2613 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2614 		/*
2615 		 * For COWonly blocks, or the data reloc tree, we only need to
2616 		 * COW down to the block, there's no need to generate a backref
2617 		 * tree.
2618 		 */
2619 		if (block->owner &&
2620 		    (!is_fstree(block->owner) ||
2621 		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2622 			ret = relocate_cowonly_block(trans, rc, block, path);
2623 			if (ret)
2624 				break;
2625 			continue;
2626 		}
2627 
2628 		node = build_backref_tree(trans, rc, &block->key,
2629 					  block->level, block->bytenr);
2630 		if (IS_ERR(node)) {
2631 			ret = PTR_ERR(node);
2632 			goto out;
2633 		}
2634 
2635 		ret = relocate_tree_block(trans, rc, node, &block->key,
2636 					  path);
2637 		if (ret < 0)
2638 			break;
2639 	}
2640 out:
2641 	ret = finish_pending_nodes(trans, rc, path, ret);
2642 
2643 out_free_path:
2644 	btrfs_free_path(path);
2645 out_free_blocks:
2646 	free_block_list(blocks);
2647 	return ret;
2648 }
2649 
2650 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2651 {
2652 	const struct file_extent_cluster *cluster = &rc->cluster;
2653 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2654 	u64 alloc_hint = 0;
2655 	u64 start;
2656 	u64 end;
2657 	u64 offset = inode->reloc_block_group_start;
2658 	u64 num_bytes;
2659 	int nr;
2660 	int ret = 0;
2661 	u64 i_size = i_size_read(&inode->vfs_inode);
2662 	u64 prealloc_start = cluster->start - offset;
2663 	u64 prealloc_end = cluster->end - offset;
2664 	u64 cur_offset = prealloc_start;
2665 
2666 	/*
2667 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2668 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2669 	 * btrfs_do_readpage() call of previously relocated file cluster.
2670 	 *
2671 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2672 	 * will skip the read, and relocate_one_folio() will later writeback
2673 	 * the padding zeros as new data, causing data corruption.
2674 	 *
2675 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2676 	 */
2677 	if (!PAGE_ALIGNED(i_size)) {
2678 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2679 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2680 		const u32 sectorsize = fs_info->sectorsize;
2681 		struct folio *folio;
2682 
2683 		ASSERT(sectorsize < PAGE_SIZE);
2684 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2685 
2686 		/*
2687 		 * Subpage can't handle page with DIRTY but without UPTODATE
2688 		 * bit as it can lead to the following deadlock:
2689 		 *
2690 		 * btrfs_read_folio()
2691 		 * | Page already *locked*
2692 		 * |- btrfs_lock_and_flush_ordered_range()
2693 		 *    |- btrfs_start_ordered_extent()
2694 		 *       |- extent_write_cache_pages()
2695 		 *          |- lock_page()
2696 		 *             We try to lock the page we already hold.
2697 		 *
2698 		 * Here we just writeback the whole data reloc inode, so that
2699 		 * we will be ensured to have no dirty range in the page, and
2700 		 * are safe to clear the uptodate bits.
2701 		 *
2702 		 * This shouldn't cause too much overhead, as we need to write
2703 		 * the data back anyway.
2704 		 */
2705 		ret = filemap_write_and_wait(mapping);
2706 		if (ret < 0)
2707 			return ret;
2708 
2709 		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2710 		/*
2711 		 * If page is freed we don't need to do anything then, as we
2712 		 * will re-read the whole page anyway.
2713 		 */
2714 		if (!IS_ERR(folio)) {
2715 			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2716 					round_up(i_size, PAGE_SIZE) - i_size);
2717 			folio_unlock(folio);
2718 			folio_put(folio);
2719 		}
2720 	}
2721 
2722 	BUG_ON(cluster->start != cluster->boundary[0]);
2723 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2724 					      prealloc_end + 1 - prealloc_start);
2725 	if (ret)
2726 		return ret;
2727 
2728 	btrfs_inode_lock(inode, 0);
2729 	for (nr = 0; nr < cluster->nr; nr++) {
2730 		struct extent_state *cached_state = NULL;
2731 
2732 		start = cluster->boundary[nr] - offset;
2733 		if (nr + 1 < cluster->nr)
2734 			end = cluster->boundary[nr + 1] - 1 - offset;
2735 		else
2736 			end = cluster->end - offset;
2737 
2738 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2739 		num_bytes = end + 1 - start;
2740 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2741 						num_bytes, num_bytes,
2742 						end + 1, &alloc_hint);
2743 		cur_offset = end + 1;
2744 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2745 		if (ret)
2746 			break;
2747 	}
2748 	btrfs_inode_unlock(inode, 0);
2749 
2750 	if (cur_offset < prealloc_end)
2751 		btrfs_free_reserved_data_space_noquota(inode,
2752 						       prealloc_end + 1 - cur_offset);
2753 	return ret;
2754 }
2755 
2756 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2757 {
2758 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2759 	struct extent_map *em;
2760 	struct extent_state *cached_state = NULL;
2761 	u64 offset = inode->reloc_block_group_start;
2762 	u64 start = rc->cluster.start - offset;
2763 	u64 end = rc->cluster.end - offset;
2764 	int ret = 0;
2765 
2766 	em = btrfs_alloc_extent_map();
2767 	if (!em)
2768 		return -ENOMEM;
2769 
2770 	em->start = start;
2771 	em->len = end + 1 - start;
2772 	em->disk_bytenr = rc->cluster.start;
2773 	em->disk_num_bytes = em->len;
2774 	em->ram_bytes = em->len;
2775 	em->flags |= EXTENT_FLAG_PINNED;
2776 
2777 	btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2778 	ret = btrfs_replace_extent_map_range(inode, em, false);
2779 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2780 	btrfs_free_extent_map(em);
2781 
2782 	return ret;
2783 }
2784 
2785 /*
2786  * Allow error injection to test balance/relocation cancellation
2787  */
2788 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2789 {
2790 	return atomic_read(&fs_info->balance_cancel_req) ||
2791 		atomic_read(&fs_info->reloc_cancel_req) ||
2792 		fatal_signal_pending(current);
2793 }
2794 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2795 
2796 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2797 				    int cluster_nr)
2798 {
2799 	/* Last extent, use cluster end directly */
2800 	if (cluster_nr >= cluster->nr - 1)
2801 		return cluster->end;
2802 
2803 	/* Use next boundary start*/
2804 	return cluster->boundary[cluster_nr + 1] - 1;
2805 }
2806 
2807 static int relocate_one_folio(struct reloc_control *rc,
2808 			      struct file_ra_state *ra,
2809 			      int *cluster_nr, unsigned long index)
2810 {
2811 	const struct file_extent_cluster *cluster = &rc->cluster;
2812 	struct inode *inode = rc->data_inode;
2813 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2814 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2815 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2816 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2817 	struct folio *folio;
2818 	u64 folio_start;
2819 	u64 folio_end;
2820 	u64 cur;
2821 	int ret;
2822 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2823 
2824 	ASSERT(index <= last_index);
2825 again:
2826 	folio = filemap_lock_folio(inode->i_mapping, index);
2827 	if (IS_ERR(folio)) {
2828 
2829 		/*
2830 		 * On relocation we're doing readahead on the relocation inode,
2831 		 * but if the filesystem is backed by a RAID stripe tree we can
2832 		 * get ENOENT (e.g. due to preallocated extents not being
2833 		 * mapped in the RST) from the lookup.
2834 		 *
2835 		 * But readahead doesn't handle the error and submits invalid
2836 		 * reads to the device, causing a assertion failures.
2837 		 */
2838 		if (!use_rst)
2839 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2840 						  index, last_index + 1 - index);
2841 		folio = __filemap_get_folio(inode->i_mapping, index,
2842 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2843 					    mask);
2844 		if (IS_ERR(folio))
2845 			return PTR_ERR(folio);
2846 	}
2847 
2848 	WARN_ON(folio_order(folio));
2849 
2850 	if (folio_test_readahead(folio) && !use_rst)
2851 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2852 					   folio, last_index + 1 - index);
2853 
2854 	if (!folio_test_uptodate(folio)) {
2855 		btrfs_read_folio(NULL, folio);
2856 		folio_lock(folio);
2857 		if (!folio_test_uptodate(folio)) {
2858 			ret = -EIO;
2859 			goto release_folio;
2860 		}
2861 		if (folio->mapping != inode->i_mapping) {
2862 			folio_unlock(folio);
2863 			folio_put(folio);
2864 			goto again;
2865 		}
2866 	}
2867 
2868 	/*
2869 	 * We could have lost folio private when we dropped the lock to read the
2870 	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2871 	 * of the subpage blocksize stuff we need in place.
2872 	 */
2873 	ret = set_folio_extent_mapped(folio);
2874 	if (ret < 0)
2875 		goto release_folio;
2876 
2877 	folio_start = folio_pos(folio);
2878 	folio_end = folio_start + PAGE_SIZE - 1;
2879 
2880 	/*
2881 	 * Start from the cluster, as for subpage case, the cluster can start
2882 	 * inside the folio.
2883 	 */
2884 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2885 	while (cur <= folio_end) {
2886 		struct extent_state *cached_state = NULL;
2887 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2888 		u64 extent_end = get_cluster_boundary_end(cluster,
2889 						*cluster_nr) - offset;
2890 		u64 clamped_start = max(folio_start, extent_start);
2891 		u64 clamped_end = min(folio_end, extent_end);
2892 		u32 clamped_len = clamped_end + 1 - clamped_start;
2893 
2894 		/* Reserve metadata for this range */
2895 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2896 						      clamped_len, clamped_len,
2897 						      false);
2898 		if (ret)
2899 			goto release_folio;
2900 
2901 		/* Mark the range delalloc and dirty for later writeback */
2902 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2903 				  clamped_end, &cached_state);
2904 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2905 						clamped_end, 0, &cached_state);
2906 		if (ret) {
2907 			btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2908 					       clamped_start, clamped_end,
2909 					       EXTENT_LOCKED | EXTENT_BOUNDARY,
2910 					       &cached_state);
2911 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2912 							clamped_len, true);
2913 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2914 						       clamped_len);
2915 			goto release_folio;
2916 		}
2917 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2918 
2919 		/*
2920 		 * Set the boundary if it's inside the folio.
2921 		 * Data relocation requires the destination extents to have the
2922 		 * same size as the source.
2923 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2924 		 * with previous extent.
2925 		 */
2926 		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
2927 			u64 boundary_start = cluster->boundary[*cluster_nr] -
2928 						offset;
2929 			u64 boundary_end = boundary_start +
2930 					   fs_info->sectorsize - 1;
2931 
2932 			btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2933 					     boundary_start, boundary_end,
2934 					     EXTENT_BOUNDARY, NULL);
2935 		}
2936 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2937 				    &cached_state);
2938 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2939 		cur += clamped_len;
2940 
2941 		/* Crossed extent end, go to next extent */
2942 		if (cur >= extent_end) {
2943 			(*cluster_nr)++;
2944 			/* Just finished the last extent of the cluster, exit. */
2945 			if (*cluster_nr >= cluster->nr)
2946 				break;
2947 		}
2948 	}
2949 	folio_unlock(folio);
2950 	folio_put(folio);
2951 
2952 	balance_dirty_pages_ratelimited(inode->i_mapping);
2953 	btrfs_throttle(fs_info);
2954 	if (btrfs_should_cancel_balance(fs_info))
2955 		ret = -ECANCELED;
2956 	return ret;
2957 
2958 release_folio:
2959 	folio_unlock(folio);
2960 	folio_put(folio);
2961 	return ret;
2962 }
2963 
2964 static int relocate_file_extent_cluster(struct reloc_control *rc)
2965 {
2966 	struct inode *inode = rc->data_inode;
2967 	const struct file_extent_cluster *cluster = &rc->cluster;
2968 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2969 	unsigned long index;
2970 	unsigned long last_index;
2971 	struct file_ra_state *ra;
2972 	int cluster_nr = 0;
2973 	int ret = 0;
2974 
2975 	if (!cluster->nr)
2976 		return 0;
2977 
2978 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2979 	if (!ra)
2980 		return -ENOMEM;
2981 
2982 	ret = prealloc_file_extent_cluster(rc);
2983 	if (ret)
2984 		goto out;
2985 
2986 	file_ra_state_init(ra, inode->i_mapping);
2987 
2988 	ret = setup_relocation_extent_mapping(rc);
2989 	if (ret)
2990 		goto out;
2991 
2992 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
2994 	     index <= last_index && !ret; index++)
2995 		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
2996 	if (ret == 0)
2997 		WARN_ON(cluster_nr != cluster->nr);
2998 out:
2999 	kfree(ra);
3000 	return ret;
3001 }
3002 
3003 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3004 					   const struct btrfs_key *extent_key)
3005 {
3006 	struct inode *inode = rc->data_inode;
3007 	struct file_extent_cluster *cluster = &rc->cluster;
3008 	int ret;
3009 	struct btrfs_root *root = BTRFS_I(inode)->root;
3010 
3011 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3012 		ret = relocate_file_extent_cluster(rc);
3013 		if (ret)
3014 			return ret;
3015 		cluster->nr = 0;
3016 	}
3017 
3018 	/*
3019 	 * Under simple quotas, we set root->relocation_src_root when we find
3020 	 * the extent. If adjacent extents have different owners, we can't merge
3021 	 * them while relocating. Handle this by storing the owning root that
3022 	 * started a cluster and if we see an extent from a different root break
3023 	 * cluster formation (just like the above case of non-adjacent extents).
3024 	 *
3025 	 * Without simple quotas, relocation_src_root is always 0, so we should
3026 	 * never see a mismatch, and it should have no effect on relocation
3027 	 * clusters.
3028 	 */
3029 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3030 		u64 tmp = root->relocation_src_root;
3031 
3032 		/*
3033 		 * root->relocation_src_root is the state that actually affects
3034 		 * the preallocation we do here, so set it to the root owning
3035 		 * the cluster we need to relocate.
3036 		 */
3037 		root->relocation_src_root = cluster->owning_root;
3038 		ret = relocate_file_extent_cluster(rc);
3039 		if (ret)
3040 			return ret;
3041 		cluster->nr = 0;
3042 		/* And reset it back for the current extent's owning root. */
3043 		root->relocation_src_root = tmp;
3044 	}
3045 
3046 	if (!cluster->nr) {
3047 		cluster->start = extent_key->objectid;
3048 		cluster->owning_root = root->relocation_src_root;
3049 	}
3050 	else
3051 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3052 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3053 	cluster->boundary[cluster->nr] = extent_key->objectid;
3054 	cluster->nr++;
3055 
3056 	if (cluster->nr >= MAX_EXTENTS) {
3057 		ret = relocate_file_extent_cluster(rc);
3058 		if (ret)
3059 			return ret;
3060 		cluster->nr = 0;
3061 	}
3062 	return 0;
3063 }
3064 
3065 /*
3066  * helper to add a tree block to the list.
3067  * the major work is getting the generation and level of the block
3068  */
3069 static int add_tree_block(struct reloc_control *rc,
3070 			  const struct btrfs_key *extent_key,
3071 			  struct btrfs_path *path,
3072 			  struct rb_root *blocks)
3073 {
3074 	struct extent_buffer *eb;
3075 	struct btrfs_extent_item *ei;
3076 	struct btrfs_tree_block_info *bi;
3077 	struct tree_block *block;
3078 	struct rb_node *rb_node;
3079 	u32 item_size;
3080 	int level = -1;
3081 	u64 generation;
3082 	u64 owner = 0;
3083 
3084 	eb =  path->nodes[0];
3085 	item_size = btrfs_item_size(eb, path->slots[0]);
3086 
3087 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3088 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3089 		unsigned long ptr = 0, end;
3090 
3091 		ei = btrfs_item_ptr(eb, path->slots[0],
3092 				struct btrfs_extent_item);
3093 		end = (unsigned long)ei + item_size;
3094 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3095 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3096 			level = btrfs_tree_block_level(eb, bi);
3097 			ptr = (unsigned long)(bi + 1);
3098 		} else {
3099 			level = (int)extent_key->offset;
3100 			ptr = (unsigned long)(ei + 1);
3101 		}
3102 		generation = btrfs_extent_generation(eb, ei);
3103 
3104 		/*
3105 		 * We're reading random blocks without knowing their owner ahead
3106 		 * of time.  This is ok most of the time, as all reloc roots and
3107 		 * fs roots have the same lock type.  However normal trees do
3108 		 * not, and the only way to know ahead of time is to read the
3109 		 * inline ref offset.  We know it's an fs root if
3110 		 *
3111 		 * 1. There's more than one ref.
3112 		 * 2. There's a SHARED_DATA_REF_KEY set.
3113 		 * 3. FULL_BACKREF is set on the flags.
3114 		 *
3115 		 * Otherwise it's safe to assume that the ref offset == the
3116 		 * owner of this block, so we can use that when calling
3117 		 * read_tree_block.
3118 		 */
3119 		if (btrfs_extent_refs(eb, ei) == 1 &&
3120 		    !(btrfs_extent_flags(eb, ei) &
3121 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3122 		    ptr < end) {
3123 			struct btrfs_extent_inline_ref *iref;
3124 			int type;
3125 
3126 			iref = (struct btrfs_extent_inline_ref *)ptr;
3127 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3128 							BTRFS_REF_TYPE_BLOCK);
3129 			if (type == BTRFS_REF_TYPE_INVALID)
3130 				return -EINVAL;
3131 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3132 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3133 		}
3134 	} else {
3135 		btrfs_print_leaf(eb);
3136 		btrfs_err(rc->block_group->fs_info,
3137 			  "unrecognized tree backref at tree block %llu slot %u",
3138 			  eb->start, path->slots[0]);
3139 		btrfs_release_path(path);
3140 		return -EUCLEAN;
3141 	}
3142 
3143 	btrfs_release_path(path);
3144 
3145 	BUG_ON(level == -1);
3146 
3147 	block = kmalloc(sizeof(*block), GFP_NOFS);
3148 	if (!block)
3149 		return -ENOMEM;
3150 
3151 	block->bytenr = extent_key->objectid;
3152 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3153 	block->key.offset = generation;
3154 	block->level = level;
3155 	block->key_ready = false;
3156 	block->owner = owner;
3157 
3158 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3159 	if (rb_node)
3160 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3161 				    -EEXIST);
3162 
3163 	return 0;
3164 }
3165 
3166 /*
3167  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3168  */
3169 static int __add_tree_block(struct reloc_control *rc,
3170 			    u64 bytenr, u32 blocksize,
3171 			    struct rb_root *blocks)
3172 {
3173 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3174 	struct btrfs_path *path;
3175 	struct btrfs_key key;
3176 	int ret;
3177 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3178 
3179 	if (tree_block_processed(bytenr, rc))
3180 		return 0;
3181 
3182 	if (rb_simple_search(blocks, bytenr))
3183 		return 0;
3184 
3185 	path = btrfs_alloc_path();
3186 	if (!path)
3187 		return -ENOMEM;
3188 again:
3189 	key.objectid = bytenr;
3190 	if (skinny) {
3191 		key.type = BTRFS_METADATA_ITEM_KEY;
3192 		key.offset = (u64)-1;
3193 	} else {
3194 		key.type = BTRFS_EXTENT_ITEM_KEY;
3195 		key.offset = blocksize;
3196 	}
3197 
3198 	path->search_commit_root = 1;
3199 	path->skip_locking = 1;
3200 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3201 	if (ret < 0)
3202 		goto out;
3203 
3204 	if (ret > 0 && skinny) {
3205 		if (path->slots[0]) {
3206 			path->slots[0]--;
3207 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3208 					      path->slots[0]);
3209 			if (key.objectid == bytenr &&
3210 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3211 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3212 			      key.offset == blocksize)))
3213 				ret = 0;
3214 		}
3215 
3216 		if (ret) {
3217 			skinny = false;
3218 			btrfs_release_path(path);
3219 			goto again;
3220 		}
3221 	}
3222 	if (ret) {
3223 		ASSERT(ret == 1);
3224 		btrfs_print_leaf(path->nodes[0]);
3225 		btrfs_err(fs_info,
3226 	     "tree block extent item (%llu) is not found in extent tree",
3227 		     bytenr);
3228 		WARN_ON(1);
3229 		ret = -EINVAL;
3230 		goto out;
3231 	}
3232 
3233 	ret = add_tree_block(rc, &key, path, blocks);
3234 out:
3235 	btrfs_free_path(path);
3236 	return ret;
3237 }
3238 
3239 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3240 				    struct inode *inode,
3241 				    u64 ino)
3242 {
3243 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3244 	struct btrfs_root *root = fs_info->tree_root;
3245 	struct btrfs_trans_handle *trans;
3246 	struct btrfs_inode *btrfs_inode;
3247 	int ret = 0;
3248 
3249 	if (inode)
3250 		goto truncate;
3251 
3252 	btrfs_inode = btrfs_iget(ino, root);
3253 	if (IS_ERR(btrfs_inode))
3254 		return -ENOENT;
3255 	inode = &btrfs_inode->vfs_inode;
3256 
3257 truncate:
3258 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3259 						 &fs_info->global_block_rsv);
3260 	if (ret)
3261 		goto out;
3262 
3263 	trans = btrfs_join_transaction(root);
3264 	if (IS_ERR(trans)) {
3265 		ret = PTR_ERR(trans);
3266 		goto out;
3267 	}
3268 
3269 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3270 
3271 	btrfs_end_transaction(trans);
3272 	btrfs_btree_balance_dirty(fs_info);
3273 out:
3274 	iput(inode);
3275 	return ret;
3276 }
3277 
3278 /*
3279  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3280  * cache inode, to avoid free space cache data extent blocking data relocation.
3281  */
3282 static int delete_v1_space_cache(struct extent_buffer *leaf,
3283 				 struct btrfs_block_group *block_group,
3284 				 u64 data_bytenr)
3285 {
3286 	u64 space_cache_ino;
3287 	struct btrfs_file_extent_item *ei;
3288 	struct btrfs_key key;
3289 	bool found = false;
3290 	int i;
3291 	int ret;
3292 
3293 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3294 		return 0;
3295 
3296 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3297 		u8 type;
3298 
3299 		btrfs_item_key_to_cpu(leaf, &key, i);
3300 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3301 			continue;
3302 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3303 		type = btrfs_file_extent_type(leaf, ei);
3304 
3305 		if ((type == BTRFS_FILE_EXTENT_REG ||
3306 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3307 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3308 			found = true;
3309 			space_cache_ino = key.objectid;
3310 			break;
3311 		}
3312 	}
3313 	if (!found)
3314 		return -ENOENT;
3315 	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3316 	return ret;
3317 }
3318 
3319 /*
3320  * helper to find all tree blocks that reference a given data extent
3321  */
3322 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3323 						  const struct btrfs_key *extent_key,
3324 						  struct btrfs_path *path,
3325 						  struct rb_root *blocks)
3326 {
3327 	struct btrfs_backref_walk_ctx ctx = { 0 };
3328 	struct ulist_iterator leaf_uiter;
3329 	struct ulist_node *ref_node = NULL;
3330 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3331 	int ret = 0;
3332 
3333 	btrfs_release_path(path);
3334 
3335 	ctx.bytenr = extent_key->objectid;
3336 	ctx.skip_inode_ref_list = true;
3337 	ctx.fs_info = rc->extent_root->fs_info;
3338 
3339 	ret = btrfs_find_all_leafs(&ctx);
3340 	if (ret < 0)
3341 		return ret;
3342 
3343 	ULIST_ITER_INIT(&leaf_uiter);
3344 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3345 		struct btrfs_tree_parent_check check = { 0 };
3346 		struct extent_buffer *eb;
3347 
3348 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3349 		if (IS_ERR(eb)) {
3350 			ret = PTR_ERR(eb);
3351 			break;
3352 		}
3353 		ret = delete_v1_space_cache(eb, rc->block_group,
3354 					    extent_key->objectid);
3355 		free_extent_buffer(eb);
3356 		if (ret < 0)
3357 			break;
3358 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3359 		if (ret < 0)
3360 			break;
3361 	}
3362 	if (ret < 0)
3363 		free_block_list(blocks);
3364 	ulist_free(ctx.refs);
3365 	return ret;
3366 }
3367 
3368 /*
3369  * helper to find next unprocessed extent
3370  */
3371 static noinline_for_stack
3372 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3373 		     struct btrfs_key *extent_key)
3374 {
3375 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3376 	struct btrfs_key key;
3377 	struct extent_buffer *leaf;
3378 	u64 start, end, last;
3379 	int ret;
3380 
3381 	last = rc->block_group->start + rc->block_group->length;
3382 	while (1) {
3383 		bool block_found;
3384 
3385 		cond_resched();
3386 		if (rc->search_start >= last) {
3387 			ret = 1;
3388 			break;
3389 		}
3390 
3391 		key.objectid = rc->search_start;
3392 		key.type = BTRFS_EXTENT_ITEM_KEY;
3393 		key.offset = 0;
3394 
3395 		path->search_commit_root = 1;
3396 		path->skip_locking = 1;
3397 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3398 					0, 0);
3399 		if (ret < 0)
3400 			break;
3401 next:
3402 		leaf = path->nodes[0];
3403 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3404 			ret = btrfs_next_leaf(rc->extent_root, path);
3405 			if (ret != 0)
3406 				break;
3407 			leaf = path->nodes[0];
3408 		}
3409 
3410 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3411 		if (key.objectid >= last) {
3412 			ret = 1;
3413 			break;
3414 		}
3415 
3416 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3417 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3418 			path->slots[0]++;
3419 			goto next;
3420 		}
3421 
3422 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3423 		    key.objectid + key.offset <= rc->search_start) {
3424 			path->slots[0]++;
3425 			goto next;
3426 		}
3427 
3428 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3429 		    key.objectid + fs_info->nodesize <=
3430 		    rc->search_start) {
3431 			path->slots[0]++;
3432 			goto next;
3433 		}
3434 
3435 		block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3436 							  key.objectid, &start, &end,
3437 							  EXTENT_DIRTY, NULL);
3438 
3439 		if (block_found && start <= key.objectid) {
3440 			btrfs_release_path(path);
3441 			rc->search_start = end + 1;
3442 		} else {
3443 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3444 				rc->search_start = key.objectid + key.offset;
3445 			else
3446 				rc->search_start = key.objectid +
3447 					fs_info->nodesize;
3448 			memcpy(extent_key, &key, sizeof(key));
3449 			return 0;
3450 		}
3451 	}
3452 	btrfs_release_path(path);
3453 	return ret;
3454 }
3455 
3456 static void set_reloc_control(struct reloc_control *rc)
3457 {
3458 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3459 
3460 	mutex_lock(&fs_info->reloc_mutex);
3461 	fs_info->reloc_ctl = rc;
3462 	mutex_unlock(&fs_info->reloc_mutex);
3463 }
3464 
3465 static void unset_reloc_control(struct reloc_control *rc)
3466 {
3467 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3468 
3469 	mutex_lock(&fs_info->reloc_mutex);
3470 	fs_info->reloc_ctl = NULL;
3471 	mutex_unlock(&fs_info->reloc_mutex);
3472 }
3473 
3474 static noinline_for_stack
3475 int prepare_to_relocate(struct reloc_control *rc)
3476 {
3477 	struct btrfs_trans_handle *trans;
3478 	int ret;
3479 
3480 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3481 					      BTRFS_BLOCK_RSV_TEMP);
3482 	if (!rc->block_rsv)
3483 		return -ENOMEM;
3484 
3485 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3486 	rc->search_start = rc->block_group->start;
3487 	rc->extents_found = 0;
3488 	rc->nodes_relocated = 0;
3489 	rc->merging_rsv_size = 0;
3490 	rc->reserved_bytes = 0;
3491 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3492 			      RELOCATION_RESERVED_NODES;
3493 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3494 				     rc->block_rsv, rc->block_rsv->size,
3495 				     BTRFS_RESERVE_FLUSH_ALL);
3496 	if (ret)
3497 		return ret;
3498 
3499 	rc->create_reloc_tree = true;
3500 	set_reloc_control(rc);
3501 
3502 	trans = btrfs_join_transaction(rc->extent_root);
3503 	if (IS_ERR(trans)) {
3504 		unset_reloc_control(rc);
3505 		/*
3506 		 * extent tree is not a ref_cow tree and has no reloc_root to
3507 		 * cleanup.  And callers are responsible to free the above
3508 		 * block rsv.
3509 		 */
3510 		return PTR_ERR(trans);
3511 	}
3512 
3513 	ret = btrfs_commit_transaction(trans);
3514 	if (ret)
3515 		unset_reloc_control(rc);
3516 
3517 	return ret;
3518 }
3519 
3520 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3521 {
3522 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3523 	struct rb_root blocks = RB_ROOT;
3524 	struct btrfs_key key;
3525 	struct btrfs_trans_handle *trans = NULL;
3526 	struct btrfs_path *path;
3527 	struct btrfs_extent_item *ei;
3528 	u64 flags;
3529 	int ret;
3530 	int err = 0;
3531 	int progress = 0;
3532 
3533 	path = btrfs_alloc_path();
3534 	if (!path)
3535 		return -ENOMEM;
3536 	path->reada = READA_FORWARD;
3537 
3538 	ret = prepare_to_relocate(rc);
3539 	if (ret) {
3540 		err = ret;
3541 		goto out_free;
3542 	}
3543 
3544 	while (1) {
3545 		rc->reserved_bytes = 0;
3546 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3547 					     rc->block_rsv->size,
3548 					     BTRFS_RESERVE_FLUSH_ALL);
3549 		if (ret) {
3550 			err = ret;
3551 			break;
3552 		}
3553 		progress++;
3554 		trans = btrfs_start_transaction(rc->extent_root, 0);
3555 		if (IS_ERR(trans)) {
3556 			err = PTR_ERR(trans);
3557 			trans = NULL;
3558 			break;
3559 		}
3560 restart:
3561 		if (rc->backref_cache.last_trans != trans->transid)
3562 			btrfs_backref_release_cache(&rc->backref_cache);
3563 		rc->backref_cache.last_trans = trans->transid;
3564 
3565 		ret = find_next_extent(rc, path, &key);
3566 		if (ret < 0)
3567 			err = ret;
3568 		if (ret != 0)
3569 			break;
3570 
3571 		rc->extents_found++;
3572 
3573 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3574 				    struct btrfs_extent_item);
3575 		flags = btrfs_extent_flags(path->nodes[0], ei);
3576 
3577 		/*
3578 		 * If we are relocating a simple quota owned extent item, we
3579 		 * need to note the owner on the reloc data root so that when
3580 		 * we allocate the replacement item, we can attribute it to the
3581 		 * correct eventual owner (rather than the reloc data root).
3582 		 */
3583 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3584 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3585 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3586 								 path->nodes[0],
3587 								 path->slots[0]);
3588 
3589 			root->relocation_src_root = owning_root_id;
3590 		}
3591 
3592 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3593 			ret = add_tree_block(rc, &key, path, &blocks);
3594 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3595 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3596 			ret = add_data_references(rc, &key, path, &blocks);
3597 		} else {
3598 			btrfs_release_path(path);
3599 			ret = 0;
3600 		}
3601 		if (ret < 0) {
3602 			err = ret;
3603 			break;
3604 		}
3605 
3606 		if (!RB_EMPTY_ROOT(&blocks)) {
3607 			ret = relocate_tree_blocks(trans, rc, &blocks);
3608 			if (ret < 0) {
3609 				if (ret != -EAGAIN) {
3610 					err = ret;
3611 					break;
3612 				}
3613 				rc->extents_found--;
3614 				rc->search_start = key.objectid;
3615 			}
3616 		}
3617 
3618 		btrfs_end_transaction_throttle(trans);
3619 		btrfs_btree_balance_dirty(fs_info);
3620 		trans = NULL;
3621 
3622 		if (rc->stage == MOVE_DATA_EXTENTS &&
3623 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3624 			rc->found_file_extent = true;
3625 			ret = relocate_data_extent(rc, &key);
3626 			if (ret < 0) {
3627 				err = ret;
3628 				break;
3629 			}
3630 		}
3631 		if (btrfs_should_cancel_balance(fs_info)) {
3632 			err = -ECANCELED;
3633 			break;
3634 		}
3635 	}
3636 	if (trans && progress && err == -ENOSPC) {
3637 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3638 		if (ret == 1) {
3639 			err = 0;
3640 			progress = 0;
3641 			goto restart;
3642 		}
3643 	}
3644 
3645 	btrfs_release_path(path);
3646 	btrfs_clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3647 
3648 	if (trans) {
3649 		btrfs_end_transaction_throttle(trans);
3650 		btrfs_btree_balance_dirty(fs_info);
3651 	}
3652 
3653 	if (!err) {
3654 		ret = relocate_file_extent_cluster(rc);
3655 		if (ret < 0)
3656 			err = ret;
3657 	}
3658 
3659 	rc->create_reloc_tree = false;
3660 	set_reloc_control(rc);
3661 
3662 	btrfs_backref_release_cache(&rc->backref_cache);
3663 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3664 
3665 	/*
3666 	 * Even in the case when the relocation is cancelled, we should all go
3667 	 * through prepare_to_merge() and merge_reloc_roots().
3668 	 *
3669 	 * For error (including cancelled balance), prepare_to_merge() will
3670 	 * mark all reloc trees orphan, then queue them for cleanup in
3671 	 * merge_reloc_roots()
3672 	 */
3673 	err = prepare_to_merge(rc, err);
3674 
3675 	merge_reloc_roots(rc);
3676 
3677 	rc->merge_reloc_tree = false;
3678 	unset_reloc_control(rc);
3679 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3680 
3681 	/* get rid of pinned extents */
3682 	trans = btrfs_join_transaction(rc->extent_root);
3683 	if (IS_ERR(trans)) {
3684 		err = PTR_ERR(trans);
3685 		goto out_free;
3686 	}
3687 	ret = btrfs_commit_transaction(trans);
3688 	if (ret && !err)
3689 		err = ret;
3690 out_free:
3691 	ret = clean_dirty_subvols(rc);
3692 	if (ret < 0 && !err)
3693 		err = ret;
3694 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3695 	btrfs_free_path(path);
3696 	return err;
3697 }
3698 
3699 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3700 				 struct btrfs_root *root, u64 objectid)
3701 {
3702 	struct btrfs_path *path;
3703 	struct btrfs_inode_item *item;
3704 	struct extent_buffer *leaf;
3705 	int ret;
3706 
3707 	path = btrfs_alloc_path();
3708 	if (!path)
3709 		return -ENOMEM;
3710 
3711 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3712 	if (ret)
3713 		goto out;
3714 
3715 	leaf = path->nodes[0];
3716 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3717 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3718 	btrfs_set_inode_generation(leaf, item, 1);
3719 	btrfs_set_inode_size(leaf, item, 0);
3720 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3721 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3722 					  BTRFS_INODE_PREALLOC);
3723 out:
3724 	btrfs_free_path(path);
3725 	return ret;
3726 }
3727 
3728 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3729 				struct btrfs_root *root, u64 objectid)
3730 {
3731 	struct btrfs_path *path;
3732 	struct btrfs_key key;
3733 	int ret = 0;
3734 
3735 	path = btrfs_alloc_path();
3736 	if (!path) {
3737 		ret = -ENOMEM;
3738 		goto out;
3739 	}
3740 
3741 	key.objectid = objectid;
3742 	key.type = BTRFS_INODE_ITEM_KEY;
3743 	key.offset = 0;
3744 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3745 	if (ret) {
3746 		if (ret > 0)
3747 			ret = -ENOENT;
3748 		goto out;
3749 	}
3750 	ret = btrfs_del_item(trans, root, path);
3751 out:
3752 	if (ret)
3753 		btrfs_abort_transaction(trans, ret);
3754 	btrfs_free_path(path);
3755 }
3756 
3757 /*
3758  * helper to create inode for data relocation.
3759  * the inode is in data relocation tree and its link count is 0
3760  */
3761 static noinline_for_stack struct inode *create_reloc_inode(
3762 					const struct btrfs_block_group *group)
3763 {
3764 	struct btrfs_fs_info *fs_info = group->fs_info;
3765 	struct btrfs_inode *inode = NULL;
3766 	struct btrfs_trans_handle *trans;
3767 	struct btrfs_root *root;
3768 	u64 objectid;
3769 	int ret = 0;
3770 
3771 	root = btrfs_grab_root(fs_info->data_reloc_root);
3772 	trans = btrfs_start_transaction(root, 6);
3773 	if (IS_ERR(trans)) {
3774 		btrfs_put_root(root);
3775 		return ERR_CAST(trans);
3776 	}
3777 
3778 	ret = btrfs_get_free_objectid(root, &objectid);
3779 	if (ret)
3780 		goto out;
3781 
3782 	ret = __insert_orphan_inode(trans, root, objectid);
3783 	if (ret)
3784 		goto out;
3785 
3786 	inode = btrfs_iget(objectid, root);
3787 	if (IS_ERR(inode)) {
3788 		delete_orphan_inode(trans, root, objectid);
3789 		ret = PTR_ERR(inode);
3790 		inode = NULL;
3791 		goto out;
3792 	}
3793 	inode->reloc_block_group_start = group->start;
3794 
3795 	ret = btrfs_orphan_add(trans, inode);
3796 out:
3797 	btrfs_put_root(root);
3798 	btrfs_end_transaction(trans);
3799 	btrfs_btree_balance_dirty(fs_info);
3800 	if (ret) {
3801 		if (inode)
3802 			iput(&inode->vfs_inode);
3803 		return ERR_PTR(ret);
3804 	}
3805 	return &inode->vfs_inode;
3806 }
3807 
3808 /*
3809  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3810  * has been requested meanwhile and don't start in that case.
3811  *
3812  * Return:
3813  *   0             success
3814  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3815  *   -ECANCELED    cancellation request was set before the operation started
3816  */
3817 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3818 {
3819 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3820 		/* This should not happen */
3821 		btrfs_err(fs_info, "reloc already running, cannot start");
3822 		return -EINPROGRESS;
3823 	}
3824 
3825 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3826 		btrfs_info(fs_info, "chunk relocation canceled on start");
3827 		/*
3828 		 * On cancel, clear all requests but let the caller mark
3829 		 * the end after cleanup operations.
3830 		 */
3831 		atomic_set(&fs_info->reloc_cancel_req, 0);
3832 		return -ECANCELED;
3833 	}
3834 	return 0;
3835 }
3836 
3837 /*
3838  * Mark end of chunk relocation that is cancellable and wake any waiters.
3839  */
3840 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3841 {
3842 	/* Requested after start, clear bit first so any waiters can continue */
3843 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3844 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3845 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3846 	atomic_set(&fs_info->reloc_cancel_req, 0);
3847 }
3848 
3849 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3850 {
3851 	struct reloc_control *rc;
3852 
3853 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3854 	if (!rc)
3855 		return NULL;
3856 
3857 	INIT_LIST_HEAD(&rc->reloc_roots);
3858 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3859 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3860 	rc->reloc_root_tree.rb_root = RB_ROOT;
3861 	spin_lock_init(&rc->reloc_root_tree.lock);
3862 	btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3863 	return rc;
3864 }
3865 
3866 static void free_reloc_control(struct reloc_control *rc)
3867 {
3868 	struct mapping_node *node, *tmp;
3869 
3870 	free_reloc_roots(&rc->reloc_roots);
3871 	rbtree_postorder_for_each_entry_safe(node, tmp,
3872 			&rc->reloc_root_tree.rb_root, rb_node)
3873 		kfree(node);
3874 
3875 	kfree(rc);
3876 }
3877 
3878 /*
3879  * Print the block group being relocated
3880  */
3881 static void describe_relocation(struct btrfs_block_group *block_group)
3882 {
3883 	char buf[128] = {'\0'};
3884 
3885 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3886 
3887 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3888 		   block_group->start, buf);
3889 }
3890 
3891 static const char *stage_to_string(enum reloc_stage stage)
3892 {
3893 	if (stage == MOVE_DATA_EXTENTS)
3894 		return "move data extents";
3895 	if (stage == UPDATE_DATA_PTRS)
3896 		return "update data pointers";
3897 	return "unknown";
3898 }
3899 
3900 /*
3901  * function to relocate all extents in a block group.
3902  */
3903 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3904 {
3905 	struct btrfs_block_group *bg;
3906 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3907 	struct reloc_control *rc;
3908 	struct inode *inode;
3909 	struct btrfs_path *path;
3910 	int ret;
3911 	int rw = 0;
3912 	int err = 0;
3913 
3914 	/*
3915 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3916 	 * cannot allow relocation to start while we're still trying to clean up
3917 	 * these pending deletions.
3918 	 */
3919 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3920 	if (ret)
3921 		return ret;
3922 
3923 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3924 	if (btrfs_fs_closing(fs_info))
3925 		return -EINTR;
3926 
3927 	bg = btrfs_lookup_block_group(fs_info, group_start);
3928 	if (!bg)
3929 		return -ENOENT;
3930 
3931 	/*
3932 	 * Relocation of a data block group creates ordered extents.  Without
3933 	 * sb_start_write(), we can freeze the filesystem while unfinished
3934 	 * ordered extents are left. Such ordered extents can cause a deadlock
3935 	 * e.g. when syncfs() is waiting for their completion but they can't
3936 	 * finish because they block when joining a transaction, due to the
3937 	 * fact that the freeze locks are being held in write mode.
3938 	 */
3939 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3940 		ASSERT(sb_write_started(fs_info->sb));
3941 
3942 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3943 		btrfs_put_block_group(bg);
3944 		return -ETXTBSY;
3945 	}
3946 
3947 	rc = alloc_reloc_control(fs_info);
3948 	if (!rc) {
3949 		btrfs_put_block_group(bg);
3950 		return -ENOMEM;
3951 	}
3952 
3953 	ret = reloc_chunk_start(fs_info);
3954 	if (ret < 0) {
3955 		err = ret;
3956 		goto out_put_bg;
3957 	}
3958 
3959 	rc->extent_root = extent_root;
3960 	rc->block_group = bg;
3961 
3962 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3963 	if (ret) {
3964 		err = ret;
3965 		goto out;
3966 	}
3967 	rw = 1;
3968 
3969 	path = btrfs_alloc_path();
3970 	if (!path) {
3971 		err = -ENOMEM;
3972 		goto out;
3973 	}
3974 
3975 	inode = lookup_free_space_inode(rc->block_group, path);
3976 	btrfs_free_path(path);
3977 
3978 	if (!IS_ERR(inode))
3979 		ret = delete_block_group_cache(rc->block_group, inode, 0);
3980 	else
3981 		ret = PTR_ERR(inode);
3982 
3983 	if (ret && ret != -ENOENT) {
3984 		err = ret;
3985 		goto out;
3986 	}
3987 
3988 	rc->data_inode = create_reloc_inode(rc->block_group);
3989 	if (IS_ERR(rc->data_inode)) {
3990 		err = PTR_ERR(rc->data_inode);
3991 		rc->data_inode = NULL;
3992 		goto out;
3993 	}
3994 
3995 	describe_relocation(rc->block_group);
3996 
3997 	btrfs_wait_block_group_reservations(rc->block_group);
3998 	btrfs_wait_nocow_writers(rc->block_group);
3999 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4000 
4001 	ret = btrfs_zone_finish(rc->block_group);
4002 	WARN_ON(ret && ret != -EAGAIN);
4003 
4004 	while (1) {
4005 		enum reloc_stage finishes_stage;
4006 
4007 		mutex_lock(&fs_info->cleaner_mutex);
4008 		ret = relocate_block_group(rc);
4009 		mutex_unlock(&fs_info->cleaner_mutex);
4010 		if (ret < 0)
4011 			err = ret;
4012 
4013 		finishes_stage = rc->stage;
4014 		/*
4015 		 * We may have gotten ENOSPC after we already dirtied some
4016 		 * extents.  If writeout happens while we're relocating a
4017 		 * different block group we could end up hitting the
4018 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4019 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4020 		 * properly so we don't trip over this problem, and then break
4021 		 * out of the loop if we hit an error.
4022 		 */
4023 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4024 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4025 						       (u64)-1);
4026 			if (ret)
4027 				err = ret;
4028 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4029 						 0, -1);
4030 			rc->stage = UPDATE_DATA_PTRS;
4031 		}
4032 
4033 		if (err < 0)
4034 			goto out;
4035 
4036 		if (rc->extents_found == 0)
4037 			break;
4038 
4039 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4040 			   rc->extents_found, stage_to_string(finishes_stage));
4041 	}
4042 
4043 	WARN_ON(rc->block_group->pinned > 0);
4044 	WARN_ON(rc->block_group->reserved > 0);
4045 	WARN_ON(rc->block_group->used > 0);
4046 out:
4047 	if (err && rw)
4048 		btrfs_dec_block_group_ro(rc->block_group);
4049 	iput(rc->data_inode);
4050 out_put_bg:
4051 	btrfs_put_block_group(bg);
4052 	reloc_chunk_end(fs_info);
4053 	free_reloc_control(rc);
4054 	return err;
4055 }
4056 
4057 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4058 {
4059 	struct btrfs_fs_info *fs_info = root->fs_info;
4060 	struct btrfs_trans_handle *trans;
4061 	int ret, err;
4062 
4063 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4064 	if (IS_ERR(trans))
4065 		return PTR_ERR(trans);
4066 
4067 	memset(&root->root_item.drop_progress, 0,
4068 		sizeof(root->root_item.drop_progress));
4069 	btrfs_set_root_drop_level(&root->root_item, 0);
4070 	btrfs_set_root_refs(&root->root_item, 0);
4071 	ret = btrfs_update_root(trans, fs_info->tree_root,
4072 				&root->root_key, &root->root_item);
4073 
4074 	err = btrfs_end_transaction(trans);
4075 	if (err)
4076 		return err;
4077 	return ret;
4078 }
4079 
4080 /*
4081  * recover relocation interrupted by system crash.
4082  *
4083  * this function resumes merging reloc trees with corresponding fs trees.
4084  * this is important for keeping the sharing of tree blocks
4085  */
4086 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4087 {
4088 	LIST_HEAD(reloc_roots);
4089 	struct btrfs_key key;
4090 	struct btrfs_root *fs_root;
4091 	struct btrfs_root *reloc_root;
4092 	struct btrfs_path *path;
4093 	struct extent_buffer *leaf;
4094 	struct reloc_control *rc = NULL;
4095 	struct btrfs_trans_handle *trans;
4096 	int ret2;
4097 	int ret = 0;
4098 
4099 	path = btrfs_alloc_path();
4100 	if (!path)
4101 		return -ENOMEM;
4102 	path->reada = READA_BACK;
4103 
4104 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4105 	key.type = BTRFS_ROOT_ITEM_KEY;
4106 	key.offset = (u64)-1;
4107 
4108 	while (1) {
4109 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4110 					path, 0, 0);
4111 		if (ret < 0)
4112 			goto out;
4113 		if (ret > 0) {
4114 			if (path->slots[0] == 0)
4115 				break;
4116 			path->slots[0]--;
4117 		}
4118 		ret = 0;
4119 		leaf = path->nodes[0];
4120 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4121 		btrfs_release_path(path);
4122 
4123 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4124 		    key.type != BTRFS_ROOT_ITEM_KEY)
4125 			break;
4126 
4127 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4128 		if (IS_ERR(reloc_root)) {
4129 			ret = PTR_ERR(reloc_root);
4130 			goto out;
4131 		}
4132 
4133 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4134 		list_add(&reloc_root->root_list, &reloc_roots);
4135 
4136 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4137 			fs_root = btrfs_get_fs_root(fs_info,
4138 					reloc_root->root_key.offset, false);
4139 			if (IS_ERR(fs_root)) {
4140 				ret = PTR_ERR(fs_root);
4141 				if (ret != -ENOENT)
4142 					goto out;
4143 				ret = mark_garbage_root(reloc_root);
4144 				if (ret < 0)
4145 					goto out;
4146 				ret = 0;
4147 			} else {
4148 				btrfs_put_root(fs_root);
4149 			}
4150 		}
4151 
4152 		if (key.offset == 0)
4153 			break;
4154 
4155 		key.offset--;
4156 	}
4157 	btrfs_release_path(path);
4158 
4159 	if (list_empty(&reloc_roots))
4160 		goto out;
4161 
4162 	rc = alloc_reloc_control(fs_info);
4163 	if (!rc) {
4164 		ret = -ENOMEM;
4165 		goto out;
4166 	}
4167 
4168 	ret = reloc_chunk_start(fs_info);
4169 	if (ret < 0)
4170 		goto out_end;
4171 
4172 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4173 
4174 	set_reloc_control(rc);
4175 
4176 	trans = btrfs_join_transaction(rc->extent_root);
4177 	if (IS_ERR(trans)) {
4178 		ret = PTR_ERR(trans);
4179 		goto out_unset;
4180 	}
4181 
4182 	rc->merge_reloc_tree = true;
4183 
4184 	while (!list_empty(&reloc_roots)) {
4185 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4186 		list_del(&reloc_root->root_list);
4187 
4188 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4189 			list_add_tail(&reloc_root->root_list,
4190 				      &rc->reloc_roots);
4191 			continue;
4192 		}
4193 
4194 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4195 					    false);
4196 		if (IS_ERR(fs_root)) {
4197 			ret = PTR_ERR(fs_root);
4198 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4199 			btrfs_end_transaction(trans);
4200 			goto out_unset;
4201 		}
4202 
4203 		ret = __add_reloc_root(reloc_root);
4204 		ASSERT(ret != -EEXIST);
4205 		if (ret) {
4206 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4207 			btrfs_put_root(fs_root);
4208 			btrfs_end_transaction(trans);
4209 			goto out_unset;
4210 		}
4211 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4212 		btrfs_put_root(fs_root);
4213 	}
4214 
4215 	ret = btrfs_commit_transaction(trans);
4216 	if (ret)
4217 		goto out_unset;
4218 
4219 	merge_reloc_roots(rc);
4220 
4221 	unset_reloc_control(rc);
4222 
4223 	trans = btrfs_join_transaction(rc->extent_root);
4224 	if (IS_ERR(trans)) {
4225 		ret = PTR_ERR(trans);
4226 		goto out_clean;
4227 	}
4228 	ret = btrfs_commit_transaction(trans);
4229 out_clean:
4230 	ret2 = clean_dirty_subvols(rc);
4231 	if (ret2 < 0 && !ret)
4232 		ret = ret2;
4233 out_unset:
4234 	unset_reloc_control(rc);
4235 out_end:
4236 	reloc_chunk_end(fs_info);
4237 	free_reloc_control(rc);
4238 out:
4239 	free_reloc_roots(&reloc_roots);
4240 
4241 	btrfs_free_path(path);
4242 
4243 	if (ret == 0) {
4244 		/* cleanup orphan inode in data relocation tree */
4245 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4246 		ASSERT(fs_root);
4247 		ret = btrfs_orphan_cleanup(fs_root);
4248 		btrfs_put_root(fs_root);
4249 	}
4250 	return ret;
4251 }
4252 
4253 /*
4254  * helper to add ordered checksum for data relocation.
4255  *
4256  * cloning checksum properly handles the nodatasum extents.
4257  * it also saves CPU time to re-calculate the checksum.
4258  */
4259 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4260 {
4261 	struct btrfs_inode *inode = ordered->inode;
4262 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4263 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4264 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4265 	LIST_HEAD(list);
4266 	int ret;
4267 
4268 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4269 				      disk_bytenr + ordered->num_bytes - 1,
4270 				      &list, false);
4271 	if (ret < 0) {
4272 		btrfs_mark_ordered_extent_error(ordered);
4273 		return ret;
4274 	}
4275 
4276 	while (!list_empty(&list)) {
4277 		struct btrfs_ordered_sum *sums =
4278 			list_first_entry(&list, struct btrfs_ordered_sum, list);
4279 
4280 		list_del_init(&sums->list);
4281 
4282 		/*
4283 		 * We need to offset the new_bytenr based on where the csum is.
4284 		 * We need to do this because we will read in entire prealloc
4285 		 * extents but we may have written to say the middle of the
4286 		 * prealloc extent, so we need to make sure the csum goes with
4287 		 * the right disk offset.
4288 		 *
4289 		 * We can do this because the data reloc inode refers strictly
4290 		 * to the on disk bytes, so we don't have to worry about
4291 		 * disk_len vs real len like with real inodes since it's all
4292 		 * disk length.
4293 		 */
4294 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4295 		btrfs_add_ordered_sum(ordered, sums);
4296 	}
4297 
4298 	return 0;
4299 }
4300 
4301 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4302 			  struct btrfs_root *root,
4303 			  const struct extent_buffer *buf,
4304 			  struct extent_buffer *cow)
4305 {
4306 	struct btrfs_fs_info *fs_info = root->fs_info;
4307 	struct reloc_control *rc;
4308 	struct btrfs_backref_node *node;
4309 	int first_cow = 0;
4310 	int level;
4311 	int ret = 0;
4312 
4313 	rc = fs_info->reloc_ctl;
4314 	if (!rc)
4315 		return 0;
4316 
4317 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4318 
4319 	level = btrfs_header_level(buf);
4320 	if (btrfs_header_generation(buf) <=
4321 	    btrfs_root_last_snapshot(&root->root_item))
4322 		first_cow = 1;
4323 
4324 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4325 		WARN_ON(!first_cow && level == 0);
4326 
4327 		node = rc->backref_cache.path[level];
4328 
4329 		/*
4330 		 * If node->bytenr != buf->start and node->new_bytenr !=
4331 		 * buf->start then we've got the wrong backref node for what we
4332 		 * expected to see here and the cache is incorrect.
4333 		 */
4334 		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4335 			btrfs_err(fs_info,
4336 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4337 				  buf->start, node->bytenr, node->new_bytenr);
4338 			return -EUCLEAN;
4339 		}
4340 
4341 		btrfs_backref_drop_node_buffer(node);
4342 		atomic_inc(&cow->refs);
4343 		node->eb = cow;
4344 		node->new_bytenr = cow->start;
4345 
4346 		if (!node->pending) {
4347 			list_move_tail(&node->list,
4348 				       &rc->backref_cache.pending[level]);
4349 			node->pending = 1;
4350 		}
4351 
4352 		if (first_cow)
4353 			mark_block_processed(rc, node);
4354 
4355 		if (first_cow && level > 0)
4356 			rc->nodes_relocated += buf->len;
4357 	}
4358 
4359 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4360 		ret = replace_file_extents(trans, rc, root, cow);
4361 	return ret;
4362 }
4363 
4364 /*
4365  * called before creating snapshot. it calculates metadata reservation
4366  * required for relocating tree blocks in the snapshot
4367  */
4368 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4369 			      u64 *bytes_to_reserve)
4370 {
4371 	struct btrfs_root *root = pending->root;
4372 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4373 
4374 	if (!rc || !have_reloc_root(root))
4375 		return;
4376 
4377 	if (!rc->merge_reloc_tree)
4378 		return;
4379 
4380 	root = root->reloc_root;
4381 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4382 	/*
4383 	 * relocation is in the stage of merging trees. the space
4384 	 * used by merging a reloc tree is twice the size of
4385 	 * relocated tree nodes in the worst case. half for cowing
4386 	 * the reloc tree, half for cowing the fs tree. the space
4387 	 * used by cowing the reloc tree will be freed after the
4388 	 * tree is dropped. if we create snapshot, cowing the fs
4389 	 * tree may use more space than it frees. so we need
4390 	 * reserve extra space.
4391 	 */
4392 	*bytes_to_reserve += rc->nodes_relocated;
4393 }
4394 
4395 /*
4396  * called after snapshot is created. migrate block reservation
4397  * and create reloc root for the newly created snapshot
4398  *
4399  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4400  * references held on the reloc_root, one for root->reloc_root and one for
4401  * rc->reloc_roots.
4402  */
4403 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4404 			       struct btrfs_pending_snapshot *pending)
4405 {
4406 	struct btrfs_root *root = pending->root;
4407 	struct btrfs_root *reloc_root;
4408 	struct btrfs_root *new_root;
4409 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4410 	int ret;
4411 
4412 	if (!rc || !have_reloc_root(root))
4413 		return 0;
4414 
4415 	rc = root->fs_info->reloc_ctl;
4416 	rc->merging_rsv_size += rc->nodes_relocated;
4417 
4418 	if (rc->merge_reloc_tree) {
4419 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4420 					      rc->block_rsv,
4421 					      rc->nodes_relocated, true);
4422 		if (ret)
4423 			return ret;
4424 	}
4425 
4426 	new_root = pending->snap;
4427 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4428 	if (IS_ERR(reloc_root))
4429 		return PTR_ERR(reloc_root);
4430 
4431 	ret = __add_reloc_root(reloc_root);
4432 	ASSERT(ret != -EEXIST);
4433 	if (ret) {
4434 		/* Pairs with create_reloc_root */
4435 		btrfs_put_root(reloc_root);
4436 		return ret;
4437 	}
4438 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4439 	return 0;
4440 }
4441 
4442 /*
4443  * Get the current bytenr for the block group which is being relocated.
4444  *
4445  * Return U64_MAX if no running relocation.
4446  */
4447 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4448 {
4449 	u64 logical = U64_MAX;
4450 
4451 	lockdep_assert_held(&fs_info->reloc_mutex);
4452 
4453 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4454 		logical = fs_info->reloc_ctl->block_group->start;
4455 	return logical;
4456 }
4457