1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 #include "raid-stripe-tree.h" 40 41 /* 42 * Relocation overview 43 * 44 * [What does relocation do] 45 * 46 * The objective of relocation is to relocate all extents of the target block 47 * group to other block groups. 48 * This is utilized by resize (shrink only), profile converting, compacting 49 * space, or balance routine to spread chunks over devices. 50 * 51 * Before | After 52 * ------------------------------------------------------------------ 53 * BG A: 10 data extents | BG A: deleted 54 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 55 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 56 * 57 * [How does relocation work] 58 * 59 * 1. Mark the target block group read-only 60 * New extents won't be allocated from the target block group. 61 * 62 * 2.1 Record each extent in the target block group 63 * To build a proper map of extents to be relocated. 64 * 65 * 2.2 Build data reloc tree and reloc trees 66 * Data reloc tree will contain an inode, recording all newly relocated 67 * data extents. 68 * There will be only one data reloc tree for one data block group. 69 * 70 * Reloc tree will be a special snapshot of its source tree, containing 71 * relocated tree blocks. 72 * Each tree referring to a tree block in target block group will get its 73 * reloc tree built. 74 * 75 * 2.3 Swap source tree with its corresponding reloc tree 76 * Each involved tree only refers to new extents after swap. 77 * 78 * 3. Cleanup reloc trees and data reloc tree. 79 * As old extents in the target block group are still referenced by reloc 80 * trees, we need to clean them up before really freeing the target block 81 * group. 82 * 83 * The main complexity is in steps 2.2 and 2.3. 84 * 85 * The entry point of relocation is relocate_block_group() function. 86 */ 87 88 #define RELOCATION_RESERVED_NODES 256 89 /* 90 * map address of tree root to tree 91 */ 92 struct mapping_node { 93 struct { 94 struct rb_node rb_node; 95 u64 bytenr; 96 }; /* Use rb_simle_node for search/insert */ 97 void *data; 98 }; 99 100 struct mapping_tree { 101 struct rb_root rb_root; 102 spinlock_t lock; 103 }; 104 105 /* 106 * present a tree block to process 107 */ 108 struct tree_block { 109 struct { 110 struct rb_node rb_node; 111 u64 bytenr; 112 }; /* Use rb_simple_node for search/insert */ 113 u64 owner; 114 struct btrfs_key key; 115 u8 level; 116 bool key_ready; 117 }; 118 119 #define MAX_EXTENTS 128 120 121 struct file_extent_cluster { 122 u64 start; 123 u64 end; 124 u64 boundary[MAX_EXTENTS]; 125 unsigned int nr; 126 u64 owning_root; 127 }; 128 129 /* Stages of data relocation. */ 130 enum reloc_stage { 131 MOVE_DATA_EXTENTS, 132 UPDATE_DATA_PTRS 133 }; 134 135 struct reloc_control { 136 /* block group to relocate */ 137 struct btrfs_block_group *block_group; 138 /* extent tree */ 139 struct btrfs_root *extent_root; 140 /* inode for moving data */ 141 struct inode *data_inode; 142 143 struct btrfs_block_rsv *block_rsv; 144 145 struct btrfs_backref_cache backref_cache; 146 147 struct file_extent_cluster cluster; 148 /* tree blocks have been processed */ 149 struct extent_io_tree processed_blocks; 150 /* map start of tree root to corresponding reloc tree */ 151 struct mapping_tree reloc_root_tree; 152 /* list of reloc trees */ 153 struct list_head reloc_roots; 154 /* list of subvolume trees that get relocated */ 155 struct list_head dirty_subvol_roots; 156 /* size of metadata reservation for merging reloc trees */ 157 u64 merging_rsv_size; 158 /* size of relocated tree nodes */ 159 u64 nodes_relocated; 160 /* reserved size for block group relocation*/ 161 u64 reserved_bytes; 162 163 u64 search_start; 164 u64 extents_found; 165 166 enum reloc_stage stage; 167 bool create_reloc_tree; 168 bool merge_reloc_tree; 169 bool found_file_extent; 170 }; 171 172 static void mark_block_processed(struct reloc_control *rc, 173 struct btrfs_backref_node *node) 174 { 175 u32 blocksize; 176 177 if (node->level == 0 || 178 in_range(node->bytenr, rc->block_group->start, 179 rc->block_group->length)) { 180 blocksize = rc->extent_root->fs_info->nodesize; 181 btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr, 182 node->bytenr + blocksize - 1, EXTENT_DIRTY, 183 NULL); 184 } 185 node->processed = 1; 186 } 187 188 /* 189 * walk up backref nodes until reach node presents tree root 190 */ 191 static struct btrfs_backref_node *walk_up_backref( 192 struct btrfs_backref_node *node, 193 struct btrfs_backref_edge *edges[], int *index) 194 { 195 struct btrfs_backref_edge *edge; 196 int idx = *index; 197 198 while (!list_empty(&node->upper)) { 199 edge = list_first_entry(&node->upper, struct btrfs_backref_edge, 200 list[LOWER]); 201 edges[idx++] = edge; 202 node = edge->node[UPPER]; 203 } 204 BUG_ON(node->detached); 205 *index = idx; 206 return node; 207 } 208 209 /* 210 * walk down backref nodes to find start of next reference path 211 */ 212 static struct btrfs_backref_node *walk_down_backref( 213 struct btrfs_backref_edge *edges[], int *index) 214 { 215 struct btrfs_backref_edge *edge; 216 struct btrfs_backref_node *lower; 217 int idx = *index; 218 219 while (idx > 0) { 220 edge = edges[idx - 1]; 221 lower = edge->node[LOWER]; 222 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 223 idx--; 224 continue; 225 } 226 edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge, 227 list[LOWER]); 228 edges[idx - 1] = edge; 229 *index = idx; 230 return edge->node[UPPER]; 231 } 232 *index = 0; 233 return NULL; 234 } 235 236 static bool reloc_root_is_dead(const struct btrfs_root *root) 237 { 238 /* 239 * Pair with set_bit/clear_bit in clean_dirty_subvols and 240 * btrfs_update_reloc_root. We need to see the updated bit before 241 * trying to access reloc_root 242 */ 243 smp_rmb(); 244 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 245 return true; 246 return false; 247 } 248 249 /* 250 * Check if this subvolume tree has valid reloc tree. 251 * 252 * Reloc tree after swap is considered dead, thus not considered as valid. 253 * This is enough for most callers, as they don't distinguish dead reloc root 254 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 255 * special case. 256 */ 257 static bool have_reloc_root(const struct btrfs_root *root) 258 { 259 if (reloc_root_is_dead(root)) 260 return false; 261 if (!root->reloc_root) 262 return false; 263 return true; 264 } 265 266 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) 267 { 268 struct btrfs_root *reloc_root; 269 270 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 271 return false; 272 273 /* This root has been merged with its reloc tree, we can ignore it */ 274 if (reloc_root_is_dead(root)) 275 return true; 276 277 reloc_root = root->reloc_root; 278 if (!reloc_root) 279 return false; 280 281 if (btrfs_header_generation(reloc_root->commit_root) == 282 root->fs_info->running_transaction->transid) 283 return false; 284 /* 285 * If there is reloc tree and it was created in previous transaction 286 * backref lookup can find the reloc tree, so backref node for the fs 287 * tree root is useless for relocation. 288 */ 289 return true; 290 } 291 292 /* 293 * find reloc tree by address of tree root 294 */ 295 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 296 { 297 struct reloc_control *rc = fs_info->reloc_ctl; 298 struct rb_node *rb_node; 299 struct mapping_node *node; 300 struct btrfs_root *root = NULL; 301 302 ASSERT(rc); 303 spin_lock(&rc->reloc_root_tree.lock); 304 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 305 if (rb_node) { 306 node = rb_entry(rb_node, struct mapping_node, rb_node); 307 root = node->data; 308 } 309 spin_unlock(&rc->reloc_root_tree.lock); 310 return btrfs_grab_root(root); 311 } 312 313 /* 314 * For useless nodes, do two major clean ups: 315 * 316 * - Cleanup the children edges and nodes 317 * If child node is also orphan (no parent) during cleanup, then the child 318 * node will also be cleaned up. 319 * 320 * - Freeing up leaves (level 0), keeps nodes detached 321 * For nodes, the node is still cached as "detached" 322 * 323 * Return false if @node is not in the @useless_nodes list. 324 * Return true if @node is in the @useless_nodes list. 325 */ 326 static bool handle_useless_nodes(struct reloc_control *rc, 327 struct btrfs_backref_node *node) 328 { 329 struct btrfs_backref_cache *cache = &rc->backref_cache; 330 struct list_head *useless_node = &cache->useless_node; 331 bool ret = false; 332 333 while (!list_empty(useless_node)) { 334 struct btrfs_backref_node *cur; 335 336 cur = list_first_entry(useless_node, struct btrfs_backref_node, 337 list); 338 list_del_init(&cur->list); 339 340 /* Only tree root nodes can be added to @useless_nodes */ 341 ASSERT(list_empty(&cur->upper)); 342 343 if (cur == node) 344 ret = true; 345 346 /* Cleanup the lower edges */ 347 while (!list_empty(&cur->lower)) { 348 struct btrfs_backref_edge *edge; 349 struct btrfs_backref_node *lower; 350 351 edge = list_first_entry(&cur->lower, struct btrfs_backref_edge, 352 list[UPPER]); 353 list_del(&edge->list[UPPER]); 354 list_del(&edge->list[LOWER]); 355 lower = edge->node[LOWER]; 356 btrfs_backref_free_edge(cache, edge); 357 358 /* Child node is also orphan, queue for cleanup */ 359 if (list_empty(&lower->upper)) 360 list_add(&lower->list, useless_node); 361 } 362 /* Mark this block processed for relocation */ 363 mark_block_processed(rc, cur); 364 365 /* 366 * Backref nodes for tree leaves are deleted from the cache. 367 * Backref nodes for upper level tree blocks are left in the 368 * cache to avoid unnecessary backref lookup. 369 */ 370 if (cur->level > 0) { 371 cur->detached = 1; 372 } else { 373 rb_erase(&cur->rb_node, &cache->rb_root); 374 btrfs_backref_free_node(cache, cur); 375 } 376 } 377 return ret; 378 } 379 380 /* 381 * Build backref tree for a given tree block. Root of the backref tree 382 * corresponds the tree block, leaves of the backref tree correspond roots of 383 * b-trees that reference the tree block. 384 * 385 * The basic idea of this function is check backrefs of a given block to find 386 * upper level blocks that reference the block, and then check backrefs of 387 * these upper level blocks recursively. The recursion stops when tree root is 388 * reached or backrefs for the block is cached. 389 * 390 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 391 * all upper level blocks that directly/indirectly reference the block are also 392 * cached. 393 */ 394 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 395 struct btrfs_trans_handle *trans, 396 struct reloc_control *rc, struct btrfs_key *node_key, 397 int level, u64 bytenr) 398 { 399 struct btrfs_backref_iter *iter; 400 struct btrfs_backref_cache *cache = &rc->backref_cache; 401 /* For searching parent of TREE_BLOCK_REF */ 402 struct btrfs_path *path; 403 struct btrfs_backref_node *cur; 404 struct btrfs_backref_node *node = NULL; 405 struct btrfs_backref_edge *edge; 406 int ret; 407 408 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 409 if (!iter) 410 return ERR_PTR(-ENOMEM); 411 path = btrfs_alloc_path(); 412 if (!path) { 413 ret = -ENOMEM; 414 goto out; 415 } 416 417 node = btrfs_backref_alloc_node(cache, bytenr, level); 418 if (!node) { 419 ret = -ENOMEM; 420 goto out; 421 } 422 423 cur = node; 424 425 /* Breadth-first search to build backref cache */ 426 do { 427 ret = btrfs_backref_add_tree_node(trans, cache, path, iter, 428 node_key, cur); 429 if (ret < 0) 430 goto out; 431 432 edge = list_first_entry_or_null(&cache->pending_edge, 433 struct btrfs_backref_edge, list[UPPER]); 434 /* 435 * The pending list isn't empty, take the first block to 436 * process 437 */ 438 if (edge) { 439 list_del_init(&edge->list[UPPER]); 440 cur = edge->node[UPPER]; 441 } 442 } while (edge); 443 444 /* Finish the upper linkage of newly added edges/nodes */ 445 ret = btrfs_backref_finish_upper_links(cache, node); 446 if (ret < 0) 447 goto out; 448 449 if (handle_useless_nodes(rc, node)) 450 node = NULL; 451 out: 452 btrfs_free_path(iter->path); 453 kfree(iter); 454 btrfs_free_path(path); 455 if (ret) { 456 btrfs_backref_error_cleanup(cache, node); 457 return ERR_PTR(ret); 458 } 459 ASSERT(!node || !node->detached); 460 ASSERT(list_empty(&cache->useless_node) && 461 list_empty(&cache->pending_edge)); 462 return node; 463 } 464 465 /* 466 * helper to add 'address of tree root -> reloc tree' mapping 467 */ 468 static int __add_reloc_root(struct btrfs_root *root) 469 { 470 struct btrfs_fs_info *fs_info = root->fs_info; 471 struct rb_node *rb_node; 472 struct mapping_node *node; 473 struct reloc_control *rc = fs_info->reloc_ctl; 474 475 node = kmalloc(sizeof(*node), GFP_NOFS); 476 if (!node) 477 return -ENOMEM; 478 479 node->bytenr = root->commit_root->start; 480 node->data = root; 481 482 spin_lock(&rc->reloc_root_tree.lock); 483 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 484 node->bytenr, &node->rb_node); 485 spin_unlock(&rc->reloc_root_tree.lock); 486 if (rb_node) { 487 btrfs_err(fs_info, 488 "Duplicate root found for start=%llu while inserting into relocation tree", 489 node->bytenr); 490 return -EEXIST; 491 } 492 493 list_add_tail(&root->root_list, &rc->reloc_roots); 494 return 0; 495 } 496 497 /* 498 * helper to delete the 'address of tree root -> reloc tree' 499 * mapping 500 */ 501 static void __del_reloc_root(struct btrfs_root *root) 502 { 503 struct btrfs_fs_info *fs_info = root->fs_info; 504 struct rb_node *rb_node; 505 struct mapping_node *node = NULL; 506 struct reloc_control *rc = fs_info->reloc_ctl; 507 bool put_ref = false; 508 509 if (rc && root->node) { 510 spin_lock(&rc->reloc_root_tree.lock); 511 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 512 root->commit_root->start); 513 if (rb_node) { 514 node = rb_entry(rb_node, struct mapping_node, rb_node); 515 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 516 RB_CLEAR_NODE(&node->rb_node); 517 } 518 spin_unlock(&rc->reloc_root_tree.lock); 519 ASSERT(!node || (struct btrfs_root *)node->data == root); 520 } 521 522 /* 523 * We only put the reloc root here if it's on the list. There's a lot 524 * of places where the pattern is to splice the rc->reloc_roots, process 525 * the reloc roots, and then add the reloc root back onto 526 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 527 * list we don't want the reference being dropped, because the guy 528 * messing with the list is in charge of the reference. 529 */ 530 spin_lock(&fs_info->trans_lock); 531 if (!list_empty(&root->root_list)) { 532 put_ref = true; 533 list_del_init(&root->root_list); 534 } 535 spin_unlock(&fs_info->trans_lock); 536 if (put_ref) 537 btrfs_put_root(root); 538 kfree(node); 539 } 540 541 /* 542 * helper to update the 'address of tree root -> reloc tree' 543 * mapping 544 */ 545 static int __update_reloc_root(struct btrfs_root *root) 546 { 547 struct btrfs_fs_info *fs_info = root->fs_info; 548 struct rb_node *rb_node; 549 struct mapping_node *node = NULL; 550 struct reloc_control *rc = fs_info->reloc_ctl; 551 552 spin_lock(&rc->reloc_root_tree.lock); 553 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 554 root->commit_root->start); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct mapping_node, rb_node); 557 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 558 } 559 spin_unlock(&rc->reloc_root_tree.lock); 560 561 if (!node) 562 return 0; 563 BUG_ON((struct btrfs_root *)node->data != root); 564 565 spin_lock(&rc->reloc_root_tree.lock); 566 node->bytenr = root->node->start; 567 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 568 node->bytenr, &node->rb_node); 569 spin_unlock(&rc->reloc_root_tree.lock); 570 if (rb_node) 571 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 572 return 0; 573 } 574 575 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, u64 objectid) 577 { 578 struct btrfs_fs_info *fs_info = root->fs_info; 579 struct btrfs_root *reloc_root; 580 struct extent_buffer *eb; 581 struct btrfs_root_item *root_item; 582 struct btrfs_key root_key; 583 int ret = 0; 584 bool must_abort = false; 585 586 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 587 if (!root_item) 588 return ERR_PTR(-ENOMEM); 589 590 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 591 root_key.type = BTRFS_ROOT_ITEM_KEY; 592 root_key.offset = objectid; 593 594 if (btrfs_root_id(root) == objectid) { 595 u64 commit_root_gen; 596 597 /* called by btrfs_init_reloc_root */ 598 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 599 BTRFS_TREE_RELOC_OBJECTID); 600 if (ret) 601 goto fail; 602 603 /* 604 * Set the last_snapshot field to the generation of the commit 605 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 606 * correctly (returns true) when the relocation root is created 607 * either inside the critical section of a transaction commit 608 * (through transaction.c:qgroup_account_snapshot()) and when 609 * it's created before the transaction commit is started. 610 */ 611 commit_root_gen = btrfs_header_generation(root->commit_root); 612 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 613 } else { 614 /* 615 * called by btrfs_reloc_post_snapshot_hook. 616 * the source tree is a reloc tree, all tree blocks 617 * modified after it was created have RELOC flag 618 * set in their headers. so it's OK to not update 619 * the 'last_snapshot'. 620 */ 621 ret = btrfs_copy_root(trans, root, root->node, &eb, 622 BTRFS_TREE_RELOC_OBJECTID); 623 if (ret) 624 goto fail; 625 } 626 627 /* 628 * We have changed references at this point, we must abort the 629 * transaction if anything fails. 630 */ 631 must_abort = true; 632 633 memcpy(root_item, &root->root_item, sizeof(*root_item)); 634 btrfs_set_root_bytenr(root_item, eb->start); 635 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 636 btrfs_set_root_generation(root_item, trans->transid); 637 638 if (btrfs_root_id(root) == objectid) { 639 btrfs_set_root_refs(root_item, 0); 640 memset(&root_item->drop_progress, 0, 641 sizeof(struct btrfs_disk_key)); 642 btrfs_set_root_drop_level(root_item, 0); 643 } 644 645 btrfs_tree_unlock(eb); 646 free_extent_buffer(eb); 647 648 ret = btrfs_insert_root(trans, fs_info->tree_root, 649 &root_key, root_item); 650 if (ret) 651 goto fail; 652 653 kfree(root_item); 654 655 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 656 if (IS_ERR(reloc_root)) { 657 ret = PTR_ERR(reloc_root); 658 goto abort; 659 } 660 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 661 btrfs_set_root_last_trans(reloc_root, trans->transid); 662 return reloc_root; 663 fail: 664 kfree(root_item); 665 abort: 666 if (must_abort) 667 btrfs_abort_transaction(trans, ret); 668 return ERR_PTR(ret); 669 } 670 671 /* 672 * create reloc tree for a given fs tree. reloc tree is just a 673 * snapshot of the fs tree with special root objectid. 674 * 675 * The reloc_root comes out of here with two references, one for 676 * root->reloc_root, and another for being on the rc->reloc_roots list. 677 */ 678 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 679 struct btrfs_root *root) 680 { 681 struct btrfs_fs_info *fs_info = root->fs_info; 682 struct btrfs_root *reloc_root; 683 struct reloc_control *rc = fs_info->reloc_ctl; 684 struct btrfs_block_rsv *rsv; 685 int clear_rsv = 0; 686 int ret; 687 688 if (!rc) 689 return 0; 690 691 /* 692 * The subvolume has reloc tree but the swap is finished, no need to 693 * create/update the dead reloc tree 694 */ 695 if (reloc_root_is_dead(root)) 696 return 0; 697 698 /* 699 * This is subtle but important. We do not do 700 * record_root_in_transaction for reloc roots, instead we record their 701 * corresponding fs root, and then here we update the last trans for the 702 * reloc root. This means that we have to do this for the entire life 703 * of the reloc root, regardless of which stage of the relocation we are 704 * in. 705 */ 706 if (root->reloc_root) { 707 reloc_root = root->reloc_root; 708 btrfs_set_root_last_trans(reloc_root, trans->transid); 709 return 0; 710 } 711 712 /* 713 * We are merging reloc roots, we do not need new reloc trees. Also 714 * reloc trees never need their own reloc tree. 715 */ 716 if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 717 return 0; 718 719 if (!trans->reloc_reserved) { 720 rsv = trans->block_rsv; 721 trans->block_rsv = rc->block_rsv; 722 clear_rsv = 1; 723 } 724 reloc_root = create_reloc_root(trans, root, btrfs_root_id(root)); 725 if (clear_rsv) 726 trans->block_rsv = rsv; 727 if (IS_ERR(reloc_root)) 728 return PTR_ERR(reloc_root); 729 730 ret = __add_reloc_root(reloc_root); 731 ASSERT(ret != -EEXIST); 732 if (ret) { 733 /* Pairs with create_reloc_root */ 734 btrfs_put_root(reloc_root); 735 return ret; 736 } 737 root->reloc_root = btrfs_grab_root(reloc_root); 738 return 0; 739 } 740 741 /* 742 * update root item of reloc tree 743 */ 744 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root) 746 { 747 struct btrfs_fs_info *fs_info = root->fs_info; 748 struct btrfs_root *reloc_root; 749 struct btrfs_root_item *root_item; 750 int ret; 751 752 if (!have_reloc_root(root)) 753 return 0; 754 755 reloc_root = root->reloc_root; 756 root_item = &reloc_root->root_item; 757 758 /* 759 * We are probably ok here, but __del_reloc_root() will drop its ref of 760 * the root. We have the ref for root->reloc_root, but just in case 761 * hold it while we update the reloc root. 762 */ 763 btrfs_grab_root(reloc_root); 764 765 /* root->reloc_root will stay until current relocation finished */ 766 if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree && 767 btrfs_root_refs(root_item) == 0) { 768 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 769 /* 770 * Mark the tree as dead before we change reloc_root so 771 * have_reloc_root will not touch it from now on. 772 */ 773 smp_wmb(); 774 __del_reloc_root(reloc_root); 775 } 776 777 if (reloc_root->commit_root != reloc_root->node) { 778 __update_reloc_root(reloc_root); 779 btrfs_set_root_node(root_item, reloc_root->node); 780 free_extent_buffer(reloc_root->commit_root); 781 reloc_root->commit_root = btrfs_root_node(reloc_root); 782 } 783 784 ret = btrfs_update_root(trans, fs_info->tree_root, 785 &reloc_root->root_key, root_item); 786 btrfs_put_root(reloc_root); 787 return ret; 788 } 789 790 /* 791 * get new location of data 792 */ 793 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 794 u64 bytenr, u64 num_bytes) 795 { 796 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 797 struct btrfs_path *path; 798 struct btrfs_file_extent_item *fi; 799 struct extent_buffer *leaf; 800 int ret; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 806 bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start; 807 ret = btrfs_lookup_file_extent(NULL, root, path, 808 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 809 if (ret < 0) 810 goto out; 811 if (ret > 0) { 812 ret = -ENOENT; 813 goto out; 814 } 815 816 leaf = path->nodes[0]; 817 fi = btrfs_item_ptr(leaf, path->slots[0], 818 struct btrfs_file_extent_item); 819 820 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 821 btrfs_file_extent_compression(leaf, fi) || 822 btrfs_file_extent_encryption(leaf, fi) || 823 btrfs_file_extent_other_encoding(leaf, fi)); 824 825 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 826 ret = -EINVAL; 827 goto out; 828 } 829 830 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 831 ret = 0; 832 out: 833 btrfs_free_path(path); 834 return ret; 835 } 836 837 /* 838 * update file extent items in the tree leaf to point to 839 * the new locations. 840 */ 841 static noinline_for_stack 842 int replace_file_extents(struct btrfs_trans_handle *trans, 843 struct reloc_control *rc, 844 struct btrfs_root *root, 845 struct extent_buffer *leaf) 846 { 847 struct btrfs_fs_info *fs_info = root->fs_info; 848 struct btrfs_key key; 849 struct btrfs_file_extent_item *fi; 850 struct btrfs_inode *inode = NULL; 851 u64 parent; 852 u64 bytenr; 853 u64 new_bytenr = 0; 854 u64 num_bytes; 855 u64 end; 856 u32 nritems; 857 u32 i; 858 int ret = 0; 859 int first = 1; 860 861 if (rc->stage != UPDATE_DATA_PTRS) 862 return 0; 863 864 /* reloc trees always use full backref */ 865 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 866 parent = leaf->start; 867 else 868 parent = 0; 869 870 nritems = btrfs_header_nritems(leaf); 871 for (i = 0; i < nritems; i++) { 872 struct btrfs_ref ref = { 0 }; 873 874 cond_resched(); 875 btrfs_item_key_to_cpu(leaf, &key, i); 876 if (key.type != BTRFS_EXTENT_DATA_KEY) 877 continue; 878 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 879 if (btrfs_file_extent_type(leaf, fi) == 880 BTRFS_FILE_EXTENT_INLINE) 881 continue; 882 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 883 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 884 if (bytenr == 0) 885 continue; 886 if (!in_range(bytenr, rc->block_group->start, 887 rc->block_group->length)) 888 continue; 889 890 /* 891 * if we are modifying block in fs tree, wait for read_folio 892 * to complete and drop the extent cache 893 */ 894 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { 895 if (first) { 896 inode = btrfs_find_first_inode(root, key.objectid); 897 first = 0; 898 } else if (inode && btrfs_ino(inode) < key.objectid) { 899 btrfs_add_delayed_iput(inode); 900 inode = btrfs_find_first_inode(root, key.objectid); 901 } 902 if (inode && btrfs_ino(inode) == key.objectid) { 903 struct extent_state *cached_state = NULL; 904 905 end = key.offset + 906 btrfs_file_extent_num_bytes(leaf, fi); 907 WARN_ON(!IS_ALIGNED(key.offset, 908 fs_info->sectorsize)); 909 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 910 end--; 911 /* Take mmap lock to serialize with reflinks. */ 912 if (!down_read_trylock(&inode->i_mmap_lock)) 913 continue; 914 ret = btrfs_try_lock_extent(&inode->io_tree, key.offset, 915 end, &cached_state); 916 if (!ret) { 917 up_read(&inode->i_mmap_lock); 918 continue; 919 } 920 921 btrfs_drop_extent_map_range(inode, key.offset, end, true); 922 btrfs_unlock_extent(&inode->io_tree, key.offset, end, 923 &cached_state); 924 up_read(&inode->i_mmap_lock); 925 } 926 } 927 928 ret = get_new_location(rc->data_inode, &new_bytenr, 929 bytenr, num_bytes); 930 if (ret) { 931 /* 932 * Don't have to abort since we've not changed anything 933 * in the file extent yet. 934 */ 935 break; 936 } 937 938 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 939 940 key.offset -= btrfs_file_extent_offset(leaf, fi); 941 ref.action = BTRFS_ADD_DELAYED_REF; 942 ref.bytenr = new_bytenr; 943 ref.num_bytes = num_bytes; 944 ref.parent = parent; 945 ref.owning_root = btrfs_root_id(root); 946 ref.ref_root = btrfs_header_owner(leaf); 947 btrfs_init_data_ref(&ref, key.objectid, key.offset, 948 btrfs_root_id(root), false); 949 ret = btrfs_inc_extent_ref(trans, &ref); 950 if (ret) { 951 btrfs_abort_transaction(trans, ret); 952 break; 953 } 954 955 ref.action = BTRFS_DROP_DELAYED_REF; 956 ref.bytenr = bytenr; 957 ref.num_bytes = num_bytes; 958 ref.parent = parent; 959 ref.owning_root = btrfs_root_id(root); 960 ref.ref_root = btrfs_header_owner(leaf); 961 btrfs_init_data_ref(&ref, key.objectid, key.offset, 962 btrfs_root_id(root), false); 963 ret = btrfs_free_extent(trans, &ref); 964 if (ret) { 965 btrfs_abort_transaction(trans, ret); 966 break; 967 } 968 } 969 if (inode) 970 btrfs_add_delayed_iput(inode); 971 return ret; 972 } 973 974 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, 975 int slot, const struct btrfs_path *path, 976 int level) 977 { 978 struct btrfs_disk_key key1; 979 struct btrfs_disk_key key2; 980 btrfs_node_key(eb, &key1, slot); 981 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 982 return memcmp(&key1, &key2, sizeof(key1)); 983 } 984 985 /* 986 * try to replace tree blocks in fs tree with the new blocks 987 * in reloc tree. tree blocks haven't been modified since the 988 * reloc tree was create can be replaced. 989 * 990 * if a block was replaced, level of the block + 1 is returned. 991 * if no block got replaced, 0 is returned. if there are other 992 * errors, a negative error number is returned. 993 */ 994 static noinline_for_stack 995 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 996 struct btrfs_root *dest, struct btrfs_root *src, 997 struct btrfs_path *path, struct btrfs_key *next_key, 998 int lowest_level, int max_level) 999 { 1000 struct btrfs_fs_info *fs_info = dest->fs_info; 1001 struct extent_buffer *eb; 1002 struct extent_buffer *parent; 1003 struct btrfs_ref ref = { 0 }; 1004 struct btrfs_key key; 1005 u64 old_bytenr; 1006 u64 new_bytenr; 1007 u64 old_ptr_gen; 1008 u64 new_ptr_gen; 1009 u64 last_snapshot; 1010 u32 blocksize; 1011 int cow = 0; 1012 int level; 1013 int ret; 1014 int slot; 1015 1016 ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID); 1017 ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID); 1018 1019 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1020 again: 1021 slot = path->slots[lowest_level]; 1022 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1023 1024 eb = btrfs_lock_root_node(dest); 1025 level = btrfs_header_level(eb); 1026 1027 if (level < lowest_level) { 1028 btrfs_tree_unlock(eb); 1029 free_extent_buffer(eb); 1030 return 0; 1031 } 1032 1033 if (cow) { 1034 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1035 BTRFS_NESTING_COW); 1036 if (ret) { 1037 btrfs_tree_unlock(eb); 1038 free_extent_buffer(eb); 1039 return ret; 1040 } 1041 } 1042 1043 if (next_key) { 1044 next_key->objectid = (u64)-1; 1045 next_key->type = (u8)-1; 1046 next_key->offset = (u64)-1; 1047 } 1048 1049 parent = eb; 1050 while (1) { 1051 level = btrfs_header_level(parent); 1052 ASSERT(level >= lowest_level); 1053 1054 ret = btrfs_bin_search(parent, 0, &key, &slot); 1055 if (ret < 0) 1056 break; 1057 if (ret && slot > 0) 1058 slot--; 1059 1060 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1061 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1062 1063 old_bytenr = btrfs_node_blockptr(parent, slot); 1064 blocksize = fs_info->nodesize; 1065 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1066 1067 if (level <= max_level) { 1068 eb = path->nodes[level]; 1069 new_bytenr = btrfs_node_blockptr(eb, 1070 path->slots[level]); 1071 new_ptr_gen = btrfs_node_ptr_generation(eb, 1072 path->slots[level]); 1073 } else { 1074 new_bytenr = 0; 1075 new_ptr_gen = 0; 1076 } 1077 1078 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1079 ret = level; 1080 break; 1081 } 1082 1083 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1084 memcmp_node_keys(parent, slot, path, level)) { 1085 if (level <= lowest_level) { 1086 ret = 0; 1087 break; 1088 } 1089 1090 eb = btrfs_read_node_slot(parent, slot); 1091 if (IS_ERR(eb)) { 1092 ret = PTR_ERR(eb); 1093 break; 1094 } 1095 btrfs_tree_lock(eb); 1096 if (cow) { 1097 ret = btrfs_cow_block(trans, dest, eb, parent, 1098 slot, &eb, 1099 BTRFS_NESTING_COW); 1100 if (ret) { 1101 btrfs_tree_unlock(eb); 1102 free_extent_buffer(eb); 1103 break; 1104 } 1105 } 1106 1107 btrfs_tree_unlock(parent); 1108 free_extent_buffer(parent); 1109 1110 parent = eb; 1111 continue; 1112 } 1113 1114 if (!cow) { 1115 btrfs_tree_unlock(parent); 1116 free_extent_buffer(parent); 1117 cow = 1; 1118 goto again; 1119 } 1120 1121 btrfs_node_key_to_cpu(path->nodes[level], &key, 1122 path->slots[level]); 1123 btrfs_release_path(path); 1124 1125 path->lowest_level = level; 1126 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1127 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1128 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1129 path->lowest_level = 0; 1130 if (ret) { 1131 if (ret > 0) 1132 ret = -ENOENT; 1133 break; 1134 } 1135 1136 /* 1137 * Info qgroup to trace both subtrees. 1138 * 1139 * We must trace both trees. 1140 * 1) Tree reloc subtree 1141 * If not traced, we will leak data numbers 1142 * 2) Fs subtree 1143 * If not traced, we will double count old data 1144 * 1145 * We don't scan the subtree right now, but only record 1146 * the swapped tree blocks. 1147 * The real subtree rescan is delayed until we have new 1148 * CoW on the subtree root node before transaction commit. 1149 */ 1150 ret = btrfs_qgroup_add_swapped_blocks(dest, 1151 rc->block_group, parent, slot, 1152 path->nodes[level], path->slots[level], 1153 last_snapshot); 1154 if (ret < 0) 1155 break; 1156 /* 1157 * swap blocks in fs tree and reloc tree. 1158 */ 1159 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1160 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1161 1162 btrfs_set_node_blockptr(path->nodes[level], 1163 path->slots[level], old_bytenr); 1164 btrfs_set_node_ptr_generation(path->nodes[level], 1165 path->slots[level], old_ptr_gen); 1166 1167 ref.action = BTRFS_ADD_DELAYED_REF; 1168 ref.bytenr = old_bytenr; 1169 ref.num_bytes = blocksize; 1170 ref.parent = path->nodes[level]->start; 1171 ref.owning_root = btrfs_root_id(src); 1172 ref.ref_root = btrfs_root_id(src); 1173 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1174 ret = btrfs_inc_extent_ref(trans, &ref); 1175 if (ret) { 1176 btrfs_abort_transaction(trans, ret); 1177 break; 1178 } 1179 1180 ref.action = BTRFS_ADD_DELAYED_REF; 1181 ref.bytenr = new_bytenr; 1182 ref.num_bytes = blocksize; 1183 ref.parent = 0; 1184 ref.owning_root = btrfs_root_id(dest); 1185 ref.ref_root = btrfs_root_id(dest); 1186 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1187 ret = btrfs_inc_extent_ref(trans, &ref); 1188 if (ret) { 1189 btrfs_abort_transaction(trans, ret); 1190 break; 1191 } 1192 1193 /* We don't know the real owning_root, use 0. */ 1194 ref.action = BTRFS_DROP_DELAYED_REF; 1195 ref.bytenr = new_bytenr; 1196 ref.num_bytes = blocksize; 1197 ref.parent = path->nodes[level]->start; 1198 ref.owning_root = 0; 1199 ref.ref_root = btrfs_root_id(src); 1200 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1201 ret = btrfs_free_extent(trans, &ref); 1202 if (ret) { 1203 btrfs_abort_transaction(trans, ret); 1204 break; 1205 } 1206 1207 /* We don't know the real owning_root, use 0. */ 1208 ref.action = BTRFS_DROP_DELAYED_REF; 1209 ref.bytenr = old_bytenr; 1210 ref.num_bytes = blocksize; 1211 ref.parent = 0; 1212 ref.owning_root = 0; 1213 ref.ref_root = btrfs_root_id(dest); 1214 btrfs_init_tree_ref(&ref, level - 1, 0, true); 1215 ret = btrfs_free_extent(trans, &ref); 1216 if (ret) { 1217 btrfs_abort_transaction(trans, ret); 1218 break; 1219 } 1220 1221 btrfs_unlock_up_safe(path, 0); 1222 1223 ret = level; 1224 break; 1225 } 1226 btrfs_tree_unlock(parent); 1227 free_extent_buffer(parent); 1228 return ret; 1229 } 1230 1231 /* 1232 * helper to find next relocated block in reloc tree 1233 */ 1234 static noinline_for_stack 1235 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1236 int *level) 1237 { 1238 struct extent_buffer *eb; 1239 int i; 1240 u64 last_snapshot; 1241 u32 nritems; 1242 1243 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1244 1245 for (i = 0; i < *level; i++) { 1246 free_extent_buffer(path->nodes[i]); 1247 path->nodes[i] = NULL; 1248 } 1249 1250 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1251 eb = path->nodes[i]; 1252 nritems = btrfs_header_nritems(eb); 1253 while (path->slots[i] + 1 < nritems) { 1254 path->slots[i]++; 1255 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1256 last_snapshot) 1257 continue; 1258 1259 *level = i; 1260 return 0; 1261 } 1262 free_extent_buffer(path->nodes[i]); 1263 path->nodes[i] = NULL; 1264 } 1265 return 1; 1266 } 1267 1268 /* 1269 * walk down reloc tree to find relocated block of lowest level 1270 */ 1271 static noinline_for_stack 1272 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1273 int *level) 1274 { 1275 struct extent_buffer *eb = NULL; 1276 int i; 1277 u64 ptr_gen = 0; 1278 u64 last_snapshot; 1279 u32 nritems; 1280 1281 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1282 1283 for (i = *level; i > 0; i--) { 1284 eb = path->nodes[i]; 1285 nritems = btrfs_header_nritems(eb); 1286 while (path->slots[i] < nritems) { 1287 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1288 if (ptr_gen > last_snapshot) 1289 break; 1290 path->slots[i]++; 1291 } 1292 if (path->slots[i] >= nritems) { 1293 if (i == *level) 1294 break; 1295 *level = i + 1; 1296 return 0; 1297 } 1298 if (i == 1) { 1299 *level = i; 1300 return 0; 1301 } 1302 1303 eb = btrfs_read_node_slot(eb, path->slots[i]); 1304 if (IS_ERR(eb)) 1305 return PTR_ERR(eb); 1306 BUG_ON(btrfs_header_level(eb) != i - 1); 1307 path->nodes[i - 1] = eb; 1308 path->slots[i - 1] = 0; 1309 } 1310 return 1; 1311 } 1312 1313 /* 1314 * invalidate extent cache for file extents whose key in range of 1315 * [min_key, max_key) 1316 */ 1317 static int invalidate_extent_cache(struct btrfs_root *root, 1318 const struct btrfs_key *min_key, 1319 const struct btrfs_key *max_key) 1320 { 1321 struct btrfs_fs_info *fs_info = root->fs_info; 1322 struct btrfs_inode *inode = NULL; 1323 u64 objectid; 1324 u64 start, end; 1325 u64 ino; 1326 1327 objectid = min_key->objectid; 1328 while (1) { 1329 struct extent_state *cached_state = NULL; 1330 1331 cond_resched(); 1332 if (inode) 1333 iput(&inode->vfs_inode); 1334 1335 if (objectid > max_key->objectid) 1336 break; 1337 1338 inode = btrfs_find_first_inode(root, objectid); 1339 if (!inode) 1340 break; 1341 ino = btrfs_ino(inode); 1342 1343 if (ino > max_key->objectid) { 1344 iput(&inode->vfs_inode); 1345 break; 1346 } 1347 1348 objectid = ino + 1; 1349 if (!S_ISREG(inode->vfs_inode.i_mode)) 1350 continue; 1351 1352 if (unlikely(min_key->objectid == ino)) { 1353 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1354 continue; 1355 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1356 start = 0; 1357 else { 1358 start = min_key->offset; 1359 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1360 } 1361 } else { 1362 start = 0; 1363 } 1364 1365 if (unlikely(max_key->objectid == ino)) { 1366 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1367 continue; 1368 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1369 end = (u64)-1; 1370 } else { 1371 if (max_key->offset == 0) 1372 continue; 1373 end = max_key->offset; 1374 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1375 end--; 1376 } 1377 } else { 1378 end = (u64)-1; 1379 } 1380 1381 /* the lock_extent waits for read_folio to complete */ 1382 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); 1383 btrfs_drop_extent_map_range(inode, start, end, true); 1384 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1385 } 1386 return 0; 1387 } 1388 1389 static int find_next_key(struct btrfs_path *path, int level, 1390 struct btrfs_key *key) 1391 1392 { 1393 while (level < BTRFS_MAX_LEVEL) { 1394 if (!path->nodes[level]) 1395 break; 1396 if (path->slots[level] + 1 < 1397 btrfs_header_nritems(path->nodes[level])) { 1398 btrfs_node_key_to_cpu(path->nodes[level], key, 1399 path->slots[level] + 1); 1400 return 0; 1401 } 1402 level++; 1403 } 1404 return 1; 1405 } 1406 1407 /* 1408 * Insert current subvolume into reloc_control::dirty_subvol_roots 1409 */ 1410 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1411 struct reloc_control *rc, 1412 struct btrfs_root *root) 1413 { 1414 struct btrfs_root *reloc_root = root->reloc_root; 1415 struct btrfs_root_item *reloc_root_item; 1416 int ret; 1417 1418 /* @root must be a subvolume tree root with a valid reloc tree */ 1419 ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 1420 ASSERT(reloc_root); 1421 1422 reloc_root_item = &reloc_root->root_item; 1423 memset(&reloc_root_item->drop_progress, 0, 1424 sizeof(reloc_root_item->drop_progress)); 1425 btrfs_set_root_drop_level(reloc_root_item, 0); 1426 btrfs_set_root_refs(reloc_root_item, 0); 1427 ret = btrfs_update_reloc_root(trans, root); 1428 if (ret) 1429 return ret; 1430 1431 if (list_empty(&root->reloc_dirty_list)) { 1432 btrfs_grab_root(root); 1433 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1434 } 1435 1436 return 0; 1437 } 1438 1439 static int clean_dirty_subvols(struct reloc_control *rc) 1440 { 1441 struct btrfs_root *root; 1442 struct btrfs_root *next; 1443 int ret = 0; 1444 int ret2; 1445 1446 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1447 reloc_dirty_list) { 1448 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { 1449 /* Merged subvolume, cleanup its reloc root */ 1450 struct btrfs_root *reloc_root = root->reloc_root; 1451 1452 list_del_init(&root->reloc_dirty_list); 1453 root->reloc_root = NULL; 1454 /* 1455 * Need barrier to ensure clear_bit() only happens after 1456 * root->reloc_root = NULL. Pairs with have_reloc_root. 1457 */ 1458 smp_wmb(); 1459 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1460 if (reloc_root) { 1461 /* 1462 * btrfs_drop_snapshot drops our ref we hold for 1463 * ->reloc_root. If it fails however we must 1464 * drop the ref ourselves. 1465 */ 1466 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1467 if (ret2 < 0) { 1468 btrfs_put_root(reloc_root); 1469 if (!ret) 1470 ret = ret2; 1471 } 1472 } 1473 btrfs_put_root(root); 1474 } else { 1475 /* Orphan reloc tree, just clean it up */ 1476 ret2 = btrfs_drop_snapshot(root, 0, 1); 1477 if (ret2 < 0) { 1478 btrfs_put_root(root); 1479 if (!ret) 1480 ret = ret2; 1481 } 1482 } 1483 } 1484 return ret; 1485 } 1486 1487 /* 1488 * merge the relocated tree blocks in reloc tree with corresponding 1489 * fs tree. 1490 */ 1491 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1492 struct btrfs_root *root) 1493 { 1494 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1495 struct btrfs_key key; 1496 struct btrfs_key next_key; 1497 struct btrfs_trans_handle *trans = NULL; 1498 struct btrfs_root *reloc_root; 1499 struct btrfs_root_item *root_item; 1500 struct btrfs_path *path; 1501 struct extent_buffer *leaf; 1502 int reserve_level; 1503 int level; 1504 int max_level; 1505 int replaced = 0; 1506 int ret = 0; 1507 u32 min_reserved; 1508 1509 path = btrfs_alloc_path(); 1510 if (!path) 1511 return -ENOMEM; 1512 path->reada = READA_FORWARD; 1513 1514 reloc_root = root->reloc_root; 1515 root_item = &reloc_root->root_item; 1516 1517 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1518 level = btrfs_root_level(root_item); 1519 atomic_inc(&reloc_root->node->refs); 1520 path->nodes[level] = reloc_root->node; 1521 path->slots[level] = 0; 1522 } else { 1523 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1524 1525 level = btrfs_root_drop_level(root_item); 1526 BUG_ON(level == 0); 1527 path->lowest_level = level; 1528 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1529 path->lowest_level = 0; 1530 if (ret < 0) { 1531 btrfs_free_path(path); 1532 return ret; 1533 } 1534 1535 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1536 path->slots[level]); 1537 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1538 1539 btrfs_unlock_up_safe(path, 0); 1540 } 1541 1542 /* 1543 * In merge_reloc_root(), we modify the upper level pointer to swap the 1544 * tree blocks between reloc tree and subvolume tree. Thus for tree 1545 * block COW, we COW at most from level 1 to root level for each tree. 1546 * 1547 * Thus the needed metadata size is at most root_level * nodesize, 1548 * and * 2 since we have two trees to COW. 1549 */ 1550 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1551 min_reserved = fs_info->nodesize * reserve_level * 2; 1552 memset(&next_key, 0, sizeof(next_key)); 1553 1554 while (1) { 1555 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1556 min_reserved, 1557 BTRFS_RESERVE_FLUSH_LIMIT); 1558 if (ret) 1559 goto out; 1560 trans = btrfs_start_transaction(root, 0); 1561 if (IS_ERR(trans)) { 1562 ret = PTR_ERR(trans); 1563 trans = NULL; 1564 goto out; 1565 } 1566 1567 /* 1568 * At this point we no longer have a reloc_control, so we can't 1569 * depend on btrfs_init_reloc_root to update our last_trans. 1570 * 1571 * But that's ok, we started the trans handle on our 1572 * corresponding fs_root, which means it's been added to the 1573 * dirty list. At commit time we'll still call 1574 * btrfs_update_reloc_root() and update our root item 1575 * appropriately. 1576 */ 1577 btrfs_set_root_last_trans(reloc_root, trans->transid); 1578 trans->block_rsv = rc->block_rsv; 1579 1580 replaced = 0; 1581 max_level = level; 1582 1583 ret = walk_down_reloc_tree(reloc_root, path, &level); 1584 if (ret < 0) 1585 goto out; 1586 if (ret > 0) 1587 break; 1588 1589 if (!find_next_key(path, level, &key) && 1590 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1591 ret = 0; 1592 } else { 1593 ret = replace_path(trans, rc, root, reloc_root, path, 1594 &next_key, level, max_level); 1595 } 1596 if (ret < 0) 1597 goto out; 1598 if (ret > 0) { 1599 level = ret; 1600 btrfs_node_key_to_cpu(path->nodes[level], &key, 1601 path->slots[level]); 1602 replaced = 1; 1603 } 1604 1605 ret = walk_up_reloc_tree(reloc_root, path, &level); 1606 if (ret > 0) 1607 break; 1608 1609 BUG_ON(level == 0); 1610 /* 1611 * save the merging progress in the drop_progress. 1612 * this is OK since root refs == 1 in this case. 1613 */ 1614 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1615 path->slots[level]); 1616 btrfs_set_root_drop_level(root_item, level); 1617 1618 btrfs_end_transaction_throttle(trans); 1619 trans = NULL; 1620 1621 btrfs_btree_balance_dirty(fs_info); 1622 1623 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1624 invalidate_extent_cache(root, &key, &next_key); 1625 } 1626 1627 /* 1628 * handle the case only one block in the fs tree need to be 1629 * relocated and the block is tree root. 1630 */ 1631 leaf = btrfs_lock_root_node(root); 1632 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1633 BTRFS_NESTING_COW); 1634 btrfs_tree_unlock(leaf); 1635 free_extent_buffer(leaf); 1636 out: 1637 btrfs_free_path(path); 1638 1639 if (ret == 0) { 1640 ret = insert_dirty_subvol(trans, rc, root); 1641 if (ret) 1642 btrfs_abort_transaction(trans, ret); 1643 } 1644 1645 if (trans) 1646 btrfs_end_transaction_throttle(trans); 1647 1648 btrfs_btree_balance_dirty(fs_info); 1649 1650 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1651 invalidate_extent_cache(root, &key, &next_key); 1652 1653 return ret; 1654 } 1655 1656 static noinline_for_stack 1657 int prepare_to_merge(struct reloc_control *rc, int err) 1658 { 1659 struct btrfs_root *root = rc->extent_root; 1660 struct btrfs_fs_info *fs_info = root->fs_info; 1661 struct btrfs_root *reloc_root; 1662 struct btrfs_trans_handle *trans; 1663 LIST_HEAD(reloc_roots); 1664 u64 num_bytes = 0; 1665 int ret; 1666 1667 mutex_lock(&fs_info->reloc_mutex); 1668 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1669 rc->merging_rsv_size += rc->nodes_relocated * 2; 1670 mutex_unlock(&fs_info->reloc_mutex); 1671 1672 again: 1673 if (!err) { 1674 num_bytes = rc->merging_rsv_size; 1675 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1676 BTRFS_RESERVE_FLUSH_ALL); 1677 if (ret) 1678 err = ret; 1679 } 1680 1681 trans = btrfs_join_transaction(rc->extent_root); 1682 if (IS_ERR(trans)) { 1683 if (!err) 1684 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1685 num_bytes, NULL); 1686 return PTR_ERR(trans); 1687 } 1688 1689 if (!err) { 1690 if (num_bytes != rc->merging_rsv_size) { 1691 btrfs_end_transaction(trans); 1692 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1693 num_bytes, NULL); 1694 goto again; 1695 } 1696 } 1697 1698 rc->merge_reloc_tree = true; 1699 1700 while (!list_empty(&rc->reloc_roots)) { 1701 reloc_root = list_first_entry(&rc->reloc_roots, 1702 struct btrfs_root, root_list); 1703 list_del_init(&reloc_root->root_list); 1704 1705 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1706 false); 1707 if (IS_ERR(root)) { 1708 /* 1709 * Even if we have an error we need this reloc root 1710 * back on our list so we can clean up properly. 1711 */ 1712 list_add(&reloc_root->root_list, &reloc_roots); 1713 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1714 if (!err) 1715 err = PTR_ERR(root); 1716 break; 1717 } 1718 1719 if (unlikely(root->reloc_root != reloc_root)) { 1720 if (root->reloc_root) { 1721 btrfs_err(fs_info, 1722 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1723 btrfs_root_id(root), 1724 btrfs_root_id(root->reloc_root), 1725 root->reloc_root->root_key.type, 1726 root->reloc_root->root_key.offset, 1727 btrfs_root_generation( 1728 &root->reloc_root->root_item), 1729 btrfs_root_id(reloc_root), 1730 reloc_root->root_key.type, 1731 reloc_root->root_key.offset, 1732 btrfs_root_generation( 1733 &reloc_root->root_item)); 1734 } else { 1735 btrfs_err(fs_info, 1736 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1737 btrfs_root_id(root), 1738 btrfs_root_id(reloc_root), 1739 reloc_root->root_key.type, 1740 reloc_root->root_key.offset, 1741 btrfs_root_generation( 1742 &reloc_root->root_item)); 1743 } 1744 list_add(&reloc_root->root_list, &reloc_roots); 1745 btrfs_put_root(root); 1746 btrfs_abort_transaction(trans, -EUCLEAN); 1747 if (!err) 1748 err = -EUCLEAN; 1749 break; 1750 } 1751 1752 /* 1753 * set reference count to 1, so btrfs_recover_relocation 1754 * knows it should resumes merging 1755 */ 1756 if (!err) 1757 btrfs_set_root_refs(&reloc_root->root_item, 1); 1758 ret = btrfs_update_reloc_root(trans, root); 1759 1760 /* 1761 * Even if we have an error we need this reloc root back on our 1762 * list so we can clean up properly. 1763 */ 1764 list_add(&reloc_root->root_list, &reloc_roots); 1765 btrfs_put_root(root); 1766 1767 if (ret) { 1768 btrfs_abort_transaction(trans, ret); 1769 if (!err) 1770 err = ret; 1771 break; 1772 } 1773 } 1774 1775 list_splice(&reloc_roots, &rc->reloc_roots); 1776 1777 if (!err) 1778 err = btrfs_commit_transaction(trans); 1779 else 1780 btrfs_end_transaction(trans); 1781 return err; 1782 } 1783 1784 static noinline_for_stack 1785 void free_reloc_roots(struct list_head *list) 1786 { 1787 struct btrfs_root *reloc_root, *tmp; 1788 1789 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1790 __del_reloc_root(reloc_root); 1791 } 1792 1793 static noinline_for_stack 1794 void merge_reloc_roots(struct reloc_control *rc) 1795 { 1796 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1797 struct btrfs_root *root; 1798 struct btrfs_root *reloc_root; 1799 LIST_HEAD(reloc_roots); 1800 int found = 0; 1801 int ret = 0; 1802 again: 1803 root = rc->extent_root; 1804 1805 /* 1806 * this serializes us with btrfs_record_root_in_transaction, 1807 * we have to make sure nobody is in the middle of 1808 * adding their roots to the list while we are 1809 * doing this splice 1810 */ 1811 mutex_lock(&fs_info->reloc_mutex); 1812 list_splice_init(&rc->reloc_roots, &reloc_roots); 1813 mutex_unlock(&fs_info->reloc_mutex); 1814 1815 while (!list_empty(&reloc_roots)) { 1816 found = 1; 1817 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); 1818 1819 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1820 false); 1821 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1822 if (WARN_ON(IS_ERR(root))) { 1823 /* 1824 * For recovery we read the fs roots on mount, 1825 * and if we didn't find the root then we marked 1826 * the reloc root as a garbage root. For normal 1827 * relocation obviously the root should exist in 1828 * memory. However there's no reason we can't 1829 * handle the error properly here just in case. 1830 */ 1831 ret = PTR_ERR(root); 1832 goto out; 1833 } 1834 if (WARN_ON(root->reloc_root != reloc_root)) { 1835 /* 1836 * This can happen if on-disk metadata has some 1837 * corruption, e.g. bad reloc tree key offset. 1838 */ 1839 ret = -EINVAL; 1840 goto out; 1841 } 1842 ret = merge_reloc_root(rc, root); 1843 btrfs_put_root(root); 1844 if (ret) { 1845 if (list_empty(&reloc_root->root_list)) 1846 list_add_tail(&reloc_root->root_list, 1847 &reloc_roots); 1848 goto out; 1849 } 1850 } else { 1851 if (!IS_ERR(root)) { 1852 if (root->reloc_root == reloc_root) { 1853 root->reloc_root = NULL; 1854 btrfs_put_root(reloc_root); 1855 } 1856 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1857 &root->state); 1858 btrfs_put_root(root); 1859 } 1860 1861 list_del_init(&reloc_root->root_list); 1862 /* Don't forget to queue this reloc root for cleanup */ 1863 list_add_tail(&reloc_root->reloc_dirty_list, 1864 &rc->dirty_subvol_roots); 1865 } 1866 } 1867 1868 if (found) { 1869 found = 0; 1870 goto again; 1871 } 1872 out: 1873 if (ret) { 1874 btrfs_handle_fs_error(fs_info, ret, NULL); 1875 free_reloc_roots(&reloc_roots); 1876 1877 /* new reloc root may be added */ 1878 mutex_lock(&fs_info->reloc_mutex); 1879 list_splice_init(&rc->reloc_roots, &reloc_roots); 1880 mutex_unlock(&fs_info->reloc_mutex); 1881 free_reloc_roots(&reloc_roots); 1882 } 1883 1884 /* 1885 * We used to have 1886 * 1887 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1888 * 1889 * here, but it's wrong. If we fail to start the transaction in 1890 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1891 * have actually been removed from the reloc_root_tree rb tree. This is 1892 * fine because we're bailing here, and we hold a reference on the root 1893 * for the list that holds it, so these roots will be cleaned up when we 1894 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1895 * will be cleaned up on unmount. 1896 * 1897 * The remaining nodes will be cleaned up by free_reloc_control. 1898 */ 1899 } 1900 1901 static void free_block_list(struct rb_root *blocks) 1902 { 1903 struct tree_block *block; 1904 struct rb_node *rb_node; 1905 while ((rb_node = rb_first(blocks))) { 1906 block = rb_entry(rb_node, struct tree_block, rb_node); 1907 rb_erase(rb_node, blocks); 1908 kfree(block); 1909 } 1910 } 1911 1912 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1913 struct btrfs_root *reloc_root) 1914 { 1915 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1916 struct btrfs_root *root; 1917 int ret; 1918 1919 if (btrfs_get_root_last_trans(reloc_root) == trans->transid) 1920 return 0; 1921 1922 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 1923 1924 /* 1925 * This should succeed, since we can't have a reloc root without having 1926 * already looked up the actual root and created the reloc root for this 1927 * root. 1928 * 1929 * However if there's some sort of corruption where we have a ref to a 1930 * reloc root without a corresponding root this could return ENOENT. 1931 */ 1932 if (IS_ERR(root)) { 1933 DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root)); 1934 return PTR_ERR(root); 1935 } 1936 if (root->reloc_root != reloc_root) { 1937 DEBUG_WARN("unexpected reloc root found"); 1938 btrfs_err(fs_info, 1939 "root %llu has two reloc roots associated with it", 1940 reloc_root->root_key.offset); 1941 btrfs_put_root(root); 1942 return -EUCLEAN; 1943 } 1944 ret = btrfs_record_root_in_trans(trans, root); 1945 btrfs_put_root(root); 1946 1947 return ret; 1948 } 1949 1950 static noinline_for_stack 1951 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 1952 struct reloc_control *rc, 1953 struct btrfs_backref_node *node, 1954 struct btrfs_backref_edge *edges[]) 1955 { 1956 struct btrfs_backref_node *next; 1957 struct btrfs_root *root; 1958 int index = 0; 1959 int ret; 1960 1961 next = walk_up_backref(node, edges, &index); 1962 root = next->root; 1963 1964 /* 1965 * If there is no root, then our references for this block are 1966 * incomplete, as we should be able to walk all the way up to a block 1967 * that is owned by a root. 1968 * 1969 * This path is only for SHAREABLE roots, so if we come upon a 1970 * non-SHAREABLE root then we have backrefs that resolve improperly. 1971 * 1972 * Both of these cases indicate file system corruption, or a bug in the 1973 * backref walking code. 1974 */ 1975 if (unlikely(!root)) { 1976 btrfs_err(trans->fs_info, 1977 "bytenr %llu doesn't have a backref path ending in a root", 1978 node->bytenr); 1979 return ERR_PTR(-EUCLEAN); 1980 } 1981 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { 1982 btrfs_err(trans->fs_info, 1983 "bytenr %llu has multiple refs with one ending in a non-shareable root", 1984 node->bytenr); 1985 return ERR_PTR(-EUCLEAN); 1986 } 1987 1988 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 1989 ret = record_reloc_root_in_trans(trans, root); 1990 if (ret) 1991 return ERR_PTR(ret); 1992 goto found; 1993 } 1994 1995 ret = btrfs_record_root_in_trans(trans, root); 1996 if (ret) 1997 return ERR_PTR(ret); 1998 root = root->reloc_root; 1999 2000 /* 2001 * We could have raced with another thread which failed, so 2002 * root->reloc_root may not be set, return ENOENT in this case. 2003 */ 2004 if (!root) 2005 return ERR_PTR(-ENOENT); 2006 2007 if (next->new_bytenr) { 2008 /* 2009 * We just created the reloc root, so we shouldn't have 2010 * ->new_bytenr set yet. If it is then we have multiple roots 2011 * pointing at the same bytenr which indicates corruption, or 2012 * we've made a mistake in the backref walking code. 2013 */ 2014 ASSERT(next->new_bytenr == 0); 2015 btrfs_err(trans->fs_info, 2016 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2017 node->bytenr, next->bytenr); 2018 return ERR_PTR(-EUCLEAN); 2019 } 2020 2021 next->new_bytenr = root->node->start; 2022 btrfs_put_root(next->root); 2023 next->root = btrfs_grab_root(root); 2024 ASSERT(next->root); 2025 mark_block_processed(rc, next); 2026 found: 2027 next = node; 2028 /* setup backref node path for btrfs_reloc_cow_block */ 2029 while (1) { 2030 rc->backref_cache.path[next->level] = next; 2031 if (--index < 0) 2032 break; 2033 next = edges[index]->node[UPPER]; 2034 } 2035 return root; 2036 } 2037 2038 /* 2039 * Select a tree root for relocation. 2040 * 2041 * Return NULL if the block is not shareable. We should use do_relocation() in 2042 * this case. 2043 * 2044 * Return a tree root pointer if the block is shareable. 2045 * Return -ENOENT if the block is root of reloc tree. 2046 */ 2047 static noinline_for_stack 2048 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2049 { 2050 struct btrfs_backref_node *next; 2051 struct btrfs_root *root; 2052 struct btrfs_root *fs_root = NULL; 2053 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2054 int index = 0; 2055 2056 next = node; 2057 while (1) { 2058 cond_resched(); 2059 next = walk_up_backref(next, edges, &index); 2060 root = next->root; 2061 2062 /* 2063 * This can occur if we have incomplete extent refs leading all 2064 * the way up a particular path, in this case return -EUCLEAN. 2065 */ 2066 if (!root) 2067 return ERR_PTR(-EUCLEAN); 2068 2069 /* No other choice for non-shareable tree */ 2070 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2071 return root; 2072 2073 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) 2074 fs_root = root; 2075 2076 if (next != node) 2077 return NULL; 2078 2079 next = walk_down_backref(edges, &index); 2080 if (!next || next->level <= node->level) 2081 break; 2082 } 2083 2084 if (!fs_root) 2085 return ERR_PTR(-ENOENT); 2086 return fs_root; 2087 } 2088 2089 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc, 2090 struct btrfs_backref_node *node) 2091 { 2092 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2093 struct btrfs_backref_node *next = node; 2094 struct btrfs_backref_edge *edge; 2095 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2096 u64 num_bytes = 0; 2097 int index = 0; 2098 2099 BUG_ON(node->processed); 2100 2101 while (next) { 2102 cond_resched(); 2103 while (1) { 2104 if (next->processed) 2105 break; 2106 2107 num_bytes += fs_info->nodesize; 2108 2109 if (list_empty(&next->upper)) 2110 break; 2111 2112 edge = list_first_entry(&next->upper, struct btrfs_backref_edge, 2113 list[LOWER]); 2114 edges[index++] = edge; 2115 next = edge->node[UPPER]; 2116 } 2117 next = walk_down_backref(edges, &index); 2118 } 2119 return num_bytes; 2120 } 2121 2122 static int refill_metadata_space(struct btrfs_trans_handle *trans, 2123 struct reloc_control *rc, u64 num_bytes) 2124 { 2125 struct btrfs_fs_info *fs_info = trans->fs_info; 2126 int ret; 2127 2128 trans->block_rsv = rc->block_rsv; 2129 rc->reserved_bytes += num_bytes; 2130 2131 /* 2132 * We are under a transaction here so we can only do limited flushing. 2133 * If we get an enospc just kick back -EAGAIN so we know to drop the 2134 * transaction and try to refill when we can flush all the things. 2135 */ 2136 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2137 BTRFS_RESERVE_FLUSH_LIMIT); 2138 if (ret) { 2139 u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2140 2141 while (tmp <= rc->reserved_bytes) 2142 tmp <<= 1; 2143 /* 2144 * only one thread can access block_rsv at this point, 2145 * so we don't need hold lock to protect block_rsv. 2146 * we expand more reservation size here to allow enough 2147 * space for relocation and we will return earlier in 2148 * enospc case. 2149 */ 2150 rc->block_rsv->size = tmp + fs_info->nodesize * 2151 RELOCATION_RESERVED_NODES; 2152 return -EAGAIN; 2153 } 2154 2155 return 0; 2156 } 2157 2158 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2159 struct reloc_control *rc, 2160 struct btrfs_backref_node *node) 2161 { 2162 u64 num_bytes; 2163 2164 num_bytes = calcu_metadata_size(rc, node) * 2; 2165 return refill_metadata_space(trans, rc, num_bytes); 2166 } 2167 2168 /* 2169 * relocate a block tree, and then update pointers in upper level 2170 * blocks that reference the block to point to the new location. 2171 * 2172 * if called by link_to_upper, the block has already been relocated. 2173 * in that case this function just updates pointers. 2174 */ 2175 static int do_relocation(struct btrfs_trans_handle *trans, 2176 struct reloc_control *rc, 2177 struct btrfs_backref_node *node, 2178 struct btrfs_key *key, 2179 struct btrfs_path *path, int lowest) 2180 { 2181 struct btrfs_backref_node *upper; 2182 struct btrfs_backref_edge *edge; 2183 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2184 struct btrfs_root *root; 2185 struct extent_buffer *eb; 2186 u32 blocksize; 2187 u64 bytenr; 2188 int slot; 2189 int ret = 0; 2190 2191 /* 2192 * If we are lowest then this is the first time we're processing this 2193 * block, and thus shouldn't have an eb associated with it yet. 2194 */ 2195 ASSERT(!lowest || !node->eb); 2196 2197 path->lowest_level = node->level + 1; 2198 rc->backref_cache.path[node->level] = node; 2199 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2200 cond_resched(); 2201 2202 upper = edge->node[UPPER]; 2203 root = select_reloc_root(trans, rc, upper, edges); 2204 if (IS_ERR(root)) { 2205 ret = PTR_ERR(root); 2206 goto next; 2207 } 2208 2209 if (upper->eb && !upper->locked) { 2210 if (!lowest) { 2211 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2212 if (ret < 0) 2213 goto next; 2214 BUG_ON(ret); 2215 bytenr = btrfs_node_blockptr(upper->eb, slot); 2216 if (node->eb->start == bytenr) 2217 goto next; 2218 } 2219 btrfs_backref_drop_node_buffer(upper); 2220 } 2221 2222 if (!upper->eb) { 2223 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2224 if (ret) { 2225 if (ret > 0) 2226 ret = -ENOENT; 2227 2228 btrfs_release_path(path); 2229 break; 2230 } 2231 2232 if (!upper->eb) { 2233 upper->eb = path->nodes[upper->level]; 2234 path->nodes[upper->level] = NULL; 2235 } else { 2236 BUG_ON(upper->eb != path->nodes[upper->level]); 2237 } 2238 2239 upper->locked = 1; 2240 path->locks[upper->level] = 0; 2241 2242 slot = path->slots[upper->level]; 2243 btrfs_release_path(path); 2244 } else { 2245 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2246 if (ret < 0) 2247 goto next; 2248 BUG_ON(ret); 2249 } 2250 2251 bytenr = btrfs_node_blockptr(upper->eb, slot); 2252 if (lowest) { 2253 if (bytenr != node->bytenr) { 2254 btrfs_err(root->fs_info, 2255 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2256 bytenr, node->bytenr, slot, 2257 upper->eb->start); 2258 ret = -EIO; 2259 goto next; 2260 } 2261 } else { 2262 if (node->eb->start == bytenr) 2263 goto next; 2264 } 2265 2266 blocksize = root->fs_info->nodesize; 2267 eb = btrfs_read_node_slot(upper->eb, slot); 2268 if (IS_ERR(eb)) { 2269 ret = PTR_ERR(eb); 2270 goto next; 2271 } 2272 btrfs_tree_lock(eb); 2273 2274 if (!node->eb) { 2275 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2276 slot, &eb, BTRFS_NESTING_COW); 2277 btrfs_tree_unlock(eb); 2278 free_extent_buffer(eb); 2279 if (ret < 0) 2280 goto next; 2281 /* 2282 * We've just COWed this block, it should have updated 2283 * the correct backref node entry. 2284 */ 2285 ASSERT(node->eb == eb); 2286 } else { 2287 struct btrfs_ref ref = { 2288 .action = BTRFS_ADD_DELAYED_REF, 2289 .bytenr = node->eb->start, 2290 .num_bytes = blocksize, 2291 .parent = upper->eb->start, 2292 .owning_root = btrfs_header_owner(upper->eb), 2293 .ref_root = btrfs_header_owner(upper->eb), 2294 }; 2295 2296 btrfs_set_node_blockptr(upper->eb, slot, 2297 node->eb->start); 2298 btrfs_set_node_ptr_generation(upper->eb, slot, 2299 trans->transid); 2300 btrfs_mark_buffer_dirty(trans, upper->eb); 2301 2302 btrfs_init_tree_ref(&ref, node->level, 2303 btrfs_root_id(root), false); 2304 ret = btrfs_inc_extent_ref(trans, &ref); 2305 if (!ret) 2306 ret = btrfs_drop_subtree(trans, root, eb, 2307 upper->eb); 2308 if (ret) 2309 btrfs_abort_transaction(trans, ret); 2310 } 2311 next: 2312 if (!upper->pending) 2313 btrfs_backref_drop_node_buffer(upper); 2314 else 2315 btrfs_backref_unlock_node_buffer(upper); 2316 if (ret) 2317 break; 2318 } 2319 2320 if (!ret && node->pending) { 2321 btrfs_backref_drop_node_buffer(node); 2322 list_del_init(&node->list); 2323 node->pending = 0; 2324 } 2325 2326 path->lowest_level = 0; 2327 2328 /* 2329 * We should have allocated all of our space in the block rsv and thus 2330 * shouldn't ENOSPC. 2331 */ 2332 ASSERT(ret != -ENOSPC); 2333 return ret; 2334 } 2335 2336 static int link_to_upper(struct btrfs_trans_handle *trans, 2337 struct reloc_control *rc, 2338 struct btrfs_backref_node *node, 2339 struct btrfs_path *path) 2340 { 2341 struct btrfs_key key; 2342 2343 btrfs_node_key_to_cpu(node->eb, &key, 0); 2344 return do_relocation(trans, rc, node, &key, path, 0); 2345 } 2346 2347 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2348 struct reloc_control *rc, 2349 struct btrfs_path *path, int err) 2350 { 2351 LIST_HEAD(list); 2352 struct btrfs_backref_cache *cache = &rc->backref_cache; 2353 struct btrfs_backref_node *node; 2354 int level; 2355 int ret; 2356 2357 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2358 while (!list_empty(&cache->pending[level])) { 2359 node = list_first_entry(&cache->pending[level], 2360 struct btrfs_backref_node, list); 2361 list_move_tail(&node->list, &list); 2362 BUG_ON(!node->pending); 2363 2364 if (!err) { 2365 ret = link_to_upper(trans, rc, node, path); 2366 if (ret < 0) 2367 err = ret; 2368 } 2369 } 2370 list_splice_init(&list, &cache->pending[level]); 2371 } 2372 return err; 2373 } 2374 2375 /* 2376 * mark a block and all blocks directly/indirectly reference the block 2377 * as processed. 2378 */ 2379 static void update_processed_blocks(struct reloc_control *rc, 2380 struct btrfs_backref_node *node) 2381 { 2382 struct btrfs_backref_node *next = node; 2383 struct btrfs_backref_edge *edge; 2384 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2385 int index = 0; 2386 2387 while (next) { 2388 cond_resched(); 2389 while (1) { 2390 if (next->processed) 2391 break; 2392 2393 mark_block_processed(rc, next); 2394 2395 if (list_empty(&next->upper)) 2396 break; 2397 2398 edge = list_first_entry(&next->upper, struct btrfs_backref_edge, 2399 list[LOWER]); 2400 edges[index++] = edge; 2401 next = edge->node[UPPER]; 2402 } 2403 next = walk_down_backref(edges, &index); 2404 } 2405 } 2406 2407 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2408 { 2409 u32 blocksize = rc->extent_root->fs_info->nodesize; 2410 2411 if (btrfs_test_range_bit(&rc->processed_blocks, bytenr, 2412 bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) 2413 return 1; 2414 return 0; 2415 } 2416 2417 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2418 struct tree_block *block) 2419 { 2420 struct btrfs_tree_parent_check check = { 2421 .level = block->level, 2422 .owner_root = block->owner, 2423 .transid = block->key.offset 2424 }; 2425 struct extent_buffer *eb; 2426 2427 eb = read_tree_block(fs_info, block->bytenr, &check); 2428 if (IS_ERR(eb)) 2429 return PTR_ERR(eb); 2430 if (!extent_buffer_uptodate(eb)) { 2431 free_extent_buffer(eb); 2432 return -EIO; 2433 } 2434 if (block->level == 0) 2435 btrfs_item_key_to_cpu(eb, &block->key, 0); 2436 else 2437 btrfs_node_key_to_cpu(eb, &block->key, 0); 2438 free_extent_buffer(eb); 2439 block->key_ready = true; 2440 return 0; 2441 } 2442 2443 /* 2444 * helper function to relocate a tree block 2445 */ 2446 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2447 struct reloc_control *rc, 2448 struct btrfs_backref_node *node, 2449 struct btrfs_key *key, 2450 struct btrfs_path *path) 2451 { 2452 struct btrfs_root *root; 2453 int ret = 0; 2454 2455 if (!node) 2456 return 0; 2457 2458 /* 2459 * If we fail here we want to drop our backref_node because we are going 2460 * to start over and regenerate the tree for it. 2461 */ 2462 ret = reserve_metadata_space(trans, rc, node); 2463 if (ret) 2464 goto out; 2465 2466 BUG_ON(node->processed); 2467 root = select_one_root(node); 2468 if (IS_ERR(root)) { 2469 ret = PTR_ERR(root); 2470 2471 /* See explanation in select_one_root for the -EUCLEAN case. */ 2472 ASSERT(ret == -ENOENT); 2473 if (ret == -ENOENT) { 2474 ret = 0; 2475 update_processed_blocks(rc, node); 2476 } 2477 goto out; 2478 } 2479 2480 if (root) { 2481 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2482 /* 2483 * This block was the root block of a root, and this is 2484 * the first time we're processing the block and thus it 2485 * should not have had the ->new_bytenr modified. 2486 * 2487 * However in the case of corruption we could have 2488 * multiple refs pointing to the same block improperly, 2489 * and thus we would trip over these checks. ASSERT() 2490 * for the developer case, because it could indicate a 2491 * bug in the backref code, however error out for a 2492 * normal user in the case of corruption. 2493 */ 2494 ASSERT(node->new_bytenr == 0); 2495 if (node->new_bytenr) { 2496 btrfs_err(root->fs_info, 2497 "bytenr %llu has improper references to it", 2498 node->bytenr); 2499 ret = -EUCLEAN; 2500 goto out; 2501 } 2502 ret = btrfs_record_root_in_trans(trans, root); 2503 if (ret) 2504 goto out; 2505 /* 2506 * Another thread could have failed, need to check if we 2507 * have reloc_root actually set. 2508 */ 2509 if (!root->reloc_root) { 2510 ret = -ENOENT; 2511 goto out; 2512 } 2513 root = root->reloc_root; 2514 node->new_bytenr = root->node->start; 2515 btrfs_put_root(node->root); 2516 node->root = btrfs_grab_root(root); 2517 ASSERT(node->root); 2518 } else { 2519 btrfs_err(root->fs_info, 2520 "bytenr %llu resolved to a non-shareable root", 2521 node->bytenr); 2522 ret = -EUCLEAN; 2523 goto out; 2524 } 2525 if (!ret) 2526 update_processed_blocks(rc, node); 2527 } else { 2528 ret = do_relocation(trans, rc, node, key, path, 1); 2529 } 2530 out: 2531 if (ret || node->level == 0) 2532 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2533 return ret; 2534 } 2535 2536 static int relocate_cowonly_block(struct btrfs_trans_handle *trans, 2537 struct reloc_control *rc, struct tree_block *block, 2538 struct btrfs_path *path) 2539 { 2540 struct btrfs_fs_info *fs_info = trans->fs_info; 2541 struct btrfs_root *root; 2542 u64 num_bytes; 2543 int nr_levels; 2544 int ret; 2545 2546 root = btrfs_get_fs_root(fs_info, block->owner, true); 2547 if (IS_ERR(root)) 2548 return PTR_ERR(root); 2549 2550 nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1; 2551 2552 num_bytes = fs_info->nodesize * nr_levels; 2553 ret = refill_metadata_space(trans, rc, num_bytes); 2554 if (ret) { 2555 btrfs_put_root(root); 2556 return ret; 2557 } 2558 path->lowest_level = block->level; 2559 if (root == root->fs_info->chunk_root) 2560 btrfs_reserve_chunk_metadata(trans, false); 2561 2562 ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1); 2563 path->lowest_level = 0; 2564 btrfs_release_path(path); 2565 2566 if (root == root->fs_info->chunk_root) 2567 btrfs_trans_release_chunk_metadata(trans); 2568 if (ret > 0) 2569 ret = 0; 2570 btrfs_put_root(root); 2571 2572 return ret; 2573 } 2574 2575 /* 2576 * relocate a list of blocks 2577 */ 2578 static noinline_for_stack 2579 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2580 struct reloc_control *rc, struct rb_root *blocks) 2581 { 2582 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2583 struct btrfs_backref_node *node; 2584 struct btrfs_path *path; 2585 struct tree_block *block; 2586 struct tree_block *next; 2587 int ret = 0; 2588 2589 path = btrfs_alloc_path(); 2590 if (!path) { 2591 ret = -ENOMEM; 2592 goto out_free_blocks; 2593 } 2594 2595 /* Kick in readahead for tree blocks with missing keys */ 2596 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2597 if (!block->key_ready) 2598 btrfs_readahead_tree_block(fs_info, block->bytenr, 2599 block->owner, 0, 2600 block->level); 2601 } 2602 2603 /* Get first keys */ 2604 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2605 if (!block->key_ready) { 2606 ret = get_tree_block_key(fs_info, block); 2607 if (ret) 2608 goto out_free_path; 2609 } 2610 } 2611 2612 /* Do tree relocation */ 2613 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2614 /* 2615 * For COWonly blocks, or the data reloc tree, we only need to 2616 * COW down to the block, there's no need to generate a backref 2617 * tree. 2618 */ 2619 if (block->owner && 2620 (!is_fstree(block->owner) || 2621 block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 2622 ret = relocate_cowonly_block(trans, rc, block, path); 2623 if (ret) 2624 break; 2625 continue; 2626 } 2627 2628 node = build_backref_tree(trans, rc, &block->key, 2629 block->level, block->bytenr); 2630 if (IS_ERR(node)) { 2631 ret = PTR_ERR(node); 2632 goto out; 2633 } 2634 2635 ret = relocate_tree_block(trans, rc, node, &block->key, 2636 path); 2637 if (ret < 0) 2638 break; 2639 } 2640 out: 2641 ret = finish_pending_nodes(trans, rc, path, ret); 2642 2643 out_free_path: 2644 btrfs_free_path(path); 2645 out_free_blocks: 2646 free_block_list(blocks); 2647 return ret; 2648 } 2649 2650 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc) 2651 { 2652 const struct file_extent_cluster *cluster = &rc->cluster; 2653 struct btrfs_inode *inode = BTRFS_I(rc->data_inode); 2654 u64 alloc_hint = 0; 2655 u64 start; 2656 u64 end; 2657 u64 offset = inode->reloc_block_group_start; 2658 u64 num_bytes; 2659 int nr; 2660 int ret = 0; 2661 u64 i_size = i_size_read(&inode->vfs_inode); 2662 u64 prealloc_start = cluster->start - offset; 2663 u64 prealloc_end = cluster->end - offset; 2664 u64 cur_offset = prealloc_start; 2665 2666 /* 2667 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2668 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2669 * btrfs_do_readpage() call of previously relocated file cluster. 2670 * 2671 * If the current cluster starts in the above range, btrfs_do_readpage() 2672 * will skip the read, and relocate_one_folio() will later writeback 2673 * the padding zeros as new data, causing data corruption. 2674 * 2675 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2676 */ 2677 if (!PAGE_ALIGNED(i_size)) { 2678 struct address_space *mapping = inode->vfs_inode.i_mapping; 2679 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2680 const u32 sectorsize = fs_info->sectorsize; 2681 struct folio *folio; 2682 2683 ASSERT(sectorsize < PAGE_SIZE); 2684 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2685 2686 /* 2687 * Subpage can't handle page with DIRTY but without UPTODATE 2688 * bit as it can lead to the following deadlock: 2689 * 2690 * btrfs_read_folio() 2691 * | Page already *locked* 2692 * |- btrfs_lock_and_flush_ordered_range() 2693 * |- btrfs_start_ordered_extent() 2694 * |- extent_write_cache_pages() 2695 * |- lock_page() 2696 * We try to lock the page we already hold. 2697 * 2698 * Here we just writeback the whole data reloc inode, so that 2699 * we will be ensured to have no dirty range in the page, and 2700 * are safe to clear the uptodate bits. 2701 * 2702 * This shouldn't cause too much overhead, as we need to write 2703 * the data back anyway. 2704 */ 2705 ret = filemap_write_and_wait(mapping); 2706 if (ret < 0) 2707 return ret; 2708 2709 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT); 2710 /* 2711 * If page is freed we don't need to do anything then, as we 2712 * will re-read the whole page anyway. 2713 */ 2714 if (!IS_ERR(folio)) { 2715 btrfs_subpage_clear_uptodate(fs_info, folio, i_size, 2716 round_up(i_size, PAGE_SIZE) - i_size); 2717 folio_unlock(folio); 2718 folio_put(folio); 2719 } 2720 } 2721 2722 BUG_ON(cluster->start != cluster->boundary[0]); 2723 ret = btrfs_alloc_data_chunk_ondemand(inode, 2724 prealloc_end + 1 - prealloc_start); 2725 if (ret) 2726 return ret; 2727 2728 btrfs_inode_lock(inode, 0); 2729 for (nr = 0; nr < cluster->nr; nr++) { 2730 struct extent_state *cached_state = NULL; 2731 2732 start = cluster->boundary[nr] - offset; 2733 if (nr + 1 < cluster->nr) 2734 end = cluster->boundary[nr + 1] - 1 - offset; 2735 else 2736 end = cluster->end - offset; 2737 2738 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); 2739 num_bytes = end + 1 - start; 2740 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2741 num_bytes, num_bytes, 2742 end + 1, &alloc_hint); 2743 cur_offset = end + 1; 2744 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2745 if (ret) 2746 break; 2747 } 2748 btrfs_inode_unlock(inode, 0); 2749 2750 if (cur_offset < prealloc_end) 2751 btrfs_free_reserved_data_space_noquota(inode, 2752 prealloc_end + 1 - cur_offset); 2753 return ret; 2754 } 2755 2756 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc) 2757 { 2758 struct btrfs_inode *inode = BTRFS_I(rc->data_inode); 2759 struct extent_map *em; 2760 struct extent_state *cached_state = NULL; 2761 u64 offset = inode->reloc_block_group_start; 2762 u64 start = rc->cluster.start - offset; 2763 u64 end = rc->cluster.end - offset; 2764 int ret = 0; 2765 2766 em = btrfs_alloc_extent_map(); 2767 if (!em) 2768 return -ENOMEM; 2769 2770 em->start = start; 2771 em->len = end + 1 - start; 2772 em->disk_bytenr = rc->cluster.start; 2773 em->disk_num_bytes = em->len; 2774 em->ram_bytes = em->len; 2775 em->flags |= EXTENT_FLAG_PINNED; 2776 2777 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); 2778 ret = btrfs_replace_extent_map_range(inode, em, false); 2779 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2780 btrfs_free_extent_map(em); 2781 2782 return ret; 2783 } 2784 2785 /* 2786 * Allow error injection to test balance/relocation cancellation 2787 */ 2788 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) 2789 { 2790 return atomic_read(&fs_info->balance_cancel_req) || 2791 atomic_read(&fs_info->reloc_cancel_req) || 2792 fatal_signal_pending(current); 2793 } 2794 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2795 2796 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, 2797 int cluster_nr) 2798 { 2799 /* Last extent, use cluster end directly */ 2800 if (cluster_nr >= cluster->nr - 1) 2801 return cluster->end; 2802 2803 /* Use next boundary start*/ 2804 return cluster->boundary[cluster_nr + 1] - 1; 2805 } 2806 2807 static int relocate_one_folio(struct reloc_control *rc, 2808 struct file_ra_state *ra, 2809 int *cluster_nr, unsigned long index) 2810 { 2811 const struct file_extent_cluster *cluster = &rc->cluster; 2812 struct inode *inode = rc->data_inode; 2813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2814 u64 offset = BTRFS_I(inode)->reloc_block_group_start; 2815 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2816 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2817 struct folio *folio; 2818 u64 folio_start; 2819 u64 folio_end; 2820 u64 cur; 2821 int ret; 2822 const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags); 2823 2824 ASSERT(index <= last_index); 2825 again: 2826 folio = filemap_lock_folio(inode->i_mapping, index); 2827 if (IS_ERR(folio)) { 2828 2829 /* 2830 * On relocation we're doing readahead on the relocation inode, 2831 * but if the filesystem is backed by a RAID stripe tree we can 2832 * get ENOENT (e.g. due to preallocated extents not being 2833 * mapped in the RST) from the lookup. 2834 * 2835 * But readahead doesn't handle the error and submits invalid 2836 * reads to the device, causing a assertion failures. 2837 */ 2838 if (!use_rst) 2839 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2840 index, last_index + 1 - index); 2841 folio = __filemap_get_folio(inode->i_mapping, index, 2842 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 2843 mask); 2844 if (IS_ERR(folio)) 2845 return PTR_ERR(folio); 2846 } 2847 2848 WARN_ON(folio_order(folio)); 2849 2850 if (folio_test_readahead(folio) && !use_rst) 2851 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2852 folio, last_index + 1 - index); 2853 2854 if (!folio_test_uptodate(folio)) { 2855 btrfs_read_folio(NULL, folio); 2856 folio_lock(folio); 2857 if (!folio_test_uptodate(folio)) { 2858 ret = -EIO; 2859 goto release_folio; 2860 } 2861 if (folio->mapping != inode->i_mapping) { 2862 folio_unlock(folio); 2863 folio_put(folio); 2864 goto again; 2865 } 2866 } 2867 2868 /* 2869 * We could have lost folio private when we dropped the lock to read the 2870 * folio above, make sure we set_folio_extent_mapped() here so we have any 2871 * of the subpage blocksize stuff we need in place. 2872 */ 2873 ret = set_folio_extent_mapped(folio); 2874 if (ret < 0) 2875 goto release_folio; 2876 2877 folio_start = folio_pos(folio); 2878 folio_end = folio_start + PAGE_SIZE - 1; 2879 2880 /* 2881 * Start from the cluster, as for subpage case, the cluster can start 2882 * inside the folio. 2883 */ 2884 cur = max(folio_start, cluster->boundary[*cluster_nr] - offset); 2885 while (cur <= folio_end) { 2886 struct extent_state *cached_state = NULL; 2887 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 2888 u64 extent_end = get_cluster_boundary_end(cluster, 2889 *cluster_nr) - offset; 2890 u64 clamped_start = max(folio_start, extent_start); 2891 u64 clamped_end = min(folio_end, extent_end); 2892 u32 clamped_len = clamped_end + 1 - clamped_start; 2893 2894 /* Reserve metadata for this range */ 2895 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2896 clamped_len, clamped_len, 2897 false); 2898 if (ret) 2899 goto release_folio; 2900 2901 /* Mark the range delalloc and dirty for later writeback */ 2902 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, 2903 clamped_end, &cached_state); 2904 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 2905 clamped_end, 0, &cached_state); 2906 if (ret) { 2907 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 2908 clamped_start, clamped_end, 2909 EXTENT_LOCKED | EXTENT_BOUNDARY, 2910 &cached_state); 2911 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2912 clamped_len, true); 2913 btrfs_delalloc_release_extents(BTRFS_I(inode), 2914 clamped_len); 2915 goto release_folio; 2916 } 2917 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len); 2918 2919 /* 2920 * Set the boundary if it's inside the folio. 2921 * Data relocation requires the destination extents to have the 2922 * same size as the source. 2923 * EXTENT_BOUNDARY bit prevents current extent from being merged 2924 * with previous extent. 2925 */ 2926 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) { 2927 u64 boundary_start = cluster->boundary[*cluster_nr] - 2928 offset; 2929 u64 boundary_end = boundary_start + 2930 fs_info->sectorsize - 1; 2931 2932 btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree, 2933 boundary_start, boundary_end, 2934 EXTENT_BOUNDARY, NULL); 2935 } 2936 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 2937 &cached_state); 2938 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 2939 cur += clamped_len; 2940 2941 /* Crossed extent end, go to next extent */ 2942 if (cur >= extent_end) { 2943 (*cluster_nr)++; 2944 /* Just finished the last extent of the cluster, exit. */ 2945 if (*cluster_nr >= cluster->nr) 2946 break; 2947 } 2948 } 2949 folio_unlock(folio); 2950 folio_put(folio); 2951 2952 balance_dirty_pages_ratelimited(inode->i_mapping); 2953 btrfs_throttle(fs_info); 2954 if (btrfs_should_cancel_balance(fs_info)) 2955 ret = -ECANCELED; 2956 return ret; 2957 2958 release_folio: 2959 folio_unlock(folio); 2960 folio_put(folio); 2961 return ret; 2962 } 2963 2964 static int relocate_file_extent_cluster(struct reloc_control *rc) 2965 { 2966 struct inode *inode = rc->data_inode; 2967 const struct file_extent_cluster *cluster = &rc->cluster; 2968 u64 offset = BTRFS_I(inode)->reloc_block_group_start; 2969 unsigned long index; 2970 unsigned long last_index; 2971 struct file_ra_state *ra; 2972 int cluster_nr = 0; 2973 int ret = 0; 2974 2975 if (!cluster->nr) 2976 return 0; 2977 2978 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2979 if (!ra) 2980 return -ENOMEM; 2981 2982 ret = prealloc_file_extent_cluster(rc); 2983 if (ret) 2984 goto out; 2985 2986 file_ra_state_init(ra, inode->i_mapping); 2987 2988 ret = setup_relocation_extent_mapping(rc); 2989 if (ret) 2990 goto out; 2991 2992 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2993 for (index = (cluster->start - offset) >> PAGE_SHIFT; 2994 index <= last_index && !ret; index++) 2995 ret = relocate_one_folio(rc, ra, &cluster_nr, index); 2996 if (ret == 0) 2997 WARN_ON(cluster_nr != cluster->nr); 2998 out: 2999 kfree(ra); 3000 return ret; 3001 } 3002 3003 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc, 3004 const struct btrfs_key *extent_key) 3005 { 3006 struct inode *inode = rc->data_inode; 3007 struct file_extent_cluster *cluster = &rc->cluster; 3008 int ret; 3009 struct btrfs_root *root = BTRFS_I(inode)->root; 3010 3011 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3012 ret = relocate_file_extent_cluster(rc); 3013 if (ret) 3014 return ret; 3015 cluster->nr = 0; 3016 } 3017 3018 /* 3019 * Under simple quotas, we set root->relocation_src_root when we find 3020 * the extent. If adjacent extents have different owners, we can't merge 3021 * them while relocating. Handle this by storing the owning root that 3022 * started a cluster and if we see an extent from a different root break 3023 * cluster formation (just like the above case of non-adjacent extents). 3024 * 3025 * Without simple quotas, relocation_src_root is always 0, so we should 3026 * never see a mismatch, and it should have no effect on relocation 3027 * clusters. 3028 */ 3029 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { 3030 u64 tmp = root->relocation_src_root; 3031 3032 /* 3033 * root->relocation_src_root is the state that actually affects 3034 * the preallocation we do here, so set it to the root owning 3035 * the cluster we need to relocate. 3036 */ 3037 root->relocation_src_root = cluster->owning_root; 3038 ret = relocate_file_extent_cluster(rc); 3039 if (ret) 3040 return ret; 3041 cluster->nr = 0; 3042 /* And reset it back for the current extent's owning root. */ 3043 root->relocation_src_root = tmp; 3044 } 3045 3046 if (!cluster->nr) { 3047 cluster->start = extent_key->objectid; 3048 cluster->owning_root = root->relocation_src_root; 3049 } 3050 else 3051 BUG_ON(cluster->nr >= MAX_EXTENTS); 3052 cluster->end = extent_key->objectid + extent_key->offset - 1; 3053 cluster->boundary[cluster->nr] = extent_key->objectid; 3054 cluster->nr++; 3055 3056 if (cluster->nr >= MAX_EXTENTS) { 3057 ret = relocate_file_extent_cluster(rc); 3058 if (ret) 3059 return ret; 3060 cluster->nr = 0; 3061 } 3062 return 0; 3063 } 3064 3065 /* 3066 * helper to add a tree block to the list. 3067 * the major work is getting the generation and level of the block 3068 */ 3069 static int add_tree_block(struct reloc_control *rc, 3070 const struct btrfs_key *extent_key, 3071 struct btrfs_path *path, 3072 struct rb_root *blocks) 3073 { 3074 struct extent_buffer *eb; 3075 struct btrfs_extent_item *ei; 3076 struct btrfs_tree_block_info *bi; 3077 struct tree_block *block; 3078 struct rb_node *rb_node; 3079 u32 item_size; 3080 int level = -1; 3081 u64 generation; 3082 u64 owner = 0; 3083 3084 eb = path->nodes[0]; 3085 item_size = btrfs_item_size(eb, path->slots[0]); 3086 3087 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3088 item_size >= sizeof(*ei) + sizeof(*bi)) { 3089 unsigned long ptr = 0, end; 3090 3091 ei = btrfs_item_ptr(eb, path->slots[0], 3092 struct btrfs_extent_item); 3093 end = (unsigned long)ei + item_size; 3094 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3095 bi = (struct btrfs_tree_block_info *)(ei + 1); 3096 level = btrfs_tree_block_level(eb, bi); 3097 ptr = (unsigned long)(bi + 1); 3098 } else { 3099 level = (int)extent_key->offset; 3100 ptr = (unsigned long)(ei + 1); 3101 } 3102 generation = btrfs_extent_generation(eb, ei); 3103 3104 /* 3105 * We're reading random blocks without knowing their owner ahead 3106 * of time. This is ok most of the time, as all reloc roots and 3107 * fs roots have the same lock type. However normal trees do 3108 * not, and the only way to know ahead of time is to read the 3109 * inline ref offset. We know it's an fs root if 3110 * 3111 * 1. There's more than one ref. 3112 * 2. There's a SHARED_DATA_REF_KEY set. 3113 * 3. FULL_BACKREF is set on the flags. 3114 * 3115 * Otherwise it's safe to assume that the ref offset == the 3116 * owner of this block, so we can use that when calling 3117 * read_tree_block. 3118 */ 3119 if (btrfs_extent_refs(eb, ei) == 1 && 3120 !(btrfs_extent_flags(eb, ei) & 3121 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3122 ptr < end) { 3123 struct btrfs_extent_inline_ref *iref; 3124 int type; 3125 3126 iref = (struct btrfs_extent_inline_ref *)ptr; 3127 type = btrfs_get_extent_inline_ref_type(eb, iref, 3128 BTRFS_REF_TYPE_BLOCK); 3129 if (type == BTRFS_REF_TYPE_INVALID) 3130 return -EINVAL; 3131 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3132 owner = btrfs_extent_inline_ref_offset(eb, iref); 3133 } 3134 } else { 3135 btrfs_print_leaf(eb); 3136 btrfs_err(rc->block_group->fs_info, 3137 "unrecognized tree backref at tree block %llu slot %u", 3138 eb->start, path->slots[0]); 3139 btrfs_release_path(path); 3140 return -EUCLEAN; 3141 } 3142 3143 btrfs_release_path(path); 3144 3145 BUG_ON(level == -1); 3146 3147 block = kmalloc(sizeof(*block), GFP_NOFS); 3148 if (!block) 3149 return -ENOMEM; 3150 3151 block->bytenr = extent_key->objectid; 3152 block->key.objectid = rc->extent_root->fs_info->nodesize; 3153 block->key.offset = generation; 3154 block->level = level; 3155 block->key_ready = false; 3156 block->owner = owner; 3157 3158 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3159 if (rb_node) 3160 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3161 -EEXIST); 3162 3163 return 0; 3164 } 3165 3166 /* 3167 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3168 */ 3169 static int __add_tree_block(struct reloc_control *rc, 3170 u64 bytenr, u32 blocksize, 3171 struct rb_root *blocks) 3172 { 3173 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3174 struct btrfs_path *path; 3175 struct btrfs_key key; 3176 int ret; 3177 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3178 3179 if (tree_block_processed(bytenr, rc)) 3180 return 0; 3181 3182 if (rb_simple_search(blocks, bytenr)) 3183 return 0; 3184 3185 path = btrfs_alloc_path(); 3186 if (!path) 3187 return -ENOMEM; 3188 again: 3189 key.objectid = bytenr; 3190 if (skinny) { 3191 key.type = BTRFS_METADATA_ITEM_KEY; 3192 key.offset = (u64)-1; 3193 } else { 3194 key.type = BTRFS_EXTENT_ITEM_KEY; 3195 key.offset = blocksize; 3196 } 3197 3198 path->search_commit_root = 1; 3199 path->skip_locking = 1; 3200 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3201 if (ret < 0) 3202 goto out; 3203 3204 if (ret > 0 && skinny) { 3205 if (path->slots[0]) { 3206 path->slots[0]--; 3207 btrfs_item_key_to_cpu(path->nodes[0], &key, 3208 path->slots[0]); 3209 if (key.objectid == bytenr && 3210 (key.type == BTRFS_METADATA_ITEM_KEY || 3211 (key.type == BTRFS_EXTENT_ITEM_KEY && 3212 key.offset == blocksize))) 3213 ret = 0; 3214 } 3215 3216 if (ret) { 3217 skinny = false; 3218 btrfs_release_path(path); 3219 goto again; 3220 } 3221 } 3222 if (ret) { 3223 ASSERT(ret == 1); 3224 btrfs_print_leaf(path->nodes[0]); 3225 btrfs_err(fs_info, 3226 "tree block extent item (%llu) is not found in extent tree", 3227 bytenr); 3228 WARN_ON(1); 3229 ret = -EINVAL; 3230 goto out; 3231 } 3232 3233 ret = add_tree_block(rc, &key, path, blocks); 3234 out: 3235 btrfs_free_path(path); 3236 return ret; 3237 } 3238 3239 static int delete_block_group_cache(struct btrfs_block_group *block_group, 3240 struct inode *inode, 3241 u64 ino) 3242 { 3243 struct btrfs_fs_info *fs_info = block_group->fs_info; 3244 struct btrfs_root *root = fs_info->tree_root; 3245 struct btrfs_trans_handle *trans; 3246 struct btrfs_inode *btrfs_inode; 3247 int ret = 0; 3248 3249 if (inode) 3250 goto truncate; 3251 3252 btrfs_inode = btrfs_iget(ino, root); 3253 if (IS_ERR(btrfs_inode)) 3254 return -ENOENT; 3255 inode = &btrfs_inode->vfs_inode; 3256 3257 truncate: 3258 ret = btrfs_check_trunc_cache_free_space(fs_info, 3259 &fs_info->global_block_rsv); 3260 if (ret) 3261 goto out; 3262 3263 trans = btrfs_join_transaction(root); 3264 if (IS_ERR(trans)) { 3265 ret = PTR_ERR(trans); 3266 goto out; 3267 } 3268 3269 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3270 3271 btrfs_end_transaction(trans); 3272 btrfs_btree_balance_dirty(fs_info); 3273 out: 3274 iput(inode); 3275 return ret; 3276 } 3277 3278 /* 3279 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3280 * cache inode, to avoid free space cache data extent blocking data relocation. 3281 */ 3282 static int delete_v1_space_cache(struct extent_buffer *leaf, 3283 struct btrfs_block_group *block_group, 3284 u64 data_bytenr) 3285 { 3286 u64 space_cache_ino; 3287 struct btrfs_file_extent_item *ei; 3288 struct btrfs_key key; 3289 bool found = false; 3290 int i; 3291 int ret; 3292 3293 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3294 return 0; 3295 3296 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3297 u8 type; 3298 3299 btrfs_item_key_to_cpu(leaf, &key, i); 3300 if (key.type != BTRFS_EXTENT_DATA_KEY) 3301 continue; 3302 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3303 type = btrfs_file_extent_type(leaf, ei); 3304 3305 if ((type == BTRFS_FILE_EXTENT_REG || 3306 type == BTRFS_FILE_EXTENT_PREALLOC) && 3307 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3308 found = true; 3309 space_cache_ino = key.objectid; 3310 break; 3311 } 3312 } 3313 if (!found) 3314 return -ENOENT; 3315 ret = delete_block_group_cache(block_group, NULL, space_cache_ino); 3316 return ret; 3317 } 3318 3319 /* 3320 * helper to find all tree blocks that reference a given data extent 3321 */ 3322 static noinline_for_stack int add_data_references(struct reloc_control *rc, 3323 const struct btrfs_key *extent_key, 3324 struct btrfs_path *path, 3325 struct rb_root *blocks) 3326 { 3327 struct btrfs_backref_walk_ctx ctx = { 0 }; 3328 struct ulist_iterator leaf_uiter; 3329 struct ulist_node *ref_node = NULL; 3330 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3331 int ret = 0; 3332 3333 btrfs_release_path(path); 3334 3335 ctx.bytenr = extent_key->objectid; 3336 ctx.skip_inode_ref_list = true; 3337 ctx.fs_info = rc->extent_root->fs_info; 3338 3339 ret = btrfs_find_all_leafs(&ctx); 3340 if (ret < 0) 3341 return ret; 3342 3343 ULIST_ITER_INIT(&leaf_uiter); 3344 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3345 struct btrfs_tree_parent_check check = { 0 }; 3346 struct extent_buffer *eb; 3347 3348 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3349 if (IS_ERR(eb)) { 3350 ret = PTR_ERR(eb); 3351 break; 3352 } 3353 ret = delete_v1_space_cache(eb, rc->block_group, 3354 extent_key->objectid); 3355 free_extent_buffer(eb); 3356 if (ret < 0) 3357 break; 3358 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3359 if (ret < 0) 3360 break; 3361 } 3362 if (ret < 0) 3363 free_block_list(blocks); 3364 ulist_free(ctx.refs); 3365 return ret; 3366 } 3367 3368 /* 3369 * helper to find next unprocessed extent 3370 */ 3371 static noinline_for_stack 3372 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3373 struct btrfs_key *extent_key) 3374 { 3375 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3376 struct btrfs_key key; 3377 struct extent_buffer *leaf; 3378 u64 start, end, last; 3379 int ret; 3380 3381 last = rc->block_group->start + rc->block_group->length; 3382 while (1) { 3383 bool block_found; 3384 3385 cond_resched(); 3386 if (rc->search_start >= last) { 3387 ret = 1; 3388 break; 3389 } 3390 3391 key.objectid = rc->search_start; 3392 key.type = BTRFS_EXTENT_ITEM_KEY; 3393 key.offset = 0; 3394 3395 path->search_commit_root = 1; 3396 path->skip_locking = 1; 3397 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3398 0, 0); 3399 if (ret < 0) 3400 break; 3401 next: 3402 leaf = path->nodes[0]; 3403 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3404 ret = btrfs_next_leaf(rc->extent_root, path); 3405 if (ret != 0) 3406 break; 3407 leaf = path->nodes[0]; 3408 } 3409 3410 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3411 if (key.objectid >= last) { 3412 ret = 1; 3413 break; 3414 } 3415 3416 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3417 key.type != BTRFS_METADATA_ITEM_KEY) { 3418 path->slots[0]++; 3419 goto next; 3420 } 3421 3422 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3423 key.objectid + key.offset <= rc->search_start) { 3424 path->slots[0]++; 3425 goto next; 3426 } 3427 3428 if (key.type == BTRFS_METADATA_ITEM_KEY && 3429 key.objectid + fs_info->nodesize <= 3430 rc->search_start) { 3431 path->slots[0]++; 3432 goto next; 3433 } 3434 3435 block_found = btrfs_find_first_extent_bit(&rc->processed_blocks, 3436 key.objectid, &start, &end, 3437 EXTENT_DIRTY, NULL); 3438 3439 if (block_found && start <= key.objectid) { 3440 btrfs_release_path(path); 3441 rc->search_start = end + 1; 3442 } else { 3443 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3444 rc->search_start = key.objectid + key.offset; 3445 else 3446 rc->search_start = key.objectid + 3447 fs_info->nodesize; 3448 memcpy(extent_key, &key, sizeof(key)); 3449 return 0; 3450 } 3451 } 3452 btrfs_release_path(path); 3453 return ret; 3454 } 3455 3456 static void set_reloc_control(struct reloc_control *rc) 3457 { 3458 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3459 3460 mutex_lock(&fs_info->reloc_mutex); 3461 fs_info->reloc_ctl = rc; 3462 mutex_unlock(&fs_info->reloc_mutex); 3463 } 3464 3465 static void unset_reloc_control(struct reloc_control *rc) 3466 { 3467 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3468 3469 mutex_lock(&fs_info->reloc_mutex); 3470 fs_info->reloc_ctl = NULL; 3471 mutex_unlock(&fs_info->reloc_mutex); 3472 } 3473 3474 static noinline_for_stack 3475 int prepare_to_relocate(struct reloc_control *rc) 3476 { 3477 struct btrfs_trans_handle *trans; 3478 int ret; 3479 3480 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3481 BTRFS_BLOCK_RSV_TEMP); 3482 if (!rc->block_rsv) 3483 return -ENOMEM; 3484 3485 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3486 rc->search_start = rc->block_group->start; 3487 rc->extents_found = 0; 3488 rc->nodes_relocated = 0; 3489 rc->merging_rsv_size = 0; 3490 rc->reserved_bytes = 0; 3491 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3492 RELOCATION_RESERVED_NODES; 3493 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3494 rc->block_rsv, rc->block_rsv->size, 3495 BTRFS_RESERVE_FLUSH_ALL); 3496 if (ret) 3497 return ret; 3498 3499 rc->create_reloc_tree = true; 3500 set_reloc_control(rc); 3501 3502 trans = btrfs_join_transaction(rc->extent_root); 3503 if (IS_ERR(trans)) { 3504 unset_reloc_control(rc); 3505 /* 3506 * extent tree is not a ref_cow tree and has no reloc_root to 3507 * cleanup. And callers are responsible to free the above 3508 * block rsv. 3509 */ 3510 return PTR_ERR(trans); 3511 } 3512 3513 ret = btrfs_commit_transaction(trans); 3514 if (ret) 3515 unset_reloc_control(rc); 3516 3517 return ret; 3518 } 3519 3520 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3521 { 3522 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3523 struct rb_root blocks = RB_ROOT; 3524 struct btrfs_key key; 3525 struct btrfs_trans_handle *trans = NULL; 3526 struct btrfs_path *path; 3527 struct btrfs_extent_item *ei; 3528 u64 flags; 3529 int ret; 3530 int err = 0; 3531 int progress = 0; 3532 3533 path = btrfs_alloc_path(); 3534 if (!path) 3535 return -ENOMEM; 3536 path->reada = READA_FORWARD; 3537 3538 ret = prepare_to_relocate(rc); 3539 if (ret) { 3540 err = ret; 3541 goto out_free; 3542 } 3543 3544 while (1) { 3545 rc->reserved_bytes = 0; 3546 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3547 rc->block_rsv->size, 3548 BTRFS_RESERVE_FLUSH_ALL); 3549 if (ret) { 3550 err = ret; 3551 break; 3552 } 3553 progress++; 3554 trans = btrfs_start_transaction(rc->extent_root, 0); 3555 if (IS_ERR(trans)) { 3556 err = PTR_ERR(trans); 3557 trans = NULL; 3558 break; 3559 } 3560 restart: 3561 if (rc->backref_cache.last_trans != trans->transid) 3562 btrfs_backref_release_cache(&rc->backref_cache); 3563 rc->backref_cache.last_trans = trans->transid; 3564 3565 ret = find_next_extent(rc, path, &key); 3566 if (ret < 0) 3567 err = ret; 3568 if (ret != 0) 3569 break; 3570 3571 rc->extents_found++; 3572 3573 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3574 struct btrfs_extent_item); 3575 flags = btrfs_extent_flags(path->nodes[0], ei); 3576 3577 /* 3578 * If we are relocating a simple quota owned extent item, we 3579 * need to note the owner on the reloc data root so that when 3580 * we allocate the replacement item, we can attribute it to the 3581 * correct eventual owner (rather than the reloc data root). 3582 */ 3583 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { 3584 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; 3585 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, 3586 path->nodes[0], 3587 path->slots[0]); 3588 3589 root->relocation_src_root = owning_root_id; 3590 } 3591 3592 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3593 ret = add_tree_block(rc, &key, path, &blocks); 3594 } else if (rc->stage == UPDATE_DATA_PTRS && 3595 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3596 ret = add_data_references(rc, &key, path, &blocks); 3597 } else { 3598 btrfs_release_path(path); 3599 ret = 0; 3600 } 3601 if (ret < 0) { 3602 err = ret; 3603 break; 3604 } 3605 3606 if (!RB_EMPTY_ROOT(&blocks)) { 3607 ret = relocate_tree_blocks(trans, rc, &blocks); 3608 if (ret < 0) { 3609 if (ret != -EAGAIN) { 3610 err = ret; 3611 break; 3612 } 3613 rc->extents_found--; 3614 rc->search_start = key.objectid; 3615 } 3616 } 3617 3618 btrfs_end_transaction_throttle(trans); 3619 btrfs_btree_balance_dirty(fs_info); 3620 trans = NULL; 3621 3622 if (rc->stage == MOVE_DATA_EXTENTS && 3623 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3624 rc->found_file_extent = true; 3625 ret = relocate_data_extent(rc, &key); 3626 if (ret < 0) { 3627 err = ret; 3628 break; 3629 } 3630 } 3631 if (btrfs_should_cancel_balance(fs_info)) { 3632 err = -ECANCELED; 3633 break; 3634 } 3635 } 3636 if (trans && progress && err == -ENOSPC) { 3637 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3638 if (ret == 1) { 3639 err = 0; 3640 progress = 0; 3641 goto restart; 3642 } 3643 } 3644 3645 btrfs_release_path(path); 3646 btrfs_clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3647 3648 if (trans) { 3649 btrfs_end_transaction_throttle(trans); 3650 btrfs_btree_balance_dirty(fs_info); 3651 } 3652 3653 if (!err) { 3654 ret = relocate_file_extent_cluster(rc); 3655 if (ret < 0) 3656 err = ret; 3657 } 3658 3659 rc->create_reloc_tree = false; 3660 set_reloc_control(rc); 3661 3662 btrfs_backref_release_cache(&rc->backref_cache); 3663 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3664 3665 /* 3666 * Even in the case when the relocation is cancelled, we should all go 3667 * through prepare_to_merge() and merge_reloc_roots(). 3668 * 3669 * For error (including cancelled balance), prepare_to_merge() will 3670 * mark all reloc trees orphan, then queue them for cleanup in 3671 * merge_reloc_roots() 3672 */ 3673 err = prepare_to_merge(rc, err); 3674 3675 merge_reloc_roots(rc); 3676 3677 rc->merge_reloc_tree = false; 3678 unset_reloc_control(rc); 3679 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3680 3681 /* get rid of pinned extents */ 3682 trans = btrfs_join_transaction(rc->extent_root); 3683 if (IS_ERR(trans)) { 3684 err = PTR_ERR(trans); 3685 goto out_free; 3686 } 3687 ret = btrfs_commit_transaction(trans); 3688 if (ret && !err) 3689 err = ret; 3690 out_free: 3691 ret = clean_dirty_subvols(rc); 3692 if (ret < 0 && !err) 3693 err = ret; 3694 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3695 btrfs_free_path(path); 3696 return err; 3697 } 3698 3699 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3700 struct btrfs_root *root, u64 objectid) 3701 { 3702 struct btrfs_path *path; 3703 struct btrfs_inode_item *item; 3704 struct extent_buffer *leaf; 3705 int ret; 3706 3707 path = btrfs_alloc_path(); 3708 if (!path) 3709 return -ENOMEM; 3710 3711 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3712 if (ret) 3713 goto out; 3714 3715 leaf = path->nodes[0]; 3716 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3717 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3718 btrfs_set_inode_generation(leaf, item, 1); 3719 btrfs_set_inode_size(leaf, item, 0); 3720 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3721 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3722 BTRFS_INODE_PREALLOC); 3723 out: 3724 btrfs_free_path(path); 3725 return ret; 3726 } 3727 3728 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3729 struct btrfs_root *root, u64 objectid) 3730 { 3731 struct btrfs_path *path; 3732 struct btrfs_key key; 3733 int ret = 0; 3734 3735 path = btrfs_alloc_path(); 3736 if (!path) { 3737 ret = -ENOMEM; 3738 goto out; 3739 } 3740 3741 key.objectid = objectid; 3742 key.type = BTRFS_INODE_ITEM_KEY; 3743 key.offset = 0; 3744 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3745 if (ret) { 3746 if (ret > 0) 3747 ret = -ENOENT; 3748 goto out; 3749 } 3750 ret = btrfs_del_item(trans, root, path); 3751 out: 3752 if (ret) 3753 btrfs_abort_transaction(trans, ret); 3754 btrfs_free_path(path); 3755 } 3756 3757 /* 3758 * helper to create inode for data relocation. 3759 * the inode is in data relocation tree and its link count is 0 3760 */ 3761 static noinline_for_stack struct inode *create_reloc_inode( 3762 const struct btrfs_block_group *group) 3763 { 3764 struct btrfs_fs_info *fs_info = group->fs_info; 3765 struct btrfs_inode *inode = NULL; 3766 struct btrfs_trans_handle *trans; 3767 struct btrfs_root *root; 3768 u64 objectid; 3769 int ret = 0; 3770 3771 root = btrfs_grab_root(fs_info->data_reloc_root); 3772 trans = btrfs_start_transaction(root, 6); 3773 if (IS_ERR(trans)) { 3774 btrfs_put_root(root); 3775 return ERR_CAST(trans); 3776 } 3777 3778 ret = btrfs_get_free_objectid(root, &objectid); 3779 if (ret) 3780 goto out; 3781 3782 ret = __insert_orphan_inode(trans, root, objectid); 3783 if (ret) 3784 goto out; 3785 3786 inode = btrfs_iget(objectid, root); 3787 if (IS_ERR(inode)) { 3788 delete_orphan_inode(trans, root, objectid); 3789 ret = PTR_ERR(inode); 3790 inode = NULL; 3791 goto out; 3792 } 3793 inode->reloc_block_group_start = group->start; 3794 3795 ret = btrfs_orphan_add(trans, inode); 3796 out: 3797 btrfs_put_root(root); 3798 btrfs_end_transaction(trans); 3799 btrfs_btree_balance_dirty(fs_info); 3800 if (ret) { 3801 if (inode) 3802 iput(&inode->vfs_inode); 3803 return ERR_PTR(ret); 3804 } 3805 return &inode->vfs_inode; 3806 } 3807 3808 /* 3809 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3810 * has been requested meanwhile and don't start in that case. 3811 * 3812 * Return: 3813 * 0 success 3814 * -EINPROGRESS operation is already in progress, that's probably a bug 3815 * -ECANCELED cancellation request was set before the operation started 3816 */ 3817 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3818 { 3819 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3820 /* This should not happen */ 3821 btrfs_err(fs_info, "reloc already running, cannot start"); 3822 return -EINPROGRESS; 3823 } 3824 3825 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3826 btrfs_info(fs_info, "chunk relocation canceled on start"); 3827 /* 3828 * On cancel, clear all requests but let the caller mark 3829 * the end after cleanup operations. 3830 */ 3831 atomic_set(&fs_info->reloc_cancel_req, 0); 3832 return -ECANCELED; 3833 } 3834 return 0; 3835 } 3836 3837 /* 3838 * Mark end of chunk relocation that is cancellable and wake any waiters. 3839 */ 3840 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3841 { 3842 /* Requested after start, clear bit first so any waiters can continue */ 3843 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3844 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3845 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3846 atomic_set(&fs_info->reloc_cancel_req, 0); 3847 } 3848 3849 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3850 { 3851 struct reloc_control *rc; 3852 3853 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3854 if (!rc) 3855 return NULL; 3856 3857 INIT_LIST_HEAD(&rc->reloc_roots); 3858 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3859 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); 3860 rc->reloc_root_tree.rb_root = RB_ROOT; 3861 spin_lock_init(&rc->reloc_root_tree.lock); 3862 btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 3863 return rc; 3864 } 3865 3866 static void free_reloc_control(struct reloc_control *rc) 3867 { 3868 struct mapping_node *node, *tmp; 3869 3870 free_reloc_roots(&rc->reloc_roots); 3871 rbtree_postorder_for_each_entry_safe(node, tmp, 3872 &rc->reloc_root_tree.rb_root, rb_node) 3873 kfree(node); 3874 3875 kfree(rc); 3876 } 3877 3878 /* 3879 * Print the block group being relocated 3880 */ 3881 static void describe_relocation(struct btrfs_block_group *block_group) 3882 { 3883 char buf[128] = {'\0'}; 3884 3885 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3886 3887 btrfs_info(block_group->fs_info, "relocating block group %llu flags %s", 3888 block_group->start, buf); 3889 } 3890 3891 static const char *stage_to_string(enum reloc_stage stage) 3892 { 3893 if (stage == MOVE_DATA_EXTENTS) 3894 return "move data extents"; 3895 if (stage == UPDATE_DATA_PTRS) 3896 return "update data pointers"; 3897 return "unknown"; 3898 } 3899 3900 /* 3901 * function to relocate all extents in a block group. 3902 */ 3903 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3904 { 3905 struct btrfs_block_group *bg; 3906 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 3907 struct reloc_control *rc; 3908 struct inode *inode; 3909 struct btrfs_path *path; 3910 int ret; 3911 int rw = 0; 3912 int err = 0; 3913 3914 /* 3915 * This only gets set if we had a half-deleted snapshot on mount. We 3916 * cannot allow relocation to start while we're still trying to clean up 3917 * these pending deletions. 3918 */ 3919 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 3920 if (ret) 3921 return ret; 3922 3923 /* We may have been woken up by close_ctree, so bail if we're closing. */ 3924 if (btrfs_fs_closing(fs_info)) 3925 return -EINTR; 3926 3927 bg = btrfs_lookup_block_group(fs_info, group_start); 3928 if (!bg) 3929 return -ENOENT; 3930 3931 /* 3932 * Relocation of a data block group creates ordered extents. Without 3933 * sb_start_write(), we can freeze the filesystem while unfinished 3934 * ordered extents are left. Such ordered extents can cause a deadlock 3935 * e.g. when syncfs() is waiting for their completion but they can't 3936 * finish because they block when joining a transaction, due to the 3937 * fact that the freeze locks are being held in write mode. 3938 */ 3939 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 3940 ASSERT(sb_write_started(fs_info->sb)); 3941 3942 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3943 btrfs_put_block_group(bg); 3944 return -ETXTBSY; 3945 } 3946 3947 rc = alloc_reloc_control(fs_info); 3948 if (!rc) { 3949 btrfs_put_block_group(bg); 3950 return -ENOMEM; 3951 } 3952 3953 ret = reloc_chunk_start(fs_info); 3954 if (ret < 0) { 3955 err = ret; 3956 goto out_put_bg; 3957 } 3958 3959 rc->extent_root = extent_root; 3960 rc->block_group = bg; 3961 3962 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3963 if (ret) { 3964 err = ret; 3965 goto out; 3966 } 3967 rw = 1; 3968 3969 path = btrfs_alloc_path(); 3970 if (!path) { 3971 err = -ENOMEM; 3972 goto out; 3973 } 3974 3975 inode = lookup_free_space_inode(rc->block_group, path); 3976 btrfs_free_path(path); 3977 3978 if (!IS_ERR(inode)) 3979 ret = delete_block_group_cache(rc->block_group, inode, 0); 3980 else 3981 ret = PTR_ERR(inode); 3982 3983 if (ret && ret != -ENOENT) { 3984 err = ret; 3985 goto out; 3986 } 3987 3988 rc->data_inode = create_reloc_inode(rc->block_group); 3989 if (IS_ERR(rc->data_inode)) { 3990 err = PTR_ERR(rc->data_inode); 3991 rc->data_inode = NULL; 3992 goto out; 3993 } 3994 3995 describe_relocation(rc->block_group); 3996 3997 btrfs_wait_block_group_reservations(rc->block_group); 3998 btrfs_wait_nocow_writers(rc->block_group); 3999 btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group); 4000 4001 ret = btrfs_zone_finish(rc->block_group); 4002 WARN_ON(ret && ret != -EAGAIN); 4003 4004 while (1) { 4005 enum reloc_stage finishes_stage; 4006 4007 mutex_lock(&fs_info->cleaner_mutex); 4008 ret = relocate_block_group(rc); 4009 mutex_unlock(&fs_info->cleaner_mutex); 4010 if (ret < 0) 4011 err = ret; 4012 4013 finishes_stage = rc->stage; 4014 /* 4015 * We may have gotten ENOSPC after we already dirtied some 4016 * extents. If writeout happens while we're relocating a 4017 * different block group we could end up hitting the 4018 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4019 * btrfs_reloc_cow_block. Make sure we write everything out 4020 * properly so we don't trip over this problem, and then break 4021 * out of the loop if we hit an error. 4022 */ 4023 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4024 ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0, 4025 (u64)-1); 4026 if (ret) 4027 err = ret; 4028 invalidate_mapping_pages(rc->data_inode->i_mapping, 4029 0, -1); 4030 rc->stage = UPDATE_DATA_PTRS; 4031 } 4032 4033 if (err < 0) 4034 goto out; 4035 4036 if (rc->extents_found == 0) 4037 break; 4038 4039 btrfs_info(fs_info, "found %llu extents, stage: %s", 4040 rc->extents_found, stage_to_string(finishes_stage)); 4041 } 4042 4043 WARN_ON(rc->block_group->pinned > 0); 4044 WARN_ON(rc->block_group->reserved > 0); 4045 WARN_ON(rc->block_group->used > 0); 4046 out: 4047 if (err && rw) 4048 btrfs_dec_block_group_ro(rc->block_group); 4049 iput(rc->data_inode); 4050 out_put_bg: 4051 btrfs_put_block_group(bg); 4052 reloc_chunk_end(fs_info); 4053 free_reloc_control(rc); 4054 return err; 4055 } 4056 4057 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4058 { 4059 struct btrfs_fs_info *fs_info = root->fs_info; 4060 struct btrfs_trans_handle *trans; 4061 int ret, err; 4062 4063 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4064 if (IS_ERR(trans)) 4065 return PTR_ERR(trans); 4066 4067 memset(&root->root_item.drop_progress, 0, 4068 sizeof(root->root_item.drop_progress)); 4069 btrfs_set_root_drop_level(&root->root_item, 0); 4070 btrfs_set_root_refs(&root->root_item, 0); 4071 ret = btrfs_update_root(trans, fs_info->tree_root, 4072 &root->root_key, &root->root_item); 4073 4074 err = btrfs_end_transaction(trans); 4075 if (err) 4076 return err; 4077 return ret; 4078 } 4079 4080 /* 4081 * recover relocation interrupted by system crash. 4082 * 4083 * this function resumes merging reloc trees with corresponding fs trees. 4084 * this is important for keeping the sharing of tree blocks 4085 */ 4086 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4087 { 4088 LIST_HEAD(reloc_roots); 4089 struct btrfs_key key; 4090 struct btrfs_root *fs_root; 4091 struct btrfs_root *reloc_root; 4092 struct btrfs_path *path; 4093 struct extent_buffer *leaf; 4094 struct reloc_control *rc = NULL; 4095 struct btrfs_trans_handle *trans; 4096 int ret2; 4097 int ret = 0; 4098 4099 path = btrfs_alloc_path(); 4100 if (!path) 4101 return -ENOMEM; 4102 path->reada = READA_BACK; 4103 4104 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4105 key.type = BTRFS_ROOT_ITEM_KEY; 4106 key.offset = (u64)-1; 4107 4108 while (1) { 4109 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4110 path, 0, 0); 4111 if (ret < 0) 4112 goto out; 4113 if (ret > 0) { 4114 if (path->slots[0] == 0) 4115 break; 4116 path->slots[0]--; 4117 } 4118 ret = 0; 4119 leaf = path->nodes[0]; 4120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4121 btrfs_release_path(path); 4122 4123 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4124 key.type != BTRFS_ROOT_ITEM_KEY) 4125 break; 4126 4127 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4128 if (IS_ERR(reloc_root)) { 4129 ret = PTR_ERR(reloc_root); 4130 goto out; 4131 } 4132 4133 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4134 list_add(&reloc_root->root_list, &reloc_roots); 4135 4136 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4137 fs_root = btrfs_get_fs_root(fs_info, 4138 reloc_root->root_key.offset, false); 4139 if (IS_ERR(fs_root)) { 4140 ret = PTR_ERR(fs_root); 4141 if (ret != -ENOENT) 4142 goto out; 4143 ret = mark_garbage_root(reloc_root); 4144 if (ret < 0) 4145 goto out; 4146 ret = 0; 4147 } else { 4148 btrfs_put_root(fs_root); 4149 } 4150 } 4151 4152 if (key.offset == 0) 4153 break; 4154 4155 key.offset--; 4156 } 4157 btrfs_release_path(path); 4158 4159 if (list_empty(&reloc_roots)) 4160 goto out; 4161 4162 rc = alloc_reloc_control(fs_info); 4163 if (!rc) { 4164 ret = -ENOMEM; 4165 goto out; 4166 } 4167 4168 ret = reloc_chunk_start(fs_info); 4169 if (ret < 0) 4170 goto out_end; 4171 4172 rc->extent_root = btrfs_extent_root(fs_info, 0); 4173 4174 set_reloc_control(rc); 4175 4176 trans = btrfs_join_transaction(rc->extent_root); 4177 if (IS_ERR(trans)) { 4178 ret = PTR_ERR(trans); 4179 goto out_unset; 4180 } 4181 4182 rc->merge_reloc_tree = true; 4183 4184 while (!list_empty(&reloc_roots)) { 4185 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); 4186 list_del(&reloc_root->root_list); 4187 4188 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4189 list_add_tail(&reloc_root->root_list, 4190 &rc->reloc_roots); 4191 continue; 4192 } 4193 4194 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4195 false); 4196 if (IS_ERR(fs_root)) { 4197 ret = PTR_ERR(fs_root); 4198 list_add_tail(&reloc_root->root_list, &reloc_roots); 4199 btrfs_end_transaction(trans); 4200 goto out_unset; 4201 } 4202 4203 ret = __add_reloc_root(reloc_root); 4204 ASSERT(ret != -EEXIST); 4205 if (ret) { 4206 list_add_tail(&reloc_root->root_list, &reloc_roots); 4207 btrfs_put_root(fs_root); 4208 btrfs_end_transaction(trans); 4209 goto out_unset; 4210 } 4211 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4212 btrfs_put_root(fs_root); 4213 } 4214 4215 ret = btrfs_commit_transaction(trans); 4216 if (ret) 4217 goto out_unset; 4218 4219 merge_reloc_roots(rc); 4220 4221 unset_reloc_control(rc); 4222 4223 trans = btrfs_join_transaction(rc->extent_root); 4224 if (IS_ERR(trans)) { 4225 ret = PTR_ERR(trans); 4226 goto out_clean; 4227 } 4228 ret = btrfs_commit_transaction(trans); 4229 out_clean: 4230 ret2 = clean_dirty_subvols(rc); 4231 if (ret2 < 0 && !ret) 4232 ret = ret2; 4233 out_unset: 4234 unset_reloc_control(rc); 4235 out_end: 4236 reloc_chunk_end(fs_info); 4237 free_reloc_control(rc); 4238 out: 4239 free_reloc_roots(&reloc_roots); 4240 4241 btrfs_free_path(path); 4242 4243 if (ret == 0) { 4244 /* cleanup orphan inode in data relocation tree */ 4245 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4246 ASSERT(fs_root); 4247 ret = btrfs_orphan_cleanup(fs_root); 4248 btrfs_put_root(fs_root); 4249 } 4250 return ret; 4251 } 4252 4253 /* 4254 * helper to add ordered checksum for data relocation. 4255 * 4256 * cloning checksum properly handles the nodatasum extents. 4257 * it also saves CPU time to re-calculate the checksum. 4258 */ 4259 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4260 { 4261 struct btrfs_inode *inode = ordered->inode; 4262 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4263 u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start; 4264 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4265 LIST_HEAD(list); 4266 int ret; 4267 4268 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4269 disk_bytenr + ordered->num_bytes - 1, 4270 &list, false); 4271 if (ret < 0) { 4272 btrfs_mark_ordered_extent_error(ordered); 4273 return ret; 4274 } 4275 4276 while (!list_empty(&list)) { 4277 struct btrfs_ordered_sum *sums = 4278 list_first_entry(&list, struct btrfs_ordered_sum, list); 4279 4280 list_del_init(&sums->list); 4281 4282 /* 4283 * We need to offset the new_bytenr based on where the csum is. 4284 * We need to do this because we will read in entire prealloc 4285 * extents but we may have written to say the middle of the 4286 * prealloc extent, so we need to make sure the csum goes with 4287 * the right disk offset. 4288 * 4289 * We can do this because the data reloc inode refers strictly 4290 * to the on disk bytes, so we don't have to worry about 4291 * disk_len vs real len like with real inodes since it's all 4292 * disk length. 4293 */ 4294 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4295 btrfs_add_ordered_sum(ordered, sums); 4296 } 4297 4298 return 0; 4299 } 4300 4301 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4302 struct btrfs_root *root, 4303 const struct extent_buffer *buf, 4304 struct extent_buffer *cow) 4305 { 4306 struct btrfs_fs_info *fs_info = root->fs_info; 4307 struct reloc_control *rc; 4308 struct btrfs_backref_node *node; 4309 int first_cow = 0; 4310 int level; 4311 int ret = 0; 4312 4313 rc = fs_info->reloc_ctl; 4314 if (!rc) 4315 return 0; 4316 4317 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4318 4319 level = btrfs_header_level(buf); 4320 if (btrfs_header_generation(buf) <= 4321 btrfs_root_last_snapshot(&root->root_item)) 4322 first_cow = 1; 4323 4324 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) { 4325 WARN_ON(!first_cow && level == 0); 4326 4327 node = rc->backref_cache.path[level]; 4328 4329 /* 4330 * If node->bytenr != buf->start and node->new_bytenr != 4331 * buf->start then we've got the wrong backref node for what we 4332 * expected to see here and the cache is incorrect. 4333 */ 4334 if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) { 4335 btrfs_err(fs_info, 4336 "bytenr %llu was found but our backref cache was expecting %llu or %llu", 4337 buf->start, node->bytenr, node->new_bytenr); 4338 return -EUCLEAN; 4339 } 4340 4341 btrfs_backref_drop_node_buffer(node); 4342 atomic_inc(&cow->refs); 4343 node->eb = cow; 4344 node->new_bytenr = cow->start; 4345 4346 if (!node->pending) { 4347 list_move_tail(&node->list, 4348 &rc->backref_cache.pending[level]); 4349 node->pending = 1; 4350 } 4351 4352 if (first_cow) 4353 mark_block_processed(rc, node); 4354 4355 if (first_cow && level > 0) 4356 rc->nodes_relocated += buf->len; 4357 } 4358 4359 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4360 ret = replace_file_extents(trans, rc, root, cow); 4361 return ret; 4362 } 4363 4364 /* 4365 * called before creating snapshot. it calculates metadata reservation 4366 * required for relocating tree blocks in the snapshot 4367 */ 4368 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4369 u64 *bytes_to_reserve) 4370 { 4371 struct btrfs_root *root = pending->root; 4372 struct reloc_control *rc = root->fs_info->reloc_ctl; 4373 4374 if (!rc || !have_reloc_root(root)) 4375 return; 4376 4377 if (!rc->merge_reloc_tree) 4378 return; 4379 4380 root = root->reloc_root; 4381 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4382 /* 4383 * relocation is in the stage of merging trees. the space 4384 * used by merging a reloc tree is twice the size of 4385 * relocated tree nodes in the worst case. half for cowing 4386 * the reloc tree, half for cowing the fs tree. the space 4387 * used by cowing the reloc tree will be freed after the 4388 * tree is dropped. if we create snapshot, cowing the fs 4389 * tree may use more space than it frees. so we need 4390 * reserve extra space. 4391 */ 4392 *bytes_to_reserve += rc->nodes_relocated; 4393 } 4394 4395 /* 4396 * called after snapshot is created. migrate block reservation 4397 * and create reloc root for the newly created snapshot 4398 * 4399 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4400 * references held on the reloc_root, one for root->reloc_root and one for 4401 * rc->reloc_roots. 4402 */ 4403 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4404 struct btrfs_pending_snapshot *pending) 4405 { 4406 struct btrfs_root *root = pending->root; 4407 struct btrfs_root *reloc_root; 4408 struct btrfs_root *new_root; 4409 struct reloc_control *rc = root->fs_info->reloc_ctl; 4410 int ret; 4411 4412 if (!rc || !have_reloc_root(root)) 4413 return 0; 4414 4415 rc = root->fs_info->reloc_ctl; 4416 rc->merging_rsv_size += rc->nodes_relocated; 4417 4418 if (rc->merge_reloc_tree) { 4419 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4420 rc->block_rsv, 4421 rc->nodes_relocated, true); 4422 if (ret) 4423 return ret; 4424 } 4425 4426 new_root = pending->snap; 4427 reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root)); 4428 if (IS_ERR(reloc_root)) 4429 return PTR_ERR(reloc_root); 4430 4431 ret = __add_reloc_root(reloc_root); 4432 ASSERT(ret != -EEXIST); 4433 if (ret) { 4434 /* Pairs with create_reloc_root */ 4435 btrfs_put_root(reloc_root); 4436 return ret; 4437 } 4438 new_root->reloc_root = btrfs_grab_root(reloc_root); 4439 return 0; 4440 } 4441 4442 /* 4443 * Get the current bytenr for the block group which is being relocated. 4444 * 4445 * Return U64_MAX if no running relocation. 4446 */ 4447 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) 4448 { 4449 u64 logical = U64_MAX; 4450 4451 lockdep_assert_held(&fs_info->reloc_mutex); 4452 4453 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4454 logical = fs_info->reloc_ctl->block_group->start; 4455 return logical; 4456 } 4457