1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int btrfs_range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 				u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 						  u64 file_offset)
129 {
130 	struct rb_node *prev = NULL;
131 	struct rb_node *ret;
132 	struct btrfs_ordered_extent *entry;
133 
134 	if (inode->ordered_tree_last) {
135 		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 				 rb_node);
137 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 			return inode->ordered_tree_last;
139 	}
140 	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 	if (!ret)
142 		ret = prev;
143 	if (ret)
144 		inode->ordered_tree_last = ret;
145 	return ret;
146 }
147 
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 			u64 offset, unsigned long flags, int compress_type)
152 {
153 	struct btrfs_ordered_extent *entry;
154 	int ret;
155 	u64 qgroup_rsv = 0;
156 	const bool is_nocow = (flags &
157 	       ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
158 
159 	/*
160 	 * For a NOCOW write we can free the qgroup reserve right now. For a COW
161 	 * one we transfer the reserved space from the inode's iotree into the
162 	 * ordered extent by calling btrfs_qgroup_release_data() and tracking
163 	 * the qgroup reserved amount in the ordered extent, so that later after
164 	 * completing the ordered extent, when running the data delayed ref it
165 	 * creates, we free the reserved data with btrfs_qgroup_free_refroot().
166 	 */
167 	if (is_nocow)
168 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
169 	else
170 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
171 
172 	if (ret < 0)
173 		return ERR_PTR(ret);
174 
175 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
176 	if (!entry) {
177 		entry = ERR_PTR(-ENOMEM);
178 		goto out;
179 	}
180 
181 	entry->file_offset = file_offset;
182 	entry->num_bytes = num_bytes;
183 	entry->ram_bytes = ram_bytes;
184 	entry->disk_bytenr = disk_bytenr;
185 	entry->disk_num_bytes = disk_num_bytes;
186 	entry->offset = offset;
187 	entry->bytes_left = num_bytes;
188 	if (WARN_ON_ONCE(!igrab(&inode->vfs_inode))) {
189 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
190 		entry = ERR_PTR(-ESTALE);
191 		goto out;
192 	}
193 	entry->inode = inode;
194 	entry->compress_type = compress_type;
195 	entry->truncated_len = (u64)-1;
196 	entry->qgroup_rsv = qgroup_rsv;
197 	entry->flags = flags;
198 	refcount_set(&entry->refs, 1);
199 	init_waitqueue_head(&entry->wait);
200 	INIT_LIST_HEAD(&entry->list);
201 	INIT_LIST_HEAD(&entry->log_list);
202 	INIT_LIST_HEAD(&entry->root_extent_list);
203 	INIT_LIST_HEAD(&entry->work_list);
204 	INIT_LIST_HEAD(&entry->bioc_list);
205 	init_completion(&entry->completion);
206 
207 	/*
208 	 * We don't need the count_max_extents here, we can assume that all of
209 	 * that work has been done at higher layers, so this is truly the
210 	 * smallest the extent is going to get.
211 	 */
212 	spin_lock(&inode->lock);
213 	btrfs_mod_outstanding_extents(inode, 1);
214 	spin_unlock(&inode->lock);
215 
216 out:
217 	if (IS_ERR(entry) && !is_nocow)
218 		btrfs_qgroup_free_refroot(inode->root->fs_info,
219 					  btrfs_root_id(inode->root),
220 					  qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
221 
222 	return entry;
223 }
224 
225 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
226 {
227 	struct btrfs_inode *inode = entry->inode;
228 	struct btrfs_root *root = inode->root;
229 	struct btrfs_fs_info *fs_info = root->fs_info;
230 	struct rb_node *node;
231 
232 	trace_btrfs_ordered_extent_add(inode, entry);
233 
234 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
235 				 fs_info->delalloc_batch);
236 
237 	/* One ref for the tree. */
238 	refcount_inc(&entry->refs);
239 
240 	spin_lock_irq(&inode->ordered_tree_lock);
241 	node = tree_insert(&inode->ordered_tree, entry->file_offset,
242 			   &entry->rb_node);
243 	if (unlikely(node))
244 		btrfs_panic(fs_info, -EEXIST,
245 				"inconsistency in ordered tree at offset %llu",
246 				entry->file_offset);
247 	spin_unlock_irq(&inode->ordered_tree_lock);
248 
249 	spin_lock(&root->ordered_extent_lock);
250 	list_add_tail(&entry->root_extent_list,
251 		      &root->ordered_extents);
252 	root->nr_ordered_extents++;
253 	if (root->nr_ordered_extents == 1) {
254 		spin_lock(&fs_info->ordered_root_lock);
255 		BUG_ON(!list_empty(&root->ordered_root));
256 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
257 		spin_unlock(&fs_info->ordered_root_lock);
258 	}
259 	spin_unlock(&root->ordered_extent_lock);
260 }
261 
262 /*
263  * Add an ordered extent to the per-inode tree.
264  *
265  * @inode:           Inode that this extent is for.
266  * @file_offset:     Logical offset in file where the extent starts.
267  * @num_bytes:       Logical length of extent in file.
268  * @ram_bytes:       Full length of unencoded data.
269  * @disk_bytenr:     Offset of extent on disk.
270  * @disk_num_bytes:  Size of extent on disk.
271  * @offset:          Offset into unencoded data where file data starts.
272  * @flags:           Flags specifying type of extent (1U << BTRFS_ORDERED_*).
273  * @compress_type:   Compression algorithm used for data.
274  *
275  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
276  * tree is given a single reference on the ordered extent that was inserted, and
277  * the returned pointer is given a second reference.
278  *
279  * Return: the new ordered extent or error pointer.
280  */
281 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
282 			struct btrfs_inode *inode, u64 file_offset,
283 			const struct btrfs_file_extent *file_extent, unsigned long flags)
284 {
285 	struct btrfs_ordered_extent *entry;
286 
287 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
288 
289 	/*
290 	 * For regular writes, we just use the members in @file_extent.
291 	 *
292 	 * For NOCOW, we don't really care about the numbers except @start and
293 	 * file_extent->num_bytes, as we won't insert a file extent item at all.
294 	 *
295 	 * For PREALLOC, we do not use ordered extent members, but
296 	 * btrfs_mark_extent_written() handles everything.
297 	 *
298 	 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
299 	 * or btrfs_split_ordered_extent() cannot handle it correctly.
300 	 */
301 	if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
302 		entry = alloc_ordered_extent(inode, file_offset,
303 					     file_extent->num_bytes,
304 					     file_extent->num_bytes,
305 					     file_extent->disk_bytenr + file_extent->offset,
306 					     file_extent->num_bytes, 0, flags,
307 					     file_extent->compression);
308 	else
309 		entry = alloc_ordered_extent(inode, file_offset,
310 					     file_extent->num_bytes,
311 					     file_extent->ram_bytes,
312 					     file_extent->disk_bytenr,
313 					     file_extent->disk_num_bytes,
314 					     file_extent->offset, flags,
315 					     file_extent->compression);
316 	if (!IS_ERR(entry))
317 		insert_ordered_extent(entry);
318 	return entry;
319 }
320 
321 /*
322  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
323  * when an ordered extent is finished.  If the list covers more than one
324  * ordered extent, it is split across multiples.
325  */
326 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
327 			   struct btrfs_ordered_sum *sum)
328 {
329 	struct btrfs_inode *inode = entry->inode;
330 
331 	spin_lock_irq(&inode->ordered_tree_lock);
332 	list_add_tail(&sum->list, &entry->list);
333 	spin_unlock_irq(&inode->ordered_tree_lock);
334 }
335 
336 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
337 {
338 	if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
339 		mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
340 }
341 
342 static void finish_ordered_fn(struct btrfs_work *work)
343 {
344 	struct btrfs_ordered_extent *ordered_extent;
345 
346 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
347 	btrfs_finish_ordered_io(ordered_extent);
348 }
349 
350 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
351 				      struct folio *folio, u64 file_offset,
352 				      u64 len, bool uptodate)
353 {
354 	struct btrfs_inode *inode = ordered->inode;
355 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
356 
357 	lockdep_assert_held(&inode->ordered_tree_lock);
358 
359 	if (folio) {
360 		ASSERT(folio->mapping);
361 		ASSERT(folio_pos(folio) <= file_offset);
362 		ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
363 
364 		/*
365 		 * Ordered flag indicates whether we still have
366 		 * pending io unfinished for the ordered extent.
367 		 *
368 		 * If it's not set, we need to skip to next range.
369 		 */
370 		if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
371 			return false;
372 		btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
373 	}
374 
375 	/* Now we're fine to update the accounting. */
376 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
377 		btrfs_crit(fs_info,
378 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
379 			   btrfs_root_id(inode->root), btrfs_ino(inode),
380 			   ordered->file_offset, ordered->num_bytes,
381 			   len, ordered->bytes_left);
382 		ordered->bytes_left = 0;
383 	} else {
384 		ordered->bytes_left -= len;
385 	}
386 
387 	if (!uptodate)
388 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
389 
390 	if (ordered->bytes_left)
391 		return false;
392 
393 	/*
394 	 * All the IO of the ordered extent is finished, we need to queue
395 	 * the finish_func to be executed.
396 	 */
397 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
398 	cond_wake_up(&ordered->wait);
399 	refcount_inc(&ordered->refs);
400 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
401 	return true;
402 }
403 
404 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
405 {
406 	struct btrfs_inode *inode = ordered->inode;
407 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
408 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
409 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
410 
411 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
412 	btrfs_queue_work(wq, &ordered->work);
413 }
414 
415 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
416 				 struct folio *folio, u64 file_offset, u64 len,
417 				 bool uptodate)
418 {
419 	struct btrfs_inode *inode = ordered->inode;
420 	unsigned long flags;
421 	bool ret;
422 
423 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
424 
425 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
426 	ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
427 					uptodate);
428 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
429 
430 	/*
431 	 * If this is a COW write it means we created new extent maps for the
432 	 * range and they point to unwritten locations if we got an error either
433 	 * before submitting a bio or during IO.
434 	 *
435 	 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
436 	 * are queuing its completion below. During completion, at
437 	 * btrfs_finish_one_ordered(), we will drop the extent maps for the
438 	 * unwritten extents.
439 	 *
440 	 * However because completion runs in a work queue we can end up having
441 	 * a fast fsync running before that. In the case of direct IO, once we
442 	 * unlock the inode the fsync might start, and we queue the completion
443 	 * before unlocking the inode. In the case of buffered IO when writeback
444 	 * finishes (end_bbio_data_write()) we queue the completion, so if the
445 	 * writeback was triggered by a fast fsync, the fsync might start
446 	 * logging before ordered extent completion runs in the work queue.
447 	 *
448 	 * The fast fsync will log file extent items based on the extent maps it
449 	 * finds, so if by the time it collects extent maps the ordered extent
450 	 * completion didn't happen yet, it will log file extent items that
451 	 * point to unwritten extents, resulting in a corruption if a crash
452 	 * happens and the log tree is replayed. Note that a fast fsync does not
453 	 * wait for completion of ordered extents in order to reduce latency.
454 	 *
455 	 * Set a flag in the inode so that the next fast fsync will wait for
456 	 * ordered extents to complete before starting to log.
457 	 */
458 	if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
459 		set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
460 
461 	if (ret)
462 		btrfs_queue_ordered_fn(ordered);
463 }
464 
465 /*
466  * Mark all ordered extents io inside the specified range finished.
467  *
468  * @folio:	 The involved folio for the operation.
469  *		 For uncompressed buffered IO, the folio status also needs to be
470  *		 updated to indicate whether the pending ordered io is finished.
471  *		 Can be NULL for direct IO and compressed write.
472  *		 For these cases, callers are ensured they won't execute the
473  *		 endio function twice.
474  *
475  * This function is called for endio, thus the range must have ordered
476  * extent(s) covering it.
477  */
478 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
479 				    struct folio *folio, u64 file_offset,
480 				    u64 num_bytes, bool uptodate)
481 {
482 	struct rb_node *node;
483 	struct btrfs_ordered_extent *entry = NULL;
484 	unsigned long flags;
485 	u64 cur = file_offset;
486 
487 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
488 					  file_offset + num_bytes - 1,
489 					  uptodate);
490 
491 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
492 	while (cur < file_offset + num_bytes) {
493 		u64 entry_end;
494 		u64 end;
495 		u32 len;
496 
497 		node = ordered_tree_search(inode, cur);
498 		/* No ordered extents at all */
499 		if (!node)
500 			break;
501 
502 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
503 		entry_end = entry->file_offset + entry->num_bytes;
504 		/*
505 		 * |<-- OE --->|  |
506 		 *		  cur
507 		 * Go to next OE.
508 		 */
509 		if (cur >= entry_end) {
510 			node = rb_next(node);
511 			/* No more ordered extents, exit */
512 			if (!node)
513 				break;
514 			entry = rb_entry(node, struct btrfs_ordered_extent,
515 					 rb_node);
516 
517 			/* Go to next ordered extent and continue */
518 			cur = entry->file_offset;
519 			continue;
520 		}
521 		/*
522 		 * |	|<--- OE --->|
523 		 * cur
524 		 * Go to the start of OE.
525 		 */
526 		if (cur < entry->file_offset) {
527 			cur = entry->file_offset;
528 			continue;
529 		}
530 
531 		/*
532 		 * Now we are definitely inside one ordered extent.
533 		 *
534 		 * |<--- OE --->|
535 		 *	|
536 		 *	cur
537 		 */
538 		end = min(entry->file_offset + entry->num_bytes,
539 			  file_offset + num_bytes) - 1;
540 		ASSERT(end + 1 - cur < U32_MAX);
541 		len = end + 1 - cur;
542 
543 		if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
544 			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
545 			btrfs_queue_ordered_fn(entry);
546 			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
547 		}
548 		cur += len;
549 	}
550 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
551 }
552 
553 /*
554  * Finish IO for one ordered extent across a given range.  The range can only
555  * contain one ordered extent.
556  *
557  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
558  *               search and use the ordered extent directly.
559  * 		 Will be also used to store the finished ordered extent.
560  * @file_offset: File offset for the finished IO
561  * @io_size:	 Length of the finish IO range
562  *
563  * Return true if the ordered extent is finished in the range, and update
564  * @cached.
565  * Return false otherwise.
566  *
567  * NOTE: The range can NOT cross multiple ordered extents.
568  * Thus caller should ensure the range doesn't cross ordered extents.
569  */
570 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
571 				    struct btrfs_ordered_extent **cached,
572 				    u64 file_offset, u64 io_size)
573 {
574 	struct rb_node *node;
575 	struct btrfs_ordered_extent *entry = NULL;
576 	unsigned long flags;
577 	bool finished = false;
578 
579 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
580 	if (cached && *cached) {
581 		entry = *cached;
582 		goto have_entry;
583 	}
584 
585 	node = ordered_tree_search(inode, file_offset);
586 	if (!node)
587 		goto out;
588 
589 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
590 have_entry:
591 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
592 		goto out;
593 
594 	if (io_size > entry->bytes_left)
595 		btrfs_crit(inode->root->fs_info,
596 			   "bad ordered accounting left %llu size %llu",
597 		       entry->bytes_left, io_size);
598 
599 	entry->bytes_left -= io_size;
600 
601 	if (entry->bytes_left == 0) {
602 		/*
603 		 * Ensure only one caller can set the flag and finished_ret
604 		 * accordingly
605 		 */
606 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
607 		/* test_and_set_bit implies a barrier */
608 		cond_wake_up_nomb(&entry->wait);
609 	}
610 out:
611 	if (finished && cached && entry) {
612 		*cached = entry;
613 		refcount_inc(&entry->refs);
614 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
615 	}
616 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
617 	return finished;
618 }
619 
620 /*
621  * used to drop a reference on an ordered extent.  This will free
622  * the extent if the last reference is dropped
623  */
624 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
625 {
626 	trace_btrfs_ordered_extent_put(entry->inode, entry);
627 
628 	if (refcount_dec_and_test(&entry->refs)) {
629 		struct btrfs_ordered_sum *sum;
630 		struct btrfs_ordered_sum *tmp;
631 
632 		ASSERT(list_empty(&entry->root_extent_list));
633 		ASSERT(list_empty(&entry->log_list));
634 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
635 		btrfs_add_delayed_iput(entry->inode);
636 		list_for_each_entry_safe(sum, tmp, &entry->list, list)
637 			kvfree(sum);
638 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
639 	}
640 }
641 
642 /*
643  * remove an ordered extent from the tree.  No references are dropped
644  * and waiters are woken up.
645  */
646 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
647 				 struct btrfs_ordered_extent *entry)
648 {
649 	struct btrfs_root *root = btrfs_inode->root;
650 	struct btrfs_fs_info *fs_info = root->fs_info;
651 	struct rb_node *node;
652 	bool pending;
653 	bool freespace_inode;
654 
655 	/*
656 	 * If this is a free space inode the thread has not acquired the ordered
657 	 * extents lockdep map.
658 	 */
659 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
660 
661 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
662 	/* This is paired with alloc_ordered_extent(). */
663 	spin_lock(&btrfs_inode->lock);
664 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
665 	spin_unlock(&btrfs_inode->lock);
666 	if (root != fs_info->tree_root) {
667 		u64 release;
668 
669 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
670 			release = entry->disk_num_bytes;
671 		else
672 			release = entry->num_bytes;
673 		btrfs_delalloc_release_metadata(btrfs_inode, release,
674 						test_bit(BTRFS_ORDERED_IOERR,
675 							 &entry->flags));
676 	}
677 
678 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
679 				 fs_info->delalloc_batch);
680 
681 	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
682 	node = &entry->rb_node;
683 	rb_erase(node, &btrfs_inode->ordered_tree);
684 	RB_CLEAR_NODE(node);
685 	if (btrfs_inode->ordered_tree_last == node)
686 		btrfs_inode->ordered_tree_last = NULL;
687 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
688 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
689 	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
690 
691 	/*
692 	 * The current running transaction is waiting on us, we need to let it
693 	 * know that we're complete and wake it up.
694 	 */
695 	if (pending) {
696 		struct btrfs_transaction *trans;
697 
698 		/*
699 		 * The checks for trans are just a formality, it should be set,
700 		 * but if it isn't we don't want to deref/assert under the spin
701 		 * lock, so be nice and check if trans is set, but ASSERT() so
702 		 * if it isn't set a developer will notice.
703 		 */
704 		spin_lock(&fs_info->trans_lock);
705 		trans = fs_info->running_transaction;
706 		if (trans)
707 			refcount_inc(&trans->use_count);
708 		spin_unlock(&fs_info->trans_lock);
709 
710 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
711 		if (trans) {
712 			if (atomic_dec_and_test(&trans->pending_ordered))
713 				wake_up(&trans->pending_wait);
714 			btrfs_put_transaction(trans);
715 		}
716 	}
717 
718 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
719 
720 	spin_lock(&root->ordered_extent_lock);
721 	list_del_init(&entry->root_extent_list);
722 	root->nr_ordered_extents--;
723 
724 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
725 
726 	if (!root->nr_ordered_extents) {
727 		spin_lock(&fs_info->ordered_root_lock);
728 		BUG_ON(list_empty(&root->ordered_root));
729 		list_del_init(&root->ordered_root);
730 		spin_unlock(&fs_info->ordered_root_lock);
731 	}
732 	spin_unlock(&root->ordered_extent_lock);
733 	wake_up(&entry->wait);
734 	if (!freespace_inode)
735 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
736 }
737 
738 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
739 {
740 	struct btrfs_ordered_extent *ordered;
741 
742 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
743 	btrfs_start_ordered_extent(ordered);
744 	complete(&ordered->completion);
745 }
746 
747 /*
748  * Wait for all the ordered extents in a root. Use @bg as range or do whole
749  * range if it's NULL.
750  */
751 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
752 			       const struct btrfs_block_group *bg)
753 {
754 	struct btrfs_fs_info *fs_info = root->fs_info;
755 	LIST_HEAD(splice);
756 	LIST_HEAD(skipped);
757 	LIST_HEAD(works);
758 	struct btrfs_ordered_extent *ordered, *next;
759 	u64 count = 0;
760 	u64 range_start, range_len;
761 	u64 range_end;
762 
763 	if (bg) {
764 		range_start = bg->start;
765 		range_len = bg->length;
766 	} else {
767 		range_start = 0;
768 		range_len = U64_MAX;
769 	}
770 	range_end = range_start + range_len;
771 
772 	mutex_lock(&root->ordered_extent_mutex);
773 	spin_lock(&root->ordered_extent_lock);
774 	list_splice_init(&root->ordered_extents, &splice);
775 	while (!list_empty(&splice) && nr) {
776 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
777 					   root_extent_list);
778 
779 		if (range_end <= ordered->disk_bytenr ||
780 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
781 			list_move_tail(&ordered->root_extent_list, &skipped);
782 			cond_resched_lock(&root->ordered_extent_lock);
783 			continue;
784 		}
785 
786 		list_move_tail(&ordered->root_extent_list,
787 			       &root->ordered_extents);
788 		refcount_inc(&ordered->refs);
789 		spin_unlock(&root->ordered_extent_lock);
790 
791 		btrfs_init_work(&ordered->flush_work,
792 				btrfs_run_ordered_extent_work, NULL);
793 		list_add_tail(&ordered->work_list, &works);
794 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
795 
796 		cond_resched();
797 		if (nr != U64_MAX)
798 			nr--;
799 		count++;
800 		spin_lock(&root->ordered_extent_lock);
801 	}
802 	list_splice_tail(&skipped, &root->ordered_extents);
803 	list_splice_tail(&splice, &root->ordered_extents);
804 	spin_unlock(&root->ordered_extent_lock);
805 
806 	list_for_each_entry_safe(ordered, next, &works, work_list) {
807 		list_del_init(&ordered->work_list);
808 		wait_for_completion(&ordered->completion);
809 		btrfs_put_ordered_extent(ordered);
810 		cond_resched();
811 	}
812 	mutex_unlock(&root->ordered_extent_mutex);
813 
814 	return count;
815 }
816 
817 /*
818  * Wait for @nr ordered extents that intersect the @bg, or the whole range of
819  * the filesystem if @bg is NULL.
820  */
821 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
822 			      const struct btrfs_block_group *bg)
823 {
824 	struct btrfs_root *root;
825 	LIST_HEAD(splice);
826 	u64 done;
827 
828 	mutex_lock(&fs_info->ordered_operations_mutex);
829 	spin_lock(&fs_info->ordered_root_lock);
830 	list_splice_init(&fs_info->ordered_roots, &splice);
831 	while (!list_empty(&splice) && nr) {
832 		root = list_first_entry(&splice, struct btrfs_root,
833 					ordered_root);
834 		root = btrfs_grab_root(root);
835 		BUG_ON(!root);
836 		list_move_tail(&root->ordered_root,
837 			       &fs_info->ordered_roots);
838 		spin_unlock(&fs_info->ordered_root_lock);
839 
840 		done = btrfs_wait_ordered_extents(root, nr, bg);
841 		btrfs_put_root(root);
842 
843 		if (nr != U64_MAX)
844 			nr -= done;
845 
846 		spin_lock(&fs_info->ordered_root_lock);
847 	}
848 	list_splice_tail(&splice, &fs_info->ordered_roots);
849 	spin_unlock(&fs_info->ordered_root_lock);
850 	mutex_unlock(&fs_info->ordered_operations_mutex);
851 }
852 
853 /*
854  * Start IO and wait for a given ordered extent to finish.
855  *
856  * Wait on page writeback for all the pages in the extent but not in
857  * [@nowriteback_start, @nowriteback_start + @nowriteback_len) and the
858  * IO completion code to insert metadata into the btree corresponding to the extent.
859  */
860 void btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent *entry,
861 					    u64 nowriteback_start, u32 nowriteback_len)
862 {
863 	u64 start = entry->file_offset;
864 	u64 end = start + entry->num_bytes - 1;
865 	struct btrfs_inode *inode = entry->inode;
866 	bool freespace_inode;
867 
868 	trace_btrfs_ordered_extent_start(inode, entry);
869 
870 	/*
871 	 * If this is a free space inode do not take the ordered extents lockdep
872 	 * map.
873 	 */
874 	freespace_inode = btrfs_is_free_space_inode(inode);
875 
876 	/*
877 	 * pages in the range can be dirty, clean or writeback.  We
878 	 * start IO on any dirty ones so the wait doesn't stall waiting
879 	 * for the flusher thread to find them
880 	 */
881 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) {
882 		if (!nowriteback_len) {
883 			filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
884 		} else {
885 			if (start < nowriteback_start)
886 				filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start,
887 							 nowriteback_start - 1);
888 			if (nowriteback_start + nowriteback_len < end)
889 				filemap_fdatawrite_range(inode->vfs_inode.i_mapping,
890 							 nowriteback_start + nowriteback_len,
891 							 end);
892 		}
893 	}
894 
895 	if (!freespace_inode)
896 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
897 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
898 }
899 
900 /*
901  * Used to wait on ordered extents across a large range of bytes.
902  */
903 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
904 {
905 	int ret = 0;
906 	int ret_wb = 0;
907 	u64 end;
908 	u64 orig_end;
909 	struct btrfs_ordered_extent *ordered;
910 
911 	if (start + len < start) {
912 		orig_end = OFFSET_MAX;
913 	} else {
914 		orig_end = start + len - 1;
915 		if (orig_end > OFFSET_MAX)
916 			orig_end = OFFSET_MAX;
917 	}
918 
919 	/* start IO across the range first to instantiate any delalloc
920 	 * extents
921 	 */
922 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
923 	if (ret)
924 		return ret;
925 
926 	/*
927 	 * If we have a writeback error don't return immediately. Wait first
928 	 * for any ordered extents that haven't completed yet. This is to make
929 	 * sure no one can dirty the same page ranges and call writepages()
930 	 * before the ordered extents complete - to avoid failures (-EEXIST)
931 	 * when adding the new ordered extents to the ordered tree.
932 	 */
933 	ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
934 
935 	end = orig_end;
936 	while (1) {
937 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
938 		if (!ordered)
939 			break;
940 		if (ordered->file_offset > orig_end) {
941 			btrfs_put_ordered_extent(ordered);
942 			break;
943 		}
944 		if (ordered->file_offset + ordered->num_bytes <= start) {
945 			btrfs_put_ordered_extent(ordered);
946 			break;
947 		}
948 		btrfs_start_ordered_extent(ordered);
949 		end = ordered->file_offset;
950 		/*
951 		 * If the ordered extent had an error save the error but don't
952 		 * exit without waiting first for all other ordered extents in
953 		 * the range to complete.
954 		 */
955 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
956 			ret = -EIO;
957 		btrfs_put_ordered_extent(ordered);
958 		if (end == 0 || end == start)
959 			break;
960 		end--;
961 	}
962 	return ret_wb ? ret_wb : ret;
963 }
964 
965 /*
966  * find an ordered extent corresponding to file_offset.  return NULL if
967  * nothing is found, otherwise take a reference on the extent and return it
968  */
969 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
970 							 u64 file_offset)
971 {
972 	struct rb_node *node;
973 	struct btrfs_ordered_extent *entry = NULL;
974 	unsigned long flags;
975 
976 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
977 	node = ordered_tree_search(inode, file_offset);
978 	if (!node)
979 		goto out;
980 
981 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
982 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
983 		entry = NULL;
984 	if (entry) {
985 		refcount_inc(&entry->refs);
986 		trace_btrfs_ordered_extent_lookup(inode, entry);
987 	}
988 out:
989 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
990 	return entry;
991 }
992 
993 /* Since the DIO code tries to lock a wide area we need to look for any ordered
994  * extents that exist in the range, rather than just the start of the range.
995  */
996 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
997 		struct btrfs_inode *inode, u64 file_offset, u64 len)
998 {
999 	struct rb_node *node;
1000 	struct btrfs_ordered_extent *entry = NULL;
1001 
1002 	spin_lock_irq(&inode->ordered_tree_lock);
1003 	node = ordered_tree_search(inode, file_offset);
1004 	if (!node) {
1005 		node = ordered_tree_search(inode, file_offset + len);
1006 		if (!node)
1007 			goto out;
1008 	}
1009 
1010 	while (1) {
1011 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1012 		if (btrfs_range_overlaps(entry, file_offset, len))
1013 			break;
1014 
1015 		if (entry->file_offset >= file_offset + len) {
1016 			entry = NULL;
1017 			break;
1018 		}
1019 		entry = NULL;
1020 		node = rb_next(node);
1021 		if (!node)
1022 			break;
1023 	}
1024 out:
1025 	if (entry) {
1026 		refcount_inc(&entry->refs);
1027 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
1028 	}
1029 	spin_unlock_irq(&inode->ordered_tree_lock);
1030 	return entry;
1031 }
1032 
1033 /*
1034  * Adds all ordered extents to the given list. The list ends up sorted by the
1035  * file_offset of the ordered extents.
1036  */
1037 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1038 					   struct list_head *list)
1039 {
1040 	struct rb_node *n;
1041 
1042 	btrfs_assert_inode_locked(inode);
1043 
1044 	spin_lock_irq(&inode->ordered_tree_lock);
1045 	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1046 		struct btrfs_ordered_extent *ordered;
1047 
1048 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1049 
1050 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1051 			continue;
1052 
1053 		ASSERT(list_empty(&ordered->log_list));
1054 		list_add_tail(&ordered->log_list, list);
1055 		refcount_inc(&ordered->refs);
1056 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1057 	}
1058 	spin_unlock_irq(&inode->ordered_tree_lock);
1059 }
1060 
1061 /*
1062  * lookup and return any extent before 'file_offset'.  NULL is returned
1063  * if none is found
1064  */
1065 struct btrfs_ordered_extent *
1066 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1067 {
1068 	struct rb_node *node;
1069 	struct btrfs_ordered_extent *entry = NULL;
1070 
1071 	spin_lock_irq(&inode->ordered_tree_lock);
1072 	node = ordered_tree_search(inode, file_offset);
1073 	if (!node)
1074 		goto out;
1075 
1076 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1077 	refcount_inc(&entry->refs);
1078 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
1079 out:
1080 	spin_unlock_irq(&inode->ordered_tree_lock);
1081 	return entry;
1082 }
1083 
1084 /*
1085  * Lookup the first ordered extent that overlaps the range
1086  * [@file_offset, @file_offset + @len).
1087  *
1088  * The difference between this and btrfs_lookup_first_ordered_extent() is
1089  * that this one won't return any ordered extent that does not overlap the range.
1090  * And the difference against btrfs_lookup_ordered_extent() is, this function
1091  * ensures the first ordered extent gets returned.
1092  */
1093 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1094 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1095 {
1096 	struct rb_node *node;
1097 	struct rb_node *cur;
1098 	struct rb_node *prev;
1099 	struct rb_node *next;
1100 	struct btrfs_ordered_extent *entry = NULL;
1101 
1102 	spin_lock_irq(&inode->ordered_tree_lock);
1103 	node = inode->ordered_tree.rb_node;
1104 	/*
1105 	 * Here we don't want to use tree_search() which will use tree->last
1106 	 * and screw up the search order.
1107 	 * And __tree_search() can't return the adjacent ordered extents
1108 	 * either, thus here we do our own search.
1109 	 */
1110 	while (node) {
1111 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1112 
1113 		if (file_offset < entry->file_offset) {
1114 			node = node->rb_left;
1115 		} else if (file_offset >= entry_end(entry)) {
1116 			node = node->rb_right;
1117 		} else {
1118 			/*
1119 			 * Direct hit, got an ordered extent that starts at
1120 			 * @file_offset
1121 			 */
1122 			goto out;
1123 		}
1124 	}
1125 	if (!entry) {
1126 		/* Empty tree */
1127 		goto out;
1128 	}
1129 
1130 	cur = &entry->rb_node;
1131 	/* We got an entry around @file_offset, check adjacent entries */
1132 	if (entry->file_offset < file_offset) {
1133 		prev = cur;
1134 		next = rb_next(cur);
1135 	} else {
1136 		prev = rb_prev(cur);
1137 		next = cur;
1138 	}
1139 	if (prev) {
1140 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1141 		if (btrfs_range_overlaps(entry, file_offset, len))
1142 			goto out;
1143 	}
1144 	if (next) {
1145 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1146 		if (btrfs_range_overlaps(entry, file_offset, len))
1147 			goto out;
1148 	}
1149 	/* No ordered extent in the range */
1150 	entry = NULL;
1151 out:
1152 	if (entry) {
1153 		refcount_inc(&entry->refs);
1154 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1155 	}
1156 
1157 	spin_unlock_irq(&inode->ordered_tree_lock);
1158 	return entry;
1159 }
1160 
1161 /*
1162  * Lock the passed range and ensures all pending ordered extents in it are run
1163  * to completion.
1164  *
1165  * @inode:        Inode whose ordered tree is to be searched
1166  * @start:        Beginning of range to flush
1167  * @end:          Last byte of range to lock
1168  * @cached_state: If passed, will return the extent state responsible for the
1169  *                locked range. It's the caller's responsibility to free the
1170  *                cached state.
1171  *
1172  * Always return with the given range locked, ensuring after it's called no
1173  * order extent can be pending.
1174  */
1175 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1176 					u64 end,
1177 					struct extent_state **cached_state)
1178 {
1179 	struct btrfs_ordered_extent *ordered;
1180 	struct extent_state *cache = NULL;
1181 	struct extent_state **cachedp = &cache;
1182 
1183 	if (cached_state)
1184 		cachedp = cached_state;
1185 
1186 	while (1) {
1187 		btrfs_lock_extent(&inode->io_tree, start, end, cachedp);
1188 		ordered = btrfs_lookup_ordered_range(inode, start,
1189 						     end - start + 1);
1190 		if (!ordered) {
1191 			/*
1192 			 * If no external cached_state has been passed then
1193 			 * decrement the extra ref taken for cachedp since we
1194 			 * aren't exposing it outside of this function
1195 			 */
1196 			if (!cached_state)
1197 				refcount_dec(&cache->refs);
1198 			break;
1199 		}
1200 		btrfs_unlock_extent(&inode->io_tree, start, end, cachedp);
1201 		btrfs_start_ordered_extent(ordered);
1202 		btrfs_put_ordered_extent(ordered);
1203 	}
1204 }
1205 
1206 /*
1207  * Lock the passed range and ensure all pending ordered extents in it are run
1208  * to completion in nowait mode.
1209  *
1210  * Return true if btrfs_lock_ordered_range does not return any extents,
1211  * otherwise false.
1212  */
1213 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1214 				  struct extent_state **cached_state)
1215 {
1216 	struct btrfs_ordered_extent *ordered;
1217 
1218 	if (!btrfs_try_lock_extent(&inode->io_tree, start, end, cached_state))
1219 		return false;
1220 
1221 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1222 	if (!ordered)
1223 		return true;
1224 
1225 	btrfs_put_ordered_extent(ordered);
1226 	btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1227 
1228 	return false;
1229 }
1230 
1231 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1232 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1233 			struct btrfs_ordered_extent *ordered, u64 len)
1234 {
1235 	struct btrfs_inode *inode = ordered->inode;
1236 	struct btrfs_root *root = inode->root;
1237 	struct btrfs_fs_info *fs_info = root->fs_info;
1238 	u64 file_offset = ordered->file_offset;
1239 	u64 disk_bytenr = ordered->disk_bytenr;
1240 	unsigned long flags = ordered->flags;
1241 	struct btrfs_ordered_sum *sum, *tmpsum;
1242 	struct btrfs_ordered_extent *new;
1243 	struct rb_node *node;
1244 	u64 offset = 0;
1245 
1246 	trace_btrfs_ordered_extent_split(inode, ordered);
1247 
1248 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1249 
1250 	/*
1251 	 * The entire bio must be covered by the ordered extent, but we can't
1252 	 * reduce the original extent to a zero length either.
1253 	 */
1254 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1255 		return ERR_PTR(-EINVAL);
1256 	/*
1257 	 * If our ordered extent had an error there's no point in continuing.
1258 	 * The error may have come from a transaction abort done either by this
1259 	 * task or some other concurrent task, and the transaction abort path
1260 	 * iterates over all existing ordered extents and sets the flag
1261 	 * BTRFS_ORDERED_IOERR on them.
1262 	 */
1263 	if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1264 		const int fs_error = BTRFS_FS_ERROR(fs_info);
1265 
1266 		return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1267 	}
1268 	/* We cannot split partially completed ordered extents. */
1269 	if (ordered->bytes_left) {
1270 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1271 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1272 			return ERR_PTR(-EINVAL);
1273 	}
1274 	/* We cannot split a compressed ordered extent. */
1275 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1276 		return ERR_PTR(-EINVAL);
1277 
1278 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1279 				   len, 0, flags, ordered->compress_type);
1280 	if (IS_ERR(new))
1281 		return new;
1282 
1283 	/* One ref for the tree. */
1284 	refcount_inc(&new->refs);
1285 
1286 	/*
1287 	 * Take the root's ordered_extent_lock to avoid a race with
1288 	 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1289 	 * disk_num_bytes fields of the ordered extent below. And we disable
1290 	 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1291 	 * elsewhere.
1292 	 *
1293 	 * There's no concern about a previous caller of
1294 	 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1295 	 * before we insert the new one, because even if it gets the ordered
1296 	 * extent before it's trimmed and the new one inserted, right before it
1297 	 * uses it or during its use, the ordered extent might have been
1298 	 * trimmed in the meanwhile, and it missed the new ordered extent.
1299 	 * There's no way around this and it's harmless for current use cases,
1300 	 * so we take the root's ordered_extent_lock to fix that race during
1301 	 * trimming and silence tools like KCSAN.
1302 	 */
1303 	spin_lock_irq(&root->ordered_extent_lock);
1304 	spin_lock(&inode->ordered_tree_lock);
1305 
1306 	/*
1307 	 * We don't have overlapping ordered extents (that would imply double
1308 	 * allocation of extents) and we checked above that the split length
1309 	 * does not cross the ordered extent's num_bytes field, so there's
1310 	 * no need to remove it and re-insert it in the tree.
1311 	 */
1312 	ordered->file_offset += len;
1313 	ordered->disk_bytenr += len;
1314 	ordered->num_bytes -= len;
1315 	ordered->disk_num_bytes -= len;
1316 	ordered->ram_bytes -= len;
1317 
1318 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1319 		ASSERT(ordered->bytes_left == 0);
1320 		new->bytes_left = 0;
1321 	} else {
1322 		ordered->bytes_left -= len;
1323 	}
1324 
1325 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1326 		if (ordered->truncated_len > len) {
1327 			ordered->truncated_len -= len;
1328 		} else {
1329 			new->truncated_len = ordered->truncated_len;
1330 			ordered->truncated_len = 0;
1331 		}
1332 	}
1333 
1334 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1335 		if (offset == len)
1336 			break;
1337 		list_move_tail(&sum->list, &new->list);
1338 		offset += sum->len;
1339 	}
1340 
1341 	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1342 	if (unlikely(node))
1343 		btrfs_panic(fs_info, -EEXIST,
1344 			"inconsistency in ordered tree at offset %llu after split",
1345 			new->file_offset);
1346 	spin_unlock(&inode->ordered_tree_lock);
1347 
1348 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1349 	root->nr_ordered_extents++;
1350 	spin_unlock_irq(&root->ordered_extent_lock);
1351 	return new;
1352 }
1353 
1354 int __init ordered_data_init(void)
1355 {
1356 	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1357 	if (!btrfs_ordered_extent_cache)
1358 		return -ENOMEM;
1359 
1360 	return 0;
1361 }
1362 
1363 void __cold ordered_data_exit(void)
1364 {
1365 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1366 }
1367