1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 unsigned long index = offset >> PAGE_SHIFT; 399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int err; 427 428 if (args->default_acl) { 429 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (err) 432 return err; 433 } 434 if (args->acl) { 435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (err) 437 return err; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.type = BTRFS_EXTENT_DATA_KEY; 493 key.offset = 0; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* Inline extents are limited to sectorsize. */ 570 if (size > fs_info->sectorsize) 571 return false; 572 573 /* We do not allow a non-compressed extent to be as large as block size. */ 574 if (data_len >= fs_info->sectorsize) 575 return false; 576 577 /* We cannot exceed the maximum inline data size. */ 578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 579 return false; 580 581 /* We cannot exceed the user specified max_inline size. */ 582 if (data_len > fs_info->max_inline) 583 return false; 584 585 /* Inline extents must be the entirety of the file. */ 586 if (size < i_size_read(&inode->vfs_inode)) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * conditionally insert an inline extent into the file. This 594 * does the checks required to make sure the data is small enough 595 * to fit as an inline extent. 596 * 597 * If being used directly, you must have already checked we're allowed to cow 598 * the range by getting true from can_cow_file_range_inline(). 599 */ 600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 601 u64 size, size_t compressed_size, 602 int compress_type, 603 struct folio *compressed_folio, 604 bool update_i_size) 605 { 606 struct btrfs_drop_extents_args drop_args = { 0 }; 607 struct btrfs_root *root = inode->root; 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_trans_handle *trans; 610 u64 data_len = (compressed_size ?: size); 611 int ret; 612 struct btrfs_path *path; 613 614 path = btrfs_alloc_path(); 615 if (!path) 616 return -ENOMEM; 617 618 trans = btrfs_join_transaction(root); 619 if (IS_ERR(trans)) { 620 btrfs_free_path(path); 621 return PTR_ERR(trans); 622 } 623 trans->block_rsv = &inode->block_rsv; 624 625 drop_args.path = path; 626 drop_args.start = 0; 627 drop_args.end = fs_info->sectorsize; 628 drop_args.drop_cache = true; 629 drop_args.replace_extent = true; 630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 631 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto out; 635 } 636 637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 638 size, compressed_size, compress_type, 639 compressed_folio, update_i_size); 640 if (ret && ret != -ENOSPC) { 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } else if (ret == -ENOSPC) { 644 ret = 1; 645 goto out; 646 } 647 648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 649 ret = btrfs_update_inode(trans, inode); 650 if (ret && ret != -ENOSPC) { 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } else if (ret == -ENOSPC) { 654 ret = 1; 655 goto out; 656 } 657 658 btrfs_set_inode_full_sync(inode); 659 out: 660 /* 661 * Don't forget to free the reserved space, as for inlined extent 662 * it won't count as data extent, free them directly here. 663 * And at reserve time, it's always aligned to page size, so 664 * just free one page here. 665 */ 666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 667 btrfs_free_path(path); 668 btrfs_end_transaction(trans); 669 return ret; 670 } 671 672 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 673 struct folio *locked_folio, 674 u64 offset, u64 end, 675 size_t compressed_size, 676 int compress_type, 677 struct folio *compressed_folio, 678 bool update_i_size) 679 { 680 struct extent_state *cached = NULL; 681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 684 int ret; 685 686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 687 return 1; 688 689 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 690 ret = __cow_file_range_inline(inode, size, compressed_size, 691 compress_type, compressed_folio, 692 update_i_size); 693 if (ret > 0) { 694 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 695 return ret; 696 } 697 698 /* 699 * In the successful case (ret == 0 here), cow_file_range will return 1. 700 * 701 * Quite a bit further up the callstack in extent_writepage(), ret == 1 702 * is treated as a short circuited success and does not unlock the folio, 703 * so we must do it here. 704 * 705 * In the failure case, the locked_folio does get unlocked by 706 * btrfs_folio_end_all_writers, which asserts that it is still locked 707 * at that point, so we must *not* unlock it here. 708 * 709 * The other two callsites in compress_file_range do not have a 710 * locked_folio, so they are not relevant to this logic. 711 */ 712 if (ret == 0) 713 locked_folio = NULL; 714 715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 716 clear_flags, PAGE_UNLOCK | 717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 718 return ret; 719 } 720 721 struct async_extent { 722 u64 start; 723 u64 ram_size; 724 u64 compressed_size; 725 struct folio **folios; 726 unsigned long nr_folios; 727 int compress_type; 728 struct list_head list; 729 }; 730 731 struct async_chunk { 732 struct btrfs_inode *inode; 733 struct folio *locked_folio; 734 u64 start; 735 u64 end; 736 blk_opf_t write_flags; 737 struct list_head extents; 738 struct cgroup_subsys_state *blkcg_css; 739 struct btrfs_work work; 740 struct async_cow *async_cow; 741 }; 742 743 struct async_cow { 744 atomic_t num_chunks; 745 struct async_chunk chunks[]; 746 }; 747 748 static noinline int add_async_extent(struct async_chunk *cow, 749 u64 start, u64 ram_size, 750 u64 compressed_size, 751 struct folio **folios, 752 unsigned long nr_folios, 753 int compress_type) 754 { 755 struct async_extent *async_extent; 756 757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 758 if (!async_extent) 759 return -ENOMEM; 760 async_extent->start = start; 761 async_extent->ram_size = ram_size; 762 async_extent->compressed_size = compressed_size; 763 async_extent->folios = folios; 764 async_extent->nr_folios = nr_folios; 765 async_extent->compress_type = compress_type; 766 list_add_tail(&async_extent->list, &cow->extents); 767 return 0; 768 } 769 770 /* 771 * Check if the inode needs to be submitted to compression, based on mount 772 * options, defragmentation, properties or heuristics. 773 */ 774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 775 u64 end) 776 { 777 struct btrfs_fs_info *fs_info = inode->root->fs_info; 778 779 if (!btrfs_inode_can_compress(inode)) { 780 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 781 return 0; 782 } 783 784 /* force compress */ 785 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 786 return 1; 787 /* defrag ioctl */ 788 if (inode->defrag_compress) 789 return 1; 790 /* bad compression ratios */ 791 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 792 return 0; 793 if (btrfs_test_opt(fs_info, COMPRESS) || 794 inode->flags & BTRFS_INODE_COMPRESS || 795 inode->prop_compress) 796 return btrfs_compress_heuristic(inode, start, end); 797 return 0; 798 } 799 800 static inline void inode_should_defrag(struct btrfs_inode *inode, 801 u64 start, u64 end, u64 num_bytes, u32 small_write) 802 { 803 /* If this is a small write inside eof, kick off a defrag */ 804 if (num_bytes < small_write && 805 (start > 0 || end + 1 < inode->disk_i_size)) 806 btrfs_add_inode_defrag(inode, small_write); 807 } 808 809 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 810 { 811 unsigned long end_index = end >> PAGE_SHIFT; 812 struct folio *folio; 813 int ret = 0; 814 815 for (unsigned long index = start >> PAGE_SHIFT; 816 index <= end_index; index++) { 817 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 818 if (IS_ERR(folio)) { 819 if (!ret) 820 ret = PTR_ERR(folio); 821 continue; 822 } 823 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 824 end + 1 - start); 825 folio_put(folio); 826 } 827 return ret; 828 } 829 830 /* 831 * Work queue call back to started compression on a file and pages. 832 * 833 * This is done inside an ordered work queue, and the compression is spread 834 * across many cpus. The actual IO submission is step two, and the ordered work 835 * queue takes care of making sure that happens in the same order things were 836 * put onto the queue by writepages and friends. 837 * 838 * If this code finds it can't get good compression, it puts an entry onto the 839 * work queue to write the uncompressed bytes. This makes sure that both 840 * compressed inodes and uncompressed inodes are written in the same order that 841 * the flusher thread sent them down. 842 */ 843 static void compress_file_range(struct btrfs_work *work) 844 { 845 struct async_chunk *async_chunk = 846 container_of(work, struct async_chunk, work); 847 struct btrfs_inode *inode = async_chunk->inode; 848 struct btrfs_fs_info *fs_info = inode->root->fs_info; 849 struct address_space *mapping = inode->vfs_inode.i_mapping; 850 u64 blocksize = fs_info->sectorsize; 851 u64 start = async_chunk->start; 852 u64 end = async_chunk->end; 853 u64 actual_end; 854 u64 i_size; 855 int ret = 0; 856 struct folio **folios; 857 unsigned long nr_folios; 858 unsigned long total_compressed = 0; 859 unsigned long total_in = 0; 860 unsigned int poff; 861 int i; 862 int compress_type = fs_info->compress_type; 863 int compress_level = fs_info->compress_level; 864 865 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 866 867 /* 868 * We need to call clear_page_dirty_for_io on each page in the range. 869 * Otherwise applications with the file mmap'd can wander in and change 870 * the page contents while we are compressing them. 871 */ 872 ret = extent_range_clear_dirty_for_io(inode, start, end); 873 874 /* 875 * All the folios should have been locked thus no failure. 876 * 877 * And even if some folios are missing, btrfs_compress_folios() 878 * would handle them correctly, so here just do an ASSERT() check for 879 * early logic errors. 880 */ 881 ASSERT(ret == 0); 882 883 /* 884 * We need to save i_size before now because it could change in between 885 * us evaluating the size and assigning it. This is because we lock and 886 * unlock the page in truncate and fallocate, and then modify the i_size 887 * later on. 888 * 889 * The barriers are to emulate READ_ONCE, remove that once i_size_read 890 * does that for us. 891 */ 892 barrier(); 893 i_size = i_size_read(&inode->vfs_inode); 894 barrier(); 895 actual_end = min_t(u64, i_size, end + 1); 896 again: 897 folios = NULL; 898 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 899 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 900 901 /* 902 * we don't want to send crud past the end of i_size through 903 * compression, that's just a waste of CPU time. So, if the 904 * end of the file is before the start of our current 905 * requested range of bytes, we bail out to the uncompressed 906 * cleanup code that can deal with all of this. 907 * 908 * It isn't really the fastest way to fix things, but this is a 909 * very uncommon corner. 910 */ 911 if (actual_end <= start) 912 goto cleanup_and_bail_uncompressed; 913 914 total_compressed = actual_end - start; 915 916 /* 917 * Skip compression for a small file range(<=blocksize) that 918 * isn't an inline extent, since it doesn't save disk space at all. 919 */ 920 if (total_compressed <= blocksize && 921 (start > 0 || end + 1 < inode->disk_i_size)) 922 goto cleanup_and_bail_uncompressed; 923 924 total_compressed = min_t(unsigned long, total_compressed, 925 BTRFS_MAX_UNCOMPRESSED); 926 total_in = 0; 927 ret = 0; 928 929 /* 930 * We do compression for mount -o compress and when the inode has not 931 * been flagged as NOCOMPRESS. This flag can change at any time if we 932 * discover bad compression ratios. 933 */ 934 if (!inode_need_compress(inode, start, end)) 935 goto cleanup_and_bail_uncompressed; 936 937 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 938 if (!folios) { 939 /* 940 * Memory allocation failure is not a fatal error, we can fall 941 * back to uncompressed code. 942 */ 943 goto cleanup_and_bail_uncompressed; 944 } 945 946 if (inode->defrag_compress) { 947 compress_type = inode->defrag_compress; 948 compress_level = inode->defrag_compress_level; 949 } else if (inode->prop_compress) { 950 compress_type = inode->prop_compress; 951 } 952 953 /* Compression level is applied here. */ 954 ret = btrfs_compress_folios(compress_type, compress_level, 955 mapping, start, folios, &nr_folios, &total_in, 956 &total_compressed); 957 if (ret) 958 goto mark_incompressible; 959 960 /* 961 * Zero the tail end of the last page, as we might be sending it down 962 * to disk. 963 */ 964 poff = offset_in_page(total_compressed); 965 if (poff) 966 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 967 968 /* 969 * Try to create an inline extent. 970 * 971 * If we didn't compress the entire range, try to create an uncompressed 972 * inline extent, else a compressed one. 973 * 974 * Check cow_file_range() for why we don't even try to create inline 975 * extent for the subpage case. 976 */ 977 if (total_in < actual_end) 978 ret = cow_file_range_inline(inode, NULL, start, end, 0, 979 BTRFS_COMPRESS_NONE, NULL, false); 980 else 981 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 982 compress_type, folios[0], false); 983 if (ret <= 0) { 984 if (ret < 0) 985 mapping_set_error(mapping, -EIO); 986 goto free_pages; 987 } 988 989 /* 990 * We aren't doing an inline extent. Round the compressed size up to a 991 * block size boundary so the allocator does sane things. 992 */ 993 total_compressed = ALIGN(total_compressed, blocksize); 994 995 /* 996 * One last check to make sure the compression is really a win, compare 997 * the page count read with the blocks on disk, compression must free at 998 * least one sector. 999 */ 1000 total_in = round_up(total_in, fs_info->sectorsize); 1001 if (total_compressed + blocksize > total_in) 1002 goto mark_incompressible; 1003 1004 /* 1005 * The async work queues will take care of doing actual allocation on 1006 * disk for these compressed pages, and will submit the bios. 1007 */ 1008 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1009 nr_folios, compress_type); 1010 BUG_ON(ret); 1011 if (start + total_in < end) { 1012 start += total_in; 1013 cond_resched(); 1014 goto again; 1015 } 1016 return; 1017 1018 mark_incompressible: 1019 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1020 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1021 cleanup_and_bail_uncompressed: 1022 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1023 BTRFS_COMPRESS_NONE); 1024 BUG_ON(ret); 1025 free_pages: 1026 if (folios) { 1027 for (i = 0; i < nr_folios; i++) { 1028 WARN_ON(folios[i]->mapping); 1029 btrfs_free_compr_folio(folios[i]); 1030 } 1031 kfree(folios); 1032 } 1033 } 1034 1035 static void free_async_extent_pages(struct async_extent *async_extent) 1036 { 1037 int i; 1038 1039 if (!async_extent->folios) 1040 return; 1041 1042 for (i = 0; i < async_extent->nr_folios; i++) { 1043 WARN_ON(async_extent->folios[i]->mapping); 1044 btrfs_free_compr_folio(async_extent->folios[i]); 1045 } 1046 kfree(async_extent->folios); 1047 async_extent->nr_folios = 0; 1048 async_extent->folios = NULL; 1049 } 1050 1051 static void submit_uncompressed_range(struct btrfs_inode *inode, 1052 struct async_extent *async_extent, 1053 struct folio *locked_folio) 1054 { 1055 u64 start = async_extent->start; 1056 u64 end = async_extent->start + async_extent->ram_size - 1; 1057 int ret; 1058 struct writeback_control wbc = { 1059 .sync_mode = WB_SYNC_ALL, 1060 .range_start = start, 1061 .range_end = end, 1062 .no_cgroup_owner = 1, 1063 }; 1064 1065 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1066 ret = run_delalloc_cow(inode, locked_folio, start, end, 1067 &wbc, false); 1068 wbc_detach_inode(&wbc); 1069 if (ret < 0) { 1070 if (locked_folio) 1071 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1072 start, async_extent->ram_size); 1073 btrfs_err_rl(inode->root->fs_info, 1074 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1075 __func__, btrfs_root_id(inode->root), 1076 btrfs_ino(inode), start, async_extent->ram_size, ret); 1077 } 1078 } 1079 1080 static void submit_one_async_extent(struct async_chunk *async_chunk, 1081 struct async_extent *async_extent, 1082 u64 *alloc_hint) 1083 { 1084 struct btrfs_inode *inode = async_chunk->inode; 1085 struct extent_io_tree *io_tree = &inode->io_tree; 1086 struct btrfs_root *root = inode->root; 1087 struct btrfs_fs_info *fs_info = root->fs_info; 1088 struct btrfs_ordered_extent *ordered; 1089 struct btrfs_file_extent file_extent; 1090 struct btrfs_key ins; 1091 struct folio *locked_folio = NULL; 1092 struct extent_state *cached = NULL; 1093 struct extent_map *em; 1094 int ret = 0; 1095 bool free_pages = false; 1096 u64 start = async_extent->start; 1097 u64 end = async_extent->start + async_extent->ram_size - 1; 1098 1099 if (async_chunk->blkcg_css) 1100 kthread_associate_blkcg(async_chunk->blkcg_css); 1101 1102 /* 1103 * If async_chunk->locked_folio is in the async_extent range, we need to 1104 * handle it. 1105 */ 1106 if (async_chunk->locked_folio) { 1107 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1108 u64 locked_folio_end = locked_folio_start + 1109 folio_size(async_chunk->locked_folio) - 1; 1110 1111 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1112 locked_folio = async_chunk->locked_folio; 1113 } 1114 1115 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1116 ASSERT(!async_extent->folios); 1117 ASSERT(async_extent->nr_folios == 0); 1118 submit_uncompressed_range(inode, async_extent, locked_folio); 1119 free_pages = true; 1120 goto done; 1121 } 1122 1123 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1124 async_extent->compressed_size, 1125 async_extent->compressed_size, 1126 0, *alloc_hint, &ins, 1, 1); 1127 if (ret) { 1128 /* 1129 * We can't reserve contiguous space for the compressed size. 1130 * Unlikely, but it's possible that we could have enough 1131 * non-contiguous space for the uncompressed size instead. So 1132 * fall back to uncompressed. 1133 */ 1134 submit_uncompressed_range(inode, async_extent, locked_folio); 1135 free_pages = true; 1136 goto done; 1137 } 1138 1139 btrfs_lock_extent(io_tree, start, end, &cached); 1140 1141 /* Here we're doing allocation and writeback of the compressed pages */ 1142 file_extent.disk_bytenr = ins.objectid; 1143 file_extent.disk_num_bytes = ins.offset; 1144 file_extent.ram_bytes = async_extent->ram_size; 1145 file_extent.num_bytes = async_extent->ram_size; 1146 file_extent.offset = 0; 1147 file_extent.compression = async_extent->compress_type; 1148 1149 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1150 if (IS_ERR(em)) { 1151 ret = PTR_ERR(em); 1152 goto out_free_reserve; 1153 } 1154 btrfs_free_extent_map(em); 1155 1156 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1157 1U << BTRFS_ORDERED_COMPRESSED); 1158 if (IS_ERR(ordered)) { 1159 btrfs_drop_extent_map_range(inode, start, end, false); 1160 ret = PTR_ERR(ordered); 1161 goto out_free_reserve; 1162 } 1163 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1164 1165 /* Clear dirty, set writeback and unlock the pages. */ 1166 extent_clear_unlock_delalloc(inode, start, end, 1167 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1168 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1169 btrfs_submit_compressed_write(ordered, 1170 async_extent->folios, /* compressed_folios */ 1171 async_extent->nr_folios, 1172 async_chunk->write_flags, true); 1173 *alloc_hint = ins.objectid + ins.offset; 1174 done: 1175 if (async_chunk->blkcg_css) 1176 kthread_associate_blkcg(NULL); 1177 if (free_pages) 1178 free_async_extent_pages(async_extent); 1179 kfree(async_extent); 1180 return; 1181 1182 out_free_reserve: 1183 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1184 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1185 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1186 extent_clear_unlock_delalloc(inode, start, end, 1187 NULL, &cached, 1188 EXTENT_LOCKED | EXTENT_DELALLOC | 1189 EXTENT_DELALLOC_NEW | 1190 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1191 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1192 PAGE_END_WRITEBACK); 1193 free_async_extent_pages(async_extent); 1194 if (async_chunk->blkcg_css) 1195 kthread_associate_blkcg(NULL); 1196 btrfs_debug(fs_info, 1197 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1198 btrfs_root_id(root), btrfs_ino(inode), start, 1199 async_extent->ram_size, ret); 1200 kfree(async_extent); 1201 } 1202 1203 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1204 u64 num_bytes) 1205 { 1206 struct extent_map_tree *em_tree = &inode->extent_tree; 1207 struct extent_map *em; 1208 u64 alloc_hint = 0; 1209 1210 read_lock(&em_tree->lock); 1211 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1212 if (em) { 1213 /* 1214 * if block start isn't an actual block number then find the 1215 * first block in this inode and use that as a hint. If that 1216 * block is also bogus then just don't worry about it. 1217 */ 1218 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1219 btrfs_free_extent_map(em); 1220 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1221 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1222 alloc_hint = btrfs_extent_map_block_start(em); 1223 if (em) 1224 btrfs_free_extent_map(em); 1225 } else { 1226 alloc_hint = btrfs_extent_map_block_start(em); 1227 btrfs_free_extent_map(em); 1228 } 1229 } 1230 read_unlock(&em_tree->lock); 1231 1232 return alloc_hint; 1233 } 1234 1235 /* 1236 * when extent_io.c finds a delayed allocation range in the file, 1237 * the call backs end up in this code. The basic idea is to 1238 * allocate extents on disk for the range, and create ordered data structs 1239 * in ram to track those extents. 1240 * 1241 * locked_folio is the folio that writepage had locked already. We use 1242 * it to make sure we don't do extra locks or unlocks. 1243 * 1244 * When this function fails, it unlocks all pages except @locked_folio. 1245 * 1246 * When this function successfully creates an inline extent, it returns 1 and 1247 * unlocks all pages including locked_folio and starts I/O on them. 1248 * (In reality inline extents are limited to a single page, so locked_folio is 1249 * the only page handled anyway). 1250 * 1251 * When this function succeed and creates a normal extent, the page locking 1252 * status depends on the passed in flags: 1253 * 1254 * - If @keep_locked is set, all pages are kept locked. 1255 * - Else all pages except for @locked_folio are unlocked. 1256 * 1257 * When a failure happens in the second or later iteration of the 1258 * while-loop, the ordered extents created in previous iterations are cleaned up. 1259 */ 1260 static noinline int cow_file_range(struct btrfs_inode *inode, 1261 struct folio *locked_folio, u64 start, 1262 u64 end, u64 *done_offset, 1263 bool keep_locked, bool no_inline) 1264 { 1265 struct btrfs_root *root = inode->root; 1266 struct btrfs_fs_info *fs_info = root->fs_info; 1267 struct extent_state *cached = NULL; 1268 u64 alloc_hint = 0; 1269 u64 orig_start = start; 1270 u64 num_bytes; 1271 u64 cur_alloc_size = 0; 1272 u64 min_alloc_size; 1273 u64 blocksize = fs_info->sectorsize; 1274 struct btrfs_key ins; 1275 struct extent_map *em; 1276 unsigned clear_bits; 1277 unsigned long page_ops; 1278 int ret = 0; 1279 1280 if (btrfs_is_free_space_inode(inode)) { 1281 ret = -EINVAL; 1282 goto out_unlock; 1283 } 1284 1285 num_bytes = ALIGN(end - start + 1, blocksize); 1286 num_bytes = max(blocksize, num_bytes); 1287 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1288 1289 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1290 1291 if (!no_inline) { 1292 /* lets try to make an inline extent */ 1293 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1294 BTRFS_COMPRESS_NONE, NULL, false); 1295 if (ret <= 0) { 1296 /* 1297 * We succeeded, return 1 so the caller knows we're done 1298 * with this page and already handled the IO. 1299 * 1300 * If there was an error then cow_file_range_inline() has 1301 * already done the cleanup. 1302 */ 1303 if (ret == 0) 1304 ret = 1; 1305 goto done; 1306 } 1307 } 1308 1309 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1310 1311 /* 1312 * We're not doing compressed IO, don't unlock the first page (which 1313 * the caller expects to stay locked), don't clear any dirty bits and 1314 * don't set any writeback bits. 1315 * 1316 * Do set the Ordered (Private2) bit so we know this page was properly 1317 * setup for writepage. 1318 */ 1319 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1320 page_ops |= PAGE_SET_ORDERED; 1321 1322 /* 1323 * Relocation relies on the relocated extents to have exactly the same 1324 * size as the original extents. Normally writeback for relocation data 1325 * extents follows a NOCOW path because relocation preallocates the 1326 * extents. However, due to an operation such as scrub turning a block 1327 * group to RO mode, it may fallback to COW mode, so we must make sure 1328 * an extent allocated during COW has exactly the requested size and can 1329 * not be split into smaller extents, otherwise relocation breaks and 1330 * fails during the stage where it updates the bytenr of file extent 1331 * items. 1332 */ 1333 if (btrfs_is_data_reloc_root(root)) 1334 min_alloc_size = num_bytes; 1335 else 1336 min_alloc_size = fs_info->sectorsize; 1337 1338 while (num_bytes > 0) { 1339 struct btrfs_ordered_extent *ordered; 1340 struct btrfs_file_extent file_extent; 1341 1342 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1343 min_alloc_size, 0, alloc_hint, 1344 &ins, 1, 1); 1345 if (ret == -EAGAIN) { 1346 /* 1347 * btrfs_reserve_extent only returns -EAGAIN for zoned 1348 * file systems, which is an indication that there are 1349 * no active zones to allocate from at the moment. 1350 * 1351 * If this is the first loop iteration, wait for at 1352 * least one zone to finish before retrying the 1353 * allocation. Otherwise ask the caller to write out 1354 * the already allocated blocks before coming back to 1355 * us, or return -ENOSPC if it can't handle retries. 1356 */ 1357 ASSERT(btrfs_is_zoned(fs_info)); 1358 if (start == orig_start) { 1359 wait_on_bit_io(&inode->root->fs_info->flags, 1360 BTRFS_FS_NEED_ZONE_FINISH, 1361 TASK_UNINTERRUPTIBLE); 1362 continue; 1363 } 1364 if (done_offset) { 1365 /* 1366 * Move @end to the end of the processed range, 1367 * and exit the loop to unlock the processed extents. 1368 */ 1369 end = start - 1; 1370 ret = 0; 1371 break; 1372 } 1373 ret = -ENOSPC; 1374 } 1375 if (ret < 0) 1376 goto out_unlock; 1377 cur_alloc_size = ins.offset; 1378 1379 file_extent.disk_bytenr = ins.objectid; 1380 file_extent.disk_num_bytes = ins.offset; 1381 file_extent.num_bytes = ins.offset; 1382 file_extent.ram_bytes = ins.offset; 1383 file_extent.offset = 0; 1384 file_extent.compression = BTRFS_COMPRESS_NONE; 1385 1386 /* 1387 * Locked range will be released either during error clean up or 1388 * after the whole range is finished. 1389 */ 1390 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1391 &cached); 1392 1393 em = btrfs_create_io_em(inode, start, &file_extent, 1394 BTRFS_ORDERED_REGULAR); 1395 if (IS_ERR(em)) { 1396 btrfs_unlock_extent(&inode->io_tree, start, 1397 start + cur_alloc_size - 1, &cached); 1398 ret = PTR_ERR(em); 1399 goto out_reserve; 1400 } 1401 btrfs_free_extent_map(em); 1402 1403 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1404 1U << BTRFS_ORDERED_REGULAR); 1405 if (IS_ERR(ordered)) { 1406 btrfs_unlock_extent(&inode->io_tree, start, 1407 start + cur_alloc_size - 1, &cached); 1408 ret = PTR_ERR(ordered); 1409 goto out_drop_extent_cache; 1410 } 1411 1412 if (btrfs_is_data_reloc_root(root)) { 1413 ret = btrfs_reloc_clone_csums(ordered); 1414 1415 /* 1416 * Only drop cache here, and process as normal. 1417 * 1418 * We must not allow extent_clear_unlock_delalloc() 1419 * at out_unlock label to free meta of this ordered 1420 * extent, as its meta should be freed by 1421 * btrfs_finish_ordered_io(). 1422 * 1423 * So we must continue until @start is increased to 1424 * skip current ordered extent. 1425 */ 1426 if (ret) 1427 btrfs_drop_extent_map_range(inode, start, 1428 start + cur_alloc_size - 1, 1429 false); 1430 } 1431 btrfs_put_ordered_extent(ordered); 1432 1433 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1434 1435 if (num_bytes < cur_alloc_size) 1436 num_bytes = 0; 1437 else 1438 num_bytes -= cur_alloc_size; 1439 alloc_hint = ins.objectid + ins.offset; 1440 start += cur_alloc_size; 1441 cur_alloc_size = 0; 1442 1443 /* 1444 * btrfs_reloc_clone_csums() error, since start is increased 1445 * extent_clear_unlock_delalloc() at out_unlock label won't 1446 * free metadata of current ordered extent, we're OK to exit. 1447 */ 1448 if (ret) 1449 goto out_unlock; 1450 } 1451 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1452 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1453 done: 1454 if (done_offset) 1455 *done_offset = end; 1456 return ret; 1457 1458 out_drop_extent_cache: 1459 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1460 out_reserve: 1461 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1462 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1463 out_unlock: 1464 /* 1465 * Now, we have three regions to clean up: 1466 * 1467 * |-------(1)----|---(2)---|-------------(3)----------| 1468 * `- orig_start `- start `- start + cur_alloc_size `- end 1469 * 1470 * We process each region below. 1471 */ 1472 1473 /* 1474 * For the range (1). We have already instantiated the ordered extents 1475 * for this region, thus we need to cleanup those ordered extents. 1476 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1477 * are also handled by the ordered extents cleanup. 1478 * 1479 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1480 * finish the writeback of the involved folios, which will be never submitted. 1481 */ 1482 if (orig_start < start) { 1483 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1484 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1485 1486 if (!locked_folio) 1487 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1488 1489 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1490 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1491 locked_folio, NULL, clear_bits, page_ops); 1492 } 1493 1494 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1495 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1496 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1497 1498 /* 1499 * For the range (2). If we reserved an extent for our delalloc range 1500 * (or a subrange) and failed to create the respective ordered extent, 1501 * then it means that when we reserved the extent we decremented the 1502 * extent's size from the data space_info's bytes_may_use counter and 1503 * incremented the space_info's bytes_reserved counter by the same 1504 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1505 * to decrement again the data space_info's bytes_may_use counter, 1506 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1507 */ 1508 if (cur_alloc_size) { 1509 extent_clear_unlock_delalloc(inode, start, 1510 start + cur_alloc_size - 1, 1511 locked_folio, &cached, clear_bits, 1512 page_ops); 1513 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1514 } 1515 1516 /* 1517 * For the range (3). We never touched the region. In addition to the 1518 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1519 * space_info's bytes_may_use counter, reserved in 1520 * btrfs_check_data_free_space(). 1521 */ 1522 if (start + cur_alloc_size < end) { 1523 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1524 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1525 end, locked_folio, 1526 &cached, clear_bits, page_ops); 1527 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1528 end - start - cur_alloc_size + 1, NULL); 1529 } 1530 btrfs_err_rl(fs_info, 1531 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1532 __func__, btrfs_root_id(inode->root), 1533 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1534 return ret; 1535 } 1536 1537 /* 1538 * Phase two of compressed writeback. This is the ordered portion of the code, 1539 * which only gets called in the order the work was queued. We walk all the 1540 * async extents created by compress_file_range and send them down to the disk. 1541 * 1542 * If called with @do_free == true then it'll try to finish the work and free 1543 * the work struct eventually. 1544 */ 1545 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1546 { 1547 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1548 work); 1549 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1550 struct async_extent *async_extent; 1551 unsigned long nr_pages; 1552 u64 alloc_hint = 0; 1553 1554 if (do_free) { 1555 struct async_cow *async_cow; 1556 1557 btrfs_add_delayed_iput(async_chunk->inode); 1558 if (async_chunk->blkcg_css) 1559 css_put(async_chunk->blkcg_css); 1560 1561 async_cow = async_chunk->async_cow; 1562 if (atomic_dec_and_test(&async_cow->num_chunks)) 1563 kvfree(async_cow); 1564 return; 1565 } 1566 1567 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1568 PAGE_SHIFT; 1569 1570 while (!list_empty(&async_chunk->extents)) { 1571 async_extent = list_first_entry(&async_chunk->extents, 1572 struct async_extent, list); 1573 list_del(&async_extent->list); 1574 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1575 } 1576 1577 /* atomic_sub_return implies a barrier */ 1578 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1579 5 * SZ_1M) 1580 cond_wake_up_nomb(&fs_info->async_submit_wait); 1581 } 1582 1583 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1584 struct folio *locked_folio, u64 start, 1585 u64 end, struct writeback_control *wbc) 1586 { 1587 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1588 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1589 struct async_cow *ctx; 1590 struct async_chunk *async_chunk; 1591 unsigned long nr_pages; 1592 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1593 int i; 1594 unsigned nofs_flag; 1595 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1596 1597 nofs_flag = memalloc_nofs_save(); 1598 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1599 memalloc_nofs_restore(nofs_flag); 1600 if (!ctx) 1601 return false; 1602 1603 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1604 1605 async_chunk = ctx->chunks; 1606 atomic_set(&ctx->num_chunks, num_chunks); 1607 1608 for (i = 0; i < num_chunks; i++) { 1609 u64 cur_end = min(end, start + SZ_512K - 1); 1610 1611 /* 1612 * igrab is called higher up in the call chain, take only the 1613 * lightweight reference for the callback lifetime 1614 */ 1615 ihold(&inode->vfs_inode); 1616 async_chunk[i].async_cow = ctx; 1617 async_chunk[i].inode = inode; 1618 async_chunk[i].start = start; 1619 async_chunk[i].end = cur_end; 1620 async_chunk[i].write_flags = write_flags; 1621 INIT_LIST_HEAD(&async_chunk[i].extents); 1622 1623 /* 1624 * The locked_folio comes all the way from writepage and its 1625 * the original folio we were actually given. As we spread 1626 * this large delalloc region across multiple async_chunk 1627 * structs, only the first struct needs a pointer to 1628 * locked_folio. 1629 * 1630 * This way we don't need racey decisions about who is supposed 1631 * to unlock it. 1632 */ 1633 if (locked_folio) { 1634 /* 1635 * Depending on the compressibility, the pages might or 1636 * might not go through async. We want all of them to 1637 * be accounted against wbc once. Let's do it here 1638 * before the paths diverge. wbc accounting is used 1639 * only for foreign writeback detection and doesn't 1640 * need full accuracy. Just account the whole thing 1641 * against the first page. 1642 */ 1643 wbc_account_cgroup_owner(wbc, locked_folio, 1644 cur_end - start); 1645 async_chunk[i].locked_folio = locked_folio; 1646 locked_folio = NULL; 1647 } else { 1648 async_chunk[i].locked_folio = NULL; 1649 } 1650 1651 if (blkcg_css != blkcg_root_css) { 1652 css_get(blkcg_css); 1653 async_chunk[i].blkcg_css = blkcg_css; 1654 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1655 } else { 1656 async_chunk[i].blkcg_css = NULL; 1657 } 1658 1659 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1660 submit_compressed_extents); 1661 1662 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1663 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1664 1665 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1666 1667 start = cur_end + 1; 1668 } 1669 return true; 1670 } 1671 1672 /* 1673 * Run the delalloc range from start to end, and write back any dirty pages 1674 * covered by the range. 1675 */ 1676 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1677 struct folio *locked_folio, u64 start, 1678 u64 end, struct writeback_control *wbc, 1679 bool pages_dirty) 1680 { 1681 u64 done_offset = end; 1682 int ret; 1683 1684 while (start <= end) { 1685 ret = cow_file_range(inode, locked_folio, start, end, 1686 &done_offset, true, false); 1687 if (ret) 1688 return ret; 1689 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1690 start, done_offset, wbc, pages_dirty); 1691 start = done_offset + 1; 1692 } 1693 1694 return 1; 1695 } 1696 1697 static int fallback_to_cow(struct btrfs_inode *inode, 1698 struct folio *locked_folio, const u64 start, 1699 const u64 end) 1700 { 1701 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1702 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1703 const u64 range_bytes = end + 1 - start; 1704 struct extent_io_tree *io_tree = &inode->io_tree; 1705 struct extent_state *cached_state = NULL; 1706 u64 range_start = start; 1707 u64 count; 1708 int ret; 1709 1710 /* 1711 * If EXTENT_NORESERVE is set it means that when the buffered write was 1712 * made we had not enough available data space and therefore we did not 1713 * reserve data space for it, since we though we could do NOCOW for the 1714 * respective file range (either there is prealloc extent or the inode 1715 * has the NOCOW bit set). 1716 * 1717 * However when we need to fallback to COW mode (because for example the 1718 * block group for the corresponding extent was turned to RO mode by a 1719 * scrub or relocation) we need to do the following: 1720 * 1721 * 1) We increment the bytes_may_use counter of the data space info. 1722 * If COW succeeds, it allocates a new data extent and after doing 1723 * that it decrements the space info's bytes_may_use counter and 1724 * increments its bytes_reserved counter by the same amount (we do 1725 * this at btrfs_add_reserved_bytes()). So we need to increment the 1726 * bytes_may_use counter to compensate (when space is reserved at 1727 * buffered write time, the bytes_may_use counter is incremented); 1728 * 1729 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1730 * that if the COW path fails for any reason, it decrements (through 1731 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1732 * data space info, which we incremented in the step above. 1733 * 1734 * If we need to fallback to cow and the inode corresponds to a free 1735 * space cache inode or an inode of the data relocation tree, we must 1736 * also increment bytes_may_use of the data space_info for the same 1737 * reason. Space caches and relocated data extents always get a prealloc 1738 * extent for them, however scrub or balance may have set the block 1739 * group that contains that extent to RO mode and therefore force COW 1740 * when starting writeback. 1741 */ 1742 btrfs_lock_extent(io_tree, start, end, &cached_state); 1743 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1744 EXTENT_NORESERVE, 0, NULL); 1745 if (count > 0 || is_space_ino || is_reloc_ino) { 1746 u64 bytes = count; 1747 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1748 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1749 1750 if (is_space_ino || is_reloc_ino) 1751 bytes = range_bytes; 1752 1753 spin_lock(&sinfo->lock); 1754 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1755 spin_unlock(&sinfo->lock); 1756 1757 if (count > 0) 1758 btrfs_clear_extent_bits(io_tree, start, end, EXTENT_NORESERVE); 1759 } 1760 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1761 1762 /* 1763 * Don't try to create inline extents, as a mix of inline extent that 1764 * is written out and unlocked directly and a normal NOCOW extent 1765 * doesn't work. 1766 */ 1767 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1768 true); 1769 ASSERT(ret != 1); 1770 return ret; 1771 } 1772 1773 struct can_nocow_file_extent_args { 1774 /* Input fields. */ 1775 1776 /* Start file offset of the range we want to NOCOW. */ 1777 u64 start; 1778 /* End file offset (inclusive) of the range we want to NOCOW. */ 1779 u64 end; 1780 bool writeback_path; 1781 /* 1782 * Free the path passed to can_nocow_file_extent() once it's not needed 1783 * anymore. 1784 */ 1785 bool free_path; 1786 1787 /* 1788 * Output fields. Only set when can_nocow_file_extent() returns 1. 1789 * The expected file extent for the NOCOW write. 1790 */ 1791 struct btrfs_file_extent file_extent; 1792 }; 1793 1794 /* 1795 * Check if we can NOCOW the file extent that the path points to. 1796 * This function may return with the path released, so the caller should check 1797 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1798 * 1799 * Returns: < 0 on error 1800 * 0 if we can not NOCOW 1801 * 1 if we can NOCOW 1802 */ 1803 static int can_nocow_file_extent(struct btrfs_path *path, 1804 struct btrfs_key *key, 1805 struct btrfs_inode *inode, 1806 struct can_nocow_file_extent_args *args) 1807 { 1808 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1809 struct extent_buffer *leaf = path->nodes[0]; 1810 struct btrfs_root *root = inode->root; 1811 struct btrfs_file_extent_item *fi; 1812 struct btrfs_root *csum_root; 1813 u64 io_start; 1814 u64 extent_end; 1815 u8 extent_type; 1816 int can_nocow = 0; 1817 int ret = 0; 1818 bool nowait = path->nowait; 1819 1820 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1821 extent_type = btrfs_file_extent_type(leaf, fi); 1822 1823 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1824 goto out; 1825 1826 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1827 extent_type == BTRFS_FILE_EXTENT_REG) 1828 goto out; 1829 1830 /* 1831 * If the extent was created before the generation where the last snapshot 1832 * for its subvolume was created, then this implies the extent is shared, 1833 * hence we must COW. 1834 */ 1835 if (btrfs_file_extent_generation(leaf, fi) <= 1836 btrfs_root_last_snapshot(&root->root_item)) 1837 goto out; 1838 1839 /* An explicit hole, must COW. */ 1840 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1841 goto out; 1842 1843 /* Compressed/encrypted/encoded extents must be COWed. */ 1844 if (btrfs_file_extent_compression(leaf, fi) || 1845 btrfs_file_extent_encryption(leaf, fi) || 1846 btrfs_file_extent_other_encoding(leaf, fi)) 1847 goto out; 1848 1849 extent_end = btrfs_file_extent_end(path); 1850 1851 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1852 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1853 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1854 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1855 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1856 1857 /* 1858 * The following checks can be expensive, as they need to take other 1859 * locks and do btree or rbtree searches, so release the path to avoid 1860 * blocking other tasks for too long. 1861 */ 1862 btrfs_release_path(path); 1863 1864 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1865 args->file_extent.disk_bytenr, path); 1866 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1867 if (ret != 0) 1868 goto out; 1869 1870 if (args->free_path) { 1871 /* 1872 * We don't need the path anymore, plus through the 1873 * btrfs_lookup_csums_list() call below we will end up allocating 1874 * another path. So free the path to avoid unnecessary extra 1875 * memory usage. 1876 */ 1877 btrfs_free_path(path); 1878 path = NULL; 1879 } 1880 1881 /* If there are pending snapshots for this root, we must COW. */ 1882 if (args->writeback_path && !is_freespace_inode && 1883 atomic_read(&root->snapshot_force_cow)) 1884 goto out; 1885 1886 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1887 args->file_extent.offset += args->start - key->offset; 1888 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1889 1890 /* 1891 * Force COW if csums exist in the range. This ensures that csums for a 1892 * given extent are either valid or do not exist. 1893 */ 1894 1895 csum_root = btrfs_csum_root(root->fs_info, io_start); 1896 ret = btrfs_lookup_csums_list(csum_root, io_start, 1897 io_start + args->file_extent.num_bytes - 1, 1898 NULL, nowait); 1899 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1900 if (ret != 0) 1901 goto out; 1902 1903 can_nocow = 1; 1904 out: 1905 if (args->free_path && path) 1906 btrfs_free_path(path); 1907 1908 return ret < 0 ? ret : can_nocow; 1909 } 1910 1911 /* 1912 * Cleanup the dirty folios which will never be submitted due to error. 1913 * 1914 * When running a delalloc range, we may need to split the ranges (due to 1915 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1916 * out and previously successfully executed range will never be submitted, thus 1917 * we have to cleanup those folios by clearing their dirty flag, starting and 1918 * finishing the writeback. 1919 */ 1920 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1921 struct folio *locked_folio, 1922 u64 start, u64 end, int error) 1923 { 1924 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1925 struct address_space *mapping = inode->vfs_inode.i_mapping; 1926 pgoff_t start_index = start >> PAGE_SHIFT; 1927 pgoff_t end_index = end >> PAGE_SHIFT; 1928 u32 len; 1929 1930 ASSERT(end + 1 - start < U32_MAX); 1931 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1932 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1933 len = end + 1 - start; 1934 1935 /* 1936 * Handle the locked folio first. 1937 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1938 */ 1939 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1940 1941 for (pgoff_t index = start_index; index <= end_index; index++) { 1942 struct folio *folio; 1943 1944 /* Already handled at the beginning. */ 1945 if (index == locked_folio->index) 1946 continue; 1947 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1948 /* Cache already dropped, no need to do any cleanup. */ 1949 if (IS_ERR(folio)) 1950 continue; 1951 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1952 folio_unlock(folio); 1953 folio_put(folio); 1954 } 1955 mapping_set_error(mapping, error); 1956 } 1957 1958 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1959 struct extent_state **cached, 1960 struct can_nocow_file_extent_args *nocow_args, 1961 u64 file_pos, bool is_prealloc) 1962 { 1963 struct btrfs_ordered_extent *ordered; 1964 u64 len = nocow_args->file_extent.num_bytes; 1965 u64 end = file_pos + len - 1; 1966 int ret = 0; 1967 1968 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1969 1970 if (is_prealloc) { 1971 struct extent_map *em; 1972 1973 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1974 BTRFS_ORDERED_PREALLOC); 1975 if (IS_ERR(em)) { 1976 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1977 return PTR_ERR(em); 1978 } 1979 btrfs_free_extent_map(em); 1980 } 1981 1982 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1983 is_prealloc 1984 ? (1U << BTRFS_ORDERED_PREALLOC) 1985 : (1U << BTRFS_ORDERED_NOCOW)); 1986 if (IS_ERR(ordered)) { 1987 if (is_prealloc) 1988 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1989 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1990 return PTR_ERR(ordered); 1991 } 1992 1993 if (btrfs_is_data_reloc_root(inode->root)) 1994 /* 1995 * Errors are handled later, as we must prevent 1996 * extent_clear_unlock_delalloc() in error handler from freeing 1997 * metadata of the created ordered extent. 1998 */ 1999 ret = btrfs_reloc_clone_csums(ordered); 2000 btrfs_put_ordered_extent(ordered); 2001 2002 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2003 EXTENT_LOCKED | EXTENT_DELALLOC | 2004 EXTENT_CLEAR_DATA_RESV, 2005 PAGE_UNLOCK | PAGE_SET_ORDERED); 2006 /* 2007 * On error, we need to cleanup the ordered extents we created. 2008 * 2009 * We do not clear the folio Dirty flags because they are set and 2010 * cleaered by the caller. 2011 */ 2012 if (ret < 0) 2013 btrfs_cleanup_ordered_extents(inode, file_pos, end); 2014 return ret; 2015 } 2016 2017 /* 2018 * when nowcow writeback call back. This checks for snapshots or COW copies 2019 * of the extents that exist in the file, and COWs the file as required. 2020 * 2021 * If no cow copies or snapshots exist, we write directly to the existing 2022 * blocks on disk 2023 */ 2024 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2025 struct folio *locked_folio, 2026 const u64 start, const u64 end) 2027 { 2028 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2029 struct btrfs_root *root = inode->root; 2030 struct btrfs_path *path; 2031 u64 cow_start = (u64)-1; 2032 /* 2033 * If not 0, represents the inclusive end of the last fallback_to_cow() 2034 * range. Only for error handling. 2035 */ 2036 u64 cow_end = 0; 2037 u64 cur_offset = start; 2038 int ret; 2039 bool check_prev = true; 2040 u64 ino = btrfs_ino(inode); 2041 struct can_nocow_file_extent_args nocow_args = { 0 }; 2042 2043 /* 2044 * Normally on a zoned device we're only doing COW writes, but in case 2045 * of relocation on a zoned filesystem serializes I/O so that we're only 2046 * writing sequentially and can end up here as well. 2047 */ 2048 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2049 2050 path = btrfs_alloc_path(); 2051 if (!path) { 2052 ret = -ENOMEM; 2053 goto error; 2054 } 2055 2056 nocow_args.end = end; 2057 nocow_args.writeback_path = true; 2058 2059 while (cur_offset <= end) { 2060 struct btrfs_block_group *nocow_bg = NULL; 2061 struct btrfs_key found_key; 2062 struct btrfs_file_extent_item *fi; 2063 struct extent_buffer *leaf; 2064 struct extent_state *cached_state = NULL; 2065 u64 extent_end; 2066 int extent_type; 2067 2068 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2069 cur_offset, 0); 2070 if (ret < 0) 2071 goto error; 2072 2073 /* 2074 * If there is no extent for our range when doing the initial 2075 * search, then go back to the previous slot as it will be the 2076 * one containing the search offset 2077 */ 2078 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2079 leaf = path->nodes[0]; 2080 btrfs_item_key_to_cpu(leaf, &found_key, 2081 path->slots[0] - 1); 2082 if (found_key.objectid == ino && 2083 found_key.type == BTRFS_EXTENT_DATA_KEY) 2084 path->slots[0]--; 2085 } 2086 check_prev = false; 2087 next_slot: 2088 /* Go to next leaf if we have exhausted the current one */ 2089 leaf = path->nodes[0]; 2090 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2091 ret = btrfs_next_leaf(root, path); 2092 if (ret < 0) 2093 goto error; 2094 if (ret > 0) 2095 break; 2096 leaf = path->nodes[0]; 2097 } 2098 2099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2100 2101 /* Didn't find anything for our INO */ 2102 if (found_key.objectid > ino) 2103 break; 2104 /* 2105 * Keep searching until we find an EXTENT_ITEM or there are no 2106 * more extents for this inode 2107 */ 2108 if (WARN_ON_ONCE(found_key.objectid < ino) || 2109 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2110 path->slots[0]++; 2111 goto next_slot; 2112 } 2113 2114 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2115 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2116 found_key.offset > end) 2117 break; 2118 2119 /* 2120 * If the found extent starts after requested offset, then 2121 * adjust cur_offset to be right before this extent begins. 2122 */ 2123 if (found_key.offset > cur_offset) { 2124 if (cow_start == (u64)-1) 2125 cow_start = cur_offset; 2126 cur_offset = found_key.offset; 2127 goto next_slot; 2128 } 2129 2130 /* 2131 * Found extent which begins before our range and potentially 2132 * intersect it 2133 */ 2134 fi = btrfs_item_ptr(leaf, path->slots[0], 2135 struct btrfs_file_extent_item); 2136 extent_type = btrfs_file_extent_type(leaf, fi); 2137 /* If this is triggered then we have a memory corruption. */ 2138 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2139 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2140 ret = -EUCLEAN; 2141 goto error; 2142 } 2143 extent_end = btrfs_file_extent_end(path); 2144 2145 /* 2146 * If the extent we got ends before our current offset, skip to 2147 * the next extent. 2148 */ 2149 if (extent_end <= cur_offset) { 2150 path->slots[0]++; 2151 goto next_slot; 2152 } 2153 2154 nocow_args.start = cur_offset; 2155 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2156 if (ret < 0) 2157 goto error; 2158 if (ret == 0) 2159 goto must_cow; 2160 2161 ret = 0; 2162 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2163 nocow_args.file_extent.disk_bytenr + 2164 nocow_args.file_extent.offset); 2165 if (!nocow_bg) { 2166 must_cow: 2167 /* 2168 * If we can't perform NOCOW writeback for the range, 2169 * then record the beginning of the range that needs to 2170 * be COWed. It will be written out before the next 2171 * NOCOW range if we find one, or when exiting this 2172 * loop. 2173 */ 2174 if (cow_start == (u64)-1) 2175 cow_start = cur_offset; 2176 cur_offset = extent_end; 2177 if (cur_offset > end) 2178 break; 2179 if (!path->nodes[0]) 2180 continue; 2181 path->slots[0]++; 2182 goto next_slot; 2183 } 2184 2185 /* 2186 * COW range from cow_start to found_key.offset - 1. As the key 2187 * will contain the beginning of the first extent that can be 2188 * NOCOW, following one which needs to be COW'ed 2189 */ 2190 if (cow_start != (u64)-1) { 2191 ret = fallback_to_cow(inode, locked_folio, cow_start, 2192 found_key.offset - 1); 2193 if (ret) { 2194 cow_end = found_key.offset - 1; 2195 btrfs_dec_nocow_writers(nocow_bg); 2196 goto error; 2197 } 2198 cow_start = (u64)-1; 2199 } 2200 2201 ret = nocow_one_range(inode, locked_folio, &cached_state, 2202 &nocow_args, cur_offset, 2203 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2204 btrfs_dec_nocow_writers(nocow_bg); 2205 if (ret < 0) 2206 goto error; 2207 cur_offset = extent_end; 2208 } 2209 btrfs_release_path(path); 2210 2211 if (cur_offset <= end && cow_start == (u64)-1) 2212 cow_start = cur_offset; 2213 2214 if (cow_start != (u64)-1) { 2215 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2216 if (ret) { 2217 cow_end = end; 2218 goto error; 2219 } 2220 cow_start = (u64)-1; 2221 } 2222 2223 btrfs_free_path(path); 2224 return 0; 2225 2226 error: 2227 /* 2228 * There are several error cases: 2229 * 2230 * 1) Failed without falling back to COW 2231 * start cur_offset end 2232 * |/////////////| | 2233 * 2234 * In this case, cow_start should be (u64)-1. 2235 * 2236 * For range [start, cur_offset) the folios are already unlocked (except 2237 * @locked_folio), EXTENT_DELALLOC already removed. 2238 * Need to clear the dirty flags and finish the ordered extents. 2239 * 2240 * 2) Failed with error before calling fallback_to_cow() 2241 * 2242 * start cow_start end 2243 * |/////////////| | 2244 * 2245 * In this case, only @cow_start is set, @cur_offset is between 2246 * [cow_start, end) 2247 * 2248 * It's mostly the same as case 1), just replace @cur_offset with 2249 * @cow_start. 2250 * 2251 * 3) Failed with error from fallback_to_cow() 2252 * 2253 * start cow_start cow_end end 2254 * |/////////////|-----------| | 2255 * 2256 * In this case, both @cow_start and @cow_end is set. 2257 * 2258 * For range [start, cow_start) it's the same as case 1). 2259 * But for range [cow_start, cow_end), all the cleanup is handled by 2260 * cow_file_range(), we should not touch anything in that range. 2261 * 2262 * So for all above cases, if @cow_start is set, cleanup ordered extents 2263 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2264 */ 2265 if (cow_start != (u64)-1) 2266 cur_offset = cow_start; 2267 2268 if (cur_offset > start) { 2269 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2270 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2271 } 2272 2273 /* 2274 * If an error happened while a COW region is outstanding, cur_offset 2275 * needs to be reset to @cow_end + 1 to skip the COW range, as 2276 * cow_file_range() will do the proper cleanup at error. 2277 */ 2278 if (cow_end) 2279 cur_offset = cow_end + 1; 2280 2281 /* 2282 * We need to lock the extent here because we're clearing DELALLOC and 2283 * we're not locked at this point. 2284 */ 2285 if (cur_offset < end) { 2286 struct extent_state *cached = NULL; 2287 2288 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached); 2289 extent_clear_unlock_delalloc(inode, cur_offset, end, 2290 locked_folio, &cached, 2291 EXTENT_LOCKED | EXTENT_DELALLOC | 2292 EXTENT_DEFRAG | 2293 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2294 PAGE_START_WRITEBACK | 2295 PAGE_END_WRITEBACK); 2296 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2297 } 2298 btrfs_free_path(path); 2299 btrfs_err_rl(fs_info, 2300 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2301 __func__, btrfs_root_id(inode->root), 2302 btrfs_ino(inode), start, end + 1 - start, ret); 2303 return ret; 2304 } 2305 2306 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2307 { 2308 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2309 if (inode->defrag_bytes && 2310 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2311 return false; 2312 return true; 2313 } 2314 return false; 2315 } 2316 2317 /* 2318 * Function to process delayed allocation (create CoW) for ranges which are 2319 * being touched for the first time. 2320 */ 2321 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2322 u64 start, u64 end, struct writeback_control *wbc) 2323 { 2324 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2325 int ret; 2326 2327 /* 2328 * The range must cover part of the @locked_folio, or a return of 1 2329 * can confuse the caller. 2330 */ 2331 ASSERT(!(end <= folio_pos(locked_folio) || 2332 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2333 2334 if (should_nocow(inode, start, end)) { 2335 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2336 return ret; 2337 } 2338 2339 if (btrfs_inode_can_compress(inode) && 2340 inode_need_compress(inode, start, end) && 2341 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2342 return 1; 2343 2344 if (zoned) 2345 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2346 true); 2347 else 2348 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2349 false, false); 2350 return ret; 2351 } 2352 2353 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2354 struct extent_state *orig, u64 split) 2355 { 2356 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2357 u64 size; 2358 2359 lockdep_assert_held(&inode->io_tree.lock); 2360 2361 /* not delalloc, ignore it */ 2362 if (!(orig->state & EXTENT_DELALLOC)) 2363 return; 2364 2365 size = orig->end - orig->start + 1; 2366 if (size > fs_info->max_extent_size) { 2367 u32 num_extents; 2368 u64 new_size; 2369 2370 /* 2371 * See the explanation in btrfs_merge_delalloc_extent, the same 2372 * applies here, just in reverse. 2373 */ 2374 new_size = orig->end - split + 1; 2375 num_extents = count_max_extents(fs_info, new_size); 2376 new_size = split - orig->start; 2377 num_extents += count_max_extents(fs_info, new_size); 2378 if (count_max_extents(fs_info, size) >= num_extents) 2379 return; 2380 } 2381 2382 spin_lock(&inode->lock); 2383 btrfs_mod_outstanding_extents(inode, 1); 2384 spin_unlock(&inode->lock); 2385 } 2386 2387 /* 2388 * Handle merged delayed allocation extents so we can keep track of new extents 2389 * that are just merged onto old extents, such as when we are doing sequential 2390 * writes, so we can properly account for the metadata space we'll need. 2391 */ 2392 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2393 struct extent_state *other) 2394 { 2395 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2396 u64 new_size, old_size; 2397 u32 num_extents; 2398 2399 lockdep_assert_held(&inode->io_tree.lock); 2400 2401 /* not delalloc, ignore it */ 2402 if (!(other->state & EXTENT_DELALLOC)) 2403 return; 2404 2405 if (new->start > other->start) 2406 new_size = new->end - other->start + 1; 2407 else 2408 new_size = other->end - new->start + 1; 2409 2410 /* we're not bigger than the max, unreserve the space and go */ 2411 if (new_size <= fs_info->max_extent_size) { 2412 spin_lock(&inode->lock); 2413 btrfs_mod_outstanding_extents(inode, -1); 2414 spin_unlock(&inode->lock); 2415 return; 2416 } 2417 2418 /* 2419 * We have to add up either side to figure out how many extents were 2420 * accounted for before we merged into one big extent. If the number of 2421 * extents we accounted for is <= the amount we need for the new range 2422 * then we can return, otherwise drop. Think of it like this 2423 * 2424 * [ 4k][MAX_SIZE] 2425 * 2426 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2427 * need 2 outstanding extents, on one side we have 1 and the other side 2428 * we have 1 so they are == and we can return. But in this case 2429 * 2430 * [MAX_SIZE+4k][MAX_SIZE+4k] 2431 * 2432 * Each range on their own accounts for 2 extents, but merged together 2433 * they are only 3 extents worth of accounting, so we need to drop in 2434 * this case. 2435 */ 2436 old_size = other->end - other->start + 1; 2437 num_extents = count_max_extents(fs_info, old_size); 2438 old_size = new->end - new->start + 1; 2439 num_extents += count_max_extents(fs_info, old_size); 2440 if (count_max_extents(fs_info, new_size) >= num_extents) 2441 return; 2442 2443 spin_lock(&inode->lock); 2444 btrfs_mod_outstanding_extents(inode, -1); 2445 spin_unlock(&inode->lock); 2446 } 2447 2448 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2449 { 2450 struct btrfs_root *root = inode->root; 2451 struct btrfs_fs_info *fs_info = root->fs_info; 2452 2453 spin_lock(&root->delalloc_lock); 2454 ASSERT(list_empty(&inode->delalloc_inodes)); 2455 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2456 root->nr_delalloc_inodes++; 2457 if (root->nr_delalloc_inodes == 1) { 2458 spin_lock(&fs_info->delalloc_root_lock); 2459 ASSERT(list_empty(&root->delalloc_root)); 2460 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2461 spin_unlock(&fs_info->delalloc_root_lock); 2462 } 2463 spin_unlock(&root->delalloc_lock); 2464 } 2465 2466 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2467 { 2468 struct btrfs_root *root = inode->root; 2469 struct btrfs_fs_info *fs_info = root->fs_info; 2470 2471 lockdep_assert_held(&root->delalloc_lock); 2472 2473 /* 2474 * We may be called after the inode was already deleted from the list, 2475 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2476 * and then later through btrfs_clear_delalloc_extent() while the inode 2477 * still has ->delalloc_bytes > 0. 2478 */ 2479 if (!list_empty(&inode->delalloc_inodes)) { 2480 list_del_init(&inode->delalloc_inodes); 2481 root->nr_delalloc_inodes--; 2482 if (!root->nr_delalloc_inodes) { 2483 ASSERT(list_empty(&root->delalloc_inodes)); 2484 spin_lock(&fs_info->delalloc_root_lock); 2485 ASSERT(!list_empty(&root->delalloc_root)); 2486 list_del_init(&root->delalloc_root); 2487 spin_unlock(&fs_info->delalloc_root_lock); 2488 } 2489 } 2490 } 2491 2492 /* 2493 * Properly track delayed allocation bytes in the inode and to maintain the 2494 * list of inodes that have pending delalloc work to be done. 2495 */ 2496 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2497 u32 bits) 2498 { 2499 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2500 2501 lockdep_assert_held(&inode->io_tree.lock); 2502 2503 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2504 WARN_ON(1); 2505 /* 2506 * set_bit and clear bit hooks normally require _irqsave/restore 2507 * but in this case, we are only testing for the DELALLOC 2508 * bit, which is only set or cleared with irqs on 2509 */ 2510 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2511 u64 len = state->end + 1 - state->start; 2512 u64 prev_delalloc_bytes; 2513 u32 num_extents = count_max_extents(fs_info, len); 2514 2515 spin_lock(&inode->lock); 2516 btrfs_mod_outstanding_extents(inode, num_extents); 2517 spin_unlock(&inode->lock); 2518 2519 /* For sanity tests */ 2520 if (btrfs_is_testing(fs_info)) 2521 return; 2522 2523 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2524 fs_info->delalloc_batch); 2525 spin_lock(&inode->lock); 2526 prev_delalloc_bytes = inode->delalloc_bytes; 2527 inode->delalloc_bytes += len; 2528 if (bits & EXTENT_DEFRAG) 2529 inode->defrag_bytes += len; 2530 spin_unlock(&inode->lock); 2531 2532 /* 2533 * We don't need to be under the protection of the inode's lock, 2534 * because we are called while holding the inode's io_tree lock 2535 * and are therefore protected against concurrent calls of this 2536 * function and btrfs_clear_delalloc_extent(). 2537 */ 2538 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2539 btrfs_add_delalloc_inode(inode); 2540 } 2541 2542 if (!(state->state & EXTENT_DELALLOC_NEW) && 2543 (bits & EXTENT_DELALLOC_NEW)) { 2544 spin_lock(&inode->lock); 2545 inode->new_delalloc_bytes += state->end + 1 - state->start; 2546 spin_unlock(&inode->lock); 2547 } 2548 } 2549 2550 /* 2551 * Once a range is no longer delalloc this function ensures that proper 2552 * accounting happens. 2553 */ 2554 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2555 struct extent_state *state, u32 bits) 2556 { 2557 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2558 u64 len = state->end + 1 - state->start; 2559 u32 num_extents = count_max_extents(fs_info, len); 2560 2561 lockdep_assert_held(&inode->io_tree.lock); 2562 2563 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2564 spin_lock(&inode->lock); 2565 inode->defrag_bytes -= len; 2566 spin_unlock(&inode->lock); 2567 } 2568 2569 /* 2570 * set_bit and clear bit hooks normally require _irqsave/restore 2571 * but in this case, we are only testing for the DELALLOC 2572 * bit, which is only set or cleared with irqs on 2573 */ 2574 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2575 struct btrfs_root *root = inode->root; 2576 u64 new_delalloc_bytes; 2577 2578 spin_lock(&inode->lock); 2579 btrfs_mod_outstanding_extents(inode, -num_extents); 2580 spin_unlock(&inode->lock); 2581 2582 /* 2583 * We don't reserve metadata space for space cache inodes so we 2584 * don't need to call delalloc_release_metadata if there is an 2585 * error. 2586 */ 2587 if (bits & EXTENT_CLEAR_META_RESV && 2588 root != fs_info->tree_root) 2589 btrfs_delalloc_release_metadata(inode, len, true); 2590 2591 /* For sanity tests. */ 2592 if (btrfs_is_testing(fs_info)) 2593 return; 2594 2595 if (!btrfs_is_data_reloc_root(root) && 2596 !btrfs_is_free_space_inode(inode) && 2597 !(state->state & EXTENT_NORESERVE) && 2598 (bits & EXTENT_CLEAR_DATA_RESV)) 2599 btrfs_free_reserved_data_space_noquota(inode, len); 2600 2601 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2602 fs_info->delalloc_batch); 2603 spin_lock(&inode->lock); 2604 inode->delalloc_bytes -= len; 2605 new_delalloc_bytes = inode->delalloc_bytes; 2606 spin_unlock(&inode->lock); 2607 2608 /* 2609 * We don't need to be under the protection of the inode's lock, 2610 * because we are called while holding the inode's io_tree lock 2611 * and are therefore protected against concurrent calls of this 2612 * function and btrfs_set_delalloc_extent(). 2613 */ 2614 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2615 spin_lock(&root->delalloc_lock); 2616 btrfs_del_delalloc_inode(inode); 2617 spin_unlock(&root->delalloc_lock); 2618 } 2619 } 2620 2621 if ((state->state & EXTENT_DELALLOC_NEW) && 2622 (bits & EXTENT_DELALLOC_NEW)) { 2623 spin_lock(&inode->lock); 2624 ASSERT(inode->new_delalloc_bytes >= len); 2625 inode->new_delalloc_bytes -= len; 2626 if (bits & EXTENT_ADD_INODE_BYTES) 2627 inode_add_bytes(&inode->vfs_inode, len); 2628 spin_unlock(&inode->lock); 2629 } 2630 } 2631 2632 /* 2633 * given a list of ordered sums record them in the inode. This happens 2634 * at IO completion time based on sums calculated at bio submission time. 2635 */ 2636 static int add_pending_csums(struct btrfs_trans_handle *trans, 2637 struct list_head *list) 2638 { 2639 struct btrfs_ordered_sum *sum; 2640 struct btrfs_root *csum_root = NULL; 2641 int ret; 2642 2643 list_for_each_entry(sum, list, list) { 2644 trans->adding_csums = true; 2645 if (!csum_root) 2646 csum_root = btrfs_csum_root(trans->fs_info, 2647 sum->logical); 2648 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2649 trans->adding_csums = false; 2650 if (ret) 2651 return ret; 2652 } 2653 return 0; 2654 } 2655 2656 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2657 const u64 start, 2658 const u64 len, 2659 struct extent_state **cached_state) 2660 { 2661 u64 search_start = start; 2662 const u64 end = start + len - 1; 2663 2664 while (search_start < end) { 2665 const u64 search_len = end - search_start + 1; 2666 struct extent_map *em; 2667 u64 em_len; 2668 int ret = 0; 2669 2670 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2671 if (IS_ERR(em)) 2672 return PTR_ERR(em); 2673 2674 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2675 goto next; 2676 2677 em_len = em->len; 2678 if (em->start < search_start) 2679 em_len -= search_start - em->start; 2680 if (em_len > search_len) 2681 em_len = search_len; 2682 2683 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2684 search_start + em_len - 1, 2685 EXTENT_DELALLOC_NEW, cached_state); 2686 next: 2687 search_start = btrfs_extent_map_end(em); 2688 btrfs_free_extent_map(em); 2689 if (ret) 2690 return ret; 2691 } 2692 return 0; 2693 } 2694 2695 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2696 unsigned int extra_bits, 2697 struct extent_state **cached_state) 2698 { 2699 WARN_ON(PAGE_ALIGNED(end)); 2700 2701 if (start >= i_size_read(&inode->vfs_inode) && 2702 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2703 /* 2704 * There can't be any extents following eof in this case so just 2705 * set the delalloc new bit for the range directly. 2706 */ 2707 extra_bits |= EXTENT_DELALLOC_NEW; 2708 } else { 2709 int ret; 2710 2711 ret = btrfs_find_new_delalloc_bytes(inode, start, 2712 end + 1 - start, 2713 cached_state); 2714 if (ret) 2715 return ret; 2716 } 2717 2718 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2719 EXTENT_DELALLOC | extra_bits, cached_state); 2720 } 2721 2722 /* see btrfs_writepage_start_hook for details on why this is required */ 2723 struct btrfs_writepage_fixup { 2724 struct folio *folio; 2725 struct btrfs_inode *inode; 2726 struct btrfs_work work; 2727 }; 2728 2729 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2730 { 2731 struct btrfs_writepage_fixup *fixup = 2732 container_of(work, struct btrfs_writepage_fixup, work); 2733 struct btrfs_ordered_extent *ordered; 2734 struct extent_state *cached_state = NULL; 2735 struct extent_changeset *data_reserved = NULL; 2736 struct folio *folio = fixup->folio; 2737 struct btrfs_inode *inode = fixup->inode; 2738 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2739 u64 page_start = folio_pos(folio); 2740 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2741 int ret = 0; 2742 bool free_delalloc_space = true; 2743 2744 /* 2745 * This is similar to page_mkwrite, we need to reserve the space before 2746 * we take the folio lock. 2747 */ 2748 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2749 folio_size(folio)); 2750 again: 2751 folio_lock(folio); 2752 2753 /* 2754 * Before we queued this fixup, we took a reference on the folio. 2755 * folio->mapping may go NULL, but it shouldn't be moved to a different 2756 * address space. 2757 */ 2758 if (!folio->mapping || !folio_test_dirty(folio) || 2759 !folio_test_checked(folio)) { 2760 /* 2761 * Unfortunately this is a little tricky, either 2762 * 2763 * 1) We got here and our folio had already been dealt with and 2764 * we reserved our space, thus ret == 0, so we need to just 2765 * drop our space reservation and bail. This can happen the 2766 * first time we come into the fixup worker, or could happen 2767 * while waiting for the ordered extent. 2768 * 2) Our folio was already dealt with, but we happened to get an 2769 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2770 * this case we obviously don't have anything to release, but 2771 * because the folio was already dealt with we don't want to 2772 * mark the folio with an error, so make sure we're resetting 2773 * ret to 0. This is why we have this check _before_ the ret 2774 * check, because we do not want to have a surprise ENOSPC 2775 * when the folio was already properly dealt with. 2776 */ 2777 if (!ret) { 2778 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2779 btrfs_delalloc_release_space(inode, data_reserved, 2780 page_start, folio_size(folio), 2781 true); 2782 } 2783 ret = 0; 2784 goto out_page; 2785 } 2786 2787 /* 2788 * We can't mess with the folio state unless it is locked, so now that 2789 * it is locked bail if we failed to make our space reservation. 2790 */ 2791 if (ret) 2792 goto out_page; 2793 2794 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2795 2796 /* already ordered? We're done */ 2797 if (folio_test_ordered(folio)) 2798 goto out_reserved; 2799 2800 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2801 if (ordered) { 2802 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2803 &cached_state); 2804 folio_unlock(folio); 2805 btrfs_start_ordered_extent(ordered); 2806 btrfs_put_ordered_extent(ordered); 2807 goto again; 2808 } 2809 2810 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2811 &cached_state); 2812 if (ret) 2813 goto out_reserved; 2814 2815 /* 2816 * Everything went as planned, we're now the owner of a dirty page with 2817 * delayed allocation bits set and space reserved for our COW 2818 * destination. 2819 * 2820 * The page was dirty when we started, nothing should have cleaned it. 2821 */ 2822 BUG_ON(!folio_test_dirty(folio)); 2823 free_delalloc_space = false; 2824 out_reserved: 2825 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2826 if (free_delalloc_space) 2827 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2828 PAGE_SIZE, true); 2829 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2830 out_page: 2831 if (ret) { 2832 /* 2833 * We hit ENOSPC or other errors. Update the mapping and page 2834 * to reflect the errors and clean the page. 2835 */ 2836 mapping_set_error(folio->mapping, ret); 2837 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2838 folio_size(folio), !ret); 2839 folio_clear_dirty_for_io(folio); 2840 } 2841 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2842 folio_unlock(folio); 2843 folio_put(folio); 2844 kfree(fixup); 2845 extent_changeset_free(data_reserved); 2846 /* 2847 * As a precaution, do a delayed iput in case it would be the last iput 2848 * that could need flushing space. Recursing back to fixup worker would 2849 * deadlock. 2850 */ 2851 btrfs_add_delayed_iput(inode); 2852 } 2853 2854 /* 2855 * There are a few paths in the higher layers of the kernel that directly 2856 * set the folio dirty bit without asking the filesystem if it is a 2857 * good idea. This causes problems because we want to make sure COW 2858 * properly happens and the data=ordered rules are followed. 2859 * 2860 * In our case any range that doesn't have the ORDERED bit set 2861 * hasn't been properly setup for IO. We kick off an async process 2862 * to fix it up. The async helper will wait for ordered extents, set 2863 * the delalloc bit and make it safe to write the folio. 2864 */ 2865 int btrfs_writepage_cow_fixup(struct folio *folio) 2866 { 2867 struct inode *inode = folio->mapping->host; 2868 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2869 struct btrfs_writepage_fixup *fixup; 2870 2871 /* This folio has ordered extent covering it already */ 2872 if (folio_test_ordered(folio)) 2873 return 0; 2874 2875 /* 2876 * For experimental build, we error out instead of EAGAIN. 2877 * 2878 * We should not hit such out-of-band dirty folios anymore. 2879 */ 2880 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2881 DEBUG_WARN(); 2882 btrfs_err_rl(fs_info, 2883 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2884 BTRFS_I(inode)->root->root_key.objectid, 2885 btrfs_ino(BTRFS_I(inode)), 2886 folio_pos(folio)); 2887 return -EUCLEAN; 2888 } 2889 2890 /* 2891 * folio_checked is set below when we create a fixup worker for this 2892 * folio, don't try to create another one if we're already 2893 * folio_test_checked. 2894 * 2895 * The extent_io writepage code will redirty the foio if we send back 2896 * EAGAIN. 2897 */ 2898 if (folio_test_checked(folio)) 2899 return -EAGAIN; 2900 2901 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2902 if (!fixup) 2903 return -EAGAIN; 2904 2905 /* 2906 * We are already holding a reference to this inode from 2907 * write_cache_pages. We need to hold it because the space reservation 2908 * takes place outside of the folio lock, and we can't trust 2909 * folio->mapping outside of the folio lock. 2910 */ 2911 ihold(inode); 2912 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2913 folio_get(folio); 2914 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2915 fixup->folio = folio; 2916 fixup->inode = BTRFS_I(inode); 2917 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2918 2919 return -EAGAIN; 2920 } 2921 2922 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2923 struct btrfs_inode *inode, u64 file_pos, 2924 struct btrfs_file_extent_item *stack_fi, 2925 const bool update_inode_bytes, 2926 u64 qgroup_reserved) 2927 { 2928 struct btrfs_root *root = inode->root; 2929 const u64 sectorsize = root->fs_info->sectorsize; 2930 BTRFS_PATH_AUTO_FREE(path); 2931 struct extent_buffer *leaf; 2932 struct btrfs_key ins; 2933 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2934 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2935 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2936 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2937 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2938 struct btrfs_drop_extents_args drop_args = { 0 }; 2939 int ret; 2940 2941 path = btrfs_alloc_path(); 2942 if (!path) 2943 return -ENOMEM; 2944 2945 /* 2946 * we may be replacing one extent in the tree with another. 2947 * The new extent is pinned in the extent map, and we don't want 2948 * to drop it from the cache until it is completely in the btree. 2949 * 2950 * So, tell btrfs_drop_extents to leave this extent in the cache. 2951 * the caller is expected to unpin it and allow it to be merged 2952 * with the others. 2953 */ 2954 drop_args.path = path; 2955 drop_args.start = file_pos; 2956 drop_args.end = file_pos + num_bytes; 2957 drop_args.replace_extent = true; 2958 drop_args.extent_item_size = sizeof(*stack_fi); 2959 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2960 if (ret) 2961 goto out; 2962 2963 if (!drop_args.extent_inserted) { 2964 ins.objectid = btrfs_ino(inode); 2965 ins.type = BTRFS_EXTENT_DATA_KEY; 2966 ins.offset = file_pos; 2967 2968 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2969 sizeof(*stack_fi)); 2970 if (ret) 2971 goto out; 2972 } 2973 leaf = path->nodes[0]; 2974 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2975 write_extent_buffer(leaf, stack_fi, 2976 btrfs_item_ptr_offset(leaf, path->slots[0]), 2977 sizeof(struct btrfs_file_extent_item)); 2978 2979 btrfs_release_path(path); 2980 2981 /* 2982 * If we dropped an inline extent here, we know the range where it is 2983 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2984 * number of bytes only for that range containing the inline extent. 2985 * The remaining of the range will be processed when clearning the 2986 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2987 */ 2988 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2989 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2990 2991 inline_size = drop_args.bytes_found - inline_size; 2992 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2993 drop_args.bytes_found -= inline_size; 2994 num_bytes -= sectorsize; 2995 } 2996 2997 if (update_inode_bytes) 2998 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2999 3000 ins.objectid = disk_bytenr; 3001 ins.type = BTRFS_EXTENT_ITEM_KEY; 3002 ins.offset = disk_num_bytes; 3003 3004 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3005 if (ret) 3006 goto out; 3007 3008 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3009 file_pos - offset, 3010 qgroup_reserved, &ins); 3011 out: 3012 return ret; 3013 } 3014 3015 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3016 u64 start, u64 len) 3017 { 3018 struct btrfs_block_group *cache; 3019 3020 cache = btrfs_lookup_block_group(fs_info, start); 3021 ASSERT(cache); 3022 3023 spin_lock(&cache->lock); 3024 cache->delalloc_bytes -= len; 3025 spin_unlock(&cache->lock); 3026 3027 btrfs_put_block_group(cache); 3028 } 3029 3030 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3031 struct btrfs_ordered_extent *oe) 3032 { 3033 struct btrfs_file_extent_item stack_fi; 3034 bool update_inode_bytes; 3035 u64 num_bytes = oe->num_bytes; 3036 u64 ram_bytes = oe->ram_bytes; 3037 3038 memset(&stack_fi, 0, sizeof(stack_fi)); 3039 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3040 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3041 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3042 oe->disk_num_bytes); 3043 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3044 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3045 num_bytes = oe->truncated_len; 3046 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3047 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3048 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3049 /* Encryption and other encoding is reserved and all 0 */ 3050 3051 /* 3052 * For delalloc, when completing an ordered extent we update the inode's 3053 * bytes when clearing the range in the inode's io tree, so pass false 3054 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3055 * except if the ordered extent was truncated. 3056 */ 3057 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3058 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3059 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3060 3061 return insert_reserved_file_extent(trans, oe->inode, 3062 oe->file_offset, &stack_fi, 3063 update_inode_bytes, oe->qgroup_rsv); 3064 } 3065 3066 /* 3067 * As ordered data IO finishes, this gets called so we can finish 3068 * an ordered extent if the range of bytes in the file it covers are 3069 * fully written. 3070 */ 3071 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3072 { 3073 struct btrfs_inode *inode = ordered_extent->inode; 3074 struct btrfs_root *root = inode->root; 3075 struct btrfs_fs_info *fs_info = root->fs_info; 3076 struct btrfs_trans_handle *trans = NULL; 3077 struct extent_io_tree *io_tree = &inode->io_tree; 3078 struct extent_state *cached_state = NULL; 3079 u64 start, end; 3080 int compress_type = 0; 3081 int ret = 0; 3082 u64 logical_len = ordered_extent->num_bytes; 3083 bool freespace_inode; 3084 bool truncated = false; 3085 bool clear_reserved_extent = true; 3086 unsigned int clear_bits = EXTENT_DEFRAG; 3087 3088 start = ordered_extent->file_offset; 3089 end = start + ordered_extent->num_bytes - 1; 3090 3091 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3092 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3093 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3094 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3095 clear_bits |= EXTENT_DELALLOC_NEW; 3096 3097 freespace_inode = btrfs_is_free_space_inode(inode); 3098 if (!freespace_inode) 3099 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3100 3101 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3102 ret = -EIO; 3103 goto out; 3104 } 3105 3106 if (btrfs_is_zoned(fs_info)) 3107 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3108 ordered_extent->disk_num_bytes); 3109 3110 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3111 truncated = true; 3112 logical_len = ordered_extent->truncated_len; 3113 /* Truncated the entire extent, don't bother adding */ 3114 if (!logical_len) 3115 goto out; 3116 } 3117 3118 /* 3119 * If it's a COW write we need to lock the extent range as we will be 3120 * inserting/replacing file extent items and unpinning an extent map. 3121 * This must be taken before joining a transaction, as it's a higher 3122 * level lock (like the inode's VFS lock), otherwise we can run into an 3123 * ABBA deadlock with other tasks (transactions work like a lock, 3124 * depending on their current state). 3125 */ 3126 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3127 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3128 btrfs_lock_extent_bits(io_tree, start, end, 3129 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3130 &cached_state); 3131 } 3132 3133 if (freespace_inode) 3134 trans = btrfs_join_transaction_spacecache(root); 3135 else 3136 trans = btrfs_join_transaction(root); 3137 if (IS_ERR(trans)) { 3138 ret = PTR_ERR(trans); 3139 trans = NULL; 3140 goto out; 3141 } 3142 3143 trans->block_rsv = &inode->block_rsv; 3144 3145 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3146 if (ret) { 3147 btrfs_abort_transaction(trans, ret); 3148 goto out; 3149 } 3150 3151 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3152 /* Logic error */ 3153 ASSERT(list_empty(&ordered_extent->list)); 3154 if (!list_empty(&ordered_extent->list)) { 3155 ret = -EINVAL; 3156 btrfs_abort_transaction(trans, ret); 3157 goto out; 3158 } 3159 3160 btrfs_inode_safe_disk_i_size_write(inode, 0); 3161 ret = btrfs_update_inode_fallback(trans, inode); 3162 if (ret) { 3163 /* -ENOMEM or corruption */ 3164 btrfs_abort_transaction(trans, ret); 3165 } 3166 goto out; 3167 } 3168 3169 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3170 compress_type = ordered_extent->compress_type; 3171 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3172 BUG_ON(compress_type); 3173 ret = btrfs_mark_extent_written(trans, inode, 3174 ordered_extent->file_offset, 3175 ordered_extent->file_offset + 3176 logical_len); 3177 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3178 ordered_extent->disk_num_bytes); 3179 } else { 3180 BUG_ON(root == fs_info->tree_root); 3181 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3182 if (!ret) { 3183 clear_reserved_extent = false; 3184 btrfs_release_delalloc_bytes(fs_info, 3185 ordered_extent->disk_bytenr, 3186 ordered_extent->disk_num_bytes); 3187 } 3188 } 3189 if (ret < 0) { 3190 btrfs_abort_transaction(trans, ret); 3191 goto out; 3192 } 3193 3194 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3195 ordered_extent->num_bytes, trans->transid); 3196 if (ret < 0) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 3201 ret = add_pending_csums(trans, &ordered_extent->list); 3202 if (ret) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 3207 /* 3208 * If this is a new delalloc range, clear its new delalloc flag to 3209 * update the inode's number of bytes. This needs to be done first 3210 * before updating the inode item. 3211 */ 3212 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3213 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3214 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3215 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3216 &cached_state); 3217 3218 btrfs_inode_safe_disk_i_size_write(inode, 0); 3219 ret = btrfs_update_inode_fallback(trans, inode); 3220 if (ret) { /* -ENOMEM or corruption */ 3221 btrfs_abort_transaction(trans, ret); 3222 goto out; 3223 } 3224 out: 3225 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3226 &cached_state); 3227 3228 if (trans) 3229 btrfs_end_transaction(trans); 3230 3231 if (ret || truncated) { 3232 /* 3233 * If we failed to finish this ordered extent for any reason we 3234 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3235 * extent, and mark the inode with the error if it wasn't 3236 * already set. Any error during writeback would have already 3237 * set the mapping error, so we need to set it if we're the ones 3238 * marking this ordered extent as failed. 3239 */ 3240 if (ret) 3241 btrfs_mark_ordered_extent_error(ordered_extent); 3242 3243 /* 3244 * Drop extent maps for the part of the extent we didn't write. 3245 * 3246 * We have an exception here for the free_space_inode, this is 3247 * because when we do btrfs_get_extent() on the free space inode 3248 * we will search the commit root. If this is a new block group 3249 * we won't find anything, and we will trip over the assert in 3250 * writepage where we do ASSERT(em->block_start != 3251 * EXTENT_MAP_HOLE). 3252 * 3253 * Theoretically we could also skip this for any NOCOW extent as 3254 * we don't mess with the extent map tree in the NOCOW case, but 3255 * for now simply skip this if we are the free space inode. 3256 */ 3257 if (!btrfs_is_free_space_inode(inode)) { 3258 u64 unwritten_start = start; 3259 3260 if (truncated) 3261 unwritten_start += logical_len; 3262 3263 btrfs_drop_extent_map_range(inode, unwritten_start, 3264 end, false); 3265 } 3266 3267 /* 3268 * If the ordered extent had an IOERR or something else went 3269 * wrong we need to return the space for this ordered extent 3270 * back to the allocator. We only free the extent in the 3271 * truncated case if we didn't write out the extent at all. 3272 * 3273 * If we made it past insert_reserved_file_extent before we 3274 * errored out then we don't need to do this as the accounting 3275 * has already been done. 3276 */ 3277 if ((ret || !logical_len) && 3278 clear_reserved_extent && 3279 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3280 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3281 /* 3282 * Discard the range before returning it back to the 3283 * free space pool 3284 */ 3285 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3286 btrfs_discard_extent(fs_info, 3287 ordered_extent->disk_bytenr, 3288 ordered_extent->disk_num_bytes, 3289 NULL); 3290 btrfs_free_reserved_extent(fs_info, 3291 ordered_extent->disk_bytenr, 3292 ordered_extent->disk_num_bytes, true); 3293 /* 3294 * Actually free the qgroup rsv which was released when 3295 * the ordered extent was created. 3296 */ 3297 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3298 ordered_extent->qgroup_rsv, 3299 BTRFS_QGROUP_RSV_DATA); 3300 } 3301 } 3302 3303 /* 3304 * This needs to be done to make sure anybody waiting knows we are done 3305 * updating everything for this ordered extent. 3306 */ 3307 btrfs_remove_ordered_extent(inode, ordered_extent); 3308 3309 /* once for us */ 3310 btrfs_put_ordered_extent(ordered_extent); 3311 /* once for the tree */ 3312 btrfs_put_ordered_extent(ordered_extent); 3313 3314 return ret; 3315 } 3316 3317 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3318 { 3319 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3320 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3321 list_empty(&ordered->bioc_list)) 3322 btrfs_finish_ordered_zoned(ordered); 3323 return btrfs_finish_one_ordered(ordered); 3324 } 3325 3326 /* 3327 * Verify the checksum for a single sector without any extra action that depend 3328 * on the type of I/O. 3329 * 3330 * @kaddr must be a properly kmapped address. 3331 */ 3332 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 3333 const u8 * const csum_expected) 3334 { 3335 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3336 3337 shash->tfm = fs_info->csum_shash; 3338 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3339 3340 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3341 return -EIO; 3342 return 0; 3343 } 3344 3345 /* 3346 * Verify the checksum of a single data sector. 3347 * 3348 * @bbio: btrfs_io_bio which contains the csum 3349 * @dev: device the sector is on 3350 * @bio_offset: offset to the beginning of the bio (in bytes) 3351 * @bv: bio_vec to check 3352 * 3353 * Check if the checksum on a data block is valid. When a checksum mismatch is 3354 * detected, report the error and fill the corrupted range with zero. 3355 * 3356 * Return %true if the sector is ok or had no checksum to start with, else %false. 3357 */ 3358 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3359 u32 bio_offset, struct bio_vec *bv) 3360 { 3361 struct btrfs_inode *inode = bbio->inode; 3362 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3363 u64 file_offset = bbio->file_offset + bio_offset; 3364 u64 end = file_offset + bv->bv_len - 1; 3365 u8 *csum_expected; 3366 u8 csum[BTRFS_CSUM_SIZE]; 3367 void *kaddr; 3368 3369 ASSERT(bv->bv_len == fs_info->sectorsize); 3370 3371 if (!bbio->csum) 3372 return true; 3373 3374 if (btrfs_is_data_reloc_root(inode->root) && 3375 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3376 NULL)) { 3377 /* Skip the range without csum for data reloc inode */ 3378 btrfs_clear_extent_bits(&inode->io_tree, file_offset, end, 3379 EXTENT_NODATASUM); 3380 return true; 3381 } 3382 3383 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3384 fs_info->csum_size; 3385 kaddr = bvec_kmap_local(bv); 3386 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) { 3387 kunmap_local(kaddr); 3388 goto zeroit; 3389 } 3390 kunmap_local(kaddr); 3391 return true; 3392 3393 zeroit: 3394 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3395 bbio->mirror_num); 3396 if (dev) 3397 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3398 memzero_bvec(bv); 3399 return false; 3400 } 3401 3402 /* 3403 * Perform a delayed iput on @inode. 3404 * 3405 * @inode: The inode we want to perform iput on 3406 * 3407 * This function uses the generic vfs_inode::i_count to track whether we should 3408 * just decrement it (in case it's > 1) or if this is the last iput then link 3409 * the inode to the delayed iput machinery. Delayed iputs are processed at 3410 * transaction commit time/superblock commit/cleaner kthread. 3411 */ 3412 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3413 { 3414 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3415 unsigned long flags; 3416 3417 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3418 return; 3419 3420 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3421 atomic_inc(&fs_info->nr_delayed_iputs); 3422 /* 3423 * Need to be irq safe here because we can be called from either an irq 3424 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3425 * context. 3426 */ 3427 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3428 ASSERT(list_empty(&inode->delayed_iput)); 3429 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3430 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3431 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3432 wake_up_process(fs_info->cleaner_kthread); 3433 } 3434 3435 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3436 struct btrfs_inode *inode) 3437 { 3438 list_del_init(&inode->delayed_iput); 3439 spin_unlock_irq(&fs_info->delayed_iput_lock); 3440 iput(&inode->vfs_inode); 3441 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3442 wake_up(&fs_info->delayed_iputs_wait); 3443 spin_lock_irq(&fs_info->delayed_iput_lock); 3444 } 3445 3446 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3447 struct btrfs_inode *inode) 3448 { 3449 if (!list_empty(&inode->delayed_iput)) { 3450 spin_lock_irq(&fs_info->delayed_iput_lock); 3451 if (!list_empty(&inode->delayed_iput)) 3452 run_delayed_iput_locked(fs_info, inode); 3453 spin_unlock_irq(&fs_info->delayed_iput_lock); 3454 } 3455 } 3456 3457 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3458 { 3459 /* 3460 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3461 * calls btrfs_add_delayed_iput() and that needs to lock 3462 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3463 * prevent a deadlock. 3464 */ 3465 spin_lock_irq(&fs_info->delayed_iput_lock); 3466 while (!list_empty(&fs_info->delayed_iputs)) { 3467 struct btrfs_inode *inode; 3468 3469 inode = list_first_entry(&fs_info->delayed_iputs, 3470 struct btrfs_inode, delayed_iput); 3471 run_delayed_iput_locked(fs_info, inode); 3472 if (need_resched()) { 3473 spin_unlock_irq(&fs_info->delayed_iput_lock); 3474 cond_resched(); 3475 spin_lock_irq(&fs_info->delayed_iput_lock); 3476 } 3477 } 3478 spin_unlock_irq(&fs_info->delayed_iput_lock); 3479 } 3480 3481 /* 3482 * Wait for flushing all delayed iputs 3483 * 3484 * @fs_info: the filesystem 3485 * 3486 * This will wait on any delayed iputs that are currently running with KILLABLE 3487 * set. Once they are all done running we will return, unless we are killed in 3488 * which case we return EINTR. This helps in user operations like fallocate etc 3489 * that might get blocked on the iputs. 3490 * 3491 * Return EINTR if we were killed, 0 if nothing's pending 3492 */ 3493 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3494 { 3495 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3496 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3497 if (ret) 3498 return -EINTR; 3499 return 0; 3500 } 3501 3502 /* 3503 * This creates an orphan entry for the given inode in case something goes wrong 3504 * in the middle of an unlink. 3505 */ 3506 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3507 struct btrfs_inode *inode) 3508 { 3509 int ret; 3510 3511 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3512 if (ret && ret != -EEXIST) { 3513 btrfs_abort_transaction(trans, ret); 3514 return ret; 3515 } 3516 3517 return 0; 3518 } 3519 3520 /* 3521 * We have done the delete so we can go ahead and remove the orphan item for 3522 * this particular inode. 3523 */ 3524 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3525 struct btrfs_inode *inode) 3526 { 3527 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3528 } 3529 3530 /* 3531 * this cleans up any orphans that may be left on the list from the last use 3532 * of this root. 3533 */ 3534 int btrfs_orphan_cleanup(struct btrfs_root *root) 3535 { 3536 struct btrfs_fs_info *fs_info = root->fs_info; 3537 BTRFS_PATH_AUTO_FREE(path); 3538 struct extent_buffer *leaf; 3539 struct btrfs_key key, found_key; 3540 struct btrfs_trans_handle *trans; 3541 u64 last_objectid = 0; 3542 int ret = 0, nr_unlink = 0; 3543 3544 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3545 return 0; 3546 3547 path = btrfs_alloc_path(); 3548 if (!path) { 3549 ret = -ENOMEM; 3550 goto out; 3551 } 3552 path->reada = READA_BACK; 3553 3554 key.objectid = BTRFS_ORPHAN_OBJECTID; 3555 key.type = BTRFS_ORPHAN_ITEM_KEY; 3556 key.offset = (u64)-1; 3557 3558 while (1) { 3559 struct btrfs_inode *inode; 3560 3561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3562 if (ret < 0) 3563 goto out; 3564 3565 /* 3566 * if ret == 0 means we found what we were searching for, which 3567 * is weird, but possible, so only screw with path if we didn't 3568 * find the key and see if we have stuff that matches 3569 */ 3570 if (ret > 0) { 3571 ret = 0; 3572 if (path->slots[0] == 0) 3573 break; 3574 path->slots[0]--; 3575 } 3576 3577 /* pull out the item */ 3578 leaf = path->nodes[0]; 3579 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3580 3581 /* make sure the item matches what we want */ 3582 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3583 break; 3584 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3585 break; 3586 3587 /* release the path since we're done with it */ 3588 btrfs_release_path(path); 3589 3590 /* 3591 * this is where we are basically btrfs_lookup, without the 3592 * crossing root thing. we store the inode number in the 3593 * offset of the orphan item. 3594 */ 3595 3596 if (found_key.offset == last_objectid) { 3597 /* 3598 * We found the same inode as before. This means we were 3599 * not able to remove its items via eviction triggered 3600 * by an iput(). A transaction abort may have happened, 3601 * due to -ENOSPC for example, so try to grab the error 3602 * that lead to a transaction abort, if any. 3603 */ 3604 btrfs_err(fs_info, 3605 "Error removing orphan entry, stopping orphan cleanup"); 3606 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3607 goto out; 3608 } 3609 3610 last_objectid = found_key.offset; 3611 3612 found_key.objectid = found_key.offset; 3613 found_key.type = BTRFS_INODE_ITEM_KEY; 3614 found_key.offset = 0; 3615 inode = btrfs_iget(last_objectid, root); 3616 if (IS_ERR(inode)) { 3617 ret = PTR_ERR(inode); 3618 inode = NULL; 3619 if (ret != -ENOENT) 3620 goto out; 3621 } 3622 3623 if (!inode && root == fs_info->tree_root) { 3624 struct btrfs_root *dead_root; 3625 int is_dead_root = 0; 3626 3627 /* 3628 * This is an orphan in the tree root. Currently these 3629 * could come from 2 sources: 3630 * a) a root (snapshot/subvolume) deletion in progress 3631 * b) a free space cache inode 3632 * We need to distinguish those two, as the orphan item 3633 * for a root must not get deleted before the deletion 3634 * of the snapshot/subvolume's tree completes. 3635 * 3636 * btrfs_find_orphan_roots() ran before us, which has 3637 * found all deleted roots and loaded them into 3638 * fs_info->fs_roots_radix. So here we can find if an 3639 * orphan item corresponds to a deleted root by looking 3640 * up the root from that radix tree. 3641 */ 3642 3643 spin_lock(&fs_info->fs_roots_radix_lock); 3644 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3645 (unsigned long)found_key.objectid); 3646 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3647 is_dead_root = 1; 3648 spin_unlock(&fs_info->fs_roots_radix_lock); 3649 3650 if (is_dead_root) { 3651 /* prevent this orphan from being found again */ 3652 key.offset = found_key.objectid - 1; 3653 continue; 3654 } 3655 3656 } 3657 3658 /* 3659 * If we have an inode with links, there are a couple of 3660 * possibilities: 3661 * 3662 * 1. We were halfway through creating fsverity metadata for the 3663 * file. In that case, the orphan item represents incomplete 3664 * fsverity metadata which must be cleaned up with 3665 * btrfs_drop_verity_items and deleting the orphan item. 3666 3667 * 2. Old kernels (before v3.12) used to create an 3668 * orphan item for truncate indicating that there were possibly 3669 * extent items past i_size that needed to be deleted. In v3.12, 3670 * truncate was changed to update i_size in sync with the extent 3671 * items, but the (useless) orphan item was still created. Since 3672 * v4.18, we don't create the orphan item for truncate at all. 3673 * 3674 * So, this item could mean that we need to do a truncate, but 3675 * only if this filesystem was last used on a pre-v3.12 kernel 3676 * and was not cleanly unmounted. The odds of that are quite 3677 * slim, and it's a pain to do the truncate now, so just delete 3678 * the orphan item. 3679 * 3680 * It's also possible that this orphan item was supposed to be 3681 * deleted but wasn't. The inode number may have been reused, 3682 * but either way, we can delete the orphan item. 3683 */ 3684 if (!inode || inode->vfs_inode.i_nlink) { 3685 if (inode) { 3686 ret = btrfs_drop_verity_items(inode); 3687 iput(&inode->vfs_inode); 3688 inode = NULL; 3689 if (ret) 3690 goto out; 3691 } 3692 trans = btrfs_start_transaction(root, 1); 3693 if (IS_ERR(trans)) { 3694 ret = PTR_ERR(trans); 3695 goto out; 3696 } 3697 btrfs_debug(fs_info, "auto deleting %Lu", 3698 found_key.objectid); 3699 ret = btrfs_del_orphan_item(trans, root, 3700 found_key.objectid); 3701 btrfs_end_transaction(trans); 3702 if (ret) 3703 goto out; 3704 continue; 3705 } 3706 3707 nr_unlink++; 3708 3709 /* this will do delete_inode and everything for us */ 3710 iput(&inode->vfs_inode); 3711 } 3712 /* release the path since we're done with it */ 3713 btrfs_release_path(path); 3714 3715 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3716 trans = btrfs_join_transaction(root); 3717 if (!IS_ERR(trans)) 3718 btrfs_end_transaction(trans); 3719 } 3720 3721 if (nr_unlink) 3722 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3723 3724 out: 3725 if (ret) 3726 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3727 return ret; 3728 } 3729 3730 /* 3731 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3732 * can't be any ACLs. 3733 * 3734 * @leaf: the eb leaf where to search 3735 * @slot: the slot the inode is in 3736 * @objectid: the objectid of the inode 3737 * 3738 * Return true if there is xattr/ACL, false otherwise. 3739 */ 3740 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3741 int slot, u64 objectid, 3742 int *first_xattr_slot) 3743 { 3744 u32 nritems = btrfs_header_nritems(leaf); 3745 struct btrfs_key found_key; 3746 static u64 xattr_access = 0; 3747 static u64 xattr_default = 0; 3748 int scanned = 0; 3749 3750 if (!xattr_access) { 3751 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3752 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3753 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3754 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3755 } 3756 3757 slot++; 3758 *first_xattr_slot = -1; 3759 while (slot < nritems) { 3760 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3761 3762 /* We found a different objectid, there must be no ACLs. */ 3763 if (found_key.objectid != objectid) 3764 return false; 3765 3766 /* We found an xattr, assume we've got an ACL. */ 3767 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3768 if (*first_xattr_slot == -1) 3769 *first_xattr_slot = slot; 3770 if (found_key.offset == xattr_access || 3771 found_key.offset == xattr_default) 3772 return true; 3773 } 3774 3775 /* 3776 * We found a key greater than an xattr key, there can't be any 3777 * ACLs later on. 3778 */ 3779 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3780 return false; 3781 3782 slot++; 3783 scanned++; 3784 3785 /* 3786 * The item order goes like: 3787 * - inode 3788 * - inode backrefs 3789 * - xattrs 3790 * - extents, 3791 * 3792 * so if there are lots of hard links to an inode there can be 3793 * a lot of backrefs. Don't waste time searching too hard, 3794 * this is just an optimization. 3795 */ 3796 if (scanned >= 8) 3797 break; 3798 } 3799 /* 3800 * We hit the end of the leaf before we found an xattr or something 3801 * larger than an xattr. We have to assume the inode has ACLs. 3802 */ 3803 if (*first_xattr_slot == -1) 3804 *first_xattr_slot = slot; 3805 return true; 3806 } 3807 3808 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3809 { 3810 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3811 3812 if (WARN_ON_ONCE(inode->file_extent_tree)) 3813 return 0; 3814 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3815 return 0; 3816 if (!S_ISREG(inode->vfs_inode.i_mode)) 3817 return 0; 3818 if (btrfs_is_free_space_inode(inode)) 3819 return 0; 3820 3821 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3822 if (!inode->file_extent_tree) 3823 return -ENOMEM; 3824 3825 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3826 IO_TREE_INODE_FILE_EXTENT); 3827 /* Lockdep class is set only for the file extent tree. */ 3828 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3829 3830 return 0; 3831 } 3832 3833 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3834 { 3835 struct btrfs_root *root = inode->root; 3836 struct btrfs_inode *existing; 3837 const u64 ino = btrfs_ino(inode); 3838 int ret; 3839 3840 if (inode_unhashed(&inode->vfs_inode)) 3841 return 0; 3842 3843 if (prealloc) { 3844 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3845 if (ret) 3846 return ret; 3847 } 3848 3849 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3850 3851 if (xa_is_err(existing)) { 3852 ret = xa_err(existing); 3853 ASSERT(ret != -EINVAL); 3854 ASSERT(ret != -ENOMEM); 3855 return ret; 3856 } else if (existing) { 3857 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3858 } 3859 3860 return 0; 3861 } 3862 3863 /* 3864 * Read a locked inode from the btree into the in-memory inode and add it to 3865 * its root list/tree. 3866 * 3867 * On failure clean up the inode. 3868 */ 3869 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3870 { 3871 struct btrfs_root *root = inode->root; 3872 struct btrfs_fs_info *fs_info = root->fs_info; 3873 struct extent_buffer *leaf; 3874 struct btrfs_inode_item *inode_item; 3875 struct inode *vfs_inode = &inode->vfs_inode; 3876 struct btrfs_key location; 3877 unsigned long ptr; 3878 int maybe_acls; 3879 u32 rdev; 3880 int ret; 3881 bool filled = false; 3882 int first_xattr_slot; 3883 3884 ret = btrfs_init_file_extent_tree(inode); 3885 if (ret) 3886 goto out; 3887 3888 ret = btrfs_fill_inode(inode, &rdev); 3889 if (!ret) 3890 filled = true; 3891 3892 ASSERT(path); 3893 3894 btrfs_get_inode_key(inode, &location); 3895 3896 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3897 if (ret) { 3898 /* 3899 * ret > 0 can come from btrfs_search_slot called by 3900 * btrfs_lookup_inode(), this means the inode was not found. 3901 */ 3902 if (ret > 0) 3903 ret = -ENOENT; 3904 goto out; 3905 } 3906 3907 leaf = path->nodes[0]; 3908 3909 if (filled) 3910 goto cache_index; 3911 3912 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3913 struct btrfs_inode_item); 3914 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3915 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3916 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3917 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3918 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3919 btrfs_inode_set_file_extent_range(inode, 0, 3920 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3921 3922 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3923 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3924 3925 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3926 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3927 3928 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3929 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3930 3931 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3932 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3933 3934 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3935 inode->generation = btrfs_inode_generation(leaf, inode_item); 3936 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3937 3938 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3939 vfs_inode->i_generation = inode->generation; 3940 vfs_inode->i_rdev = 0; 3941 rdev = btrfs_inode_rdev(leaf, inode_item); 3942 3943 if (S_ISDIR(vfs_inode->i_mode)) 3944 inode->index_cnt = (u64)-1; 3945 3946 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3947 &inode->flags, &inode->ro_flags); 3948 btrfs_update_inode_mapping_flags(inode); 3949 3950 cache_index: 3951 /* 3952 * If we were modified in the current generation and evicted from memory 3953 * and then re-read we need to do a full sync since we don't have any 3954 * idea about which extents were modified before we were evicted from 3955 * cache. 3956 * 3957 * This is required for both inode re-read from disk and delayed inode 3958 * in the delayed_nodes xarray. 3959 */ 3960 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3961 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3962 3963 /* 3964 * We don't persist the id of the transaction where an unlink operation 3965 * against the inode was last made. So here we assume the inode might 3966 * have been evicted, and therefore the exact value of last_unlink_trans 3967 * lost, and set it to last_trans to avoid metadata inconsistencies 3968 * between the inode and its parent if the inode is fsync'ed and the log 3969 * replayed. For example, in the scenario: 3970 * 3971 * touch mydir/foo 3972 * ln mydir/foo mydir/bar 3973 * sync 3974 * unlink mydir/bar 3975 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3976 * xfs_io -c fsync mydir/foo 3977 * <power failure> 3978 * mount fs, triggers fsync log replay 3979 * 3980 * We must make sure that when we fsync our inode foo we also log its 3981 * parent inode, otherwise after log replay the parent still has the 3982 * dentry with the "bar" name but our inode foo has a link count of 1 3983 * and doesn't have an inode ref with the name "bar" anymore. 3984 * 3985 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3986 * but it guarantees correctness at the expense of occasional full 3987 * transaction commits on fsync if our inode is a directory, or if our 3988 * inode is not a directory, logging its parent unnecessarily. 3989 */ 3990 inode->last_unlink_trans = inode->last_trans; 3991 3992 /* 3993 * Same logic as for last_unlink_trans. We don't persist the generation 3994 * of the last transaction where this inode was used for a reflink 3995 * operation, so after eviction and reloading the inode we must be 3996 * pessimistic and assume the last transaction that modified the inode. 3997 */ 3998 inode->last_reflink_trans = inode->last_trans; 3999 4000 path->slots[0]++; 4001 if (vfs_inode->i_nlink != 1 || 4002 path->slots[0] >= btrfs_header_nritems(leaf)) 4003 goto cache_acl; 4004 4005 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4006 if (location.objectid != btrfs_ino(inode)) 4007 goto cache_acl; 4008 4009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4010 if (location.type == BTRFS_INODE_REF_KEY) { 4011 struct btrfs_inode_ref *ref; 4012 4013 ref = (struct btrfs_inode_ref *)ptr; 4014 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4015 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4016 struct btrfs_inode_extref *extref; 4017 4018 extref = (struct btrfs_inode_extref *)ptr; 4019 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4020 } 4021 cache_acl: 4022 /* 4023 * try to precache a NULL acl entry for files that don't have 4024 * any xattrs or acls 4025 */ 4026 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4027 btrfs_ino(inode), &first_xattr_slot); 4028 if (first_xattr_slot != -1) { 4029 path->slots[0] = first_xattr_slot; 4030 ret = btrfs_load_inode_props(inode, path); 4031 if (ret) 4032 btrfs_err(fs_info, 4033 "error loading props for ino %llu (root %llu): %d", 4034 btrfs_ino(inode), btrfs_root_id(root), ret); 4035 } 4036 4037 if (!maybe_acls) 4038 cache_no_acl(vfs_inode); 4039 4040 switch (vfs_inode->i_mode & S_IFMT) { 4041 case S_IFREG: 4042 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4043 vfs_inode->i_fop = &btrfs_file_operations; 4044 vfs_inode->i_op = &btrfs_file_inode_operations; 4045 break; 4046 case S_IFDIR: 4047 vfs_inode->i_fop = &btrfs_dir_file_operations; 4048 vfs_inode->i_op = &btrfs_dir_inode_operations; 4049 break; 4050 case S_IFLNK: 4051 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4052 inode_nohighmem(vfs_inode); 4053 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4054 break; 4055 default: 4056 vfs_inode->i_op = &btrfs_special_inode_operations; 4057 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4058 break; 4059 } 4060 4061 btrfs_sync_inode_flags_to_i_flags(inode); 4062 4063 ret = btrfs_add_inode_to_root(inode, true); 4064 if (ret) 4065 goto out; 4066 4067 return 0; 4068 out: 4069 iget_failed(vfs_inode); 4070 return ret; 4071 } 4072 4073 /* 4074 * given a leaf and an inode, copy the inode fields into the leaf 4075 */ 4076 static void fill_inode_item(struct btrfs_trans_handle *trans, 4077 struct extent_buffer *leaf, 4078 struct btrfs_inode_item *item, 4079 struct inode *inode) 4080 { 4081 struct btrfs_map_token token; 4082 u64 flags; 4083 4084 btrfs_init_map_token(&token, leaf); 4085 4086 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4087 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4088 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4089 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4090 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4091 4092 btrfs_set_token_timespec_sec(&token, &item->atime, 4093 inode_get_atime_sec(inode)); 4094 btrfs_set_token_timespec_nsec(&token, &item->atime, 4095 inode_get_atime_nsec(inode)); 4096 4097 btrfs_set_token_timespec_sec(&token, &item->mtime, 4098 inode_get_mtime_sec(inode)); 4099 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4100 inode_get_mtime_nsec(inode)); 4101 4102 btrfs_set_token_timespec_sec(&token, &item->ctime, 4103 inode_get_ctime_sec(inode)); 4104 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4105 inode_get_ctime_nsec(inode)); 4106 4107 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4108 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4109 4110 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4111 btrfs_set_token_inode_generation(&token, item, 4112 BTRFS_I(inode)->generation); 4113 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4114 btrfs_set_token_inode_transid(&token, item, trans->transid); 4115 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4116 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4117 BTRFS_I(inode)->ro_flags); 4118 btrfs_set_token_inode_flags(&token, item, flags); 4119 btrfs_set_token_inode_block_group(&token, item, 0); 4120 } 4121 4122 /* 4123 * copy everything in the in-memory inode into the btree. 4124 */ 4125 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4126 struct btrfs_inode *inode) 4127 { 4128 struct btrfs_inode_item *inode_item; 4129 BTRFS_PATH_AUTO_FREE(path); 4130 struct extent_buffer *leaf; 4131 struct btrfs_key key; 4132 int ret; 4133 4134 path = btrfs_alloc_path(); 4135 if (!path) 4136 return -ENOMEM; 4137 4138 btrfs_get_inode_key(inode, &key); 4139 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4140 if (ret) { 4141 if (ret > 0) 4142 ret = -ENOENT; 4143 return ret; 4144 } 4145 4146 leaf = path->nodes[0]; 4147 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4148 struct btrfs_inode_item); 4149 4150 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4151 btrfs_set_inode_last_trans(trans, inode); 4152 return 0; 4153 } 4154 4155 /* 4156 * copy everything in the in-memory inode into the btree. 4157 */ 4158 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4159 struct btrfs_inode *inode) 4160 { 4161 struct btrfs_root *root = inode->root; 4162 struct btrfs_fs_info *fs_info = root->fs_info; 4163 int ret; 4164 4165 /* 4166 * If the inode is a free space inode, we can deadlock during commit 4167 * if we put it into the delayed code. 4168 * 4169 * The data relocation inode should also be directly updated 4170 * without delay 4171 */ 4172 if (!btrfs_is_free_space_inode(inode) 4173 && !btrfs_is_data_reloc_root(root) 4174 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4175 btrfs_update_root_times(trans, root); 4176 4177 ret = btrfs_delayed_update_inode(trans, inode); 4178 if (!ret) 4179 btrfs_set_inode_last_trans(trans, inode); 4180 return ret; 4181 } 4182 4183 return btrfs_update_inode_item(trans, inode); 4184 } 4185 4186 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4187 struct btrfs_inode *inode) 4188 { 4189 int ret; 4190 4191 ret = btrfs_update_inode(trans, inode); 4192 if (ret == -ENOSPC) 4193 return btrfs_update_inode_item(trans, inode); 4194 return ret; 4195 } 4196 4197 /* 4198 * unlink helper that gets used here in inode.c and in the tree logging 4199 * recovery code. It remove a link in a directory with a given name, and 4200 * also drops the back refs in the inode to the directory 4201 */ 4202 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4203 struct btrfs_inode *dir, 4204 struct btrfs_inode *inode, 4205 const struct fscrypt_str *name, 4206 struct btrfs_rename_ctx *rename_ctx) 4207 { 4208 struct btrfs_root *root = dir->root; 4209 struct btrfs_fs_info *fs_info = root->fs_info; 4210 struct btrfs_path *path; 4211 int ret = 0; 4212 struct btrfs_dir_item *di; 4213 u64 index; 4214 u64 ino = btrfs_ino(inode); 4215 u64 dir_ino = btrfs_ino(dir); 4216 4217 path = btrfs_alloc_path(); 4218 if (!path) { 4219 ret = -ENOMEM; 4220 goto out; 4221 } 4222 4223 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4224 if (IS_ERR_OR_NULL(di)) { 4225 ret = di ? PTR_ERR(di) : -ENOENT; 4226 goto err; 4227 } 4228 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4229 if (ret) 4230 goto err; 4231 btrfs_release_path(path); 4232 4233 /* 4234 * If we don't have dir index, we have to get it by looking up 4235 * the inode ref, since we get the inode ref, remove it directly, 4236 * it is unnecessary to do delayed deletion. 4237 * 4238 * But if we have dir index, needn't search inode ref to get it. 4239 * Since the inode ref is close to the inode item, it is better 4240 * that we delay to delete it, and just do this deletion when 4241 * we update the inode item. 4242 */ 4243 if (inode->dir_index) { 4244 ret = btrfs_delayed_delete_inode_ref(inode); 4245 if (!ret) { 4246 index = inode->dir_index; 4247 goto skip_backref; 4248 } 4249 } 4250 4251 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4252 if (ret) { 4253 btrfs_crit(fs_info, 4254 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4255 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4256 btrfs_abort_transaction(trans, ret); 4257 goto err; 4258 } 4259 skip_backref: 4260 if (rename_ctx) 4261 rename_ctx->index = index; 4262 4263 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4264 if (ret) { 4265 btrfs_abort_transaction(trans, ret); 4266 goto err; 4267 } 4268 4269 /* 4270 * If we are in a rename context, we don't need to update anything in the 4271 * log. That will be done later during the rename by btrfs_log_new_name(). 4272 * Besides that, doing it here would only cause extra unnecessary btree 4273 * operations on the log tree, increasing latency for applications. 4274 */ 4275 if (!rename_ctx) { 4276 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4277 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4278 } 4279 4280 /* 4281 * If we have a pending delayed iput we could end up with the final iput 4282 * being run in btrfs-cleaner context. If we have enough of these built 4283 * up we can end up burning a lot of time in btrfs-cleaner without any 4284 * way to throttle the unlinks. Since we're currently holding a ref on 4285 * the inode we can run the delayed iput here without any issues as the 4286 * final iput won't be done until after we drop the ref we're currently 4287 * holding. 4288 */ 4289 btrfs_run_delayed_iput(fs_info, inode); 4290 err: 4291 btrfs_free_path(path); 4292 if (ret) 4293 goto out; 4294 4295 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4296 inode_inc_iversion(&inode->vfs_inode); 4297 inode_set_ctime_current(&inode->vfs_inode); 4298 inode_inc_iversion(&dir->vfs_inode); 4299 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4300 ret = btrfs_update_inode(trans, dir); 4301 out: 4302 return ret; 4303 } 4304 4305 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4306 struct btrfs_inode *dir, struct btrfs_inode *inode, 4307 const struct fscrypt_str *name) 4308 { 4309 int ret; 4310 4311 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4312 if (!ret) { 4313 drop_nlink(&inode->vfs_inode); 4314 ret = btrfs_update_inode(trans, inode); 4315 } 4316 return ret; 4317 } 4318 4319 /* 4320 * helper to start transaction for unlink and rmdir. 4321 * 4322 * unlink and rmdir are special in btrfs, they do not always free space, so 4323 * if we cannot make our reservations the normal way try and see if there is 4324 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4325 * allow the unlink to occur. 4326 */ 4327 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4328 { 4329 struct btrfs_root *root = dir->root; 4330 4331 return btrfs_start_transaction_fallback_global_rsv(root, 4332 BTRFS_UNLINK_METADATA_UNITS); 4333 } 4334 4335 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4336 { 4337 struct btrfs_trans_handle *trans; 4338 struct inode *inode = d_inode(dentry); 4339 int ret; 4340 struct fscrypt_name fname; 4341 4342 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4343 if (ret) 4344 return ret; 4345 4346 /* This needs to handle no-key deletions later on */ 4347 4348 trans = __unlink_start_trans(BTRFS_I(dir)); 4349 if (IS_ERR(trans)) { 4350 ret = PTR_ERR(trans); 4351 goto fscrypt_free; 4352 } 4353 4354 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4355 false); 4356 4357 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4358 &fname.disk_name); 4359 if (ret) 4360 goto end_trans; 4361 4362 if (inode->i_nlink == 0) { 4363 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4364 if (ret) 4365 goto end_trans; 4366 } 4367 4368 end_trans: 4369 btrfs_end_transaction(trans); 4370 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4371 fscrypt_free: 4372 fscrypt_free_filename(&fname); 4373 return ret; 4374 } 4375 4376 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4377 struct btrfs_inode *dir, struct dentry *dentry) 4378 { 4379 struct btrfs_root *root = dir->root; 4380 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4381 struct btrfs_path *path; 4382 struct extent_buffer *leaf; 4383 struct btrfs_dir_item *di; 4384 struct btrfs_key key; 4385 u64 index; 4386 int ret; 4387 u64 objectid; 4388 u64 dir_ino = btrfs_ino(dir); 4389 struct fscrypt_name fname; 4390 4391 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4392 if (ret) 4393 return ret; 4394 4395 /* This needs to handle no-key deletions later on */ 4396 4397 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4398 objectid = btrfs_root_id(inode->root); 4399 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4400 objectid = inode->ref_root_id; 4401 } else { 4402 WARN_ON(1); 4403 fscrypt_free_filename(&fname); 4404 return -EINVAL; 4405 } 4406 4407 path = btrfs_alloc_path(); 4408 if (!path) { 4409 ret = -ENOMEM; 4410 goto out; 4411 } 4412 4413 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4414 &fname.disk_name, -1); 4415 if (IS_ERR_OR_NULL(di)) { 4416 ret = di ? PTR_ERR(di) : -ENOENT; 4417 goto out; 4418 } 4419 4420 leaf = path->nodes[0]; 4421 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4422 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4423 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4424 if (ret) { 4425 btrfs_abort_transaction(trans, ret); 4426 goto out; 4427 } 4428 btrfs_release_path(path); 4429 4430 /* 4431 * This is a placeholder inode for a subvolume we didn't have a 4432 * reference to at the time of the snapshot creation. In the meantime 4433 * we could have renamed the real subvol link into our snapshot, so 4434 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4435 * Instead simply lookup the dir_index_item for this entry so we can 4436 * remove it. Otherwise we know we have a ref to the root and we can 4437 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4438 */ 4439 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4440 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4441 if (IS_ERR(di)) { 4442 ret = PTR_ERR(di); 4443 btrfs_abort_transaction(trans, ret); 4444 goto out; 4445 } 4446 4447 leaf = path->nodes[0]; 4448 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4449 index = key.offset; 4450 btrfs_release_path(path); 4451 } else { 4452 ret = btrfs_del_root_ref(trans, objectid, 4453 btrfs_root_id(root), dir_ino, 4454 &index, &fname.disk_name); 4455 if (ret) { 4456 btrfs_abort_transaction(trans, ret); 4457 goto out; 4458 } 4459 } 4460 4461 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4462 if (ret) { 4463 btrfs_abort_transaction(trans, ret); 4464 goto out; 4465 } 4466 4467 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4468 inode_inc_iversion(&dir->vfs_inode); 4469 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4470 ret = btrfs_update_inode_fallback(trans, dir); 4471 if (ret) 4472 btrfs_abort_transaction(trans, ret); 4473 out: 4474 btrfs_free_path(path); 4475 fscrypt_free_filename(&fname); 4476 return ret; 4477 } 4478 4479 /* 4480 * Helper to check if the subvolume references other subvolumes or if it's 4481 * default. 4482 */ 4483 static noinline int may_destroy_subvol(struct btrfs_root *root) 4484 { 4485 struct btrfs_fs_info *fs_info = root->fs_info; 4486 BTRFS_PATH_AUTO_FREE(path); 4487 struct btrfs_dir_item *di; 4488 struct btrfs_key key; 4489 struct fscrypt_str name = FSTR_INIT("default", 7); 4490 u64 dir_id; 4491 int ret; 4492 4493 path = btrfs_alloc_path(); 4494 if (!path) 4495 return -ENOMEM; 4496 4497 /* Make sure this root isn't set as the default subvol */ 4498 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4499 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4500 dir_id, &name, 0); 4501 if (di && !IS_ERR(di)) { 4502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4503 if (key.objectid == btrfs_root_id(root)) { 4504 ret = -EPERM; 4505 btrfs_err(fs_info, 4506 "deleting default subvolume %llu is not allowed", 4507 key.objectid); 4508 return ret; 4509 } 4510 btrfs_release_path(path); 4511 } 4512 4513 key.objectid = btrfs_root_id(root); 4514 key.type = BTRFS_ROOT_REF_KEY; 4515 key.offset = (u64)-1; 4516 4517 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4518 if (ret < 0) 4519 return ret; 4520 if (ret == 0) { 4521 /* 4522 * Key with offset -1 found, there would have to exist a root 4523 * with such id, but this is out of valid range. 4524 */ 4525 return -EUCLEAN; 4526 } 4527 4528 ret = 0; 4529 if (path->slots[0] > 0) { 4530 path->slots[0]--; 4531 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4532 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4533 ret = -ENOTEMPTY; 4534 } 4535 4536 return ret; 4537 } 4538 4539 /* Delete all dentries for inodes belonging to the root */ 4540 static void btrfs_prune_dentries(struct btrfs_root *root) 4541 { 4542 struct btrfs_fs_info *fs_info = root->fs_info; 4543 struct btrfs_inode *inode; 4544 u64 min_ino = 0; 4545 4546 if (!BTRFS_FS_ERROR(fs_info)) 4547 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4548 4549 inode = btrfs_find_first_inode(root, min_ino); 4550 while (inode) { 4551 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4552 d_prune_aliases(&inode->vfs_inode); 4553 4554 min_ino = btrfs_ino(inode) + 1; 4555 /* 4556 * btrfs_drop_inode() will have it removed from the inode 4557 * cache when its usage count hits zero. 4558 */ 4559 iput(&inode->vfs_inode); 4560 cond_resched(); 4561 inode = btrfs_find_first_inode(root, min_ino); 4562 } 4563 } 4564 4565 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4566 { 4567 struct btrfs_root *root = dir->root; 4568 struct btrfs_fs_info *fs_info = root->fs_info; 4569 struct inode *inode = d_inode(dentry); 4570 struct btrfs_root *dest = BTRFS_I(inode)->root; 4571 struct btrfs_trans_handle *trans; 4572 struct btrfs_block_rsv block_rsv; 4573 u64 root_flags; 4574 u64 qgroup_reserved = 0; 4575 int ret; 4576 4577 down_write(&fs_info->subvol_sem); 4578 4579 /* 4580 * Don't allow to delete a subvolume with send in progress. This is 4581 * inside the inode lock so the error handling that has to drop the bit 4582 * again is not run concurrently. 4583 */ 4584 spin_lock(&dest->root_item_lock); 4585 if (dest->send_in_progress) { 4586 spin_unlock(&dest->root_item_lock); 4587 btrfs_warn(fs_info, 4588 "attempt to delete subvolume %llu during send", 4589 btrfs_root_id(dest)); 4590 ret = -EPERM; 4591 goto out_up_write; 4592 } 4593 if (atomic_read(&dest->nr_swapfiles)) { 4594 spin_unlock(&dest->root_item_lock); 4595 btrfs_warn(fs_info, 4596 "attempt to delete subvolume %llu with active swapfile", 4597 btrfs_root_id(root)); 4598 ret = -EPERM; 4599 goto out_up_write; 4600 } 4601 root_flags = btrfs_root_flags(&dest->root_item); 4602 btrfs_set_root_flags(&dest->root_item, 4603 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4604 spin_unlock(&dest->root_item_lock); 4605 4606 ret = may_destroy_subvol(dest); 4607 if (ret) 4608 goto out_undead; 4609 4610 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4611 /* 4612 * One for dir inode, 4613 * two for dir entries, 4614 * two for root ref/backref. 4615 */ 4616 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4617 if (ret) 4618 goto out_undead; 4619 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4620 4621 trans = btrfs_start_transaction(root, 0); 4622 if (IS_ERR(trans)) { 4623 ret = PTR_ERR(trans); 4624 goto out_release; 4625 } 4626 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4627 qgroup_reserved = 0; 4628 trans->block_rsv = &block_rsv; 4629 trans->bytes_reserved = block_rsv.size; 4630 4631 btrfs_record_snapshot_destroy(trans, dir); 4632 4633 ret = btrfs_unlink_subvol(trans, dir, dentry); 4634 if (ret) { 4635 btrfs_abort_transaction(trans, ret); 4636 goto out_end_trans; 4637 } 4638 4639 ret = btrfs_record_root_in_trans(trans, dest); 4640 if (ret) { 4641 btrfs_abort_transaction(trans, ret); 4642 goto out_end_trans; 4643 } 4644 4645 memset(&dest->root_item.drop_progress, 0, 4646 sizeof(dest->root_item.drop_progress)); 4647 btrfs_set_root_drop_level(&dest->root_item, 0); 4648 btrfs_set_root_refs(&dest->root_item, 0); 4649 4650 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4651 ret = btrfs_insert_orphan_item(trans, 4652 fs_info->tree_root, 4653 btrfs_root_id(dest)); 4654 if (ret) { 4655 btrfs_abort_transaction(trans, ret); 4656 goto out_end_trans; 4657 } 4658 } 4659 4660 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4661 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4662 if (ret && ret != -ENOENT) { 4663 btrfs_abort_transaction(trans, ret); 4664 goto out_end_trans; 4665 } 4666 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4667 ret = btrfs_uuid_tree_remove(trans, 4668 dest->root_item.received_uuid, 4669 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4670 btrfs_root_id(dest)); 4671 if (ret && ret != -ENOENT) { 4672 btrfs_abort_transaction(trans, ret); 4673 goto out_end_trans; 4674 } 4675 } 4676 4677 free_anon_bdev(dest->anon_dev); 4678 dest->anon_dev = 0; 4679 out_end_trans: 4680 trans->block_rsv = NULL; 4681 trans->bytes_reserved = 0; 4682 ret = btrfs_end_transaction(trans); 4683 inode->i_flags |= S_DEAD; 4684 out_release: 4685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4686 if (qgroup_reserved) 4687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4688 out_undead: 4689 if (ret) { 4690 spin_lock(&dest->root_item_lock); 4691 root_flags = btrfs_root_flags(&dest->root_item); 4692 btrfs_set_root_flags(&dest->root_item, 4693 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4694 spin_unlock(&dest->root_item_lock); 4695 } 4696 out_up_write: 4697 up_write(&fs_info->subvol_sem); 4698 if (!ret) { 4699 d_invalidate(dentry); 4700 btrfs_prune_dentries(dest); 4701 ASSERT(dest->send_in_progress == 0); 4702 } 4703 4704 return ret; 4705 } 4706 4707 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4708 { 4709 struct inode *inode = d_inode(dentry); 4710 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4711 int ret = 0; 4712 struct btrfs_trans_handle *trans; 4713 u64 last_unlink_trans; 4714 struct fscrypt_name fname; 4715 4716 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4717 return -ENOTEMPTY; 4718 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4719 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4720 btrfs_err(fs_info, 4721 "extent tree v2 doesn't support snapshot deletion yet"); 4722 return -EOPNOTSUPP; 4723 } 4724 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4725 } 4726 4727 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4728 if (ret) 4729 return ret; 4730 4731 /* This needs to handle no-key deletions later on */ 4732 4733 trans = __unlink_start_trans(BTRFS_I(dir)); 4734 if (IS_ERR(trans)) { 4735 ret = PTR_ERR(trans); 4736 goto out_notrans; 4737 } 4738 4739 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4740 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4741 goto out; 4742 } 4743 4744 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4745 if (ret) 4746 goto out; 4747 4748 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4749 4750 /* now the directory is empty */ 4751 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4752 &fname.disk_name); 4753 if (!ret) { 4754 btrfs_i_size_write(BTRFS_I(inode), 0); 4755 /* 4756 * Propagate the last_unlink_trans value of the deleted dir to 4757 * its parent directory. This is to prevent an unrecoverable 4758 * log tree in the case we do something like this: 4759 * 1) create dir foo 4760 * 2) create snapshot under dir foo 4761 * 3) delete the snapshot 4762 * 4) rmdir foo 4763 * 5) mkdir foo 4764 * 6) fsync foo or some file inside foo 4765 */ 4766 if (last_unlink_trans >= trans->transid) 4767 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4768 } 4769 out: 4770 btrfs_end_transaction(trans); 4771 out_notrans: 4772 btrfs_btree_balance_dirty(fs_info); 4773 fscrypt_free_filename(&fname); 4774 4775 return ret; 4776 } 4777 4778 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4779 { 4780 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4781 blockstart, blocksize); 4782 4783 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4784 return true; 4785 return false; 4786 } 4787 4788 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4789 { 4790 const pgoff_t index = (start >> PAGE_SHIFT); 4791 struct address_space *mapping = inode->vfs_inode.i_mapping; 4792 struct folio *folio; 4793 u64 zero_start; 4794 u64 zero_end; 4795 int ret = 0; 4796 4797 again: 4798 folio = filemap_lock_folio(mapping, index); 4799 /* No folio present. */ 4800 if (IS_ERR(folio)) 4801 return 0; 4802 4803 if (!folio_test_uptodate(folio)) { 4804 ret = btrfs_read_folio(NULL, folio); 4805 folio_lock(folio); 4806 if (folio->mapping != mapping) { 4807 folio_unlock(folio); 4808 folio_put(folio); 4809 goto again; 4810 } 4811 if (!folio_test_uptodate(folio)) { 4812 ret = -EIO; 4813 goto out_unlock; 4814 } 4815 } 4816 folio_wait_writeback(folio); 4817 4818 /* 4819 * We do not need to lock extents nor wait for OE, as it's already 4820 * beyond EOF. 4821 */ 4822 4823 zero_start = max_t(u64, folio_pos(folio), start); 4824 zero_end = folio_pos(folio) + folio_size(folio) - 1; 4825 folio_zero_range(folio, zero_start - folio_pos(folio), 4826 zero_end - zero_start + 1); 4827 4828 out_unlock: 4829 folio_unlock(folio); 4830 folio_put(folio); 4831 return ret; 4832 } 4833 4834 /* 4835 * Handle the truncation of a fs block. 4836 * 4837 * @inode - inode that we're zeroing 4838 * @offset - the file offset of the block to truncate 4839 * The value must be inside [@start, @end], and the function will do 4840 * extra checks if the block that covers @offset needs to be zeroed. 4841 * @start - the start file offset of the range we want to zero 4842 * @end - the end (inclusive) file offset of the range we want to zero. 4843 * 4844 * If the range is not block aligned, read out the folio that covers @offset, 4845 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4846 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4847 * for writeback. 4848 * 4849 * This is utilized by hole punch, zero range, file expansion. 4850 */ 4851 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4852 { 4853 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4854 struct address_space *mapping = inode->vfs_inode.i_mapping; 4855 struct extent_io_tree *io_tree = &inode->io_tree; 4856 struct btrfs_ordered_extent *ordered; 4857 struct extent_state *cached_state = NULL; 4858 struct extent_changeset *data_reserved = NULL; 4859 bool only_release_metadata = false; 4860 u32 blocksize = fs_info->sectorsize; 4861 pgoff_t index = (offset >> PAGE_SHIFT); 4862 struct folio *folio; 4863 gfp_t mask = btrfs_alloc_write_mask(mapping); 4864 size_t write_bytes = blocksize; 4865 int ret = 0; 4866 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4867 blocksize); 4868 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4869 blocksize); 4870 bool need_truncate_head = false; 4871 bool need_truncate_tail = false; 4872 u64 zero_start; 4873 u64 zero_end; 4874 u64 block_start; 4875 u64 block_end; 4876 4877 /* @offset should be inside the range. */ 4878 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4879 offset, start, end); 4880 4881 /* The range is aligned at both ends. */ 4882 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4883 /* 4884 * For block size < page size case, we may have polluted blocks 4885 * beyond EOF. So we also need to zero them out. 4886 */ 4887 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4888 ret = truncate_block_zero_beyond_eof(inode, start); 4889 goto out; 4890 } 4891 4892 /* 4893 * @offset may not be inside the head nor tail block. In that case we 4894 * don't need to do anything. 4895 */ 4896 if (!in_head_block && !in_tail_block) 4897 goto out; 4898 4899 /* 4900 * Skip the truncatioin if the range in the target block is already aligned. 4901 * The seemingly complex check will also handle the same block case. 4902 */ 4903 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4904 need_truncate_head = true; 4905 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4906 need_truncate_tail = true; 4907 if (!need_truncate_head && !need_truncate_tail) 4908 goto out; 4909 4910 block_start = round_down(offset, blocksize); 4911 block_end = block_start + blocksize - 1; 4912 4913 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4914 blocksize, false); 4915 if (ret < 0) { 4916 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4917 /* For nocow case, no need to reserve data space */ 4918 only_release_metadata = true; 4919 } else { 4920 goto out; 4921 } 4922 } 4923 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4924 if (ret < 0) { 4925 if (!only_release_metadata) 4926 btrfs_free_reserved_data_space(inode, data_reserved, 4927 block_start, blocksize); 4928 goto out; 4929 } 4930 again: 4931 folio = __filemap_get_folio(mapping, index, 4932 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4933 if (IS_ERR(folio)) { 4934 if (only_release_metadata) 4935 btrfs_delalloc_release_metadata(inode, blocksize, true); 4936 else 4937 btrfs_delalloc_release_space(inode, data_reserved, 4938 block_start, blocksize, true); 4939 btrfs_delalloc_release_extents(inode, blocksize); 4940 ret = PTR_ERR(folio); 4941 goto out; 4942 } 4943 4944 if (!folio_test_uptodate(folio)) { 4945 ret = btrfs_read_folio(NULL, folio); 4946 folio_lock(folio); 4947 if (folio->mapping != mapping) { 4948 folio_unlock(folio); 4949 folio_put(folio); 4950 goto again; 4951 } 4952 if (!folio_test_uptodate(folio)) { 4953 ret = -EIO; 4954 goto out_unlock; 4955 } 4956 } 4957 4958 /* 4959 * We unlock the page after the io is completed and then re-lock it 4960 * above. release_folio() could have come in between that and cleared 4961 * folio private, but left the page in the mapping. Set the page mapped 4962 * here to make sure it's properly set for the subpage stuff. 4963 */ 4964 ret = set_folio_extent_mapped(folio); 4965 if (ret < 0) 4966 goto out_unlock; 4967 4968 folio_wait_writeback(folio); 4969 4970 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 4971 4972 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4973 if (ordered) { 4974 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4975 folio_unlock(folio); 4976 folio_put(folio); 4977 btrfs_start_ordered_extent(ordered); 4978 btrfs_put_ordered_extent(ordered); 4979 goto again; 4980 } 4981 4982 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 4983 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4984 &cached_state); 4985 4986 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4987 &cached_state); 4988 if (ret) { 4989 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4990 goto out_unlock; 4991 } 4992 4993 if (end == (u64)-1) { 4994 /* 4995 * We're truncating beyond EOF, the remaining blocks normally are 4996 * already holes thus no need to zero again, but it's possible for 4997 * fs block size < page size cases to have memory mapped writes 4998 * to pollute ranges beyond EOF. 4999 * 5000 * In that case although such polluted blocks beyond EOF will 5001 * not reach disk, it still affects our page caches. 5002 */ 5003 zero_start = max_t(u64, folio_pos(folio), start); 5004 zero_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1, 5005 end); 5006 } else { 5007 zero_start = max_t(u64, block_start, start); 5008 zero_end = min_t(u64, block_end, end); 5009 } 5010 folio_zero_range(folio, zero_start - folio_pos(folio), 5011 zero_end - zero_start + 1); 5012 5013 btrfs_folio_clear_checked(fs_info, folio, block_start, 5014 block_end + 1 - block_start); 5015 btrfs_folio_set_dirty(fs_info, folio, block_start, 5016 block_end + 1 - block_start); 5017 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5018 5019 if (only_release_metadata) 5020 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5021 EXTENT_NORESERVE, NULL); 5022 5023 out_unlock: 5024 if (ret) { 5025 if (only_release_metadata) 5026 btrfs_delalloc_release_metadata(inode, blocksize, true); 5027 else 5028 btrfs_delalloc_release_space(inode, data_reserved, 5029 block_start, blocksize, true); 5030 } 5031 btrfs_delalloc_release_extents(inode, blocksize); 5032 folio_unlock(folio); 5033 folio_put(folio); 5034 out: 5035 if (only_release_metadata) 5036 btrfs_check_nocow_unlock(inode); 5037 extent_changeset_free(data_reserved); 5038 return ret; 5039 } 5040 5041 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5042 { 5043 struct btrfs_root *root = inode->root; 5044 struct btrfs_fs_info *fs_info = root->fs_info; 5045 struct btrfs_trans_handle *trans; 5046 struct btrfs_drop_extents_args drop_args = { 0 }; 5047 int ret; 5048 5049 /* 5050 * If NO_HOLES is enabled, we don't need to do anything. 5051 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5052 * or btrfs_update_inode() will be called, which guarantee that the next 5053 * fsync will know this inode was changed and needs to be logged. 5054 */ 5055 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5056 return 0; 5057 5058 /* 5059 * 1 - for the one we're dropping 5060 * 1 - for the one we're adding 5061 * 1 - for updating the inode. 5062 */ 5063 trans = btrfs_start_transaction(root, 3); 5064 if (IS_ERR(trans)) 5065 return PTR_ERR(trans); 5066 5067 drop_args.start = offset; 5068 drop_args.end = offset + len; 5069 drop_args.drop_cache = true; 5070 5071 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5072 if (ret) { 5073 btrfs_abort_transaction(trans, ret); 5074 btrfs_end_transaction(trans); 5075 return ret; 5076 } 5077 5078 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5079 if (ret) { 5080 btrfs_abort_transaction(trans, ret); 5081 } else { 5082 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5083 btrfs_update_inode(trans, inode); 5084 } 5085 btrfs_end_transaction(trans); 5086 return ret; 5087 } 5088 5089 /* 5090 * This function puts in dummy file extents for the area we're creating a hole 5091 * for. So if we are truncating this file to a larger size we need to insert 5092 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5093 * the range between oldsize and size 5094 */ 5095 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5096 { 5097 struct btrfs_root *root = inode->root; 5098 struct btrfs_fs_info *fs_info = root->fs_info; 5099 struct extent_io_tree *io_tree = &inode->io_tree; 5100 struct extent_map *em = NULL; 5101 struct extent_state *cached_state = NULL; 5102 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5103 u64 block_end = ALIGN(size, fs_info->sectorsize); 5104 u64 last_byte; 5105 u64 cur_offset; 5106 u64 hole_size; 5107 int ret = 0; 5108 5109 /* 5110 * If our size started in the middle of a block we need to zero out the 5111 * rest of the block before we expand the i_size, otherwise we could 5112 * expose stale data. 5113 */ 5114 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5115 if (ret) 5116 return ret; 5117 5118 if (size <= hole_start) 5119 return 0; 5120 5121 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5122 &cached_state); 5123 cur_offset = hole_start; 5124 while (1) { 5125 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5126 if (IS_ERR(em)) { 5127 ret = PTR_ERR(em); 5128 em = NULL; 5129 break; 5130 } 5131 last_byte = min(btrfs_extent_map_end(em), block_end); 5132 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5133 hole_size = last_byte - cur_offset; 5134 5135 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5136 struct extent_map *hole_em; 5137 5138 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5139 if (ret) 5140 break; 5141 5142 ret = btrfs_inode_set_file_extent_range(inode, 5143 cur_offset, hole_size); 5144 if (ret) 5145 break; 5146 5147 hole_em = btrfs_alloc_extent_map(); 5148 if (!hole_em) { 5149 btrfs_drop_extent_map_range(inode, cur_offset, 5150 cur_offset + hole_size - 1, 5151 false); 5152 btrfs_set_inode_full_sync(inode); 5153 goto next; 5154 } 5155 hole_em->start = cur_offset; 5156 hole_em->len = hole_size; 5157 5158 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5159 hole_em->disk_num_bytes = 0; 5160 hole_em->ram_bytes = hole_size; 5161 hole_em->generation = btrfs_get_fs_generation(fs_info); 5162 5163 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5164 btrfs_free_extent_map(hole_em); 5165 } else { 5166 ret = btrfs_inode_set_file_extent_range(inode, 5167 cur_offset, hole_size); 5168 if (ret) 5169 break; 5170 } 5171 next: 5172 btrfs_free_extent_map(em); 5173 em = NULL; 5174 cur_offset = last_byte; 5175 if (cur_offset >= block_end) 5176 break; 5177 } 5178 btrfs_free_extent_map(em); 5179 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5180 return ret; 5181 } 5182 5183 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5184 { 5185 struct btrfs_root *root = BTRFS_I(inode)->root; 5186 struct btrfs_trans_handle *trans; 5187 loff_t oldsize = i_size_read(inode); 5188 loff_t newsize = attr->ia_size; 5189 int mask = attr->ia_valid; 5190 int ret; 5191 5192 /* 5193 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5194 * special case where we need to update the times despite not having 5195 * these flags set. For all other operations the VFS set these flags 5196 * explicitly if it wants a timestamp update. 5197 */ 5198 if (newsize != oldsize) { 5199 inode_inc_iversion(inode); 5200 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5201 inode_set_mtime_to_ts(inode, 5202 inode_set_ctime_current(inode)); 5203 } 5204 } 5205 5206 if (newsize > oldsize) { 5207 /* 5208 * Don't do an expanding truncate while snapshotting is ongoing. 5209 * This is to ensure the snapshot captures a fully consistent 5210 * state of this file - if the snapshot captures this expanding 5211 * truncation, it must capture all writes that happened before 5212 * this truncation. 5213 */ 5214 btrfs_drew_write_lock(&root->snapshot_lock); 5215 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5216 if (ret) { 5217 btrfs_drew_write_unlock(&root->snapshot_lock); 5218 return ret; 5219 } 5220 5221 trans = btrfs_start_transaction(root, 1); 5222 if (IS_ERR(trans)) { 5223 btrfs_drew_write_unlock(&root->snapshot_lock); 5224 return PTR_ERR(trans); 5225 } 5226 5227 i_size_write(inode, newsize); 5228 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5229 pagecache_isize_extended(inode, oldsize, newsize); 5230 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5231 btrfs_drew_write_unlock(&root->snapshot_lock); 5232 btrfs_end_transaction(trans); 5233 } else { 5234 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5235 5236 if (btrfs_is_zoned(fs_info)) { 5237 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5238 ALIGN(newsize, fs_info->sectorsize), 5239 (u64)-1); 5240 if (ret) 5241 return ret; 5242 } 5243 5244 /* 5245 * We're truncating a file that used to have good data down to 5246 * zero. Make sure any new writes to the file get on disk 5247 * on close. 5248 */ 5249 if (newsize == 0) 5250 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5251 &BTRFS_I(inode)->runtime_flags); 5252 5253 truncate_setsize(inode, newsize); 5254 5255 inode_dio_wait(inode); 5256 5257 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5258 if (ret && inode->i_nlink) { 5259 int err; 5260 5261 /* 5262 * Truncate failed, so fix up the in-memory size. We 5263 * adjusted disk_i_size down as we removed extents, so 5264 * wait for disk_i_size to be stable and then update the 5265 * in-memory size to match. 5266 */ 5267 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5268 if (err) 5269 return err; 5270 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5271 } 5272 } 5273 5274 return ret; 5275 } 5276 5277 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5278 struct iattr *attr) 5279 { 5280 struct inode *inode = d_inode(dentry); 5281 struct btrfs_root *root = BTRFS_I(inode)->root; 5282 int err; 5283 5284 if (btrfs_root_readonly(root)) 5285 return -EROFS; 5286 5287 err = setattr_prepare(idmap, dentry, attr); 5288 if (err) 5289 return err; 5290 5291 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5292 err = btrfs_setsize(inode, attr); 5293 if (err) 5294 return err; 5295 } 5296 5297 if (attr->ia_valid) { 5298 setattr_copy(idmap, inode, attr); 5299 inode_inc_iversion(inode); 5300 err = btrfs_dirty_inode(BTRFS_I(inode)); 5301 5302 if (!err && attr->ia_valid & ATTR_MODE) 5303 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5304 } 5305 5306 return err; 5307 } 5308 5309 /* 5310 * While truncating the inode pages during eviction, we get the VFS 5311 * calling btrfs_invalidate_folio() against each folio of the inode. This 5312 * is slow because the calls to btrfs_invalidate_folio() result in a 5313 * huge amount of calls to lock_extent() and clear_extent_bit(), 5314 * which keep merging and splitting extent_state structures over and over, 5315 * wasting lots of time. 5316 * 5317 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5318 * skip all those expensive operations on a per folio basis and do only 5319 * the ordered io finishing, while we release here the extent_map and 5320 * extent_state structures, without the excessive merging and splitting. 5321 */ 5322 static void evict_inode_truncate_pages(struct inode *inode) 5323 { 5324 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5325 struct rb_node *node; 5326 5327 ASSERT(inode->i_state & I_FREEING); 5328 truncate_inode_pages_final(&inode->i_data); 5329 5330 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5331 5332 /* 5333 * Keep looping until we have no more ranges in the io tree. 5334 * We can have ongoing bios started by readahead that have 5335 * their endio callback (extent_io.c:end_bio_extent_readpage) 5336 * still in progress (unlocked the pages in the bio but did not yet 5337 * unlocked the ranges in the io tree). Therefore this means some 5338 * ranges can still be locked and eviction started because before 5339 * submitting those bios, which are executed by a separate task (work 5340 * queue kthread), inode references (inode->i_count) were not taken 5341 * (which would be dropped in the end io callback of each bio). 5342 * Therefore here we effectively end up waiting for those bios and 5343 * anyone else holding locked ranges without having bumped the inode's 5344 * reference count - if we don't do it, when they access the inode's 5345 * io_tree to unlock a range it may be too late, leading to an 5346 * use-after-free issue. 5347 */ 5348 spin_lock(&io_tree->lock); 5349 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5350 struct extent_state *state; 5351 struct extent_state *cached_state = NULL; 5352 u64 start; 5353 u64 end; 5354 unsigned state_flags; 5355 5356 node = rb_first(&io_tree->state); 5357 state = rb_entry(node, struct extent_state, rb_node); 5358 start = state->start; 5359 end = state->end; 5360 state_flags = state->state; 5361 spin_unlock(&io_tree->lock); 5362 5363 btrfs_lock_extent(io_tree, start, end, &cached_state); 5364 5365 /* 5366 * If still has DELALLOC flag, the extent didn't reach disk, 5367 * and its reserved space won't be freed by delayed_ref. 5368 * So we need to free its reserved space here. 5369 * (Refer to comment in btrfs_invalidate_folio, case 2) 5370 * 5371 * Note, end is the bytenr of last byte, so we need + 1 here. 5372 */ 5373 if (state_flags & EXTENT_DELALLOC) 5374 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5375 end - start + 1, NULL); 5376 5377 btrfs_clear_extent_bit(io_tree, start, end, 5378 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5379 &cached_state); 5380 5381 cond_resched(); 5382 spin_lock(&io_tree->lock); 5383 } 5384 spin_unlock(&io_tree->lock); 5385 } 5386 5387 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5388 struct btrfs_block_rsv *rsv) 5389 { 5390 struct btrfs_fs_info *fs_info = root->fs_info; 5391 struct btrfs_trans_handle *trans; 5392 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5393 int ret; 5394 5395 /* 5396 * Eviction should be taking place at some place safe because of our 5397 * delayed iputs. However the normal flushing code will run delayed 5398 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5399 * 5400 * We reserve the delayed_refs_extra here again because we can't use 5401 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5402 * above. We reserve our extra bit here because we generate a ton of 5403 * delayed refs activity by truncating. 5404 * 5405 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5406 * if we fail to make this reservation we can re-try without the 5407 * delayed_refs_extra so we can make some forward progress. 5408 */ 5409 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5410 BTRFS_RESERVE_FLUSH_EVICT); 5411 if (ret) { 5412 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5413 BTRFS_RESERVE_FLUSH_EVICT); 5414 if (ret) { 5415 btrfs_warn(fs_info, 5416 "could not allocate space for delete; will truncate on mount"); 5417 return ERR_PTR(-ENOSPC); 5418 } 5419 delayed_refs_extra = 0; 5420 } 5421 5422 trans = btrfs_join_transaction(root); 5423 if (IS_ERR(trans)) 5424 return trans; 5425 5426 if (delayed_refs_extra) { 5427 trans->block_rsv = &fs_info->trans_block_rsv; 5428 trans->bytes_reserved = delayed_refs_extra; 5429 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5430 delayed_refs_extra, true); 5431 } 5432 return trans; 5433 } 5434 5435 void btrfs_evict_inode(struct inode *inode) 5436 { 5437 struct btrfs_fs_info *fs_info; 5438 struct btrfs_trans_handle *trans; 5439 struct btrfs_root *root = BTRFS_I(inode)->root; 5440 struct btrfs_block_rsv *rsv = NULL; 5441 int ret; 5442 5443 trace_btrfs_inode_evict(inode); 5444 5445 if (!root) { 5446 fsverity_cleanup_inode(inode); 5447 clear_inode(inode); 5448 return; 5449 } 5450 5451 fs_info = inode_to_fs_info(inode); 5452 evict_inode_truncate_pages(inode); 5453 5454 if (inode->i_nlink && 5455 ((btrfs_root_refs(&root->root_item) != 0 && 5456 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5457 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5458 goto out; 5459 5460 if (is_bad_inode(inode)) 5461 goto out; 5462 5463 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5464 goto out; 5465 5466 if (inode->i_nlink > 0) { 5467 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5468 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5469 goto out; 5470 } 5471 5472 /* 5473 * This makes sure the inode item in tree is uptodate and the space for 5474 * the inode update is released. 5475 */ 5476 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5477 if (ret) 5478 goto out; 5479 5480 /* 5481 * This drops any pending insert or delete operations we have for this 5482 * inode. We could have a delayed dir index deletion queued up, but 5483 * we're removing the inode completely so that'll be taken care of in 5484 * the truncate. 5485 */ 5486 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5487 5488 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5489 if (!rsv) 5490 goto out; 5491 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5492 rsv->failfast = true; 5493 5494 btrfs_i_size_write(BTRFS_I(inode), 0); 5495 5496 while (1) { 5497 struct btrfs_truncate_control control = { 5498 .inode = BTRFS_I(inode), 5499 .ino = btrfs_ino(BTRFS_I(inode)), 5500 .new_size = 0, 5501 .min_type = 0, 5502 }; 5503 5504 trans = evict_refill_and_join(root, rsv); 5505 if (IS_ERR(trans)) 5506 goto out; 5507 5508 trans->block_rsv = rsv; 5509 5510 ret = btrfs_truncate_inode_items(trans, root, &control); 5511 trans->block_rsv = &fs_info->trans_block_rsv; 5512 btrfs_end_transaction(trans); 5513 /* 5514 * We have not added new delayed items for our inode after we 5515 * have flushed its delayed items, so no need to throttle on 5516 * delayed items. However we have modified extent buffers. 5517 */ 5518 btrfs_btree_balance_dirty_nodelay(fs_info); 5519 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5520 goto out; 5521 else if (!ret) 5522 break; 5523 } 5524 5525 /* 5526 * Errors here aren't a big deal, it just means we leave orphan items in 5527 * the tree. They will be cleaned up on the next mount. If the inode 5528 * number gets reused, cleanup deletes the orphan item without doing 5529 * anything, and unlink reuses the existing orphan item. 5530 * 5531 * If it turns out that we are dropping too many of these, we might want 5532 * to add a mechanism for retrying these after a commit. 5533 */ 5534 trans = evict_refill_and_join(root, rsv); 5535 if (!IS_ERR(trans)) { 5536 trans->block_rsv = rsv; 5537 btrfs_orphan_del(trans, BTRFS_I(inode)); 5538 trans->block_rsv = &fs_info->trans_block_rsv; 5539 btrfs_end_transaction(trans); 5540 } 5541 5542 out: 5543 btrfs_free_block_rsv(fs_info, rsv); 5544 /* 5545 * If we didn't successfully delete, the orphan item will still be in 5546 * the tree and we'll retry on the next mount. Again, we might also want 5547 * to retry these periodically in the future. 5548 */ 5549 btrfs_remove_delayed_node(BTRFS_I(inode)); 5550 fsverity_cleanup_inode(inode); 5551 clear_inode(inode); 5552 } 5553 5554 /* 5555 * Return the key found in the dir entry in the location pointer, fill @type 5556 * with BTRFS_FT_*, and return 0. 5557 * 5558 * If no dir entries were found, returns -ENOENT. 5559 * If found a corrupted location in dir entry, returns -EUCLEAN. 5560 */ 5561 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5562 struct btrfs_key *location, u8 *type) 5563 { 5564 struct btrfs_dir_item *di; 5565 BTRFS_PATH_AUTO_FREE(path); 5566 struct btrfs_root *root = dir->root; 5567 int ret = 0; 5568 struct fscrypt_name fname; 5569 5570 path = btrfs_alloc_path(); 5571 if (!path) 5572 return -ENOMEM; 5573 5574 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5575 if (ret < 0) 5576 return ret; 5577 /* 5578 * fscrypt_setup_filename() should never return a positive value, but 5579 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5580 */ 5581 ASSERT(ret == 0); 5582 5583 /* This needs to handle no-key deletions later on */ 5584 5585 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5586 &fname.disk_name, 0); 5587 if (IS_ERR_OR_NULL(di)) { 5588 ret = di ? PTR_ERR(di) : -ENOENT; 5589 goto out; 5590 } 5591 5592 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5593 if (location->type != BTRFS_INODE_ITEM_KEY && 5594 location->type != BTRFS_ROOT_ITEM_KEY) { 5595 ret = -EUCLEAN; 5596 btrfs_warn(root->fs_info, 5597 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5598 __func__, fname.disk_name.name, btrfs_ino(dir), 5599 location->objectid, location->type, location->offset); 5600 } 5601 if (!ret) 5602 *type = btrfs_dir_ftype(path->nodes[0], di); 5603 out: 5604 fscrypt_free_filename(&fname); 5605 return ret; 5606 } 5607 5608 /* 5609 * when we hit a tree root in a directory, the btrfs part of the inode 5610 * needs to be changed to reflect the root directory of the tree root. This 5611 * is kind of like crossing a mount point. 5612 */ 5613 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5614 struct btrfs_inode *dir, 5615 struct dentry *dentry, 5616 struct btrfs_key *location, 5617 struct btrfs_root **sub_root) 5618 { 5619 BTRFS_PATH_AUTO_FREE(path); 5620 struct btrfs_root *new_root; 5621 struct btrfs_root_ref *ref; 5622 struct extent_buffer *leaf; 5623 struct btrfs_key key; 5624 int ret; 5625 int err = 0; 5626 struct fscrypt_name fname; 5627 5628 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5629 if (ret) 5630 return ret; 5631 5632 path = btrfs_alloc_path(); 5633 if (!path) { 5634 err = -ENOMEM; 5635 goto out; 5636 } 5637 5638 err = -ENOENT; 5639 key.objectid = btrfs_root_id(dir->root); 5640 key.type = BTRFS_ROOT_REF_KEY; 5641 key.offset = location->objectid; 5642 5643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5644 if (ret) { 5645 if (ret < 0) 5646 err = ret; 5647 goto out; 5648 } 5649 5650 leaf = path->nodes[0]; 5651 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5652 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5653 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5654 goto out; 5655 5656 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5657 (unsigned long)(ref + 1), fname.disk_name.len); 5658 if (ret) 5659 goto out; 5660 5661 btrfs_release_path(path); 5662 5663 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5664 if (IS_ERR(new_root)) { 5665 err = PTR_ERR(new_root); 5666 goto out; 5667 } 5668 5669 *sub_root = new_root; 5670 location->objectid = btrfs_root_dirid(&new_root->root_item); 5671 location->type = BTRFS_INODE_ITEM_KEY; 5672 location->offset = 0; 5673 err = 0; 5674 out: 5675 fscrypt_free_filename(&fname); 5676 return err; 5677 } 5678 5679 5680 5681 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5682 { 5683 struct btrfs_root *root = inode->root; 5684 struct btrfs_inode *entry; 5685 bool empty = false; 5686 5687 xa_lock(&root->inodes); 5688 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5689 if (entry == inode) 5690 empty = xa_empty(&root->inodes); 5691 xa_unlock(&root->inodes); 5692 5693 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5694 xa_lock(&root->inodes); 5695 empty = xa_empty(&root->inodes); 5696 xa_unlock(&root->inodes); 5697 if (empty) 5698 btrfs_add_dead_root(root); 5699 } 5700 } 5701 5702 5703 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5704 { 5705 struct btrfs_iget_args *args = p; 5706 5707 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5708 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5709 5710 if (args->root && args->root == args->root->fs_info->tree_root && 5711 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5712 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5713 &BTRFS_I(inode)->runtime_flags); 5714 return 0; 5715 } 5716 5717 static int btrfs_find_actor(struct inode *inode, void *opaque) 5718 { 5719 struct btrfs_iget_args *args = opaque; 5720 5721 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5722 args->root == BTRFS_I(inode)->root; 5723 } 5724 5725 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5726 { 5727 struct inode *inode; 5728 struct btrfs_iget_args args; 5729 unsigned long hashval = btrfs_inode_hash(ino, root); 5730 5731 args.ino = ino; 5732 args.root = root; 5733 5734 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5735 btrfs_init_locked_inode, 5736 (void *)&args); 5737 if (!inode) 5738 return NULL; 5739 return BTRFS_I(inode); 5740 } 5741 5742 /* 5743 * Get an inode object given its inode number and corresponding root. Path is 5744 * preallocated to prevent recursing back to iget through allocator. 5745 */ 5746 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5747 struct btrfs_path *path) 5748 { 5749 struct btrfs_inode *inode; 5750 int ret; 5751 5752 inode = btrfs_iget_locked(ino, root); 5753 if (!inode) 5754 return ERR_PTR(-ENOMEM); 5755 5756 if (!(inode->vfs_inode.i_state & I_NEW)) 5757 return inode; 5758 5759 ret = btrfs_read_locked_inode(inode, path); 5760 if (ret) 5761 return ERR_PTR(ret); 5762 5763 unlock_new_inode(&inode->vfs_inode); 5764 return inode; 5765 } 5766 5767 /* 5768 * Get an inode object given its inode number and corresponding root. 5769 */ 5770 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5771 { 5772 struct btrfs_inode *inode; 5773 struct btrfs_path *path; 5774 int ret; 5775 5776 inode = btrfs_iget_locked(ino, root); 5777 if (!inode) 5778 return ERR_PTR(-ENOMEM); 5779 5780 if (!(inode->vfs_inode.i_state & I_NEW)) 5781 return inode; 5782 5783 path = btrfs_alloc_path(); 5784 if (!path) { 5785 iget_failed(&inode->vfs_inode); 5786 return ERR_PTR(-ENOMEM); 5787 } 5788 5789 ret = btrfs_read_locked_inode(inode, path); 5790 btrfs_free_path(path); 5791 if (ret) 5792 return ERR_PTR(ret); 5793 5794 unlock_new_inode(&inode->vfs_inode); 5795 return inode; 5796 } 5797 5798 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5799 struct btrfs_key *key, 5800 struct btrfs_root *root) 5801 { 5802 struct timespec64 ts; 5803 struct inode *vfs_inode; 5804 struct btrfs_inode *inode; 5805 5806 vfs_inode = new_inode(dir->i_sb); 5807 if (!vfs_inode) 5808 return ERR_PTR(-ENOMEM); 5809 5810 inode = BTRFS_I(vfs_inode); 5811 inode->root = btrfs_grab_root(root); 5812 inode->ref_root_id = key->objectid; 5813 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5814 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5815 5816 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5817 /* 5818 * We only need lookup, the rest is read-only and there's no inode 5819 * associated with the dentry 5820 */ 5821 vfs_inode->i_op = &simple_dir_inode_operations; 5822 vfs_inode->i_opflags &= ~IOP_XATTR; 5823 vfs_inode->i_fop = &simple_dir_operations; 5824 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5825 5826 ts = inode_set_ctime_current(vfs_inode); 5827 inode_set_mtime_to_ts(vfs_inode, ts); 5828 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5829 inode->i_otime_sec = ts.tv_sec; 5830 inode->i_otime_nsec = ts.tv_nsec; 5831 5832 vfs_inode->i_uid = dir->i_uid; 5833 vfs_inode->i_gid = dir->i_gid; 5834 5835 return inode; 5836 } 5837 5838 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5839 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5840 static_assert(BTRFS_FT_DIR == FT_DIR); 5841 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5842 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5843 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5844 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5845 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5846 5847 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5848 { 5849 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5850 } 5851 5852 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5853 { 5854 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5855 struct btrfs_inode *inode; 5856 struct btrfs_root *root = BTRFS_I(dir)->root; 5857 struct btrfs_root *sub_root = root; 5858 struct btrfs_key location = { 0 }; 5859 u8 di_type = 0; 5860 int ret = 0; 5861 5862 if (dentry->d_name.len > BTRFS_NAME_LEN) 5863 return ERR_PTR(-ENAMETOOLONG); 5864 5865 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5866 if (ret < 0) 5867 return ERR_PTR(ret); 5868 5869 if (location.type == BTRFS_INODE_ITEM_KEY) { 5870 inode = btrfs_iget(location.objectid, root); 5871 if (IS_ERR(inode)) 5872 return ERR_CAST(inode); 5873 5874 /* Do extra check against inode mode with di_type */ 5875 if (btrfs_inode_type(inode) != di_type) { 5876 btrfs_crit(fs_info, 5877 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5878 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5879 di_type); 5880 iput(&inode->vfs_inode); 5881 return ERR_PTR(-EUCLEAN); 5882 } 5883 return &inode->vfs_inode; 5884 } 5885 5886 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5887 &location, &sub_root); 5888 if (ret < 0) { 5889 if (ret != -ENOENT) 5890 inode = ERR_PTR(ret); 5891 else 5892 inode = new_simple_dir(dir, &location, root); 5893 } else { 5894 inode = btrfs_iget(location.objectid, sub_root); 5895 btrfs_put_root(sub_root); 5896 5897 if (IS_ERR(inode)) 5898 return ERR_CAST(inode); 5899 5900 down_read(&fs_info->cleanup_work_sem); 5901 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5902 ret = btrfs_orphan_cleanup(sub_root); 5903 up_read(&fs_info->cleanup_work_sem); 5904 if (ret) { 5905 iput(&inode->vfs_inode); 5906 inode = ERR_PTR(ret); 5907 } 5908 } 5909 5910 if (IS_ERR(inode)) 5911 return ERR_CAST(inode); 5912 5913 return &inode->vfs_inode; 5914 } 5915 5916 static int btrfs_dentry_delete(const struct dentry *dentry) 5917 { 5918 struct btrfs_root *root; 5919 struct inode *inode = d_inode(dentry); 5920 5921 if (!inode && !IS_ROOT(dentry)) 5922 inode = d_inode(dentry->d_parent); 5923 5924 if (inode) { 5925 root = BTRFS_I(inode)->root; 5926 if (btrfs_root_refs(&root->root_item) == 0) 5927 return 1; 5928 5929 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5930 return 1; 5931 } 5932 return 0; 5933 } 5934 5935 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5936 unsigned int flags) 5937 { 5938 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5939 5940 if (inode == ERR_PTR(-ENOENT)) 5941 inode = NULL; 5942 return d_splice_alias(inode, dentry); 5943 } 5944 5945 /* 5946 * Find the highest existing sequence number in a directory and then set the 5947 * in-memory index_cnt variable to the first free sequence number. 5948 */ 5949 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5950 { 5951 struct btrfs_root *root = inode->root; 5952 struct btrfs_key key, found_key; 5953 BTRFS_PATH_AUTO_FREE(path); 5954 struct extent_buffer *leaf; 5955 int ret; 5956 5957 key.objectid = btrfs_ino(inode); 5958 key.type = BTRFS_DIR_INDEX_KEY; 5959 key.offset = (u64)-1; 5960 5961 path = btrfs_alloc_path(); 5962 if (!path) 5963 return -ENOMEM; 5964 5965 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5966 if (ret < 0) 5967 return ret; 5968 /* FIXME: we should be able to handle this */ 5969 if (ret == 0) 5970 return ret; 5971 5972 if (path->slots[0] == 0) { 5973 inode->index_cnt = BTRFS_DIR_START_INDEX; 5974 return 0; 5975 } 5976 5977 path->slots[0]--; 5978 5979 leaf = path->nodes[0]; 5980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5981 5982 if (found_key.objectid != btrfs_ino(inode) || 5983 found_key.type != BTRFS_DIR_INDEX_KEY) { 5984 inode->index_cnt = BTRFS_DIR_START_INDEX; 5985 return 0; 5986 } 5987 5988 inode->index_cnt = found_key.offset + 1; 5989 5990 return 0; 5991 } 5992 5993 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5994 { 5995 int ret = 0; 5996 5997 btrfs_inode_lock(dir, 0); 5998 if (dir->index_cnt == (u64)-1) { 5999 ret = btrfs_inode_delayed_dir_index_count(dir); 6000 if (ret) { 6001 ret = btrfs_set_inode_index_count(dir); 6002 if (ret) 6003 goto out; 6004 } 6005 } 6006 6007 /* index_cnt is the index number of next new entry, so decrement it. */ 6008 *index = dir->index_cnt - 1; 6009 out: 6010 btrfs_inode_unlock(dir, 0); 6011 6012 return ret; 6013 } 6014 6015 /* 6016 * All this infrastructure exists because dir_emit can fault, and we are holding 6017 * the tree lock when doing readdir. For now just allocate a buffer and copy 6018 * our information into that, and then dir_emit from the buffer. This is 6019 * similar to what NFS does, only we don't keep the buffer around in pagecache 6020 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6021 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6022 * tree lock. 6023 */ 6024 static int btrfs_opendir(struct inode *inode, struct file *file) 6025 { 6026 struct btrfs_file_private *private; 6027 u64 last_index; 6028 int ret; 6029 6030 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6031 if (ret) 6032 return ret; 6033 6034 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6035 if (!private) 6036 return -ENOMEM; 6037 private->last_index = last_index; 6038 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6039 if (!private->filldir_buf) { 6040 kfree(private); 6041 return -ENOMEM; 6042 } 6043 file->private_data = private; 6044 return 0; 6045 } 6046 6047 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6048 { 6049 struct btrfs_file_private *private = file->private_data; 6050 int ret; 6051 6052 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6053 &private->last_index); 6054 if (ret) 6055 return ret; 6056 6057 return generic_file_llseek(file, offset, whence); 6058 } 6059 6060 struct dir_entry { 6061 u64 ino; 6062 u64 offset; 6063 unsigned type; 6064 int name_len; 6065 }; 6066 6067 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6068 { 6069 while (entries--) { 6070 struct dir_entry *entry = addr; 6071 char *name = (char *)(entry + 1); 6072 6073 ctx->pos = get_unaligned(&entry->offset); 6074 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6075 get_unaligned(&entry->ino), 6076 get_unaligned(&entry->type))) 6077 return 1; 6078 addr += sizeof(struct dir_entry) + 6079 get_unaligned(&entry->name_len); 6080 ctx->pos++; 6081 } 6082 return 0; 6083 } 6084 6085 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6086 { 6087 struct inode *inode = file_inode(file); 6088 struct btrfs_root *root = BTRFS_I(inode)->root; 6089 struct btrfs_file_private *private = file->private_data; 6090 struct btrfs_dir_item *di; 6091 struct btrfs_key key; 6092 struct btrfs_key found_key; 6093 BTRFS_PATH_AUTO_FREE(path); 6094 void *addr; 6095 LIST_HEAD(ins_list); 6096 LIST_HEAD(del_list); 6097 int ret; 6098 char *name_ptr; 6099 int name_len; 6100 int entries = 0; 6101 int total_len = 0; 6102 bool put = false; 6103 struct btrfs_key location; 6104 6105 if (!dir_emit_dots(file, ctx)) 6106 return 0; 6107 6108 path = btrfs_alloc_path(); 6109 if (!path) 6110 return -ENOMEM; 6111 6112 addr = private->filldir_buf; 6113 path->reada = READA_FORWARD; 6114 6115 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6116 &ins_list, &del_list); 6117 6118 again: 6119 key.type = BTRFS_DIR_INDEX_KEY; 6120 key.offset = ctx->pos; 6121 key.objectid = btrfs_ino(BTRFS_I(inode)); 6122 6123 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6124 struct dir_entry *entry; 6125 struct extent_buffer *leaf = path->nodes[0]; 6126 u8 ftype; 6127 6128 if (found_key.objectid != key.objectid) 6129 break; 6130 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6131 break; 6132 if (found_key.offset < ctx->pos) 6133 continue; 6134 if (found_key.offset > private->last_index) 6135 break; 6136 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6137 continue; 6138 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6139 name_len = btrfs_dir_name_len(leaf, di); 6140 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6141 PAGE_SIZE) { 6142 btrfs_release_path(path); 6143 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6144 if (ret) 6145 goto nopos; 6146 addr = private->filldir_buf; 6147 entries = 0; 6148 total_len = 0; 6149 goto again; 6150 } 6151 6152 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6153 entry = addr; 6154 name_ptr = (char *)(entry + 1); 6155 read_extent_buffer(leaf, name_ptr, 6156 (unsigned long)(di + 1), name_len); 6157 put_unaligned(name_len, &entry->name_len); 6158 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6159 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6160 put_unaligned(location.objectid, &entry->ino); 6161 put_unaligned(found_key.offset, &entry->offset); 6162 entries++; 6163 addr += sizeof(struct dir_entry) + name_len; 6164 total_len += sizeof(struct dir_entry) + name_len; 6165 } 6166 /* Catch error encountered during iteration */ 6167 if (ret < 0) 6168 goto err; 6169 6170 btrfs_release_path(path); 6171 6172 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6173 if (ret) 6174 goto nopos; 6175 6176 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6177 if (ret) 6178 goto nopos; 6179 6180 /* 6181 * Stop new entries from being returned after we return the last 6182 * entry. 6183 * 6184 * New directory entries are assigned a strictly increasing 6185 * offset. This means that new entries created during readdir 6186 * are *guaranteed* to be seen in the future by that readdir. 6187 * This has broken buggy programs which operate on names as 6188 * they're returned by readdir. Until we reuse freed offsets 6189 * we have this hack to stop new entries from being returned 6190 * under the assumption that they'll never reach this huge 6191 * offset. 6192 * 6193 * This is being careful not to overflow 32bit loff_t unless the 6194 * last entry requires it because doing so has broken 32bit apps 6195 * in the past. 6196 */ 6197 if (ctx->pos >= INT_MAX) 6198 ctx->pos = LLONG_MAX; 6199 else 6200 ctx->pos = INT_MAX; 6201 nopos: 6202 ret = 0; 6203 err: 6204 if (put) 6205 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6206 return ret; 6207 } 6208 6209 /* 6210 * This is somewhat expensive, updating the tree every time the 6211 * inode changes. But, it is most likely to find the inode in cache. 6212 * FIXME, needs more benchmarking...there are no reasons other than performance 6213 * to keep or drop this code. 6214 */ 6215 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6216 { 6217 struct btrfs_root *root = inode->root; 6218 struct btrfs_fs_info *fs_info = root->fs_info; 6219 struct btrfs_trans_handle *trans; 6220 int ret; 6221 6222 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6223 return 0; 6224 6225 trans = btrfs_join_transaction(root); 6226 if (IS_ERR(trans)) 6227 return PTR_ERR(trans); 6228 6229 ret = btrfs_update_inode(trans, inode); 6230 if (ret == -ENOSPC || ret == -EDQUOT) { 6231 /* whoops, lets try again with the full transaction */ 6232 btrfs_end_transaction(trans); 6233 trans = btrfs_start_transaction(root, 1); 6234 if (IS_ERR(trans)) 6235 return PTR_ERR(trans); 6236 6237 ret = btrfs_update_inode(trans, inode); 6238 } 6239 btrfs_end_transaction(trans); 6240 if (inode->delayed_node) 6241 btrfs_balance_delayed_items(fs_info); 6242 6243 return ret; 6244 } 6245 6246 /* 6247 * This is a copy of file_update_time. We need this so we can return error on 6248 * ENOSPC for updating the inode in the case of file write and mmap writes. 6249 */ 6250 static int btrfs_update_time(struct inode *inode, int flags) 6251 { 6252 struct btrfs_root *root = BTRFS_I(inode)->root; 6253 bool dirty; 6254 6255 if (btrfs_root_readonly(root)) 6256 return -EROFS; 6257 6258 dirty = inode_update_timestamps(inode, flags); 6259 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6260 } 6261 6262 /* 6263 * helper to find a free sequence number in a given directory. This current 6264 * code is very simple, later versions will do smarter things in the btree 6265 */ 6266 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6267 { 6268 int ret = 0; 6269 6270 if (dir->index_cnt == (u64)-1) { 6271 ret = btrfs_inode_delayed_dir_index_count(dir); 6272 if (ret) { 6273 ret = btrfs_set_inode_index_count(dir); 6274 if (ret) 6275 return ret; 6276 } 6277 } 6278 6279 *index = dir->index_cnt; 6280 dir->index_cnt++; 6281 6282 return ret; 6283 } 6284 6285 static int btrfs_insert_inode_locked(struct inode *inode) 6286 { 6287 struct btrfs_iget_args args; 6288 6289 args.ino = btrfs_ino(BTRFS_I(inode)); 6290 args.root = BTRFS_I(inode)->root; 6291 6292 return insert_inode_locked4(inode, 6293 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6294 btrfs_find_actor, &args); 6295 } 6296 6297 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6298 unsigned int *trans_num_items) 6299 { 6300 struct inode *dir = args->dir; 6301 struct inode *inode = args->inode; 6302 int ret; 6303 6304 if (!args->orphan) { 6305 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6306 &args->fname); 6307 if (ret) 6308 return ret; 6309 } 6310 6311 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6312 if (ret) { 6313 fscrypt_free_filename(&args->fname); 6314 return ret; 6315 } 6316 6317 /* 1 to add inode item */ 6318 *trans_num_items = 1; 6319 /* 1 to add compression property */ 6320 if (BTRFS_I(dir)->prop_compress) 6321 (*trans_num_items)++; 6322 /* 1 to add default ACL xattr */ 6323 if (args->default_acl) 6324 (*trans_num_items)++; 6325 /* 1 to add access ACL xattr */ 6326 if (args->acl) 6327 (*trans_num_items)++; 6328 #ifdef CONFIG_SECURITY 6329 /* 1 to add LSM xattr */ 6330 if (dir->i_security) 6331 (*trans_num_items)++; 6332 #endif 6333 if (args->orphan) { 6334 /* 1 to add orphan item */ 6335 (*trans_num_items)++; 6336 } else { 6337 /* 6338 * 1 to add dir item 6339 * 1 to add dir index 6340 * 1 to update parent inode item 6341 * 6342 * No need for 1 unit for the inode ref item because it is 6343 * inserted in a batch together with the inode item at 6344 * btrfs_create_new_inode(). 6345 */ 6346 *trans_num_items += 3; 6347 } 6348 return 0; 6349 } 6350 6351 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6352 { 6353 posix_acl_release(args->acl); 6354 posix_acl_release(args->default_acl); 6355 fscrypt_free_filename(&args->fname); 6356 } 6357 6358 /* 6359 * Inherit flags from the parent inode. 6360 * 6361 * Currently only the compression flags and the cow flags are inherited. 6362 */ 6363 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6364 { 6365 unsigned int flags; 6366 6367 flags = dir->flags; 6368 6369 if (flags & BTRFS_INODE_NOCOMPRESS) { 6370 inode->flags &= ~BTRFS_INODE_COMPRESS; 6371 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6372 } else if (flags & BTRFS_INODE_COMPRESS) { 6373 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6374 inode->flags |= BTRFS_INODE_COMPRESS; 6375 } 6376 6377 if (flags & BTRFS_INODE_NODATACOW) { 6378 inode->flags |= BTRFS_INODE_NODATACOW; 6379 if (S_ISREG(inode->vfs_inode.i_mode)) 6380 inode->flags |= BTRFS_INODE_NODATASUM; 6381 } 6382 6383 btrfs_sync_inode_flags_to_i_flags(inode); 6384 } 6385 6386 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6387 struct btrfs_new_inode_args *args) 6388 { 6389 struct timespec64 ts; 6390 struct inode *dir = args->dir; 6391 struct inode *inode = args->inode; 6392 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6393 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6394 struct btrfs_root *root; 6395 struct btrfs_inode_item *inode_item; 6396 struct btrfs_path *path; 6397 u64 objectid; 6398 struct btrfs_inode_ref *ref; 6399 struct btrfs_key key[2]; 6400 u32 sizes[2]; 6401 struct btrfs_item_batch batch; 6402 unsigned long ptr; 6403 int ret; 6404 bool xa_reserved = false; 6405 6406 path = btrfs_alloc_path(); 6407 if (!path) 6408 return -ENOMEM; 6409 6410 if (!args->subvol) 6411 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6412 root = BTRFS_I(inode)->root; 6413 6414 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6415 if (ret) 6416 goto out; 6417 6418 ret = btrfs_get_free_objectid(root, &objectid); 6419 if (ret) 6420 goto out; 6421 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6422 6423 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6424 if (ret) 6425 goto out; 6426 xa_reserved = true; 6427 6428 if (args->orphan) { 6429 /* 6430 * O_TMPFILE, set link count to 0, so that after this point, we 6431 * fill in an inode item with the correct link count. 6432 */ 6433 set_nlink(inode, 0); 6434 } else { 6435 trace_btrfs_inode_request(dir); 6436 6437 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6438 if (ret) 6439 goto out; 6440 } 6441 6442 if (S_ISDIR(inode->i_mode)) 6443 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6444 6445 BTRFS_I(inode)->generation = trans->transid; 6446 inode->i_generation = BTRFS_I(inode)->generation; 6447 6448 /* 6449 * We don't have any capability xattrs set here yet, shortcut any 6450 * queries for the xattrs here. If we add them later via the inode 6451 * security init path or any other path this flag will be cleared. 6452 */ 6453 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6454 6455 /* 6456 * Subvolumes don't inherit flags from their parent directory. 6457 * Originally this was probably by accident, but we probably can't 6458 * change it now without compatibility issues. 6459 */ 6460 if (!args->subvol) 6461 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6462 6463 if (S_ISREG(inode->i_mode)) { 6464 if (btrfs_test_opt(fs_info, NODATASUM)) 6465 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6466 if (btrfs_test_opt(fs_info, NODATACOW)) 6467 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6468 BTRFS_INODE_NODATASUM; 6469 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6470 } 6471 6472 ret = btrfs_insert_inode_locked(inode); 6473 if (ret < 0) { 6474 if (!args->orphan) 6475 BTRFS_I(dir)->index_cnt--; 6476 goto out; 6477 } 6478 6479 /* 6480 * We could have gotten an inode number from somebody who was fsynced 6481 * and then removed in this same transaction, so let's just set full 6482 * sync since it will be a full sync anyway and this will blow away the 6483 * old info in the log. 6484 */ 6485 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6486 6487 key[0].objectid = objectid; 6488 key[0].type = BTRFS_INODE_ITEM_KEY; 6489 key[0].offset = 0; 6490 6491 sizes[0] = sizeof(struct btrfs_inode_item); 6492 6493 if (!args->orphan) { 6494 /* 6495 * Start new inodes with an inode_ref. This is slightly more 6496 * efficient for small numbers of hard links since they will 6497 * be packed into one item. Extended refs will kick in if we 6498 * add more hard links than can fit in the ref item. 6499 */ 6500 key[1].objectid = objectid; 6501 key[1].type = BTRFS_INODE_REF_KEY; 6502 if (args->subvol) { 6503 key[1].offset = objectid; 6504 sizes[1] = 2 + sizeof(*ref); 6505 } else { 6506 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6507 sizes[1] = name->len + sizeof(*ref); 6508 } 6509 } 6510 6511 batch.keys = &key[0]; 6512 batch.data_sizes = &sizes[0]; 6513 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6514 batch.nr = args->orphan ? 1 : 2; 6515 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6516 if (ret != 0) { 6517 btrfs_abort_transaction(trans, ret); 6518 goto discard; 6519 } 6520 6521 ts = simple_inode_init_ts(inode); 6522 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6523 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6524 6525 /* 6526 * We're going to fill the inode item now, so at this point the inode 6527 * must be fully initialized. 6528 */ 6529 6530 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6531 struct btrfs_inode_item); 6532 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6533 sizeof(*inode_item)); 6534 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6535 6536 if (!args->orphan) { 6537 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6538 struct btrfs_inode_ref); 6539 ptr = (unsigned long)(ref + 1); 6540 if (args->subvol) { 6541 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6542 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6543 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6544 } else { 6545 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6546 name->len); 6547 btrfs_set_inode_ref_index(path->nodes[0], ref, 6548 BTRFS_I(inode)->dir_index); 6549 write_extent_buffer(path->nodes[0], name->name, ptr, 6550 name->len); 6551 } 6552 } 6553 6554 /* 6555 * We don't need the path anymore, plus inheriting properties, adding 6556 * ACLs, security xattrs, orphan item or adding the link, will result in 6557 * allocating yet another path. So just free our path. 6558 */ 6559 btrfs_free_path(path); 6560 path = NULL; 6561 6562 if (args->subvol) { 6563 struct btrfs_inode *parent; 6564 6565 /* 6566 * Subvolumes inherit properties from their parent subvolume, 6567 * not the directory they were created in. 6568 */ 6569 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6570 if (IS_ERR(parent)) { 6571 ret = PTR_ERR(parent); 6572 } else { 6573 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6574 parent); 6575 iput(&parent->vfs_inode); 6576 } 6577 } else { 6578 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6579 BTRFS_I(dir)); 6580 } 6581 if (ret) { 6582 btrfs_err(fs_info, 6583 "error inheriting props for ino %llu (root %llu): %d", 6584 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6585 } 6586 6587 /* 6588 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6589 * probably a bug. 6590 */ 6591 if (!args->subvol) { 6592 ret = btrfs_init_inode_security(trans, args); 6593 if (ret) { 6594 btrfs_abort_transaction(trans, ret); 6595 goto discard; 6596 } 6597 } 6598 6599 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6600 if (WARN_ON(ret)) { 6601 /* Shouldn't happen, we used xa_reserve() before. */ 6602 btrfs_abort_transaction(trans, ret); 6603 goto discard; 6604 } 6605 6606 trace_btrfs_inode_new(inode); 6607 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6608 6609 btrfs_update_root_times(trans, root); 6610 6611 if (args->orphan) { 6612 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6613 } else { 6614 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6615 0, BTRFS_I(inode)->dir_index); 6616 } 6617 if (ret) { 6618 btrfs_abort_transaction(trans, ret); 6619 goto discard; 6620 } 6621 6622 return 0; 6623 6624 discard: 6625 /* 6626 * discard_new_inode() calls iput(), but the caller owns the reference 6627 * to the inode. 6628 */ 6629 ihold(inode); 6630 discard_new_inode(inode); 6631 out: 6632 if (xa_reserved) 6633 xa_release(&root->inodes, objectid); 6634 6635 btrfs_free_path(path); 6636 return ret; 6637 } 6638 6639 /* 6640 * utility function to add 'inode' into 'parent_inode' with 6641 * a give name and a given sequence number. 6642 * if 'add_backref' is true, also insert a backref from the 6643 * inode to the parent directory. 6644 */ 6645 int btrfs_add_link(struct btrfs_trans_handle *trans, 6646 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6647 const struct fscrypt_str *name, int add_backref, u64 index) 6648 { 6649 int ret = 0; 6650 struct btrfs_key key; 6651 struct btrfs_root *root = parent_inode->root; 6652 u64 ino = btrfs_ino(inode); 6653 u64 parent_ino = btrfs_ino(parent_inode); 6654 6655 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6656 memcpy(&key, &inode->root->root_key, sizeof(key)); 6657 } else { 6658 key.objectid = ino; 6659 key.type = BTRFS_INODE_ITEM_KEY; 6660 key.offset = 0; 6661 } 6662 6663 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6664 ret = btrfs_add_root_ref(trans, key.objectid, 6665 btrfs_root_id(root), parent_ino, 6666 index, name); 6667 } else if (add_backref) { 6668 ret = btrfs_insert_inode_ref(trans, root, name, 6669 ino, parent_ino, index); 6670 } 6671 6672 /* Nothing to clean up yet */ 6673 if (ret) 6674 return ret; 6675 6676 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6677 btrfs_inode_type(inode), index); 6678 if (ret == -EEXIST || ret == -EOVERFLOW) 6679 goto fail_dir_item; 6680 else if (ret) { 6681 btrfs_abort_transaction(trans, ret); 6682 return ret; 6683 } 6684 6685 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6686 name->len * 2); 6687 inode_inc_iversion(&parent_inode->vfs_inode); 6688 /* 6689 * If we are replaying a log tree, we do not want to update the mtime 6690 * and ctime of the parent directory with the current time, since the 6691 * log replay procedure is responsible for setting them to their correct 6692 * values (the ones it had when the fsync was done). 6693 */ 6694 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6695 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6696 inode_set_ctime_current(&parent_inode->vfs_inode)); 6697 6698 ret = btrfs_update_inode(trans, parent_inode); 6699 if (ret) 6700 btrfs_abort_transaction(trans, ret); 6701 return ret; 6702 6703 fail_dir_item: 6704 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6705 u64 local_index; 6706 int err; 6707 err = btrfs_del_root_ref(trans, key.objectid, 6708 btrfs_root_id(root), parent_ino, 6709 &local_index, name); 6710 if (err) 6711 btrfs_abort_transaction(trans, err); 6712 } else if (add_backref) { 6713 u64 local_index; 6714 int err; 6715 6716 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6717 &local_index); 6718 if (err) 6719 btrfs_abort_transaction(trans, err); 6720 } 6721 6722 /* Return the original error code */ 6723 return ret; 6724 } 6725 6726 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6727 struct inode *inode) 6728 { 6729 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6730 struct btrfs_root *root = BTRFS_I(dir)->root; 6731 struct btrfs_new_inode_args new_inode_args = { 6732 .dir = dir, 6733 .dentry = dentry, 6734 .inode = inode, 6735 }; 6736 unsigned int trans_num_items; 6737 struct btrfs_trans_handle *trans; 6738 int err; 6739 6740 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6741 if (err) 6742 goto out_inode; 6743 6744 trans = btrfs_start_transaction(root, trans_num_items); 6745 if (IS_ERR(trans)) { 6746 err = PTR_ERR(trans); 6747 goto out_new_inode_args; 6748 } 6749 6750 err = btrfs_create_new_inode(trans, &new_inode_args); 6751 if (!err) 6752 d_instantiate_new(dentry, inode); 6753 6754 btrfs_end_transaction(trans); 6755 btrfs_btree_balance_dirty(fs_info); 6756 out_new_inode_args: 6757 btrfs_new_inode_args_destroy(&new_inode_args); 6758 out_inode: 6759 if (err) 6760 iput(inode); 6761 return err; 6762 } 6763 6764 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6765 struct dentry *dentry, umode_t mode, dev_t rdev) 6766 { 6767 struct inode *inode; 6768 6769 inode = new_inode(dir->i_sb); 6770 if (!inode) 6771 return -ENOMEM; 6772 inode_init_owner(idmap, inode, dir, mode); 6773 inode->i_op = &btrfs_special_inode_operations; 6774 init_special_inode(inode, inode->i_mode, rdev); 6775 return btrfs_create_common(dir, dentry, inode); 6776 } 6777 6778 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6779 struct dentry *dentry, umode_t mode, bool excl) 6780 { 6781 struct inode *inode; 6782 6783 inode = new_inode(dir->i_sb); 6784 if (!inode) 6785 return -ENOMEM; 6786 inode_init_owner(idmap, inode, dir, mode); 6787 inode->i_fop = &btrfs_file_operations; 6788 inode->i_op = &btrfs_file_inode_operations; 6789 inode->i_mapping->a_ops = &btrfs_aops; 6790 return btrfs_create_common(dir, dentry, inode); 6791 } 6792 6793 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6794 struct dentry *dentry) 6795 { 6796 struct btrfs_trans_handle *trans = NULL; 6797 struct btrfs_root *root = BTRFS_I(dir)->root; 6798 struct inode *inode = d_inode(old_dentry); 6799 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6800 struct fscrypt_name fname; 6801 u64 index; 6802 int err; 6803 int drop_inode = 0; 6804 6805 /* do not allow sys_link's with other subvols of the same device */ 6806 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6807 return -EXDEV; 6808 6809 if (inode->i_nlink >= BTRFS_LINK_MAX) 6810 return -EMLINK; 6811 6812 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6813 if (err) 6814 goto fail; 6815 6816 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6817 if (err) 6818 goto fail; 6819 6820 /* 6821 * 2 items for inode and inode ref 6822 * 2 items for dir items 6823 * 1 item for parent inode 6824 * 1 item for orphan item deletion if O_TMPFILE 6825 */ 6826 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6827 if (IS_ERR(trans)) { 6828 err = PTR_ERR(trans); 6829 trans = NULL; 6830 goto fail; 6831 } 6832 6833 /* There are several dir indexes for this inode, clear the cache. */ 6834 BTRFS_I(inode)->dir_index = 0ULL; 6835 inc_nlink(inode); 6836 inode_inc_iversion(inode); 6837 inode_set_ctime_current(inode); 6838 ihold(inode); 6839 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6840 6841 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6842 &fname.disk_name, 1, index); 6843 6844 if (err) { 6845 drop_inode = 1; 6846 } else { 6847 struct dentry *parent = dentry->d_parent; 6848 6849 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6850 if (err) 6851 goto fail; 6852 if (inode->i_nlink == 1) { 6853 /* 6854 * If new hard link count is 1, it's a file created 6855 * with open(2) O_TMPFILE flag. 6856 */ 6857 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6858 if (err) 6859 goto fail; 6860 } 6861 d_instantiate(dentry, inode); 6862 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6863 } 6864 6865 fail: 6866 fscrypt_free_filename(&fname); 6867 if (trans) 6868 btrfs_end_transaction(trans); 6869 if (drop_inode) { 6870 inode_dec_link_count(inode); 6871 iput(inode); 6872 } 6873 btrfs_btree_balance_dirty(fs_info); 6874 return err; 6875 } 6876 6877 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6878 struct dentry *dentry, umode_t mode) 6879 { 6880 struct inode *inode; 6881 6882 inode = new_inode(dir->i_sb); 6883 if (!inode) 6884 return ERR_PTR(-ENOMEM); 6885 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6886 inode->i_op = &btrfs_dir_inode_operations; 6887 inode->i_fop = &btrfs_dir_file_operations; 6888 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6889 } 6890 6891 static noinline int uncompress_inline(struct btrfs_path *path, 6892 struct folio *folio, 6893 struct btrfs_file_extent_item *item) 6894 { 6895 int ret; 6896 struct extent_buffer *leaf = path->nodes[0]; 6897 const u32 blocksize = leaf->fs_info->sectorsize; 6898 char *tmp; 6899 size_t max_size; 6900 unsigned long inline_size; 6901 unsigned long ptr; 6902 int compress_type; 6903 6904 compress_type = btrfs_file_extent_compression(leaf, item); 6905 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6906 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6907 tmp = kmalloc(inline_size, GFP_NOFS); 6908 if (!tmp) 6909 return -ENOMEM; 6910 ptr = btrfs_file_extent_inline_start(item); 6911 6912 read_extent_buffer(leaf, tmp, ptr, inline_size); 6913 6914 max_size = min_t(unsigned long, blocksize, max_size); 6915 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6916 max_size); 6917 6918 /* 6919 * decompression code contains a memset to fill in any space between the end 6920 * of the uncompressed data and the end of max_size in case the decompressed 6921 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6922 * the end of an inline extent and the beginning of the next block, so we 6923 * cover that region here. 6924 */ 6925 6926 if (max_size < blocksize) 6927 folio_zero_range(folio, max_size, blocksize - max_size); 6928 kfree(tmp); 6929 return ret; 6930 } 6931 6932 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6933 { 6934 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6935 struct btrfs_file_extent_item *fi; 6936 void *kaddr; 6937 size_t copy_size; 6938 6939 if (!folio || folio_test_uptodate(folio)) 6940 return 0; 6941 6942 ASSERT(folio_pos(folio) == 0); 6943 6944 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6945 struct btrfs_file_extent_item); 6946 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6947 return uncompress_inline(path, folio, fi); 6948 6949 copy_size = min_t(u64, blocksize, 6950 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6951 kaddr = kmap_local_folio(folio, 0); 6952 read_extent_buffer(path->nodes[0], kaddr, 6953 btrfs_file_extent_inline_start(fi), copy_size); 6954 kunmap_local(kaddr); 6955 if (copy_size < blocksize) 6956 folio_zero_range(folio, copy_size, blocksize - copy_size); 6957 return 0; 6958 } 6959 6960 /* 6961 * Lookup the first extent overlapping a range in a file. 6962 * 6963 * @inode: file to search in 6964 * @page: page to read extent data into if the extent is inline 6965 * @start: file offset 6966 * @len: length of range starting at @start 6967 * 6968 * Return the first &struct extent_map which overlaps the given range, reading 6969 * it from the B-tree and caching it if necessary. Note that there may be more 6970 * extents which overlap the given range after the returned extent_map. 6971 * 6972 * If @page is not NULL and the extent is inline, this also reads the extent 6973 * data directly into the page and marks the extent up to date in the io_tree. 6974 * 6975 * Return: ERR_PTR on error, non-NULL extent_map on success. 6976 */ 6977 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6978 struct folio *folio, u64 start, u64 len) 6979 { 6980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6981 int ret = 0; 6982 u64 extent_start = 0; 6983 u64 extent_end = 0; 6984 u64 objectid = btrfs_ino(inode); 6985 int extent_type = -1; 6986 struct btrfs_path *path = NULL; 6987 struct btrfs_root *root = inode->root; 6988 struct btrfs_file_extent_item *item; 6989 struct extent_buffer *leaf; 6990 struct btrfs_key found_key; 6991 struct extent_map *em = NULL; 6992 struct extent_map_tree *em_tree = &inode->extent_tree; 6993 6994 read_lock(&em_tree->lock); 6995 em = btrfs_lookup_extent_mapping(em_tree, start, len); 6996 read_unlock(&em_tree->lock); 6997 6998 if (em) { 6999 if (em->start > start || em->start + em->len <= start) 7000 btrfs_free_extent_map(em); 7001 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7002 btrfs_free_extent_map(em); 7003 else 7004 goto out; 7005 } 7006 em = btrfs_alloc_extent_map(); 7007 if (!em) { 7008 ret = -ENOMEM; 7009 goto out; 7010 } 7011 em->start = EXTENT_MAP_HOLE; 7012 em->disk_bytenr = EXTENT_MAP_HOLE; 7013 em->len = (u64)-1; 7014 7015 path = btrfs_alloc_path(); 7016 if (!path) { 7017 ret = -ENOMEM; 7018 goto out; 7019 } 7020 7021 /* Chances are we'll be called again, so go ahead and do readahead */ 7022 path->reada = READA_FORWARD; 7023 7024 /* 7025 * The same explanation in load_free_space_cache applies here as well, 7026 * we only read when we're loading the free space cache, and at that 7027 * point the commit_root has everything we need. 7028 */ 7029 if (btrfs_is_free_space_inode(inode)) { 7030 path->search_commit_root = 1; 7031 path->skip_locking = 1; 7032 } 7033 7034 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7035 if (ret < 0) { 7036 goto out; 7037 } else if (ret > 0) { 7038 if (path->slots[0] == 0) 7039 goto not_found; 7040 path->slots[0]--; 7041 ret = 0; 7042 } 7043 7044 leaf = path->nodes[0]; 7045 item = btrfs_item_ptr(leaf, path->slots[0], 7046 struct btrfs_file_extent_item); 7047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7048 if (found_key.objectid != objectid || 7049 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7050 /* 7051 * If we backup past the first extent we want to move forward 7052 * and see if there is an extent in front of us, otherwise we'll 7053 * say there is a hole for our whole search range which can 7054 * cause problems. 7055 */ 7056 extent_end = start; 7057 goto next; 7058 } 7059 7060 extent_type = btrfs_file_extent_type(leaf, item); 7061 extent_start = found_key.offset; 7062 extent_end = btrfs_file_extent_end(path); 7063 if (extent_type == BTRFS_FILE_EXTENT_REG || 7064 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7065 /* Only regular file could have regular/prealloc extent */ 7066 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7067 ret = -EUCLEAN; 7068 btrfs_crit(fs_info, 7069 "regular/prealloc extent found for non-regular inode %llu", 7070 btrfs_ino(inode)); 7071 goto out; 7072 } 7073 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7074 extent_start); 7075 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7076 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7077 path->slots[0], 7078 extent_start); 7079 } 7080 next: 7081 if (start >= extent_end) { 7082 path->slots[0]++; 7083 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7084 ret = btrfs_next_leaf(root, path); 7085 if (ret < 0) 7086 goto out; 7087 else if (ret > 0) 7088 goto not_found; 7089 7090 leaf = path->nodes[0]; 7091 } 7092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7093 if (found_key.objectid != objectid || 7094 found_key.type != BTRFS_EXTENT_DATA_KEY) 7095 goto not_found; 7096 if (start + len <= found_key.offset) 7097 goto not_found; 7098 if (start > found_key.offset) 7099 goto next; 7100 7101 /* New extent overlaps with existing one */ 7102 em->start = start; 7103 em->len = found_key.offset - start; 7104 em->disk_bytenr = EXTENT_MAP_HOLE; 7105 goto insert; 7106 } 7107 7108 btrfs_extent_item_to_extent_map(inode, path, item, em); 7109 7110 if (extent_type == BTRFS_FILE_EXTENT_REG || 7111 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7112 goto insert; 7113 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7114 /* 7115 * Inline extent can only exist at file offset 0. This is 7116 * ensured by tree-checker and inline extent creation path. 7117 * Thus all members representing file offsets should be zero. 7118 */ 7119 ASSERT(extent_start == 0); 7120 ASSERT(em->start == 0); 7121 7122 /* 7123 * btrfs_extent_item_to_extent_map() should have properly 7124 * initialized em members already. 7125 * 7126 * Other members are not utilized for inline extents. 7127 */ 7128 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7129 ASSERT(em->len == fs_info->sectorsize); 7130 7131 ret = read_inline_extent(path, folio); 7132 if (ret < 0) 7133 goto out; 7134 goto insert; 7135 } 7136 not_found: 7137 em->start = start; 7138 em->len = len; 7139 em->disk_bytenr = EXTENT_MAP_HOLE; 7140 insert: 7141 ret = 0; 7142 btrfs_release_path(path); 7143 if (em->start > start || btrfs_extent_map_end(em) <= start) { 7144 btrfs_err(fs_info, 7145 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7146 em->start, em->len, start, len); 7147 ret = -EIO; 7148 goto out; 7149 } 7150 7151 write_lock(&em_tree->lock); 7152 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7153 write_unlock(&em_tree->lock); 7154 out: 7155 btrfs_free_path(path); 7156 7157 trace_btrfs_get_extent(root, inode, em); 7158 7159 if (ret) { 7160 btrfs_free_extent_map(em); 7161 return ERR_PTR(ret); 7162 } 7163 return em; 7164 } 7165 7166 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7167 { 7168 struct btrfs_block_group *block_group; 7169 bool readonly = false; 7170 7171 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7172 if (!block_group || block_group->ro) 7173 readonly = true; 7174 if (block_group) 7175 btrfs_put_block_group(block_group); 7176 return readonly; 7177 } 7178 7179 /* 7180 * Check if we can do nocow write into the range [@offset, @offset + @len) 7181 * 7182 * @offset: File offset 7183 * @len: The length to write, will be updated to the nocow writeable 7184 * range 7185 * @orig_start: (optional) Return the original file offset of the file extent 7186 * @orig_len: (optional) Return the original on-disk length of the file extent 7187 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7188 * 7189 * Return: 7190 * >0 and update @len if we can do nocow write 7191 * 0 if we can't do nocow write 7192 * <0 if error happened 7193 * 7194 * NOTE: This only checks the file extents, caller is responsible to wait for 7195 * any ordered extents. 7196 */ 7197 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7198 struct btrfs_file_extent *file_extent, 7199 bool nowait) 7200 { 7201 struct btrfs_root *root = inode->root; 7202 struct btrfs_fs_info *fs_info = root->fs_info; 7203 struct can_nocow_file_extent_args nocow_args = { 0 }; 7204 BTRFS_PATH_AUTO_FREE(path); 7205 int ret; 7206 struct extent_buffer *leaf; 7207 struct extent_io_tree *io_tree = &inode->io_tree; 7208 struct btrfs_file_extent_item *fi; 7209 struct btrfs_key key; 7210 int found_type; 7211 7212 path = btrfs_alloc_path(); 7213 if (!path) 7214 return -ENOMEM; 7215 path->nowait = nowait; 7216 7217 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7218 offset, 0); 7219 if (ret < 0) 7220 return ret; 7221 7222 if (ret == 1) { 7223 if (path->slots[0] == 0) { 7224 /* Can't find the item, must COW. */ 7225 return 0; 7226 } 7227 path->slots[0]--; 7228 } 7229 ret = 0; 7230 leaf = path->nodes[0]; 7231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7232 if (key.objectid != btrfs_ino(inode) || 7233 key.type != BTRFS_EXTENT_DATA_KEY) { 7234 /* Not our file or wrong item type, must COW. */ 7235 return 0; 7236 } 7237 7238 if (key.offset > offset) { 7239 /* Wrong offset, must COW. */ 7240 return 0; 7241 } 7242 7243 if (btrfs_file_extent_end(path) <= offset) 7244 return 0; 7245 7246 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7247 found_type = btrfs_file_extent_type(leaf, fi); 7248 7249 nocow_args.start = offset; 7250 nocow_args.end = offset + *len - 1; 7251 nocow_args.free_path = true; 7252 7253 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7254 /* can_nocow_file_extent() has freed the path. */ 7255 path = NULL; 7256 7257 if (ret != 1) { 7258 /* Treat errors as not being able to NOCOW. */ 7259 return 0; 7260 } 7261 7262 if (btrfs_extent_readonly(fs_info, 7263 nocow_args.file_extent.disk_bytenr + 7264 nocow_args.file_extent.offset)) 7265 return 0; 7266 7267 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7268 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7269 u64 range_end; 7270 7271 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7272 root->fs_info->sectorsize) - 1; 7273 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7274 EXTENT_DELALLOC); 7275 if (ret) 7276 return -EAGAIN; 7277 } 7278 7279 if (file_extent) 7280 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7281 7282 *len = nocow_args.file_extent.num_bytes; 7283 7284 return 1; 7285 } 7286 7287 /* The callers of this must take lock_extent() */ 7288 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7289 const struct btrfs_file_extent *file_extent, 7290 int type) 7291 { 7292 struct extent_map *em; 7293 int ret; 7294 7295 /* 7296 * Note the missing NOCOW type. 7297 * 7298 * For pure NOCOW writes, we should not create an io extent map, but 7299 * just reusing the existing one. 7300 * Only PREALLOC writes (NOCOW write into preallocated range) can 7301 * create an io extent map. 7302 */ 7303 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7304 type == BTRFS_ORDERED_COMPRESSED || 7305 type == BTRFS_ORDERED_REGULAR); 7306 7307 switch (type) { 7308 case BTRFS_ORDERED_PREALLOC: 7309 /* We're only referring part of a larger preallocated extent. */ 7310 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7311 break; 7312 case BTRFS_ORDERED_REGULAR: 7313 /* COW results a new extent matching our file extent size. */ 7314 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7315 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7316 7317 /* Since it's a new extent, we should not have any offset. */ 7318 ASSERT(file_extent->offset == 0); 7319 break; 7320 case BTRFS_ORDERED_COMPRESSED: 7321 /* Must be compressed. */ 7322 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7323 7324 /* 7325 * Encoded write can make us to refer to part of the 7326 * uncompressed extent. 7327 */ 7328 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7329 break; 7330 } 7331 7332 em = btrfs_alloc_extent_map(); 7333 if (!em) 7334 return ERR_PTR(-ENOMEM); 7335 7336 em->start = start; 7337 em->len = file_extent->num_bytes; 7338 em->disk_bytenr = file_extent->disk_bytenr; 7339 em->disk_num_bytes = file_extent->disk_num_bytes; 7340 em->ram_bytes = file_extent->ram_bytes; 7341 em->generation = -1; 7342 em->offset = file_extent->offset; 7343 em->flags |= EXTENT_FLAG_PINNED; 7344 if (type == BTRFS_ORDERED_COMPRESSED) 7345 btrfs_extent_map_set_compression(em, file_extent->compression); 7346 7347 ret = btrfs_replace_extent_map_range(inode, em, true); 7348 if (ret) { 7349 btrfs_free_extent_map(em); 7350 return ERR_PTR(ret); 7351 } 7352 7353 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7354 return em; 7355 } 7356 7357 /* 7358 * For release_folio() and invalidate_folio() we have a race window where 7359 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7360 * If we continue to release/invalidate the page, we could cause use-after-free 7361 * for subpage spinlock. So this function is to spin and wait for subpage 7362 * spinlock. 7363 */ 7364 static void wait_subpage_spinlock(struct folio *folio) 7365 { 7366 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7367 struct btrfs_subpage *subpage; 7368 7369 if (!btrfs_is_subpage(fs_info, folio)) 7370 return; 7371 7372 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7373 subpage = folio_get_private(folio); 7374 7375 /* 7376 * This may look insane as we just acquire the spinlock and release it, 7377 * without doing anything. But we just want to make sure no one is 7378 * still holding the subpage spinlock. 7379 * And since the page is not dirty nor writeback, and we have page 7380 * locked, the only possible way to hold a spinlock is from the endio 7381 * function to clear page writeback. 7382 * 7383 * Here we just acquire the spinlock so that all existing callers 7384 * should exit and we're safe to release/invalidate the page. 7385 */ 7386 spin_lock_irq(&subpage->lock); 7387 spin_unlock_irq(&subpage->lock); 7388 } 7389 7390 static int btrfs_launder_folio(struct folio *folio) 7391 { 7392 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7393 folio_size(folio), NULL); 7394 } 7395 7396 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7397 { 7398 if (try_release_extent_mapping(folio, gfp_flags)) { 7399 wait_subpage_spinlock(folio); 7400 clear_folio_extent_mapped(folio); 7401 return true; 7402 } 7403 return false; 7404 } 7405 7406 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7407 { 7408 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7409 return false; 7410 return __btrfs_release_folio(folio, gfp_flags); 7411 } 7412 7413 #ifdef CONFIG_MIGRATION 7414 static int btrfs_migrate_folio(struct address_space *mapping, 7415 struct folio *dst, struct folio *src, 7416 enum migrate_mode mode) 7417 { 7418 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7419 7420 if (ret != MIGRATEPAGE_SUCCESS) 7421 return ret; 7422 7423 if (folio_test_ordered(src)) { 7424 folio_clear_ordered(src); 7425 folio_set_ordered(dst); 7426 } 7427 7428 return MIGRATEPAGE_SUCCESS; 7429 } 7430 #else 7431 #define btrfs_migrate_folio NULL 7432 #endif 7433 7434 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7435 size_t length) 7436 { 7437 struct btrfs_inode *inode = folio_to_inode(folio); 7438 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7439 struct extent_io_tree *tree = &inode->io_tree; 7440 struct extent_state *cached_state = NULL; 7441 u64 page_start = folio_pos(folio); 7442 u64 page_end = page_start + folio_size(folio) - 1; 7443 u64 cur; 7444 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7445 7446 /* 7447 * We have folio locked so no new ordered extent can be created on this 7448 * page, nor bio can be submitted for this folio. 7449 * 7450 * But already submitted bio can still be finished on this folio. 7451 * Furthermore, endio function won't skip folio which has Ordered 7452 * already cleared, so it's possible for endio and 7453 * invalidate_folio to do the same ordered extent accounting twice 7454 * on one folio. 7455 * 7456 * So here we wait for any submitted bios to finish, so that we won't 7457 * do double ordered extent accounting on the same folio. 7458 */ 7459 folio_wait_writeback(folio); 7460 wait_subpage_spinlock(folio); 7461 7462 /* 7463 * For subpage case, we have call sites like 7464 * btrfs_punch_hole_lock_range() which passes range not aligned to 7465 * sectorsize. 7466 * If the range doesn't cover the full folio, we don't need to and 7467 * shouldn't clear page extent mapped, as folio->private can still 7468 * record subpage dirty bits for other part of the range. 7469 * 7470 * For cases that invalidate the full folio even the range doesn't 7471 * cover the full folio, like invalidating the last folio, we're 7472 * still safe to wait for ordered extent to finish. 7473 */ 7474 if (!(offset == 0 && length == folio_size(folio))) { 7475 btrfs_release_folio(folio, GFP_NOFS); 7476 return; 7477 } 7478 7479 if (!inode_evicting) 7480 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7481 7482 cur = page_start; 7483 while (cur < page_end) { 7484 struct btrfs_ordered_extent *ordered; 7485 u64 range_end; 7486 u32 range_len; 7487 u32 extra_flags = 0; 7488 7489 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7490 page_end + 1 - cur); 7491 if (!ordered) { 7492 range_end = page_end; 7493 /* 7494 * No ordered extent covering this range, we are safe 7495 * to delete all extent states in the range. 7496 */ 7497 extra_flags = EXTENT_CLEAR_ALL_BITS; 7498 goto next; 7499 } 7500 if (ordered->file_offset > cur) { 7501 /* 7502 * There is a range between [cur, oe->file_offset) not 7503 * covered by any ordered extent. 7504 * We are safe to delete all extent states, and handle 7505 * the ordered extent in the next iteration. 7506 */ 7507 range_end = ordered->file_offset - 1; 7508 extra_flags = EXTENT_CLEAR_ALL_BITS; 7509 goto next; 7510 } 7511 7512 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7513 page_end); 7514 ASSERT(range_end + 1 - cur < U32_MAX); 7515 range_len = range_end + 1 - cur; 7516 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7517 /* 7518 * If Ordered is cleared, it means endio has 7519 * already been executed for the range. 7520 * We can't delete the extent states as 7521 * btrfs_finish_ordered_io() may still use some of them. 7522 */ 7523 goto next; 7524 } 7525 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7526 7527 /* 7528 * IO on this page will never be started, so we need to account 7529 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7530 * here, must leave that up for the ordered extent completion. 7531 * 7532 * This will also unlock the range for incoming 7533 * btrfs_finish_ordered_io(). 7534 */ 7535 if (!inode_evicting) 7536 btrfs_clear_extent_bit(tree, cur, range_end, 7537 EXTENT_DELALLOC | 7538 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7539 EXTENT_DEFRAG, &cached_state); 7540 7541 spin_lock_irq(&inode->ordered_tree_lock); 7542 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7543 ordered->truncated_len = min(ordered->truncated_len, 7544 cur - ordered->file_offset); 7545 spin_unlock_irq(&inode->ordered_tree_lock); 7546 7547 /* 7548 * If the ordered extent has finished, we're safe to delete all 7549 * the extent states of the range, otherwise 7550 * btrfs_finish_ordered_io() will get executed by endio for 7551 * other pages, so we can't delete extent states. 7552 */ 7553 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7554 cur, range_end + 1 - cur)) { 7555 btrfs_finish_ordered_io(ordered); 7556 /* 7557 * The ordered extent has finished, now we're again 7558 * safe to delete all extent states of the range. 7559 */ 7560 extra_flags = EXTENT_CLEAR_ALL_BITS; 7561 } 7562 next: 7563 if (ordered) 7564 btrfs_put_ordered_extent(ordered); 7565 /* 7566 * Qgroup reserved space handler 7567 * Sector(s) here will be either: 7568 * 7569 * 1) Already written to disk or bio already finished 7570 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7571 * Qgroup will be handled by its qgroup_record then. 7572 * btrfs_qgroup_free_data() call will do nothing here. 7573 * 7574 * 2) Not written to disk yet 7575 * Then btrfs_qgroup_free_data() call will clear the 7576 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7577 * reserved data space. 7578 * Since the IO will never happen for this page. 7579 */ 7580 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7581 if (!inode_evicting) 7582 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7583 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7584 EXTENT_DEFRAG | extra_flags, 7585 &cached_state); 7586 cur = range_end + 1; 7587 } 7588 /* 7589 * We have iterated through all ordered extents of the page, the page 7590 * should not have Ordered anymore, or the above iteration 7591 * did something wrong. 7592 */ 7593 ASSERT(!folio_test_ordered(folio)); 7594 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7595 if (!inode_evicting) 7596 __btrfs_release_folio(folio, GFP_NOFS); 7597 clear_folio_extent_mapped(folio); 7598 } 7599 7600 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7601 { 7602 struct btrfs_truncate_control control = { 7603 .inode = inode, 7604 .ino = btrfs_ino(inode), 7605 .min_type = BTRFS_EXTENT_DATA_KEY, 7606 .clear_extent_range = true, 7607 }; 7608 struct btrfs_root *root = inode->root; 7609 struct btrfs_fs_info *fs_info = root->fs_info; 7610 struct btrfs_block_rsv *rsv; 7611 int ret; 7612 struct btrfs_trans_handle *trans; 7613 u64 mask = fs_info->sectorsize - 1; 7614 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7615 7616 if (!skip_writeback) { 7617 ret = btrfs_wait_ordered_range(inode, 7618 inode->vfs_inode.i_size & (~mask), 7619 (u64)-1); 7620 if (ret) 7621 return ret; 7622 } 7623 7624 /* 7625 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7626 * things going on here: 7627 * 7628 * 1) We need to reserve space to update our inode. 7629 * 7630 * 2) We need to have something to cache all the space that is going to 7631 * be free'd up by the truncate operation, but also have some slack 7632 * space reserved in case it uses space during the truncate (thank you 7633 * very much snapshotting). 7634 * 7635 * And we need these to be separate. The fact is we can use a lot of 7636 * space doing the truncate, and we have no earthly idea how much space 7637 * we will use, so we need the truncate reservation to be separate so it 7638 * doesn't end up using space reserved for updating the inode. We also 7639 * need to be able to stop the transaction and start a new one, which 7640 * means we need to be able to update the inode several times, and we 7641 * have no idea of knowing how many times that will be, so we can't just 7642 * reserve 1 item for the entirety of the operation, so that has to be 7643 * done separately as well. 7644 * 7645 * So that leaves us with 7646 * 7647 * 1) rsv - for the truncate reservation, which we will steal from the 7648 * transaction reservation. 7649 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7650 * updating the inode. 7651 */ 7652 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7653 if (!rsv) 7654 return -ENOMEM; 7655 rsv->size = min_size; 7656 rsv->failfast = true; 7657 7658 /* 7659 * 1 for the truncate slack space 7660 * 1 for updating the inode. 7661 */ 7662 trans = btrfs_start_transaction(root, 2); 7663 if (IS_ERR(trans)) { 7664 ret = PTR_ERR(trans); 7665 goto out; 7666 } 7667 7668 /* Migrate the slack space for the truncate to our reserve */ 7669 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7670 min_size, false); 7671 /* 7672 * We have reserved 2 metadata units when we started the transaction and 7673 * min_size matches 1 unit, so this should never fail, but if it does, 7674 * it's not critical we just fail truncation. 7675 */ 7676 if (WARN_ON(ret)) { 7677 btrfs_end_transaction(trans); 7678 goto out; 7679 } 7680 7681 trans->block_rsv = rsv; 7682 7683 while (1) { 7684 struct extent_state *cached_state = NULL; 7685 const u64 new_size = inode->vfs_inode.i_size; 7686 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7687 7688 control.new_size = new_size; 7689 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7690 /* 7691 * We want to drop from the next block forward in case this new 7692 * size is not block aligned since we will be keeping the last 7693 * block of the extent just the way it is. 7694 */ 7695 btrfs_drop_extent_map_range(inode, 7696 ALIGN(new_size, fs_info->sectorsize), 7697 (u64)-1, false); 7698 7699 ret = btrfs_truncate_inode_items(trans, root, &control); 7700 7701 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7702 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7703 7704 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7705 7706 trans->block_rsv = &fs_info->trans_block_rsv; 7707 if (ret != -ENOSPC && ret != -EAGAIN) 7708 break; 7709 7710 ret = btrfs_update_inode(trans, inode); 7711 if (ret) 7712 break; 7713 7714 btrfs_end_transaction(trans); 7715 btrfs_btree_balance_dirty(fs_info); 7716 7717 trans = btrfs_start_transaction(root, 2); 7718 if (IS_ERR(trans)) { 7719 ret = PTR_ERR(trans); 7720 trans = NULL; 7721 break; 7722 } 7723 7724 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7725 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7726 rsv, min_size, false); 7727 /* 7728 * We have reserved 2 metadata units when we started the 7729 * transaction and min_size matches 1 unit, so this should never 7730 * fail, but if it does, it's not critical we just fail truncation. 7731 */ 7732 if (WARN_ON(ret)) 7733 break; 7734 7735 trans->block_rsv = rsv; 7736 } 7737 7738 /* 7739 * We can't call btrfs_truncate_block inside a trans handle as we could 7740 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7741 * know we've truncated everything except the last little bit, and can 7742 * do btrfs_truncate_block and then update the disk_i_size. 7743 */ 7744 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7745 btrfs_end_transaction(trans); 7746 btrfs_btree_balance_dirty(fs_info); 7747 7748 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7749 inode->vfs_inode.i_size, (u64)-1); 7750 if (ret) 7751 goto out; 7752 trans = btrfs_start_transaction(root, 1); 7753 if (IS_ERR(trans)) { 7754 ret = PTR_ERR(trans); 7755 goto out; 7756 } 7757 btrfs_inode_safe_disk_i_size_write(inode, 0); 7758 } 7759 7760 if (trans) { 7761 int ret2; 7762 7763 trans->block_rsv = &fs_info->trans_block_rsv; 7764 ret2 = btrfs_update_inode(trans, inode); 7765 if (ret2 && !ret) 7766 ret = ret2; 7767 7768 ret2 = btrfs_end_transaction(trans); 7769 if (ret2 && !ret) 7770 ret = ret2; 7771 btrfs_btree_balance_dirty(fs_info); 7772 } 7773 out: 7774 btrfs_free_block_rsv(fs_info, rsv); 7775 /* 7776 * So if we truncate and then write and fsync we normally would just 7777 * write the extents that changed, which is a problem if we need to 7778 * first truncate that entire inode. So set this flag so we write out 7779 * all of the extents in the inode to the sync log so we're completely 7780 * safe. 7781 * 7782 * If no extents were dropped or trimmed we don't need to force the next 7783 * fsync to truncate all the inode's items from the log and re-log them 7784 * all. This means the truncate operation did not change the file size, 7785 * or changed it to a smaller size but there was only an implicit hole 7786 * between the old i_size and the new i_size, and there were no prealloc 7787 * extents beyond i_size to drop. 7788 */ 7789 if (control.extents_found > 0) 7790 btrfs_set_inode_full_sync(inode); 7791 7792 return ret; 7793 } 7794 7795 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7796 struct inode *dir) 7797 { 7798 struct inode *inode; 7799 7800 inode = new_inode(dir->i_sb); 7801 if (inode) { 7802 /* 7803 * Subvolumes don't inherit the sgid bit or the parent's gid if 7804 * the parent's sgid bit is set. This is probably a bug. 7805 */ 7806 inode_init_owner(idmap, inode, NULL, 7807 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7808 inode->i_op = &btrfs_dir_inode_operations; 7809 inode->i_fop = &btrfs_dir_file_operations; 7810 } 7811 return inode; 7812 } 7813 7814 struct inode *btrfs_alloc_inode(struct super_block *sb) 7815 { 7816 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7817 struct btrfs_inode *ei; 7818 struct inode *inode; 7819 7820 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7821 if (!ei) 7822 return NULL; 7823 7824 ei->root = NULL; 7825 ei->generation = 0; 7826 ei->last_trans = 0; 7827 ei->last_sub_trans = 0; 7828 ei->logged_trans = 0; 7829 ei->delalloc_bytes = 0; 7830 ei->new_delalloc_bytes = 0; 7831 ei->defrag_bytes = 0; 7832 ei->disk_i_size = 0; 7833 ei->flags = 0; 7834 ei->ro_flags = 0; 7835 /* 7836 * ->index_cnt will be properly initialized later when creating a new 7837 * inode (btrfs_create_new_inode()) or when reading an existing inode 7838 * from disk (btrfs_read_locked_inode()). 7839 */ 7840 ei->csum_bytes = 0; 7841 ei->dir_index = 0; 7842 ei->last_unlink_trans = 0; 7843 ei->last_reflink_trans = 0; 7844 ei->last_log_commit = 0; 7845 7846 spin_lock_init(&ei->lock); 7847 ei->outstanding_extents = 0; 7848 if (sb->s_magic != BTRFS_TEST_MAGIC) 7849 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7850 BTRFS_BLOCK_RSV_DELALLOC); 7851 ei->runtime_flags = 0; 7852 ei->prop_compress = BTRFS_COMPRESS_NONE; 7853 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7854 7855 ei->delayed_node = NULL; 7856 7857 ei->i_otime_sec = 0; 7858 ei->i_otime_nsec = 0; 7859 7860 inode = &ei->vfs_inode; 7861 btrfs_extent_map_tree_init(&ei->extent_tree); 7862 7863 /* This io tree sets the valid inode. */ 7864 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7865 ei->io_tree.inode = ei; 7866 7867 ei->file_extent_tree = NULL; 7868 7869 mutex_init(&ei->log_mutex); 7870 spin_lock_init(&ei->ordered_tree_lock); 7871 ei->ordered_tree = RB_ROOT; 7872 ei->ordered_tree_last = NULL; 7873 INIT_LIST_HEAD(&ei->delalloc_inodes); 7874 INIT_LIST_HEAD(&ei->delayed_iput); 7875 init_rwsem(&ei->i_mmap_lock); 7876 7877 return inode; 7878 } 7879 7880 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7881 void btrfs_test_destroy_inode(struct inode *inode) 7882 { 7883 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7884 kfree(BTRFS_I(inode)->file_extent_tree); 7885 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7886 } 7887 #endif 7888 7889 void btrfs_free_inode(struct inode *inode) 7890 { 7891 kfree(BTRFS_I(inode)->file_extent_tree); 7892 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7893 } 7894 7895 void btrfs_destroy_inode(struct inode *vfs_inode) 7896 { 7897 struct btrfs_ordered_extent *ordered; 7898 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7899 struct btrfs_root *root = inode->root; 7900 bool freespace_inode; 7901 7902 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7903 WARN_ON(vfs_inode->i_data.nrpages); 7904 WARN_ON(inode->block_rsv.reserved); 7905 WARN_ON(inode->block_rsv.size); 7906 WARN_ON(inode->outstanding_extents); 7907 if (!S_ISDIR(vfs_inode->i_mode)) { 7908 WARN_ON(inode->delalloc_bytes); 7909 WARN_ON(inode->new_delalloc_bytes); 7910 WARN_ON(inode->csum_bytes); 7911 } 7912 if (!root || !btrfs_is_data_reloc_root(root)) 7913 WARN_ON(inode->defrag_bytes); 7914 7915 /* 7916 * This can happen where we create an inode, but somebody else also 7917 * created the same inode and we need to destroy the one we already 7918 * created. 7919 */ 7920 if (!root) 7921 return; 7922 7923 /* 7924 * If this is a free space inode do not take the ordered extents lockdep 7925 * map. 7926 */ 7927 freespace_inode = btrfs_is_free_space_inode(inode); 7928 7929 while (1) { 7930 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7931 if (!ordered) 7932 break; 7933 else { 7934 btrfs_err(root->fs_info, 7935 "found ordered extent %llu %llu on inode cleanup", 7936 ordered->file_offset, ordered->num_bytes); 7937 7938 if (!freespace_inode) 7939 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7940 7941 btrfs_remove_ordered_extent(inode, ordered); 7942 btrfs_put_ordered_extent(ordered); 7943 btrfs_put_ordered_extent(ordered); 7944 } 7945 } 7946 btrfs_qgroup_check_reserved_leak(inode); 7947 btrfs_del_inode_from_root(inode); 7948 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7949 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7950 btrfs_put_root(inode->root); 7951 } 7952 7953 int btrfs_drop_inode(struct inode *inode) 7954 { 7955 struct btrfs_root *root = BTRFS_I(inode)->root; 7956 7957 if (root == NULL) 7958 return 1; 7959 7960 /* the snap/subvol tree is on deleting */ 7961 if (btrfs_root_refs(&root->root_item) == 0) 7962 return 1; 7963 else 7964 return generic_drop_inode(inode); 7965 } 7966 7967 static void init_once(void *foo) 7968 { 7969 struct btrfs_inode *ei = foo; 7970 7971 inode_init_once(&ei->vfs_inode); 7972 } 7973 7974 void __cold btrfs_destroy_cachep(void) 7975 { 7976 /* 7977 * Make sure all delayed rcu free inodes are flushed before we 7978 * destroy cache. 7979 */ 7980 rcu_barrier(); 7981 kmem_cache_destroy(btrfs_inode_cachep); 7982 } 7983 7984 int __init btrfs_init_cachep(void) 7985 { 7986 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7987 sizeof(struct btrfs_inode), 0, 7988 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7989 init_once); 7990 if (!btrfs_inode_cachep) 7991 return -ENOMEM; 7992 7993 return 0; 7994 } 7995 7996 static int btrfs_getattr(struct mnt_idmap *idmap, 7997 const struct path *path, struct kstat *stat, 7998 u32 request_mask, unsigned int flags) 7999 { 8000 u64 delalloc_bytes; 8001 u64 inode_bytes; 8002 struct inode *inode = d_inode(path->dentry); 8003 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8004 u32 bi_flags = BTRFS_I(inode)->flags; 8005 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8006 8007 stat->result_mask |= STATX_BTIME; 8008 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8009 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8010 if (bi_flags & BTRFS_INODE_APPEND) 8011 stat->attributes |= STATX_ATTR_APPEND; 8012 if (bi_flags & BTRFS_INODE_COMPRESS) 8013 stat->attributes |= STATX_ATTR_COMPRESSED; 8014 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8015 stat->attributes |= STATX_ATTR_IMMUTABLE; 8016 if (bi_flags & BTRFS_INODE_NODUMP) 8017 stat->attributes |= STATX_ATTR_NODUMP; 8018 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8019 stat->attributes |= STATX_ATTR_VERITY; 8020 8021 stat->attributes_mask |= (STATX_ATTR_APPEND | 8022 STATX_ATTR_COMPRESSED | 8023 STATX_ATTR_IMMUTABLE | 8024 STATX_ATTR_NODUMP); 8025 8026 generic_fillattr(idmap, request_mask, inode, stat); 8027 stat->dev = BTRFS_I(inode)->root->anon_dev; 8028 8029 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 8030 stat->result_mask |= STATX_SUBVOL; 8031 8032 spin_lock(&BTRFS_I(inode)->lock); 8033 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8034 inode_bytes = inode_get_bytes(inode); 8035 spin_unlock(&BTRFS_I(inode)->lock); 8036 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8037 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8038 return 0; 8039 } 8040 8041 static int btrfs_rename_exchange(struct inode *old_dir, 8042 struct dentry *old_dentry, 8043 struct inode *new_dir, 8044 struct dentry *new_dentry) 8045 { 8046 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8047 struct btrfs_trans_handle *trans; 8048 unsigned int trans_num_items; 8049 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8050 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8051 struct inode *new_inode = new_dentry->d_inode; 8052 struct inode *old_inode = old_dentry->d_inode; 8053 struct btrfs_rename_ctx old_rename_ctx; 8054 struct btrfs_rename_ctx new_rename_ctx; 8055 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8056 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8057 u64 old_idx = 0; 8058 u64 new_idx = 0; 8059 int ret; 8060 int ret2; 8061 bool need_abort = false; 8062 bool logs_pinned = false; 8063 struct fscrypt_name old_fname, new_fname; 8064 struct fscrypt_str *old_name, *new_name; 8065 8066 /* 8067 * For non-subvolumes allow exchange only within one subvolume, in the 8068 * same inode namespace. Two subvolumes (represented as directory) can 8069 * be exchanged as they're a logical link and have a fixed inode number. 8070 */ 8071 if (root != dest && 8072 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8073 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8074 return -EXDEV; 8075 8076 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8077 if (ret) 8078 return ret; 8079 8080 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8081 if (ret) { 8082 fscrypt_free_filename(&old_fname); 8083 return ret; 8084 } 8085 8086 old_name = &old_fname.disk_name; 8087 new_name = &new_fname.disk_name; 8088 8089 /* close the race window with snapshot create/destroy ioctl */ 8090 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8091 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8092 down_read(&fs_info->subvol_sem); 8093 8094 /* 8095 * For each inode: 8096 * 1 to remove old dir item 8097 * 1 to remove old dir index 8098 * 1 to add new dir item 8099 * 1 to add new dir index 8100 * 1 to update parent inode 8101 * 8102 * If the parents are the same, we only need to account for one 8103 */ 8104 trans_num_items = (old_dir == new_dir ? 9 : 10); 8105 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8106 /* 8107 * 1 to remove old root ref 8108 * 1 to remove old root backref 8109 * 1 to add new root ref 8110 * 1 to add new root backref 8111 */ 8112 trans_num_items += 4; 8113 } else { 8114 /* 8115 * 1 to update inode item 8116 * 1 to remove old inode ref 8117 * 1 to add new inode ref 8118 */ 8119 trans_num_items += 3; 8120 } 8121 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8122 trans_num_items += 4; 8123 else 8124 trans_num_items += 3; 8125 trans = btrfs_start_transaction(root, trans_num_items); 8126 if (IS_ERR(trans)) { 8127 ret = PTR_ERR(trans); 8128 goto out_notrans; 8129 } 8130 8131 if (dest != root) { 8132 ret = btrfs_record_root_in_trans(trans, dest); 8133 if (ret) 8134 goto out_fail; 8135 } 8136 8137 /* 8138 * We need to find a free sequence number both in the source and 8139 * in the destination directory for the exchange. 8140 */ 8141 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8142 if (ret) 8143 goto out_fail; 8144 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8145 if (ret) 8146 goto out_fail; 8147 8148 BTRFS_I(old_inode)->dir_index = 0ULL; 8149 BTRFS_I(new_inode)->dir_index = 0ULL; 8150 8151 /* Reference for the source. */ 8152 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8153 /* force full log commit if subvolume involved. */ 8154 btrfs_set_log_full_commit(trans); 8155 } else { 8156 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8157 btrfs_ino(BTRFS_I(new_dir)), 8158 old_idx); 8159 if (ret) 8160 goto out_fail; 8161 need_abort = true; 8162 } 8163 8164 /* And now for the dest. */ 8165 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8166 /* force full log commit if subvolume involved. */ 8167 btrfs_set_log_full_commit(trans); 8168 } else { 8169 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8170 btrfs_ino(BTRFS_I(old_dir)), 8171 new_idx); 8172 if (ret) { 8173 if (need_abort) 8174 btrfs_abort_transaction(trans, ret); 8175 goto out_fail; 8176 } 8177 } 8178 8179 /* Update inode version and ctime/mtime. */ 8180 inode_inc_iversion(old_dir); 8181 inode_inc_iversion(new_dir); 8182 inode_inc_iversion(old_inode); 8183 inode_inc_iversion(new_inode); 8184 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8185 8186 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8187 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8188 /* 8189 * If we are renaming in the same directory (and it's not for 8190 * root entries) pin the log early to prevent any concurrent 8191 * task from logging the directory after we removed the old 8192 * entries and before we add the new entries, otherwise that 8193 * task can sync a log without any entry for the inodes we are 8194 * renaming and therefore replaying that log, if a power failure 8195 * happens after syncing the log, would result in deleting the 8196 * inodes. 8197 * 8198 * If the rename affects two different directories, we want to 8199 * make sure the that there's no log commit that contains 8200 * updates for only one of the directories but not for the 8201 * other. 8202 * 8203 * If we are renaming an entry for a root, we don't care about 8204 * log updates since we called btrfs_set_log_full_commit(). 8205 */ 8206 btrfs_pin_log_trans(root); 8207 btrfs_pin_log_trans(dest); 8208 logs_pinned = true; 8209 } 8210 8211 if (old_dentry->d_parent != new_dentry->d_parent) { 8212 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8213 BTRFS_I(old_inode), true); 8214 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8215 BTRFS_I(new_inode), true); 8216 } 8217 8218 /* src is a subvolume */ 8219 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8220 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8221 if (ret) { 8222 btrfs_abort_transaction(trans, ret); 8223 goto out_fail; 8224 } 8225 } else { /* src is an inode */ 8226 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8227 BTRFS_I(old_dentry->d_inode), 8228 old_name, &old_rename_ctx); 8229 if (ret) { 8230 btrfs_abort_transaction(trans, ret); 8231 goto out_fail; 8232 } 8233 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8234 if (ret) { 8235 btrfs_abort_transaction(trans, ret); 8236 goto out_fail; 8237 } 8238 } 8239 8240 /* dest is a subvolume */ 8241 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8242 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8243 if (ret) { 8244 btrfs_abort_transaction(trans, ret); 8245 goto out_fail; 8246 } 8247 } else { /* dest is an inode */ 8248 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8249 BTRFS_I(new_dentry->d_inode), 8250 new_name, &new_rename_ctx); 8251 if (ret) { 8252 btrfs_abort_transaction(trans, ret); 8253 goto out_fail; 8254 } 8255 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8256 if (ret) { 8257 btrfs_abort_transaction(trans, ret); 8258 goto out_fail; 8259 } 8260 } 8261 8262 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8263 new_name, 0, old_idx); 8264 if (ret) { 8265 btrfs_abort_transaction(trans, ret); 8266 goto out_fail; 8267 } 8268 8269 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8270 old_name, 0, new_idx); 8271 if (ret) { 8272 btrfs_abort_transaction(trans, ret); 8273 goto out_fail; 8274 } 8275 8276 if (old_inode->i_nlink == 1) 8277 BTRFS_I(old_inode)->dir_index = old_idx; 8278 if (new_inode->i_nlink == 1) 8279 BTRFS_I(new_inode)->dir_index = new_idx; 8280 8281 /* 8282 * Do the log updates for all inodes. 8283 * 8284 * If either entry is for a root we don't need to update the logs since 8285 * we've called btrfs_set_log_full_commit() before. 8286 */ 8287 if (logs_pinned) { 8288 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8289 old_rename_ctx.index, new_dentry->d_parent); 8290 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8291 new_rename_ctx.index, old_dentry->d_parent); 8292 } 8293 8294 out_fail: 8295 if (logs_pinned) { 8296 btrfs_end_log_trans(root); 8297 btrfs_end_log_trans(dest); 8298 } 8299 ret2 = btrfs_end_transaction(trans); 8300 ret = ret ? ret : ret2; 8301 out_notrans: 8302 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8303 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8304 up_read(&fs_info->subvol_sem); 8305 8306 fscrypt_free_filename(&new_fname); 8307 fscrypt_free_filename(&old_fname); 8308 return ret; 8309 } 8310 8311 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8312 struct inode *dir) 8313 { 8314 struct inode *inode; 8315 8316 inode = new_inode(dir->i_sb); 8317 if (inode) { 8318 inode_init_owner(idmap, inode, dir, 8319 S_IFCHR | WHITEOUT_MODE); 8320 inode->i_op = &btrfs_special_inode_operations; 8321 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8322 } 8323 return inode; 8324 } 8325 8326 static int btrfs_rename(struct mnt_idmap *idmap, 8327 struct inode *old_dir, struct dentry *old_dentry, 8328 struct inode *new_dir, struct dentry *new_dentry, 8329 unsigned int flags) 8330 { 8331 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8332 struct btrfs_new_inode_args whiteout_args = { 8333 .dir = old_dir, 8334 .dentry = old_dentry, 8335 }; 8336 struct btrfs_trans_handle *trans; 8337 unsigned int trans_num_items; 8338 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8339 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8340 struct inode *new_inode = d_inode(new_dentry); 8341 struct inode *old_inode = d_inode(old_dentry); 8342 struct btrfs_rename_ctx rename_ctx; 8343 u64 index = 0; 8344 int ret; 8345 int ret2; 8346 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8347 struct fscrypt_name old_fname, new_fname; 8348 bool logs_pinned = false; 8349 8350 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8351 return -EPERM; 8352 8353 /* we only allow rename subvolume link between subvolumes */ 8354 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8355 return -EXDEV; 8356 8357 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8358 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8359 return -ENOTEMPTY; 8360 8361 if (S_ISDIR(old_inode->i_mode) && new_inode && 8362 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8363 return -ENOTEMPTY; 8364 8365 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8366 if (ret) 8367 return ret; 8368 8369 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8370 if (ret) { 8371 fscrypt_free_filename(&old_fname); 8372 return ret; 8373 } 8374 8375 /* check for collisions, even if the name isn't there */ 8376 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8377 if (ret) { 8378 if (ret == -EEXIST) { 8379 /* we shouldn't get 8380 * eexist without a new_inode */ 8381 if (WARN_ON(!new_inode)) { 8382 goto out_fscrypt_names; 8383 } 8384 } else { 8385 /* maybe -EOVERFLOW */ 8386 goto out_fscrypt_names; 8387 } 8388 } 8389 ret = 0; 8390 8391 /* 8392 * we're using rename to replace one file with another. Start IO on it 8393 * now so we don't add too much work to the end of the transaction 8394 */ 8395 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8396 filemap_flush(old_inode->i_mapping); 8397 8398 if (flags & RENAME_WHITEOUT) { 8399 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8400 if (!whiteout_args.inode) { 8401 ret = -ENOMEM; 8402 goto out_fscrypt_names; 8403 } 8404 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8405 if (ret) 8406 goto out_whiteout_inode; 8407 } else { 8408 /* 1 to update the old parent inode. */ 8409 trans_num_items = 1; 8410 } 8411 8412 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8413 /* Close the race window with snapshot create/destroy ioctl */ 8414 down_read(&fs_info->subvol_sem); 8415 /* 8416 * 1 to remove old root ref 8417 * 1 to remove old root backref 8418 * 1 to add new root ref 8419 * 1 to add new root backref 8420 */ 8421 trans_num_items += 4; 8422 } else { 8423 /* 8424 * 1 to update inode 8425 * 1 to remove old inode ref 8426 * 1 to add new inode ref 8427 */ 8428 trans_num_items += 3; 8429 } 8430 /* 8431 * 1 to remove old dir item 8432 * 1 to remove old dir index 8433 * 1 to add new dir item 8434 * 1 to add new dir index 8435 */ 8436 trans_num_items += 4; 8437 /* 1 to update new parent inode if it's not the same as the old parent */ 8438 if (new_dir != old_dir) 8439 trans_num_items++; 8440 if (new_inode) { 8441 /* 8442 * 1 to update inode 8443 * 1 to remove inode ref 8444 * 1 to remove dir item 8445 * 1 to remove dir index 8446 * 1 to possibly add orphan item 8447 */ 8448 trans_num_items += 5; 8449 } 8450 trans = btrfs_start_transaction(root, trans_num_items); 8451 if (IS_ERR(trans)) { 8452 ret = PTR_ERR(trans); 8453 goto out_notrans; 8454 } 8455 8456 if (dest != root) { 8457 ret = btrfs_record_root_in_trans(trans, dest); 8458 if (ret) 8459 goto out_fail; 8460 } 8461 8462 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8463 if (ret) 8464 goto out_fail; 8465 8466 BTRFS_I(old_inode)->dir_index = 0ULL; 8467 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8468 /* force full log commit if subvolume involved. */ 8469 btrfs_set_log_full_commit(trans); 8470 } else { 8471 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8472 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8473 index); 8474 if (ret) 8475 goto out_fail; 8476 } 8477 8478 inode_inc_iversion(old_dir); 8479 inode_inc_iversion(new_dir); 8480 inode_inc_iversion(old_inode); 8481 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8482 8483 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8484 /* 8485 * If we are renaming in the same directory (and it's not a 8486 * root entry) pin the log to prevent any concurrent task from 8487 * logging the directory after we removed the old entry and 8488 * before we add the new entry, otherwise that task can sync 8489 * a log without any entry for the inode we are renaming and 8490 * therefore replaying that log, if a power failure happens 8491 * after syncing the log, would result in deleting the inode. 8492 * 8493 * If the rename affects two different directories, we want to 8494 * make sure the that there's no log commit that contains 8495 * updates for only one of the directories but not for the 8496 * other. 8497 * 8498 * If we are renaming an entry for a root, we don't care about 8499 * log updates since we called btrfs_set_log_full_commit(). 8500 */ 8501 btrfs_pin_log_trans(root); 8502 btrfs_pin_log_trans(dest); 8503 logs_pinned = true; 8504 } 8505 8506 if (old_dentry->d_parent != new_dentry->d_parent) 8507 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8508 BTRFS_I(old_inode), true); 8509 8510 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8511 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8512 if (ret) { 8513 btrfs_abort_transaction(trans, ret); 8514 goto out_fail; 8515 } 8516 } else { 8517 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8518 BTRFS_I(d_inode(old_dentry)), 8519 &old_fname.disk_name, &rename_ctx); 8520 if (ret) { 8521 btrfs_abort_transaction(trans, ret); 8522 goto out_fail; 8523 } 8524 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8525 if (ret) { 8526 btrfs_abort_transaction(trans, ret); 8527 goto out_fail; 8528 } 8529 } 8530 8531 if (new_inode) { 8532 inode_inc_iversion(new_inode); 8533 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8534 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8535 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8536 if (ret) { 8537 btrfs_abort_transaction(trans, ret); 8538 goto out_fail; 8539 } 8540 BUG_ON(new_inode->i_nlink == 0); 8541 } else { 8542 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8543 BTRFS_I(d_inode(new_dentry)), 8544 &new_fname.disk_name); 8545 if (ret) { 8546 btrfs_abort_transaction(trans, ret); 8547 goto out_fail; 8548 } 8549 } 8550 if (new_inode->i_nlink == 0) { 8551 ret = btrfs_orphan_add(trans, 8552 BTRFS_I(d_inode(new_dentry))); 8553 if (ret) { 8554 btrfs_abort_transaction(trans, ret); 8555 goto out_fail; 8556 } 8557 } 8558 } 8559 8560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8561 &new_fname.disk_name, 0, index); 8562 if (ret) { 8563 btrfs_abort_transaction(trans, ret); 8564 goto out_fail; 8565 } 8566 8567 if (old_inode->i_nlink == 1) 8568 BTRFS_I(old_inode)->dir_index = index; 8569 8570 if (logs_pinned) 8571 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8572 rename_ctx.index, new_dentry->d_parent); 8573 8574 if (flags & RENAME_WHITEOUT) { 8575 ret = btrfs_create_new_inode(trans, &whiteout_args); 8576 if (ret) { 8577 btrfs_abort_transaction(trans, ret); 8578 goto out_fail; 8579 } else { 8580 unlock_new_inode(whiteout_args.inode); 8581 iput(whiteout_args.inode); 8582 whiteout_args.inode = NULL; 8583 } 8584 } 8585 out_fail: 8586 if (logs_pinned) { 8587 btrfs_end_log_trans(root); 8588 btrfs_end_log_trans(dest); 8589 } 8590 ret2 = btrfs_end_transaction(trans); 8591 ret = ret ? ret : ret2; 8592 out_notrans: 8593 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8594 up_read(&fs_info->subvol_sem); 8595 if (flags & RENAME_WHITEOUT) 8596 btrfs_new_inode_args_destroy(&whiteout_args); 8597 out_whiteout_inode: 8598 if (flags & RENAME_WHITEOUT) 8599 iput(whiteout_args.inode); 8600 out_fscrypt_names: 8601 fscrypt_free_filename(&old_fname); 8602 fscrypt_free_filename(&new_fname); 8603 return ret; 8604 } 8605 8606 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8607 struct dentry *old_dentry, struct inode *new_dir, 8608 struct dentry *new_dentry, unsigned int flags) 8609 { 8610 int ret; 8611 8612 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8613 return -EINVAL; 8614 8615 if (flags & RENAME_EXCHANGE) 8616 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8617 new_dentry); 8618 else 8619 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8620 new_dentry, flags); 8621 8622 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8623 8624 return ret; 8625 } 8626 8627 struct btrfs_delalloc_work { 8628 struct inode *inode; 8629 struct completion completion; 8630 struct list_head list; 8631 struct btrfs_work work; 8632 }; 8633 8634 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8635 { 8636 struct btrfs_delalloc_work *delalloc_work; 8637 struct inode *inode; 8638 8639 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8640 work); 8641 inode = delalloc_work->inode; 8642 filemap_flush(inode->i_mapping); 8643 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8644 &BTRFS_I(inode)->runtime_flags)) 8645 filemap_flush(inode->i_mapping); 8646 8647 iput(inode); 8648 complete(&delalloc_work->completion); 8649 } 8650 8651 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8652 { 8653 struct btrfs_delalloc_work *work; 8654 8655 work = kmalloc(sizeof(*work), GFP_NOFS); 8656 if (!work) 8657 return NULL; 8658 8659 init_completion(&work->completion); 8660 INIT_LIST_HEAD(&work->list); 8661 work->inode = inode; 8662 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8663 8664 return work; 8665 } 8666 8667 /* 8668 * some fairly slow code that needs optimization. This walks the list 8669 * of all the inodes with pending delalloc and forces them to disk. 8670 */ 8671 static int start_delalloc_inodes(struct btrfs_root *root, 8672 struct writeback_control *wbc, bool snapshot, 8673 bool in_reclaim_context) 8674 { 8675 struct btrfs_delalloc_work *work, *next; 8676 LIST_HEAD(works); 8677 LIST_HEAD(splice); 8678 int ret = 0; 8679 bool full_flush = wbc->nr_to_write == LONG_MAX; 8680 8681 mutex_lock(&root->delalloc_mutex); 8682 spin_lock(&root->delalloc_lock); 8683 list_splice_init(&root->delalloc_inodes, &splice); 8684 while (!list_empty(&splice)) { 8685 struct btrfs_inode *inode; 8686 struct inode *tmp_inode; 8687 8688 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8689 8690 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8691 8692 if (in_reclaim_context && 8693 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8694 continue; 8695 8696 tmp_inode = igrab(&inode->vfs_inode); 8697 if (!tmp_inode) { 8698 cond_resched_lock(&root->delalloc_lock); 8699 continue; 8700 } 8701 spin_unlock(&root->delalloc_lock); 8702 8703 if (snapshot) 8704 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8705 if (full_flush) { 8706 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8707 if (!work) { 8708 iput(&inode->vfs_inode); 8709 ret = -ENOMEM; 8710 goto out; 8711 } 8712 list_add_tail(&work->list, &works); 8713 btrfs_queue_work(root->fs_info->flush_workers, 8714 &work->work); 8715 } else { 8716 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8717 btrfs_add_delayed_iput(inode); 8718 if (ret || wbc->nr_to_write <= 0) 8719 goto out; 8720 } 8721 cond_resched(); 8722 spin_lock(&root->delalloc_lock); 8723 } 8724 spin_unlock(&root->delalloc_lock); 8725 8726 out: 8727 list_for_each_entry_safe(work, next, &works, list) { 8728 list_del_init(&work->list); 8729 wait_for_completion(&work->completion); 8730 kfree(work); 8731 } 8732 8733 if (!list_empty(&splice)) { 8734 spin_lock(&root->delalloc_lock); 8735 list_splice_tail(&splice, &root->delalloc_inodes); 8736 spin_unlock(&root->delalloc_lock); 8737 } 8738 mutex_unlock(&root->delalloc_mutex); 8739 return ret; 8740 } 8741 8742 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8743 { 8744 struct writeback_control wbc = { 8745 .nr_to_write = LONG_MAX, 8746 .sync_mode = WB_SYNC_NONE, 8747 .range_start = 0, 8748 .range_end = LLONG_MAX, 8749 }; 8750 struct btrfs_fs_info *fs_info = root->fs_info; 8751 8752 if (BTRFS_FS_ERROR(fs_info)) 8753 return -EROFS; 8754 8755 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8756 } 8757 8758 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8759 bool in_reclaim_context) 8760 { 8761 struct writeback_control wbc = { 8762 .nr_to_write = nr, 8763 .sync_mode = WB_SYNC_NONE, 8764 .range_start = 0, 8765 .range_end = LLONG_MAX, 8766 }; 8767 struct btrfs_root *root; 8768 LIST_HEAD(splice); 8769 int ret; 8770 8771 if (BTRFS_FS_ERROR(fs_info)) 8772 return -EROFS; 8773 8774 mutex_lock(&fs_info->delalloc_root_mutex); 8775 spin_lock(&fs_info->delalloc_root_lock); 8776 list_splice_init(&fs_info->delalloc_roots, &splice); 8777 while (!list_empty(&splice)) { 8778 /* 8779 * Reset nr_to_write here so we know that we're doing a full 8780 * flush. 8781 */ 8782 if (nr == LONG_MAX) 8783 wbc.nr_to_write = LONG_MAX; 8784 8785 root = list_first_entry(&splice, struct btrfs_root, 8786 delalloc_root); 8787 root = btrfs_grab_root(root); 8788 BUG_ON(!root); 8789 list_move_tail(&root->delalloc_root, 8790 &fs_info->delalloc_roots); 8791 spin_unlock(&fs_info->delalloc_root_lock); 8792 8793 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8794 btrfs_put_root(root); 8795 if (ret < 0 || wbc.nr_to_write <= 0) 8796 goto out; 8797 spin_lock(&fs_info->delalloc_root_lock); 8798 } 8799 spin_unlock(&fs_info->delalloc_root_lock); 8800 8801 ret = 0; 8802 out: 8803 if (!list_empty(&splice)) { 8804 spin_lock(&fs_info->delalloc_root_lock); 8805 list_splice_tail(&splice, &fs_info->delalloc_roots); 8806 spin_unlock(&fs_info->delalloc_root_lock); 8807 } 8808 mutex_unlock(&fs_info->delalloc_root_mutex); 8809 return ret; 8810 } 8811 8812 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8813 struct dentry *dentry, const char *symname) 8814 { 8815 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8816 struct btrfs_trans_handle *trans; 8817 struct btrfs_root *root = BTRFS_I(dir)->root; 8818 struct btrfs_path *path; 8819 struct btrfs_key key; 8820 struct inode *inode; 8821 struct btrfs_new_inode_args new_inode_args = { 8822 .dir = dir, 8823 .dentry = dentry, 8824 }; 8825 unsigned int trans_num_items; 8826 int err; 8827 int name_len; 8828 int datasize; 8829 unsigned long ptr; 8830 struct btrfs_file_extent_item *ei; 8831 struct extent_buffer *leaf; 8832 8833 name_len = strlen(symname); 8834 /* 8835 * Symlinks utilize uncompressed inline extent data, which should not 8836 * reach block size. 8837 */ 8838 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8839 name_len >= fs_info->sectorsize) 8840 return -ENAMETOOLONG; 8841 8842 inode = new_inode(dir->i_sb); 8843 if (!inode) 8844 return -ENOMEM; 8845 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8846 inode->i_op = &btrfs_symlink_inode_operations; 8847 inode_nohighmem(inode); 8848 inode->i_mapping->a_ops = &btrfs_aops; 8849 btrfs_i_size_write(BTRFS_I(inode), name_len); 8850 inode_set_bytes(inode, name_len); 8851 8852 new_inode_args.inode = inode; 8853 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8854 if (err) 8855 goto out_inode; 8856 /* 1 additional item for the inline extent */ 8857 trans_num_items++; 8858 8859 trans = btrfs_start_transaction(root, trans_num_items); 8860 if (IS_ERR(trans)) { 8861 err = PTR_ERR(trans); 8862 goto out_new_inode_args; 8863 } 8864 8865 err = btrfs_create_new_inode(trans, &new_inode_args); 8866 if (err) 8867 goto out; 8868 8869 path = btrfs_alloc_path(); 8870 if (!path) { 8871 err = -ENOMEM; 8872 btrfs_abort_transaction(trans, err); 8873 discard_new_inode(inode); 8874 inode = NULL; 8875 goto out; 8876 } 8877 key.objectid = btrfs_ino(BTRFS_I(inode)); 8878 key.type = BTRFS_EXTENT_DATA_KEY; 8879 key.offset = 0; 8880 datasize = btrfs_file_extent_calc_inline_size(name_len); 8881 err = btrfs_insert_empty_item(trans, root, path, &key, 8882 datasize); 8883 if (err) { 8884 btrfs_abort_transaction(trans, err); 8885 btrfs_free_path(path); 8886 discard_new_inode(inode); 8887 inode = NULL; 8888 goto out; 8889 } 8890 leaf = path->nodes[0]; 8891 ei = btrfs_item_ptr(leaf, path->slots[0], 8892 struct btrfs_file_extent_item); 8893 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8894 btrfs_set_file_extent_type(leaf, ei, 8895 BTRFS_FILE_EXTENT_INLINE); 8896 btrfs_set_file_extent_encryption(leaf, ei, 0); 8897 btrfs_set_file_extent_compression(leaf, ei, 0); 8898 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8899 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8900 8901 ptr = btrfs_file_extent_inline_start(ei); 8902 write_extent_buffer(leaf, symname, ptr, name_len); 8903 btrfs_free_path(path); 8904 8905 d_instantiate_new(dentry, inode); 8906 err = 0; 8907 out: 8908 btrfs_end_transaction(trans); 8909 btrfs_btree_balance_dirty(fs_info); 8910 out_new_inode_args: 8911 btrfs_new_inode_args_destroy(&new_inode_args); 8912 out_inode: 8913 if (err) 8914 iput(inode); 8915 return err; 8916 } 8917 8918 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8919 struct btrfs_trans_handle *trans_in, 8920 struct btrfs_inode *inode, 8921 struct btrfs_key *ins, 8922 u64 file_offset) 8923 { 8924 struct btrfs_file_extent_item stack_fi; 8925 struct btrfs_replace_extent_info extent_info; 8926 struct btrfs_trans_handle *trans = trans_in; 8927 struct btrfs_path *path; 8928 u64 start = ins->objectid; 8929 u64 len = ins->offset; 8930 u64 qgroup_released = 0; 8931 int ret; 8932 8933 memset(&stack_fi, 0, sizeof(stack_fi)); 8934 8935 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8936 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8937 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8938 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8939 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8940 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8941 /* Encryption and other encoding is reserved and all 0 */ 8942 8943 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8944 if (ret < 0) 8945 return ERR_PTR(ret); 8946 8947 if (trans) { 8948 ret = insert_reserved_file_extent(trans, inode, 8949 file_offset, &stack_fi, 8950 true, qgroup_released); 8951 if (ret) 8952 goto free_qgroup; 8953 return trans; 8954 } 8955 8956 extent_info.disk_offset = start; 8957 extent_info.disk_len = len; 8958 extent_info.data_offset = 0; 8959 extent_info.data_len = len; 8960 extent_info.file_offset = file_offset; 8961 extent_info.extent_buf = (char *)&stack_fi; 8962 extent_info.is_new_extent = true; 8963 extent_info.update_times = true; 8964 extent_info.qgroup_reserved = qgroup_released; 8965 extent_info.insertions = 0; 8966 8967 path = btrfs_alloc_path(); 8968 if (!path) { 8969 ret = -ENOMEM; 8970 goto free_qgroup; 8971 } 8972 8973 ret = btrfs_replace_file_extents(inode, path, file_offset, 8974 file_offset + len - 1, &extent_info, 8975 &trans); 8976 btrfs_free_path(path); 8977 if (ret) 8978 goto free_qgroup; 8979 return trans; 8980 8981 free_qgroup: 8982 /* 8983 * We have released qgroup data range at the beginning of the function, 8984 * and normally qgroup_released bytes will be freed when committing 8985 * transaction. 8986 * But if we error out early, we have to free what we have released 8987 * or we leak qgroup data reservation. 8988 */ 8989 btrfs_qgroup_free_refroot(inode->root->fs_info, 8990 btrfs_root_id(inode->root), qgroup_released, 8991 BTRFS_QGROUP_RSV_DATA); 8992 return ERR_PTR(ret); 8993 } 8994 8995 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8996 u64 start, u64 num_bytes, u64 min_size, 8997 loff_t actual_len, u64 *alloc_hint, 8998 struct btrfs_trans_handle *trans) 8999 { 9000 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9001 struct extent_map *em; 9002 struct btrfs_root *root = BTRFS_I(inode)->root; 9003 struct btrfs_key ins; 9004 u64 cur_offset = start; 9005 u64 clear_offset = start; 9006 u64 i_size; 9007 u64 cur_bytes; 9008 u64 last_alloc = (u64)-1; 9009 int ret = 0; 9010 bool own_trans = true; 9011 u64 end = start + num_bytes - 1; 9012 9013 if (trans) 9014 own_trans = false; 9015 while (num_bytes > 0) { 9016 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9017 cur_bytes = max(cur_bytes, min_size); 9018 /* 9019 * If we are severely fragmented we could end up with really 9020 * small allocations, so if the allocator is returning small 9021 * chunks lets make its job easier by only searching for those 9022 * sized chunks. 9023 */ 9024 cur_bytes = min(cur_bytes, last_alloc); 9025 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9026 min_size, 0, *alloc_hint, &ins, 1, 0); 9027 if (ret) 9028 break; 9029 9030 /* 9031 * We've reserved this space, and thus converted it from 9032 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9033 * from here on out we will only need to clear our reservation 9034 * for the remaining unreserved area, so advance our 9035 * clear_offset by our extent size. 9036 */ 9037 clear_offset += ins.offset; 9038 9039 last_alloc = ins.offset; 9040 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9041 &ins, cur_offset); 9042 /* 9043 * Now that we inserted the prealloc extent we can finally 9044 * decrement the number of reservations in the block group. 9045 * If we did it before, we could race with relocation and have 9046 * relocation miss the reserved extent, making it fail later. 9047 */ 9048 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9049 if (IS_ERR(trans)) { 9050 ret = PTR_ERR(trans); 9051 btrfs_free_reserved_extent(fs_info, ins.objectid, 9052 ins.offset, false); 9053 break; 9054 } 9055 9056 em = btrfs_alloc_extent_map(); 9057 if (!em) { 9058 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9059 cur_offset + ins.offset - 1, false); 9060 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9061 goto next; 9062 } 9063 9064 em->start = cur_offset; 9065 em->len = ins.offset; 9066 em->disk_bytenr = ins.objectid; 9067 em->offset = 0; 9068 em->disk_num_bytes = ins.offset; 9069 em->ram_bytes = ins.offset; 9070 em->flags |= EXTENT_FLAG_PREALLOC; 9071 em->generation = trans->transid; 9072 9073 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9074 btrfs_free_extent_map(em); 9075 next: 9076 num_bytes -= ins.offset; 9077 cur_offset += ins.offset; 9078 *alloc_hint = ins.objectid + ins.offset; 9079 9080 inode_inc_iversion(inode); 9081 inode_set_ctime_current(inode); 9082 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9083 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9084 (actual_len > inode->i_size) && 9085 (cur_offset > inode->i_size)) { 9086 if (cur_offset > actual_len) 9087 i_size = actual_len; 9088 else 9089 i_size = cur_offset; 9090 i_size_write(inode, i_size); 9091 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9092 } 9093 9094 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9095 9096 if (ret) { 9097 btrfs_abort_transaction(trans, ret); 9098 if (own_trans) 9099 btrfs_end_transaction(trans); 9100 break; 9101 } 9102 9103 if (own_trans) { 9104 btrfs_end_transaction(trans); 9105 trans = NULL; 9106 } 9107 } 9108 if (clear_offset < end) 9109 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9110 end - clear_offset + 1); 9111 return ret; 9112 } 9113 9114 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9115 u64 start, u64 num_bytes, u64 min_size, 9116 loff_t actual_len, u64 *alloc_hint) 9117 { 9118 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9119 min_size, actual_len, alloc_hint, 9120 NULL); 9121 } 9122 9123 int btrfs_prealloc_file_range_trans(struct inode *inode, 9124 struct btrfs_trans_handle *trans, int mode, 9125 u64 start, u64 num_bytes, u64 min_size, 9126 loff_t actual_len, u64 *alloc_hint) 9127 { 9128 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9129 min_size, actual_len, alloc_hint, trans); 9130 } 9131 9132 static int btrfs_permission(struct mnt_idmap *idmap, 9133 struct inode *inode, int mask) 9134 { 9135 struct btrfs_root *root = BTRFS_I(inode)->root; 9136 umode_t mode = inode->i_mode; 9137 9138 if (mask & MAY_WRITE && 9139 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9140 if (btrfs_root_readonly(root)) 9141 return -EROFS; 9142 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9143 return -EACCES; 9144 } 9145 return generic_permission(idmap, inode, mask); 9146 } 9147 9148 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9149 struct file *file, umode_t mode) 9150 { 9151 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9152 struct btrfs_trans_handle *trans; 9153 struct btrfs_root *root = BTRFS_I(dir)->root; 9154 struct inode *inode; 9155 struct btrfs_new_inode_args new_inode_args = { 9156 .dir = dir, 9157 .dentry = file->f_path.dentry, 9158 .orphan = true, 9159 }; 9160 unsigned int trans_num_items; 9161 int ret; 9162 9163 inode = new_inode(dir->i_sb); 9164 if (!inode) 9165 return -ENOMEM; 9166 inode_init_owner(idmap, inode, dir, mode); 9167 inode->i_fop = &btrfs_file_operations; 9168 inode->i_op = &btrfs_file_inode_operations; 9169 inode->i_mapping->a_ops = &btrfs_aops; 9170 9171 new_inode_args.inode = inode; 9172 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9173 if (ret) 9174 goto out_inode; 9175 9176 trans = btrfs_start_transaction(root, trans_num_items); 9177 if (IS_ERR(trans)) { 9178 ret = PTR_ERR(trans); 9179 goto out_new_inode_args; 9180 } 9181 9182 ret = btrfs_create_new_inode(trans, &new_inode_args); 9183 9184 /* 9185 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9186 * set it to 1 because d_tmpfile() will issue a warning if the count is 9187 * 0, through: 9188 * 9189 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9190 */ 9191 set_nlink(inode, 1); 9192 9193 if (!ret) { 9194 d_tmpfile(file, inode); 9195 unlock_new_inode(inode); 9196 mark_inode_dirty(inode); 9197 } 9198 9199 btrfs_end_transaction(trans); 9200 btrfs_btree_balance_dirty(fs_info); 9201 out_new_inode_args: 9202 btrfs_new_inode_args_destroy(&new_inode_args); 9203 out_inode: 9204 if (ret) 9205 iput(inode); 9206 return finish_open_simple(file, ret); 9207 } 9208 9209 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9210 int compress_type) 9211 { 9212 switch (compress_type) { 9213 case BTRFS_COMPRESS_NONE: 9214 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9215 case BTRFS_COMPRESS_ZLIB: 9216 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9217 case BTRFS_COMPRESS_LZO: 9218 /* 9219 * The LZO format depends on the sector size. 64K is the maximum 9220 * sector size that we support. 9221 */ 9222 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9223 return -EINVAL; 9224 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9225 (fs_info->sectorsize_bits - 12); 9226 case BTRFS_COMPRESS_ZSTD: 9227 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9228 default: 9229 return -EUCLEAN; 9230 } 9231 } 9232 9233 static ssize_t btrfs_encoded_read_inline( 9234 struct kiocb *iocb, 9235 struct iov_iter *iter, u64 start, 9236 u64 lockend, 9237 struct extent_state **cached_state, 9238 u64 extent_start, size_t count, 9239 struct btrfs_ioctl_encoded_io_args *encoded, 9240 bool *unlocked) 9241 { 9242 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9243 struct btrfs_root *root = inode->root; 9244 struct btrfs_fs_info *fs_info = root->fs_info; 9245 struct extent_io_tree *io_tree = &inode->io_tree; 9246 BTRFS_PATH_AUTO_FREE(path); 9247 struct extent_buffer *leaf; 9248 struct btrfs_file_extent_item *item; 9249 u64 ram_bytes; 9250 unsigned long ptr; 9251 void *tmp; 9252 ssize_t ret; 9253 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9254 9255 path = btrfs_alloc_path(); 9256 if (!path) 9257 return -ENOMEM; 9258 9259 path->nowait = nowait; 9260 9261 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9262 extent_start, 0); 9263 if (ret) { 9264 if (ret > 0) { 9265 /* The extent item disappeared? */ 9266 return -EIO; 9267 } 9268 return ret; 9269 } 9270 leaf = path->nodes[0]; 9271 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9272 9273 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9274 ptr = btrfs_file_extent_inline_start(item); 9275 9276 encoded->len = min_t(u64, extent_start + ram_bytes, 9277 inode->vfs_inode.i_size) - iocb->ki_pos; 9278 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9279 btrfs_file_extent_compression(leaf, item)); 9280 if (ret < 0) 9281 return ret; 9282 encoded->compression = ret; 9283 if (encoded->compression) { 9284 size_t inline_size; 9285 9286 inline_size = btrfs_file_extent_inline_item_len(leaf, 9287 path->slots[0]); 9288 if (inline_size > count) 9289 return -ENOBUFS; 9290 9291 count = inline_size; 9292 encoded->unencoded_len = ram_bytes; 9293 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9294 } else { 9295 count = min_t(u64, count, encoded->len); 9296 encoded->len = count; 9297 encoded->unencoded_len = count; 9298 ptr += iocb->ki_pos - extent_start; 9299 } 9300 9301 tmp = kmalloc(count, GFP_NOFS); 9302 if (!tmp) 9303 return -ENOMEM; 9304 9305 read_extent_buffer(leaf, tmp, ptr, count); 9306 btrfs_release_path(path); 9307 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9308 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9309 *unlocked = true; 9310 9311 ret = copy_to_iter(tmp, count, iter); 9312 if (ret != count) 9313 ret = -EFAULT; 9314 kfree(tmp); 9315 9316 return ret; 9317 } 9318 9319 struct btrfs_encoded_read_private { 9320 struct completion *sync_reads; 9321 void *uring_ctx; 9322 refcount_t pending_refs; 9323 blk_status_t status; 9324 }; 9325 9326 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9327 { 9328 struct btrfs_encoded_read_private *priv = bbio->private; 9329 9330 if (bbio->bio.bi_status) { 9331 /* 9332 * The memory barrier implied by the refcount_dec_and_test() here 9333 * pairs with the memory barrier implied by the refcount_dec_and_test() 9334 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9335 * this write is observed before the load of status in 9336 * btrfs_encoded_read_regular_fill_pages(). 9337 */ 9338 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9339 } 9340 if (refcount_dec_and_test(&priv->pending_refs)) { 9341 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9342 9343 if (priv->uring_ctx) { 9344 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9345 kfree(priv); 9346 } else { 9347 complete(priv->sync_reads); 9348 } 9349 } 9350 bio_put(&bbio->bio); 9351 } 9352 9353 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9354 u64 disk_bytenr, u64 disk_io_size, 9355 struct page **pages, void *uring_ctx) 9356 { 9357 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9358 struct btrfs_encoded_read_private *priv, sync_priv; 9359 struct completion sync_reads; 9360 unsigned long i = 0; 9361 struct btrfs_bio *bbio; 9362 int ret; 9363 9364 /* 9365 * Fast path for synchronous reads which completes in this call, io_uring 9366 * needs longer time span. 9367 */ 9368 if (uring_ctx) { 9369 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9370 if (!priv) 9371 return -ENOMEM; 9372 } else { 9373 priv = &sync_priv; 9374 init_completion(&sync_reads); 9375 priv->sync_reads = &sync_reads; 9376 } 9377 9378 refcount_set(&priv->pending_refs, 1); 9379 priv->status = 0; 9380 priv->uring_ctx = uring_ctx; 9381 9382 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9383 btrfs_encoded_read_endio, priv); 9384 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9385 bbio->inode = inode; 9386 9387 do { 9388 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9389 9390 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9391 refcount_inc(&priv->pending_refs); 9392 btrfs_submit_bbio(bbio, 0); 9393 9394 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9395 btrfs_encoded_read_endio, priv); 9396 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9397 bbio->inode = inode; 9398 continue; 9399 } 9400 9401 i++; 9402 disk_bytenr += bytes; 9403 disk_io_size -= bytes; 9404 } while (disk_io_size); 9405 9406 refcount_inc(&priv->pending_refs); 9407 btrfs_submit_bbio(bbio, 0); 9408 9409 if (uring_ctx) { 9410 if (refcount_dec_and_test(&priv->pending_refs)) { 9411 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9412 btrfs_uring_read_extent_endio(uring_ctx, ret); 9413 kfree(priv); 9414 return ret; 9415 } 9416 9417 return -EIOCBQUEUED; 9418 } else { 9419 if (!refcount_dec_and_test(&priv->pending_refs)) 9420 wait_for_completion_io(&sync_reads); 9421 /* See btrfs_encoded_read_endio() for ordering. */ 9422 return blk_status_to_errno(READ_ONCE(priv->status)); 9423 } 9424 } 9425 9426 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9427 u64 start, u64 lockend, 9428 struct extent_state **cached_state, 9429 u64 disk_bytenr, u64 disk_io_size, 9430 size_t count, bool compressed, bool *unlocked) 9431 { 9432 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9433 struct extent_io_tree *io_tree = &inode->io_tree; 9434 struct page **pages; 9435 unsigned long nr_pages, i; 9436 u64 cur; 9437 size_t page_offset; 9438 ssize_t ret; 9439 9440 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9441 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9442 if (!pages) 9443 return -ENOMEM; 9444 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9445 if (ret) { 9446 ret = -ENOMEM; 9447 goto out; 9448 } 9449 9450 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9451 disk_io_size, pages, NULL); 9452 if (ret) 9453 goto out; 9454 9455 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9456 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9457 *unlocked = true; 9458 9459 if (compressed) { 9460 i = 0; 9461 page_offset = 0; 9462 } else { 9463 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9464 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9465 } 9466 cur = 0; 9467 while (cur < count) { 9468 size_t bytes = min_t(size_t, count - cur, 9469 PAGE_SIZE - page_offset); 9470 9471 if (copy_page_to_iter(pages[i], page_offset, bytes, 9472 iter) != bytes) { 9473 ret = -EFAULT; 9474 goto out; 9475 } 9476 i++; 9477 cur += bytes; 9478 page_offset = 0; 9479 } 9480 ret = count; 9481 out: 9482 for (i = 0; i < nr_pages; i++) { 9483 if (pages[i]) 9484 __free_page(pages[i]); 9485 } 9486 kfree(pages); 9487 return ret; 9488 } 9489 9490 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9491 struct btrfs_ioctl_encoded_io_args *encoded, 9492 struct extent_state **cached_state, 9493 u64 *disk_bytenr, u64 *disk_io_size) 9494 { 9495 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9496 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9497 struct extent_io_tree *io_tree = &inode->io_tree; 9498 ssize_t ret; 9499 size_t count = iov_iter_count(iter); 9500 u64 start, lockend; 9501 struct extent_map *em; 9502 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9503 bool unlocked = false; 9504 9505 file_accessed(iocb->ki_filp); 9506 9507 ret = btrfs_inode_lock(inode, 9508 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9509 if (ret) 9510 return ret; 9511 9512 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9513 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9514 return 0; 9515 } 9516 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9517 /* 9518 * We don't know how long the extent containing iocb->ki_pos is, but if 9519 * it's compressed we know that it won't be longer than this. 9520 */ 9521 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9522 9523 if (nowait) { 9524 struct btrfs_ordered_extent *ordered; 9525 9526 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9527 start, lockend)) { 9528 ret = -EAGAIN; 9529 goto out_unlock_inode; 9530 } 9531 9532 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9533 ret = -EAGAIN; 9534 goto out_unlock_inode; 9535 } 9536 9537 ordered = btrfs_lookup_ordered_range(inode, start, 9538 lockend - start + 1); 9539 if (ordered) { 9540 btrfs_put_ordered_extent(ordered); 9541 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9542 ret = -EAGAIN; 9543 goto out_unlock_inode; 9544 } 9545 } else { 9546 for (;;) { 9547 struct btrfs_ordered_extent *ordered; 9548 9549 ret = btrfs_wait_ordered_range(inode, start, 9550 lockend - start + 1); 9551 if (ret) 9552 goto out_unlock_inode; 9553 9554 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9555 ordered = btrfs_lookup_ordered_range(inode, start, 9556 lockend - start + 1); 9557 if (!ordered) 9558 break; 9559 btrfs_put_ordered_extent(ordered); 9560 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9561 cond_resched(); 9562 } 9563 } 9564 9565 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9566 if (IS_ERR(em)) { 9567 ret = PTR_ERR(em); 9568 goto out_unlock_extent; 9569 } 9570 9571 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9572 u64 extent_start = em->start; 9573 9574 /* 9575 * For inline extents we get everything we need out of the 9576 * extent item. 9577 */ 9578 btrfs_free_extent_map(em); 9579 em = NULL; 9580 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9581 cached_state, extent_start, 9582 count, encoded, &unlocked); 9583 goto out_unlock_extent; 9584 } 9585 9586 /* 9587 * We only want to return up to EOF even if the extent extends beyond 9588 * that. 9589 */ 9590 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9591 inode->vfs_inode.i_size) - iocb->ki_pos; 9592 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9593 (em->flags & EXTENT_FLAG_PREALLOC)) { 9594 *disk_bytenr = EXTENT_MAP_HOLE; 9595 count = min_t(u64, count, encoded->len); 9596 encoded->len = count; 9597 encoded->unencoded_len = count; 9598 } else if (btrfs_extent_map_is_compressed(em)) { 9599 *disk_bytenr = em->disk_bytenr; 9600 /* 9601 * Bail if the buffer isn't large enough to return the whole 9602 * compressed extent. 9603 */ 9604 if (em->disk_num_bytes > count) { 9605 ret = -ENOBUFS; 9606 goto out_em; 9607 } 9608 *disk_io_size = em->disk_num_bytes; 9609 count = em->disk_num_bytes; 9610 encoded->unencoded_len = em->ram_bytes; 9611 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9612 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9613 btrfs_extent_map_compression(em)); 9614 if (ret < 0) 9615 goto out_em; 9616 encoded->compression = ret; 9617 } else { 9618 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9619 if (encoded->len > count) 9620 encoded->len = count; 9621 /* 9622 * Don't read beyond what we locked. This also limits the page 9623 * allocations that we'll do. 9624 */ 9625 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9626 count = start + *disk_io_size - iocb->ki_pos; 9627 encoded->len = count; 9628 encoded->unencoded_len = count; 9629 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9630 } 9631 btrfs_free_extent_map(em); 9632 em = NULL; 9633 9634 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9635 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9636 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9637 unlocked = true; 9638 ret = iov_iter_zero(count, iter); 9639 if (ret != count) 9640 ret = -EFAULT; 9641 } else { 9642 ret = -EIOCBQUEUED; 9643 goto out_unlock_extent; 9644 } 9645 9646 out_em: 9647 btrfs_free_extent_map(em); 9648 out_unlock_extent: 9649 /* Leave inode and extent locked if we need to do a read. */ 9650 if (!unlocked && ret != -EIOCBQUEUED) 9651 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9652 out_unlock_inode: 9653 if (!unlocked && ret != -EIOCBQUEUED) 9654 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9655 return ret; 9656 } 9657 9658 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9659 const struct btrfs_ioctl_encoded_io_args *encoded) 9660 { 9661 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9662 struct btrfs_root *root = inode->root; 9663 struct btrfs_fs_info *fs_info = root->fs_info; 9664 struct extent_io_tree *io_tree = &inode->io_tree; 9665 struct extent_changeset *data_reserved = NULL; 9666 struct extent_state *cached_state = NULL; 9667 struct btrfs_ordered_extent *ordered; 9668 struct btrfs_file_extent file_extent; 9669 int compression; 9670 size_t orig_count; 9671 u64 start, end; 9672 u64 num_bytes, ram_bytes, disk_num_bytes; 9673 unsigned long nr_folios, i; 9674 struct folio **folios; 9675 struct btrfs_key ins; 9676 bool extent_reserved = false; 9677 struct extent_map *em; 9678 ssize_t ret; 9679 9680 switch (encoded->compression) { 9681 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9682 compression = BTRFS_COMPRESS_ZLIB; 9683 break; 9684 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9685 compression = BTRFS_COMPRESS_ZSTD; 9686 break; 9687 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9688 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9691 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9692 /* The sector size must match for LZO. */ 9693 if (encoded->compression - 9694 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9695 fs_info->sectorsize_bits) 9696 return -EINVAL; 9697 compression = BTRFS_COMPRESS_LZO; 9698 break; 9699 default: 9700 return -EINVAL; 9701 } 9702 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9703 return -EINVAL; 9704 9705 /* 9706 * Compressed extents should always have checksums, so error out if we 9707 * have a NOCOW file or inode was created while mounted with NODATASUM. 9708 */ 9709 if (inode->flags & BTRFS_INODE_NODATASUM) 9710 return -EINVAL; 9711 9712 orig_count = iov_iter_count(from); 9713 9714 /* The extent size must be sane. */ 9715 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9716 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9717 return -EINVAL; 9718 9719 /* 9720 * The compressed data must be smaller than the decompressed data. 9721 * 9722 * It's of course possible for data to compress to larger or the same 9723 * size, but the buffered I/O path falls back to no compression for such 9724 * data, and we don't want to break any assumptions by creating these 9725 * extents. 9726 * 9727 * Note that this is less strict than the current check we have that the 9728 * compressed data must be at least one sector smaller than the 9729 * decompressed data. We only want to enforce the weaker requirement 9730 * from old kernels that it is at least one byte smaller. 9731 */ 9732 if (orig_count >= encoded->unencoded_len) 9733 return -EINVAL; 9734 9735 /* The extent must start on a sector boundary. */ 9736 start = iocb->ki_pos; 9737 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9738 return -EINVAL; 9739 9740 /* 9741 * The extent must end on a sector boundary. However, we allow a write 9742 * which ends at or extends i_size to have an unaligned length; we round 9743 * up the extent size and set i_size to the unaligned end. 9744 */ 9745 if (start + encoded->len < inode->vfs_inode.i_size && 9746 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9747 return -EINVAL; 9748 9749 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9750 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9751 return -EINVAL; 9752 9753 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9754 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9755 end = start + num_bytes - 1; 9756 9757 /* 9758 * If the extent cannot be inline, the compressed data on disk must be 9759 * sector-aligned. For convenience, we extend it with zeroes if it 9760 * isn't. 9761 */ 9762 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9763 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9764 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9765 if (!folios) 9766 return -ENOMEM; 9767 for (i = 0; i < nr_folios; i++) { 9768 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9769 char *kaddr; 9770 9771 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9772 if (!folios[i]) { 9773 ret = -ENOMEM; 9774 goto out_folios; 9775 } 9776 kaddr = kmap_local_folio(folios[i], 0); 9777 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9778 kunmap_local(kaddr); 9779 ret = -EFAULT; 9780 goto out_folios; 9781 } 9782 if (bytes < PAGE_SIZE) 9783 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9784 kunmap_local(kaddr); 9785 } 9786 9787 for (;;) { 9788 struct btrfs_ordered_extent *ordered; 9789 9790 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9791 if (ret) 9792 goto out_folios; 9793 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9794 start >> PAGE_SHIFT, 9795 end >> PAGE_SHIFT); 9796 if (ret) 9797 goto out_folios; 9798 btrfs_lock_extent(io_tree, start, end, &cached_state); 9799 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9800 if (!ordered && 9801 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9802 break; 9803 if (ordered) 9804 btrfs_put_ordered_extent(ordered); 9805 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9806 cond_resched(); 9807 } 9808 9809 /* 9810 * We don't use the higher-level delalloc space functions because our 9811 * num_bytes and disk_num_bytes are different. 9812 */ 9813 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9814 if (ret) 9815 goto out_unlock; 9816 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9817 if (ret) 9818 goto out_free_data_space; 9819 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9820 false); 9821 if (ret) 9822 goto out_qgroup_free_data; 9823 9824 /* Try an inline extent first. */ 9825 if (encoded->unencoded_len == encoded->len && 9826 encoded->unencoded_offset == 0 && 9827 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9828 ret = __cow_file_range_inline(inode, encoded->len, 9829 orig_count, compression, folios[0], 9830 true); 9831 if (ret <= 0) { 9832 if (ret == 0) 9833 ret = orig_count; 9834 goto out_delalloc_release; 9835 } 9836 } 9837 9838 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9839 disk_num_bytes, 0, 0, &ins, 1, 1); 9840 if (ret) 9841 goto out_delalloc_release; 9842 extent_reserved = true; 9843 9844 file_extent.disk_bytenr = ins.objectid; 9845 file_extent.disk_num_bytes = ins.offset; 9846 file_extent.num_bytes = num_bytes; 9847 file_extent.ram_bytes = ram_bytes; 9848 file_extent.offset = encoded->unencoded_offset; 9849 file_extent.compression = compression; 9850 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9851 if (IS_ERR(em)) { 9852 ret = PTR_ERR(em); 9853 goto out_free_reserved; 9854 } 9855 btrfs_free_extent_map(em); 9856 9857 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9858 (1U << BTRFS_ORDERED_ENCODED) | 9859 (1U << BTRFS_ORDERED_COMPRESSED)); 9860 if (IS_ERR(ordered)) { 9861 btrfs_drop_extent_map_range(inode, start, end, false); 9862 ret = PTR_ERR(ordered); 9863 goto out_free_reserved; 9864 } 9865 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9866 9867 if (start + encoded->len > inode->vfs_inode.i_size) 9868 i_size_write(&inode->vfs_inode, start + encoded->len); 9869 9870 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9871 9872 btrfs_delalloc_release_extents(inode, num_bytes); 9873 9874 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9875 ret = orig_count; 9876 goto out; 9877 9878 out_free_reserved: 9879 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9880 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9881 out_delalloc_release: 9882 btrfs_delalloc_release_extents(inode, num_bytes); 9883 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9884 out_qgroup_free_data: 9885 if (ret < 0) 9886 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9887 out_free_data_space: 9888 /* 9889 * If btrfs_reserve_extent() succeeded, then we already decremented 9890 * bytes_may_use. 9891 */ 9892 if (!extent_reserved) 9893 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9894 out_unlock: 9895 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9896 out_folios: 9897 for (i = 0; i < nr_folios; i++) { 9898 if (folios[i]) 9899 folio_put(folios[i]); 9900 } 9901 kvfree(folios); 9902 out: 9903 if (ret >= 0) 9904 iocb->ki_pos += encoded->len; 9905 return ret; 9906 } 9907 9908 #ifdef CONFIG_SWAP 9909 /* 9910 * Add an entry indicating a block group or device which is pinned by a 9911 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9912 * negative errno on failure. 9913 */ 9914 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9915 bool is_block_group) 9916 { 9917 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9918 struct btrfs_swapfile_pin *sp, *entry; 9919 struct rb_node **p; 9920 struct rb_node *parent = NULL; 9921 9922 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9923 if (!sp) 9924 return -ENOMEM; 9925 sp->ptr = ptr; 9926 sp->inode = inode; 9927 sp->is_block_group = is_block_group; 9928 sp->bg_extent_count = 1; 9929 9930 spin_lock(&fs_info->swapfile_pins_lock); 9931 p = &fs_info->swapfile_pins.rb_node; 9932 while (*p) { 9933 parent = *p; 9934 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9935 if (sp->ptr < entry->ptr || 9936 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9937 p = &(*p)->rb_left; 9938 } else if (sp->ptr > entry->ptr || 9939 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9940 p = &(*p)->rb_right; 9941 } else { 9942 if (is_block_group) 9943 entry->bg_extent_count++; 9944 spin_unlock(&fs_info->swapfile_pins_lock); 9945 kfree(sp); 9946 return 1; 9947 } 9948 } 9949 rb_link_node(&sp->node, parent, p); 9950 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9951 spin_unlock(&fs_info->swapfile_pins_lock); 9952 return 0; 9953 } 9954 9955 /* Free all of the entries pinned by this swapfile. */ 9956 static void btrfs_free_swapfile_pins(struct inode *inode) 9957 { 9958 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9959 struct btrfs_swapfile_pin *sp; 9960 struct rb_node *node, *next; 9961 9962 spin_lock(&fs_info->swapfile_pins_lock); 9963 node = rb_first(&fs_info->swapfile_pins); 9964 while (node) { 9965 next = rb_next(node); 9966 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9967 if (sp->inode == inode) { 9968 rb_erase(&sp->node, &fs_info->swapfile_pins); 9969 if (sp->is_block_group) { 9970 btrfs_dec_block_group_swap_extents(sp->ptr, 9971 sp->bg_extent_count); 9972 btrfs_put_block_group(sp->ptr); 9973 } 9974 kfree(sp); 9975 } 9976 node = next; 9977 } 9978 spin_unlock(&fs_info->swapfile_pins_lock); 9979 } 9980 9981 struct btrfs_swap_info { 9982 u64 start; 9983 u64 block_start; 9984 u64 block_len; 9985 u64 lowest_ppage; 9986 u64 highest_ppage; 9987 unsigned long nr_pages; 9988 int nr_extents; 9989 }; 9990 9991 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9992 struct btrfs_swap_info *bsi) 9993 { 9994 unsigned long nr_pages; 9995 unsigned long max_pages; 9996 u64 first_ppage, first_ppage_reported, next_ppage; 9997 int ret; 9998 9999 /* 10000 * Our swapfile may have had its size extended after the swap header was 10001 * written. In that case activating the swapfile should not go beyond 10002 * the max size set in the swap header. 10003 */ 10004 if (bsi->nr_pages >= sis->max) 10005 return 0; 10006 10007 max_pages = sis->max - bsi->nr_pages; 10008 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10009 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10010 10011 if (first_ppage >= next_ppage) 10012 return 0; 10013 nr_pages = next_ppage - first_ppage; 10014 nr_pages = min(nr_pages, max_pages); 10015 10016 first_ppage_reported = first_ppage; 10017 if (bsi->start == 0) 10018 first_ppage_reported++; 10019 if (bsi->lowest_ppage > first_ppage_reported) 10020 bsi->lowest_ppage = first_ppage_reported; 10021 if (bsi->highest_ppage < (next_ppage - 1)) 10022 bsi->highest_ppage = next_ppage - 1; 10023 10024 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10025 if (ret < 0) 10026 return ret; 10027 bsi->nr_extents += ret; 10028 bsi->nr_pages += nr_pages; 10029 return 0; 10030 } 10031 10032 static void btrfs_swap_deactivate(struct file *file) 10033 { 10034 struct inode *inode = file_inode(file); 10035 10036 btrfs_free_swapfile_pins(inode); 10037 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10038 } 10039 10040 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10041 sector_t *span) 10042 { 10043 struct inode *inode = file_inode(file); 10044 struct btrfs_root *root = BTRFS_I(inode)->root; 10045 struct btrfs_fs_info *fs_info = root->fs_info; 10046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10047 struct extent_state *cached_state = NULL; 10048 struct btrfs_chunk_map *map = NULL; 10049 struct btrfs_device *device = NULL; 10050 struct btrfs_swap_info bsi = { 10051 .lowest_ppage = (sector_t)-1ULL, 10052 }; 10053 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10054 struct btrfs_path *path = NULL; 10055 int ret = 0; 10056 u64 isize; 10057 u64 prev_extent_end = 0; 10058 10059 /* 10060 * Acquire the inode's mmap lock to prevent races with memory mapped 10061 * writes, as they could happen after we flush delalloc below and before 10062 * we lock the extent range further below. The inode was already locked 10063 * up in the call chain. 10064 */ 10065 btrfs_assert_inode_locked(BTRFS_I(inode)); 10066 down_write(&BTRFS_I(inode)->i_mmap_lock); 10067 10068 /* 10069 * If the swap file was just created, make sure delalloc is done. If the 10070 * file changes again after this, the user is doing something stupid and 10071 * we don't really care. 10072 */ 10073 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10074 if (ret) 10075 goto out_unlock_mmap; 10076 10077 /* 10078 * The inode is locked, so these flags won't change after we check them. 10079 */ 10080 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10081 btrfs_warn(fs_info, "swapfile must not be compressed"); 10082 ret = -EINVAL; 10083 goto out_unlock_mmap; 10084 } 10085 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10086 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10087 ret = -EINVAL; 10088 goto out_unlock_mmap; 10089 } 10090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10091 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10092 ret = -EINVAL; 10093 goto out_unlock_mmap; 10094 } 10095 10096 path = btrfs_alloc_path(); 10097 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10098 if (!path || !backref_ctx) { 10099 ret = -ENOMEM; 10100 goto out_unlock_mmap; 10101 } 10102 10103 /* 10104 * Balance or device remove/replace/resize can move stuff around from 10105 * under us. The exclop protection makes sure they aren't running/won't 10106 * run concurrently while we are mapping the swap extents, and 10107 * fs_info->swapfile_pins prevents them from running while the swap 10108 * file is active and moving the extents. Note that this also prevents 10109 * a concurrent device add which isn't actually necessary, but it's not 10110 * really worth the trouble to allow it. 10111 */ 10112 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10113 btrfs_warn(fs_info, 10114 "cannot activate swapfile while exclusive operation is running"); 10115 ret = -EBUSY; 10116 goto out_unlock_mmap; 10117 } 10118 10119 /* 10120 * Prevent snapshot creation while we are activating the swap file. 10121 * We do not want to race with snapshot creation. If snapshot creation 10122 * already started before we bumped nr_swapfiles from 0 to 1 and 10123 * completes before the first write into the swap file after it is 10124 * activated, than that write would fallback to COW. 10125 */ 10126 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10127 btrfs_exclop_finish(fs_info); 10128 btrfs_warn(fs_info, 10129 "cannot activate swapfile because snapshot creation is in progress"); 10130 ret = -EINVAL; 10131 goto out_unlock_mmap; 10132 } 10133 /* 10134 * Snapshots can create extents which require COW even if NODATACOW is 10135 * set. We use this counter to prevent snapshots. We must increment it 10136 * before walking the extents because we don't want a concurrent 10137 * snapshot to run after we've already checked the extents. 10138 * 10139 * It is possible that subvolume is marked for deletion but still not 10140 * removed yet. To prevent this race, we check the root status before 10141 * activating the swapfile. 10142 */ 10143 spin_lock(&root->root_item_lock); 10144 if (btrfs_root_dead(root)) { 10145 spin_unlock(&root->root_item_lock); 10146 10147 btrfs_drew_write_unlock(&root->snapshot_lock); 10148 btrfs_exclop_finish(fs_info); 10149 btrfs_warn(fs_info, 10150 "cannot activate swapfile because subvolume %llu is being deleted", 10151 btrfs_root_id(root)); 10152 ret = -EPERM; 10153 goto out_unlock_mmap; 10154 } 10155 atomic_inc(&root->nr_swapfiles); 10156 spin_unlock(&root->root_item_lock); 10157 10158 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10159 10160 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10161 while (prev_extent_end < isize) { 10162 struct btrfs_key key; 10163 struct extent_buffer *leaf; 10164 struct btrfs_file_extent_item *ei; 10165 struct btrfs_block_group *bg; 10166 u64 logical_block_start; 10167 u64 physical_block_start; 10168 u64 extent_gen; 10169 u64 disk_bytenr; 10170 u64 len; 10171 10172 key.objectid = btrfs_ino(BTRFS_I(inode)); 10173 key.type = BTRFS_EXTENT_DATA_KEY; 10174 key.offset = prev_extent_end; 10175 10176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10177 if (ret < 0) 10178 goto out; 10179 10180 /* 10181 * If key not found it means we have an implicit hole (NO_HOLES 10182 * is enabled). 10183 */ 10184 if (ret > 0) { 10185 btrfs_warn(fs_info, "swapfile must not have holes"); 10186 ret = -EINVAL; 10187 goto out; 10188 } 10189 10190 leaf = path->nodes[0]; 10191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10192 10193 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10194 /* 10195 * It's unlikely we'll ever actually find ourselves 10196 * here, as a file small enough to fit inline won't be 10197 * big enough to store more than the swap header, but in 10198 * case something changes in the future, let's catch it 10199 * here rather than later. 10200 */ 10201 btrfs_warn(fs_info, "swapfile must not be inline"); 10202 ret = -EINVAL; 10203 goto out; 10204 } 10205 10206 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10207 btrfs_warn(fs_info, "swapfile must not be compressed"); 10208 ret = -EINVAL; 10209 goto out; 10210 } 10211 10212 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10213 if (disk_bytenr == 0) { 10214 btrfs_warn(fs_info, "swapfile must not have holes"); 10215 ret = -EINVAL; 10216 goto out; 10217 } 10218 10219 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10220 extent_gen = btrfs_file_extent_generation(leaf, ei); 10221 prev_extent_end = btrfs_file_extent_end(path); 10222 10223 if (prev_extent_end > isize) 10224 len = isize - key.offset; 10225 else 10226 len = btrfs_file_extent_num_bytes(leaf, ei); 10227 10228 backref_ctx->curr_leaf_bytenr = leaf->start; 10229 10230 /* 10231 * Don't need the path anymore, release to avoid deadlocks when 10232 * calling btrfs_is_data_extent_shared() because when joining a 10233 * transaction it can block waiting for the current one's commit 10234 * which in turn may be trying to lock the same leaf to flush 10235 * delayed items for example. 10236 */ 10237 btrfs_release_path(path); 10238 10239 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10240 extent_gen, backref_ctx); 10241 if (ret < 0) { 10242 goto out; 10243 } else if (ret > 0) { 10244 btrfs_warn(fs_info, 10245 "swapfile must not be copy-on-write"); 10246 ret = -EINVAL; 10247 goto out; 10248 } 10249 10250 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10251 if (IS_ERR(map)) { 10252 ret = PTR_ERR(map); 10253 goto out; 10254 } 10255 10256 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10257 btrfs_warn(fs_info, 10258 "swapfile must have single data profile"); 10259 ret = -EINVAL; 10260 goto out; 10261 } 10262 10263 if (device == NULL) { 10264 device = map->stripes[0].dev; 10265 ret = btrfs_add_swapfile_pin(inode, device, false); 10266 if (ret == 1) 10267 ret = 0; 10268 else if (ret) 10269 goto out; 10270 } else if (device != map->stripes[0].dev) { 10271 btrfs_warn(fs_info, "swapfile must be on one device"); 10272 ret = -EINVAL; 10273 goto out; 10274 } 10275 10276 physical_block_start = (map->stripes[0].physical + 10277 (logical_block_start - map->start)); 10278 btrfs_free_chunk_map(map); 10279 map = NULL; 10280 10281 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10282 if (!bg) { 10283 btrfs_warn(fs_info, 10284 "could not find block group containing swapfile"); 10285 ret = -EINVAL; 10286 goto out; 10287 } 10288 10289 if (!btrfs_inc_block_group_swap_extents(bg)) { 10290 btrfs_warn(fs_info, 10291 "block group for swapfile at %llu is read-only%s", 10292 bg->start, 10293 atomic_read(&fs_info->scrubs_running) ? 10294 " (scrub running)" : ""); 10295 btrfs_put_block_group(bg); 10296 ret = -EINVAL; 10297 goto out; 10298 } 10299 10300 ret = btrfs_add_swapfile_pin(inode, bg, true); 10301 if (ret) { 10302 btrfs_put_block_group(bg); 10303 if (ret == 1) 10304 ret = 0; 10305 else 10306 goto out; 10307 } 10308 10309 if (bsi.block_len && 10310 bsi.block_start + bsi.block_len == physical_block_start) { 10311 bsi.block_len += len; 10312 } else { 10313 if (bsi.block_len) { 10314 ret = btrfs_add_swap_extent(sis, &bsi); 10315 if (ret) 10316 goto out; 10317 } 10318 bsi.start = key.offset; 10319 bsi.block_start = physical_block_start; 10320 bsi.block_len = len; 10321 } 10322 10323 if (fatal_signal_pending(current)) { 10324 ret = -EINTR; 10325 goto out; 10326 } 10327 10328 cond_resched(); 10329 } 10330 10331 if (bsi.block_len) 10332 ret = btrfs_add_swap_extent(sis, &bsi); 10333 10334 out: 10335 if (!IS_ERR_OR_NULL(map)) 10336 btrfs_free_chunk_map(map); 10337 10338 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10339 10340 if (ret) 10341 btrfs_swap_deactivate(file); 10342 10343 btrfs_drew_write_unlock(&root->snapshot_lock); 10344 10345 btrfs_exclop_finish(fs_info); 10346 10347 out_unlock_mmap: 10348 up_write(&BTRFS_I(inode)->i_mmap_lock); 10349 btrfs_free_backref_share_ctx(backref_ctx); 10350 btrfs_free_path(path); 10351 if (ret) 10352 return ret; 10353 10354 if (device) 10355 sis->bdev = device->bdev; 10356 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10357 sis->max = bsi.nr_pages; 10358 sis->pages = bsi.nr_pages - 1; 10359 return bsi.nr_extents; 10360 } 10361 #else 10362 static void btrfs_swap_deactivate(struct file *file) 10363 { 10364 } 10365 10366 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10367 sector_t *span) 10368 { 10369 return -EOPNOTSUPP; 10370 } 10371 #endif 10372 10373 /* 10374 * Update the number of bytes used in the VFS' inode. When we replace extents in 10375 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10376 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10377 * always get a correct value. 10378 */ 10379 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10380 const u64 add_bytes, 10381 const u64 del_bytes) 10382 { 10383 if (add_bytes == del_bytes) 10384 return; 10385 10386 spin_lock(&inode->lock); 10387 if (del_bytes > 0) 10388 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10389 if (add_bytes > 0) 10390 inode_add_bytes(&inode->vfs_inode, add_bytes); 10391 spin_unlock(&inode->lock); 10392 } 10393 10394 /* 10395 * Verify that there are no ordered extents for a given file range. 10396 * 10397 * @inode: The target inode. 10398 * @start: Start offset of the file range, should be sector size aligned. 10399 * @end: End offset (inclusive) of the file range, its value +1 should be 10400 * sector size aligned. 10401 * 10402 * This should typically be used for cases where we locked an inode's VFS lock in 10403 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10404 * we have flushed all delalloc in the range, we have waited for all ordered 10405 * extents in the range to complete and finally we have locked the file range in 10406 * the inode's io_tree. 10407 */ 10408 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10409 { 10410 struct btrfs_root *root = inode->root; 10411 struct btrfs_ordered_extent *ordered; 10412 10413 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10414 return; 10415 10416 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10417 if (ordered) { 10418 btrfs_err(root->fs_info, 10419 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10420 start, end, btrfs_ino(inode), btrfs_root_id(root), 10421 ordered->file_offset, 10422 ordered->file_offset + ordered->num_bytes - 1); 10423 btrfs_put_ordered_extent(ordered); 10424 } 10425 10426 ASSERT(ordered == NULL); 10427 } 10428 10429 /* 10430 * Find the first inode with a minimum number. 10431 * 10432 * @root: The root to search for. 10433 * @min_ino: The minimum inode number. 10434 * 10435 * Find the first inode in the @root with a number >= @min_ino and return it. 10436 * Returns NULL if no such inode found. 10437 */ 10438 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10439 { 10440 struct btrfs_inode *inode; 10441 unsigned long from = min_ino; 10442 10443 xa_lock(&root->inodes); 10444 while (true) { 10445 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10446 if (!inode) 10447 break; 10448 if (igrab(&inode->vfs_inode)) 10449 break; 10450 10451 from = btrfs_ino(inode) + 1; 10452 cond_resched_lock(&root->inodes.xa_lock); 10453 } 10454 xa_unlock(&root->inodes); 10455 10456 return inode; 10457 } 10458 10459 static const struct inode_operations btrfs_dir_inode_operations = { 10460 .getattr = btrfs_getattr, 10461 .lookup = btrfs_lookup, 10462 .create = btrfs_create, 10463 .unlink = btrfs_unlink, 10464 .link = btrfs_link, 10465 .mkdir = btrfs_mkdir, 10466 .rmdir = btrfs_rmdir, 10467 .rename = btrfs_rename2, 10468 .symlink = btrfs_symlink, 10469 .setattr = btrfs_setattr, 10470 .mknod = btrfs_mknod, 10471 .listxattr = btrfs_listxattr, 10472 .permission = btrfs_permission, 10473 .get_inode_acl = btrfs_get_acl, 10474 .set_acl = btrfs_set_acl, 10475 .update_time = btrfs_update_time, 10476 .tmpfile = btrfs_tmpfile, 10477 .fileattr_get = btrfs_fileattr_get, 10478 .fileattr_set = btrfs_fileattr_set, 10479 }; 10480 10481 static const struct file_operations btrfs_dir_file_operations = { 10482 .llseek = btrfs_dir_llseek, 10483 .read = generic_read_dir, 10484 .iterate_shared = btrfs_real_readdir, 10485 .open = btrfs_opendir, 10486 .unlocked_ioctl = btrfs_ioctl, 10487 #ifdef CONFIG_COMPAT 10488 .compat_ioctl = btrfs_compat_ioctl, 10489 #endif 10490 .release = btrfs_release_file, 10491 .fsync = btrfs_sync_file, 10492 }; 10493 10494 /* 10495 * btrfs doesn't support the bmap operation because swapfiles 10496 * use bmap to make a mapping of extents in the file. They assume 10497 * these extents won't change over the life of the file and they 10498 * use the bmap result to do IO directly to the drive. 10499 * 10500 * the btrfs bmap call would return logical addresses that aren't 10501 * suitable for IO and they also will change frequently as COW 10502 * operations happen. So, swapfile + btrfs == corruption. 10503 * 10504 * For now we're avoiding this by dropping bmap. 10505 */ 10506 static const struct address_space_operations btrfs_aops = { 10507 .read_folio = btrfs_read_folio, 10508 .writepages = btrfs_writepages, 10509 .readahead = btrfs_readahead, 10510 .invalidate_folio = btrfs_invalidate_folio, 10511 .launder_folio = btrfs_launder_folio, 10512 .release_folio = btrfs_release_folio, 10513 .migrate_folio = btrfs_migrate_folio, 10514 .dirty_folio = filemap_dirty_folio, 10515 .error_remove_folio = generic_error_remove_folio, 10516 .swap_activate = btrfs_swap_activate, 10517 .swap_deactivate = btrfs_swap_deactivate, 10518 }; 10519 10520 static const struct inode_operations btrfs_file_inode_operations = { 10521 .getattr = btrfs_getattr, 10522 .setattr = btrfs_setattr, 10523 .listxattr = btrfs_listxattr, 10524 .permission = btrfs_permission, 10525 .fiemap = btrfs_fiemap, 10526 .get_inode_acl = btrfs_get_acl, 10527 .set_acl = btrfs_set_acl, 10528 .update_time = btrfs_update_time, 10529 .fileattr_get = btrfs_fileattr_get, 10530 .fileattr_set = btrfs_fileattr_set, 10531 }; 10532 static const struct inode_operations btrfs_special_inode_operations = { 10533 .getattr = btrfs_getattr, 10534 .setattr = btrfs_setattr, 10535 .permission = btrfs_permission, 10536 .listxattr = btrfs_listxattr, 10537 .get_inode_acl = btrfs_get_acl, 10538 .set_acl = btrfs_set_acl, 10539 .update_time = btrfs_update_time, 10540 }; 10541 static const struct inode_operations btrfs_symlink_inode_operations = { 10542 .get_link = page_get_link, 10543 .getattr = btrfs_getattr, 10544 .setattr = btrfs_setattr, 10545 .permission = btrfs_permission, 10546 .listxattr = btrfs_listxattr, 10547 .update_time = btrfs_update_time, 10548 }; 10549 10550 const struct dentry_operations btrfs_dentry_operations = { 10551 .d_delete = btrfs_dentry_delete, 10552 }; 10553