1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include <linux/string_choices.h> 15 #include "extent-tree.h" 16 #include "fs.h" 17 #include "messages.h" 18 #include "misc.h" 19 #include "free-space-cache.h" 20 #include "transaction.h" 21 #include "disk-io.h" 22 #include "extent_io.h" 23 #include "space-info.h" 24 #include "block-group.h" 25 #include "discard.h" 26 #include "subpage.h" 27 #include "inode-item.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "file.h" 31 #include "super.h" 32 33 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 34 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 35 #define FORCE_EXTENT_THRESHOLD SZ_1M 36 37 static struct kmem_cache *btrfs_free_space_cachep; 38 static struct kmem_cache *btrfs_free_space_bitmap_cachep; 39 40 struct btrfs_trim_range { 41 u64 start; 42 u64 bytes; 43 struct list_head list; 44 }; 45 46 static int link_free_space(struct btrfs_free_space_ctl *ctl, 47 struct btrfs_free_space *info); 48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 49 struct btrfs_free_space *info, bool update_stat); 50 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 51 struct btrfs_free_space *bitmap_info, u64 *offset, 52 u64 *bytes, bool for_alloc); 53 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 54 struct btrfs_free_space *bitmap_info); 55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 56 struct btrfs_free_space *info, u64 offset, 57 u64 bytes, bool update_stats); 58 59 static void btrfs_crc32c_final(u32 crc, u8 *result) 60 { 61 put_unaligned_le32(~crc, result); 62 } 63 64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 65 { 66 struct btrfs_free_space *info; 67 struct rb_node *node; 68 69 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 70 info = rb_entry(node, struct btrfs_free_space, offset_index); 71 if (!info->bitmap) { 72 unlink_free_space(ctl, info, true); 73 kmem_cache_free(btrfs_free_space_cachep, info); 74 } else { 75 free_bitmap(ctl, info); 76 } 77 78 cond_resched_lock(&ctl->tree_lock); 79 } 80 } 81 82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 83 struct btrfs_path *path, 84 u64 offset) 85 { 86 struct btrfs_key key; 87 struct btrfs_key location; 88 struct btrfs_disk_key disk_key; 89 struct btrfs_free_space_header *header; 90 struct extent_buffer *leaf; 91 struct btrfs_inode *inode; 92 unsigned nofs_flag; 93 int ret; 94 95 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 96 key.type = 0; 97 key.offset = offset; 98 99 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 100 if (ret < 0) 101 return ERR_PTR(ret); 102 if (ret > 0) { 103 btrfs_release_path(path); 104 return ERR_PTR(-ENOENT); 105 } 106 107 leaf = path->nodes[0]; 108 header = btrfs_item_ptr(leaf, path->slots[0], 109 struct btrfs_free_space_header); 110 btrfs_free_space_key(leaf, header, &disk_key); 111 btrfs_disk_key_to_cpu(&location, &disk_key); 112 btrfs_release_path(path); 113 114 /* 115 * We are often under a trans handle at this point, so we need to make 116 * sure NOFS is set to keep us from deadlocking. 117 */ 118 nofs_flag = memalloc_nofs_save(); 119 inode = btrfs_iget_path(location.objectid, root, path); 120 btrfs_release_path(path); 121 memalloc_nofs_restore(nofs_flag); 122 if (IS_ERR(inode)) 123 return ERR_CAST(inode); 124 125 mapping_set_gfp_mask(inode->vfs_inode.i_mapping, 126 mapping_gfp_constraint(inode->vfs_inode.i_mapping, 127 ~(__GFP_FS | __GFP_HIGHMEM))); 128 129 return &inode->vfs_inode; 130 } 131 132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 133 struct btrfs_path *path) 134 { 135 struct btrfs_fs_info *fs_info = block_group->fs_info; 136 struct inode *inode = NULL; 137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 138 139 spin_lock(&block_group->lock); 140 if (block_group->inode) 141 inode = igrab(&block_group->inode->vfs_inode); 142 spin_unlock(&block_group->lock); 143 if (inode) 144 return inode; 145 146 inode = __lookup_free_space_inode(fs_info->tree_root, path, 147 block_group->start); 148 if (IS_ERR(inode)) 149 return inode; 150 151 spin_lock(&block_group->lock); 152 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 153 btrfs_info(fs_info, "Old style space inode found, converting."); 154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 155 BTRFS_INODE_NODATACOW; 156 block_group->disk_cache_state = BTRFS_DC_CLEAR; 157 } 158 159 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) 160 block_group->inode = BTRFS_I(igrab(inode)); 161 spin_unlock(&block_group->lock); 162 163 return inode; 164 } 165 166 static int __create_free_space_inode(struct btrfs_root *root, 167 struct btrfs_trans_handle *trans, 168 struct btrfs_path *path, 169 u64 ino, u64 offset) 170 { 171 struct btrfs_key key; 172 struct btrfs_disk_key disk_key; 173 struct btrfs_free_space_header *header; 174 struct btrfs_inode_item *inode_item; 175 struct extent_buffer *leaf; 176 /* We inline CRCs for the free disk space cache */ 177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | 178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 179 int ret; 180 181 ret = btrfs_insert_empty_inode(trans, root, path, ino); 182 if (ret) 183 return ret; 184 185 leaf = path->nodes[0]; 186 inode_item = btrfs_item_ptr(leaf, path->slots[0], 187 struct btrfs_inode_item); 188 btrfs_item_key(leaf, &disk_key, path->slots[0]); 189 memzero_extent_buffer(leaf, (unsigned long)inode_item, 190 sizeof(*inode_item)); 191 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 192 btrfs_set_inode_size(leaf, inode_item, 0); 193 btrfs_set_inode_nbytes(leaf, inode_item, 0); 194 btrfs_set_inode_uid(leaf, inode_item, 0); 195 btrfs_set_inode_gid(leaf, inode_item, 0); 196 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 197 btrfs_set_inode_flags(leaf, inode_item, flags); 198 btrfs_set_inode_nlink(leaf, inode_item, 1); 199 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 200 btrfs_set_inode_block_group(leaf, inode_item, offset); 201 btrfs_release_path(path); 202 203 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 204 key.type = 0; 205 key.offset = offset; 206 ret = btrfs_insert_empty_item(trans, root, path, &key, 207 sizeof(struct btrfs_free_space_header)); 208 if (ret < 0) { 209 btrfs_release_path(path); 210 return ret; 211 } 212 213 leaf = path->nodes[0]; 214 header = btrfs_item_ptr(leaf, path->slots[0], 215 struct btrfs_free_space_header); 216 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 217 btrfs_set_free_space_key(leaf, header, &disk_key); 218 btrfs_release_path(path); 219 220 return 0; 221 } 222 223 int create_free_space_inode(struct btrfs_trans_handle *trans, 224 struct btrfs_block_group *block_group, 225 struct btrfs_path *path) 226 { 227 int ret; 228 u64 ino; 229 230 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino); 231 if (ret < 0) 232 return ret; 233 234 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 235 ino, block_group->start); 236 } 237 238 /* 239 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode 240 * handles lookup, otherwise it takes ownership and iputs the inode. 241 * Don't reuse an inode pointer after passing it into this function. 242 */ 243 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans, 244 struct inode *inode, 245 struct btrfs_block_group *block_group) 246 { 247 BTRFS_PATH_AUTO_FREE(path); 248 struct btrfs_key key; 249 int ret = 0; 250 251 path = btrfs_alloc_path(); 252 if (!path) 253 return -ENOMEM; 254 255 if (!inode) 256 inode = lookup_free_space_inode(block_group, path); 257 if (IS_ERR(inode)) { 258 if (PTR_ERR(inode) != -ENOENT) 259 ret = PTR_ERR(inode); 260 return ret; 261 } 262 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 263 if (ret) { 264 btrfs_add_delayed_iput(BTRFS_I(inode)); 265 return ret; 266 } 267 clear_nlink(inode); 268 /* One for the block groups ref */ 269 spin_lock(&block_group->lock); 270 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) { 271 block_group->inode = NULL; 272 spin_unlock(&block_group->lock); 273 iput(inode); 274 } else { 275 spin_unlock(&block_group->lock); 276 } 277 /* One for the lookup ref */ 278 btrfs_add_delayed_iput(BTRFS_I(inode)); 279 280 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 281 key.type = 0; 282 key.offset = block_group->start; 283 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path, 284 -1, 1); 285 if (ret) { 286 if (ret > 0) 287 ret = 0; 288 return ret; 289 } 290 return btrfs_del_item(trans, trans->fs_info->tree_root, path); 291 } 292 293 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 294 struct btrfs_block_group *block_group, 295 struct inode *vfs_inode) 296 { 297 struct btrfs_truncate_control control = { 298 .inode = BTRFS_I(vfs_inode), 299 .new_size = 0, 300 .ino = btrfs_ino(BTRFS_I(vfs_inode)), 301 .min_type = BTRFS_EXTENT_DATA_KEY, 302 .clear_extent_range = true, 303 }; 304 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 305 struct btrfs_root *root = inode->root; 306 struct extent_state *cached_state = NULL; 307 int ret = 0; 308 bool locked = false; 309 310 if (block_group) { 311 BTRFS_PATH_AUTO_FREE(path); 312 313 path = btrfs_alloc_path(); 314 if (!path) { 315 ret = -ENOMEM; 316 goto fail; 317 } 318 locked = true; 319 mutex_lock(&trans->transaction->cache_write_mutex); 320 if (!list_empty(&block_group->io_list)) { 321 list_del_init(&block_group->io_list); 322 323 btrfs_wait_cache_io(trans, block_group, path); 324 btrfs_put_block_group(block_group); 325 } 326 327 /* 328 * now that we've truncated the cache away, its no longer 329 * setup or written 330 */ 331 spin_lock(&block_group->lock); 332 block_group->disk_cache_state = BTRFS_DC_CLEAR; 333 spin_unlock(&block_group->lock); 334 } 335 336 btrfs_i_size_write(inode, 0); 337 truncate_pagecache(vfs_inode, 0); 338 339 btrfs_lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 340 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 341 342 /* 343 * We skip the throttling logic for free space cache inodes, so we don't 344 * need to check for -EAGAIN. 345 */ 346 ret = btrfs_truncate_inode_items(trans, root, &control); 347 348 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 349 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 350 351 btrfs_unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); 352 if (ret) 353 goto fail; 354 355 ret = btrfs_update_inode(trans, inode); 356 357 fail: 358 if (locked) 359 mutex_unlock(&trans->transaction->cache_write_mutex); 360 if (ret) 361 btrfs_abort_transaction(trans, ret); 362 363 return ret; 364 } 365 366 static void readahead_cache(struct inode *inode) 367 { 368 struct file_ra_state ra; 369 unsigned long last_index; 370 371 file_ra_state_init(&ra, inode->i_mapping); 372 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 373 374 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index); 375 } 376 377 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 378 int write) 379 { 380 int num_pages; 381 382 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 383 384 /* Make sure we can fit our crcs and generation into the first page */ 385 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 386 return -ENOSPC; 387 388 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 389 390 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 391 if (!io_ctl->pages) 392 return -ENOMEM; 393 394 io_ctl->num_pages = num_pages; 395 io_ctl->fs_info = inode_to_fs_info(inode); 396 io_ctl->inode = inode; 397 398 return 0; 399 } 400 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 401 402 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 403 { 404 kfree(io_ctl->pages); 405 io_ctl->pages = NULL; 406 } 407 408 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 409 { 410 if (io_ctl->cur) { 411 io_ctl->cur = NULL; 412 io_ctl->orig = NULL; 413 } 414 } 415 416 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 417 { 418 ASSERT(io_ctl->index < io_ctl->num_pages); 419 io_ctl->page = io_ctl->pages[io_ctl->index++]; 420 io_ctl->cur = page_address(io_ctl->page); 421 io_ctl->orig = io_ctl->cur; 422 io_ctl->size = PAGE_SIZE; 423 if (clear) 424 clear_page(io_ctl->cur); 425 } 426 427 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 428 { 429 int i; 430 431 io_ctl_unmap_page(io_ctl); 432 433 for (i = 0; i < io_ctl->num_pages; i++) { 434 if (io_ctl->pages[i]) { 435 btrfs_folio_clear_checked(io_ctl->fs_info, 436 page_folio(io_ctl->pages[i]), 437 page_offset(io_ctl->pages[i]), 438 PAGE_SIZE); 439 unlock_page(io_ctl->pages[i]); 440 put_page(io_ctl->pages[i]); 441 } 442 } 443 } 444 445 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 446 { 447 struct folio *folio; 448 struct inode *inode = io_ctl->inode; 449 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 450 int i; 451 452 for (i = 0; i < io_ctl->num_pages; i++) { 453 int ret; 454 455 folio = __filemap_get_folio(inode->i_mapping, i, 456 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 457 mask); 458 if (IS_ERR(folio)) { 459 io_ctl_drop_pages(io_ctl); 460 return PTR_ERR(folio); 461 } 462 463 ret = set_folio_extent_mapped(folio); 464 if (ret < 0) { 465 folio_unlock(folio); 466 folio_put(folio); 467 io_ctl_drop_pages(io_ctl); 468 return ret; 469 } 470 471 io_ctl->pages[i] = &folio->page; 472 if (uptodate && !folio_test_uptodate(folio)) { 473 btrfs_read_folio(NULL, folio); 474 folio_lock(folio); 475 if (folio->mapping != inode->i_mapping) { 476 btrfs_err(BTRFS_I(inode)->root->fs_info, 477 "free space cache page truncated"); 478 io_ctl_drop_pages(io_ctl); 479 return -EIO; 480 } 481 if (!folio_test_uptodate(folio)) { 482 btrfs_err(BTRFS_I(inode)->root->fs_info, 483 "error reading free space cache"); 484 io_ctl_drop_pages(io_ctl); 485 return -EIO; 486 } 487 } 488 } 489 490 for (i = 0; i < io_ctl->num_pages; i++) 491 clear_page_dirty_for_io(io_ctl->pages[i]); 492 493 return 0; 494 } 495 496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 497 { 498 io_ctl_map_page(io_ctl, 1); 499 500 /* 501 * Skip the csum areas. If we don't check crcs then we just have a 502 * 64bit chunk at the front of the first page. 503 */ 504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 506 507 put_unaligned_le64(generation, io_ctl->cur); 508 io_ctl->cur += sizeof(u64); 509 } 510 511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 512 { 513 u64 cache_gen; 514 515 /* 516 * Skip the crc area. If we don't check crcs then we just have a 64bit 517 * chunk at the front of the first page. 518 */ 519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 521 522 cache_gen = get_unaligned_le64(io_ctl->cur); 523 if (cache_gen != generation) { 524 btrfs_err_rl(io_ctl->fs_info, 525 "space cache generation (%llu) does not match inode (%llu)", 526 cache_gen, generation); 527 io_ctl_unmap_page(io_ctl); 528 return -EIO; 529 } 530 io_ctl->cur += sizeof(u64); 531 return 0; 532 } 533 534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 535 { 536 u32 *tmp; 537 u32 crc = ~(u32)0; 538 unsigned offset = 0; 539 540 if (index == 0) 541 offset = sizeof(u32) * io_ctl->num_pages; 542 543 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 544 btrfs_crc32c_final(crc, (u8 *)&crc); 545 io_ctl_unmap_page(io_ctl); 546 tmp = page_address(io_ctl->pages[0]); 547 tmp += index; 548 *tmp = crc; 549 } 550 551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 552 { 553 u32 *tmp, val; 554 u32 crc = ~(u32)0; 555 unsigned offset = 0; 556 557 if (index == 0) 558 offset = sizeof(u32) * io_ctl->num_pages; 559 560 tmp = page_address(io_ctl->pages[0]); 561 tmp += index; 562 val = *tmp; 563 564 io_ctl_map_page(io_ctl, 0); 565 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 566 btrfs_crc32c_final(crc, (u8 *)&crc); 567 if (val != crc) { 568 btrfs_err_rl(io_ctl->fs_info, 569 "csum mismatch on free space cache"); 570 io_ctl_unmap_page(io_ctl); 571 return -EIO; 572 } 573 574 return 0; 575 } 576 577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 578 void *bitmap) 579 { 580 struct btrfs_free_space_entry *entry; 581 582 if (!io_ctl->cur) 583 return -ENOSPC; 584 585 entry = io_ctl->cur; 586 put_unaligned_le64(offset, &entry->offset); 587 put_unaligned_le64(bytes, &entry->bytes); 588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 589 BTRFS_FREE_SPACE_EXTENT; 590 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 591 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 592 593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 594 return 0; 595 596 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 597 598 /* No more pages to map */ 599 if (io_ctl->index >= io_ctl->num_pages) 600 return 0; 601 602 /* map the next page */ 603 io_ctl_map_page(io_ctl, 1); 604 return 0; 605 } 606 607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 608 { 609 if (!io_ctl->cur) 610 return -ENOSPC; 611 612 /* 613 * If we aren't at the start of the current page, unmap this one and 614 * map the next one if there is any left. 615 */ 616 if (io_ctl->cur != io_ctl->orig) { 617 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 618 if (io_ctl->index >= io_ctl->num_pages) 619 return -ENOSPC; 620 io_ctl_map_page(io_ctl, 0); 621 } 622 623 copy_page(io_ctl->cur, bitmap); 624 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 625 if (io_ctl->index < io_ctl->num_pages) 626 io_ctl_map_page(io_ctl, 0); 627 return 0; 628 } 629 630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 631 { 632 /* 633 * If we're not on the boundary we know we've modified the page and we 634 * need to crc the page. 635 */ 636 if (io_ctl->cur != io_ctl->orig) 637 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 638 else 639 io_ctl_unmap_page(io_ctl); 640 641 while (io_ctl->index < io_ctl->num_pages) { 642 io_ctl_map_page(io_ctl, 1); 643 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 644 } 645 } 646 647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 648 struct btrfs_free_space *entry, u8 *type) 649 { 650 struct btrfs_free_space_entry *e; 651 int ret; 652 653 if (!io_ctl->cur) { 654 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 655 if (ret) 656 return ret; 657 } 658 659 e = io_ctl->cur; 660 entry->offset = get_unaligned_le64(&e->offset); 661 entry->bytes = get_unaligned_le64(&e->bytes); 662 *type = e->type; 663 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 664 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 665 666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 667 return 0; 668 669 io_ctl_unmap_page(io_ctl); 670 671 return 0; 672 } 673 674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 675 struct btrfs_free_space *entry) 676 { 677 int ret; 678 679 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 680 if (ret) 681 return ret; 682 683 copy_page(entry->bitmap, io_ctl->cur); 684 io_ctl_unmap_page(io_ctl); 685 686 return 0; 687 } 688 689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 690 { 691 struct btrfs_block_group *block_group = ctl->block_group; 692 u64 max_bytes; 693 u64 bitmap_bytes; 694 u64 extent_bytes; 695 u64 size = block_group->length; 696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 698 699 max_bitmaps = max_t(u64, max_bitmaps, 1); 700 701 if (ctl->total_bitmaps > max_bitmaps) 702 btrfs_err(block_group->fs_info, 703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu", 704 block_group->start, block_group->length, 705 ctl->total_bitmaps, ctl->unit, max_bitmaps, 706 bytes_per_bg); 707 ASSERT(ctl->total_bitmaps <= max_bitmaps); 708 709 /* 710 * We are trying to keep the total amount of memory used per 1GiB of 711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 713 * bitmaps, we may end up using more memory than this. 714 */ 715 if (size < SZ_1G) 716 max_bytes = MAX_CACHE_BYTES_PER_GIG; 717 else 718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 719 720 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 721 722 /* 723 * we want the extent entry threshold to always be at most 1/2 the max 724 * bytes we can have, or whatever is less than that. 725 */ 726 extent_bytes = max_bytes - bitmap_bytes; 727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 728 729 ctl->extents_thresh = 730 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 731 } 732 733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 734 struct btrfs_free_space_ctl *ctl, 735 struct btrfs_path *path, u64 offset) 736 { 737 struct btrfs_fs_info *fs_info = root->fs_info; 738 struct btrfs_free_space_header *header; 739 struct extent_buffer *leaf; 740 struct btrfs_io_ctl io_ctl; 741 struct btrfs_key key; 742 struct btrfs_free_space *e, *n; 743 LIST_HEAD(bitmaps); 744 u64 num_entries; 745 u64 num_bitmaps; 746 u64 generation; 747 u8 type; 748 int ret = 0; 749 750 /* Nothing in the space cache, goodbye */ 751 if (!i_size_read(inode)) 752 return 0; 753 754 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 755 key.type = 0; 756 key.offset = offset; 757 758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 759 if (ret < 0) 760 return 0; 761 else if (ret > 0) { 762 btrfs_release_path(path); 763 return 0; 764 } 765 766 ret = -1; 767 768 leaf = path->nodes[0]; 769 header = btrfs_item_ptr(leaf, path->slots[0], 770 struct btrfs_free_space_header); 771 num_entries = btrfs_free_space_entries(leaf, header); 772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 773 generation = btrfs_free_space_generation(leaf, header); 774 btrfs_release_path(path); 775 776 if (!BTRFS_I(inode)->generation) { 777 btrfs_info(fs_info, 778 "the free space cache file (%llu) is invalid, skip it", 779 offset); 780 return 0; 781 } 782 783 if (BTRFS_I(inode)->generation != generation) { 784 btrfs_err(fs_info, 785 "free space inode generation (%llu) did not match free space cache generation (%llu)", 786 BTRFS_I(inode)->generation, generation); 787 return 0; 788 } 789 790 if (!num_entries) 791 return 0; 792 793 ret = io_ctl_init(&io_ctl, inode, 0); 794 if (ret) 795 return ret; 796 797 readahead_cache(inode); 798 799 ret = io_ctl_prepare_pages(&io_ctl, true); 800 if (ret) 801 goto out; 802 803 ret = io_ctl_check_crc(&io_ctl, 0); 804 if (ret) 805 goto free_cache; 806 807 ret = io_ctl_check_generation(&io_ctl, generation); 808 if (ret) 809 goto free_cache; 810 811 while (num_entries) { 812 e = kmem_cache_zalloc(btrfs_free_space_cachep, 813 GFP_NOFS); 814 if (!e) { 815 ret = -ENOMEM; 816 goto free_cache; 817 } 818 819 ret = io_ctl_read_entry(&io_ctl, e, &type); 820 if (ret) { 821 kmem_cache_free(btrfs_free_space_cachep, e); 822 goto free_cache; 823 } 824 825 if (!e->bytes) { 826 ret = -1; 827 kmem_cache_free(btrfs_free_space_cachep, e); 828 goto free_cache; 829 } 830 831 if (type == BTRFS_FREE_SPACE_EXTENT) { 832 spin_lock(&ctl->tree_lock); 833 ret = link_free_space(ctl, e); 834 spin_unlock(&ctl->tree_lock); 835 if (ret) { 836 btrfs_err(fs_info, 837 "Duplicate entries in free space cache, dumping"); 838 kmem_cache_free(btrfs_free_space_cachep, e); 839 goto free_cache; 840 } 841 } else { 842 ASSERT(num_bitmaps); 843 num_bitmaps--; 844 e->bitmap = kmem_cache_zalloc( 845 btrfs_free_space_bitmap_cachep, GFP_NOFS); 846 if (!e->bitmap) { 847 ret = -ENOMEM; 848 kmem_cache_free( 849 btrfs_free_space_cachep, e); 850 goto free_cache; 851 } 852 spin_lock(&ctl->tree_lock); 853 ret = link_free_space(ctl, e); 854 if (ret) { 855 spin_unlock(&ctl->tree_lock); 856 btrfs_err(fs_info, 857 "Duplicate entries in free space cache, dumping"); 858 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap); 859 kmem_cache_free(btrfs_free_space_cachep, e); 860 goto free_cache; 861 } 862 ctl->total_bitmaps++; 863 recalculate_thresholds(ctl); 864 spin_unlock(&ctl->tree_lock); 865 list_add_tail(&e->list, &bitmaps); 866 } 867 868 num_entries--; 869 } 870 871 io_ctl_unmap_page(&io_ctl); 872 873 /* 874 * We add the bitmaps at the end of the entries in order that 875 * the bitmap entries are added to the cache. 876 */ 877 list_for_each_entry_safe(e, n, &bitmaps, list) { 878 list_del_init(&e->list); 879 ret = io_ctl_read_bitmap(&io_ctl, e); 880 if (ret) 881 goto free_cache; 882 } 883 884 io_ctl_drop_pages(&io_ctl); 885 ret = 1; 886 out: 887 io_ctl_free(&io_ctl); 888 return ret; 889 free_cache: 890 io_ctl_drop_pages(&io_ctl); 891 892 spin_lock(&ctl->tree_lock); 893 __btrfs_remove_free_space_cache(ctl); 894 spin_unlock(&ctl->tree_lock); 895 goto out; 896 } 897 898 static int copy_free_space_cache(struct btrfs_block_group *block_group, 899 struct btrfs_free_space_ctl *ctl) 900 { 901 struct btrfs_free_space *info; 902 struct rb_node *n; 903 int ret = 0; 904 905 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) { 906 info = rb_entry(n, struct btrfs_free_space, offset_index); 907 if (!info->bitmap) { 908 const u64 offset = info->offset; 909 const u64 bytes = info->bytes; 910 911 unlink_free_space(ctl, info, true); 912 spin_unlock(&ctl->tree_lock); 913 kmem_cache_free(btrfs_free_space_cachep, info); 914 ret = btrfs_add_free_space(block_group, offset, bytes); 915 spin_lock(&ctl->tree_lock); 916 } else { 917 u64 offset = info->offset; 918 u64 bytes = ctl->unit; 919 920 ret = search_bitmap(ctl, info, &offset, &bytes, false); 921 if (ret == 0) { 922 bitmap_clear_bits(ctl, info, offset, bytes, true); 923 spin_unlock(&ctl->tree_lock); 924 ret = btrfs_add_free_space(block_group, offset, 925 bytes); 926 spin_lock(&ctl->tree_lock); 927 } else { 928 free_bitmap(ctl, info); 929 ret = 0; 930 } 931 } 932 cond_resched_lock(&ctl->tree_lock); 933 } 934 return ret; 935 } 936 937 static struct lock_class_key btrfs_free_space_inode_key; 938 939 int load_free_space_cache(struct btrfs_block_group *block_group) 940 { 941 struct btrfs_fs_info *fs_info = block_group->fs_info; 942 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 943 struct btrfs_free_space_ctl tmp_ctl = {}; 944 struct inode *inode; 945 struct btrfs_path *path; 946 int ret = 0; 947 bool matched; 948 u64 used = block_group->used; 949 950 /* 951 * Because we could potentially discard our loaded free space, we want 952 * to load everything into a temporary structure first, and then if it's 953 * valid copy it all into the actual free space ctl. 954 */ 955 btrfs_init_free_space_ctl(block_group, &tmp_ctl); 956 957 /* 958 * If this block group has been marked to be cleared for one reason or 959 * another then we can't trust the on disk cache, so just return. 960 */ 961 spin_lock(&block_group->lock); 962 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 963 spin_unlock(&block_group->lock); 964 return 0; 965 } 966 spin_unlock(&block_group->lock); 967 968 path = btrfs_alloc_path(); 969 if (!path) 970 return 0; 971 path->search_commit_root = 1; 972 path->skip_locking = 1; 973 974 /* 975 * We must pass a path with search_commit_root set to btrfs_iget in 976 * order to avoid a deadlock when allocating extents for the tree root. 977 * 978 * When we are COWing an extent buffer from the tree root, when looking 979 * for a free extent, at extent-tree.c:find_free_extent(), we can find 980 * block group without its free space cache loaded. When we find one 981 * we must load its space cache which requires reading its free space 982 * cache's inode item from the root tree. If this inode item is located 983 * in the same leaf that we started COWing before, then we end up in 984 * deadlock on the extent buffer (trying to read lock it when we 985 * previously write locked it). 986 * 987 * It's safe to read the inode item using the commit root because 988 * block groups, once loaded, stay in memory forever (until they are 989 * removed) as well as their space caches once loaded. New block groups 990 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 991 * we will never try to read their inode item while the fs is mounted. 992 */ 993 inode = lookup_free_space_inode(block_group, path); 994 if (IS_ERR(inode)) { 995 btrfs_free_path(path); 996 return 0; 997 } 998 999 /* We may have converted the inode and made the cache invalid. */ 1000 spin_lock(&block_group->lock); 1001 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 1002 spin_unlock(&block_group->lock); 1003 btrfs_free_path(path); 1004 goto out; 1005 } 1006 spin_unlock(&block_group->lock); 1007 1008 /* 1009 * Reinitialize the class of struct inode's mapping->invalidate_lock for 1010 * free space inodes to prevent false positives related to locks for normal 1011 * inodes. 1012 */ 1013 lockdep_set_class(&(&inode->i_data)->invalidate_lock, 1014 &btrfs_free_space_inode_key); 1015 1016 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl, 1017 path, block_group->start); 1018 btrfs_free_path(path); 1019 if (ret <= 0) 1020 goto out; 1021 1022 matched = (tmp_ctl.free_space == (block_group->length - used - 1023 block_group->bytes_super)); 1024 1025 if (matched) { 1026 spin_lock(&tmp_ctl.tree_lock); 1027 ret = copy_free_space_cache(block_group, &tmp_ctl); 1028 spin_unlock(&tmp_ctl.tree_lock); 1029 /* 1030 * ret == 1 means we successfully loaded the free space cache, 1031 * so we need to re-set it here. 1032 */ 1033 if (ret == 0) 1034 ret = 1; 1035 } else { 1036 /* 1037 * We need to call the _locked variant so we don't try to update 1038 * the discard counters. 1039 */ 1040 spin_lock(&tmp_ctl.tree_lock); 1041 __btrfs_remove_free_space_cache(&tmp_ctl); 1042 spin_unlock(&tmp_ctl.tree_lock); 1043 btrfs_warn(fs_info, 1044 "block group %llu has wrong amount of free space", 1045 block_group->start); 1046 ret = -1; 1047 } 1048 out: 1049 if (ret < 0) { 1050 /* This cache is bogus, make sure it gets cleared */ 1051 spin_lock(&block_group->lock); 1052 block_group->disk_cache_state = BTRFS_DC_CLEAR; 1053 spin_unlock(&block_group->lock); 1054 ret = 0; 1055 1056 btrfs_warn(fs_info, 1057 "failed to load free space cache for block group %llu, rebuilding it now", 1058 block_group->start); 1059 } 1060 1061 spin_lock(&ctl->tree_lock); 1062 btrfs_discard_update_discardable(block_group); 1063 spin_unlock(&ctl->tree_lock); 1064 iput(inode); 1065 return ret; 1066 } 1067 1068 static noinline_for_stack 1069 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 1070 struct btrfs_free_space_ctl *ctl, 1071 struct btrfs_block_group *block_group, 1072 int *entries, int *bitmaps, 1073 struct list_head *bitmap_list) 1074 { 1075 int ret; 1076 struct btrfs_free_cluster *cluster = NULL; 1077 struct btrfs_free_cluster *cluster_locked = NULL; 1078 struct rb_node *node = rb_first(&ctl->free_space_offset); 1079 struct btrfs_trim_range *trim_entry; 1080 1081 /* Get the cluster for this block_group if it exists */ 1082 if (block_group && !list_empty(&block_group->cluster_list)) { 1083 cluster = list_first_entry(&block_group->cluster_list, 1084 struct btrfs_free_cluster, block_group_list); 1085 } 1086 1087 if (!node && cluster) { 1088 cluster_locked = cluster; 1089 spin_lock(&cluster_locked->lock); 1090 node = rb_first(&cluster->root); 1091 cluster = NULL; 1092 } 1093 1094 /* Write out the extent entries */ 1095 while (node) { 1096 struct btrfs_free_space *e; 1097 1098 e = rb_entry(node, struct btrfs_free_space, offset_index); 1099 *entries += 1; 1100 1101 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 1102 e->bitmap); 1103 if (ret) 1104 goto fail; 1105 1106 if (e->bitmap) { 1107 list_add_tail(&e->list, bitmap_list); 1108 *bitmaps += 1; 1109 } 1110 node = rb_next(node); 1111 if (!node && cluster) { 1112 node = rb_first(&cluster->root); 1113 cluster_locked = cluster; 1114 spin_lock(&cluster_locked->lock); 1115 cluster = NULL; 1116 } 1117 } 1118 if (cluster_locked) { 1119 spin_unlock(&cluster_locked->lock); 1120 cluster_locked = NULL; 1121 } 1122 1123 /* 1124 * Make sure we don't miss any range that was removed from our rbtree 1125 * because trimming is running. Otherwise after a umount+mount (or crash 1126 * after committing the transaction) we would leak free space and get 1127 * an inconsistent free space cache report from fsck. 1128 */ 1129 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1130 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1131 trim_entry->bytes, NULL); 1132 if (ret) 1133 goto fail; 1134 *entries += 1; 1135 } 1136 1137 return 0; 1138 fail: 1139 if (cluster_locked) 1140 spin_unlock(&cluster_locked->lock); 1141 return -ENOSPC; 1142 } 1143 1144 static noinline_for_stack int 1145 update_cache_item(struct btrfs_trans_handle *trans, 1146 struct btrfs_root *root, 1147 struct inode *inode, 1148 struct btrfs_path *path, u64 offset, 1149 int entries, int bitmaps) 1150 { 1151 struct btrfs_key key; 1152 struct btrfs_free_space_header *header; 1153 struct extent_buffer *leaf; 1154 int ret; 1155 1156 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1157 key.type = 0; 1158 key.offset = offset; 1159 1160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1161 if (ret < 0) { 1162 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1163 EXTENT_DELALLOC, NULL); 1164 goto fail; 1165 } 1166 leaf = path->nodes[0]; 1167 if (ret > 0) { 1168 struct btrfs_key found_key; 1169 ASSERT(path->slots[0]); 1170 path->slots[0]--; 1171 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1172 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1173 found_key.offset != offset) { 1174 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1175 inode->i_size - 1, EXTENT_DELALLOC, 1176 NULL); 1177 btrfs_release_path(path); 1178 goto fail; 1179 } 1180 } 1181 1182 BTRFS_I(inode)->generation = trans->transid; 1183 header = btrfs_item_ptr(leaf, path->slots[0], 1184 struct btrfs_free_space_header); 1185 btrfs_set_free_space_entries(leaf, header, entries); 1186 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1187 btrfs_set_free_space_generation(leaf, header, trans->transid); 1188 btrfs_release_path(path); 1189 1190 return 0; 1191 1192 fail: 1193 return -1; 1194 } 1195 1196 static noinline_for_stack int write_pinned_extent_entries( 1197 struct btrfs_trans_handle *trans, 1198 struct btrfs_block_group *block_group, 1199 struct btrfs_io_ctl *io_ctl, 1200 int *entries) 1201 { 1202 u64 start, extent_start, extent_end, len; 1203 struct extent_io_tree *unpin = NULL; 1204 int ret; 1205 1206 if (!block_group) 1207 return 0; 1208 1209 /* 1210 * We want to add any pinned extents to our free space cache 1211 * so we don't leak the space 1212 * 1213 * We shouldn't have switched the pinned extents yet so this is the 1214 * right one 1215 */ 1216 unpin = &trans->transaction->pinned_extents; 1217 1218 start = block_group->start; 1219 1220 while (start < block_group->start + block_group->length) { 1221 if (!btrfs_find_first_extent_bit(unpin, start, 1222 &extent_start, &extent_end, 1223 EXTENT_DIRTY, NULL)) 1224 return 0; 1225 1226 /* This pinned extent is out of our range */ 1227 if (extent_start >= block_group->start + block_group->length) 1228 return 0; 1229 1230 extent_start = max(extent_start, start); 1231 extent_end = min(block_group->start + block_group->length, 1232 extent_end + 1); 1233 len = extent_end - extent_start; 1234 1235 *entries += 1; 1236 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1237 if (ret) 1238 return -ENOSPC; 1239 1240 start = extent_end; 1241 } 1242 1243 return 0; 1244 } 1245 1246 static noinline_for_stack int 1247 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1248 { 1249 struct btrfs_free_space *entry, *next; 1250 int ret; 1251 1252 /* Write out the bitmaps */ 1253 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1254 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1255 if (ret) 1256 return -ENOSPC; 1257 list_del_init(&entry->list); 1258 } 1259 1260 return 0; 1261 } 1262 1263 static int flush_dirty_cache(struct inode *inode) 1264 { 1265 int ret; 1266 1267 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 1268 if (ret) 1269 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1270 EXTENT_DELALLOC, NULL); 1271 1272 return ret; 1273 } 1274 1275 static void noinline_for_stack 1276 cleanup_bitmap_list(struct list_head *bitmap_list) 1277 { 1278 struct btrfs_free_space *entry, *next; 1279 1280 list_for_each_entry_safe(entry, next, bitmap_list, list) 1281 list_del_init(&entry->list); 1282 } 1283 1284 static void noinline_for_stack 1285 cleanup_write_cache_enospc(struct inode *inode, 1286 struct btrfs_io_ctl *io_ctl, 1287 struct extent_state **cached_state) 1288 { 1289 io_ctl_drop_pages(io_ctl); 1290 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1291 cached_state); 1292 } 1293 1294 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1295 struct btrfs_trans_handle *trans, 1296 struct btrfs_block_group *block_group, 1297 struct btrfs_io_ctl *io_ctl, 1298 struct btrfs_path *path, u64 offset) 1299 { 1300 int ret; 1301 struct inode *inode = io_ctl->inode; 1302 1303 if (!inode) 1304 return 0; 1305 1306 /* Flush the dirty pages in the cache file. */ 1307 ret = flush_dirty_cache(inode); 1308 if (ret) 1309 goto out; 1310 1311 /* Update the cache item to tell everyone this cache file is valid. */ 1312 ret = update_cache_item(trans, root, inode, path, offset, 1313 io_ctl->entries, io_ctl->bitmaps); 1314 out: 1315 if (ret) { 1316 invalidate_inode_pages2(inode->i_mapping); 1317 BTRFS_I(inode)->generation = 0; 1318 if (block_group) 1319 btrfs_debug(root->fs_info, 1320 "failed to write free space cache for block group %llu error %d", 1321 block_group->start, ret); 1322 } 1323 btrfs_update_inode(trans, BTRFS_I(inode)); 1324 1325 if (block_group) { 1326 /* the dirty list is protected by the dirty_bgs_lock */ 1327 spin_lock(&trans->transaction->dirty_bgs_lock); 1328 1329 /* the disk_cache_state is protected by the block group lock */ 1330 spin_lock(&block_group->lock); 1331 1332 /* 1333 * only mark this as written if we didn't get put back on 1334 * the dirty list while waiting for IO. Otherwise our 1335 * cache state won't be right, and we won't get written again 1336 */ 1337 if (!ret && list_empty(&block_group->dirty_list)) 1338 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1339 else if (ret) 1340 block_group->disk_cache_state = BTRFS_DC_ERROR; 1341 1342 spin_unlock(&block_group->lock); 1343 spin_unlock(&trans->transaction->dirty_bgs_lock); 1344 io_ctl->inode = NULL; 1345 iput(inode); 1346 } 1347 1348 return ret; 1349 1350 } 1351 1352 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1353 struct btrfs_block_group *block_group, 1354 struct btrfs_path *path) 1355 { 1356 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1357 block_group, &block_group->io_ctl, 1358 path, block_group->start); 1359 } 1360 1361 /* 1362 * Write out cached info to an inode. 1363 * 1364 * @inode: freespace inode we are writing out 1365 * @ctl: free space cache we are going to write out 1366 * @block_group: block_group for this cache if it belongs to a block_group 1367 * @io_ctl: holds context for the io 1368 * @trans: the trans handle 1369 * 1370 * This function writes out a free space cache struct to disk for quick recovery 1371 * on mount. This will return 0 if it was successful in writing the cache out, 1372 * or an errno if it was not. 1373 */ 1374 static int __btrfs_write_out_cache(struct inode *inode, 1375 struct btrfs_free_space_ctl *ctl, 1376 struct btrfs_block_group *block_group, 1377 struct btrfs_io_ctl *io_ctl, 1378 struct btrfs_trans_handle *trans) 1379 { 1380 struct extent_state *cached_state = NULL; 1381 LIST_HEAD(bitmap_list); 1382 int entries = 0; 1383 int bitmaps = 0; 1384 int ret; 1385 int must_iput = 0; 1386 int i_size; 1387 1388 if (!i_size_read(inode)) 1389 return -EIO; 1390 1391 WARN_ON(io_ctl->pages); 1392 ret = io_ctl_init(io_ctl, inode, 1); 1393 if (ret) 1394 return ret; 1395 1396 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1397 down_write(&block_group->data_rwsem); 1398 spin_lock(&block_group->lock); 1399 if (block_group->delalloc_bytes) { 1400 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1401 spin_unlock(&block_group->lock); 1402 up_write(&block_group->data_rwsem); 1403 BTRFS_I(inode)->generation = 0; 1404 ret = 0; 1405 must_iput = 1; 1406 goto out; 1407 } 1408 spin_unlock(&block_group->lock); 1409 } 1410 1411 /* Lock all pages first so we can lock the extent safely. */ 1412 ret = io_ctl_prepare_pages(io_ctl, false); 1413 if (ret) 1414 goto out_unlock; 1415 1416 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1417 &cached_state); 1418 1419 io_ctl_set_generation(io_ctl, trans->transid); 1420 1421 mutex_lock(&ctl->cache_writeout_mutex); 1422 /* Write out the extent entries in the free space cache */ 1423 spin_lock(&ctl->tree_lock); 1424 ret = write_cache_extent_entries(io_ctl, ctl, 1425 block_group, &entries, &bitmaps, 1426 &bitmap_list); 1427 if (ret) 1428 goto out_nospc_locked; 1429 1430 /* 1431 * Some spaces that are freed in the current transaction are pinned, 1432 * they will be added into free space cache after the transaction is 1433 * committed, we shouldn't lose them. 1434 * 1435 * If this changes while we are working we'll get added back to 1436 * the dirty list and redo it. No locking needed 1437 */ 1438 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1439 if (ret) 1440 goto out_nospc_locked; 1441 1442 /* 1443 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1444 * locked while doing it because a concurrent trim can be manipulating 1445 * or freeing the bitmap. 1446 */ 1447 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1448 spin_unlock(&ctl->tree_lock); 1449 mutex_unlock(&ctl->cache_writeout_mutex); 1450 if (ret) 1451 goto out_nospc; 1452 1453 /* Zero out the rest of the pages just to make sure */ 1454 io_ctl_zero_remaining_pages(io_ctl); 1455 1456 /* Everything is written out, now we dirty the pages in the file. */ 1457 i_size = i_size_read(inode); 1458 for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) { 1459 u64 dirty_start = i * PAGE_SIZE; 1460 u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start; 1461 1462 ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]), 1463 dirty_start, dirty_len, &cached_state, false); 1464 if (ret < 0) 1465 goto out_nospc; 1466 } 1467 1468 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1469 up_write(&block_group->data_rwsem); 1470 /* 1471 * Release the pages and unlock the extent, we will flush 1472 * them out later 1473 */ 1474 io_ctl_drop_pages(io_ctl); 1475 io_ctl_free(io_ctl); 1476 1477 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1478 &cached_state); 1479 1480 /* 1481 * at this point the pages are under IO and we're happy, 1482 * The caller is responsible for waiting on them and updating 1483 * the cache and the inode 1484 */ 1485 io_ctl->entries = entries; 1486 io_ctl->bitmaps = bitmaps; 1487 1488 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1); 1489 if (ret) 1490 goto out; 1491 1492 return 0; 1493 1494 out_nospc_locked: 1495 cleanup_bitmap_list(&bitmap_list); 1496 spin_unlock(&ctl->tree_lock); 1497 mutex_unlock(&ctl->cache_writeout_mutex); 1498 1499 out_nospc: 1500 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1501 1502 out_unlock: 1503 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1504 up_write(&block_group->data_rwsem); 1505 1506 out: 1507 io_ctl->inode = NULL; 1508 io_ctl_free(io_ctl); 1509 if (ret) { 1510 invalidate_inode_pages2(inode->i_mapping); 1511 BTRFS_I(inode)->generation = 0; 1512 } 1513 btrfs_update_inode(trans, BTRFS_I(inode)); 1514 if (must_iput) 1515 iput(inode); 1516 return ret; 1517 } 1518 1519 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1520 struct btrfs_block_group *block_group, 1521 struct btrfs_path *path) 1522 { 1523 struct btrfs_fs_info *fs_info = trans->fs_info; 1524 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1525 struct inode *inode; 1526 int ret = 0; 1527 1528 spin_lock(&block_group->lock); 1529 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1530 spin_unlock(&block_group->lock); 1531 return 0; 1532 } 1533 spin_unlock(&block_group->lock); 1534 1535 inode = lookup_free_space_inode(block_group, path); 1536 if (IS_ERR(inode)) 1537 return 0; 1538 1539 ret = __btrfs_write_out_cache(inode, ctl, block_group, 1540 &block_group->io_ctl, trans); 1541 if (ret) { 1542 btrfs_debug(fs_info, 1543 "failed to write free space cache for block group %llu error %d", 1544 block_group->start, ret); 1545 spin_lock(&block_group->lock); 1546 block_group->disk_cache_state = BTRFS_DC_ERROR; 1547 spin_unlock(&block_group->lock); 1548 1549 block_group->io_ctl.inode = NULL; 1550 iput(inode); 1551 } 1552 1553 /* 1554 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1555 * to wait for IO and put the inode 1556 */ 1557 1558 return ret; 1559 } 1560 1561 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1562 u64 offset) 1563 { 1564 ASSERT(offset >= bitmap_start); 1565 offset -= bitmap_start; 1566 return (unsigned long)(div_u64(offset, unit)); 1567 } 1568 1569 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1570 { 1571 return (unsigned long)(div_u64(bytes, unit)); 1572 } 1573 1574 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1575 u64 offset) 1576 { 1577 u64 bitmap_start; 1578 u64 bytes_per_bitmap; 1579 1580 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1581 bitmap_start = offset - ctl->start; 1582 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1583 bitmap_start *= bytes_per_bitmap; 1584 bitmap_start += ctl->start; 1585 1586 return bitmap_start; 1587 } 1588 1589 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl, 1590 struct btrfs_free_cluster *cluster, 1591 struct btrfs_free_space *new_entry) 1592 { 1593 struct rb_root *root; 1594 struct rb_node **p; 1595 struct rb_node *parent = NULL; 1596 1597 lockdep_assert_held(&ctl->tree_lock); 1598 1599 if (cluster) { 1600 lockdep_assert_held(&cluster->lock); 1601 root = &cluster->root; 1602 } else { 1603 root = &ctl->free_space_offset; 1604 } 1605 1606 p = &root->rb_node; 1607 1608 while (*p) { 1609 struct btrfs_free_space *info; 1610 1611 parent = *p; 1612 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1613 1614 if (new_entry->offset < info->offset) { 1615 p = &(*p)->rb_left; 1616 } else if (new_entry->offset > info->offset) { 1617 p = &(*p)->rb_right; 1618 } else { 1619 /* 1620 * we could have a bitmap entry and an extent entry 1621 * share the same offset. If this is the case, we want 1622 * the extent entry to always be found first if we do a 1623 * linear search through the tree, since we want to have 1624 * the quickest allocation time, and allocating from an 1625 * extent is faster than allocating from a bitmap. So 1626 * if we're inserting a bitmap and we find an entry at 1627 * this offset, we want to go right, or after this entry 1628 * logically. If we are inserting an extent and we've 1629 * found a bitmap, we want to go left, or before 1630 * logically. 1631 */ 1632 if (new_entry->bitmap) { 1633 if (info->bitmap) { 1634 WARN_ON_ONCE(1); 1635 return -EEXIST; 1636 } 1637 p = &(*p)->rb_right; 1638 } else { 1639 if (!info->bitmap) { 1640 WARN_ON_ONCE(1); 1641 return -EEXIST; 1642 } 1643 p = &(*p)->rb_left; 1644 } 1645 } 1646 } 1647 1648 rb_link_node(&new_entry->offset_index, parent, p); 1649 rb_insert_color(&new_entry->offset_index, root); 1650 1651 return 0; 1652 } 1653 1654 /* 1655 * This is a little subtle. We *only* have ->max_extent_size set if we actually 1656 * searched through the bitmap and figured out the largest ->max_extent_size, 1657 * otherwise it's 0. In the case that it's 0 we don't want to tell the 1658 * allocator the wrong thing, we want to use the actual real max_extent_size 1659 * we've found already if it's larger, or we want to use ->bytes. 1660 * 1661 * This matters because find_free_space() will skip entries who's ->bytes is 1662 * less than the required bytes. So if we didn't search down this bitmap, we 1663 * may pick some previous entry that has a smaller ->max_extent_size than we 1664 * have. For example, assume we have two entries, one that has 1665 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set 1666 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will 1667 * call into find_free_space(), and return with max_extent_size == 4K, because 1668 * that first bitmap entry had ->max_extent_size set, but the second one did 1669 * not. If instead we returned 8K we'd come in searching for 8K, and find the 1670 * 8K contiguous range. 1671 * 1672 * Consider the other case, we have 2 8K chunks in that second entry and still 1673 * don't have ->max_extent_size set. We'll return 16K, and the next time the 1674 * allocator comes in it'll fully search our second bitmap, and this time it'll 1675 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the 1676 * right allocation the next loop through. 1677 */ 1678 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry) 1679 { 1680 if (entry->bitmap && entry->max_extent_size) 1681 return entry->max_extent_size; 1682 return entry->bytes; 1683 } 1684 1685 /* 1686 * We want the largest entry to be leftmost, so this is inverted from what you'd 1687 * normally expect. 1688 */ 1689 static bool entry_less(struct rb_node *node, const struct rb_node *parent) 1690 { 1691 const struct btrfs_free_space *entry, *exist; 1692 1693 entry = rb_entry(node, struct btrfs_free_space, bytes_index); 1694 exist = rb_entry(parent, struct btrfs_free_space, bytes_index); 1695 return get_max_extent_size(exist) < get_max_extent_size(entry); 1696 } 1697 1698 /* 1699 * searches the tree for the given offset. 1700 * 1701 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1702 * want a section that has at least bytes size and comes at or after the given 1703 * offset. 1704 */ 1705 static struct btrfs_free_space * 1706 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1707 u64 offset, int bitmap_only, int fuzzy) 1708 { 1709 struct rb_node *n = ctl->free_space_offset.rb_node; 1710 struct btrfs_free_space *entry = NULL, *prev = NULL; 1711 1712 lockdep_assert_held(&ctl->tree_lock); 1713 1714 /* find entry that is closest to the 'offset' */ 1715 while (n) { 1716 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1717 prev = entry; 1718 1719 if (offset < entry->offset) 1720 n = n->rb_left; 1721 else if (offset > entry->offset) 1722 n = n->rb_right; 1723 else 1724 break; 1725 1726 entry = NULL; 1727 } 1728 1729 if (bitmap_only) { 1730 if (!entry) 1731 return NULL; 1732 if (entry->bitmap) 1733 return entry; 1734 1735 /* 1736 * bitmap entry and extent entry may share same offset, 1737 * in that case, bitmap entry comes after extent entry. 1738 */ 1739 n = rb_next(n); 1740 if (!n) 1741 return NULL; 1742 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1743 if (entry->offset != offset) 1744 return NULL; 1745 1746 WARN_ON(!entry->bitmap); 1747 return entry; 1748 } else if (entry) { 1749 if (entry->bitmap) { 1750 /* 1751 * if previous extent entry covers the offset, 1752 * we should return it instead of the bitmap entry 1753 */ 1754 n = rb_prev(&entry->offset_index); 1755 if (n) { 1756 prev = rb_entry(n, struct btrfs_free_space, 1757 offset_index); 1758 if (!prev->bitmap && 1759 prev->offset + prev->bytes > offset) 1760 entry = prev; 1761 } 1762 } 1763 return entry; 1764 } 1765 1766 if (!prev) 1767 return NULL; 1768 1769 /* find last entry before the 'offset' */ 1770 entry = prev; 1771 if (entry->offset > offset) { 1772 n = rb_prev(&entry->offset_index); 1773 if (n) { 1774 entry = rb_entry(n, struct btrfs_free_space, 1775 offset_index); 1776 ASSERT(entry->offset <= offset); 1777 } else { 1778 if (fuzzy) 1779 return entry; 1780 else 1781 return NULL; 1782 } 1783 } 1784 1785 if (entry->bitmap) { 1786 n = rb_prev(&entry->offset_index); 1787 if (n) { 1788 prev = rb_entry(n, struct btrfs_free_space, 1789 offset_index); 1790 if (!prev->bitmap && 1791 prev->offset + prev->bytes > offset) 1792 return prev; 1793 } 1794 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1795 return entry; 1796 } else if (entry->offset + entry->bytes > offset) 1797 return entry; 1798 1799 if (!fuzzy) 1800 return NULL; 1801 1802 while (1) { 1803 n = rb_next(&entry->offset_index); 1804 if (!n) 1805 return NULL; 1806 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1807 if (entry->bitmap) { 1808 if (entry->offset + BITS_PER_BITMAP * 1809 ctl->unit > offset) 1810 break; 1811 } else { 1812 if (entry->offset + entry->bytes > offset) 1813 break; 1814 } 1815 } 1816 return entry; 1817 } 1818 1819 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1820 struct btrfs_free_space *info, 1821 bool update_stat) 1822 { 1823 lockdep_assert_held(&ctl->tree_lock); 1824 1825 rb_erase(&info->offset_index, &ctl->free_space_offset); 1826 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1827 ctl->free_extents--; 1828 1829 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1830 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1831 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1832 } 1833 1834 if (update_stat) 1835 ctl->free_space -= info->bytes; 1836 } 1837 1838 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1839 struct btrfs_free_space *info) 1840 { 1841 int ret = 0; 1842 1843 lockdep_assert_held(&ctl->tree_lock); 1844 1845 ASSERT(info->bytes || info->bitmap); 1846 ret = tree_insert_offset(ctl, NULL, info); 1847 if (ret) 1848 return ret; 1849 1850 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1851 1852 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1853 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1854 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1855 } 1856 1857 ctl->free_space += info->bytes; 1858 ctl->free_extents++; 1859 return ret; 1860 } 1861 1862 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl, 1863 struct btrfs_free_space *info) 1864 { 1865 ASSERT(info->bitmap); 1866 1867 /* 1868 * If our entry is empty it's because we're on a cluster and we don't 1869 * want to re-link it into our ctl bytes index. 1870 */ 1871 if (RB_EMPTY_NODE(&info->bytes_index)) 1872 return; 1873 1874 lockdep_assert_held(&ctl->tree_lock); 1875 1876 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); 1877 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); 1878 } 1879 1880 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1881 struct btrfs_free_space *info, 1882 u64 offset, u64 bytes, bool update_stat) 1883 { 1884 unsigned long start, count, end; 1885 int extent_delta = -1; 1886 1887 start = offset_to_bit(info->offset, ctl->unit, offset); 1888 count = bytes_to_bits(bytes, ctl->unit); 1889 end = start + count; 1890 ASSERT(end <= BITS_PER_BITMAP); 1891 1892 bitmap_clear(info->bitmap, start, count); 1893 1894 info->bytes -= bytes; 1895 if (info->max_extent_size > ctl->unit) 1896 info->max_extent_size = 0; 1897 1898 relink_bitmap_entry(ctl, info); 1899 1900 if (start && test_bit(start - 1, info->bitmap)) 1901 extent_delta++; 1902 1903 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1904 extent_delta++; 1905 1906 info->bitmap_extents += extent_delta; 1907 if (!btrfs_free_space_trimmed(info)) { 1908 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1909 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1910 } 1911 1912 if (update_stat) 1913 ctl->free_space -= bytes; 1914 } 1915 1916 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1917 struct btrfs_free_space *info, u64 offset, 1918 u64 bytes) 1919 { 1920 unsigned long start, count, end; 1921 int extent_delta = 1; 1922 1923 start = offset_to_bit(info->offset, ctl->unit, offset); 1924 count = bytes_to_bits(bytes, ctl->unit); 1925 end = start + count; 1926 ASSERT(end <= BITS_PER_BITMAP); 1927 1928 bitmap_set(info->bitmap, start, count); 1929 1930 /* 1931 * We set some bytes, we have no idea what the max extent size is 1932 * anymore. 1933 */ 1934 info->max_extent_size = 0; 1935 info->bytes += bytes; 1936 ctl->free_space += bytes; 1937 1938 relink_bitmap_entry(ctl, info); 1939 1940 if (start && test_bit(start - 1, info->bitmap)) 1941 extent_delta--; 1942 1943 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1944 extent_delta--; 1945 1946 info->bitmap_extents += extent_delta; 1947 if (!btrfs_free_space_trimmed(info)) { 1948 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1949 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1950 } 1951 } 1952 1953 /* 1954 * If we can not find suitable extent, we will use bytes to record 1955 * the size of the max extent. 1956 */ 1957 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1958 struct btrfs_free_space *bitmap_info, u64 *offset, 1959 u64 *bytes, bool for_alloc) 1960 { 1961 unsigned long found_bits = 0; 1962 unsigned long max_bits = 0; 1963 unsigned long bits, i; 1964 unsigned long next_zero; 1965 unsigned long extent_bits; 1966 1967 /* 1968 * Skip searching the bitmap if we don't have a contiguous section that 1969 * is large enough for this allocation. 1970 */ 1971 if (for_alloc && 1972 bitmap_info->max_extent_size && 1973 bitmap_info->max_extent_size < *bytes) { 1974 *bytes = bitmap_info->max_extent_size; 1975 return -1; 1976 } 1977 1978 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1979 max_t(u64, *offset, bitmap_info->offset)); 1980 bits = bytes_to_bits(*bytes, ctl->unit); 1981 1982 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1983 if (for_alloc && bits == 1) { 1984 found_bits = 1; 1985 break; 1986 } 1987 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1988 BITS_PER_BITMAP, i); 1989 extent_bits = next_zero - i; 1990 if (extent_bits >= bits) { 1991 found_bits = extent_bits; 1992 break; 1993 } else if (extent_bits > max_bits) { 1994 max_bits = extent_bits; 1995 } 1996 i = next_zero; 1997 } 1998 1999 if (found_bits) { 2000 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 2001 *bytes = (u64)(found_bits) * ctl->unit; 2002 return 0; 2003 } 2004 2005 *bytes = (u64)(max_bits) * ctl->unit; 2006 bitmap_info->max_extent_size = *bytes; 2007 relink_bitmap_entry(ctl, bitmap_info); 2008 return -1; 2009 } 2010 2011 /* Cache the size of the max extent in bytes */ 2012 static struct btrfs_free_space * 2013 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 2014 unsigned long align, u64 *max_extent_size, bool use_bytes_index) 2015 { 2016 struct btrfs_free_space *entry; 2017 struct rb_node *node; 2018 u64 tmp; 2019 u64 align_off; 2020 int ret; 2021 2022 if (!ctl->free_space_offset.rb_node) 2023 goto out; 2024 again: 2025 if (use_bytes_index) { 2026 node = rb_first_cached(&ctl->free_space_bytes); 2027 } else { 2028 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 2029 0, 1); 2030 if (!entry) 2031 goto out; 2032 node = &entry->offset_index; 2033 } 2034 2035 for (; node; node = rb_next(node)) { 2036 if (use_bytes_index) 2037 entry = rb_entry(node, struct btrfs_free_space, 2038 bytes_index); 2039 else 2040 entry = rb_entry(node, struct btrfs_free_space, 2041 offset_index); 2042 2043 /* 2044 * If we are using the bytes index then all subsequent entries 2045 * in this tree are going to be < bytes, so simply set the max 2046 * extent size and exit the loop. 2047 * 2048 * If we're using the offset index then we need to keep going 2049 * through the rest of the tree. 2050 */ 2051 if (entry->bytes < *bytes) { 2052 *max_extent_size = max(get_max_extent_size(entry), 2053 *max_extent_size); 2054 if (use_bytes_index) 2055 break; 2056 continue; 2057 } 2058 2059 /* make sure the space returned is big enough 2060 * to match our requested alignment 2061 */ 2062 if (*bytes >= align) { 2063 tmp = entry->offset - ctl->start + align - 1; 2064 tmp = div64_u64(tmp, align); 2065 tmp = tmp * align + ctl->start; 2066 align_off = tmp - entry->offset; 2067 } else { 2068 align_off = 0; 2069 tmp = entry->offset; 2070 } 2071 2072 /* 2073 * We don't break here if we're using the bytes index because we 2074 * may have another entry that has the correct alignment that is 2075 * the right size, so we don't want to miss that possibility. 2076 * At worst this adds another loop through the logic, but if we 2077 * broke here we could prematurely ENOSPC. 2078 */ 2079 if (entry->bytes < *bytes + align_off) { 2080 *max_extent_size = max(get_max_extent_size(entry), 2081 *max_extent_size); 2082 continue; 2083 } 2084 2085 if (entry->bitmap) { 2086 struct rb_node *old_next = rb_next(node); 2087 u64 size = *bytes; 2088 2089 ret = search_bitmap(ctl, entry, &tmp, &size, true); 2090 if (!ret) { 2091 *offset = tmp; 2092 *bytes = size; 2093 return entry; 2094 } else { 2095 *max_extent_size = 2096 max(get_max_extent_size(entry), 2097 *max_extent_size); 2098 } 2099 2100 /* 2101 * The bitmap may have gotten re-arranged in the space 2102 * index here because the max_extent_size may have been 2103 * updated. Start from the beginning again if this 2104 * happened. 2105 */ 2106 if (use_bytes_index && old_next != rb_next(node)) 2107 goto again; 2108 continue; 2109 } 2110 2111 *offset = tmp; 2112 *bytes = entry->bytes - align_off; 2113 return entry; 2114 } 2115 out: 2116 return NULL; 2117 } 2118 2119 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 2120 struct btrfs_free_space *info, u64 offset) 2121 { 2122 info->offset = offset_to_bitmap(ctl, offset); 2123 info->bytes = 0; 2124 info->bitmap_extents = 0; 2125 INIT_LIST_HEAD(&info->list); 2126 link_free_space(ctl, info); 2127 ctl->total_bitmaps++; 2128 recalculate_thresholds(ctl); 2129 } 2130 2131 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 2132 struct btrfs_free_space *bitmap_info) 2133 { 2134 /* 2135 * Normally when this is called, the bitmap is completely empty. However, 2136 * if we are blowing up the free space cache for one reason or another 2137 * via __btrfs_remove_free_space_cache(), then it may not be freed and 2138 * we may leave stats on the table. 2139 */ 2140 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 2141 ctl->discardable_extents[BTRFS_STAT_CURR] -= 2142 bitmap_info->bitmap_extents; 2143 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 2144 2145 } 2146 unlink_free_space(ctl, bitmap_info, true); 2147 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 2148 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 2149 ctl->total_bitmaps--; 2150 recalculate_thresholds(ctl); 2151 } 2152 2153 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 2154 struct btrfs_free_space *bitmap_info, 2155 u64 *offset, u64 *bytes) 2156 { 2157 u64 end; 2158 u64 search_start, search_bytes; 2159 int ret; 2160 2161 again: 2162 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 2163 2164 /* 2165 * We need to search for bits in this bitmap. We could only cover some 2166 * of the extent in this bitmap thanks to how we add space, so we need 2167 * to search for as much as it as we can and clear that amount, and then 2168 * go searching for the next bit. 2169 */ 2170 search_start = *offset; 2171 search_bytes = ctl->unit; 2172 search_bytes = min(search_bytes, end - search_start + 1); 2173 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2174 false); 2175 if (ret < 0 || search_start != *offset) 2176 return -EINVAL; 2177 2178 /* We may have found more bits than what we need */ 2179 search_bytes = min(search_bytes, *bytes); 2180 2181 /* Cannot clear past the end of the bitmap */ 2182 search_bytes = min(search_bytes, end - search_start + 1); 2183 2184 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true); 2185 *offset += search_bytes; 2186 *bytes -= search_bytes; 2187 2188 if (*bytes) { 2189 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2190 if (!bitmap_info->bytes) 2191 free_bitmap(ctl, bitmap_info); 2192 2193 /* 2194 * no entry after this bitmap, but we still have bytes to 2195 * remove, so something has gone wrong. 2196 */ 2197 if (!next) 2198 return -EINVAL; 2199 2200 bitmap_info = rb_entry(next, struct btrfs_free_space, 2201 offset_index); 2202 2203 /* 2204 * if the next entry isn't a bitmap we need to return to let the 2205 * extent stuff do its work. 2206 */ 2207 if (!bitmap_info->bitmap) 2208 return -EAGAIN; 2209 2210 /* 2211 * Ok the next item is a bitmap, but it may not actually hold 2212 * the information for the rest of this free space stuff, so 2213 * look for it, and if we don't find it return so we can try 2214 * everything over again. 2215 */ 2216 search_start = *offset; 2217 search_bytes = ctl->unit; 2218 ret = search_bitmap(ctl, bitmap_info, &search_start, 2219 &search_bytes, false); 2220 if (ret < 0 || search_start != *offset) 2221 return -EAGAIN; 2222 2223 goto again; 2224 } else if (!bitmap_info->bytes) 2225 free_bitmap(ctl, bitmap_info); 2226 2227 return 0; 2228 } 2229 2230 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2231 struct btrfs_free_space *info, u64 offset, 2232 u64 bytes, enum btrfs_trim_state trim_state) 2233 { 2234 u64 bytes_to_set = 0; 2235 u64 end; 2236 2237 /* 2238 * This is a tradeoff to make bitmap trim state minimal. We mark the 2239 * whole bitmap untrimmed if at any point we add untrimmed regions. 2240 */ 2241 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2242 if (btrfs_free_space_trimmed(info)) { 2243 ctl->discardable_extents[BTRFS_STAT_CURR] += 2244 info->bitmap_extents; 2245 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2246 } 2247 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2248 } 2249 2250 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2251 2252 bytes_to_set = min(end - offset, bytes); 2253 2254 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set); 2255 2256 return bytes_to_set; 2257 2258 } 2259 2260 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2261 struct btrfs_free_space *info) 2262 { 2263 struct btrfs_block_group *block_group = ctl->block_group; 2264 struct btrfs_fs_info *fs_info = block_group->fs_info; 2265 bool forced = false; 2266 2267 #ifdef CONFIG_BTRFS_DEBUG 2268 if (btrfs_should_fragment_free_space(block_group)) 2269 forced = true; 2270 #endif 2271 2272 /* This is a way to reclaim large regions from the bitmaps. */ 2273 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2274 return false; 2275 2276 /* 2277 * If we are below the extents threshold then we can add this as an 2278 * extent, and don't have to deal with the bitmap 2279 */ 2280 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2281 /* 2282 * If this block group has some small extents we don't want to 2283 * use up all of our free slots in the cache with them, we want 2284 * to reserve them to larger extents, however if we have plenty 2285 * of cache left then go ahead an dadd them, no sense in adding 2286 * the overhead of a bitmap if we don't have to. 2287 */ 2288 if (info->bytes <= fs_info->sectorsize * 8) { 2289 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2290 return false; 2291 } else { 2292 return false; 2293 } 2294 } 2295 2296 /* 2297 * The original block groups from mkfs can be really small, like 8 2298 * megabytes, so don't bother with a bitmap for those entries. However 2299 * some block groups can be smaller than what a bitmap would cover but 2300 * are still large enough that they could overflow the 32k memory limit, 2301 * so allow those block groups to still be allowed to have a bitmap 2302 * entry. 2303 */ 2304 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2305 return false; 2306 2307 return true; 2308 } 2309 2310 static const struct btrfs_free_space_op free_space_op = { 2311 .use_bitmap = use_bitmap, 2312 }; 2313 2314 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2315 struct btrfs_free_space *info) 2316 { 2317 struct btrfs_free_space *bitmap_info; 2318 struct btrfs_block_group *block_group = NULL; 2319 int added = 0; 2320 u64 bytes, offset, bytes_added; 2321 enum btrfs_trim_state trim_state; 2322 int ret; 2323 2324 bytes = info->bytes; 2325 offset = info->offset; 2326 trim_state = info->trim_state; 2327 2328 if (!ctl->op->use_bitmap(ctl, info)) 2329 return 0; 2330 2331 if (ctl->op == &free_space_op) 2332 block_group = ctl->block_group; 2333 again: 2334 /* 2335 * Since we link bitmaps right into the cluster we need to see if we 2336 * have a cluster here, and if so and it has our bitmap we need to add 2337 * the free space to that bitmap. 2338 */ 2339 if (block_group && !list_empty(&block_group->cluster_list)) { 2340 struct btrfs_free_cluster *cluster; 2341 struct rb_node *node; 2342 struct btrfs_free_space *entry; 2343 2344 cluster = list_first_entry(&block_group->cluster_list, 2345 struct btrfs_free_cluster, block_group_list); 2346 spin_lock(&cluster->lock); 2347 node = rb_first(&cluster->root); 2348 if (!node) { 2349 spin_unlock(&cluster->lock); 2350 goto no_cluster_bitmap; 2351 } 2352 2353 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2354 if (!entry->bitmap) { 2355 spin_unlock(&cluster->lock); 2356 goto no_cluster_bitmap; 2357 } 2358 2359 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2360 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2361 bytes, trim_state); 2362 bytes -= bytes_added; 2363 offset += bytes_added; 2364 } 2365 spin_unlock(&cluster->lock); 2366 if (!bytes) { 2367 ret = 1; 2368 goto out; 2369 } 2370 } 2371 2372 no_cluster_bitmap: 2373 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2374 1, 0); 2375 if (!bitmap_info) { 2376 ASSERT(added == 0); 2377 goto new_bitmap; 2378 } 2379 2380 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2381 trim_state); 2382 bytes -= bytes_added; 2383 offset += bytes_added; 2384 added = 0; 2385 2386 if (!bytes) { 2387 ret = 1; 2388 goto out; 2389 } else 2390 goto again; 2391 2392 new_bitmap: 2393 if (info && info->bitmap) { 2394 add_new_bitmap(ctl, info, offset); 2395 added = 1; 2396 info = NULL; 2397 goto again; 2398 } else { 2399 spin_unlock(&ctl->tree_lock); 2400 2401 /* no pre-allocated info, allocate a new one */ 2402 if (!info) { 2403 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2404 GFP_NOFS); 2405 if (!info) { 2406 spin_lock(&ctl->tree_lock); 2407 ret = -ENOMEM; 2408 goto out; 2409 } 2410 } 2411 2412 /* allocate the bitmap */ 2413 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2414 GFP_NOFS); 2415 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2416 spin_lock(&ctl->tree_lock); 2417 if (!info->bitmap) { 2418 ret = -ENOMEM; 2419 goto out; 2420 } 2421 goto again; 2422 } 2423 2424 out: 2425 if (info) { 2426 if (info->bitmap) 2427 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2428 info->bitmap); 2429 kmem_cache_free(btrfs_free_space_cachep, info); 2430 } 2431 2432 return ret; 2433 } 2434 2435 /* 2436 * Free space merging rules: 2437 * 1) Merge trimmed areas together 2438 * 2) Let untrimmed areas coalesce with trimmed areas 2439 * 3) Always pull neighboring regions from bitmaps 2440 * 2441 * The above rules are for when we merge free space based on btrfs_trim_state. 2442 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2443 * same reason: to promote larger extent regions which makes life easier for 2444 * find_free_extent(). Rule 2 enables coalescing based on the common path 2445 * being returning free space from btrfs_finish_extent_commit(). So when free 2446 * space is trimmed, it will prevent aggregating trimmed new region and 2447 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2448 * and provide find_free_extent() with the largest extents possible hoping for 2449 * the reuse path. 2450 */ 2451 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2452 struct btrfs_free_space *info, bool update_stat) 2453 { 2454 struct btrfs_free_space *left_info = NULL; 2455 struct btrfs_free_space *right_info; 2456 bool merged = false; 2457 u64 offset = info->offset; 2458 u64 bytes = info->bytes; 2459 const bool is_trimmed = btrfs_free_space_trimmed(info); 2460 struct rb_node *right_prev = NULL; 2461 2462 /* 2463 * first we want to see if there is free space adjacent to the range we 2464 * are adding, if there is remove that struct and add a new one to 2465 * cover the entire range 2466 */ 2467 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2468 if (right_info) 2469 right_prev = rb_prev(&right_info->offset_index); 2470 2471 if (right_prev) 2472 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index); 2473 else if (!right_info) 2474 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2475 2476 /* See try_merge_free_space() comment. */ 2477 if (right_info && !right_info->bitmap && 2478 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2479 unlink_free_space(ctl, right_info, update_stat); 2480 info->bytes += right_info->bytes; 2481 kmem_cache_free(btrfs_free_space_cachep, right_info); 2482 merged = true; 2483 } 2484 2485 /* See try_merge_free_space() comment. */ 2486 if (left_info && !left_info->bitmap && 2487 left_info->offset + left_info->bytes == offset && 2488 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2489 unlink_free_space(ctl, left_info, update_stat); 2490 info->offset = left_info->offset; 2491 info->bytes += left_info->bytes; 2492 kmem_cache_free(btrfs_free_space_cachep, left_info); 2493 merged = true; 2494 } 2495 2496 return merged; 2497 } 2498 2499 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2500 struct btrfs_free_space *info, 2501 bool update_stat) 2502 { 2503 struct btrfs_free_space *bitmap; 2504 unsigned long i; 2505 unsigned long j; 2506 const u64 end = info->offset + info->bytes; 2507 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2508 u64 bytes; 2509 2510 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2511 if (!bitmap) 2512 return false; 2513 2514 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2515 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2516 if (j == i) 2517 return false; 2518 bytes = (j - i) * ctl->unit; 2519 info->bytes += bytes; 2520 2521 /* See try_merge_free_space() comment. */ 2522 if (!btrfs_free_space_trimmed(bitmap)) 2523 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2524 2525 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat); 2526 2527 if (!bitmap->bytes) 2528 free_bitmap(ctl, bitmap); 2529 2530 return true; 2531 } 2532 2533 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2534 struct btrfs_free_space *info, 2535 bool update_stat) 2536 { 2537 struct btrfs_free_space *bitmap; 2538 u64 bitmap_offset; 2539 unsigned long i; 2540 unsigned long j; 2541 unsigned long prev_j; 2542 u64 bytes; 2543 2544 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2545 /* If we're on a boundary, try the previous logical bitmap. */ 2546 if (bitmap_offset == info->offset) { 2547 if (info->offset == 0) 2548 return false; 2549 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2550 } 2551 2552 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2553 if (!bitmap) 2554 return false; 2555 2556 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2557 j = 0; 2558 prev_j = (unsigned long)-1; 2559 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2560 if (j > i) 2561 break; 2562 prev_j = j; 2563 } 2564 if (prev_j == i) 2565 return false; 2566 2567 if (prev_j == (unsigned long)-1) 2568 bytes = (i + 1) * ctl->unit; 2569 else 2570 bytes = (i - prev_j) * ctl->unit; 2571 2572 info->offset -= bytes; 2573 info->bytes += bytes; 2574 2575 /* See try_merge_free_space() comment. */ 2576 if (!btrfs_free_space_trimmed(bitmap)) 2577 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2578 2579 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat); 2580 2581 if (!bitmap->bytes) 2582 free_bitmap(ctl, bitmap); 2583 2584 return true; 2585 } 2586 2587 /* 2588 * We prefer always to allocate from extent entries, both for clustered and 2589 * non-clustered allocation requests. So when attempting to add a new extent 2590 * entry, try to see if there's adjacent free space in bitmap entries, and if 2591 * there is, migrate that space from the bitmaps to the extent. 2592 * Like this we get better chances of satisfying space allocation requests 2593 * because we attempt to satisfy them based on a single cache entry, and never 2594 * on 2 or more entries - even if the entries represent a contiguous free space 2595 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2596 * ends). 2597 */ 2598 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2599 struct btrfs_free_space *info, 2600 bool update_stat) 2601 { 2602 /* 2603 * Only work with disconnected entries, as we can change their offset, 2604 * and must be extent entries. 2605 */ 2606 ASSERT(!info->bitmap); 2607 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2608 2609 if (ctl->total_bitmaps > 0) { 2610 bool stole_end; 2611 bool stole_front = false; 2612 2613 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2614 if (ctl->total_bitmaps > 0) 2615 stole_front = steal_from_bitmap_to_front(ctl, info, 2616 update_stat); 2617 2618 if (stole_end || stole_front) 2619 try_merge_free_space(ctl, info, update_stat); 2620 } 2621 } 2622 2623 static int __btrfs_add_free_space(struct btrfs_block_group *block_group, 2624 u64 offset, u64 bytes, 2625 enum btrfs_trim_state trim_state) 2626 { 2627 struct btrfs_fs_info *fs_info = block_group->fs_info; 2628 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2629 struct btrfs_free_space *info; 2630 int ret = 0; 2631 u64 filter_bytes = bytes; 2632 2633 ASSERT(!btrfs_is_zoned(fs_info)); 2634 2635 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2636 if (!info) 2637 return -ENOMEM; 2638 2639 info->offset = offset; 2640 info->bytes = bytes; 2641 info->trim_state = trim_state; 2642 RB_CLEAR_NODE(&info->offset_index); 2643 RB_CLEAR_NODE(&info->bytes_index); 2644 2645 spin_lock(&ctl->tree_lock); 2646 2647 if (try_merge_free_space(ctl, info, true)) 2648 goto link; 2649 2650 /* 2651 * There was no extent directly to the left or right of this new 2652 * extent then we know we're going to have to allocate a new extent, so 2653 * before we do that see if we need to drop this into a bitmap 2654 */ 2655 ret = insert_into_bitmap(ctl, info); 2656 if (ret < 0) { 2657 goto out; 2658 } else if (ret) { 2659 ret = 0; 2660 goto out; 2661 } 2662 link: 2663 /* 2664 * Only steal free space from adjacent bitmaps if we're sure we're not 2665 * going to add the new free space to existing bitmap entries - because 2666 * that would mean unnecessary work that would be reverted. Therefore 2667 * attempt to steal space from bitmaps if we're adding an extent entry. 2668 */ 2669 steal_from_bitmap(ctl, info, true); 2670 2671 filter_bytes = max(filter_bytes, info->bytes); 2672 2673 ret = link_free_space(ctl, info); 2674 if (ret) 2675 kmem_cache_free(btrfs_free_space_cachep, info); 2676 out: 2677 btrfs_discard_update_discardable(block_group); 2678 spin_unlock(&ctl->tree_lock); 2679 2680 if (ret) { 2681 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2682 ASSERT(ret != -EEXIST); 2683 } 2684 2685 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2686 btrfs_discard_check_filter(block_group, filter_bytes); 2687 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2688 } 2689 2690 return ret; 2691 } 2692 2693 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group, 2694 u64 bytenr, u64 size, bool used) 2695 { 2696 struct btrfs_space_info *sinfo = block_group->space_info; 2697 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2698 u64 offset = bytenr - block_group->start; 2699 u64 to_free, to_unusable; 2700 int bg_reclaim_threshold = 0; 2701 bool initial; 2702 u64 reclaimable_unusable; 2703 2704 spin_lock(&block_group->lock); 2705 2706 initial = ((size == block_group->length) && (block_group->alloc_offset == 0)); 2707 WARN_ON(!initial && offset + size > block_group->zone_capacity); 2708 if (!initial) 2709 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold); 2710 2711 if (!used) 2712 to_free = size; 2713 else if (initial) 2714 to_free = block_group->zone_capacity; 2715 else if (offset >= block_group->alloc_offset) 2716 to_free = size; 2717 else if (offset + size <= block_group->alloc_offset) 2718 to_free = 0; 2719 else 2720 to_free = offset + size - block_group->alloc_offset; 2721 to_unusable = size - to_free; 2722 2723 spin_lock(&ctl->tree_lock); 2724 ctl->free_space += to_free; 2725 spin_unlock(&ctl->tree_lock); 2726 /* 2727 * If the block group is read-only, we should account freed space into 2728 * bytes_readonly. 2729 */ 2730 if (!block_group->ro) { 2731 block_group->zone_unusable += to_unusable; 2732 WARN_ON(block_group->zone_unusable > block_group->length); 2733 } 2734 if (!used) { 2735 block_group->alloc_offset -= size; 2736 } 2737 2738 reclaimable_unusable = block_group->zone_unusable - 2739 (block_group->length - block_group->zone_capacity); 2740 /* All the region is now unusable. Mark it as unused and reclaim */ 2741 if (block_group->zone_unusable == block_group->length) { 2742 btrfs_mark_bg_unused(block_group); 2743 } else if (bg_reclaim_threshold && 2744 reclaimable_unusable >= 2745 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) { 2746 btrfs_mark_bg_to_reclaim(block_group); 2747 } 2748 2749 spin_unlock(&block_group->lock); 2750 2751 return 0; 2752 } 2753 2754 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2755 u64 bytenr, u64 size) 2756 { 2757 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2758 2759 if (btrfs_is_zoned(block_group->fs_info)) 2760 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2761 true); 2762 2763 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2764 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2765 2766 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2767 } 2768 2769 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group, 2770 u64 bytenr, u64 size) 2771 { 2772 if (btrfs_is_zoned(block_group->fs_info)) 2773 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2774 false); 2775 2776 return btrfs_add_free_space(block_group, bytenr, size); 2777 } 2778 2779 /* 2780 * This is a subtle distinction because when adding free space back in general, 2781 * we want it to be added as untrimmed for async. But in the case where we add 2782 * it on loading of a block group, we want to consider it trimmed. 2783 */ 2784 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2785 u64 bytenr, u64 size) 2786 { 2787 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2788 2789 if (btrfs_is_zoned(block_group->fs_info)) 2790 return __btrfs_add_free_space_zoned(block_group, bytenr, size, 2791 true); 2792 2793 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2794 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2795 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2796 2797 return __btrfs_add_free_space(block_group, bytenr, size, trim_state); 2798 } 2799 2800 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2801 u64 offset, u64 bytes) 2802 { 2803 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2804 struct btrfs_free_space *info; 2805 int ret; 2806 bool re_search = false; 2807 2808 if (btrfs_is_zoned(block_group->fs_info)) { 2809 /* 2810 * This can happen with conventional zones when replaying log. 2811 * Since the allocation info of tree-log nodes are not recorded 2812 * to the extent-tree, calculate_alloc_pointer() failed to 2813 * advance the allocation pointer after last allocated tree log 2814 * node blocks. 2815 * 2816 * This function is called from 2817 * btrfs_pin_extent_for_log_replay() when replaying the log. 2818 * Advance the pointer not to overwrite the tree-log nodes. 2819 */ 2820 if (block_group->start + block_group->alloc_offset < 2821 offset + bytes) { 2822 block_group->alloc_offset = 2823 offset + bytes - block_group->start; 2824 } 2825 return 0; 2826 } 2827 2828 spin_lock(&ctl->tree_lock); 2829 2830 again: 2831 ret = 0; 2832 if (!bytes) 2833 goto out_lock; 2834 2835 info = tree_search_offset(ctl, offset, 0, 0); 2836 if (!info) { 2837 /* 2838 * oops didn't find an extent that matched the space we wanted 2839 * to remove, look for a bitmap instead 2840 */ 2841 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2842 1, 0); 2843 if (!info) { 2844 /* 2845 * If we found a partial bit of our free space in a 2846 * bitmap but then couldn't find the other part this may 2847 * be a problem, so WARN about it. 2848 */ 2849 WARN_ON(re_search); 2850 goto out_lock; 2851 } 2852 } 2853 2854 re_search = false; 2855 if (!info->bitmap) { 2856 unlink_free_space(ctl, info, true); 2857 if (offset == info->offset) { 2858 u64 to_free = min(bytes, info->bytes); 2859 2860 info->bytes -= to_free; 2861 info->offset += to_free; 2862 if (info->bytes) { 2863 ret = link_free_space(ctl, info); 2864 WARN_ON(ret); 2865 } else { 2866 kmem_cache_free(btrfs_free_space_cachep, info); 2867 } 2868 2869 offset += to_free; 2870 bytes -= to_free; 2871 goto again; 2872 } else { 2873 u64 old_end = info->bytes + info->offset; 2874 2875 info->bytes = offset - info->offset; 2876 ret = link_free_space(ctl, info); 2877 WARN_ON(ret); 2878 if (ret) 2879 goto out_lock; 2880 2881 /* Not enough bytes in this entry to satisfy us */ 2882 if (old_end < offset + bytes) { 2883 bytes -= old_end - offset; 2884 offset = old_end; 2885 goto again; 2886 } else if (old_end == offset + bytes) { 2887 /* all done */ 2888 goto out_lock; 2889 } 2890 spin_unlock(&ctl->tree_lock); 2891 2892 ret = __btrfs_add_free_space(block_group, 2893 offset + bytes, 2894 old_end - (offset + bytes), 2895 info->trim_state); 2896 WARN_ON(ret); 2897 goto out; 2898 } 2899 } 2900 2901 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2902 if (ret == -EAGAIN) { 2903 re_search = true; 2904 goto again; 2905 } 2906 out_lock: 2907 btrfs_discard_update_discardable(block_group); 2908 spin_unlock(&ctl->tree_lock); 2909 out: 2910 return ret; 2911 } 2912 2913 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2914 u64 bytes) 2915 { 2916 struct btrfs_fs_info *fs_info = block_group->fs_info; 2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2918 struct btrfs_free_space *info; 2919 struct rb_node *n; 2920 int count = 0; 2921 2922 /* 2923 * Zoned btrfs does not use free space tree and cluster. Just print 2924 * out the free space after the allocation offset. 2925 */ 2926 if (btrfs_is_zoned(fs_info)) { 2927 btrfs_info(fs_info, "free space %llu active %d", 2928 block_group->zone_capacity - block_group->alloc_offset, 2929 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2930 &block_group->runtime_flags)); 2931 return; 2932 } 2933 2934 spin_lock(&ctl->tree_lock); 2935 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2936 info = rb_entry(n, struct btrfs_free_space, offset_index); 2937 if (info->bytes >= bytes && !block_group->ro) 2938 count++; 2939 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2940 info->offset, info->bytes, str_yes_no(info->bitmap)); 2941 } 2942 spin_unlock(&ctl->tree_lock); 2943 btrfs_info(fs_info, "block group has cluster?: %s", 2944 str_no_yes(list_empty(&block_group->cluster_list))); 2945 btrfs_info(fs_info, 2946 "%d free space entries at or bigger than %llu bytes", 2947 count, bytes); 2948 } 2949 2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, 2951 struct btrfs_free_space_ctl *ctl) 2952 { 2953 struct btrfs_fs_info *fs_info = block_group->fs_info; 2954 2955 spin_lock_init(&ctl->tree_lock); 2956 ctl->unit = fs_info->sectorsize; 2957 ctl->start = block_group->start; 2958 ctl->block_group = block_group; 2959 ctl->op = &free_space_op; 2960 ctl->free_space_bytes = RB_ROOT_CACHED; 2961 INIT_LIST_HEAD(&ctl->trimming_ranges); 2962 mutex_init(&ctl->cache_writeout_mutex); 2963 2964 /* 2965 * we only want to have 32k of ram per block group for keeping 2966 * track of free space, and if we pass 1/2 of that we want to 2967 * start converting things over to using bitmaps 2968 */ 2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2970 } 2971 2972 /* 2973 * for a given cluster, put all of its extents back into the free 2974 * space cache. If the block group passed doesn't match the block group 2975 * pointed to by the cluster, someone else raced in and freed the 2976 * cluster already. In that case, we just return without changing anything 2977 */ 2978 static void __btrfs_return_cluster_to_free_space( 2979 struct btrfs_block_group *block_group, 2980 struct btrfs_free_cluster *cluster) 2981 { 2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2983 struct rb_node *node; 2984 2985 lockdep_assert_held(&ctl->tree_lock); 2986 2987 spin_lock(&cluster->lock); 2988 if (cluster->block_group != block_group) { 2989 spin_unlock(&cluster->lock); 2990 return; 2991 } 2992 2993 cluster->block_group = NULL; 2994 cluster->window_start = 0; 2995 list_del_init(&cluster->block_group_list); 2996 2997 node = rb_first(&cluster->root); 2998 while (node) { 2999 struct btrfs_free_space *entry; 3000 3001 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3002 node = rb_next(&entry->offset_index); 3003 rb_erase(&entry->offset_index, &cluster->root); 3004 RB_CLEAR_NODE(&entry->offset_index); 3005 3006 if (!entry->bitmap) { 3007 /* Merging treats extents as if they were new */ 3008 if (!btrfs_free_space_trimmed(entry)) { 3009 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 3011 entry->bytes; 3012 } 3013 3014 try_merge_free_space(ctl, entry, false); 3015 steal_from_bitmap(ctl, entry, false); 3016 3017 /* As we insert directly, update these statistics */ 3018 if (!btrfs_free_space_trimmed(entry)) { 3019 ctl->discardable_extents[BTRFS_STAT_CURR]++; 3020 ctl->discardable_bytes[BTRFS_STAT_CURR] += 3021 entry->bytes; 3022 } 3023 } 3024 tree_insert_offset(ctl, NULL, entry); 3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes, 3026 entry_less); 3027 } 3028 cluster->root = RB_ROOT; 3029 spin_unlock(&cluster->lock); 3030 btrfs_put_block_group(block_group); 3031 } 3032 3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 3034 { 3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3036 struct btrfs_free_cluster *cluster; 3037 struct list_head *head; 3038 3039 spin_lock(&ctl->tree_lock); 3040 while ((head = block_group->cluster_list.next) != 3041 &block_group->cluster_list) { 3042 cluster = list_entry(head, struct btrfs_free_cluster, 3043 block_group_list); 3044 3045 WARN_ON(cluster->block_group != block_group); 3046 __btrfs_return_cluster_to_free_space(block_group, cluster); 3047 3048 cond_resched_lock(&ctl->tree_lock); 3049 } 3050 __btrfs_remove_free_space_cache(ctl); 3051 btrfs_discard_update_discardable(block_group); 3052 spin_unlock(&ctl->tree_lock); 3053 3054 } 3055 3056 /* 3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 3058 */ 3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 3060 { 3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3062 struct btrfs_free_space *info; 3063 struct rb_node *node; 3064 bool ret = true; 3065 3066 spin_lock(&ctl->tree_lock); 3067 node = rb_first(&ctl->free_space_offset); 3068 3069 while (node) { 3070 info = rb_entry(node, struct btrfs_free_space, offset_index); 3071 3072 if (!btrfs_free_space_trimmed(info)) { 3073 ret = false; 3074 break; 3075 } 3076 3077 node = rb_next(node); 3078 } 3079 3080 spin_unlock(&ctl->tree_lock); 3081 return ret; 3082 } 3083 3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 3085 u64 offset, u64 bytes, u64 empty_size, 3086 u64 *max_extent_size) 3087 { 3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3089 struct btrfs_discard_ctl *discard_ctl = 3090 &block_group->fs_info->discard_ctl; 3091 struct btrfs_free_space *entry = NULL; 3092 u64 bytes_search = bytes + empty_size; 3093 u64 ret = 0; 3094 u64 align_gap = 0; 3095 u64 align_gap_len = 0; 3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3097 bool use_bytes_index = (offset == block_group->start); 3098 3099 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3100 3101 spin_lock(&ctl->tree_lock); 3102 entry = find_free_space(ctl, &offset, &bytes_search, 3103 block_group->full_stripe_len, max_extent_size, 3104 use_bytes_index); 3105 if (!entry) 3106 goto out; 3107 3108 ret = offset; 3109 if (entry->bitmap) { 3110 bitmap_clear_bits(ctl, entry, offset, bytes, true); 3111 3112 if (!btrfs_free_space_trimmed(entry)) 3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3114 3115 if (!entry->bytes) 3116 free_bitmap(ctl, entry); 3117 } else { 3118 unlink_free_space(ctl, entry, true); 3119 align_gap_len = offset - entry->offset; 3120 align_gap = entry->offset; 3121 align_gap_trim_state = entry->trim_state; 3122 3123 if (!btrfs_free_space_trimmed(entry)) 3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3125 3126 entry->offset = offset + bytes; 3127 WARN_ON(entry->bytes < bytes + align_gap_len); 3128 3129 entry->bytes -= bytes + align_gap_len; 3130 if (!entry->bytes) 3131 kmem_cache_free(btrfs_free_space_cachep, entry); 3132 else 3133 link_free_space(ctl, entry); 3134 } 3135 out: 3136 btrfs_discard_update_discardable(block_group); 3137 spin_unlock(&ctl->tree_lock); 3138 3139 if (align_gap_len) 3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len, 3141 align_gap_trim_state); 3142 return ret; 3143 } 3144 3145 /* 3146 * given a cluster, put all of its extents back into the free space 3147 * cache. If a block group is passed, this function will only free 3148 * a cluster that belongs to the passed block group. 3149 * 3150 * Otherwise, it'll get a reference on the block group pointed to by the 3151 * cluster and remove the cluster from it. 3152 */ 3153 void btrfs_return_cluster_to_free_space( 3154 struct btrfs_block_group *block_group, 3155 struct btrfs_free_cluster *cluster) 3156 { 3157 struct btrfs_free_space_ctl *ctl; 3158 3159 /* first, get a safe pointer to the block group */ 3160 spin_lock(&cluster->lock); 3161 if (!block_group) { 3162 block_group = cluster->block_group; 3163 if (!block_group) { 3164 spin_unlock(&cluster->lock); 3165 return; 3166 } 3167 } else if (cluster->block_group != block_group) { 3168 /* someone else has already freed it don't redo their work */ 3169 spin_unlock(&cluster->lock); 3170 return; 3171 } 3172 btrfs_get_block_group(block_group); 3173 spin_unlock(&cluster->lock); 3174 3175 ctl = block_group->free_space_ctl; 3176 3177 /* now return any extents the cluster had on it */ 3178 spin_lock(&ctl->tree_lock); 3179 __btrfs_return_cluster_to_free_space(block_group, cluster); 3180 spin_unlock(&ctl->tree_lock); 3181 3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 3183 3184 /* finally drop our ref */ 3185 btrfs_put_block_group(block_group); 3186 } 3187 3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 3189 struct btrfs_free_cluster *cluster, 3190 struct btrfs_free_space *entry, 3191 u64 bytes, u64 min_start, 3192 u64 *max_extent_size) 3193 { 3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3195 int err; 3196 u64 search_start = cluster->window_start; 3197 u64 search_bytes = bytes; 3198 u64 ret = 0; 3199 3200 search_start = min_start; 3201 search_bytes = bytes; 3202 3203 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 3204 if (err) { 3205 *max_extent_size = max(get_max_extent_size(entry), 3206 *max_extent_size); 3207 return 0; 3208 } 3209 3210 ret = search_start; 3211 bitmap_clear_bits(ctl, entry, ret, bytes, false); 3212 3213 return ret; 3214 } 3215 3216 /* 3217 * given a cluster, try to allocate 'bytes' from it, returns 0 3218 * if it couldn't find anything suitably large, or a logical disk offset 3219 * if things worked out 3220 */ 3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 3222 struct btrfs_free_cluster *cluster, u64 bytes, 3223 u64 min_start, u64 *max_extent_size) 3224 { 3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3226 struct btrfs_discard_ctl *discard_ctl = 3227 &block_group->fs_info->discard_ctl; 3228 struct btrfs_free_space *entry = NULL; 3229 struct rb_node *node; 3230 u64 ret = 0; 3231 3232 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 3233 3234 spin_lock(&cluster->lock); 3235 if (bytes > cluster->max_size) 3236 goto out; 3237 3238 if (cluster->block_group != block_group) 3239 goto out; 3240 3241 node = rb_first(&cluster->root); 3242 if (!node) 3243 goto out; 3244 3245 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3246 while (1) { 3247 if (entry->bytes < bytes) 3248 *max_extent_size = max(get_max_extent_size(entry), 3249 *max_extent_size); 3250 3251 if (entry->bytes < bytes || 3252 (!entry->bitmap && entry->offset < min_start)) { 3253 node = rb_next(&entry->offset_index); 3254 if (!node) 3255 break; 3256 entry = rb_entry(node, struct btrfs_free_space, 3257 offset_index); 3258 continue; 3259 } 3260 3261 if (entry->bitmap) { 3262 ret = btrfs_alloc_from_bitmap(block_group, 3263 cluster, entry, bytes, 3264 cluster->window_start, 3265 max_extent_size); 3266 if (ret == 0) { 3267 node = rb_next(&entry->offset_index); 3268 if (!node) 3269 break; 3270 entry = rb_entry(node, struct btrfs_free_space, 3271 offset_index); 3272 continue; 3273 } 3274 cluster->window_start += bytes; 3275 } else { 3276 ret = entry->offset; 3277 3278 entry->offset += bytes; 3279 entry->bytes -= bytes; 3280 } 3281 3282 break; 3283 } 3284 out: 3285 spin_unlock(&cluster->lock); 3286 3287 if (!ret) 3288 return 0; 3289 3290 spin_lock(&ctl->tree_lock); 3291 3292 if (!btrfs_free_space_trimmed(entry)) 3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3294 3295 ctl->free_space -= bytes; 3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3298 3299 spin_lock(&cluster->lock); 3300 if (entry->bytes == 0) { 3301 rb_erase(&entry->offset_index, &cluster->root); 3302 ctl->free_extents--; 3303 if (entry->bitmap) { 3304 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3305 entry->bitmap); 3306 ctl->total_bitmaps--; 3307 recalculate_thresholds(ctl); 3308 } else if (!btrfs_free_space_trimmed(entry)) { 3309 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3310 } 3311 kmem_cache_free(btrfs_free_space_cachep, entry); 3312 } 3313 3314 spin_unlock(&cluster->lock); 3315 spin_unlock(&ctl->tree_lock); 3316 3317 return ret; 3318 } 3319 3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3321 struct btrfs_free_space *entry, 3322 struct btrfs_free_cluster *cluster, 3323 u64 offset, u64 bytes, 3324 u64 cont1_bytes, u64 min_bytes) 3325 { 3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3327 unsigned long next_zero; 3328 unsigned long i; 3329 unsigned long want_bits; 3330 unsigned long min_bits; 3331 unsigned long found_bits; 3332 unsigned long max_bits = 0; 3333 unsigned long start = 0; 3334 unsigned long total_found = 0; 3335 int ret; 3336 3337 lockdep_assert_held(&ctl->tree_lock); 3338 3339 i = offset_to_bit(entry->offset, ctl->unit, 3340 max_t(u64, offset, entry->offset)); 3341 want_bits = bytes_to_bits(bytes, ctl->unit); 3342 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3343 3344 /* 3345 * Don't bother looking for a cluster in this bitmap if it's heavily 3346 * fragmented. 3347 */ 3348 if (entry->max_extent_size && 3349 entry->max_extent_size < cont1_bytes) 3350 return -ENOSPC; 3351 again: 3352 found_bits = 0; 3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3354 next_zero = find_next_zero_bit(entry->bitmap, 3355 BITS_PER_BITMAP, i); 3356 if (next_zero - i >= min_bits) { 3357 found_bits = next_zero - i; 3358 if (found_bits > max_bits) 3359 max_bits = found_bits; 3360 break; 3361 } 3362 if (next_zero - i > max_bits) 3363 max_bits = next_zero - i; 3364 i = next_zero; 3365 } 3366 3367 if (!found_bits) { 3368 entry->max_extent_size = (u64)max_bits * ctl->unit; 3369 return -ENOSPC; 3370 } 3371 3372 if (!total_found) { 3373 start = i; 3374 cluster->max_size = 0; 3375 } 3376 3377 total_found += found_bits; 3378 3379 if (cluster->max_size < found_bits * ctl->unit) 3380 cluster->max_size = found_bits * ctl->unit; 3381 3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3383 i = next_zero + 1; 3384 goto again; 3385 } 3386 3387 cluster->window_start = start * ctl->unit + entry->offset; 3388 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3390 3391 /* 3392 * We need to know if we're currently on the normal space index when we 3393 * manipulate the bitmap so that we know we need to remove and re-insert 3394 * it into the space_index tree. Clear the bytes_index node here so the 3395 * bitmap manipulation helpers know not to mess with the space_index 3396 * until this bitmap entry is added back into the normal cache. 3397 */ 3398 RB_CLEAR_NODE(&entry->bytes_index); 3399 3400 ret = tree_insert_offset(ctl, cluster, entry); 3401 ASSERT(!ret); /* -EEXIST; Logic error */ 3402 3403 trace_btrfs_setup_cluster(block_group, cluster, 3404 total_found * ctl->unit, 1); 3405 return 0; 3406 } 3407 3408 /* 3409 * This searches the block group for just extents to fill the cluster with. 3410 * Try to find a cluster with at least bytes total bytes, at least one 3411 * extent of cont1_bytes, and other clusters of at least min_bytes. 3412 */ 3413 static noinline int 3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3415 struct btrfs_free_cluster *cluster, 3416 struct list_head *bitmaps, u64 offset, u64 bytes, 3417 u64 cont1_bytes, u64 min_bytes) 3418 { 3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3420 struct btrfs_free_space *first = NULL; 3421 struct btrfs_free_space *entry = NULL; 3422 struct btrfs_free_space *last; 3423 struct rb_node *node; 3424 u64 window_free; 3425 u64 max_extent; 3426 u64 total_size = 0; 3427 3428 lockdep_assert_held(&ctl->tree_lock); 3429 3430 entry = tree_search_offset(ctl, offset, 0, 1); 3431 if (!entry) 3432 return -ENOSPC; 3433 3434 /* 3435 * We don't want bitmaps, so just move along until we find a normal 3436 * extent entry. 3437 */ 3438 while (entry->bitmap || entry->bytes < min_bytes) { 3439 if (entry->bitmap && list_empty(&entry->list)) 3440 list_add_tail(&entry->list, bitmaps); 3441 node = rb_next(&entry->offset_index); 3442 if (!node) 3443 return -ENOSPC; 3444 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3445 } 3446 3447 window_free = entry->bytes; 3448 max_extent = entry->bytes; 3449 first = entry; 3450 last = entry; 3451 3452 for (node = rb_next(&entry->offset_index); node; 3453 node = rb_next(&entry->offset_index)) { 3454 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3455 3456 if (entry->bitmap) { 3457 if (list_empty(&entry->list)) 3458 list_add_tail(&entry->list, bitmaps); 3459 continue; 3460 } 3461 3462 if (entry->bytes < min_bytes) 3463 continue; 3464 3465 last = entry; 3466 window_free += entry->bytes; 3467 if (entry->bytes > max_extent) 3468 max_extent = entry->bytes; 3469 } 3470 3471 if (window_free < bytes || max_extent < cont1_bytes) 3472 return -ENOSPC; 3473 3474 cluster->window_start = first->offset; 3475 3476 node = &first->offset_index; 3477 3478 /* 3479 * now we've found our entries, pull them out of the free space 3480 * cache and put them into the cluster rbtree 3481 */ 3482 do { 3483 int ret; 3484 3485 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3486 node = rb_next(&entry->offset_index); 3487 if (entry->bitmap || entry->bytes < min_bytes) 3488 continue; 3489 3490 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); 3492 ret = tree_insert_offset(ctl, cluster, entry); 3493 total_size += entry->bytes; 3494 ASSERT(!ret); /* -EEXIST; Logic error */ 3495 } while (node && entry != last); 3496 3497 cluster->max_size = max_extent; 3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3499 return 0; 3500 } 3501 3502 /* 3503 * This specifically looks for bitmaps that may work in the cluster, we assume 3504 * that we have already failed to find extents that will work. 3505 */ 3506 static noinline int 3507 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3508 struct btrfs_free_cluster *cluster, 3509 struct list_head *bitmaps, u64 offset, u64 bytes, 3510 u64 cont1_bytes, u64 min_bytes) 3511 { 3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3513 struct btrfs_free_space *entry = NULL; 3514 int ret = -ENOSPC; 3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3516 3517 if (ctl->total_bitmaps == 0) 3518 return -ENOSPC; 3519 3520 /* 3521 * The bitmap that covers offset won't be in the list unless offset 3522 * is just its start offset. 3523 */ 3524 if (!list_empty(bitmaps)) 3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3526 3527 if (!entry || entry->offset != bitmap_offset) { 3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3529 if (entry && list_empty(&entry->list)) 3530 list_add(&entry->list, bitmaps); 3531 } 3532 3533 list_for_each_entry(entry, bitmaps, list) { 3534 if (entry->bytes < bytes) 3535 continue; 3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3537 bytes, cont1_bytes, min_bytes); 3538 if (!ret) 3539 return 0; 3540 } 3541 3542 /* 3543 * The bitmaps list has all the bitmaps that record free space 3544 * starting after offset, so no more search is required. 3545 */ 3546 return -ENOSPC; 3547 } 3548 3549 /* 3550 * here we try to find a cluster of blocks in a block group. The goal 3551 * is to find at least bytes+empty_size. 3552 * We might not find them all in one contiguous area. 3553 * 3554 * returns zero and sets up cluster if things worked out, otherwise 3555 * it returns -enospc 3556 */ 3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3558 struct btrfs_free_cluster *cluster, 3559 u64 offset, u64 bytes, u64 empty_size) 3560 { 3561 struct btrfs_fs_info *fs_info = block_group->fs_info; 3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3563 struct btrfs_free_space *entry, *tmp; 3564 LIST_HEAD(bitmaps); 3565 u64 min_bytes; 3566 u64 cont1_bytes; 3567 int ret; 3568 3569 /* 3570 * Choose the minimum extent size we'll require for this 3571 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3572 * For metadata, allow allocates with smaller extents. For 3573 * data, keep it dense. 3574 */ 3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3576 cont1_bytes = bytes + empty_size; 3577 min_bytes = cont1_bytes; 3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3579 cont1_bytes = bytes; 3580 min_bytes = fs_info->sectorsize; 3581 } else { 3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3583 min_bytes = fs_info->sectorsize; 3584 } 3585 3586 spin_lock(&ctl->tree_lock); 3587 3588 /* 3589 * If we know we don't have enough space to make a cluster don't even 3590 * bother doing all the work to try and find one. 3591 */ 3592 if (ctl->free_space < bytes) { 3593 spin_unlock(&ctl->tree_lock); 3594 return -ENOSPC; 3595 } 3596 3597 spin_lock(&cluster->lock); 3598 3599 /* someone already found a cluster, hooray */ 3600 if (cluster->block_group) { 3601 ret = 0; 3602 goto out; 3603 } 3604 3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3606 min_bytes); 3607 3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3609 bytes + empty_size, 3610 cont1_bytes, min_bytes); 3611 if (ret) 3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3613 offset, bytes + empty_size, 3614 cont1_bytes, min_bytes); 3615 3616 /* Clear our temporary list */ 3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3618 list_del_init(&entry->list); 3619 3620 if (!ret) { 3621 btrfs_get_block_group(block_group); 3622 list_add_tail(&cluster->block_group_list, 3623 &block_group->cluster_list); 3624 cluster->block_group = block_group; 3625 } else { 3626 trace_btrfs_failed_cluster_setup(block_group); 3627 } 3628 out: 3629 spin_unlock(&cluster->lock); 3630 spin_unlock(&ctl->tree_lock); 3631 3632 return ret; 3633 } 3634 3635 /* 3636 * simple code to zero out a cluster 3637 */ 3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3639 { 3640 spin_lock_init(&cluster->lock); 3641 spin_lock_init(&cluster->refill_lock); 3642 cluster->root = RB_ROOT; 3643 cluster->max_size = 0; 3644 cluster->fragmented = false; 3645 INIT_LIST_HEAD(&cluster->block_group_list); 3646 cluster->block_group = NULL; 3647 } 3648 3649 static int do_trimming(struct btrfs_block_group *block_group, 3650 u64 *total_trimmed, u64 start, u64 bytes, 3651 u64 reserved_start, u64 reserved_bytes, 3652 enum btrfs_trim_state reserved_trim_state, 3653 struct btrfs_trim_range *trim_entry) 3654 { 3655 struct btrfs_space_info *space_info = block_group->space_info; 3656 struct btrfs_fs_info *fs_info = block_group->fs_info; 3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3658 int ret; 3659 int update = 0; 3660 const u64 end = start + bytes; 3661 const u64 reserved_end = reserved_start + reserved_bytes; 3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3663 u64 trimmed = 0; 3664 3665 spin_lock(&space_info->lock); 3666 spin_lock(&block_group->lock); 3667 if (!block_group->ro) { 3668 block_group->reserved += reserved_bytes; 3669 space_info->bytes_reserved += reserved_bytes; 3670 update = 1; 3671 } 3672 spin_unlock(&block_group->lock); 3673 spin_unlock(&space_info->lock); 3674 3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3676 if (!ret) { 3677 *total_trimmed += trimmed; 3678 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3679 } 3680 3681 mutex_lock(&ctl->cache_writeout_mutex); 3682 if (reserved_start < start) 3683 __btrfs_add_free_space(block_group, reserved_start, 3684 start - reserved_start, 3685 reserved_trim_state); 3686 if (end < reserved_end) 3687 __btrfs_add_free_space(block_group, end, reserved_end - end, 3688 reserved_trim_state); 3689 __btrfs_add_free_space(block_group, start, bytes, trim_state); 3690 list_del(&trim_entry->list); 3691 mutex_unlock(&ctl->cache_writeout_mutex); 3692 3693 if (update) { 3694 spin_lock(&space_info->lock); 3695 spin_lock(&block_group->lock); 3696 if (block_group->ro) 3697 space_info->bytes_readonly += reserved_bytes; 3698 block_group->reserved -= reserved_bytes; 3699 space_info->bytes_reserved -= reserved_bytes; 3700 spin_unlock(&block_group->lock); 3701 spin_unlock(&space_info->lock); 3702 } 3703 3704 return ret; 3705 } 3706 3707 /* 3708 * If @async is set, then we will trim 1 region and return. 3709 */ 3710 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3712 bool async) 3713 { 3714 struct btrfs_discard_ctl *discard_ctl = 3715 &block_group->fs_info->discard_ctl; 3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3717 struct btrfs_free_space *entry; 3718 struct rb_node *node; 3719 int ret = 0; 3720 u64 extent_start; 3721 u64 extent_bytes; 3722 enum btrfs_trim_state extent_trim_state; 3723 u64 bytes; 3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3725 3726 while (start < end) { 3727 struct btrfs_trim_range trim_entry; 3728 3729 mutex_lock(&ctl->cache_writeout_mutex); 3730 spin_lock(&ctl->tree_lock); 3731 3732 if (ctl->free_space < minlen) 3733 goto out_unlock; 3734 3735 entry = tree_search_offset(ctl, start, 0, 1); 3736 if (!entry) 3737 goto out_unlock; 3738 3739 /* Skip bitmaps and if async, already trimmed entries */ 3740 while (entry->bitmap || 3741 (async && btrfs_free_space_trimmed(entry))) { 3742 node = rb_next(&entry->offset_index); 3743 if (!node) 3744 goto out_unlock; 3745 entry = rb_entry(node, struct btrfs_free_space, 3746 offset_index); 3747 } 3748 3749 if (entry->offset >= end) 3750 goto out_unlock; 3751 3752 extent_start = entry->offset; 3753 extent_bytes = entry->bytes; 3754 extent_trim_state = entry->trim_state; 3755 if (async) { 3756 start = entry->offset; 3757 bytes = entry->bytes; 3758 if (bytes < minlen) { 3759 spin_unlock(&ctl->tree_lock); 3760 mutex_unlock(&ctl->cache_writeout_mutex); 3761 goto next; 3762 } 3763 unlink_free_space(ctl, entry, true); 3764 /* 3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3767 * X when we come back around. So trim it now. 3768 */ 3769 if (max_discard_size && 3770 bytes >= (max_discard_size + 3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3772 bytes = max_discard_size; 3773 extent_bytes = max_discard_size; 3774 entry->offset += max_discard_size; 3775 entry->bytes -= max_discard_size; 3776 link_free_space(ctl, entry); 3777 } else { 3778 kmem_cache_free(btrfs_free_space_cachep, entry); 3779 } 3780 } else { 3781 start = max(start, extent_start); 3782 bytes = min(extent_start + extent_bytes, end) - start; 3783 if (bytes < minlen) { 3784 spin_unlock(&ctl->tree_lock); 3785 mutex_unlock(&ctl->cache_writeout_mutex); 3786 goto next; 3787 } 3788 3789 unlink_free_space(ctl, entry, true); 3790 kmem_cache_free(btrfs_free_space_cachep, entry); 3791 } 3792 3793 spin_unlock(&ctl->tree_lock); 3794 trim_entry.start = extent_start; 3795 trim_entry.bytes = extent_bytes; 3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3797 mutex_unlock(&ctl->cache_writeout_mutex); 3798 3799 ret = do_trimming(block_group, total_trimmed, start, bytes, 3800 extent_start, extent_bytes, extent_trim_state, 3801 &trim_entry); 3802 if (ret) { 3803 block_group->discard_cursor = start + bytes; 3804 break; 3805 } 3806 next: 3807 start += bytes; 3808 block_group->discard_cursor = start; 3809 if (async && *total_trimmed) 3810 break; 3811 3812 if (btrfs_trim_interrupted()) { 3813 ret = -ERESTARTSYS; 3814 break; 3815 } 3816 3817 cond_resched(); 3818 } 3819 3820 return ret; 3821 3822 out_unlock: 3823 block_group->discard_cursor = btrfs_block_group_end(block_group); 3824 spin_unlock(&ctl->tree_lock); 3825 mutex_unlock(&ctl->cache_writeout_mutex); 3826 3827 return ret; 3828 } 3829 3830 /* 3831 * If we break out of trimming a bitmap prematurely, we should reset the 3832 * trimming bit. In a rather contrieved case, it's possible to race here so 3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3834 * 3835 * start = start of bitmap 3836 * end = near end of bitmap 3837 * 3838 * Thread 1: Thread 2: 3839 * trim_bitmaps(start) 3840 * trim_bitmaps(end) 3841 * end_trimming_bitmap() 3842 * reset_trimming_bitmap() 3843 */ 3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3845 { 3846 struct btrfs_free_space *entry; 3847 3848 spin_lock(&ctl->tree_lock); 3849 entry = tree_search_offset(ctl, offset, 1, 0); 3850 if (entry) { 3851 if (btrfs_free_space_trimmed(entry)) { 3852 ctl->discardable_extents[BTRFS_STAT_CURR] += 3853 entry->bitmap_extents; 3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3855 } 3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3857 } 3858 3859 spin_unlock(&ctl->tree_lock); 3860 } 3861 3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3863 struct btrfs_free_space *entry) 3864 { 3865 if (btrfs_free_space_trimming_bitmap(entry)) { 3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3867 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3868 entry->bitmap_extents; 3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3870 } 3871 } 3872 3873 /* 3874 * If @async is set, then we will trim 1 region and return. 3875 */ 3876 static int trim_bitmaps(struct btrfs_block_group *block_group, 3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3878 u64 maxlen, bool async) 3879 { 3880 struct btrfs_discard_ctl *discard_ctl = 3881 &block_group->fs_info->discard_ctl; 3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3883 struct btrfs_free_space *entry; 3884 int ret = 0; 3885 int ret2; 3886 u64 bytes; 3887 u64 offset = offset_to_bitmap(ctl, start); 3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3889 3890 while (offset < end) { 3891 bool next_bitmap = false; 3892 struct btrfs_trim_range trim_entry; 3893 3894 mutex_lock(&ctl->cache_writeout_mutex); 3895 spin_lock(&ctl->tree_lock); 3896 3897 if (ctl->free_space < minlen) { 3898 block_group->discard_cursor = 3899 btrfs_block_group_end(block_group); 3900 spin_unlock(&ctl->tree_lock); 3901 mutex_unlock(&ctl->cache_writeout_mutex); 3902 break; 3903 } 3904 3905 entry = tree_search_offset(ctl, offset, 1, 0); 3906 /* 3907 * Bitmaps are marked trimmed lossily now to prevent constant 3908 * discarding of the same bitmap (the reason why we are bound 3909 * by the filters). So, retrim the block group bitmaps when we 3910 * are preparing to punt to the unused_bgs list. This uses 3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3912 * which is the only discard index which sets minlen to 0. 3913 */ 3914 if (!entry || (async && minlen && start == offset && 3915 btrfs_free_space_trimmed(entry))) { 3916 spin_unlock(&ctl->tree_lock); 3917 mutex_unlock(&ctl->cache_writeout_mutex); 3918 next_bitmap = true; 3919 goto next; 3920 } 3921 3922 /* 3923 * Async discard bitmap trimming begins at by setting the start 3924 * to be key.objectid and the offset_to_bitmap() aligns to the 3925 * start of the bitmap. This lets us know we are fully 3926 * scanning the bitmap rather than only some portion of it. 3927 */ 3928 if (start == offset) 3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3930 3931 bytes = minlen; 3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3933 if (ret2 || start >= end) { 3934 /* 3935 * We lossily consider a bitmap trimmed if we only skip 3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3937 */ 3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3939 end_trimming_bitmap(ctl, entry); 3940 else 3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3942 spin_unlock(&ctl->tree_lock); 3943 mutex_unlock(&ctl->cache_writeout_mutex); 3944 next_bitmap = true; 3945 goto next; 3946 } 3947 3948 /* 3949 * We already trimmed a region, but are using the locking above 3950 * to reset the trim_state. 3951 */ 3952 if (async && *total_trimmed) { 3953 spin_unlock(&ctl->tree_lock); 3954 mutex_unlock(&ctl->cache_writeout_mutex); 3955 goto out; 3956 } 3957 3958 bytes = min(bytes, end - start); 3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3960 spin_unlock(&ctl->tree_lock); 3961 mutex_unlock(&ctl->cache_writeout_mutex); 3962 goto next; 3963 } 3964 3965 /* 3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3967 * If X < @minlen, we won't trim X when we come back around. 3968 * So trim it now. We differ here from trimming extents as we 3969 * don't keep individual state per bit. 3970 */ 3971 if (async && 3972 max_discard_size && 3973 bytes > (max_discard_size + minlen)) 3974 bytes = max_discard_size; 3975 3976 bitmap_clear_bits(ctl, entry, start, bytes, true); 3977 if (entry->bytes == 0) 3978 free_bitmap(ctl, entry); 3979 3980 spin_unlock(&ctl->tree_lock); 3981 trim_entry.start = start; 3982 trim_entry.bytes = bytes; 3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3984 mutex_unlock(&ctl->cache_writeout_mutex); 3985 3986 ret = do_trimming(block_group, total_trimmed, start, bytes, 3987 start, bytes, 0, &trim_entry); 3988 if (ret) { 3989 reset_trimming_bitmap(ctl, offset); 3990 block_group->discard_cursor = 3991 btrfs_block_group_end(block_group); 3992 break; 3993 } 3994 next: 3995 if (next_bitmap) { 3996 offset += BITS_PER_BITMAP * ctl->unit; 3997 start = offset; 3998 } else { 3999 start += bytes; 4000 } 4001 block_group->discard_cursor = start; 4002 4003 if (btrfs_trim_interrupted()) { 4004 if (start != offset) 4005 reset_trimming_bitmap(ctl, offset); 4006 ret = -ERESTARTSYS; 4007 break; 4008 } 4009 4010 cond_resched(); 4011 } 4012 4013 if (offset >= end) 4014 block_group->discard_cursor = end; 4015 4016 out: 4017 return ret; 4018 } 4019 4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 4021 u64 *trimmed, u64 start, u64 end, u64 minlen) 4022 { 4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 4024 int ret; 4025 u64 rem = 0; 4026 4027 ASSERT(!btrfs_is_zoned(block_group->fs_info)); 4028 4029 *trimmed = 0; 4030 4031 spin_lock(&block_group->lock); 4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4033 spin_unlock(&block_group->lock); 4034 return 0; 4035 } 4036 btrfs_freeze_block_group(block_group); 4037 spin_unlock(&block_group->lock); 4038 4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 4040 if (ret) 4041 goto out; 4042 4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 4045 /* If we ended in the middle of a bitmap, reset the trimming flag */ 4046 if (rem) 4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 4048 out: 4049 btrfs_unfreeze_block_group(block_group); 4050 return ret; 4051 } 4052 4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 4054 u64 *trimmed, u64 start, u64 end, u64 minlen, 4055 bool async) 4056 { 4057 int ret; 4058 4059 *trimmed = 0; 4060 4061 spin_lock(&block_group->lock); 4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4063 spin_unlock(&block_group->lock); 4064 return 0; 4065 } 4066 btrfs_freeze_block_group(block_group); 4067 spin_unlock(&block_group->lock); 4068 4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 4070 btrfs_unfreeze_block_group(block_group); 4071 4072 return ret; 4073 } 4074 4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 4076 u64 *trimmed, u64 start, u64 end, u64 minlen, 4077 u64 maxlen, bool async) 4078 { 4079 int ret; 4080 4081 *trimmed = 0; 4082 4083 spin_lock(&block_group->lock); 4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { 4085 spin_unlock(&block_group->lock); 4086 return 0; 4087 } 4088 btrfs_freeze_block_group(block_group); 4089 spin_unlock(&block_group->lock); 4090 4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 4092 async); 4093 4094 btrfs_unfreeze_block_group(block_group); 4095 4096 return ret; 4097 } 4098 4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info) 4100 { 4101 return btrfs_super_cache_generation(fs_info->super_copy); 4102 } 4103 4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info, 4105 struct btrfs_trans_handle *trans) 4106 { 4107 struct btrfs_block_group *block_group; 4108 struct rb_node *node; 4109 int ret = 0; 4110 4111 btrfs_info(fs_info, "cleaning free space cache v1"); 4112 4113 node = rb_first_cached(&fs_info->block_group_cache_tree); 4114 while (node) { 4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node); 4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group); 4117 if (ret) 4118 goto out; 4119 node = rb_next(node); 4120 } 4121 out: 4122 return ret; 4123 } 4124 4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active) 4126 { 4127 struct btrfs_trans_handle *trans; 4128 int ret; 4129 4130 /* 4131 * update_super_roots will appropriately set or unset 4132 * super_copy->cache_generation based on SPACE_CACHE and 4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a 4134 * transaction commit whether we are enabling space cache v1 and don't 4135 * have any other work to do, or are disabling it and removing free 4136 * space inodes. 4137 */ 4138 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4139 if (IS_ERR(trans)) 4140 return PTR_ERR(trans); 4141 4142 if (!active) { 4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4144 ret = cleanup_free_space_cache_v1(fs_info, trans); 4145 if (ret) { 4146 btrfs_abort_transaction(trans, ret); 4147 btrfs_end_transaction(trans); 4148 goto out; 4149 } 4150 } 4151 4152 ret = btrfs_commit_transaction(trans); 4153 out: 4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); 4155 4156 return ret; 4157 } 4158 4159 int __init btrfs_free_space_init(void) 4160 { 4161 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0); 4162 if (!btrfs_free_space_cachep) 4163 return -ENOMEM; 4164 4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 4166 PAGE_SIZE, PAGE_SIZE, 4167 0, NULL); 4168 if (!btrfs_free_space_bitmap_cachep) { 4169 kmem_cache_destroy(btrfs_free_space_cachep); 4170 return -ENOMEM; 4171 } 4172 4173 return 0; 4174 } 4175 4176 void __cold btrfs_free_space_exit(void) 4177 { 4178 kmem_cache_destroy(btrfs_free_space_cachep); 4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 4180 } 4181 4182 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4183 /* 4184 * Use this if you need to make a bitmap or extent entry specifically, it 4185 * doesn't do any of the merging that add_free_space does, this acts a lot like 4186 * how the free space cache loading stuff works, so you can get really weird 4187 * configurations. 4188 */ 4189 int test_add_free_space_entry(struct btrfs_block_group *cache, 4190 u64 offset, u64 bytes, bool bitmap) 4191 { 4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4193 struct btrfs_free_space *info = NULL, *bitmap_info; 4194 void *map = NULL; 4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4196 u64 bytes_added; 4197 int ret; 4198 4199 again: 4200 if (!info) { 4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4202 if (!info) 4203 return -ENOMEM; 4204 } 4205 4206 if (!bitmap) { 4207 spin_lock(&ctl->tree_lock); 4208 info->offset = offset; 4209 info->bytes = bytes; 4210 info->max_extent_size = 0; 4211 ret = link_free_space(ctl, info); 4212 spin_unlock(&ctl->tree_lock); 4213 if (ret) 4214 kmem_cache_free(btrfs_free_space_cachep, info); 4215 return ret; 4216 } 4217 4218 if (!map) { 4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4220 if (!map) { 4221 kmem_cache_free(btrfs_free_space_cachep, info); 4222 return -ENOMEM; 4223 } 4224 } 4225 4226 spin_lock(&ctl->tree_lock); 4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4228 1, 0); 4229 if (!bitmap_info) { 4230 info->bitmap = map; 4231 map = NULL; 4232 add_new_bitmap(ctl, info, offset); 4233 bitmap_info = info; 4234 info = NULL; 4235 } 4236 4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4238 trim_state); 4239 4240 bytes -= bytes_added; 4241 offset += bytes_added; 4242 spin_unlock(&ctl->tree_lock); 4243 4244 if (bytes) 4245 goto again; 4246 4247 if (info) 4248 kmem_cache_free(btrfs_free_space_cachep, info); 4249 if (map) 4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4251 return 0; 4252 } 4253 4254 /* 4255 * Checks to see if the given range is in the free space cache. This is really 4256 * just used to check the absence of space, so if there is free space in the 4257 * range at all we will return 1. 4258 */ 4259 int test_check_exists(struct btrfs_block_group *cache, 4260 u64 offset, u64 bytes) 4261 { 4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4263 struct btrfs_free_space *info; 4264 int ret = 0; 4265 4266 spin_lock(&ctl->tree_lock); 4267 info = tree_search_offset(ctl, offset, 0, 0); 4268 if (!info) { 4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4270 1, 0); 4271 if (!info) 4272 goto out; 4273 } 4274 4275 have_info: 4276 if (info->bitmap) { 4277 u64 bit_off, bit_bytes; 4278 struct rb_node *n; 4279 struct btrfs_free_space *tmp; 4280 4281 bit_off = offset; 4282 bit_bytes = ctl->unit; 4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4284 if (!ret) { 4285 if (bit_off == offset) { 4286 ret = 1; 4287 goto out; 4288 } else if (bit_off > offset && 4289 offset + bytes > bit_off) { 4290 ret = 1; 4291 goto out; 4292 } 4293 } 4294 4295 n = rb_prev(&info->offset_index); 4296 while (n) { 4297 tmp = rb_entry(n, struct btrfs_free_space, 4298 offset_index); 4299 if (tmp->offset + tmp->bytes < offset) 4300 break; 4301 if (offset + bytes < tmp->offset) { 4302 n = rb_prev(&tmp->offset_index); 4303 continue; 4304 } 4305 info = tmp; 4306 goto have_info; 4307 } 4308 4309 n = rb_next(&info->offset_index); 4310 while (n) { 4311 tmp = rb_entry(n, struct btrfs_free_space, 4312 offset_index); 4313 if (offset + bytes < tmp->offset) 4314 break; 4315 if (tmp->offset + tmp->bytes < offset) { 4316 n = rb_next(&tmp->offset_index); 4317 continue; 4318 } 4319 info = tmp; 4320 goto have_info; 4321 } 4322 4323 ret = 0; 4324 goto out; 4325 } 4326 4327 if (info->offset == offset) { 4328 ret = 1; 4329 goto out; 4330 } 4331 4332 if (offset > info->offset && offset < info->offset + info->bytes) 4333 ret = 1; 4334 out: 4335 spin_unlock(&ctl->tree_lock); 4336 return ret; 4337 } 4338 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4339