1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 #include "print-tree.h"
40 
41 /*
42  * Unlock folio after btrfs_file_write() is done with it.
43  */
44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 			     u64 pos, u64 copied)
46 {
47 	u64 block_start = round_down(pos, fs_info->sectorsize);
48 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49 
50 	ASSERT(block_len <= U32_MAX);
51 	/*
52 	 * Folio checked is some magic around finding folios that have been
53 	 * modified without going through btrfs_dirty_folio().  Clear it here.
54 	 * There should be no need to mark the pages accessed as
55 	 * prepare_one_folio() should have marked them accessed in
56 	 * prepare_one_folio() via find_or_create_page()
57 	 */
58 	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 	folio_unlock(folio);
60 	folio_put(folio);
61 }
62 
63 /*
64  * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65  * - Mark newly dirtied folio as DELALLOC in the io tree.
66  *   Used to advise which range is to be written back.
67  * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68  * - Update inode size for past EOF write
69  */
70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 		      size_t write_bytes, struct extent_state **cached, bool noreserve)
72 {
73 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 	int ret = 0;
75 	u64 num_bytes;
76 	u64 start_pos;
77 	u64 end_of_last_block;
78 	u64 end_pos = pos + write_bytes;
79 	loff_t isize = i_size_read(&inode->vfs_inode);
80 	unsigned int extra_bits = 0;
81 
82 	if (write_bytes == 0)
83 		return 0;
84 
85 	if (noreserve)
86 		extra_bits |= EXTENT_NORESERVE;
87 
88 	start_pos = round_down(pos, fs_info->sectorsize);
89 	num_bytes = round_up(write_bytes + pos - start_pos,
90 			     fs_info->sectorsize);
91 	ASSERT(num_bytes <= U32_MAX);
92 	ASSERT(folio_pos(folio) <= pos &&
93 	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
94 
95 	end_of_last_block = start_pos + num_bytes - 1;
96 
97 	/*
98 	 * The pages may have already been dirty, clear out old accounting so
99 	 * we can set things up properly
100 	 */
101 	btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
102 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
103 			       cached);
104 
105 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
106 					extra_bits, cached);
107 	if (ret)
108 		return ret;
109 
110 	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
111 	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
112 	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
113 
114 	/*
115 	 * we've only changed i_size in ram, and we haven't updated
116 	 * the disk i_size.  There is no need to log the inode
117 	 * at this time.
118 	 */
119 	if (end_pos > isize)
120 		i_size_write(&inode->vfs_inode, end_pos);
121 	return 0;
122 }
123 
124 /*
125  * this is very complex, but the basic idea is to drop all extents
126  * in the range start - end.  hint_block is filled in with a block number
127  * that would be a good hint to the block allocator for this file.
128  *
129  * If an extent intersects the range but is not entirely inside the range
130  * it is either truncated or split.  Anything entirely inside the range
131  * is deleted from the tree.
132  *
133  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
134  * to deal with that. We set the field 'bytes_found' of the arguments structure
135  * with the number of allocated bytes found in the target range, so that the
136  * caller can update the inode's number of bytes in an atomic way when
137  * replacing extents in a range to avoid races with stat(2).
138  */
139 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
140 		       struct btrfs_root *root, struct btrfs_inode *inode,
141 		       struct btrfs_drop_extents_args *args)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct extent_buffer *leaf;
145 	struct btrfs_file_extent_item *fi;
146 	struct btrfs_key key;
147 	struct btrfs_key new_key;
148 	u64 ino = btrfs_ino(inode);
149 	u64 search_start = args->start;
150 	u64 disk_bytenr = 0;
151 	u64 num_bytes = 0;
152 	u64 extent_offset = 0;
153 	u64 extent_end = 0;
154 	u64 last_end = args->start;
155 	int del_nr = 0;
156 	int del_slot = 0;
157 	int extent_type;
158 	int recow;
159 	int ret;
160 	int modify_tree = -1;
161 	int update_refs;
162 	int found = 0;
163 	struct btrfs_path *path = args->path;
164 
165 	args->bytes_found = 0;
166 	args->extent_inserted = false;
167 
168 	/* Must always have a path if ->replace_extent is true */
169 	ASSERT(!(args->replace_extent && !args->path));
170 
171 	if (!path) {
172 		path = btrfs_alloc_path();
173 		if (!path) {
174 			ret = -ENOMEM;
175 			goto out;
176 		}
177 	}
178 
179 	if (args->drop_cache)
180 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
181 
182 	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
183 		modify_tree = 0;
184 
185 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
186 	while (1) {
187 		recow = 0;
188 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
189 					       search_start, modify_tree);
190 		if (ret < 0)
191 			break;
192 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
193 			leaf = path->nodes[0];
194 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
195 			if (key.objectid == ino &&
196 			    key.type == BTRFS_EXTENT_DATA_KEY)
197 				path->slots[0]--;
198 		}
199 		ret = 0;
200 next_slot:
201 		leaf = path->nodes[0];
202 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
203 			if (WARN_ON(del_nr > 0)) {
204 				btrfs_print_leaf(leaf);
205 				ret = -EINVAL;
206 				break;
207 			}
208 			ret = btrfs_next_leaf(root, path);
209 			if (ret < 0)
210 				break;
211 			if (ret > 0) {
212 				ret = 0;
213 				break;
214 			}
215 			leaf = path->nodes[0];
216 			recow = 1;
217 		}
218 
219 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
220 
221 		if (key.objectid > ino)
222 			break;
223 		if (WARN_ON_ONCE(key.objectid < ino) ||
224 		    key.type < BTRFS_EXTENT_DATA_KEY) {
225 			ASSERT(del_nr == 0);
226 			path->slots[0]++;
227 			goto next_slot;
228 		}
229 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
230 			break;
231 
232 		fi = btrfs_item_ptr(leaf, path->slots[0],
233 				    struct btrfs_file_extent_item);
234 		extent_type = btrfs_file_extent_type(leaf, fi);
235 
236 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
237 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
238 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
239 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
240 			extent_offset = btrfs_file_extent_offset(leaf, fi);
241 			extent_end = key.offset +
242 				btrfs_file_extent_num_bytes(leaf, fi);
243 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
244 			extent_end = key.offset +
245 				btrfs_file_extent_ram_bytes(leaf, fi);
246 		} else {
247 			/* can't happen */
248 			BUG();
249 		}
250 
251 		/*
252 		 * Don't skip extent items representing 0 byte lengths. They
253 		 * used to be created (bug) if while punching holes we hit
254 		 * -ENOSPC condition. So if we find one here, just ensure we
255 		 * delete it, otherwise we would insert a new file extent item
256 		 * with the same key (offset) as that 0 bytes length file
257 		 * extent item in the call to setup_items_for_insert() later
258 		 * in this function.
259 		 */
260 		if (extent_end == key.offset && extent_end >= search_start) {
261 			last_end = extent_end;
262 			goto delete_extent_item;
263 		}
264 
265 		if (extent_end <= search_start) {
266 			path->slots[0]++;
267 			goto next_slot;
268 		}
269 
270 		found = 1;
271 		search_start = max(key.offset, args->start);
272 		if (recow || !modify_tree) {
273 			modify_tree = -1;
274 			btrfs_release_path(path);
275 			continue;
276 		}
277 
278 		/*
279 		 *     | - range to drop - |
280 		 *  | -------- extent -------- |
281 		 */
282 		if (args->start > key.offset && args->end < extent_end) {
283 			if (WARN_ON(del_nr > 0)) {
284 				btrfs_print_leaf(leaf);
285 				ret = -EINVAL;
286 				break;
287 			}
288 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
289 				ret = -EOPNOTSUPP;
290 				break;
291 			}
292 
293 			memcpy(&new_key, &key, sizeof(new_key));
294 			new_key.offset = args->start;
295 			ret = btrfs_duplicate_item(trans, root, path,
296 						   &new_key);
297 			if (ret == -EAGAIN) {
298 				btrfs_release_path(path);
299 				continue;
300 			}
301 			if (ret < 0)
302 				break;
303 
304 			leaf = path->nodes[0];
305 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
306 					    struct btrfs_file_extent_item);
307 			btrfs_set_file_extent_num_bytes(leaf, fi,
308 							args->start - key.offset);
309 
310 			fi = btrfs_item_ptr(leaf, path->slots[0],
311 					    struct btrfs_file_extent_item);
312 
313 			extent_offset += args->start - key.offset;
314 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
315 			btrfs_set_file_extent_num_bytes(leaf, fi,
316 							extent_end - args->start);
317 
318 			if (update_refs && disk_bytenr > 0) {
319 				struct btrfs_ref ref = {
320 					.action = BTRFS_ADD_DELAYED_REF,
321 					.bytenr = disk_bytenr,
322 					.num_bytes = num_bytes,
323 					.parent = 0,
324 					.owning_root = btrfs_root_id(root),
325 					.ref_root = btrfs_root_id(root),
326 				};
327 				btrfs_init_data_ref(&ref, new_key.objectid,
328 						    args->start - extent_offset,
329 						    0, false);
330 				ret = btrfs_inc_extent_ref(trans, &ref);
331 				if (ret) {
332 					btrfs_abort_transaction(trans, ret);
333 					break;
334 				}
335 			}
336 			key.offset = args->start;
337 		}
338 		/*
339 		 * From here on out we will have actually dropped something, so
340 		 * last_end can be updated.
341 		 */
342 		last_end = extent_end;
343 
344 		/*
345 		 *  | ---- range to drop ----- |
346 		 *      | -------- extent -------- |
347 		 */
348 		if (args->start <= key.offset && args->end < extent_end) {
349 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
350 				ret = -EOPNOTSUPP;
351 				break;
352 			}
353 
354 			memcpy(&new_key, &key, sizeof(new_key));
355 			new_key.offset = args->end;
356 			btrfs_set_item_key_safe(trans, path, &new_key);
357 
358 			extent_offset += args->end - key.offset;
359 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
360 			btrfs_set_file_extent_num_bytes(leaf, fi,
361 							extent_end - args->end);
362 			if (update_refs && disk_bytenr > 0)
363 				args->bytes_found += args->end - key.offset;
364 			break;
365 		}
366 
367 		search_start = extent_end;
368 		/*
369 		 *       | ---- range to drop ----- |
370 		 *  | -------- extent -------- |
371 		 */
372 		if (args->start > key.offset && args->end >= extent_end) {
373 			if (WARN_ON(del_nr > 0)) {
374 				btrfs_print_leaf(leaf);
375 				ret = -EINVAL;
376 				break;
377 			}
378 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
379 				ret = -EOPNOTSUPP;
380 				break;
381 			}
382 
383 			btrfs_set_file_extent_num_bytes(leaf, fi,
384 							args->start - key.offset);
385 			if (update_refs && disk_bytenr > 0)
386 				args->bytes_found += extent_end - args->start;
387 			if (args->end == extent_end)
388 				break;
389 
390 			path->slots[0]++;
391 			goto next_slot;
392 		}
393 
394 		/*
395 		 *  | ---- range to drop ----- |
396 		 *    | ------ extent ------ |
397 		 */
398 		if (args->start <= key.offset && args->end >= extent_end) {
399 delete_extent_item:
400 			if (del_nr == 0) {
401 				del_slot = path->slots[0];
402 				del_nr = 1;
403 			} else {
404 				if (WARN_ON(del_slot + del_nr != path->slots[0])) {
405 					btrfs_print_leaf(leaf);
406 					ret = -EINVAL;
407 					break;
408 				}
409 				del_nr++;
410 			}
411 
412 			if (update_refs &&
413 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 				args->bytes_found += extent_end - key.offset;
415 				extent_end = ALIGN(extent_end,
416 						   fs_info->sectorsize);
417 			} else if (update_refs && disk_bytenr > 0) {
418 				struct btrfs_ref ref = {
419 					.action = BTRFS_DROP_DELAYED_REF,
420 					.bytenr = disk_bytenr,
421 					.num_bytes = num_bytes,
422 					.parent = 0,
423 					.owning_root = btrfs_root_id(root),
424 					.ref_root = btrfs_root_id(root),
425 				};
426 				btrfs_init_data_ref(&ref, key.objectid,
427 						    key.offset - extent_offset,
428 						    0, false);
429 				ret = btrfs_free_extent(trans, &ref);
430 				if (ret) {
431 					btrfs_abort_transaction(trans, ret);
432 					break;
433 				}
434 				args->bytes_found += extent_end - key.offset;
435 			}
436 
437 			if (args->end == extent_end)
438 				break;
439 
440 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
441 				path->slots[0]++;
442 				goto next_slot;
443 			}
444 
445 			ret = btrfs_del_items(trans, root, path, del_slot,
446 					      del_nr);
447 			if (ret) {
448 				btrfs_abort_transaction(trans, ret);
449 				break;
450 			}
451 
452 			del_nr = 0;
453 			del_slot = 0;
454 
455 			btrfs_release_path(path);
456 			continue;
457 		}
458 
459 		BUG();
460 	}
461 
462 	if (!ret && del_nr > 0) {
463 		/*
464 		 * Set path->slots[0] to first slot, so that after the delete
465 		 * if items are move off from our leaf to its immediate left or
466 		 * right neighbor leafs, we end up with a correct and adjusted
467 		 * path->slots[0] for our insertion (if args->replace_extent).
468 		 */
469 		path->slots[0] = del_slot;
470 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
471 		if (ret)
472 			btrfs_abort_transaction(trans, ret);
473 	}
474 
475 	leaf = path->nodes[0];
476 	/*
477 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
478 	 * which case it unlocked our path, so check path->locks[0] matches a
479 	 * write lock.
480 	 */
481 	if (!ret && args->replace_extent &&
482 	    path->locks[0] == BTRFS_WRITE_LOCK &&
483 	    btrfs_leaf_free_space(leaf) >=
484 	    sizeof(struct btrfs_item) + args->extent_item_size) {
485 
486 		key.objectid = ino;
487 		key.type = BTRFS_EXTENT_DATA_KEY;
488 		key.offset = args->start;
489 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
490 			struct btrfs_key slot_key;
491 
492 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
493 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
494 				path->slots[0]++;
495 		}
496 		btrfs_setup_item_for_insert(trans, root, path, &key,
497 					    args->extent_item_size);
498 		args->extent_inserted = true;
499 	}
500 
501 	if (!args->path)
502 		btrfs_free_path(path);
503 	else if (!args->extent_inserted)
504 		btrfs_release_path(path);
505 out:
506 	args->drop_end = found ? min(args->end, last_end) : args->end;
507 
508 	return ret;
509 }
510 
511 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
512 			     u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
513 {
514 	struct btrfs_file_extent_item *fi;
515 	struct btrfs_key key;
516 	u64 extent_end;
517 
518 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
519 		return false;
520 
521 	btrfs_item_key_to_cpu(leaf, &key, slot);
522 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
523 		return false;
524 
525 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
526 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
527 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
528 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
529 	    btrfs_file_extent_compression(leaf, fi) ||
530 	    btrfs_file_extent_encryption(leaf, fi) ||
531 	    btrfs_file_extent_other_encoding(leaf, fi))
532 		return false;
533 
534 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
535 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
536 		return false;
537 
538 	*start = key.offset;
539 	*end = extent_end;
540 	return true;
541 }
542 
543 /*
544  * Mark extent in the range start - end as written.
545  *
546  * This changes extent type from 'pre-allocated' to 'regular'. If only
547  * part of extent is marked as written, the extent will be split into
548  * two or three.
549  */
550 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
551 			      struct btrfs_inode *inode, u64 start, u64 end)
552 {
553 	struct btrfs_root *root = inode->root;
554 	struct extent_buffer *leaf;
555 	BTRFS_PATH_AUTO_FREE(path);
556 	struct btrfs_file_extent_item *fi;
557 	struct btrfs_ref ref = { 0 };
558 	struct btrfs_key key;
559 	struct btrfs_key new_key;
560 	u64 bytenr;
561 	u64 num_bytes;
562 	u64 extent_end;
563 	u64 orig_offset;
564 	u64 other_start;
565 	u64 other_end;
566 	u64 split;
567 	int del_nr = 0;
568 	int del_slot = 0;
569 	int recow;
570 	int ret = 0;
571 	u64 ino = btrfs_ino(inode);
572 
573 	path = btrfs_alloc_path();
574 	if (!path)
575 		return -ENOMEM;
576 again:
577 	recow = 0;
578 	split = start;
579 	key.objectid = ino;
580 	key.type = BTRFS_EXTENT_DATA_KEY;
581 	key.offset = split;
582 
583 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
584 	if (ret < 0)
585 		goto out;
586 	if (ret > 0 && path->slots[0] > 0)
587 		path->slots[0]--;
588 
589 	leaf = path->nodes[0];
590 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
591 	if (key.objectid != ino ||
592 	    key.type != BTRFS_EXTENT_DATA_KEY) {
593 		ret = -EINVAL;
594 		btrfs_abort_transaction(trans, ret);
595 		goto out;
596 	}
597 	fi = btrfs_item_ptr(leaf, path->slots[0],
598 			    struct btrfs_file_extent_item);
599 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
600 		ret = -EINVAL;
601 		btrfs_abort_transaction(trans, ret);
602 		goto out;
603 	}
604 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
605 	if (key.offset > start || extent_end < end) {
606 		ret = -EINVAL;
607 		btrfs_abort_transaction(trans, ret);
608 		goto out;
609 	}
610 
611 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
612 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
613 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
614 	memcpy(&new_key, &key, sizeof(new_key));
615 
616 	if (start == key.offset && end < extent_end) {
617 		other_start = 0;
618 		other_end = start;
619 		if (extent_mergeable(leaf, path->slots[0] - 1,
620 				     ino, bytenr, orig_offset,
621 				     &other_start, &other_end)) {
622 			new_key.offset = end;
623 			btrfs_set_item_key_safe(trans, path, &new_key);
624 			fi = btrfs_item_ptr(leaf, path->slots[0],
625 					    struct btrfs_file_extent_item);
626 			btrfs_set_file_extent_generation(leaf, fi,
627 							 trans->transid);
628 			btrfs_set_file_extent_num_bytes(leaf, fi,
629 							extent_end - end);
630 			btrfs_set_file_extent_offset(leaf, fi,
631 						     end - orig_offset);
632 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
633 					    struct btrfs_file_extent_item);
634 			btrfs_set_file_extent_generation(leaf, fi,
635 							 trans->transid);
636 			btrfs_set_file_extent_num_bytes(leaf, fi,
637 							end - other_start);
638 			goto out;
639 		}
640 	}
641 
642 	if (start > key.offset && end == extent_end) {
643 		other_start = end;
644 		other_end = 0;
645 		if (extent_mergeable(leaf, path->slots[0] + 1,
646 				     ino, bytenr, orig_offset,
647 				     &other_start, &other_end)) {
648 			fi = btrfs_item_ptr(leaf, path->slots[0],
649 					    struct btrfs_file_extent_item);
650 			btrfs_set_file_extent_num_bytes(leaf, fi,
651 							start - key.offset);
652 			btrfs_set_file_extent_generation(leaf, fi,
653 							 trans->transid);
654 			path->slots[0]++;
655 			new_key.offset = start;
656 			btrfs_set_item_key_safe(trans, path, &new_key);
657 
658 			fi = btrfs_item_ptr(leaf, path->slots[0],
659 					    struct btrfs_file_extent_item);
660 			btrfs_set_file_extent_generation(leaf, fi,
661 							 trans->transid);
662 			btrfs_set_file_extent_num_bytes(leaf, fi,
663 							other_end - start);
664 			btrfs_set_file_extent_offset(leaf, fi,
665 						     start - orig_offset);
666 			goto out;
667 		}
668 	}
669 
670 	while (start > key.offset || end < extent_end) {
671 		if (key.offset == start)
672 			split = end;
673 
674 		new_key.offset = split;
675 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
676 		if (ret == -EAGAIN) {
677 			btrfs_release_path(path);
678 			goto again;
679 		}
680 		if (ret < 0) {
681 			btrfs_abort_transaction(trans, ret);
682 			goto out;
683 		}
684 
685 		leaf = path->nodes[0];
686 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
687 				    struct btrfs_file_extent_item);
688 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
689 		btrfs_set_file_extent_num_bytes(leaf, fi,
690 						split - key.offset);
691 
692 		fi = btrfs_item_ptr(leaf, path->slots[0],
693 				    struct btrfs_file_extent_item);
694 
695 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
696 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
697 		btrfs_set_file_extent_num_bytes(leaf, fi,
698 						extent_end - split);
699 
700 		ref.action = BTRFS_ADD_DELAYED_REF;
701 		ref.bytenr = bytenr;
702 		ref.num_bytes = num_bytes;
703 		ref.parent = 0;
704 		ref.owning_root = btrfs_root_id(root);
705 		ref.ref_root = btrfs_root_id(root);
706 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
707 		ret = btrfs_inc_extent_ref(trans, &ref);
708 		if (ret) {
709 			btrfs_abort_transaction(trans, ret);
710 			goto out;
711 		}
712 
713 		if (split == start) {
714 			key.offset = start;
715 		} else {
716 			if (start != key.offset) {
717 				ret = -EINVAL;
718 				btrfs_abort_transaction(trans, ret);
719 				goto out;
720 			}
721 			path->slots[0]--;
722 			extent_end = end;
723 		}
724 		recow = 1;
725 	}
726 
727 	other_start = end;
728 	other_end = 0;
729 
730 	ref.action = BTRFS_DROP_DELAYED_REF;
731 	ref.bytenr = bytenr;
732 	ref.num_bytes = num_bytes;
733 	ref.parent = 0;
734 	ref.owning_root = btrfs_root_id(root);
735 	ref.ref_root = btrfs_root_id(root);
736 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
737 	if (extent_mergeable(leaf, path->slots[0] + 1,
738 			     ino, bytenr, orig_offset,
739 			     &other_start, &other_end)) {
740 		if (recow) {
741 			btrfs_release_path(path);
742 			goto again;
743 		}
744 		extent_end = other_end;
745 		del_slot = path->slots[0] + 1;
746 		del_nr++;
747 		ret = btrfs_free_extent(trans, &ref);
748 		if (ret) {
749 			btrfs_abort_transaction(trans, ret);
750 			goto out;
751 		}
752 	}
753 	other_start = 0;
754 	other_end = start;
755 	if (extent_mergeable(leaf, path->slots[0] - 1,
756 			     ino, bytenr, orig_offset,
757 			     &other_start, &other_end)) {
758 		if (recow) {
759 			btrfs_release_path(path);
760 			goto again;
761 		}
762 		key.offset = other_start;
763 		del_slot = path->slots[0];
764 		del_nr++;
765 		ret = btrfs_free_extent(trans, &ref);
766 		if (ret) {
767 			btrfs_abort_transaction(trans, ret);
768 			goto out;
769 		}
770 	}
771 	if (del_nr == 0) {
772 		fi = btrfs_item_ptr(leaf, path->slots[0],
773 			   struct btrfs_file_extent_item);
774 		btrfs_set_file_extent_type(leaf, fi,
775 					   BTRFS_FILE_EXTENT_REG);
776 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
777 	} else {
778 		fi = btrfs_item_ptr(leaf, del_slot - 1,
779 			   struct btrfs_file_extent_item);
780 		btrfs_set_file_extent_type(leaf, fi,
781 					   BTRFS_FILE_EXTENT_REG);
782 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
783 		btrfs_set_file_extent_num_bytes(leaf, fi,
784 						extent_end - key.offset);
785 
786 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
787 		if (ret < 0) {
788 			btrfs_abort_transaction(trans, ret);
789 			goto out;
790 		}
791 	}
792 out:
793 	return ret;
794 }
795 
796 /*
797  * On error return an unlocked folio and the error value
798  * On success return a locked folio and 0
799  */
800 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
801 				  u64 len)
802 {
803 	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
804 	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
805 	const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
806 	int ret = 0;
807 
808 	if (folio_test_uptodate(folio))
809 		return 0;
810 
811 	if (IS_ALIGNED(clamp_start, blocksize) &&
812 	    IS_ALIGNED(clamp_end, blocksize))
813 		return 0;
814 
815 	ret = btrfs_read_folio(NULL, folio);
816 	if (ret)
817 		return ret;
818 	folio_lock(folio);
819 	if (!folio_test_uptodate(folio)) {
820 		folio_unlock(folio);
821 		return -EIO;
822 	}
823 
824 	/*
825 	 * Since btrfs_read_folio() will unlock the folio before it returns,
826 	 * there is a window where btrfs_release_folio() can be called to
827 	 * release the page.  Here we check both inode mapping and page
828 	 * private to make sure the page was not released.
829 	 *
830 	 * The private flag check is essential for subpage as we need to store
831 	 * extra bitmap using folio private.
832 	 */
833 	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
834 		folio_unlock(folio);
835 		return -EAGAIN;
836 	}
837 	return 0;
838 }
839 
840 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
841 {
842 	gfp_t gfp;
843 
844 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
845 	if (nowait) {
846 		gfp &= ~__GFP_DIRECT_RECLAIM;
847 		gfp |= GFP_NOWAIT;
848 	}
849 
850 	return gfp;
851 }
852 
853 /*
854  * Get folio into the page cache and lock it.
855  */
856 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
857 				      loff_t pos, size_t write_bytes,
858 				      bool nowait)
859 {
860 	unsigned long index = pos >> PAGE_SHIFT;
861 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
862 	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
863 			  fgf_set_order(write_bytes);
864 	struct folio *folio;
865 	int ret = 0;
866 
867 again:
868 	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
869 	if (IS_ERR(folio))
870 		return PTR_ERR(folio);
871 
872 	ret = set_folio_extent_mapped(folio);
873 	if (ret < 0) {
874 		folio_unlock(folio);
875 		folio_put(folio);
876 		return ret;
877 	}
878 	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
879 	if (ret) {
880 		/* The folio is already unlocked. */
881 		folio_put(folio);
882 		if (!nowait && ret == -EAGAIN) {
883 			ret = 0;
884 			goto again;
885 		}
886 		return ret;
887 	}
888 	*folio_ret = folio;
889 	return 0;
890 }
891 
892 /*
893  * Locks the extent and properly waits for data=ordered extents to finish
894  * before allowing the folios to be modified if need.
895  *
896  * Return:
897  * 1 - the extent is locked
898  * 0 - the extent is not locked, and everything is OK
899  * -EAGAIN - need to prepare the folios again
900  */
901 static noinline int
902 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
903 				loff_t pos, size_t write_bytes,
904 				u64 *lockstart, u64 *lockend, bool nowait,
905 				struct extent_state **cached_state)
906 {
907 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
908 	u64 start_pos;
909 	u64 last_pos;
910 	int ret = 0;
911 
912 	start_pos = round_down(pos, fs_info->sectorsize);
913 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
914 
915 	if (start_pos < inode->vfs_inode.i_size) {
916 		struct btrfs_ordered_extent *ordered;
917 
918 		if (nowait) {
919 			if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
920 						   last_pos, cached_state)) {
921 				folio_unlock(folio);
922 				folio_put(folio);
923 				return -EAGAIN;
924 			}
925 		} else {
926 			btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
927 					  cached_state);
928 		}
929 
930 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
931 						     last_pos - start_pos + 1);
932 		if (ordered &&
933 		    ordered->file_offset + ordered->num_bytes > start_pos &&
934 		    ordered->file_offset <= last_pos) {
935 			btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
936 					    cached_state);
937 			folio_unlock(folio);
938 			folio_put(folio);
939 			btrfs_start_ordered_extent(ordered);
940 			btrfs_put_ordered_extent(ordered);
941 			return -EAGAIN;
942 		}
943 		if (ordered)
944 			btrfs_put_ordered_extent(ordered);
945 
946 		*lockstart = start_pos;
947 		*lockend = last_pos;
948 		ret = 1;
949 	}
950 
951 	/*
952 	 * We should be called after prepare_one_folio() which should have locked
953 	 * all pages in the range.
954 	 */
955 	WARN_ON(!folio_test_locked(folio));
956 
957 	return ret;
958 }
959 
960 /*
961  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
962  *
963  * @pos:         File offset.
964  * @write_bytes: The length to write, will be updated to the nocow writeable
965  *               range.
966  *
967  * This function will flush ordered extents in the range to ensure proper
968  * nocow checks.
969  *
970  * Return:
971  * > 0          If we can nocow, and updates @write_bytes.
972  *  0           If we can't do a nocow write.
973  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
974  *              root is in progress.
975  * < 0          If an error happened.
976  *
977  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
978  */
979 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
980 			   size_t *write_bytes, bool nowait)
981 {
982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 	struct btrfs_root *root = inode->root;
984 	struct extent_state *cached_state = NULL;
985 	u64 lockstart, lockend;
986 	u64 num_bytes;
987 	int ret;
988 
989 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
990 		return 0;
991 
992 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
993 		return -EAGAIN;
994 
995 	lockstart = round_down(pos, fs_info->sectorsize);
996 	lockend = round_up(pos + *write_bytes,
997 			   fs_info->sectorsize) - 1;
998 	num_bytes = lockend - lockstart + 1;
999 
1000 	if (nowait) {
1001 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1002 						  &cached_state)) {
1003 			btrfs_drew_write_unlock(&root->snapshot_lock);
1004 			return -EAGAIN;
1005 		}
1006 	} else {
1007 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1008 						   &cached_state);
1009 	}
1010 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, nowait);
1011 	if (ret <= 0)
1012 		btrfs_drew_write_unlock(&root->snapshot_lock);
1013 	else
1014 		*write_bytes = min_t(size_t, *write_bytes ,
1015 				     num_bytes - pos + lockstart);
1016 	btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1017 
1018 	return ret;
1019 }
1020 
1021 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1022 {
1023 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1024 }
1025 
1026 int btrfs_write_check(struct kiocb *iocb, size_t count)
1027 {
1028 	struct file *file = iocb->ki_filp;
1029 	struct inode *inode = file_inode(file);
1030 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1031 	loff_t pos = iocb->ki_pos;
1032 	int ret;
1033 	loff_t oldsize;
1034 
1035 	/*
1036 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1037 	 * prealloc flags, as without those flags we always have to COW. We will
1038 	 * later check if we can really COW into the target range (using
1039 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1040 	 */
1041 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1042 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1043 		return -EAGAIN;
1044 
1045 	ret = file_remove_privs(file);
1046 	if (ret)
1047 		return ret;
1048 
1049 	/*
1050 	 * We reserve space for updating the inode when we reserve space for the
1051 	 * extent we are going to write, so we will enospc out there.  We don't
1052 	 * need to start yet another transaction to update the inode as we will
1053 	 * update the inode when we finish writing whatever data we write.
1054 	 */
1055 	if (!IS_NOCMTIME(inode)) {
1056 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1057 		inode_inc_iversion(inode);
1058 	}
1059 
1060 	oldsize = i_size_read(inode);
1061 	if (pos > oldsize) {
1062 		/* Expand hole size to cover write data, preventing empty gap */
1063 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1064 
1065 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1066 		if (ret)
1067 			return ret;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1074 			  u64 start, u64 len, bool only_release_metadata)
1075 {
1076 	if (len == 0)
1077 		return;
1078 
1079 	if (only_release_metadata) {
1080 		btrfs_check_nocow_unlock(inode);
1081 		btrfs_delalloc_release_metadata(inode, len, true);
1082 	} else {
1083 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1084 
1085 		btrfs_delalloc_release_space(inode, data_reserved,
1086 					     round_down(start, fs_info->sectorsize),
1087 					     len, true);
1088 	}
1089 }
1090 
1091 /*
1092  * Reserve data and metadata space for this buffered write range.
1093  *
1094  * Return >0 for the number of bytes reserved, which is always block aligned.
1095  * Return <0 for error.
1096  */
1097 static ssize_t reserve_space(struct btrfs_inode *inode,
1098 			     struct extent_changeset **data_reserved,
1099 			     u64 start, size_t *len, bool nowait,
1100 			     bool *only_release_metadata)
1101 {
1102 	const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1103 	const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1104 	size_t reserve_bytes;
1105 	int ret;
1106 
1107 	ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1108 	if (ret < 0) {
1109 		int can_nocow;
1110 
1111 		if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1112 			return -EAGAIN;
1113 
1114 		/*
1115 		 * If we don't have to COW at the offset, reserve metadata only.
1116 		 * write_bytes may get smaller than requested here.
1117 		 */
1118 		can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1119 		if (can_nocow < 0)
1120 			ret = can_nocow;
1121 		if (can_nocow > 0)
1122 			ret = 0;
1123 		if (ret)
1124 			return ret;
1125 		*only_release_metadata = true;
1126 	}
1127 
1128 	reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1129 	WARN_ON(reserve_bytes == 0);
1130 	ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1131 					      reserve_bytes, nowait);
1132 	if (ret) {
1133 		if (!*only_release_metadata)
1134 			btrfs_free_reserved_data_space(inode, *data_reserved,
1135 						       start, *len);
1136 		else
1137 			btrfs_check_nocow_unlock(inode);
1138 
1139 		if (nowait && ret == -ENOSPC)
1140 			ret = -EAGAIN;
1141 		return ret;
1142 	}
1143 	return reserve_bytes;
1144 }
1145 
1146 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
1147 static void shrink_reserved_space(struct btrfs_inode *inode,
1148 				  struct extent_changeset *data_reserved,
1149 				  u64 reserved_start, u64 reserved_len,
1150 				  u64 new_len, bool only_release_metadata)
1151 {
1152 	const u64 diff = reserved_len - new_len;
1153 
1154 	ASSERT(new_len <= reserved_len);
1155 	btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1156 	if (only_release_metadata)
1157 		btrfs_delalloc_release_metadata(inode, diff, true);
1158 	else
1159 		btrfs_delalloc_release_space(inode, data_reserved,
1160 					     reserved_start + new_len, diff, true);
1161 }
1162 
1163 /* Calculate the maximum amount of bytes we can write into one folio. */
1164 static size_t calc_write_bytes(const struct btrfs_inode *inode,
1165 			       const struct iov_iter *iter, u64 start)
1166 {
1167 	const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1168 
1169 	return min(max_folio_size - (start & (max_folio_size - 1)),
1170 		   iov_iter_count(iter));
1171 }
1172 
1173 /*
1174  * Do the heavy-lifting work to copy one range into one folio of the page cache.
1175  *
1176  * Return > 0 in case we copied all bytes or just some of them.
1177  * Return 0 if no bytes were copied, in which case the caller should retry.
1178  * Return <0 on error.
1179  */
1180 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1181 			  struct extent_changeset **data_reserved, u64 start,
1182 			  bool nowait)
1183 {
1184 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1185 	struct extent_state *cached_state = NULL;
1186 	size_t write_bytes = calc_write_bytes(inode, iter, start);
1187 	size_t copied;
1188 	const u64 reserved_start = round_down(start, fs_info->sectorsize);
1189 	u64 reserved_len;
1190 	struct folio *folio = NULL;
1191 	int extents_locked;
1192 	u64 lockstart;
1193 	u64 lockend;
1194 	bool only_release_metadata = false;
1195 	const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196 	int ret;
1197 
1198 	/*
1199 	 * Fault all pages before locking them in prepare_one_folio() to avoid
1200 	 * recursive lock.
1201 	 */
1202 	if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1203 		return -EFAULT;
1204 	extent_changeset_release(*data_reserved);
1205 	ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1206 			    &only_release_metadata);
1207 	if (ret < 0)
1208 		return ret;
1209 	reserved_len = ret;
1210 	/* Write range must be inside the reserved range. */
1211 	ASSERT(reserved_start <= start);
1212 	ASSERT(start + write_bytes <= reserved_start + reserved_len);
1213 
1214 again:
1215 	ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1216 						    bdp_flags);
1217 	if (ret) {
1218 		btrfs_delalloc_release_extents(inode, reserved_len);
1219 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1220 			      only_release_metadata);
1221 		return ret;
1222 	}
1223 
1224 	ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1225 	if (ret) {
1226 		btrfs_delalloc_release_extents(inode, reserved_len);
1227 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1228 			      only_release_metadata);
1229 		return ret;
1230 	}
1231 
1232 	/*
1233 	 * The reserved range goes beyond the current folio, shrink the reserved
1234 	 * space to the folio boundary.
1235 	 */
1236 	if (reserved_start + reserved_len > folio_pos(folio) + folio_size(folio)) {
1237 		const u64 last_block = folio_pos(folio) + folio_size(folio);
1238 
1239 		shrink_reserved_space(inode, *data_reserved, reserved_start,
1240 				      reserved_len, last_block - reserved_start,
1241 				      only_release_metadata);
1242 		write_bytes = last_block - start;
1243 		reserved_len = last_block - reserved_start;
1244 	}
1245 
1246 	extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1247 							 write_bytes, &lockstart,
1248 							 &lockend, nowait,
1249 							 &cached_state);
1250 	if (extents_locked < 0) {
1251 		if (!nowait && extents_locked == -EAGAIN)
1252 			goto again;
1253 
1254 		btrfs_delalloc_release_extents(inode, reserved_len);
1255 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1256 			      only_release_metadata);
1257 		ret = extents_locked;
1258 		return ret;
1259 	}
1260 
1261 	copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1262 					     write_bytes, iter);
1263 	flush_dcache_folio(folio);
1264 
1265 	if (unlikely(copied < write_bytes)) {
1266 		u64 last_block;
1267 
1268 		/*
1269 		 * The original write range doesn't need an uptodate folio as
1270 		 * the range is block aligned. But now a short copy happened.
1271 		 * We cannot handle it without an uptodate folio.
1272 		 *
1273 		 * So just revert the range and we will retry.
1274 		 */
1275 		if (!folio_test_uptodate(folio)) {
1276 			iov_iter_revert(iter, copied);
1277 			copied = 0;
1278 		}
1279 
1280 		/* No copied bytes, unlock, release reserved space and exit. */
1281 		if (copied == 0) {
1282 			if (extents_locked)
1283 				btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1284 						    &cached_state);
1285 			else
1286 				btrfs_free_extent_state(cached_state);
1287 			btrfs_delalloc_release_extents(inode, reserved_len);
1288 			release_space(inode, *data_reserved, reserved_start, reserved_len,
1289 				      only_release_metadata);
1290 			btrfs_drop_folio(fs_info, folio, start, copied);
1291 			return 0;
1292 		}
1293 
1294 		/* Release the reserved space beyond the last block. */
1295 		last_block = round_up(start + copied, fs_info->sectorsize);
1296 
1297 		shrink_reserved_space(inode, *data_reserved, reserved_start,
1298 				      reserved_len, last_block - reserved_start,
1299 				      only_release_metadata);
1300 		reserved_len = last_block - reserved_start;
1301 	}
1302 
1303 	ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1304 				only_release_metadata);
1305 	/*
1306 	 * If we have not locked the extent range, because the range's start
1307 	 * offset is >= i_size, we might still have a non-NULL cached extent
1308 	 * state, acquired while marking the extent range as delalloc through
1309 	 * btrfs_dirty_page(). Therefore free any possible cached extent state
1310 	 * to avoid a memory leak.
1311 	 */
1312 	if (extents_locked)
1313 		btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1314 	else
1315 		btrfs_free_extent_state(cached_state);
1316 
1317 	btrfs_delalloc_release_extents(inode, reserved_len);
1318 	if (ret) {
1319 		btrfs_drop_folio(fs_info, folio, start, copied);
1320 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1321 			      only_release_metadata);
1322 		return ret;
1323 	}
1324 	if (only_release_metadata)
1325 		btrfs_check_nocow_unlock(inode);
1326 
1327 	btrfs_drop_folio(fs_info, folio, start, copied);
1328 	return copied;
1329 }
1330 
1331 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1332 {
1333 	struct file *file = iocb->ki_filp;
1334 	loff_t pos;
1335 	struct inode *inode = file_inode(file);
1336 	struct extent_changeset *data_reserved = NULL;
1337 	size_t num_written = 0;
1338 	ssize_t ret;
1339 	loff_t old_isize;
1340 	unsigned int ilock_flags = 0;
1341 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1342 
1343 	if (nowait)
1344 		ilock_flags |= BTRFS_ILOCK_TRY;
1345 
1346 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	/*
1351 	 * We can only trust the isize with inode lock held, or it can race with
1352 	 * other buffered writes and cause incorrect call of
1353 	 * pagecache_isize_extended() to overwrite existing data.
1354 	 */
1355 	old_isize = i_size_read(inode);
1356 
1357 	ret = generic_write_checks(iocb, iter);
1358 	if (ret <= 0)
1359 		goto out;
1360 
1361 	ret = btrfs_write_check(iocb, ret);
1362 	if (ret < 0)
1363 		goto out;
1364 
1365 	pos = iocb->ki_pos;
1366 	while (iov_iter_count(iter) > 0) {
1367 		ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1368 		if (ret < 0)
1369 			break;
1370 		pos += ret;
1371 		num_written += ret;
1372 		cond_resched();
1373 	}
1374 
1375 	extent_changeset_free(data_reserved);
1376 	if (num_written > 0) {
1377 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1378 		iocb->ki_pos += num_written;
1379 	}
1380 out:
1381 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1382 	return num_written ? num_written : ret;
1383 }
1384 
1385 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1386 			const struct btrfs_ioctl_encoded_io_args *encoded)
1387 {
1388 	struct file *file = iocb->ki_filp;
1389 	struct inode *inode = file_inode(file);
1390 	loff_t count;
1391 	ssize_t ret;
1392 
1393 	btrfs_inode_lock(BTRFS_I(inode), 0);
1394 	count = encoded->len;
1395 	ret = generic_write_checks_count(iocb, &count);
1396 	if (ret == 0 && count != encoded->len) {
1397 		/*
1398 		 * The write got truncated by generic_write_checks_count(). We
1399 		 * can't do a partial encoded write.
1400 		 */
1401 		ret = -EFBIG;
1402 	}
1403 	if (ret || encoded->len == 0)
1404 		goto out;
1405 
1406 	ret = btrfs_write_check(iocb, encoded->len);
1407 	if (ret < 0)
1408 		goto out;
1409 
1410 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1411 out:
1412 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1413 	return ret;
1414 }
1415 
1416 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1417 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1418 {
1419 	struct file *file = iocb->ki_filp;
1420 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1421 	ssize_t num_written, num_sync;
1422 
1423 	/*
1424 	 * If the fs flips readonly due to some impossible error, although we
1425 	 * have opened a file as writable, we have to stop this write operation
1426 	 * to ensure consistency.
1427 	 */
1428 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1429 		return -EROFS;
1430 
1431 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1432 		return -EOPNOTSUPP;
1433 
1434 	if (encoded) {
1435 		num_written = btrfs_encoded_write(iocb, from, encoded);
1436 		num_sync = encoded->len;
1437 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1438 		num_written = btrfs_direct_write(iocb, from);
1439 		num_sync = num_written;
1440 	} else {
1441 		num_written = btrfs_buffered_write(iocb, from);
1442 		num_sync = num_written;
1443 	}
1444 
1445 	btrfs_set_inode_last_sub_trans(inode);
1446 
1447 	if (num_sync > 0) {
1448 		num_sync = generic_write_sync(iocb, num_sync);
1449 		if (num_sync < 0)
1450 			num_written = num_sync;
1451 	}
1452 
1453 	return num_written;
1454 }
1455 
1456 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1457 {
1458 	return btrfs_do_write_iter(iocb, from, NULL);
1459 }
1460 
1461 int btrfs_release_file(struct inode *inode, struct file *filp)
1462 {
1463 	struct btrfs_file_private *private = filp->private_data;
1464 
1465 	if (private) {
1466 		kfree(private->filldir_buf);
1467 		btrfs_free_extent_state(private->llseek_cached_state);
1468 		kfree(private);
1469 		filp->private_data = NULL;
1470 	}
1471 
1472 	/*
1473 	 * Set by setattr when we are about to truncate a file from a non-zero
1474 	 * size to a zero size.  This tries to flush down new bytes that may
1475 	 * have been written if the application were using truncate to replace
1476 	 * a file in place.
1477 	 */
1478 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1479 			       &BTRFS_I(inode)->runtime_flags))
1480 			filemap_flush(inode->i_mapping);
1481 	return 0;
1482 }
1483 
1484 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1485 {
1486 	int ret;
1487 	struct blk_plug plug;
1488 
1489 	/*
1490 	 * This is only called in fsync, which would do synchronous writes, so
1491 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1492 	 * multiple disks using raid profile, a large IO can be split to
1493 	 * several segments of stripe length (currently 64K).
1494 	 */
1495 	blk_start_plug(&plug);
1496 	ret = btrfs_fdatawrite_range(inode, start, end);
1497 	blk_finish_plug(&plug);
1498 
1499 	return ret;
1500 }
1501 
1502 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1503 {
1504 	struct btrfs_inode *inode = ctx->inode;
1505 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1506 
1507 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1508 	    list_empty(&ctx->ordered_extents))
1509 		return true;
1510 
1511 	/*
1512 	 * If we are doing a fast fsync we can not bail out if the inode's
1513 	 * last_trans is <= then the last committed transaction, because we only
1514 	 * update the last_trans of the inode during ordered extent completion,
1515 	 * and for a fast fsync we don't wait for that, we only wait for the
1516 	 * writeback to complete.
1517 	 */
1518 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1519 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1520 	     list_empty(&ctx->ordered_extents)))
1521 		return true;
1522 
1523 	return false;
1524 }
1525 
1526 /*
1527  * fsync call for both files and directories.  This logs the inode into
1528  * the tree log instead of forcing full commits whenever possible.
1529  *
1530  * It needs to call filemap_fdatawait so that all ordered extent updates are
1531  * in the metadata btree are up to date for copying to the log.
1532  *
1533  * It drops the inode mutex before doing the tree log commit.  This is an
1534  * important optimization for directories because holding the mutex prevents
1535  * new operations on the dir while we write to disk.
1536  */
1537 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1538 {
1539 	struct dentry *dentry = file_dentry(file);
1540 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1541 	struct btrfs_root *root = inode->root;
1542 	struct btrfs_fs_info *fs_info = root->fs_info;
1543 	struct btrfs_trans_handle *trans;
1544 	struct btrfs_log_ctx ctx;
1545 	int ret = 0, err;
1546 	u64 len;
1547 	bool full_sync;
1548 	bool skip_ilock = false;
1549 
1550 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1551 		skip_ilock = true;
1552 		current->journal_info = NULL;
1553 		btrfs_assert_inode_locked(inode);
1554 	}
1555 
1556 	trace_btrfs_sync_file(file, datasync);
1557 
1558 	btrfs_init_log_ctx(&ctx, inode);
1559 
1560 	/*
1561 	 * Always set the range to a full range, otherwise we can get into
1562 	 * several problems, from missing file extent items to represent holes
1563 	 * when not using the NO_HOLES feature, to log tree corruption due to
1564 	 * races between hole detection during logging and completion of ordered
1565 	 * extents outside the range, to missing checksums due to ordered extents
1566 	 * for which we flushed only a subset of their pages.
1567 	 */
1568 	start = 0;
1569 	end = LLONG_MAX;
1570 	len = (u64)LLONG_MAX + 1;
1571 
1572 	/*
1573 	 * We write the dirty pages in the range and wait until they complete
1574 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1575 	 * multi-task, and make the performance up.  See
1576 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1577 	 */
1578 	ret = start_ordered_ops(inode, start, end);
1579 	if (ret)
1580 		goto out;
1581 
1582 	if (skip_ilock)
1583 		down_write(&inode->i_mmap_lock);
1584 	else
1585 		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1586 
1587 	atomic_inc(&root->log_batch);
1588 
1589 	/*
1590 	 * Before we acquired the inode's lock and the mmap lock, someone may
1591 	 * have dirtied more pages in the target range. We need to make sure
1592 	 * that writeback for any such pages does not start while we are logging
1593 	 * the inode, because if it does, any of the following might happen when
1594 	 * we are not doing a full inode sync:
1595 	 *
1596 	 * 1) We log an extent after its writeback finishes but before its
1597 	 *    checksums are added to the csum tree, leading to -EIO errors
1598 	 *    when attempting to read the extent after a log replay.
1599 	 *
1600 	 * 2) We can end up logging an extent before its writeback finishes.
1601 	 *    Therefore after the log replay we will have a file extent item
1602 	 *    pointing to an unwritten extent (and no data checksums as well).
1603 	 *
1604 	 * So trigger writeback for any eventual new dirty pages and then we
1605 	 * wait for all ordered extents to complete below.
1606 	 */
1607 	ret = start_ordered_ops(inode, start, end);
1608 	if (ret) {
1609 		if (skip_ilock)
1610 			up_write(&inode->i_mmap_lock);
1611 		else
1612 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1613 		goto out;
1614 	}
1615 
1616 	/*
1617 	 * Always check for the full sync flag while holding the inode's lock,
1618 	 * to avoid races with other tasks. The flag must be either set all the
1619 	 * time during logging or always off all the time while logging.
1620 	 * We check the flag here after starting delalloc above, because when
1621 	 * running delalloc the full sync flag may be set if we need to drop
1622 	 * extra extent map ranges due to temporary memory allocation failures.
1623 	 */
1624 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1625 
1626 	/*
1627 	 * We have to do this here to avoid the priority inversion of waiting on
1628 	 * IO of a lower priority task while holding a transaction open.
1629 	 *
1630 	 * For a full fsync we wait for the ordered extents to complete while
1631 	 * for a fast fsync we wait just for writeback to complete, and then
1632 	 * attach the ordered extents to the transaction so that a transaction
1633 	 * commit waits for their completion, to avoid data loss if we fsync,
1634 	 * the current transaction commits before the ordered extents complete
1635 	 * and a power failure happens right after that.
1636 	 *
1637 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1638 	 * logical address recorded in the ordered extent may change. We need
1639 	 * to wait for the IO to stabilize the logical address.
1640 	 */
1641 	if (full_sync || btrfs_is_zoned(fs_info)) {
1642 		ret = btrfs_wait_ordered_range(inode, start, len);
1643 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1644 	} else {
1645 		/*
1646 		 * Get our ordered extents as soon as possible to avoid doing
1647 		 * checksum lookups in the csum tree, and use instead the
1648 		 * checksums attached to the ordered extents.
1649 		 */
1650 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1651 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1652 		if (ret)
1653 			goto out_release_extents;
1654 
1655 		/*
1656 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1657 		 * starting and waiting for writeback, because for buffered IO
1658 		 * it may have been set during the end IO callback
1659 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1660 		 * case an error happened and we need to wait for ordered
1661 		 * extents to complete so that any extent maps that point to
1662 		 * unwritten locations are dropped and we don't log them.
1663 		 */
1664 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1665 			ret = btrfs_wait_ordered_range(inode, start, len);
1666 	}
1667 
1668 	if (ret)
1669 		goto out_release_extents;
1670 
1671 	atomic_inc(&root->log_batch);
1672 
1673 	if (skip_inode_logging(&ctx)) {
1674 		/*
1675 		 * We've had everything committed since the last time we were
1676 		 * modified so clear this flag in case it was set for whatever
1677 		 * reason, it's no longer relevant.
1678 		 */
1679 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1680 		/*
1681 		 * An ordered extent might have started before and completed
1682 		 * already with io errors, in which case the inode was not
1683 		 * updated and we end up here. So check the inode's mapping
1684 		 * for any errors that might have happened since we last
1685 		 * checked called fsync.
1686 		 */
1687 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1688 		goto out_release_extents;
1689 	}
1690 
1691 	btrfs_init_log_ctx_scratch_eb(&ctx);
1692 
1693 	/*
1694 	 * We use start here because we will need to wait on the IO to complete
1695 	 * in btrfs_sync_log, which could require joining a transaction (for
1696 	 * example checking cross references in the nocow path).  If we use join
1697 	 * here we could get into a situation where we're waiting on IO to
1698 	 * happen that is blocked on a transaction trying to commit.  With start
1699 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1700 	 * before we start blocking joiners.  This comment is to keep somebody
1701 	 * from thinking they are super smart and changing this to
1702 	 * btrfs_join_transaction *cough*Josef*cough*.
1703 	 */
1704 	trans = btrfs_start_transaction(root, 0);
1705 	if (IS_ERR(trans)) {
1706 		ret = PTR_ERR(trans);
1707 		goto out_release_extents;
1708 	}
1709 	trans->in_fsync = true;
1710 
1711 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1712 	/*
1713 	 * Scratch eb no longer needed, release before syncing log or commit
1714 	 * transaction, to avoid holding unnecessary memory during such long
1715 	 * operations.
1716 	 */
1717 	if (ctx.scratch_eb) {
1718 		free_extent_buffer(ctx.scratch_eb);
1719 		ctx.scratch_eb = NULL;
1720 	}
1721 	btrfs_release_log_ctx_extents(&ctx);
1722 	if (ret < 0) {
1723 		/* Fallthrough and commit/free transaction. */
1724 		ret = BTRFS_LOG_FORCE_COMMIT;
1725 	}
1726 
1727 	/* we've logged all the items and now have a consistent
1728 	 * version of the file in the log.  It is possible that
1729 	 * someone will come in and modify the file, but that's
1730 	 * fine because the log is consistent on disk, and we
1731 	 * have references to all of the file's extents
1732 	 *
1733 	 * It is possible that someone will come in and log the
1734 	 * file again, but that will end up using the synchronization
1735 	 * inside btrfs_sync_log to keep things safe.
1736 	 */
1737 	if (skip_ilock)
1738 		up_write(&inode->i_mmap_lock);
1739 	else
1740 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1741 
1742 	if (ret == BTRFS_NO_LOG_SYNC) {
1743 		ret = btrfs_end_transaction(trans);
1744 		goto out;
1745 	}
1746 
1747 	/* We successfully logged the inode, attempt to sync the log. */
1748 	if (!ret) {
1749 		ret = btrfs_sync_log(trans, root, &ctx);
1750 		if (!ret) {
1751 			ret = btrfs_end_transaction(trans);
1752 			goto out;
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * At this point we need to commit the transaction because we had
1758 	 * btrfs_need_log_full_commit() or some other error.
1759 	 *
1760 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1761 	 * the ordered extents, start it again and commit the transaction.  If
1762 	 * we attempt to wait on the ordered extents here we could deadlock with
1763 	 * something like fallocate() that is holding the extent lock trying to
1764 	 * start a transaction while some other thread is trying to commit the
1765 	 * transaction while we (fsync) are currently holding the transaction
1766 	 * open.
1767 	 */
1768 	if (!full_sync) {
1769 		ret = btrfs_end_transaction(trans);
1770 		if (ret)
1771 			goto out;
1772 		ret = btrfs_wait_ordered_range(inode, start, len);
1773 		if (ret)
1774 			goto out;
1775 
1776 		/*
1777 		 * This is safe to use here because we're only interested in
1778 		 * making sure the transaction that had the ordered extents is
1779 		 * committed.  We aren't waiting on anything past this point,
1780 		 * we're purely getting the transaction and committing it.
1781 		 */
1782 		trans = btrfs_attach_transaction_barrier(root);
1783 		if (IS_ERR(trans)) {
1784 			ret = PTR_ERR(trans);
1785 
1786 			/*
1787 			 * We committed the transaction and there's no currently
1788 			 * running transaction, this means everything we care
1789 			 * about made it to disk and we are done.
1790 			 */
1791 			if (ret == -ENOENT)
1792 				ret = 0;
1793 			goto out;
1794 		}
1795 	}
1796 
1797 	ret = btrfs_commit_transaction(trans);
1798 out:
1799 	free_extent_buffer(ctx.scratch_eb);
1800 	ASSERT(list_empty(&ctx.list));
1801 	ASSERT(list_empty(&ctx.conflict_inodes));
1802 	err = file_check_and_advance_wb_err(file);
1803 	if (!ret)
1804 		ret = err;
1805 	return ret > 0 ? -EIO : ret;
1806 
1807 out_release_extents:
1808 	btrfs_release_log_ctx_extents(&ctx);
1809 	if (skip_ilock)
1810 		up_write(&inode->i_mmap_lock);
1811 	else
1812 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1813 	goto out;
1814 }
1815 
1816 /*
1817  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1818  * called from a page fault handler when a page is first dirtied. Hence we must
1819  * be careful to check for EOF conditions here. We set the page up correctly
1820  * for a written page which means we get ENOSPC checking when writing into
1821  * holes and correct delalloc and unwritten extent mapping on filesystems that
1822  * support these features.
1823  *
1824  * We are not allowed to take the i_mutex here so we have to play games to
1825  * protect against truncate races as the page could now be beyond EOF.  Because
1826  * truncate_setsize() writes the inode size before removing pages, once we have
1827  * the page lock we can determine safely if the page is beyond EOF. If it is not
1828  * beyond EOF, then the page is guaranteed safe against truncation until we
1829  * unlock the page.
1830  */
1831 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1832 {
1833 	struct page *page = vmf->page;
1834 	struct folio *folio = page_folio(page);
1835 	struct inode *inode = file_inode(vmf->vma->vm_file);
1836 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1837 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1838 	struct btrfs_ordered_extent *ordered;
1839 	struct extent_state *cached_state = NULL;
1840 	struct extent_changeset *data_reserved = NULL;
1841 	unsigned long zero_start;
1842 	loff_t size;
1843 	size_t fsize = folio_size(folio);
1844 	int ret;
1845 	u64 reserved_space;
1846 	u64 page_start;
1847 	u64 page_end;
1848 	u64 end;
1849 
1850 	reserved_space = fsize;
1851 
1852 	sb_start_pagefault(inode->i_sb);
1853 	page_start = folio_pos(folio);
1854 	page_end = page_start + folio_size(folio) - 1;
1855 	end = page_end;
1856 
1857 	/*
1858 	 * Reserving delalloc space after obtaining the page lock can lead to
1859 	 * deadlock. For example, if a dirty page is locked by this function
1860 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1861 	 * dirty page write out, then the btrfs_writepages() function could
1862 	 * end up waiting indefinitely to get a lock on the page currently
1863 	 * being processed by btrfs_page_mkwrite() function.
1864 	 */
1865 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1866 					   page_start, reserved_space);
1867 	if (ret < 0)
1868 		goto out_noreserve;
1869 
1870 	ret = file_update_time(vmf->vma->vm_file);
1871 	if (ret < 0)
1872 		goto out;
1873 again:
1874 	down_read(&BTRFS_I(inode)->i_mmap_lock);
1875 	folio_lock(folio);
1876 	size = i_size_read(inode);
1877 
1878 	if ((folio->mapping != inode->i_mapping) ||
1879 	    (page_start >= size)) {
1880 		/* Page got truncated out from underneath us. */
1881 		goto out_unlock;
1882 	}
1883 	folio_wait_writeback(folio);
1884 
1885 	btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1886 	ret = set_folio_extent_mapped(folio);
1887 	if (ret < 0) {
1888 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1889 		goto out_unlock;
1890 	}
1891 
1892 	/*
1893 	 * We can't set the delalloc bits if there are pending ordered
1894 	 * extents.  Drop our locks and wait for them to finish.
1895 	 */
1896 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, fsize);
1897 	if (ordered) {
1898 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1899 		folio_unlock(folio);
1900 		up_read(&BTRFS_I(inode)->i_mmap_lock);
1901 		btrfs_start_ordered_extent(ordered);
1902 		btrfs_put_ordered_extent(ordered);
1903 		goto again;
1904 	}
1905 
1906 	if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1907 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1908 		if (reserved_space < fsize) {
1909 			end = page_start + reserved_space - 1;
1910 			btrfs_delalloc_release_space(BTRFS_I(inode),
1911 					data_reserved, end + 1,
1912 					fsize - reserved_space, true);
1913 		}
1914 	}
1915 
1916 	/*
1917 	 * page_mkwrite gets called when the page is firstly dirtied after it's
1918 	 * faulted in, but write(2) could also dirty a page and set delalloc
1919 	 * bits, thus in this case for space account reason, we still need to
1920 	 * clear any delalloc bits within this page range since we have to
1921 	 * reserve data&meta space before lock_page() (see above comments).
1922 	 */
1923 	btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1924 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1925 			       EXTENT_DEFRAG, &cached_state);
1926 
1927 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1928 					&cached_state);
1929 	if (ret < 0) {
1930 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1931 		goto out_unlock;
1932 	}
1933 
1934 	/* Page is wholly or partially inside EOF. */
1935 	if (page_start + folio_size(folio) > size)
1936 		zero_start = offset_in_folio(folio, size);
1937 	else
1938 		zero_start = fsize;
1939 
1940 	if (zero_start != fsize)
1941 		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1942 
1943 	btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1944 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1945 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1946 
1947 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1948 
1949 	btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1950 	up_read(&BTRFS_I(inode)->i_mmap_lock);
1951 
1952 	btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
1953 	sb_end_pagefault(inode->i_sb);
1954 	extent_changeset_free(data_reserved);
1955 	return VM_FAULT_LOCKED;
1956 
1957 out_unlock:
1958 	folio_unlock(folio);
1959 	up_read(&BTRFS_I(inode)->i_mmap_lock);
1960 out:
1961 	btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
1962 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1963 				     reserved_space, true);
1964 	extent_changeset_free(data_reserved);
1965 out_noreserve:
1966 	sb_end_pagefault(inode->i_sb);
1967 
1968 	if (ret < 0)
1969 		return vmf_error(ret);
1970 
1971 	/* Make the VM retry the fault. */
1972 	return VM_FAULT_NOPAGE;
1973 }
1974 
1975 static const struct vm_operations_struct btrfs_file_vm_ops = {
1976 	.fault		= filemap_fault,
1977 	.map_pages	= filemap_map_pages,
1978 	.page_mkwrite	= btrfs_page_mkwrite,
1979 };
1980 
1981 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1982 {
1983 	struct address_space *mapping = filp->f_mapping;
1984 
1985 	if (!mapping->a_ops->read_folio)
1986 		return -ENOEXEC;
1987 
1988 	file_accessed(filp);
1989 	vma->vm_ops = &btrfs_file_vm_ops;
1990 
1991 	return 0;
1992 }
1993 
1994 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1995 			   int slot, u64 start, u64 end)
1996 {
1997 	struct btrfs_file_extent_item *fi;
1998 	struct btrfs_key key;
1999 
2000 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2001 		return false;
2002 
2003 	btrfs_item_key_to_cpu(leaf, &key, slot);
2004 	if (key.objectid != btrfs_ino(inode) ||
2005 	    key.type != BTRFS_EXTENT_DATA_KEY)
2006 		return false;
2007 
2008 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2009 
2010 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2011 		return false;
2012 
2013 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2014 		return false;
2015 
2016 	if (key.offset == end)
2017 		return true;
2018 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2019 		return true;
2020 	return false;
2021 }
2022 
2023 static int fill_holes(struct btrfs_trans_handle *trans,
2024 		struct btrfs_inode *inode,
2025 		struct btrfs_path *path, u64 offset, u64 end)
2026 {
2027 	struct btrfs_fs_info *fs_info = trans->fs_info;
2028 	struct btrfs_root *root = inode->root;
2029 	struct extent_buffer *leaf;
2030 	struct btrfs_file_extent_item *fi;
2031 	struct extent_map *hole_em;
2032 	struct btrfs_key key;
2033 	int ret;
2034 
2035 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2036 		goto out;
2037 
2038 	key.objectid = btrfs_ino(inode);
2039 	key.type = BTRFS_EXTENT_DATA_KEY;
2040 	key.offset = offset;
2041 
2042 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2043 	if (ret <= 0) {
2044 		/*
2045 		 * We should have dropped this offset, so if we find it then
2046 		 * something has gone horribly wrong.
2047 		 */
2048 		if (ret == 0)
2049 			ret = -EINVAL;
2050 		return ret;
2051 	}
2052 
2053 	leaf = path->nodes[0];
2054 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2055 		u64 num_bytes;
2056 
2057 		path->slots[0]--;
2058 		fi = btrfs_item_ptr(leaf, path->slots[0],
2059 				    struct btrfs_file_extent_item);
2060 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2061 			end - offset;
2062 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2063 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2064 		btrfs_set_file_extent_offset(leaf, fi, 0);
2065 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2066 		goto out;
2067 	}
2068 
2069 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2070 		u64 num_bytes;
2071 
2072 		key.offset = offset;
2073 		btrfs_set_item_key_safe(trans, path, &key);
2074 		fi = btrfs_item_ptr(leaf, path->slots[0],
2075 				    struct btrfs_file_extent_item);
2076 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2077 			offset;
2078 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2079 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2080 		btrfs_set_file_extent_offset(leaf, fi, 0);
2081 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2082 		goto out;
2083 	}
2084 	btrfs_release_path(path);
2085 
2086 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2087 				       end - offset);
2088 	if (ret)
2089 		return ret;
2090 
2091 out:
2092 	btrfs_release_path(path);
2093 
2094 	hole_em = btrfs_alloc_extent_map();
2095 	if (!hole_em) {
2096 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2097 		btrfs_set_inode_full_sync(inode);
2098 	} else {
2099 		hole_em->start = offset;
2100 		hole_em->len = end - offset;
2101 		hole_em->ram_bytes = hole_em->len;
2102 
2103 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2104 		hole_em->disk_num_bytes = 0;
2105 		hole_em->generation = trans->transid;
2106 
2107 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2108 		btrfs_free_extent_map(hole_em);
2109 		if (ret)
2110 			btrfs_set_inode_full_sync(inode);
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Find a hole extent on given inode and change start/len to the end of hole
2118  * extent.(hole/vacuum extent whose em->start <= start &&
2119  *	   em->start + em->len > start)
2120  * When a hole extent is found, return 1 and modify start/len.
2121  */
2122 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2123 {
2124 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2125 	struct extent_map *em;
2126 	int ret = 0;
2127 
2128 	em = btrfs_get_extent(inode, NULL,
2129 			      round_down(*start, fs_info->sectorsize),
2130 			      round_up(*len, fs_info->sectorsize));
2131 	if (IS_ERR(em))
2132 		return PTR_ERR(em);
2133 
2134 	/* Hole or vacuum extent(only exists in no-hole mode) */
2135 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2136 		ret = 1;
2137 		*len = em->start + em->len > *start + *len ?
2138 		       0 : *start + *len - em->start - em->len;
2139 		*start = em->start + em->len;
2140 	}
2141 	btrfs_free_extent_map(em);
2142 	return ret;
2143 }
2144 
2145 /*
2146  * Check if there is no folio in the range.
2147  *
2148  * We cannot utilize filemap_range_has_page() in a filemap with large folios
2149  * as we can hit the following false positive:
2150  *
2151  *        start                            end
2152  *        |                                |
2153  *  |//|//|//|//|  |  |  |  |  |  |  |  |//|//|
2154  *   \         /                         \   /
2155  *    Folio A                            Folio B
2156  *
2157  * That large folio A and B cover the start and end indexes.
2158  * In that case filemap_range_has_page() will always return true, but the above
2159  * case is fine for btrfs_punch_hole_lock_range() usage.
2160  *
2161  * So here we only ensure that no other folios is in the range, excluding the
2162  * head/tail large folio.
2163  */
2164 static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2165 {
2166 	struct folio_batch fbatch;
2167 	bool ret = false;
2168 	/*
2169 	 * For subpage case, if the range is not at page boundary, we could
2170 	 * have pages at the leading/tailing part of the range.
2171 	 * This could lead to dead loop since filemap_range_has_page()
2172 	 * will always return true.
2173 	 * So here we need to do extra page alignment for
2174 	 * filemap_range_has_page().
2175 	 *
2176 	 * And do not decrease page_lockend right now, as it can be 0.
2177 	 */
2178 	const u64 page_lockstart = round_up(start, PAGE_SIZE);
2179 	const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2180 	const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2181 	const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2182 	pgoff_t tmp = start_index;
2183 	int found_folios;
2184 
2185 	/* The same page or adjacent pages. */
2186 	if (page_lockend <= page_lockstart)
2187 		return false;
2188 
2189 	folio_batch_init(&fbatch);
2190 	found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2191 	for (int i = 0; i < found_folios; i++) {
2192 		struct folio *folio = fbatch.folios[i];
2193 
2194 		/* A large folio begins before the start. Not a target. */
2195 		if (folio->index < start_index)
2196 			continue;
2197 		/* A large folio extends beyond the end. Not a target. */
2198 		if (folio->index + folio_nr_pages(folio) > end_index)
2199 			continue;
2200 		/* A folio doesn't cover the head/tail index. Found a target. */
2201 		ret = true;
2202 		break;
2203 	}
2204 	folio_batch_release(&fbatch);
2205 	return ret;
2206 }
2207 
2208 static void btrfs_punch_hole_lock_range(struct inode *inode,
2209 					const u64 lockstart, const u64 lockend,
2210 					struct extent_state **cached_state)
2211 {
2212 	while (1) {
2213 		truncate_pagecache_range(inode, lockstart, lockend);
2214 
2215 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216 				  cached_state);
2217 		/*
2218 		 * We can't have ordered extents in the range, nor dirty/writeback
2219 		 * pages, because we have locked the inode's VFS lock in exclusive
2220 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221 		 * we have flushed all delalloc in the range and we have waited
2222 		 * for any ordered extents in the range to complete.
2223 		 * We can race with anyone reading pages from this range, so after
2224 		 * locking the range check if we have pages in the range, and if
2225 		 * we do, unlock the range and retry.
2226 		 */
2227 		if (!check_range_has_page(inode, lockstart, lockend))
2228 			break;
2229 
2230 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2231 				    cached_state);
2232 	}
2233 
2234 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2235 }
2236 
2237 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2238 				     struct btrfs_inode *inode,
2239 				     struct btrfs_path *path,
2240 				     struct btrfs_replace_extent_info *extent_info,
2241 				     const u64 replace_len,
2242 				     const u64 bytes_to_drop)
2243 {
2244 	struct btrfs_fs_info *fs_info = trans->fs_info;
2245 	struct btrfs_root *root = inode->root;
2246 	struct btrfs_file_extent_item *extent;
2247 	struct extent_buffer *leaf;
2248 	struct btrfs_key key;
2249 	int slot;
2250 	int ret;
2251 
2252 	if (replace_len == 0)
2253 		return 0;
2254 
2255 	if (extent_info->disk_offset == 0 &&
2256 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2257 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2258 		return 0;
2259 	}
2260 
2261 	key.objectid = btrfs_ino(inode);
2262 	key.type = BTRFS_EXTENT_DATA_KEY;
2263 	key.offset = extent_info->file_offset;
2264 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2265 				      sizeof(struct btrfs_file_extent_item));
2266 	if (ret)
2267 		return ret;
2268 	leaf = path->nodes[0];
2269 	slot = path->slots[0];
2270 	write_extent_buffer(leaf, extent_info->extent_buf,
2271 			    btrfs_item_ptr_offset(leaf, slot),
2272 			    sizeof(struct btrfs_file_extent_item));
2273 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2274 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2275 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2276 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2277 	if (extent_info->is_new_extent)
2278 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2279 	btrfs_release_path(path);
2280 
2281 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2282 						replace_len);
2283 	if (ret)
2284 		return ret;
2285 
2286 	/* If it's a hole, nothing more needs to be done. */
2287 	if (extent_info->disk_offset == 0) {
2288 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2289 		return 0;
2290 	}
2291 
2292 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2293 
2294 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2295 		key.objectid = extent_info->disk_offset;
2296 		key.type = BTRFS_EXTENT_ITEM_KEY;
2297 		key.offset = extent_info->disk_len;
2298 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2299 						       btrfs_ino(inode),
2300 						       extent_info->file_offset,
2301 						       extent_info->qgroup_reserved,
2302 						       &key);
2303 	} else {
2304 		struct btrfs_ref ref = {
2305 			.action = BTRFS_ADD_DELAYED_REF,
2306 			.bytenr = extent_info->disk_offset,
2307 			.num_bytes = extent_info->disk_len,
2308 			.owning_root = btrfs_root_id(root),
2309 			.ref_root = btrfs_root_id(root),
2310 		};
2311 		u64 ref_offset;
2312 
2313 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2314 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2315 		ret = btrfs_inc_extent_ref(trans, &ref);
2316 	}
2317 
2318 	extent_info->insertions++;
2319 
2320 	return ret;
2321 }
2322 
2323 /*
2324  * The respective range must have been previously locked, as well as the inode.
2325  * The end offset is inclusive (last byte of the range).
2326  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2327  * the file range with an extent.
2328  * When not punching a hole, we don't want to end up in a state where we dropped
2329  * extents without inserting a new one, so we must abort the transaction to avoid
2330  * a corruption.
2331  */
2332 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2333 			       struct btrfs_path *path, const u64 start,
2334 			       const u64 end,
2335 			       struct btrfs_replace_extent_info *extent_info,
2336 			       struct btrfs_trans_handle **trans_out)
2337 {
2338 	struct btrfs_drop_extents_args drop_args = { 0 };
2339 	struct btrfs_root *root = inode->root;
2340 	struct btrfs_fs_info *fs_info = root->fs_info;
2341 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2342 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2343 	struct btrfs_trans_handle *trans = NULL;
2344 	struct btrfs_block_rsv *rsv;
2345 	unsigned int rsv_count;
2346 	u64 cur_offset;
2347 	u64 len = end - start;
2348 	int ret = 0;
2349 
2350 	if (end <= start)
2351 		return -EINVAL;
2352 
2353 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2354 	if (!rsv) {
2355 		ret = -ENOMEM;
2356 		goto out;
2357 	}
2358 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2359 	rsv->failfast = true;
2360 
2361 	/*
2362 	 * 1 - update the inode
2363 	 * 1 - removing the extents in the range
2364 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2365 	 *     replacing the range with a new extent
2366 	 */
2367 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2368 		rsv_count = 3;
2369 	else
2370 		rsv_count = 2;
2371 
2372 	trans = btrfs_start_transaction(root, rsv_count);
2373 	if (IS_ERR(trans)) {
2374 		ret = PTR_ERR(trans);
2375 		trans = NULL;
2376 		goto out_free;
2377 	}
2378 
2379 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2380 				      min_size, false);
2381 	if (WARN_ON(ret))
2382 		goto out_trans;
2383 	trans->block_rsv = rsv;
2384 
2385 	cur_offset = start;
2386 	drop_args.path = path;
2387 	drop_args.end = end + 1;
2388 	drop_args.drop_cache = true;
2389 	while (cur_offset < end) {
2390 		drop_args.start = cur_offset;
2391 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2392 		/* If we are punching a hole decrement the inode's byte count */
2393 		if (!extent_info)
2394 			btrfs_update_inode_bytes(inode, 0,
2395 						 drop_args.bytes_found);
2396 		if (ret != -ENOSPC) {
2397 			/*
2398 			 * The only time we don't want to abort is if we are
2399 			 * attempting to clone a partial inline extent, in which
2400 			 * case we'll get EOPNOTSUPP.  However if we aren't
2401 			 * clone we need to abort no matter what, because if we
2402 			 * got EOPNOTSUPP via prealloc then we messed up and
2403 			 * need to abort.
2404 			 */
2405 			if (ret &&
2406 			    (ret != -EOPNOTSUPP ||
2407 			     (extent_info && extent_info->is_new_extent)))
2408 				btrfs_abort_transaction(trans, ret);
2409 			break;
2410 		}
2411 
2412 		trans->block_rsv = &fs_info->trans_block_rsv;
2413 
2414 		if (!extent_info && cur_offset < drop_args.drop_end &&
2415 		    cur_offset < ino_size) {
2416 			ret = fill_holes(trans, inode, path, cur_offset,
2417 					 drop_args.drop_end);
2418 			if (ret) {
2419 				/*
2420 				 * If we failed then we didn't insert our hole
2421 				 * entries for the area we dropped, so now the
2422 				 * fs is corrupted, so we must abort the
2423 				 * transaction.
2424 				 */
2425 				btrfs_abort_transaction(trans, ret);
2426 				break;
2427 			}
2428 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2429 			/*
2430 			 * We are past the i_size here, but since we didn't
2431 			 * insert holes we need to clear the mapped area so we
2432 			 * know to not set disk_i_size in this area until a new
2433 			 * file extent is inserted here.
2434 			 */
2435 			ret = btrfs_inode_clear_file_extent_range(inode,
2436 					cur_offset,
2437 					drop_args.drop_end - cur_offset);
2438 			if (ret) {
2439 				/*
2440 				 * We couldn't clear our area, so we could
2441 				 * presumably adjust up and corrupt the fs, so
2442 				 * we need to abort.
2443 				 */
2444 				btrfs_abort_transaction(trans, ret);
2445 				break;
2446 			}
2447 		}
2448 
2449 		if (extent_info &&
2450 		    drop_args.drop_end > extent_info->file_offset) {
2451 			u64 replace_len = drop_args.drop_end -
2452 					  extent_info->file_offset;
2453 
2454 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2455 					extent_info, replace_len,
2456 					drop_args.bytes_found);
2457 			if (ret) {
2458 				btrfs_abort_transaction(trans, ret);
2459 				break;
2460 			}
2461 			extent_info->data_len -= replace_len;
2462 			extent_info->data_offset += replace_len;
2463 			extent_info->file_offset += replace_len;
2464 		}
2465 
2466 		/*
2467 		 * We are releasing our handle on the transaction, balance the
2468 		 * dirty pages of the btree inode and flush delayed items, and
2469 		 * then get a new transaction handle, which may now point to a
2470 		 * new transaction in case someone else may have committed the
2471 		 * transaction we used to replace/drop file extent items. So
2472 		 * bump the inode's iversion and update mtime and ctime except
2473 		 * if we are called from a dedupe context. This is because a
2474 		 * power failure/crash may happen after the transaction is
2475 		 * committed and before we finish replacing/dropping all the
2476 		 * file extent items we need.
2477 		 */
2478 		inode_inc_iversion(&inode->vfs_inode);
2479 
2480 		if (!extent_info || extent_info->update_times)
2481 			inode_set_mtime_to_ts(&inode->vfs_inode,
2482 					      inode_set_ctime_current(&inode->vfs_inode));
2483 
2484 		ret = btrfs_update_inode(trans, inode);
2485 		if (ret)
2486 			break;
2487 
2488 		btrfs_end_transaction(trans);
2489 		btrfs_btree_balance_dirty(fs_info);
2490 
2491 		trans = btrfs_start_transaction(root, rsv_count);
2492 		if (IS_ERR(trans)) {
2493 			ret = PTR_ERR(trans);
2494 			trans = NULL;
2495 			break;
2496 		}
2497 
2498 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2499 					      rsv, min_size, false);
2500 		if (WARN_ON(ret))
2501 			break;
2502 		trans->block_rsv = rsv;
2503 
2504 		cur_offset = drop_args.drop_end;
2505 		len = end - cur_offset;
2506 		if (!extent_info && len) {
2507 			ret = find_first_non_hole(inode, &cur_offset, &len);
2508 			if (unlikely(ret < 0))
2509 				break;
2510 			if (ret && !len) {
2511 				ret = 0;
2512 				break;
2513 			}
2514 		}
2515 	}
2516 
2517 	/*
2518 	 * If we were cloning, force the next fsync to be a full one since we
2519 	 * we replaced (or just dropped in the case of cloning holes when
2520 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2521 	 * maps for the replacement extents (or holes).
2522 	 */
2523 	if (extent_info && !extent_info->is_new_extent)
2524 		btrfs_set_inode_full_sync(inode);
2525 
2526 	if (ret)
2527 		goto out_trans;
2528 
2529 	trans->block_rsv = &fs_info->trans_block_rsv;
2530 	/*
2531 	 * If we are using the NO_HOLES feature we might have had already an
2532 	 * hole that overlaps a part of the region [lockstart, lockend] and
2533 	 * ends at (or beyond) lockend. Since we have no file extent items to
2534 	 * represent holes, drop_end can be less than lockend and so we must
2535 	 * make sure we have an extent map representing the existing hole (the
2536 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2537 	 * map representing the existing hole), otherwise the fast fsync path
2538 	 * will not record the existence of the hole region
2539 	 * [existing_hole_start, lockend].
2540 	 */
2541 	if (drop_args.drop_end <= end)
2542 		drop_args.drop_end = end + 1;
2543 	/*
2544 	 * Don't insert file hole extent item if it's for a range beyond eof
2545 	 * (because it's useless) or if it represents a 0 bytes range (when
2546 	 * cur_offset == drop_end).
2547 	 */
2548 	if (!extent_info && cur_offset < ino_size &&
2549 	    cur_offset < drop_args.drop_end) {
2550 		ret = fill_holes(trans, inode, path, cur_offset,
2551 				 drop_args.drop_end);
2552 		if (ret) {
2553 			/* Same comment as above. */
2554 			btrfs_abort_transaction(trans, ret);
2555 			goto out_trans;
2556 		}
2557 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2558 		/* See the comment in the loop above for the reasoning here. */
2559 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2560 					drop_args.drop_end - cur_offset);
2561 		if (ret) {
2562 			btrfs_abort_transaction(trans, ret);
2563 			goto out_trans;
2564 		}
2565 
2566 	}
2567 	if (extent_info) {
2568 		ret = btrfs_insert_replace_extent(trans, inode, path,
2569 				extent_info, extent_info->data_len,
2570 				drop_args.bytes_found);
2571 		if (ret) {
2572 			btrfs_abort_transaction(trans, ret);
2573 			goto out_trans;
2574 		}
2575 	}
2576 
2577 out_trans:
2578 	if (!trans)
2579 		goto out_free;
2580 
2581 	trans->block_rsv = &fs_info->trans_block_rsv;
2582 	if (ret)
2583 		btrfs_end_transaction(trans);
2584 	else
2585 		*trans_out = trans;
2586 out_free:
2587 	btrfs_free_block_rsv(fs_info, rsv);
2588 out:
2589 	return ret;
2590 }
2591 
2592 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2593 {
2594 	struct inode *inode = file_inode(file);
2595 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2596 	struct btrfs_root *root = BTRFS_I(inode)->root;
2597 	struct extent_state *cached_state = NULL;
2598 	struct btrfs_path *path;
2599 	struct btrfs_trans_handle *trans = NULL;
2600 	u64 lockstart;
2601 	u64 lockend;
2602 	u64 tail_start;
2603 	u64 tail_len;
2604 	const u64 orig_start = offset;
2605 	const u64 orig_end = offset + len - 1;
2606 	int ret = 0;
2607 	bool same_block;
2608 	u64 ino_size;
2609 	bool truncated_block = false;
2610 	bool updated_inode = false;
2611 
2612 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2613 
2614 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2615 	if (ret)
2616 		goto out_only_mutex;
2617 
2618 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2619 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2620 	if (ret < 0)
2621 		goto out_only_mutex;
2622 	if (ret && !len) {
2623 		/* Already in a large hole */
2624 		ret = 0;
2625 		goto out_only_mutex;
2626 	}
2627 
2628 	ret = file_modified(file);
2629 	if (ret)
2630 		goto out_only_mutex;
2631 
2632 	lockstart = round_up(offset, fs_info->sectorsize);
2633 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2634 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2636 	/*
2637 	 * Only do this if we are in the same block and we aren't doing the
2638 	 * entire block.
2639 	 */
2640 	if (same_block && len < fs_info->sectorsize) {
2641 		if (offset < ino_size) {
2642 			truncated_block = true;
2643 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2644 						   orig_start, orig_end);
2645 		} else {
2646 			ret = 0;
2647 		}
2648 		goto out_only_mutex;
2649 	}
2650 
2651 	/* zero back part of the first block */
2652 	if (offset < ino_size) {
2653 		truncated_block = true;
2654 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2655 		if (ret) {
2656 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2657 			return ret;
2658 		}
2659 	}
2660 
2661 	/* Check the aligned pages after the first unaligned page,
2662 	 * if offset != orig_start, which means the first unaligned page
2663 	 * including several following pages are already in holes,
2664 	 * the extra check can be skipped */
2665 	if (offset == orig_start) {
2666 		/* after truncate page, check hole again */
2667 		len = offset + len - lockstart;
2668 		offset = lockstart;
2669 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2670 		if (ret < 0)
2671 			goto out_only_mutex;
2672 		if (ret && !len) {
2673 			ret = 0;
2674 			goto out_only_mutex;
2675 		}
2676 		lockstart = offset;
2677 	}
2678 
2679 	/* Check the tail unaligned part is in a hole */
2680 	tail_start = lockend + 1;
2681 	tail_len = offset + len - tail_start;
2682 	if (tail_len) {
2683 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2684 		if (unlikely(ret < 0))
2685 			goto out_only_mutex;
2686 		if (!ret) {
2687 			/* zero the front end of the last page */
2688 			if (tail_start + tail_len < ino_size) {
2689 				truncated_block = true;
2690 				ret = btrfs_truncate_block(BTRFS_I(inode),
2691 							tail_start + tail_len - 1,
2692 							orig_start, orig_end);
2693 				if (ret)
2694 					goto out_only_mutex;
2695 			}
2696 		}
2697 	}
2698 
2699 	if (lockend < lockstart) {
2700 		ret = 0;
2701 		goto out_only_mutex;
2702 	}
2703 
2704 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2705 
2706 	path = btrfs_alloc_path();
2707 	if (!path) {
2708 		ret = -ENOMEM;
2709 		goto out;
2710 	}
2711 
2712 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2713 					 lockend, NULL, &trans);
2714 	btrfs_free_path(path);
2715 	if (ret)
2716 		goto out;
2717 
2718 	ASSERT(trans != NULL);
2719 	inode_inc_iversion(inode);
2720 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2721 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2722 	updated_inode = true;
2723 	btrfs_end_transaction(trans);
2724 	btrfs_btree_balance_dirty(fs_info);
2725 out:
2726 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2727 			    &cached_state);
2728 out_only_mutex:
2729 	if (!updated_inode && truncated_block && !ret) {
2730 		/*
2731 		 * If we only end up zeroing part of a page, we still need to
2732 		 * update the inode item, so that all the time fields are
2733 		 * updated as well as the necessary btrfs inode in memory fields
2734 		 * for detecting, at fsync time, if the inode isn't yet in the
2735 		 * log tree or it's there but not up to date.
2736 		 */
2737 		struct timespec64 now = inode_set_ctime_current(inode);
2738 
2739 		inode_inc_iversion(inode);
2740 		inode_set_mtime_to_ts(inode, now);
2741 		trans = btrfs_start_transaction(root, 1);
2742 		if (IS_ERR(trans)) {
2743 			ret = PTR_ERR(trans);
2744 		} else {
2745 			int ret2;
2746 
2747 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2748 			ret2 = btrfs_end_transaction(trans);
2749 			if (!ret)
2750 				ret = ret2;
2751 		}
2752 	}
2753 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2754 	return ret;
2755 }
2756 
2757 /* Helper structure to record which range is already reserved */
2758 struct falloc_range {
2759 	struct list_head list;
2760 	u64 start;
2761 	u64 len;
2762 };
2763 
2764 /*
2765  * Helper function to add falloc range
2766  *
2767  * Caller should have locked the larger range of extent containing
2768  * [start, len)
2769  */
2770 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2771 {
2772 	struct falloc_range *range = NULL;
2773 
2774 	if (!list_empty(head)) {
2775 		/*
2776 		 * As fallocate iterates by bytenr order, we only need to check
2777 		 * the last range.
2778 		 */
2779 		range = list_last_entry(head, struct falloc_range, list);
2780 		if (range->start + range->len == start) {
2781 			range->len += len;
2782 			return 0;
2783 		}
2784 	}
2785 
2786 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2787 	if (!range)
2788 		return -ENOMEM;
2789 	range->start = start;
2790 	range->len = len;
2791 	list_add_tail(&range->list, head);
2792 	return 0;
2793 }
2794 
2795 static int btrfs_fallocate_update_isize(struct inode *inode,
2796 					const u64 end,
2797 					const int mode)
2798 {
2799 	struct btrfs_trans_handle *trans;
2800 	struct btrfs_root *root = BTRFS_I(inode)->root;
2801 	int ret;
2802 	int ret2;
2803 
2804 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2805 		return 0;
2806 
2807 	trans = btrfs_start_transaction(root, 1);
2808 	if (IS_ERR(trans))
2809 		return PTR_ERR(trans);
2810 
2811 	inode_set_ctime_current(inode);
2812 	i_size_write(inode, end);
2813 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2814 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2815 	ret2 = btrfs_end_transaction(trans);
2816 
2817 	return ret ? ret : ret2;
2818 }
2819 
2820 enum {
2821 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2822 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2823 	RANGE_BOUNDARY_HOLE,
2824 };
2825 
2826 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2827 						 u64 offset)
2828 {
2829 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2830 	struct extent_map *em;
2831 	int ret;
2832 
2833 	offset = round_down(offset, sectorsize);
2834 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2835 	if (IS_ERR(em))
2836 		return PTR_ERR(em);
2837 
2838 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2839 		ret = RANGE_BOUNDARY_HOLE;
2840 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2841 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2842 	else
2843 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2844 
2845 	btrfs_free_extent_map(em);
2846 	return ret;
2847 }
2848 
2849 static int btrfs_zero_range(struct inode *inode,
2850 			    loff_t offset,
2851 			    loff_t len,
2852 			    const int mode)
2853 {
2854 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2855 	struct extent_map *em;
2856 	struct extent_changeset *data_reserved = NULL;
2857 	int ret;
2858 	u64 alloc_hint = 0;
2859 	const u64 sectorsize = fs_info->sectorsize;
2860 	const u64 orig_start = offset;
2861 	const u64 orig_end = offset + len - 1;
2862 	u64 alloc_start = round_down(offset, sectorsize);
2863 	u64 alloc_end = round_up(offset + len, sectorsize);
2864 	u64 bytes_to_reserve = 0;
2865 	bool space_reserved = false;
2866 
2867 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2868 			      alloc_end - alloc_start);
2869 	if (IS_ERR(em)) {
2870 		ret = PTR_ERR(em);
2871 		goto out;
2872 	}
2873 
2874 	/*
2875 	 * Avoid hole punching and extent allocation for some cases. More cases
2876 	 * could be considered, but these are unlikely common and we keep things
2877 	 * as simple as possible for now. Also, intentionally, if the target
2878 	 * range contains one or more prealloc extents together with regular
2879 	 * extents and holes, we drop all the existing extents and allocate a
2880 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2881 	 */
2882 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2883 		const u64 em_end = em->start + em->len;
2884 
2885 		if (em_end >= offset + len) {
2886 			/*
2887 			 * The whole range is already a prealloc extent,
2888 			 * do nothing except updating the inode's i_size if
2889 			 * needed.
2890 			 */
2891 			btrfs_free_extent_map(em);
2892 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2893 							   mode);
2894 			goto out;
2895 		}
2896 		/*
2897 		 * Part of the range is already a prealloc extent, so operate
2898 		 * only on the remaining part of the range.
2899 		 */
2900 		alloc_start = em_end;
2901 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902 		len = offset + len - alloc_start;
2903 		offset = alloc_start;
2904 		alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2905 	}
2906 	btrfs_free_extent_map(em);
2907 
2908 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2910 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2911 		if (IS_ERR(em)) {
2912 			ret = PTR_ERR(em);
2913 			goto out;
2914 		}
2915 
2916 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2917 			btrfs_free_extent_map(em);
2918 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2919 							   mode);
2920 			goto out;
2921 		}
2922 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2923 			btrfs_free_extent_map(em);
2924 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2925 						   orig_start, orig_end);
2926 			if (!ret)
2927 				ret = btrfs_fallocate_update_isize(inode,
2928 								   offset + len,
2929 								   mode);
2930 			return ret;
2931 		}
2932 		btrfs_free_extent_map(em);
2933 		alloc_start = round_down(offset, sectorsize);
2934 		alloc_end = alloc_start + sectorsize;
2935 		goto reserve_space;
2936 	}
2937 
2938 	alloc_start = round_up(offset, sectorsize);
2939 	alloc_end = round_down(offset + len, sectorsize);
2940 
2941 	/*
2942 	 * For unaligned ranges, check the pages at the boundaries, they might
2943 	 * map to an extent, in which case we need to partially zero them, or
2944 	 * they might map to a hole, in which case we need our allocation range
2945 	 * to cover them.
2946 	 */
2947 	if (!IS_ALIGNED(offset, sectorsize)) {
2948 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2949 							    offset);
2950 		if (ret < 0)
2951 			goto out;
2952 		if (ret == RANGE_BOUNDARY_HOLE) {
2953 			alloc_start = round_down(offset, sectorsize);
2954 			ret = 0;
2955 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2956 			ret = btrfs_truncate_block(BTRFS_I(inode), offset,
2957 						   orig_start, orig_end);
2958 			if (ret)
2959 				goto out;
2960 		} else {
2961 			ret = 0;
2962 		}
2963 	}
2964 
2965 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2966 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2967 							    offset + len);
2968 		if (ret < 0)
2969 			goto out;
2970 		if (ret == RANGE_BOUNDARY_HOLE) {
2971 			alloc_end = round_up(offset + len, sectorsize);
2972 			ret = 0;
2973 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2974 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2975 						   orig_start, orig_end);
2976 			if (ret)
2977 				goto out;
2978 		} else {
2979 			ret = 0;
2980 		}
2981 	}
2982 
2983 reserve_space:
2984 	if (alloc_start < alloc_end) {
2985 		struct extent_state *cached_state = NULL;
2986 		const u64 lockstart = alloc_start;
2987 		const u64 lockend = alloc_end - 1;
2988 
2989 		bytes_to_reserve = alloc_end - alloc_start;
2990 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2991 						      bytes_to_reserve);
2992 		if (ret < 0)
2993 			goto out;
2994 		space_reserved = true;
2995 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2996 					    &cached_state);
2997 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2998 						alloc_start, bytes_to_reserve);
2999 		if (ret) {
3000 			btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001 					    lockend, &cached_state);
3002 			goto out;
3003 		}
3004 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005 						alloc_end - alloc_start,
3006 						fs_info->sectorsize,
3007 						offset + len, &alloc_hint);
3008 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3009 				    &cached_state);
3010 		/* btrfs_prealloc_file_range releases reserved space on error */
3011 		if (ret) {
3012 			space_reserved = false;
3013 			goto out;
3014 		}
3015 	}
3016 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3017  out:
3018 	if (ret && space_reserved)
3019 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3020 					       alloc_start, bytes_to_reserve);
3021 	extent_changeset_free(data_reserved);
3022 
3023 	return ret;
3024 }
3025 
3026 static long btrfs_fallocate(struct file *file, int mode,
3027 			    loff_t offset, loff_t len)
3028 {
3029 	struct inode *inode = file_inode(file);
3030 	struct extent_state *cached_state = NULL;
3031 	struct extent_changeset *data_reserved = NULL;
3032 	struct falloc_range *range;
3033 	struct falloc_range *tmp;
3034 	LIST_HEAD(reserve_list);
3035 	u64 cur_offset;
3036 	u64 last_byte;
3037 	u64 alloc_start;
3038 	u64 alloc_end;
3039 	u64 alloc_hint = 0;
3040 	u64 locked_end;
3041 	u64 actual_end = 0;
3042 	u64 data_space_needed = 0;
3043 	u64 data_space_reserved = 0;
3044 	u64 qgroup_reserved = 0;
3045 	struct extent_map *em;
3046 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3047 	int ret;
3048 
3049 	/* Do not allow fallocate in ZONED mode */
3050 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3051 		return -EOPNOTSUPP;
3052 
3053 	alloc_start = round_down(offset, blocksize);
3054 	alloc_end = round_up(offset + len, blocksize);
3055 	cur_offset = alloc_start;
3056 
3057 	/* Make sure we aren't being give some crap mode */
3058 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059 		     FALLOC_FL_ZERO_RANGE))
3060 		return -EOPNOTSUPP;
3061 
3062 	if (mode & FALLOC_FL_PUNCH_HOLE)
3063 		return btrfs_punch_hole(file, offset, len);
3064 
3065 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3066 
3067 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068 		ret = inode_newsize_ok(inode, offset + len);
3069 		if (ret)
3070 			goto out;
3071 	}
3072 
3073 	ret = file_modified(file);
3074 	if (ret)
3075 		goto out;
3076 
3077 	/*
3078 	 * TODO: Move these two operations after we have checked
3079 	 * accurate reserved space, or fallocate can still fail but
3080 	 * with page truncated or size expanded.
3081 	 *
3082 	 * But that's a minor problem and won't do much harm BTW.
3083 	 */
3084 	if (alloc_start > inode->i_size) {
3085 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3086 					alloc_start);
3087 		if (ret)
3088 			goto out;
3089 	} else if (offset + len > inode->i_size) {
3090 		/*
3091 		 * If we are fallocating from the end of the file onward we
3092 		 * need to zero out the end of the block if i_size lands in the
3093 		 * middle of a block.
3094 		 */
3095 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3096 					   inode->i_size, (u64)-1);
3097 		if (ret)
3098 			goto out;
3099 	}
3100 
3101 	/*
3102 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3103 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3104 	 * locking the file range, flush all dealloc in the range and wait for
3105 	 * all ordered extents in the range to complete. After this we can lock
3106 	 * the file range and, due to the previous locking we did, we know there
3107 	 * can't be more delalloc or ordered extents in the range.
3108 	 */
3109 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3110 				       alloc_end - alloc_start);
3111 	if (ret)
3112 		goto out;
3113 
3114 	if (mode & FALLOC_FL_ZERO_RANGE) {
3115 		ret = btrfs_zero_range(inode, offset, len, mode);
3116 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3117 		return ret;
3118 	}
3119 
3120 	locked_end = alloc_end - 1;
3121 	btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3122 			  &cached_state);
3123 
3124 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3125 
3126 	/* First, check if we exceed the qgroup limit */
3127 	while (cur_offset < alloc_end) {
3128 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3129 				      alloc_end - cur_offset);
3130 		if (IS_ERR(em)) {
3131 			ret = PTR_ERR(em);
3132 			break;
3133 		}
3134 		last_byte = min(btrfs_extent_map_end(em), alloc_end);
3135 		actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3136 		last_byte = ALIGN(last_byte, blocksize);
3137 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3138 		    (cur_offset >= inode->i_size &&
3139 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3140 			const u64 range_len = last_byte - cur_offset;
3141 
3142 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3143 			if (ret < 0) {
3144 				btrfs_free_extent_map(em);
3145 				break;
3146 			}
3147 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3148 					&data_reserved, cur_offset, range_len);
3149 			if (ret < 0) {
3150 				btrfs_free_extent_map(em);
3151 				break;
3152 			}
3153 			qgroup_reserved += range_len;
3154 			data_space_needed += range_len;
3155 		}
3156 		btrfs_free_extent_map(em);
3157 		cur_offset = last_byte;
3158 	}
3159 
3160 	if (!ret && data_space_needed > 0) {
3161 		/*
3162 		 * We are safe to reserve space here as we can't have delalloc
3163 		 * in the range, see above.
3164 		 */
3165 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3166 						      data_space_needed);
3167 		if (!ret)
3168 			data_space_reserved = data_space_needed;
3169 	}
3170 
3171 	/*
3172 	 * If ret is still 0, means we're OK to fallocate.
3173 	 * Or just cleanup the list and exit.
3174 	 */
3175 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3176 		if (!ret) {
3177 			ret = btrfs_prealloc_file_range(inode, mode,
3178 					range->start,
3179 					range->len, blocksize,
3180 					offset + len, &alloc_hint);
3181 			/*
3182 			 * btrfs_prealloc_file_range() releases space even
3183 			 * if it returns an error.
3184 			 */
3185 			data_space_reserved -= range->len;
3186 			qgroup_reserved -= range->len;
3187 		} else if (data_space_reserved > 0) {
3188 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3189 					       data_reserved, range->start,
3190 					       range->len);
3191 			data_space_reserved -= range->len;
3192 			qgroup_reserved -= range->len;
3193 		} else if (qgroup_reserved > 0) {
3194 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195 					       range->start, range->len, NULL);
3196 			qgroup_reserved -= range->len;
3197 		}
3198 		list_del(&range->list);
3199 		kfree(range);
3200 	}
3201 	if (ret < 0)
3202 		goto out_unlock;
3203 
3204 	/*
3205 	 * We didn't need to allocate any more space, but we still extended the
3206 	 * size of the file so we need to update i_size and the inode item.
3207 	 */
3208 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3209 out_unlock:
3210 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3211 			    &cached_state);
3212 out:
3213 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3214 	extent_changeset_free(data_reserved);
3215 	return ret;
3216 }
3217 
3218 /*
3219  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220  * that has unflushed and/or flushing delalloc. There might be other adjacent
3221  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222  * looping while it gets adjacent subranges, and merging them together.
3223  */
3224 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3225 				   struct extent_state **cached_state,
3226 				   bool *search_io_tree,
3227 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3228 {
3229 	u64 len = end + 1 - start;
3230 	u64 delalloc_len = 0;
3231 	struct btrfs_ordered_extent *oe;
3232 	u64 oe_start;
3233 	u64 oe_end;
3234 
3235 	/*
3236 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237 	 * means we have delalloc (dirty pages) for which writeback has not
3238 	 * started yet.
3239 	 */
3240 	if (*search_io_tree) {
3241 		spin_lock(&inode->lock);
3242 		if (inode->delalloc_bytes > 0) {
3243 			spin_unlock(&inode->lock);
3244 			*delalloc_start_ret = start;
3245 			delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3246 							      delalloc_start_ret, end,
3247 							      len, EXTENT_DELALLOC, 1,
3248 							      cached_state);
3249 		} else {
3250 			spin_unlock(&inode->lock);
3251 		}
3252 	}
3253 
3254 	if (delalloc_len > 0) {
3255 		/*
3256 		 * If delalloc was found then *delalloc_start_ret has a sector size
3257 		 * aligned value (rounded down).
3258 		 */
3259 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3260 
3261 		if (*delalloc_start_ret == start) {
3262 			/* Delalloc for the whole range, nothing more to do. */
3263 			if (*delalloc_end_ret == end)
3264 				return true;
3265 			/* Else trim our search range for ordered extents. */
3266 			start = *delalloc_end_ret + 1;
3267 			len = end + 1 - start;
3268 		}
3269 	} else {
3270 		/* No delalloc, future calls don't need to search again. */
3271 		*search_io_tree = false;
3272 	}
3273 
3274 	/*
3275 	 * Now also check if there's any ordered extent in the range.
3276 	 * We do this because:
3277 	 *
3278 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3279 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3280 	 *    an ordered extent for the write. So we might just have been called
3281 	 *    after delalloc is flushed and before the ordered extent completes
3282 	 *    and inserts the new file extent item in the subvolume's btree;
3283 	 *
3284 	 * 2) We may have an ordered extent created by flushing delalloc for a
3285 	 *    subrange that starts before the subrange we found marked with
3286 	 *    EXTENT_DELALLOC in the io tree.
3287 	 *
3288 	 * We could also use the extent map tree to find such delalloc that is
3289 	 * being flushed, but using the ordered extents tree is more efficient
3290 	 * because it's usually much smaller as ordered extents are removed from
3291 	 * the tree once they complete. With the extent maps, we mau have them
3292 	 * in the extent map tree for a very long time, and they were either
3293 	 * created by previous writes or loaded by read operations.
3294 	 */
3295 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3296 	if (!oe)
3297 		return (delalloc_len > 0);
3298 
3299 	/* The ordered extent may span beyond our search range. */
3300 	oe_start = max(oe->file_offset, start);
3301 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3302 
3303 	btrfs_put_ordered_extent(oe);
3304 
3305 	/* Don't have unflushed delalloc, return the ordered extent range. */
3306 	if (delalloc_len == 0) {
3307 		*delalloc_start_ret = oe_start;
3308 		*delalloc_end_ret = oe_end;
3309 		return true;
3310 	}
3311 
3312 	/*
3313 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314 	 * If the ranges are adjacent returned a combined range, otherwise
3315 	 * return the leftmost range.
3316 	 */
3317 	if (oe_start < *delalloc_start_ret) {
3318 		if (oe_end < *delalloc_start_ret)
3319 			*delalloc_end_ret = oe_end;
3320 		*delalloc_start_ret = oe_start;
3321 	} else if (*delalloc_end_ret + 1 == oe_start) {
3322 		*delalloc_end_ret = oe_end;
3323 	}
3324 
3325 	return true;
3326 }
3327 
3328 /*
3329  * Check if there's delalloc in a given range.
3330  *
3331  * @inode:               The inode.
3332  * @start:               The start offset of the range. It does not need to be
3333  *                       sector size aligned.
3334  * @end:                 The end offset (inclusive value) of the search range.
3335  *                       It does not need to be sector size aligned.
3336  * @cached_state:        Extent state record used for speeding up delalloc
3337  *                       searches in the inode's io_tree. Can be NULL.
3338  * @delalloc_start_ret:  Output argument, set to the start offset of the
3339  *                       subrange found with delalloc (may not be sector size
3340  *                       aligned).
3341  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3342  *                       of the subrange found with delalloc.
3343  *
3344  * Returns true if a subrange with delalloc is found within the given range, and
3345  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346  * end offsets of the subrange.
3347  */
3348 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3349 				  struct extent_state **cached_state,
3350 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3351 {
3352 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353 	u64 prev_delalloc_end = 0;
3354 	bool search_io_tree = true;
3355 	bool ret = false;
3356 
3357 	while (cur_offset <= end) {
3358 		u64 delalloc_start;
3359 		u64 delalloc_end;
3360 		bool delalloc;
3361 
3362 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3363 						  cached_state, &search_io_tree,
3364 						  &delalloc_start,
3365 						  &delalloc_end);
3366 		if (!delalloc)
3367 			break;
3368 
3369 		if (prev_delalloc_end == 0) {
3370 			/* First subrange found. */
3371 			*delalloc_start_ret = max(delalloc_start, start);
3372 			*delalloc_end_ret = delalloc_end;
3373 			ret = true;
3374 		} else if (delalloc_start == prev_delalloc_end + 1) {
3375 			/* Subrange adjacent to the previous one, merge them. */
3376 			*delalloc_end_ret = delalloc_end;
3377 		} else {
3378 			/* Subrange not adjacent to the previous one, exit. */
3379 			break;
3380 		}
3381 
3382 		prev_delalloc_end = delalloc_end;
3383 		cur_offset = delalloc_end + 1;
3384 		cond_resched();
3385 	}
3386 
3387 	return ret;
3388 }
3389 
3390 /*
3391  * Check if there's a hole or delalloc range in a range representing a hole (or
3392  * prealloc extent) found in the inode's subvolume btree.
3393  *
3394  * @inode:      The inode.
3395  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3396  * @start:      Start offset of the hole region. It does not need to be sector
3397  *              size aligned.
3398  * @end:        End offset (inclusive value) of the hole region. It does not
3399  *              need to be sector size aligned.
3400  * @start_ret:  Return parameter, used to set the start of the subrange in the
3401  *              hole that matches the search criteria (seek mode), if such
3402  *              subrange is found (return value of the function is true).
3403  *              The value returned here may not be sector size aligned.
3404  *
3405  * Returns true if a subrange matching the given seek mode is found, and if one
3406  * is found, it updates @start_ret with the start of the subrange.
3407  */
3408 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3409 					struct extent_state **cached_state,
3410 					u64 start, u64 end, u64 *start_ret)
3411 {
3412 	u64 delalloc_start;
3413 	u64 delalloc_end;
3414 	bool delalloc;
3415 
3416 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3417 						&delalloc_start, &delalloc_end);
3418 	if (delalloc && whence == SEEK_DATA) {
3419 		*start_ret = delalloc_start;
3420 		return true;
3421 	}
3422 
3423 	if (delalloc && whence == SEEK_HOLE) {
3424 		/*
3425 		 * We found delalloc but it starts after out start offset. So we
3426 		 * have a hole between our start offset and the delalloc start.
3427 		 */
3428 		if (start < delalloc_start) {
3429 			*start_ret = start;
3430 			return true;
3431 		}
3432 		/*
3433 		 * Delalloc range starts at our start offset.
3434 		 * If the delalloc range's length is smaller than our range,
3435 		 * then it means we have a hole that starts where the delalloc
3436 		 * subrange ends.
3437 		 */
3438 		if (delalloc_end < end) {
3439 			*start_ret = delalloc_end + 1;
3440 			return true;
3441 		}
3442 
3443 		/* There's delalloc for the whole range. */
3444 		return false;
3445 	}
3446 
3447 	if (!delalloc && whence == SEEK_HOLE) {
3448 		*start_ret = start;
3449 		return true;
3450 	}
3451 
3452 	/*
3453 	 * No delalloc in the range and we are seeking for data. The caller has
3454 	 * to iterate to the next extent item in the subvolume btree.
3455 	 */
3456 	return false;
3457 }
3458 
3459 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3460 {
3461 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462 	struct btrfs_file_private *private;
3463 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3464 	struct extent_state *cached_state = NULL;
3465 	struct extent_state **delalloc_cached_state;
3466 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3467 	const u64 ino = btrfs_ino(inode);
3468 	struct btrfs_root *root = inode->root;
3469 	struct btrfs_path *path;
3470 	struct btrfs_key key;
3471 	u64 last_extent_end;
3472 	u64 lockstart;
3473 	u64 lockend;
3474 	u64 start;
3475 	int ret;
3476 	bool found = false;
3477 
3478 	if (i_size == 0 || offset >= i_size)
3479 		return -ENXIO;
3480 
3481 	/*
3482 	 * Quick path. If the inode has no prealloc extents and its number of
3483 	 * bytes used matches its i_size, then it can not have holes.
3484 	 */
3485 	if (whence == SEEK_HOLE &&
3486 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3488 		return i_size;
3489 
3490 	spin_lock(&inode->lock);
3491 	private = file->private_data;
3492 	spin_unlock(&inode->lock);
3493 
3494 	if (private && private->owner_task != current) {
3495 		/*
3496 		 * Not allocated by us, don't use it as its cached state is used
3497 		 * by the task that allocated it and we don't want neither to
3498 		 * mess with it nor get incorrect results because it reflects an
3499 		 * invalid state for the current task.
3500 		 */
3501 		private = NULL;
3502 	} else if (!private) {
3503 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3504 		/*
3505 		 * No worries if memory allocation failed.
3506 		 * The private structure is used only for speeding up multiple
3507 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3508 		 * so everything will still be correct.
3509 		 */
3510 		if (private) {
3511 			bool free = false;
3512 
3513 			private->owner_task = current;
3514 
3515 			spin_lock(&inode->lock);
3516 			if (file->private_data)
3517 				free = true;
3518 			else
3519 				file->private_data = private;
3520 			spin_unlock(&inode->lock);
3521 
3522 			if (free) {
3523 				kfree(private);
3524 				private = NULL;
3525 			}
3526 		}
3527 	}
3528 
3529 	if (private)
3530 		delalloc_cached_state = &private->llseek_cached_state;
3531 	else
3532 		delalloc_cached_state = NULL;
3533 
3534 	/*
3535 	 * offset can be negative, in this case we start finding DATA/HOLE from
3536 	 * the very start of the file.
3537 	 */
3538 	start = max_t(loff_t, 0, offset);
3539 
3540 	lockstart = round_down(start, fs_info->sectorsize);
3541 	lockend = round_up(i_size, fs_info->sectorsize);
3542 	if (lockend <= lockstart)
3543 		lockend = lockstart + fs_info->sectorsize;
3544 	lockend--;
3545 
3546 	path = btrfs_alloc_path();
3547 	if (!path)
3548 		return -ENOMEM;
3549 	path->reada = READA_FORWARD;
3550 
3551 	key.objectid = ino;
3552 	key.type = BTRFS_EXTENT_DATA_KEY;
3553 	key.offset = start;
3554 
3555 	last_extent_end = lockstart;
3556 
3557 	btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3558 
3559 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3560 	if (ret < 0) {
3561 		goto out;
3562 	} else if (ret > 0 && path->slots[0] > 0) {
3563 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3564 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3565 			path->slots[0]--;
3566 	}
3567 
3568 	while (start < i_size) {
3569 		struct extent_buffer *leaf = path->nodes[0];
3570 		struct btrfs_file_extent_item *extent;
3571 		u64 extent_end;
3572 		u8 type;
3573 
3574 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3575 			ret = btrfs_next_leaf(root, path);
3576 			if (ret < 0)
3577 				goto out;
3578 			else if (ret > 0)
3579 				break;
3580 
3581 			leaf = path->nodes[0];
3582 		}
3583 
3584 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3585 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3586 			break;
3587 
3588 		extent_end = btrfs_file_extent_end(path);
3589 
3590 		/*
3591 		 * In the first iteration we may have a slot that points to an
3592 		 * extent that ends before our start offset, so skip it.
3593 		 */
3594 		if (extent_end <= start) {
3595 			path->slots[0]++;
3596 			continue;
3597 		}
3598 
3599 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3600 		if (last_extent_end < key.offset) {
3601 			u64 search_start = last_extent_end;
3602 			u64 found_start;
3603 
3604 			/*
3605 			 * First iteration, @start matches @offset and it's
3606 			 * within the hole.
3607 			 */
3608 			if (start == offset)
3609 				search_start = offset;
3610 
3611 			found = find_desired_extent_in_hole(inode, whence,
3612 							    delalloc_cached_state,
3613 							    search_start,
3614 							    key.offset - 1,
3615 							    &found_start);
3616 			if (found) {
3617 				start = found_start;
3618 				break;
3619 			}
3620 			/*
3621 			 * Didn't find data or a hole (due to delalloc) in the
3622 			 * implicit hole range, so need to analyze the extent.
3623 			 */
3624 		}
3625 
3626 		extent = btrfs_item_ptr(leaf, path->slots[0],
3627 					struct btrfs_file_extent_item);
3628 		type = btrfs_file_extent_type(leaf, extent);
3629 
3630 		/*
3631 		 * Can't access the extent's disk_bytenr field if this is an
3632 		 * inline extent, since at that offset, it's where the extent
3633 		 * data starts.
3634 		 */
3635 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3636 		    (type == BTRFS_FILE_EXTENT_REG &&
3637 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3638 			/*
3639 			 * Explicit hole or prealloc extent, search for delalloc.
3640 			 * A prealloc extent is treated like a hole.
3641 			 */
3642 			u64 search_start = key.offset;
3643 			u64 found_start;
3644 
3645 			/*
3646 			 * First iteration, @start matches @offset and it's
3647 			 * within the hole.
3648 			 */
3649 			if (start == offset)
3650 				search_start = offset;
3651 
3652 			found = find_desired_extent_in_hole(inode, whence,
3653 							    delalloc_cached_state,
3654 							    search_start,
3655 							    extent_end - 1,
3656 							    &found_start);
3657 			if (found) {
3658 				start = found_start;
3659 				break;
3660 			}
3661 			/*
3662 			 * Didn't find data or a hole (due to delalloc) in the
3663 			 * implicit hole range, so need to analyze the next
3664 			 * extent item.
3665 			 */
3666 		} else {
3667 			/*
3668 			 * Found a regular or inline extent.
3669 			 * If we are seeking for data, adjust the start offset
3670 			 * and stop, we're done.
3671 			 */
3672 			if (whence == SEEK_DATA) {
3673 				start = max_t(u64, key.offset, offset);
3674 				found = true;
3675 				break;
3676 			}
3677 			/*
3678 			 * Else, we are seeking for a hole, check the next file
3679 			 * extent item.
3680 			 */
3681 		}
3682 
3683 		start = extent_end;
3684 		last_extent_end = extent_end;
3685 		path->slots[0]++;
3686 		if (fatal_signal_pending(current)) {
3687 			ret = -EINTR;
3688 			goto out;
3689 		}
3690 		cond_resched();
3691 	}
3692 
3693 	/* We have an implicit hole from the last extent found up to i_size. */
3694 	if (!found && start < i_size) {
3695 		found = find_desired_extent_in_hole(inode, whence,
3696 						    delalloc_cached_state, start,
3697 						    i_size - 1, &start);
3698 		if (!found)
3699 			start = i_size;
3700 	}
3701 
3702 out:
3703 	btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3704 	btrfs_free_path(path);
3705 
3706 	if (ret < 0)
3707 		return ret;
3708 
3709 	if (whence == SEEK_DATA && start >= i_size)
3710 		return -ENXIO;
3711 
3712 	return min_t(loff_t, start, i_size);
3713 }
3714 
3715 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3716 {
3717 	struct inode *inode = file->f_mapping->host;
3718 
3719 	switch (whence) {
3720 	default:
3721 		return generic_file_llseek(file, offset, whence);
3722 	case SEEK_DATA:
3723 	case SEEK_HOLE:
3724 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3725 		offset = find_desired_extent(file, offset, whence);
3726 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3727 		break;
3728 	}
3729 
3730 	if (offset < 0)
3731 		return offset;
3732 
3733 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3734 }
3735 
3736 static int btrfs_file_open(struct inode *inode, struct file *filp)
3737 {
3738 	int ret;
3739 
3740 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3741 
3742 	ret = fsverity_file_open(inode, filp);
3743 	if (ret)
3744 		return ret;
3745 	return generic_file_open(inode, filp);
3746 }
3747 
3748 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3749 {
3750 	ssize_t ret = 0;
3751 
3752 	if (iocb->ki_flags & IOCB_DIRECT) {
3753 		ret = btrfs_direct_read(iocb, to);
3754 		if (ret < 0 || !iov_iter_count(to) ||
3755 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3756 			return ret;
3757 	}
3758 
3759 	return filemap_read(iocb, to, ret);
3760 }
3761 
3762 const struct file_operations btrfs_file_operations = {
3763 	.llseek		= btrfs_file_llseek,
3764 	.read_iter      = btrfs_file_read_iter,
3765 	.splice_read	= filemap_splice_read,
3766 	.write_iter	= btrfs_file_write_iter,
3767 	.splice_write	= iter_file_splice_write,
3768 	.mmap		= btrfs_file_mmap,
3769 	.open		= btrfs_file_open,
3770 	.release	= btrfs_release_file,
3771 	.get_unmapped_area = thp_get_unmapped_area,
3772 	.fsync		= btrfs_sync_file,
3773 	.fallocate	= btrfs_fallocate,
3774 	.unlocked_ioctl	= btrfs_ioctl,
3775 #ifdef CONFIG_COMPAT
3776 	.compat_ioctl	= btrfs_compat_ioctl,
3777 #endif
3778 	.remap_file_range = btrfs_remap_file_range,
3779 	.uring_cmd	= btrfs_uring_cmd,
3780 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3781 };
3782 
3783 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3784 {
3785 	struct address_space *mapping = inode->vfs_inode.i_mapping;
3786 	int ret;
3787 
3788 	/*
3789 	 * So with compression we will find and lock a dirty page and clear the
3790 	 * first one as dirty, setup an async extent, and immediately return
3791 	 * with the entire range locked but with nobody actually marked with
3792 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3793 	 * expect it to work since it will just kick off a thread to do the
3794 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3795 	 * since it will wait on the page lock, which won't be unlocked until
3796 	 * after the pages have been marked as writeback and so we're good to go
3797 	 * from there.  We have to do this otherwise we'll miss the ordered
3798 	 * extents and that results in badness.  Please Josef, do not think you
3799 	 * know better and pull this out at some point in the future, it is
3800 	 * right and you are wrong.
3801 	 */
3802 	ret = filemap_fdatawrite_range(mapping, start, end);
3803 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3804 		ret = filemap_fdatawrite_range(mapping, start, end);
3805 
3806 	return ret;
3807 }
3808