1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "bio.h" 17 #include "compression.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "file-item.h" 21 22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 23 sizeof(struct btrfs_item) * 2) / \ 24 size) - 1)) 25 26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 27 PAGE_SIZE)) 28 29 /* 30 * Set inode's size according to filesystem options. 31 * 32 * @inode: inode we want to update the disk_i_size for 33 * @new_i_size: i_size we want to set to, 0 if we use i_size 34 * 35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 36 * returns as it is perfectly fine with a file that has holes without hole file 37 * extent items. 38 * 39 * However without NO_HOLES we need to only return the area that is contiguous 40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 41 * to an extent that has a gap in between. 42 * 43 * Finally new_i_size should only be set in the case of truncate where we're not 44 * ready to use i_size_read() as the limiter yet. 45 */ 46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 47 { 48 u64 start, end, i_size; 49 bool found; 50 51 spin_lock(&inode->lock); 52 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 53 if (!inode->file_extent_tree) { 54 inode->disk_i_size = i_size; 55 goto out_unlock; 56 } 57 58 found = btrfs_find_contiguous_extent_bit(inode->file_extent_tree, 0, &start, 59 &end, EXTENT_DIRTY); 60 if (found && start == 0) 61 i_size = min(i_size, end + 1); 62 else 63 i_size = 0; 64 inode->disk_i_size = i_size; 65 out_unlock: 66 spin_unlock(&inode->lock); 67 } 68 69 /* 70 * Mark range within a file as having a new extent inserted. 71 * 72 * @inode: inode being modified 73 * @start: start file offset of the file extent we've inserted 74 * @len: logical length of the file extent item 75 * 76 * Call when we are inserting a new file extent where there was none before. 77 * Does not need to call this in the case where we're replacing an existing file 78 * extent, however if not sure it's fine to call this multiple times. 79 * 80 * The start and len must match the file extent item, so thus must be sectorsize 81 * aligned. 82 */ 83 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 84 u64 len) 85 { 86 if (!inode->file_extent_tree) 87 return 0; 88 89 if (len == 0) 90 return 0; 91 92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 93 94 return btrfs_set_extent_bit(inode->file_extent_tree, start, start + len - 1, 95 EXTENT_DIRTY, NULL); 96 } 97 98 /* 99 * Mark an inode range as not having a backing extent. 100 * 101 * @inode: inode being modified 102 * @start: start file offset of the file extent we've inserted 103 * @len: logical length of the file extent item 104 * 105 * Called when we drop a file extent, for example when we truncate. Doesn't 106 * need to be called for cases where we're replacing a file extent, like when 107 * we've COWed a file extent. 108 * 109 * The start and len must match the file extent item, so thus must be sectorsize 110 * aligned. 111 */ 112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 113 u64 len) 114 { 115 if (!inode->file_extent_tree) 116 return 0; 117 118 if (len == 0) 119 return 0; 120 121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 122 len == (u64)-1); 123 124 return btrfs_clear_extent_bit(inode->file_extent_tree, start, 125 start + len - 1, EXTENT_DIRTY, NULL); 126 } 127 128 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 129 { 130 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 131 132 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 133 } 134 135 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 136 { 137 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 138 139 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 140 } 141 142 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 143 { 144 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 145 fs_info->csum_size); 146 147 return csum_size_to_bytes(fs_info, max_csum_size); 148 } 149 150 /* 151 * Calculate the total size needed to allocate for an ordered sum structure 152 * spanning @bytes in the file. 153 */ 154 static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes) 155 { 156 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 157 } 158 159 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 160 struct btrfs_root *root, 161 u64 objectid, u64 pos, u64 num_bytes) 162 { 163 int ret = 0; 164 struct btrfs_file_extent_item *item; 165 struct btrfs_key file_key; 166 BTRFS_PATH_AUTO_FREE(path); 167 struct extent_buffer *leaf; 168 169 path = btrfs_alloc_path(); 170 if (!path) 171 return -ENOMEM; 172 173 file_key.objectid = objectid; 174 file_key.type = BTRFS_EXTENT_DATA_KEY; 175 file_key.offset = pos; 176 177 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 178 sizeof(*item)); 179 if (ret < 0) 180 return ret; 181 leaf = path->nodes[0]; 182 item = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 185 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 186 btrfs_set_file_extent_offset(leaf, item, 0); 187 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 188 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 189 btrfs_set_file_extent_generation(leaf, item, trans->transid); 190 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 191 btrfs_set_file_extent_compression(leaf, item, 0); 192 btrfs_set_file_extent_encryption(leaf, item, 0); 193 btrfs_set_file_extent_other_encoding(leaf, item, 0); 194 195 return ret; 196 } 197 198 static struct btrfs_csum_item * 199 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 200 struct btrfs_root *root, 201 struct btrfs_path *path, 202 u64 bytenr, int cow) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 int ret; 206 struct btrfs_key file_key; 207 struct btrfs_key found_key; 208 struct btrfs_csum_item *item; 209 struct extent_buffer *leaf; 210 u64 csum_offset = 0; 211 const u32 csum_size = fs_info->csum_size; 212 int csums_in_item; 213 214 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 215 file_key.type = BTRFS_EXTENT_CSUM_KEY; 216 file_key.offset = bytenr; 217 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 218 if (ret < 0) 219 goto fail; 220 leaf = path->nodes[0]; 221 if (ret > 0) { 222 ret = 1; 223 if (path->slots[0] == 0) 224 goto fail; 225 path->slots[0]--; 226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 227 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 228 goto fail; 229 230 csum_offset = (bytenr - found_key.offset) >> 231 fs_info->sectorsize_bits; 232 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 233 csums_in_item /= csum_size; 234 235 if (csum_offset == csums_in_item) { 236 ret = -EFBIG; 237 goto fail; 238 } else if (csum_offset > csums_in_item) { 239 goto fail; 240 } 241 } 242 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 243 item = (struct btrfs_csum_item *)((unsigned char *)item + 244 csum_offset * csum_size); 245 return item; 246 fail: 247 if (ret > 0) 248 ret = -ENOENT; 249 return ERR_PTR(ret); 250 } 251 252 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 253 struct btrfs_root *root, 254 struct btrfs_path *path, u64 objectid, 255 u64 offset, int mod) 256 { 257 struct btrfs_key file_key; 258 int ins_len = mod < 0 ? -1 : 0; 259 int cow = mod != 0; 260 261 file_key.objectid = objectid; 262 file_key.type = BTRFS_EXTENT_DATA_KEY; 263 file_key.offset = offset; 264 265 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 266 } 267 268 /* 269 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 270 * store the result to @dst. 271 * 272 * Return >0 for the number of sectors we found. 273 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 274 * for it. Caller may want to try next sector until one range is hit. 275 * Return <0 for fatal error. 276 */ 277 static int search_csum_tree(struct btrfs_fs_info *fs_info, 278 struct btrfs_path *path, u64 disk_bytenr, 279 u64 len, u8 *dst) 280 { 281 struct btrfs_root *csum_root; 282 struct btrfs_csum_item *item = NULL; 283 struct btrfs_key key; 284 const u32 sectorsize = fs_info->sectorsize; 285 const u32 csum_size = fs_info->csum_size; 286 u32 itemsize; 287 int ret; 288 u64 csum_start; 289 u64 csum_len; 290 291 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 292 IS_ALIGNED(len, sectorsize)); 293 294 /* Check if the current csum item covers disk_bytenr */ 295 if (path->nodes[0]) { 296 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 297 struct btrfs_csum_item); 298 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 299 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 300 301 csum_start = key.offset; 302 csum_len = (itemsize / csum_size) * sectorsize; 303 304 if (in_range(disk_bytenr, csum_start, csum_len)) 305 goto found; 306 } 307 308 /* Current item doesn't contain the desired range, search again */ 309 btrfs_release_path(path); 310 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 311 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 312 if (IS_ERR(item)) { 313 ret = PTR_ERR(item); 314 goto out; 315 } 316 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 317 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 318 319 csum_start = key.offset; 320 csum_len = (itemsize / csum_size) * sectorsize; 321 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 322 323 found: 324 ret = (min(csum_start + csum_len, disk_bytenr + len) - 325 disk_bytenr) >> fs_info->sectorsize_bits; 326 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 327 ret * csum_size); 328 out: 329 if (ret == -ENOENT || ret == -EFBIG) 330 ret = 0; 331 return ret; 332 } 333 334 /* 335 * Lookup the checksum for the read bio in csum tree. 336 * 337 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 338 */ 339 int btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 340 { 341 struct btrfs_inode *inode = bbio->inode; 342 struct btrfs_fs_info *fs_info = inode->root->fs_info; 343 struct bio *bio = &bbio->bio; 344 BTRFS_PATH_AUTO_FREE(path); 345 const u32 sectorsize = fs_info->sectorsize; 346 const u32 csum_size = fs_info->csum_size; 347 u32 orig_len = bio->bi_iter.bi_size; 348 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 349 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 350 int ret = 0; 351 u32 bio_offset = 0; 352 353 if ((inode->flags & BTRFS_INODE_NODATASUM) || 354 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) 355 return 0; 356 357 /* 358 * This function is only called for read bio. 359 * 360 * This means two things: 361 * - All our csums should only be in csum tree 362 * No ordered extents csums, as ordered extents are only for write 363 * path. 364 * - No need to bother any other info from bvec 365 * Since we're looking up csums, the only important info is the 366 * disk_bytenr and the length, which can be extracted from bi_iter 367 * directly. 368 */ 369 ASSERT(bio_op(bio) == REQ_OP_READ); 370 path = btrfs_alloc_path(); 371 if (!path) 372 return -ENOMEM; 373 374 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 375 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 376 if (!bbio->csum) 377 return -ENOMEM; 378 } else { 379 bbio->csum = bbio->csum_inline; 380 } 381 382 /* 383 * If requested number of sectors is larger than one leaf can contain, 384 * kick the readahead for csum tree. 385 */ 386 if (nblocks > fs_info->csums_per_leaf) 387 path->reada = READA_FORWARD; 388 389 /* 390 * the free space stuff is only read when it hasn't been 391 * updated in the current transaction. So, we can safely 392 * read from the commit root and sidestep a nasty deadlock 393 * between reading the free space cache and updating the csum tree. 394 */ 395 if (btrfs_is_free_space_inode(inode)) { 396 path->search_commit_root = 1; 397 path->skip_locking = 1; 398 } 399 400 while (bio_offset < orig_len) { 401 int count; 402 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; 403 u8 *csum_dst = bbio->csum + 404 (bio_offset >> fs_info->sectorsize_bits) * csum_size; 405 406 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 407 orig_len - bio_offset, csum_dst); 408 if (count < 0) { 409 ret = count; 410 if (bbio->csum != bbio->csum_inline) 411 kfree(bbio->csum); 412 bbio->csum = NULL; 413 break; 414 } 415 416 /* 417 * We didn't find a csum for this range. We need to make sure 418 * we complain loudly about this, because we are not NODATASUM. 419 * 420 * However for the DATA_RELOC inode we could potentially be 421 * relocating data extents for a NODATASUM inode, so the inode 422 * itself won't be marked with NODATASUM, but the extent we're 423 * copying is in fact NODATASUM. If we don't find a csum we 424 * assume this is the case. 425 */ 426 if (count == 0) { 427 memset(csum_dst, 0, csum_size); 428 count = 1; 429 430 if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) { 431 u64 file_offset = bbio->file_offset + bio_offset; 432 433 btrfs_set_extent_bit(&inode->io_tree, file_offset, 434 file_offset + sectorsize - 1, 435 EXTENT_NODATASUM, NULL); 436 } else { 437 btrfs_warn_rl(fs_info, 438 "csum hole found for disk bytenr range [%llu, %llu)", 439 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 440 } 441 } 442 bio_offset += count * sectorsize; 443 } 444 445 return ret; 446 } 447 448 /* 449 * Search for checksums for a given logical range. 450 * 451 * @root: The root where to look for checksums. 452 * @start: Logical address of target checksum range. 453 * @end: End offset (inclusive) of the target checksum range. 454 * @list: List for adding each checksum that was found. 455 * Can be NULL in case the caller only wants to check if 456 * there any checksums for the range. 457 * @nowait: Indicate if the search must be non-blocking or not. 458 * 459 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were 460 * found. 461 */ 462 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 463 struct list_head *list, bool nowait) 464 { 465 struct btrfs_fs_info *fs_info = root->fs_info; 466 struct btrfs_key key; 467 struct btrfs_path *path; 468 struct extent_buffer *leaf; 469 struct btrfs_ordered_sum *sums; 470 struct btrfs_csum_item *item; 471 int ret; 472 bool found_csums = false; 473 474 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 475 IS_ALIGNED(end + 1, fs_info->sectorsize)); 476 477 path = btrfs_alloc_path(); 478 if (!path) 479 return -ENOMEM; 480 481 path->nowait = nowait; 482 483 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 484 key.type = BTRFS_EXTENT_CSUM_KEY; 485 key.offset = start; 486 487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 488 if (ret < 0) 489 goto out; 490 if (ret > 0 && path->slots[0] > 0) { 491 leaf = path->nodes[0]; 492 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 493 494 /* 495 * There are two cases we can hit here for the previous csum 496 * item: 497 * 498 * |<- search range ->| 499 * |<- csum item ->| 500 * 501 * Or 502 * |<- search range ->| 503 * |<- csum item ->| 504 * 505 * Check if the previous csum item covers the leading part of 506 * the search range. If so we have to start from previous csum 507 * item. 508 */ 509 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 510 key.type == BTRFS_EXTENT_CSUM_KEY) { 511 if (bytes_to_csum_size(fs_info, start - key.offset) < 512 btrfs_item_size(leaf, path->slots[0] - 1)) 513 path->slots[0]--; 514 } 515 } 516 517 while (start <= end) { 518 u64 csum_end; 519 520 leaf = path->nodes[0]; 521 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 522 ret = btrfs_next_leaf(root, path); 523 if (ret < 0) 524 goto out; 525 if (ret > 0) 526 break; 527 leaf = path->nodes[0]; 528 } 529 530 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 531 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 532 key.type != BTRFS_EXTENT_CSUM_KEY || 533 key.offset > end) 534 break; 535 536 if (key.offset > start) 537 start = key.offset; 538 539 csum_end = key.offset + csum_size_to_bytes(fs_info, 540 btrfs_item_size(leaf, path->slots[0])); 541 if (csum_end <= start) { 542 path->slots[0]++; 543 continue; 544 } 545 546 found_csums = true; 547 if (!list) 548 goto out; 549 550 csum_end = min(csum_end, end + 1); 551 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 552 struct btrfs_csum_item); 553 while (start < csum_end) { 554 unsigned long offset; 555 size_t size; 556 557 size = min_t(size_t, csum_end - start, 558 max_ordered_sum_bytes(fs_info)); 559 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 560 GFP_NOFS); 561 if (!sums) { 562 ret = -ENOMEM; 563 goto out; 564 } 565 566 sums->logical = start; 567 sums->len = size; 568 569 offset = bytes_to_csum_size(fs_info, start - key.offset); 570 571 read_extent_buffer(path->nodes[0], 572 sums->sums, 573 ((unsigned long)item) + offset, 574 bytes_to_csum_size(fs_info, size)); 575 576 start += size; 577 list_add_tail(&sums->list, list); 578 } 579 path->slots[0]++; 580 } 581 out: 582 btrfs_free_path(path); 583 if (ret < 0) { 584 if (list) { 585 struct btrfs_ordered_sum *tmp_sums; 586 587 list_for_each_entry_safe(sums, tmp_sums, list, list) 588 kfree(sums); 589 } 590 591 return ret; 592 } 593 594 return found_csums ? 1 : 0; 595 } 596 597 /* 598 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 599 * we return the result. 600 * 601 * This version will set the corresponding bits in @csum_bitmap to represent 602 * that there is a csum found. 603 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 604 * in is large enough to contain all csums. 605 */ 606 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, 607 u64 start, u64 end, u8 *csum_buf, 608 unsigned long *csum_bitmap) 609 { 610 struct btrfs_fs_info *fs_info = root->fs_info; 611 struct btrfs_key key; 612 struct extent_buffer *leaf; 613 struct btrfs_csum_item *item; 614 const u64 orig_start = start; 615 bool free_path = false; 616 int ret; 617 618 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 619 IS_ALIGNED(end + 1, fs_info->sectorsize)); 620 621 if (!path) { 622 path = btrfs_alloc_path(); 623 if (!path) 624 return -ENOMEM; 625 free_path = true; 626 } 627 628 /* Check if we can reuse the previous path. */ 629 if (path->nodes[0]) { 630 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 631 632 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 633 key.type == BTRFS_EXTENT_CSUM_KEY && 634 key.offset <= start) 635 goto search_forward; 636 btrfs_release_path(path); 637 } 638 639 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 640 key.type = BTRFS_EXTENT_CSUM_KEY; 641 key.offset = start; 642 643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 644 if (ret < 0) 645 goto fail; 646 if (ret > 0 && path->slots[0] > 0) { 647 leaf = path->nodes[0]; 648 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 649 650 /* 651 * There are two cases we can hit here for the previous csum 652 * item: 653 * 654 * |<- search range ->| 655 * |<- csum item ->| 656 * 657 * Or 658 * |<- search range ->| 659 * |<- csum item ->| 660 * 661 * Check if the previous csum item covers the leading part of 662 * the search range. If so we have to start from previous csum 663 * item. 664 */ 665 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 666 key.type == BTRFS_EXTENT_CSUM_KEY) { 667 if (bytes_to_csum_size(fs_info, start - key.offset) < 668 btrfs_item_size(leaf, path->slots[0] - 1)) 669 path->slots[0]--; 670 } 671 } 672 673 search_forward: 674 while (start <= end) { 675 u64 csum_end; 676 677 leaf = path->nodes[0]; 678 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 679 ret = btrfs_next_leaf(root, path); 680 if (ret < 0) 681 goto fail; 682 if (ret > 0) 683 break; 684 leaf = path->nodes[0]; 685 } 686 687 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 688 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 689 key.type != BTRFS_EXTENT_CSUM_KEY || 690 key.offset > end) 691 break; 692 693 if (key.offset > start) 694 start = key.offset; 695 696 csum_end = key.offset + csum_size_to_bytes(fs_info, 697 btrfs_item_size(leaf, path->slots[0])); 698 if (csum_end <= start) { 699 path->slots[0]++; 700 continue; 701 } 702 703 csum_end = min(csum_end, end + 1); 704 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 705 struct btrfs_csum_item); 706 while (start < csum_end) { 707 unsigned long offset; 708 size_t size; 709 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 710 start - orig_start); 711 712 size = min_t(size_t, csum_end - start, end + 1 - start); 713 714 offset = bytes_to_csum_size(fs_info, start - key.offset); 715 716 read_extent_buffer(path->nodes[0], csum_dest, 717 ((unsigned long)item) + offset, 718 bytes_to_csum_size(fs_info, size)); 719 720 bitmap_set(csum_bitmap, 721 (start - orig_start) >> fs_info->sectorsize_bits, 722 size >> fs_info->sectorsize_bits); 723 724 start += size; 725 } 726 path->slots[0]++; 727 } 728 ret = 0; 729 fail: 730 if (free_path) 731 btrfs_free_path(path); 732 return ret; 733 } 734 735 /* 736 * Calculate checksums of the data contained inside a bio. 737 */ 738 int btrfs_csum_one_bio(struct btrfs_bio *bbio) 739 { 740 struct btrfs_ordered_extent *ordered = bbio->ordered; 741 struct btrfs_inode *inode = bbio->inode; 742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 743 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 744 struct bio *bio = &bbio->bio; 745 struct btrfs_ordered_sum *sums; 746 char *data; 747 struct bvec_iter iter; 748 struct bio_vec bvec; 749 int index; 750 unsigned int blockcount; 751 int i; 752 unsigned nofs_flag; 753 754 nofs_flag = memalloc_nofs_save(); 755 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 756 GFP_KERNEL); 757 memalloc_nofs_restore(nofs_flag); 758 759 if (!sums) 760 return -ENOMEM; 761 762 sums->len = bio->bi_iter.bi_size; 763 INIT_LIST_HEAD(&sums->list); 764 765 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 766 index = 0; 767 768 shash->tfm = fs_info->csum_shash; 769 770 bio_for_each_segment(bvec, bio, iter) { 771 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 772 bvec.bv_len + fs_info->sectorsize 773 - 1); 774 775 for (i = 0; i < blockcount; i++) { 776 data = bvec_kmap_local(&bvec); 777 crypto_shash_digest(shash, 778 data + (i * fs_info->sectorsize), 779 fs_info->sectorsize, 780 sums->sums + index); 781 kunmap_local(data); 782 index += fs_info->csum_size; 783 } 784 785 } 786 787 bbio->sums = sums; 788 btrfs_add_ordered_sum(ordered, sums); 789 return 0; 790 } 791 792 /* 793 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to 794 * record the updated logical address on Zone Append completion. 795 * Allocate just the structure with an empty sums array here for that case. 796 */ 797 int btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) 798 { 799 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); 800 if (!bbio->sums) 801 return -ENOMEM; 802 bbio->sums->len = bbio->bio.bi_iter.bi_size; 803 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 804 btrfs_add_ordered_sum(bbio->ordered, bbio->sums); 805 return 0; 806 } 807 808 /* 809 * Remove one checksum overlapping a range. 810 * 811 * This expects the key to describe the csum pointed to by the path, and it 812 * expects the csum to overlap the range [bytenr, len] 813 * 814 * The csum should not be entirely contained in the range and the range should 815 * not be entirely contained in the csum. 816 * 817 * This calls btrfs_truncate_item with the correct args based on the overlap, 818 * and fixes up the key as required. 819 */ 820 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, 821 struct btrfs_path *path, 822 struct btrfs_key *key, 823 u64 bytenr, u64 len) 824 { 825 struct btrfs_fs_info *fs_info = trans->fs_info; 826 struct extent_buffer *leaf; 827 const u32 csum_size = fs_info->csum_size; 828 u64 csum_end; 829 u64 end_byte = bytenr + len; 830 u32 blocksize_bits = fs_info->sectorsize_bits; 831 832 leaf = path->nodes[0]; 833 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 834 csum_end <<= blocksize_bits; 835 csum_end += key->offset; 836 837 if (key->offset < bytenr && csum_end <= end_byte) { 838 /* 839 * [ bytenr - len ] 840 * [ ] 841 * [csum ] 842 * A simple truncate off the end of the item 843 */ 844 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 845 new_size *= csum_size; 846 btrfs_truncate_item(trans, path, new_size, 1); 847 } else if (key->offset >= bytenr && csum_end > end_byte && 848 end_byte > key->offset) { 849 /* 850 * [ bytenr - len ] 851 * [ ] 852 * [csum ] 853 * we need to truncate from the beginning of the csum 854 */ 855 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 856 new_size *= csum_size; 857 858 btrfs_truncate_item(trans, path, new_size, 0); 859 860 key->offset = end_byte; 861 btrfs_set_item_key_safe(trans, path, key); 862 } else { 863 BUG(); 864 } 865 } 866 867 /* 868 * Delete the csum items from the csum tree for a given range of bytes. 869 */ 870 int btrfs_del_csums(struct btrfs_trans_handle *trans, 871 struct btrfs_root *root, u64 bytenr, u64 len) 872 { 873 struct btrfs_fs_info *fs_info = trans->fs_info; 874 BTRFS_PATH_AUTO_FREE(path); 875 struct btrfs_key key; 876 u64 end_byte = bytenr + len; 877 u64 csum_end; 878 struct extent_buffer *leaf; 879 int ret = 0; 880 const u32 csum_size = fs_info->csum_size; 881 u32 blocksize_bits = fs_info->sectorsize_bits; 882 883 ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 884 btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 885 886 path = btrfs_alloc_path(); 887 if (!path) 888 return -ENOMEM; 889 890 while (1) { 891 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 892 key.type = BTRFS_EXTENT_CSUM_KEY; 893 key.offset = end_byte - 1; 894 895 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 896 if (ret > 0) { 897 ret = 0; 898 if (path->slots[0] == 0) 899 break; 900 path->slots[0]--; 901 } else if (ret < 0) { 902 break; 903 } 904 905 leaf = path->nodes[0]; 906 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 907 908 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 909 key.type != BTRFS_EXTENT_CSUM_KEY) { 910 break; 911 } 912 913 if (key.offset >= end_byte) 914 break; 915 916 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 917 csum_end <<= blocksize_bits; 918 csum_end += key.offset; 919 920 /* this csum ends before we start, we're done */ 921 if (csum_end <= bytenr) 922 break; 923 924 /* delete the entire item, it is inside our range */ 925 if (key.offset >= bytenr && csum_end <= end_byte) { 926 int del_nr = 1; 927 928 /* 929 * Check how many csum items preceding this one in this 930 * leaf correspond to our range and then delete them all 931 * at once. 932 */ 933 if (key.offset > bytenr && path->slots[0] > 0) { 934 int slot = path->slots[0] - 1; 935 936 while (slot >= 0) { 937 struct btrfs_key pk; 938 939 btrfs_item_key_to_cpu(leaf, &pk, slot); 940 if (pk.offset < bytenr || 941 pk.type != BTRFS_EXTENT_CSUM_KEY || 942 pk.objectid != 943 BTRFS_EXTENT_CSUM_OBJECTID) 944 break; 945 path->slots[0] = slot; 946 del_nr++; 947 key.offset = pk.offset; 948 slot--; 949 } 950 } 951 ret = btrfs_del_items(trans, root, path, 952 path->slots[0], del_nr); 953 if (ret) 954 break; 955 if (key.offset == bytenr) 956 break; 957 } else if (key.offset < bytenr && csum_end > end_byte) { 958 unsigned long offset; 959 unsigned long shift_len; 960 unsigned long item_offset; 961 /* 962 * [ bytenr - len ] 963 * [csum ] 964 * 965 * Our bytes are in the middle of the csum, 966 * we need to split this item and insert a new one. 967 * 968 * But we can't drop the path because the 969 * csum could change, get removed, extended etc. 970 * 971 * The trick here is the max size of a csum item leaves 972 * enough room in the tree block for a single 973 * item header. So, we split the item in place, 974 * adding a new header pointing to the existing 975 * bytes. Then we loop around again and we have 976 * a nicely formed csum item that we can neatly 977 * truncate. 978 */ 979 offset = (bytenr - key.offset) >> blocksize_bits; 980 offset *= csum_size; 981 982 shift_len = (len >> blocksize_bits) * csum_size; 983 984 item_offset = btrfs_item_ptr_offset(leaf, 985 path->slots[0]); 986 987 memzero_extent_buffer(leaf, item_offset + offset, 988 shift_len); 989 key.offset = bytenr; 990 991 /* 992 * btrfs_split_item returns -EAGAIN when the 993 * item changed size or key 994 */ 995 ret = btrfs_split_item(trans, root, path, &key, offset); 996 if (ret && ret != -EAGAIN) { 997 btrfs_abort_transaction(trans, ret); 998 break; 999 } 1000 ret = 0; 1001 1002 key.offset = end_byte - 1; 1003 } else { 1004 truncate_one_csum(trans, path, &key, bytenr, len); 1005 if (key.offset < bytenr) 1006 break; 1007 } 1008 btrfs_release_path(path); 1009 } 1010 return ret; 1011 } 1012 1013 static int find_next_csum_offset(struct btrfs_root *root, 1014 struct btrfs_path *path, 1015 u64 *next_offset) 1016 { 1017 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1018 struct btrfs_key found_key; 1019 int slot = path->slots[0] + 1; 1020 int ret; 1021 1022 if (nritems == 0 || slot >= nritems) { 1023 ret = btrfs_next_leaf(root, path); 1024 if (ret < 0) { 1025 return ret; 1026 } else if (ret > 0) { 1027 *next_offset = (u64)-1; 1028 return 0; 1029 } 1030 slot = path->slots[0]; 1031 } 1032 1033 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1034 1035 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1036 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1037 *next_offset = (u64)-1; 1038 else 1039 *next_offset = found_key.offset; 1040 1041 return 0; 1042 } 1043 1044 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1045 struct btrfs_root *root, 1046 struct btrfs_ordered_sum *sums) 1047 { 1048 struct btrfs_fs_info *fs_info = root->fs_info; 1049 struct btrfs_key file_key; 1050 struct btrfs_key found_key; 1051 BTRFS_PATH_AUTO_FREE(path); 1052 struct btrfs_csum_item *item; 1053 struct btrfs_csum_item *item_end; 1054 struct extent_buffer *leaf = NULL; 1055 u64 next_offset; 1056 u64 total_bytes = 0; 1057 u64 csum_offset; 1058 u64 bytenr; 1059 u32 ins_size; 1060 int index = 0; 1061 int found_next; 1062 int ret; 1063 const u32 csum_size = fs_info->csum_size; 1064 1065 path = btrfs_alloc_path(); 1066 if (!path) 1067 return -ENOMEM; 1068 again: 1069 next_offset = (u64)-1; 1070 found_next = 0; 1071 bytenr = sums->logical + total_bytes; 1072 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1073 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1074 file_key.offset = bytenr; 1075 1076 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1077 if (!IS_ERR(item)) { 1078 ret = 0; 1079 leaf = path->nodes[0]; 1080 item_end = btrfs_item_ptr(leaf, path->slots[0], 1081 struct btrfs_csum_item); 1082 item_end = (struct btrfs_csum_item *)((char *)item_end + 1083 btrfs_item_size(leaf, path->slots[0])); 1084 goto found; 1085 } 1086 ret = PTR_ERR(item); 1087 if (ret != -EFBIG && ret != -ENOENT) 1088 goto out; 1089 1090 if (ret == -EFBIG) { 1091 u32 item_size; 1092 /* we found one, but it isn't big enough yet */ 1093 leaf = path->nodes[0]; 1094 item_size = btrfs_item_size(leaf, path->slots[0]); 1095 if ((item_size / csum_size) >= 1096 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1097 /* already at max size, make a new one */ 1098 goto insert; 1099 } 1100 } else { 1101 /* We didn't find a csum item, insert one. */ 1102 ret = find_next_csum_offset(root, path, &next_offset); 1103 if (ret < 0) 1104 goto out; 1105 found_next = 1; 1106 goto insert; 1107 } 1108 1109 /* 1110 * At this point, we know the tree has a checksum item that ends at an 1111 * offset matching the start of the checksum range we want to insert. 1112 * We try to extend that item as much as possible and then add as many 1113 * checksums to it as they fit. 1114 * 1115 * First check if the leaf has enough free space for at least one 1116 * checksum. If it has go directly to the item extension code, otherwise 1117 * release the path and do a search for insertion before the extension. 1118 */ 1119 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1121 csum_offset = (bytenr - found_key.offset) >> 1122 fs_info->sectorsize_bits; 1123 goto extend_csum; 1124 } 1125 1126 btrfs_release_path(path); 1127 path->search_for_extension = 1; 1128 ret = btrfs_search_slot(trans, root, &file_key, path, 1129 csum_size, 1); 1130 path->search_for_extension = 0; 1131 if (ret < 0) 1132 goto out; 1133 1134 if (ret > 0) { 1135 if (path->slots[0] == 0) 1136 goto insert; 1137 path->slots[0]--; 1138 } 1139 1140 leaf = path->nodes[0]; 1141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1142 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1143 1144 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1145 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1146 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1147 goto insert; 1148 } 1149 1150 extend_csum: 1151 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1152 csum_size) { 1153 int extend_nr; 1154 u64 tmp; 1155 u32 diff; 1156 1157 tmp = sums->len - total_bytes; 1158 tmp >>= fs_info->sectorsize_bits; 1159 WARN_ON(tmp < 1); 1160 extend_nr = max_t(int, 1, tmp); 1161 1162 /* 1163 * A log tree can already have checksum items with a subset of 1164 * the checksums we are trying to log. This can happen after 1165 * doing a sequence of partial writes into prealloc extents and 1166 * fsyncs in between, with a full fsync logging a larger subrange 1167 * of an extent for which a previous fast fsync logged a smaller 1168 * subrange. And this happens in particular due to merging file 1169 * extent items when we complete an ordered extent for a range 1170 * covered by a prealloc extent - this is done at 1171 * btrfs_mark_extent_written(). 1172 * 1173 * So if we try to extend the previous checksum item, which has 1174 * a range that ends at the start of the range we want to insert, 1175 * make sure we don't extend beyond the start offset of the next 1176 * checksum item. If we are at the last item in the leaf, then 1177 * forget the optimization of extending and add a new checksum 1178 * item - it is not worth the complexity of releasing the path, 1179 * getting the first key for the next leaf, repeat the btree 1180 * search, etc, because log trees are temporary anyway and it 1181 * would only save a few bytes of leaf space. 1182 */ 1183 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 1184 if (path->slots[0] + 1 >= 1185 btrfs_header_nritems(path->nodes[0])) { 1186 ret = find_next_csum_offset(root, path, &next_offset); 1187 if (ret < 0) 1188 goto out; 1189 found_next = 1; 1190 goto insert; 1191 } 1192 1193 ret = find_next_csum_offset(root, path, &next_offset); 1194 if (ret < 0) 1195 goto out; 1196 1197 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1198 if (tmp <= INT_MAX) 1199 extend_nr = min_t(int, extend_nr, tmp); 1200 } 1201 1202 diff = (csum_offset + extend_nr) * csum_size; 1203 diff = min(diff, 1204 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1205 1206 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1207 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1208 diff /= csum_size; 1209 diff *= csum_size; 1210 1211 btrfs_extend_item(trans, path, diff); 1212 ret = 0; 1213 goto csum; 1214 } 1215 1216 insert: 1217 btrfs_release_path(path); 1218 csum_offset = 0; 1219 if (found_next) { 1220 u64 tmp; 1221 1222 tmp = sums->len - total_bytes; 1223 tmp >>= fs_info->sectorsize_bits; 1224 tmp = min(tmp, (next_offset - file_key.offset) >> 1225 fs_info->sectorsize_bits); 1226 1227 tmp = max_t(u64, 1, tmp); 1228 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1229 ins_size = csum_size * tmp; 1230 } else { 1231 ins_size = csum_size; 1232 } 1233 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1234 ins_size); 1235 if (ret < 0) 1236 goto out; 1237 leaf = path->nodes[0]; 1238 csum: 1239 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1240 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1241 btrfs_item_size(leaf, path->slots[0])); 1242 item = (struct btrfs_csum_item *)((unsigned char *)item + 1243 csum_offset * csum_size); 1244 found: 1245 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1246 ins_size *= csum_size; 1247 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1248 ins_size); 1249 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1250 ins_size); 1251 1252 index += ins_size; 1253 ins_size /= csum_size; 1254 total_bytes += ins_size * fs_info->sectorsize; 1255 1256 if (total_bytes < sums->len) { 1257 btrfs_release_path(path); 1258 cond_resched(); 1259 goto again; 1260 } 1261 out: 1262 return ret; 1263 } 1264 1265 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1266 const struct btrfs_path *path, 1267 const struct btrfs_file_extent_item *fi, 1268 struct extent_map *em) 1269 { 1270 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1271 struct btrfs_root *root = inode->root; 1272 struct extent_buffer *leaf = path->nodes[0]; 1273 const int slot = path->slots[0]; 1274 struct btrfs_key key; 1275 u64 extent_start; 1276 u8 type = btrfs_file_extent_type(leaf, fi); 1277 int compress_type = btrfs_file_extent_compression(leaf, fi); 1278 1279 btrfs_item_key_to_cpu(leaf, &key, slot); 1280 extent_start = key.offset; 1281 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1282 em->generation = btrfs_file_extent_generation(leaf, fi); 1283 if (type == BTRFS_FILE_EXTENT_REG || 1284 type == BTRFS_FILE_EXTENT_PREALLOC) { 1285 const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1286 1287 em->start = extent_start; 1288 em->len = btrfs_file_extent_end(path) - extent_start; 1289 if (disk_bytenr == 0) { 1290 em->disk_bytenr = EXTENT_MAP_HOLE; 1291 em->disk_num_bytes = 0; 1292 em->offset = 0; 1293 return; 1294 } 1295 em->disk_bytenr = disk_bytenr; 1296 em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1297 em->offset = btrfs_file_extent_offset(leaf, fi); 1298 if (compress_type != BTRFS_COMPRESS_NONE) { 1299 btrfs_extent_map_set_compression(em, compress_type); 1300 } else { 1301 /* 1302 * Older kernels can create regular non-hole data 1303 * extents with ram_bytes smaller than disk_num_bytes. 1304 * Not a big deal, just always use disk_num_bytes 1305 * for ram_bytes. 1306 */ 1307 em->ram_bytes = em->disk_num_bytes; 1308 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1309 em->flags |= EXTENT_FLAG_PREALLOC; 1310 } 1311 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1312 /* Tree-checker has ensured this. */ 1313 ASSERT(extent_start == 0); 1314 1315 em->disk_bytenr = EXTENT_MAP_INLINE; 1316 em->start = 0; 1317 em->len = fs_info->sectorsize; 1318 em->offset = 0; 1319 btrfs_extent_map_set_compression(em, compress_type); 1320 } else { 1321 btrfs_err(fs_info, 1322 "unknown file extent item type %d, inode %llu, offset %llu, " 1323 "root %llu", type, btrfs_ino(inode), extent_start, 1324 btrfs_root_id(root)); 1325 } 1326 } 1327 1328 /* 1329 * Returns the end offset (non inclusive) of the file extent item the given path 1330 * points to. If it points to an inline extent, the returned offset is rounded 1331 * up to the sector size. 1332 */ 1333 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1334 { 1335 const struct extent_buffer *leaf = path->nodes[0]; 1336 const int slot = path->slots[0]; 1337 struct btrfs_file_extent_item *fi; 1338 struct btrfs_key key; 1339 u64 end; 1340 1341 btrfs_item_key_to_cpu(leaf, &key, slot); 1342 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1343 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1344 1345 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) 1346 end = leaf->fs_info->sectorsize; 1347 else 1348 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1349 1350 return end; 1351 } 1352