1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 /* Last byte contained in bbio + 1 . */ 100 loff_t next_file_offset; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 107 /* 108 * The sectors of the page which are going to be submitted by 109 * extent_writepage_io(). 110 * This is to avoid touching ranges covered by compression/inline. 111 */ 112 unsigned long submit_bitmap; 113 }; 114 115 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 116 { 117 struct btrfs_bio *bbio = bio_ctrl->bbio; 118 119 if (!bbio) 120 return; 121 122 /* Caller should ensure the bio has at least some range added */ 123 ASSERT(bbio->bio.bi_iter.bi_size); 124 125 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 126 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 127 btrfs_submit_compressed_read(bbio); 128 else 129 btrfs_submit_bbio(bbio, 0); 130 131 /* The bbio is owned by the end_io handler now */ 132 bio_ctrl->bbio = NULL; 133 } 134 135 /* 136 * Submit or fail the current bio in the bio_ctrl structure. 137 */ 138 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 139 { 140 struct btrfs_bio *bbio = bio_ctrl->bbio; 141 142 if (!bbio) 143 return; 144 145 if (ret) { 146 ASSERT(ret < 0); 147 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 148 /* The bio is owned by the end_io handler now */ 149 bio_ctrl->bbio = NULL; 150 } else { 151 submit_one_bio(bio_ctrl); 152 } 153 } 154 155 int __init extent_buffer_init_cachep(void) 156 { 157 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 158 sizeof(struct extent_buffer), 0, 0, 159 NULL); 160 if (!extent_buffer_cache) 161 return -ENOMEM; 162 163 return 0; 164 } 165 166 void __cold extent_buffer_free_cachep(void) 167 { 168 /* 169 * Make sure all delayed rcu free are flushed before we 170 * destroy caches. 171 */ 172 rcu_barrier(); 173 kmem_cache_destroy(extent_buffer_cache); 174 } 175 176 static void process_one_folio(struct btrfs_fs_info *fs_info, 177 struct folio *folio, const struct folio *locked_folio, 178 unsigned long page_ops, u64 start, u64 end) 179 { 180 u32 len; 181 182 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 183 len = end + 1 - start; 184 185 if (page_ops & PAGE_SET_ORDERED) 186 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 187 if (page_ops & PAGE_START_WRITEBACK) { 188 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 189 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 190 } 191 if (page_ops & PAGE_END_WRITEBACK) 192 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 193 194 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 195 btrfs_folio_end_lock(fs_info, folio, start, len); 196 } 197 198 static void __process_folios_contig(struct address_space *mapping, 199 const struct folio *locked_folio, u64 start, 200 u64 end, unsigned long page_ops) 201 { 202 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 203 pgoff_t index = start >> PAGE_SHIFT; 204 pgoff_t end_index = end >> PAGE_SHIFT; 205 struct folio_batch fbatch; 206 int i; 207 208 folio_batch_init(&fbatch); 209 while (index <= end_index) { 210 int found_folios; 211 212 found_folios = filemap_get_folios_contig(mapping, &index, 213 end_index, &fbatch); 214 for (i = 0; i < found_folios; i++) { 215 struct folio *folio = fbatch.folios[i]; 216 217 process_one_folio(fs_info, folio, locked_folio, 218 page_ops, start, end); 219 } 220 folio_batch_release(&fbatch); 221 cond_resched(); 222 } 223 } 224 225 static noinline void unlock_delalloc_folio(const struct inode *inode, 226 struct folio *locked_folio, 227 u64 start, u64 end) 228 { 229 ASSERT(locked_folio); 230 231 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 232 PAGE_UNLOCK); 233 } 234 235 static noinline int lock_delalloc_folios(struct inode *inode, 236 struct folio *locked_folio, 237 u64 start, u64 end) 238 { 239 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 240 struct address_space *mapping = inode->i_mapping; 241 pgoff_t index = start >> PAGE_SHIFT; 242 pgoff_t end_index = end >> PAGE_SHIFT; 243 u64 processed_end = start; 244 struct folio_batch fbatch; 245 246 folio_batch_init(&fbatch); 247 while (index <= end_index) { 248 unsigned int found_folios, i; 249 250 found_folios = filemap_get_folios_contig(mapping, &index, 251 end_index, &fbatch); 252 if (found_folios == 0) 253 goto out; 254 255 for (i = 0; i < found_folios; i++) { 256 struct folio *folio = fbatch.folios[i]; 257 u64 range_start; 258 u32 range_len; 259 260 if (folio == locked_folio) 261 continue; 262 263 folio_lock(folio); 264 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 265 folio_unlock(folio); 266 goto out; 267 } 268 range_start = max_t(u64, folio_pos(folio), start); 269 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 270 end + 1) - range_start; 271 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 272 273 processed_end = range_start + range_len - 1; 274 } 275 folio_batch_release(&fbatch); 276 cond_resched(); 277 } 278 279 return 0; 280 out: 281 folio_batch_release(&fbatch); 282 if (processed_end > start) 283 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 284 return -EAGAIN; 285 } 286 287 /* 288 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 289 * more than @max_bytes. 290 * 291 * @start: The original start bytenr to search. 292 * Will store the extent range start bytenr. 293 * @end: The original end bytenr of the search range 294 * Will store the extent range end bytenr. 295 * 296 * Return true if we find a delalloc range which starts inside the original 297 * range, and @start/@end will store the delalloc range start/end. 298 * 299 * Return false if we can't find any delalloc range which starts inside the 300 * original range, and @start/@end will be the non-delalloc range start/end. 301 */ 302 EXPORT_FOR_TESTS 303 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 304 struct folio *locked_folio, 305 u64 *start, u64 *end) 306 { 307 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 308 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 309 const u64 orig_start = *start; 310 const u64 orig_end = *end; 311 /* The sanity tests may not set a valid fs_info. */ 312 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 313 u64 delalloc_start; 314 u64 delalloc_end; 315 bool found; 316 struct extent_state *cached_state = NULL; 317 int ret; 318 int loops = 0; 319 320 /* Caller should pass a valid @end to indicate the search range end */ 321 ASSERT(orig_end > orig_start); 322 323 /* The range should at least cover part of the folio */ 324 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) || 325 orig_end <= folio_pos(locked_folio))); 326 again: 327 /* step one, find a bunch of delalloc bytes starting at start */ 328 delalloc_start = *start; 329 delalloc_end = 0; 330 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 331 max_bytes, &cached_state); 332 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 333 *start = delalloc_start; 334 335 /* @delalloc_end can be -1, never go beyond @orig_end */ 336 *end = min(delalloc_end, orig_end); 337 btrfs_free_extent_state(cached_state); 338 return false; 339 } 340 341 /* 342 * start comes from the offset of locked_folio. We have to lock 343 * folios in order, so we can't process delalloc bytes before 344 * locked_folio 345 */ 346 if (delalloc_start < *start) 347 delalloc_start = *start; 348 349 /* 350 * make sure to limit the number of folios we try to lock down 351 */ 352 if (delalloc_end + 1 - delalloc_start > max_bytes) 353 delalloc_end = delalloc_start + max_bytes - 1; 354 355 /* step two, lock all the folioss after the folios that has start */ 356 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 357 delalloc_end); 358 ASSERT(!ret || ret == -EAGAIN); 359 if (ret == -EAGAIN) { 360 /* some of the folios are gone, lets avoid looping by 361 * shortening the size of the delalloc range we're searching 362 */ 363 btrfs_free_extent_state(cached_state); 364 cached_state = NULL; 365 if (!loops) { 366 max_bytes = PAGE_SIZE; 367 loops = 1; 368 goto again; 369 } else { 370 found = false; 371 goto out_failed; 372 } 373 } 374 375 /* step three, lock the state bits for the whole range */ 376 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 377 378 /* then test to make sure it is all still delalloc */ 379 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, 380 EXTENT_DELALLOC, cached_state); 381 382 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 383 if (!ret) { 384 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 385 delalloc_end); 386 cond_resched(); 387 goto again; 388 } 389 *start = delalloc_start; 390 *end = delalloc_end; 391 out_failed: 392 return found; 393 } 394 395 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 396 const struct folio *locked_folio, 397 struct extent_state **cached, 398 u32 clear_bits, unsigned long page_ops) 399 { 400 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 401 402 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 403 end, page_ops); 404 } 405 406 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 407 { 408 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 409 410 if (!fsverity_active(folio->mapping->host) || 411 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 412 start >= i_size_read(folio->mapping->host)) 413 return true; 414 return fsverity_verify_folio(folio); 415 } 416 417 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 418 { 419 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 420 421 ASSERT(folio_pos(folio) <= start && 422 start + len <= folio_pos(folio) + folio_size(folio)); 423 424 if (uptodate && btrfs_verify_folio(folio, start, len)) 425 btrfs_folio_set_uptodate(fs_info, folio, start, len); 426 else 427 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 428 429 if (!btrfs_is_subpage(fs_info, folio)) 430 folio_unlock(folio); 431 else 432 btrfs_folio_end_lock(fs_info, folio, start, len); 433 } 434 435 /* 436 * After a write IO is done, we need to: 437 * 438 * - clear the uptodate bits on error 439 * - clear the writeback bits in the extent tree for the range 440 * - filio_end_writeback() if there is no more pending io for the folio 441 * 442 * Scheduling is not allowed, so the extent state tree is expected 443 * to have one and only one object corresponding to this IO. 444 */ 445 static void end_bbio_data_write(struct btrfs_bio *bbio) 446 { 447 struct btrfs_fs_info *fs_info = bbio->fs_info; 448 struct bio *bio = &bbio->bio; 449 int error = blk_status_to_errno(bio->bi_status); 450 struct folio_iter fi; 451 const u32 sectorsize = fs_info->sectorsize; 452 453 ASSERT(!bio_flagged(bio, BIO_CLONED)); 454 bio_for_each_folio_all(fi, bio) { 455 struct folio *folio = fi.folio; 456 u64 start = folio_pos(folio) + fi.offset; 457 u32 len = fi.length; 458 459 /* Our read/write should always be sector aligned. */ 460 if (!IS_ALIGNED(fi.offset, sectorsize)) 461 btrfs_err(fs_info, 462 "partial page write in btrfs with offset %zu and length %zu", 463 fi.offset, fi.length); 464 else if (!IS_ALIGNED(fi.length, sectorsize)) 465 btrfs_info(fs_info, 466 "incomplete page write with offset %zu and length %zu", 467 fi.offset, fi.length); 468 469 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 470 !error); 471 if (error) 472 mapping_set_error(folio->mapping, error); 473 btrfs_folio_clear_writeback(fs_info, folio, start, len); 474 } 475 476 bio_put(bio); 477 } 478 479 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 480 { 481 ASSERT(folio_test_locked(folio)); 482 if (!btrfs_is_subpage(fs_info, folio)) 483 return; 484 485 ASSERT(folio_test_private(folio)); 486 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); 487 } 488 489 /* 490 * After a data read IO is done, we need to: 491 * 492 * - clear the uptodate bits on error 493 * - set the uptodate bits if things worked 494 * - set the folio up to date if all extents in the tree are uptodate 495 * - clear the lock bit in the extent tree 496 * - unlock the folio if there are no other extents locked for it 497 * 498 * Scheduling is not allowed, so the extent state tree is expected 499 * to have one and only one object corresponding to this IO. 500 */ 501 static void end_bbio_data_read(struct btrfs_bio *bbio) 502 { 503 struct btrfs_fs_info *fs_info = bbio->fs_info; 504 struct bio *bio = &bbio->bio; 505 struct folio_iter fi; 506 507 ASSERT(!bio_flagged(bio, BIO_CLONED)); 508 bio_for_each_folio_all(fi, &bbio->bio) { 509 bool uptodate = !bio->bi_status; 510 struct folio *folio = fi.folio; 511 struct inode *inode = folio->mapping->host; 512 u64 start = folio_pos(folio) + fi.offset; 513 514 btrfs_debug(fs_info, 515 "%s: bi_sector=%llu, err=%d, mirror=%u", 516 __func__, bio->bi_iter.bi_sector, bio->bi_status, 517 bbio->mirror_num); 518 519 520 if (likely(uptodate)) { 521 u64 end = start + fi.length - 1; 522 loff_t i_size = i_size_read(inode); 523 524 /* 525 * Zero out the remaining part if this range straddles 526 * i_size. 527 * 528 * Here we should only zero the range inside the folio, 529 * not touch anything else. 530 * 531 * NOTE: i_size is exclusive while end is inclusive and 532 * folio_contains() takes PAGE_SIZE units. 533 */ 534 if (folio_contains(folio, i_size >> PAGE_SHIFT) && 535 i_size <= end) { 536 u32 zero_start = max(offset_in_folio(folio, i_size), 537 offset_in_folio(folio, start)); 538 u32 zero_len = offset_in_folio(folio, end) + 1 - 539 zero_start; 540 541 folio_zero_range(folio, zero_start, zero_len); 542 } 543 } 544 545 /* Update page status and unlock. */ 546 end_folio_read(folio, uptodate, start, fi.length); 547 } 548 bio_put(bio); 549 } 550 551 /* 552 * Populate every free slot in a provided array with folios using GFP_NOFS. 553 * 554 * @nr_folios: number of folios to allocate 555 * @folio_array: the array to fill with folios; any existing non-NULL entries in 556 * the array will be skipped 557 * 558 * Return: 0 if all folios were able to be allocated; 559 * -ENOMEM otherwise, the partially allocated folios would be freed and 560 * the array slots zeroed 561 */ 562 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 563 { 564 for (int i = 0; i < nr_folios; i++) { 565 if (folio_array[i]) 566 continue; 567 folio_array[i] = folio_alloc(GFP_NOFS, 0); 568 if (!folio_array[i]) 569 goto error; 570 } 571 return 0; 572 error: 573 for (int i = 0; i < nr_folios; i++) { 574 if (folio_array[i]) 575 folio_put(folio_array[i]); 576 } 577 return -ENOMEM; 578 } 579 580 /* 581 * Populate every free slot in a provided array with pages, using GFP_NOFS. 582 * 583 * @nr_pages: number of pages to allocate 584 * @page_array: the array to fill with pages; any existing non-null entries in 585 * the array will be skipped 586 * @nofail: whether using __GFP_NOFAIL flag 587 * 588 * Return: 0 if all pages were able to be allocated; 589 * -ENOMEM otherwise, the partially allocated pages would be freed and 590 * the array slots zeroed 591 */ 592 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 593 bool nofail) 594 { 595 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 596 unsigned int allocated; 597 598 for (allocated = 0; allocated < nr_pages;) { 599 unsigned int last = allocated; 600 601 allocated = alloc_pages_bulk(gfp, nr_pages, page_array); 602 if (unlikely(allocated == last)) { 603 /* No progress, fail and do cleanup. */ 604 for (int i = 0; i < allocated; i++) { 605 __free_page(page_array[i]); 606 page_array[i] = NULL; 607 } 608 return -ENOMEM; 609 } 610 } 611 return 0; 612 } 613 614 /* 615 * Populate needed folios for the extent buffer. 616 * 617 * For now, the folios populated are always in order 0 (aka, single page). 618 */ 619 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 620 { 621 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 622 int num_pages = num_extent_pages(eb); 623 int ret; 624 625 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 626 if (ret < 0) 627 return ret; 628 629 for (int i = 0; i < num_pages; i++) 630 eb->folios[i] = page_folio(page_array[i]); 631 eb->folio_size = PAGE_SIZE; 632 eb->folio_shift = PAGE_SHIFT; 633 return 0; 634 } 635 636 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 637 u64 disk_bytenr, loff_t file_offset) 638 { 639 struct bio *bio = &bio_ctrl->bbio->bio; 640 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 641 642 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 643 /* 644 * For compression, all IO should have its logical bytenr set 645 * to the starting bytenr of the compressed extent. 646 */ 647 return bio->bi_iter.bi_sector == sector; 648 } 649 650 /* 651 * To merge into a bio both the disk sector and the logical offset in 652 * the file need to be contiguous. 653 */ 654 return bio_ctrl->next_file_offset == file_offset && 655 bio_end_sector(bio) == sector; 656 } 657 658 static void alloc_new_bio(struct btrfs_inode *inode, 659 struct btrfs_bio_ctrl *bio_ctrl, 660 u64 disk_bytenr, u64 file_offset) 661 { 662 struct btrfs_fs_info *fs_info = inode->root->fs_info; 663 struct btrfs_bio *bbio; 664 665 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 666 bio_ctrl->end_io_func, NULL); 667 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 668 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 669 bbio->inode = inode; 670 bbio->file_offset = file_offset; 671 bio_ctrl->bbio = bbio; 672 bio_ctrl->len_to_oe_boundary = U32_MAX; 673 bio_ctrl->next_file_offset = file_offset; 674 675 /* Limit data write bios to the ordered boundary. */ 676 if (bio_ctrl->wbc) { 677 struct btrfs_ordered_extent *ordered; 678 679 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 680 if (ordered) { 681 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 682 ordered->file_offset + 683 ordered->disk_num_bytes - file_offset); 684 bbio->ordered = ordered; 685 } 686 687 /* 688 * Pick the last added device to support cgroup writeback. For 689 * multi-device file systems this means blk-cgroup policies have 690 * to always be set on the last added/replaced device. 691 * This is a bit odd but has been like that for a long time. 692 */ 693 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 694 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 695 } 696 } 697 698 /* 699 * @disk_bytenr: logical bytenr where the write will be 700 * @page: page to add to the bio 701 * @size: portion of page that we want to write to 702 * @pg_offset: offset of the new bio or to check whether we are adding 703 * a contiguous page to the previous one 704 * 705 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 706 * new one in @bio_ctrl->bbio. 707 * The mirror number for this IO should already be initizlied in 708 * @bio_ctrl->mirror_num. 709 */ 710 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 711 u64 disk_bytenr, struct folio *folio, 712 size_t size, unsigned long pg_offset) 713 { 714 struct btrfs_inode *inode = folio_to_inode(folio); 715 loff_t file_offset = folio_pos(folio) + pg_offset; 716 717 ASSERT(pg_offset + size <= folio_size(folio)); 718 ASSERT(bio_ctrl->end_io_func); 719 720 if (bio_ctrl->bbio && 721 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) 722 submit_one_bio(bio_ctrl); 723 724 do { 725 u32 len = size; 726 727 /* Allocate new bio if needed */ 728 if (!bio_ctrl->bbio) 729 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); 730 731 /* Cap to the current ordered extent boundary if there is one. */ 732 if (len > bio_ctrl->len_to_oe_boundary) { 733 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 734 ASSERT(is_data_inode(inode)); 735 len = bio_ctrl->len_to_oe_boundary; 736 } 737 738 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 739 /* bio full: move on to a new one */ 740 submit_one_bio(bio_ctrl); 741 continue; 742 } 743 bio_ctrl->next_file_offset += len; 744 745 if (bio_ctrl->wbc) 746 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); 747 748 size -= len; 749 pg_offset += len; 750 disk_bytenr += len; 751 file_offset += len; 752 753 /* 754 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 755 * sector aligned. alloc_new_bio() then sets it to the end of 756 * our ordered extent for writes into zoned devices. 757 * 758 * When len_to_oe_boundary is tracking an ordered extent, we 759 * trust the ordered extent code to align things properly, and 760 * the check above to cap our write to the ordered extent 761 * boundary is correct. 762 * 763 * When len_to_oe_boundary is U32_MAX, the cap above would 764 * result in a 4095 byte IO for the last folio right before 765 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 766 * the checks required to make sure we don't overflow the bio, 767 * and we should just ignore len_to_oe_boundary completely 768 * unless we're using it to track an ordered extent. 769 * 770 * It's pretty hard to make a bio sized U32_MAX, but it can 771 * happen when the page cache is able to feed us contiguous 772 * folios for large extents. 773 */ 774 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 775 bio_ctrl->len_to_oe_boundary -= len; 776 777 /* Ordered extent boundary: move on to a new bio. */ 778 if (bio_ctrl->len_to_oe_boundary == 0) 779 submit_one_bio(bio_ctrl); 780 } while (size); 781 } 782 783 static int attach_extent_buffer_folio(struct extent_buffer *eb, 784 struct folio *folio, 785 struct btrfs_subpage *prealloc) 786 { 787 struct btrfs_fs_info *fs_info = eb->fs_info; 788 int ret = 0; 789 790 /* 791 * If the page is mapped to btree inode, we should hold the private 792 * lock to prevent race. 793 * For cloned or dummy extent buffers, their pages are not mapped and 794 * will not race with any other ebs. 795 */ 796 if (folio->mapping) 797 lockdep_assert_held(&folio->mapping->i_private_lock); 798 799 if (!btrfs_meta_is_subpage(fs_info)) { 800 if (!folio_test_private(folio)) 801 folio_attach_private(folio, eb); 802 else 803 WARN_ON(folio_get_private(folio) != eb); 804 return 0; 805 } 806 807 /* Already mapped, just free prealloc */ 808 if (folio_test_private(folio)) { 809 btrfs_free_subpage(prealloc); 810 return 0; 811 } 812 813 if (prealloc) 814 /* Has preallocated memory for subpage */ 815 folio_attach_private(folio, prealloc); 816 else 817 /* Do new allocation to attach subpage */ 818 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 819 return ret; 820 } 821 822 int set_folio_extent_mapped(struct folio *folio) 823 { 824 struct btrfs_fs_info *fs_info; 825 826 ASSERT(folio->mapping); 827 828 if (folio_test_private(folio)) 829 return 0; 830 831 fs_info = folio_to_fs_info(folio); 832 833 if (btrfs_is_subpage(fs_info, folio)) 834 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 835 836 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 837 return 0; 838 } 839 840 void clear_folio_extent_mapped(struct folio *folio) 841 { 842 struct btrfs_fs_info *fs_info; 843 844 ASSERT(folio->mapping); 845 846 if (!folio_test_private(folio)) 847 return; 848 849 fs_info = folio_to_fs_info(folio); 850 if (btrfs_is_subpage(fs_info, folio)) 851 return btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 852 853 folio_detach_private(folio); 854 } 855 856 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 857 struct folio *folio, u64 start, 858 u64 len, struct extent_map **em_cached) 859 { 860 struct extent_map *em; 861 862 ASSERT(em_cached); 863 864 if (*em_cached) { 865 em = *em_cached; 866 if (btrfs_extent_map_in_tree(em) && start >= em->start && 867 start < btrfs_extent_map_end(em)) { 868 refcount_inc(&em->refs); 869 return em; 870 } 871 872 btrfs_free_extent_map(em); 873 *em_cached = NULL; 874 } 875 876 em = btrfs_get_extent(inode, folio, start, len); 877 if (!IS_ERR(em)) { 878 BUG_ON(*em_cached); 879 refcount_inc(&em->refs); 880 *em_cached = em; 881 } 882 883 return em; 884 } 885 /* 886 * basic readpage implementation. Locked extent state structs are inserted 887 * into the tree that are removed when the IO is done (by the end_io 888 * handlers) 889 * XXX JDM: This needs looking at to ensure proper page locking 890 * return 0 on success, otherwise return error 891 */ 892 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 893 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 894 { 895 struct inode *inode = folio->mapping->host; 896 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 897 u64 start = folio_pos(folio); 898 const u64 end = start + folio_size(folio) - 1; 899 u64 extent_offset; 900 u64 last_byte = i_size_read(inode); 901 struct extent_map *em; 902 int ret = 0; 903 const size_t blocksize = fs_info->sectorsize; 904 905 ret = set_folio_extent_mapped(folio); 906 if (ret < 0) { 907 folio_unlock(folio); 908 return ret; 909 } 910 911 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { 912 size_t zero_offset = offset_in_folio(folio, last_byte); 913 914 if (zero_offset) 915 folio_zero_range(folio, zero_offset, 916 folio_size(folio) - zero_offset); 917 } 918 bio_ctrl->end_io_func = end_bbio_data_read; 919 begin_folio_read(fs_info, folio); 920 for (u64 cur = start; cur <= end; cur += blocksize) { 921 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 922 unsigned long pg_offset = offset_in_folio(folio, cur); 923 bool force_bio_submit = false; 924 u64 disk_bytenr; 925 u64 block_start; 926 927 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 928 if (cur >= last_byte) { 929 folio_zero_range(folio, pg_offset, end - cur + 1); 930 end_folio_read(folio, true, cur, end - cur + 1); 931 break; 932 } 933 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 934 end_folio_read(folio, true, cur, blocksize); 935 continue; 936 } 937 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 938 if (IS_ERR(em)) { 939 end_folio_read(folio, false, cur, end + 1 - cur); 940 return PTR_ERR(em); 941 } 942 extent_offset = cur - em->start; 943 BUG_ON(btrfs_extent_map_end(em) <= cur); 944 BUG_ON(end < cur); 945 946 compress_type = btrfs_extent_map_compression(em); 947 948 if (compress_type != BTRFS_COMPRESS_NONE) 949 disk_bytenr = em->disk_bytenr; 950 else 951 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 952 953 if (em->flags & EXTENT_FLAG_PREALLOC) 954 block_start = EXTENT_MAP_HOLE; 955 else 956 block_start = btrfs_extent_map_block_start(em); 957 958 /* 959 * If we have a file range that points to a compressed extent 960 * and it's followed by a consecutive file range that points 961 * to the same compressed extent (possibly with a different 962 * offset and/or length, so it either points to the whole extent 963 * or only part of it), we must make sure we do not submit a 964 * single bio to populate the folios for the 2 ranges because 965 * this makes the compressed extent read zero out the folios 966 * belonging to the 2nd range. Imagine the following scenario: 967 * 968 * File layout 969 * [0 - 8K] [8K - 24K] 970 * | | 971 * | | 972 * points to extent X, points to extent X, 973 * offset 4K, length of 8K offset 0, length 16K 974 * 975 * [extent X, compressed length = 4K uncompressed length = 16K] 976 * 977 * If the bio to read the compressed extent covers both ranges, 978 * it will decompress extent X into the folios belonging to the 979 * first range and then it will stop, zeroing out the remaining 980 * folios that belong to the other range that points to extent X. 981 * So here we make sure we submit 2 bios, one for the first 982 * range and another one for the third range. Both will target 983 * the same physical extent from disk, but we can't currently 984 * make the compressed bio endio callback populate the folios 985 * for both ranges because each compressed bio is tightly 986 * coupled with a single extent map, and each range can have 987 * an extent map with a different offset value relative to the 988 * uncompressed data of our extent and different lengths. This 989 * is a corner case so we prioritize correctness over 990 * non-optimal behavior (submitting 2 bios for the same extent). 991 */ 992 if (compress_type != BTRFS_COMPRESS_NONE && 993 prev_em_start && *prev_em_start != (u64)-1 && 994 *prev_em_start != em->start) 995 force_bio_submit = true; 996 997 if (prev_em_start) 998 *prev_em_start = em->start; 999 1000 btrfs_free_extent_map(em); 1001 em = NULL; 1002 1003 /* we've found a hole, just zero and go on */ 1004 if (block_start == EXTENT_MAP_HOLE) { 1005 folio_zero_range(folio, pg_offset, blocksize); 1006 end_folio_read(folio, true, cur, blocksize); 1007 continue; 1008 } 1009 /* the get_extent function already copied into the folio */ 1010 if (block_start == EXTENT_MAP_INLINE) { 1011 end_folio_read(folio, true, cur, blocksize); 1012 continue; 1013 } 1014 1015 if (bio_ctrl->compress_type != compress_type) { 1016 submit_one_bio(bio_ctrl); 1017 bio_ctrl->compress_type = compress_type; 1018 } 1019 1020 if (force_bio_submit) 1021 submit_one_bio(bio_ctrl); 1022 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, 1023 pg_offset); 1024 } 1025 return 0; 1026 } 1027 1028 /* 1029 * Check if we can skip waiting the @ordered extent covering the block at @fileoff. 1030 * 1031 * @fileoff: Both input and output. 1032 * Input as the file offset where the check should start at. 1033 * Output as where the next check should start at, 1034 * if the function returns true. 1035 * 1036 * Return true if we can skip to @fileoff. The caller needs to check the new 1037 * @fileoff value to make sure it covers the full range, before skipping the 1038 * full OE. 1039 * 1040 * Return false if we must wait for the ordered extent. 1041 */ 1042 static bool can_skip_one_ordered_range(struct btrfs_inode *inode, 1043 struct btrfs_ordered_extent *ordered, 1044 u64 *fileoff) 1045 { 1046 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1047 struct folio *folio; 1048 const u32 blocksize = fs_info->sectorsize; 1049 u64 cur = *fileoff; 1050 bool ret; 1051 1052 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); 1053 1054 /* 1055 * We should have locked the folio(s) for range [start, end], thus 1056 * there must be a folio and it must be locked. 1057 */ 1058 ASSERT(!IS_ERR(folio)); 1059 ASSERT(folio_test_locked(folio)); 1060 1061 /* 1062 * There are several cases for the folio and OE combination: 1063 * 1064 * 1) Folio has no private flag 1065 * The OE has all its IO done but not yet finished, and folio got 1066 * invalidated. 1067 * 1068 * Have we have to wait for the OE to finish, as it may contain the 1069 * to-be-inserted data checksum. 1070 * Without the data checksum inserted into the csum tree, read will 1071 * just fail with missing csum. 1072 */ 1073 if (!folio_test_private(folio)) { 1074 ret = false; 1075 goto out; 1076 } 1077 1078 /* 1079 * 2) The first block is DIRTY. 1080 * 1081 * This means the OE is created by some other folios whose file pos is 1082 * before this one. And since we are holding the folio lock, the writeback 1083 * of this folio cannot start. 1084 * 1085 * We must skip the whole OE, because it will never start until we 1086 * finished our folio read and unlocked the folio. 1087 */ 1088 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { 1089 u64 range_len = min(folio_pos(folio) + folio_size(folio), 1090 ordered->file_offset + ordered->num_bytes) - cur; 1091 1092 ret = true; 1093 /* 1094 * At least inside the folio, all the remaining blocks should 1095 * also be dirty. 1096 */ 1097 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); 1098 *fileoff = ordered->file_offset + ordered->num_bytes; 1099 goto out; 1100 } 1101 1102 /* 1103 * 3) The first block is uptodate. 1104 * 1105 * At least the first block can be skipped, but we are still not fully 1106 * sure. E.g. if the OE has some other folios in the range that cannot 1107 * be skipped. 1108 * So we return true and update @next_ret to the OE/folio boundary. 1109 */ 1110 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { 1111 u64 range_len = min(folio_pos(folio) + folio_size(folio), 1112 ordered->file_offset + ordered->num_bytes) - cur; 1113 1114 /* 1115 * The whole range to the OE end or folio boundary should also 1116 * be uptodate. 1117 */ 1118 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); 1119 ret = true; 1120 *fileoff = cur + range_len; 1121 goto out; 1122 } 1123 1124 /* 1125 * 4) The first block is not uptodate. 1126 * 1127 * This means the folio is invalidated after the writeback was finished, 1128 * but by some other operations (e.g. block aligned buffered write) the 1129 * folio is inserted into filemap. 1130 * Very much the same as case 1). 1131 */ 1132 ret = false; 1133 out: 1134 folio_put(folio); 1135 return ret; 1136 } 1137 1138 static bool can_skip_ordered_extent(struct btrfs_inode *inode, 1139 struct btrfs_ordered_extent *ordered, 1140 u64 start, u64 end) 1141 { 1142 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); 1143 u64 cur = max(start, ordered->file_offset); 1144 1145 while (cur < range_end) { 1146 bool can_skip; 1147 1148 can_skip = can_skip_one_ordered_range(inode, ordered, &cur); 1149 if (!can_skip) 1150 return false; 1151 } 1152 return true; 1153 } 1154 1155 /* 1156 * Locking helper to make sure we get a stable view of extent maps for the 1157 * involved range. 1158 * 1159 * This is for folio read paths (read and readahead), thus the involved range 1160 * should have all the folios locked. 1161 */ 1162 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, 1163 struct extent_state **cached_state) 1164 { 1165 u64 cur_pos; 1166 1167 /* Caller must provide a valid @cached_state. */ 1168 ASSERT(cached_state); 1169 1170 /* The range must at least be page aligned, as all read paths are folio based. */ 1171 ASSERT(IS_ALIGNED(start, PAGE_SIZE)); 1172 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); 1173 1174 again: 1175 btrfs_lock_extent(&inode->io_tree, start, end, cached_state); 1176 cur_pos = start; 1177 while (cur_pos < end) { 1178 struct btrfs_ordered_extent *ordered; 1179 1180 ordered = btrfs_lookup_ordered_range(inode, cur_pos, 1181 end - cur_pos + 1); 1182 /* 1183 * No ordered extents in the range, and we hold the extent lock, 1184 * no one can modify the extent maps in the range, we're safe to return. 1185 */ 1186 if (!ordered) 1187 break; 1188 1189 /* Check if we can skip waiting for the whole OE. */ 1190 if (can_skip_ordered_extent(inode, ordered, start, end)) { 1191 cur_pos = min(ordered->file_offset + ordered->num_bytes, 1192 end + 1); 1193 btrfs_put_ordered_extent(ordered); 1194 continue; 1195 } 1196 1197 /* Now wait for the OE to finish. */ 1198 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); 1199 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); 1200 btrfs_put_ordered_extent(ordered); 1201 /* We have unlocked the whole range, restart from the beginning. */ 1202 goto again; 1203 } 1204 } 1205 1206 int btrfs_read_folio(struct file *file, struct folio *folio) 1207 { 1208 struct btrfs_inode *inode = folio_to_inode(folio); 1209 const u64 start = folio_pos(folio); 1210 const u64 end = start + folio_size(folio) - 1; 1211 struct extent_state *cached_state = NULL; 1212 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1213 struct extent_map *em_cached = NULL; 1214 int ret; 1215 1216 lock_extents_for_read(inode, start, end, &cached_state); 1217 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1218 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 1219 1220 btrfs_free_extent_map(em_cached); 1221 1222 /* 1223 * If btrfs_do_readpage() failed we will want to submit the assembled 1224 * bio to do the cleanup. 1225 */ 1226 submit_one_bio(&bio_ctrl); 1227 return ret; 1228 } 1229 1230 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1231 u64 start, u32 len) 1232 { 1233 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1234 const u64 folio_start = folio_pos(folio); 1235 unsigned int start_bit; 1236 unsigned int nbits; 1237 1238 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); 1239 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1240 nbits = len >> fs_info->sectorsize_bits; 1241 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1242 bitmap_set(delalloc_bitmap, start_bit, nbits); 1243 } 1244 1245 static bool find_next_delalloc_bitmap(struct folio *folio, 1246 unsigned long *delalloc_bitmap, u64 start, 1247 u64 *found_start, u32 *found_len) 1248 { 1249 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1250 const u64 folio_start = folio_pos(folio); 1251 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); 1252 unsigned int start_bit; 1253 unsigned int first_zero; 1254 unsigned int first_set; 1255 1256 ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); 1257 1258 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1259 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1260 if (first_set >= bitmap_size) 1261 return false; 1262 1263 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1264 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1265 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1266 return true; 1267 } 1268 1269 /* 1270 * Do all of the delayed allocation setup. 1271 * 1272 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1273 * The @folio should no longer be touched (treat it as already unlocked). 1274 * 1275 * Return 0 if there is still dirty block that needs to be submitted through 1276 * extent_writepage_io(). 1277 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1278 * submitted, and @folio is still kept locked. 1279 * 1280 * Return <0 if there is any error hit. 1281 * Any allocated ordered extent range covering this folio will be marked 1282 * finished (IOERR), and @folio is still kept locked. 1283 */ 1284 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1285 struct folio *folio, 1286 struct btrfs_bio_ctrl *bio_ctrl) 1287 { 1288 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1289 struct writeback_control *wbc = bio_ctrl->wbc; 1290 const bool is_subpage = btrfs_is_subpage(fs_info, folio); 1291 const u64 page_start = folio_pos(folio); 1292 const u64 page_end = page_start + folio_size(folio) - 1; 1293 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1294 unsigned long delalloc_bitmap = 0; 1295 /* 1296 * Save the last found delalloc end. As the delalloc end can go beyond 1297 * page boundary, thus we cannot rely on subpage bitmap to locate the 1298 * last delalloc end. 1299 */ 1300 u64 last_delalloc_end = 0; 1301 /* 1302 * The range end (exclusive) of the last successfully finished delalloc 1303 * range. 1304 * Any range covered by ordered extent must either be manually marked 1305 * finished (error handling), or has IO submitted (and finish the 1306 * ordered extent normally). 1307 * 1308 * This records the end of ordered extent cleanup if we hit an error. 1309 */ 1310 u64 last_finished_delalloc_end = page_start; 1311 u64 delalloc_start = page_start; 1312 u64 delalloc_end = page_end; 1313 u64 delalloc_to_write = 0; 1314 int ret = 0; 1315 int bit; 1316 1317 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1318 if (btrfs_is_subpage(fs_info, folio)) { 1319 ASSERT(blocks_per_folio > 1); 1320 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1321 } else { 1322 bio_ctrl->submit_bitmap = 1; 1323 } 1324 1325 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1326 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1327 1328 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1329 } 1330 1331 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1332 while (delalloc_start < page_end) { 1333 delalloc_end = page_end; 1334 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1335 &delalloc_start, &delalloc_end)) { 1336 delalloc_start = delalloc_end + 1; 1337 continue; 1338 } 1339 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1340 min(delalloc_end, page_end) + 1 - delalloc_start); 1341 last_delalloc_end = delalloc_end; 1342 delalloc_start = delalloc_end + 1; 1343 } 1344 delalloc_start = page_start; 1345 1346 if (!last_delalloc_end) 1347 goto out; 1348 1349 /* Run the delalloc ranges for the above locked ranges. */ 1350 while (delalloc_start < page_end) { 1351 u64 found_start; 1352 u32 found_len; 1353 bool found; 1354 1355 if (!is_subpage) { 1356 /* 1357 * For non-subpage case, the found delalloc range must 1358 * cover this folio and there must be only one locked 1359 * delalloc range. 1360 */ 1361 found_start = page_start; 1362 found_len = last_delalloc_end + 1 - found_start; 1363 found = true; 1364 } else { 1365 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1366 delalloc_start, &found_start, &found_len); 1367 } 1368 if (!found) 1369 break; 1370 /* 1371 * The subpage range covers the last sector, the delalloc range may 1372 * end beyond the folio boundary, use the saved delalloc_end 1373 * instead. 1374 */ 1375 if (found_start + found_len >= page_end) 1376 found_len = last_delalloc_end + 1 - found_start; 1377 1378 if (ret >= 0) { 1379 /* 1380 * Some delalloc range may be created by previous folios. 1381 * Thus we still need to clean up this range during error 1382 * handling. 1383 */ 1384 last_finished_delalloc_end = found_start; 1385 /* No errors hit so far, run the current delalloc range. */ 1386 ret = btrfs_run_delalloc_range(inode, folio, 1387 found_start, 1388 found_start + found_len - 1, 1389 wbc); 1390 if (ret >= 0) 1391 last_finished_delalloc_end = found_start + found_len; 1392 if (unlikely(ret < 0)) 1393 btrfs_err_rl(fs_info, 1394 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1395 btrfs_root_id(inode->root), 1396 btrfs_ino(inode), 1397 folio_pos(folio), 1398 blocks_per_folio, 1399 &bio_ctrl->submit_bitmap, 1400 found_start, found_len, ret); 1401 } else { 1402 /* 1403 * We've hit an error during previous delalloc range, 1404 * have to cleanup the remaining locked ranges. 1405 */ 1406 btrfs_unlock_extent(&inode->io_tree, found_start, 1407 found_start + found_len - 1, NULL); 1408 unlock_delalloc_folio(&inode->vfs_inode, folio, 1409 found_start, 1410 found_start + found_len - 1); 1411 } 1412 1413 /* 1414 * We have some ranges that's going to be submitted asynchronously 1415 * (compression or inline). These range have their own control 1416 * on when to unlock the pages. We should not touch them 1417 * anymore, so clear the range from the submission bitmap. 1418 */ 1419 if (ret > 0) { 1420 unsigned int start_bit = (found_start - page_start) >> 1421 fs_info->sectorsize_bits; 1422 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1423 page_start) >> fs_info->sectorsize_bits; 1424 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1425 } 1426 /* 1427 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1428 * thus for the last range, we cannot touch the folio anymore. 1429 */ 1430 if (found_start + found_len >= last_delalloc_end + 1) 1431 break; 1432 1433 delalloc_start = found_start + found_len; 1434 } 1435 /* 1436 * It's possible we had some ordered extents created before we hit 1437 * an error, cleanup non-async successfully created delalloc ranges. 1438 */ 1439 if (unlikely(ret < 0)) { 1440 unsigned int bitmap_size = min( 1441 (last_finished_delalloc_end - page_start) >> 1442 fs_info->sectorsize_bits, 1443 blocks_per_folio); 1444 1445 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1446 btrfs_mark_ordered_io_finished(inode, folio, 1447 page_start + (bit << fs_info->sectorsize_bits), 1448 fs_info->sectorsize, false); 1449 return ret; 1450 } 1451 out: 1452 if (last_delalloc_end) 1453 delalloc_end = last_delalloc_end; 1454 else 1455 delalloc_end = page_end; 1456 /* 1457 * delalloc_end is already one less than the total length, so 1458 * we don't subtract one from PAGE_SIZE. 1459 */ 1460 delalloc_to_write += 1461 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1462 1463 /* 1464 * If all ranges are submitted asynchronously, we just need to account 1465 * for them here. 1466 */ 1467 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { 1468 wbc->nr_to_write -= delalloc_to_write; 1469 return 1; 1470 } 1471 1472 if (wbc->nr_to_write < delalloc_to_write) { 1473 int thresh = 8192; 1474 1475 if (delalloc_to_write < thresh * 2) 1476 thresh = delalloc_to_write; 1477 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1478 thresh); 1479 } 1480 1481 return 0; 1482 } 1483 1484 /* 1485 * Return 0 if we have submitted or queued the sector for submission. 1486 * Return <0 for critical errors. 1487 * 1488 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1489 */ 1490 static int submit_one_sector(struct btrfs_inode *inode, 1491 struct folio *folio, 1492 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1493 loff_t i_size) 1494 { 1495 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1496 struct extent_map *em; 1497 u64 block_start; 1498 u64 disk_bytenr; 1499 u64 extent_offset; 1500 u64 em_end; 1501 const u32 sectorsize = fs_info->sectorsize; 1502 1503 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1504 1505 /* @filepos >= i_size case should be handled by the caller. */ 1506 ASSERT(filepos < i_size); 1507 1508 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1509 if (IS_ERR(em)) 1510 return PTR_ERR(em); 1511 1512 extent_offset = filepos - em->start; 1513 em_end = btrfs_extent_map_end(em); 1514 ASSERT(filepos <= em_end); 1515 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1516 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1517 1518 block_start = btrfs_extent_map_block_start(em); 1519 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; 1520 1521 ASSERT(!btrfs_extent_map_is_compressed(em)); 1522 ASSERT(block_start != EXTENT_MAP_HOLE); 1523 ASSERT(block_start != EXTENT_MAP_INLINE); 1524 1525 btrfs_free_extent_map(em); 1526 em = NULL; 1527 1528 /* 1529 * Although the PageDirty bit is cleared before entering this 1530 * function, subpage dirty bit is not cleared. 1531 * So clear subpage dirty bit here so next time we won't submit 1532 * a folio for a range already written to disk. 1533 */ 1534 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1535 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1536 /* 1537 * Above call should set the whole folio with writeback flag, even 1538 * just for a single subpage sector. 1539 * As long as the folio is properly locked and the range is correct, 1540 * we should always get the folio with writeback flag. 1541 */ 1542 ASSERT(folio_test_writeback(folio)); 1543 1544 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1545 sectorsize, filepos - folio_pos(folio)); 1546 return 0; 1547 } 1548 1549 /* 1550 * Helper for extent_writepage(). This calls the writepage start hooks, 1551 * and does the loop to map the page into extents and bios. 1552 * 1553 * We return 1 if the IO is started and the page is unlocked, 1554 * 0 if all went well (page still locked) 1555 * < 0 if there were errors (page still locked) 1556 */ 1557 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1558 struct folio *folio, 1559 u64 start, u32 len, 1560 struct btrfs_bio_ctrl *bio_ctrl, 1561 loff_t i_size) 1562 { 1563 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1564 unsigned long range_bitmap = 0; 1565 bool submitted_io = false; 1566 bool error = false; 1567 const u64 folio_start = folio_pos(folio); 1568 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1569 u64 cur; 1570 int bit; 1571 int ret = 0; 1572 1573 ASSERT(start >= folio_start && 1574 start + len <= folio_start + folio_size(folio)); 1575 1576 ret = btrfs_writepage_cow_fixup(folio); 1577 if (ret == -EAGAIN) { 1578 /* Fixup worker will requeue */ 1579 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1580 folio_unlock(folio); 1581 return 1; 1582 } 1583 if (ret < 0) 1584 return ret; 1585 1586 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1587 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1588 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1589 blocks_per_folio); 1590 1591 bio_ctrl->end_io_func = end_bbio_data_write; 1592 1593 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { 1594 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1595 1596 if (cur >= i_size) { 1597 btrfs_mark_ordered_io_finished(inode, folio, cur, 1598 start + len - cur, true); 1599 /* 1600 * This range is beyond i_size, thus we don't need to 1601 * bother writing back. 1602 * But we still need to clear the dirty subpage bit, or 1603 * the next time the folio gets dirtied, we will try to 1604 * writeback the sectors with subpage dirty bits, 1605 * causing writeback without ordered extent. 1606 */ 1607 btrfs_folio_clear_dirty(fs_info, folio, cur, 1608 start + len - cur); 1609 break; 1610 } 1611 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1612 if (unlikely(ret < 0)) { 1613 /* 1614 * bio_ctrl may contain a bio crossing several folios. 1615 * Submit it immediately so that the bio has a chance 1616 * to finish normally, other than marked as error. 1617 */ 1618 submit_one_bio(bio_ctrl); 1619 /* 1620 * Failed to grab the extent map which should be very rare. 1621 * Since there is no bio submitted to finish the ordered 1622 * extent, we have to manually finish this sector. 1623 */ 1624 btrfs_mark_ordered_io_finished(inode, folio, cur, 1625 fs_info->sectorsize, false); 1626 error = true; 1627 continue; 1628 } 1629 submitted_io = true; 1630 } 1631 1632 /* 1633 * If we didn't submitted any sector (>= i_size), folio dirty get 1634 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1635 * by folio_start_writeback() if the folio is not dirty). 1636 * 1637 * Here we set writeback and clear for the range. If the full folio 1638 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1639 * 1640 * If we hit any error, the corresponding sector will still be dirty 1641 * thus no need to clear PAGECACHE_TAG_DIRTY. 1642 */ 1643 if (!submitted_io && !error) { 1644 btrfs_folio_set_writeback(fs_info, folio, start, len); 1645 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1646 } 1647 return ret; 1648 } 1649 1650 /* 1651 * the writepage semantics are similar to regular writepage. extent 1652 * records are inserted to lock ranges in the tree, and as dirty areas 1653 * are found, they are marked writeback. Then the lock bits are removed 1654 * and the end_io handler clears the writeback ranges 1655 * 1656 * Return 0 if everything goes well. 1657 * Return <0 for error. 1658 */ 1659 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1660 { 1661 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1662 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1663 int ret; 1664 size_t pg_offset; 1665 loff_t i_size = i_size_read(&inode->vfs_inode); 1666 unsigned long end_index = i_size >> PAGE_SHIFT; 1667 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); 1668 1669 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1670 1671 WARN_ON(!folio_test_locked(folio)); 1672 1673 pg_offset = offset_in_folio(folio, i_size); 1674 if (folio->index > end_index || 1675 (folio->index == end_index && !pg_offset)) { 1676 folio_invalidate(folio, 0, folio_size(folio)); 1677 folio_unlock(folio); 1678 return 0; 1679 } 1680 1681 if (folio_contains(folio, end_index)) 1682 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1683 1684 /* 1685 * Default to unlock the whole folio. 1686 * The proper bitmap can only be initialized until writepage_delalloc(). 1687 */ 1688 bio_ctrl->submit_bitmap = (unsigned long)-1; 1689 1690 /* 1691 * If the page is dirty but without private set, it's marked dirty 1692 * without informing the fs. 1693 * Nowadays that is a bug, since the introduction of 1694 * pin_user_pages*(). 1695 * 1696 * So here we check if the page has private set to rule out such 1697 * case. 1698 * But we also have a long history of relying on the COW fixup, 1699 * so here we only enable this check for experimental builds until 1700 * we're sure it's safe. 1701 */ 1702 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && 1703 unlikely(!folio_test_private(folio))) { 1704 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 1705 btrfs_err_rl(fs_info, 1706 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 1707 inode->root->root_key.objectid, 1708 btrfs_ino(inode), folio_pos(folio)); 1709 ret = -EUCLEAN; 1710 goto done; 1711 } 1712 1713 ret = set_folio_extent_mapped(folio); 1714 if (ret < 0) 1715 goto done; 1716 1717 ret = writepage_delalloc(inode, folio, bio_ctrl); 1718 if (ret == 1) 1719 return 0; 1720 if (ret) 1721 goto done; 1722 1723 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1724 folio_size(folio), bio_ctrl, i_size); 1725 if (ret == 1) 1726 return 0; 1727 if (ret < 0) 1728 btrfs_err_rl(fs_info, 1729 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1730 btrfs_root_id(inode->root), btrfs_ino(inode), 1731 folio_pos(folio), blocks_per_folio, 1732 &bio_ctrl->submit_bitmap, ret); 1733 1734 bio_ctrl->wbc->nr_to_write--; 1735 1736 done: 1737 if (ret < 0) 1738 mapping_set_error(folio->mapping, ret); 1739 /* 1740 * Only unlock ranges that are submitted. As there can be some async 1741 * submitted ranges inside the folio. 1742 */ 1743 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1744 ASSERT(ret <= 0); 1745 return ret; 1746 } 1747 1748 /* 1749 * Lock extent buffer status and pages for writeback. 1750 * 1751 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1752 * extent buffer is not dirty) 1753 * Return %true is the extent buffer is submitted to bio. 1754 */ 1755 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1756 struct writeback_control *wbc) 1757 { 1758 struct btrfs_fs_info *fs_info = eb->fs_info; 1759 bool ret = false; 1760 1761 btrfs_tree_lock(eb); 1762 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1763 btrfs_tree_unlock(eb); 1764 if (wbc->sync_mode != WB_SYNC_ALL) 1765 return false; 1766 wait_on_extent_buffer_writeback(eb); 1767 btrfs_tree_lock(eb); 1768 } 1769 1770 /* 1771 * We need to do this to prevent races in people who check if the eb is 1772 * under IO since we can end up having no IO bits set for a short period 1773 * of time. 1774 */ 1775 spin_lock(&eb->refs_lock); 1776 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1777 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits); 1778 unsigned long flags; 1779 1780 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1781 spin_unlock(&eb->refs_lock); 1782 1783 xas_lock_irqsave(&xas, flags); 1784 xas_load(&xas); 1785 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 1786 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 1787 xas_unlock_irqrestore(&xas, flags); 1788 1789 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1790 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1791 -eb->len, 1792 fs_info->dirty_metadata_batch); 1793 ret = true; 1794 } else { 1795 spin_unlock(&eb->refs_lock); 1796 } 1797 btrfs_tree_unlock(eb); 1798 return ret; 1799 } 1800 1801 static void set_btree_ioerr(struct extent_buffer *eb) 1802 { 1803 struct btrfs_fs_info *fs_info = eb->fs_info; 1804 1805 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1806 1807 /* 1808 * A read may stumble upon this buffer later, make sure that it gets an 1809 * error and knows there was an error. 1810 */ 1811 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1812 1813 /* 1814 * We need to set the mapping with the io error as well because a write 1815 * error will flip the file system readonly, and then syncfs() will 1816 * return a 0 because we are readonly if we don't modify the err seq for 1817 * the superblock. 1818 */ 1819 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1820 1821 /* 1822 * If writeback for a btree extent that doesn't belong to a log tree 1823 * failed, increment the counter transaction->eb_write_errors. 1824 * We do this because while the transaction is running and before it's 1825 * committing (when we call filemap_fdata[write|wait]_range against 1826 * the btree inode), we might have 1827 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1828 * returns an error or an error happens during writeback, when we're 1829 * committing the transaction we wouldn't know about it, since the pages 1830 * can be no longer dirty nor marked anymore for writeback (if a 1831 * subsequent modification to the extent buffer didn't happen before the 1832 * transaction commit), which makes filemap_fdata[write|wait]_range not 1833 * able to find the pages which contain errors at transaction 1834 * commit time. So if this happens we must abort the transaction, 1835 * otherwise we commit a super block with btree roots that point to 1836 * btree nodes/leafs whose content on disk is invalid - either garbage 1837 * or the content of some node/leaf from a past generation that got 1838 * cowed or deleted and is no longer valid. 1839 * 1840 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1841 * not be enough - we need to distinguish between log tree extents vs 1842 * non-log tree extents, and the next filemap_fdatawait_range() call 1843 * will catch and clear such errors in the mapping - and that call might 1844 * be from a log sync and not from a transaction commit. Also, checking 1845 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1846 * not done and would not be reliable - the eb might have been released 1847 * from memory and reading it back again means that flag would not be 1848 * set (since it's a runtime flag, not persisted on disk). 1849 * 1850 * Using the flags below in the btree inode also makes us achieve the 1851 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1852 * writeback for all dirty pages and before filemap_fdatawait_range() 1853 * is called, the writeback for all dirty pages had already finished 1854 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1855 * filemap_fdatawait_range() would return success, as it could not know 1856 * that writeback errors happened (the pages were no longer tagged for 1857 * writeback). 1858 */ 1859 switch (eb->log_index) { 1860 case -1: 1861 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1862 break; 1863 case 0: 1864 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1865 break; 1866 case 1: 1867 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1868 break; 1869 default: 1870 BUG(); /* unexpected, logic error */ 1871 } 1872 } 1873 1874 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) 1875 { 1876 struct btrfs_fs_info *fs_info = eb->fs_info; 1877 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits); 1878 unsigned long flags; 1879 1880 xas_lock_irqsave(&xas, flags); 1881 xas_load(&xas); 1882 xas_set_mark(&xas, mark); 1883 xas_unlock_irqrestore(&xas, flags); 1884 } 1885 1886 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) 1887 { 1888 struct btrfs_fs_info *fs_info = eb->fs_info; 1889 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits); 1890 unsigned long flags; 1891 1892 xas_lock_irqsave(&xas, flags); 1893 xas_load(&xas); 1894 xas_clear_mark(&xas, mark); 1895 xas_unlock_irqrestore(&xas, flags); 1896 } 1897 1898 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, 1899 unsigned long start, unsigned long end) 1900 { 1901 XA_STATE(xas, &fs_info->buffer_tree, start); 1902 unsigned int tagged = 0; 1903 void *eb; 1904 1905 xas_lock_irq(&xas); 1906 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { 1907 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 1908 if (++tagged % XA_CHECK_SCHED) 1909 continue; 1910 xas_pause(&xas); 1911 xas_unlock_irq(&xas); 1912 cond_resched(); 1913 xas_lock_irq(&xas); 1914 } 1915 xas_unlock_irq(&xas); 1916 } 1917 1918 struct eb_batch { 1919 unsigned int nr; 1920 unsigned int cur; 1921 struct extent_buffer *ebs[PAGEVEC_SIZE]; 1922 }; 1923 1924 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) 1925 { 1926 batch->ebs[batch->nr++] = eb; 1927 return (batch->nr < PAGEVEC_SIZE); 1928 } 1929 1930 static inline void eb_batch_init(struct eb_batch *batch) 1931 { 1932 batch->nr = 0; 1933 batch->cur = 0; 1934 } 1935 1936 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) 1937 { 1938 if (batch->cur >= batch->nr) 1939 return NULL; 1940 return batch->ebs[batch->cur++]; 1941 } 1942 1943 static inline void eb_batch_release(struct eb_batch *batch) 1944 { 1945 for (unsigned int i = 0; i < batch->nr; i++) 1946 free_extent_buffer(batch->ebs[i]); 1947 eb_batch_init(batch); 1948 } 1949 1950 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, 1951 xa_mark_t mark) 1952 { 1953 struct extent_buffer *eb; 1954 1955 retry: 1956 eb = xas_find_marked(xas, max, mark); 1957 1958 if (xas_retry(xas, eb)) 1959 goto retry; 1960 1961 if (!eb) 1962 return NULL; 1963 1964 if (!atomic_inc_not_zero(&eb->refs)) { 1965 xas_reset(xas); 1966 goto retry; 1967 } 1968 1969 if (unlikely(eb != xas_reload(xas))) { 1970 free_extent_buffer(eb); 1971 xas_reset(xas); 1972 goto retry; 1973 } 1974 1975 return eb; 1976 } 1977 1978 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, 1979 unsigned long *start, 1980 unsigned long end, xa_mark_t tag, 1981 struct eb_batch *batch) 1982 { 1983 XA_STATE(xas, &fs_info->buffer_tree, *start); 1984 struct extent_buffer *eb; 1985 1986 rcu_read_lock(); 1987 while ((eb = find_get_eb(&xas, end, tag)) != NULL) { 1988 if (!eb_batch_add(batch, eb)) { 1989 *start = ((eb->start + eb->len) >> fs_info->sectorsize_bits); 1990 goto out; 1991 } 1992 } 1993 if (end == ULONG_MAX) 1994 *start = ULONG_MAX; 1995 else 1996 *start = end + 1; 1997 out: 1998 rcu_read_unlock(); 1999 2000 return batch->nr; 2001 } 2002 2003 /* 2004 * The endio specific version which won't touch any unsafe spinlock in endio 2005 * context. 2006 */ 2007 static struct extent_buffer *find_extent_buffer_nolock( 2008 struct btrfs_fs_info *fs_info, u64 start) 2009 { 2010 struct extent_buffer *eb; 2011 unsigned long index = (start >> fs_info->sectorsize_bits); 2012 2013 rcu_read_lock(); 2014 eb = xa_load(&fs_info->buffer_tree, index); 2015 if (eb && !atomic_inc_not_zero(&eb->refs)) 2016 eb = NULL; 2017 rcu_read_unlock(); 2018 return eb; 2019 } 2020 2021 static void end_bbio_meta_write(struct btrfs_bio *bbio) 2022 { 2023 struct extent_buffer *eb = bbio->private; 2024 struct folio_iter fi; 2025 2026 if (bbio->bio.bi_status != BLK_STS_OK) 2027 set_btree_ioerr(eb); 2028 2029 bio_for_each_folio_all(fi, &bbio->bio) { 2030 btrfs_meta_folio_clear_writeback(fi.folio, eb); 2031 } 2032 2033 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); 2034 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2035 smp_mb__after_atomic(); 2036 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 2037 2038 bio_put(&bbio->bio); 2039 } 2040 2041 static void prepare_eb_write(struct extent_buffer *eb) 2042 { 2043 u32 nritems; 2044 unsigned long start; 2045 unsigned long end; 2046 2047 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2048 2049 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2050 nritems = btrfs_header_nritems(eb); 2051 if (btrfs_header_level(eb) > 0) { 2052 end = btrfs_node_key_ptr_offset(eb, nritems); 2053 memzero_extent_buffer(eb, end, eb->len - end); 2054 } else { 2055 /* 2056 * Leaf: 2057 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2058 */ 2059 start = btrfs_item_nr_offset(eb, nritems); 2060 end = btrfs_item_nr_offset(eb, 0); 2061 if (nritems == 0) 2062 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2063 else 2064 end += btrfs_item_offset(eb, nritems - 1); 2065 memzero_extent_buffer(eb, start, end - start); 2066 } 2067 } 2068 2069 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2070 struct writeback_control *wbc) 2071 { 2072 struct btrfs_fs_info *fs_info = eb->fs_info; 2073 struct btrfs_bio *bbio; 2074 2075 prepare_eb_write(eb); 2076 2077 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 2078 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 2079 eb->fs_info, end_bbio_meta_write, eb); 2080 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 2081 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 2082 wbc_init_bio(wbc, &bbio->bio); 2083 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 2084 bbio->file_offset = eb->start; 2085 for (int i = 0; i < num_extent_folios(eb); i++) { 2086 struct folio *folio = eb->folios[i]; 2087 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 2088 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 2089 eb->start + eb->len) - range_start; 2090 2091 folio_lock(folio); 2092 btrfs_meta_folio_clear_dirty(folio, eb); 2093 btrfs_meta_folio_set_writeback(folio, eb); 2094 if (!folio_test_dirty(folio)) 2095 wbc->nr_to_write -= folio_nr_pages(folio); 2096 bio_add_folio_nofail(&bbio->bio, folio, range_len, 2097 offset_in_folio(folio, range_start)); 2098 wbc_account_cgroup_owner(wbc, folio, range_len); 2099 folio_unlock(folio); 2100 } 2101 btrfs_submit_bbio(bbio, 0); 2102 } 2103 2104 /* 2105 * Wait for all eb writeback in the given range to finish. 2106 * 2107 * @fs_info: The fs_info for this file system. 2108 * @start: The offset of the range to start waiting on writeback. 2109 * @end: The end of the range, inclusive. This is meant to be used in 2110 * conjuction with wait_marked_extents, so this will usually be 2111 * the_next_eb->start - 1. 2112 */ 2113 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, 2114 u64 end) 2115 { 2116 struct eb_batch batch; 2117 unsigned long start_index = (start >> fs_info->sectorsize_bits); 2118 unsigned long end_index = (end >> fs_info->sectorsize_bits); 2119 2120 eb_batch_init(&batch); 2121 while (start_index <= end_index) { 2122 struct extent_buffer *eb; 2123 unsigned int nr_ebs; 2124 2125 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, 2126 PAGECACHE_TAG_WRITEBACK, &batch); 2127 if (!nr_ebs) 2128 break; 2129 2130 while ((eb = eb_batch_next(&batch)) != NULL) 2131 wait_on_extent_buffer_writeback(eb); 2132 eb_batch_release(&batch); 2133 cond_resched(); 2134 } 2135 } 2136 2137 int btree_write_cache_pages(struct address_space *mapping, 2138 struct writeback_control *wbc) 2139 { 2140 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 2141 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 2142 int ret = 0; 2143 int done = 0; 2144 int nr_to_write_done = 0; 2145 struct eb_batch batch; 2146 unsigned int nr_ebs; 2147 unsigned long index; 2148 unsigned long end; 2149 int scanned = 0; 2150 xa_mark_t tag; 2151 2152 eb_batch_init(&batch); 2153 if (wbc->range_cyclic) { 2154 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->sectorsize_bits); 2155 end = -1; 2156 2157 /* 2158 * Start from the beginning does not need to cycle over the 2159 * range, mark it as scanned. 2160 */ 2161 scanned = (index == 0); 2162 } else { 2163 index = (wbc->range_start >> fs_info->sectorsize_bits); 2164 end = (wbc->range_end >> fs_info->sectorsize_bits); 2165 2166 scanned = 1; 2167 } 2168 if (wbc->sync_mode == WB_SYNC_ALL) 2169 tag = PAGECACHE_TAG_TOWRITE; 2170 else 2171 tag = PAGECACHE_TAG_DIRTY; 2172 btrfs_zoned_meta_io_lock(fs_info); 2173 retry: 2174 if (wbc->sync_mode == WB_SYNC_ALL) 2175 buffer_tree_tag_for_writeback(fs_info, index, end); 2176 while (!done && !nr_to_write_done && (index <= end) && 2177 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { 2178 struct extent_buffer *eb; 2179 2180 while ((eb = eb_batch_next(&batch)) != NULL) { 2181 ctx.eb = eb; 2182 2183 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); 2184 if (ret) { 2185 if (ret == -EBUSY) 2186 ret = 0; 2187 2188 if (ret) { 2189 done = 1; 2190 break; 2191 } 2192 continue; 2193 } 2194 2195 if (!lock_extent_buffer_for_io(eb, wbc)) 2196 continue; 2197 2198 /* Implies write in zoned mode. */ 2199 if (ctx.zoned_bg) { 2200 /* Mark the last eb in the block group. */ 2201 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); 2202 ctx.zoned_bg->meta_write_pointer += eb->len; 2203 } 2204 write_one_eb(eb, wbc); 2205 } 2206 nr_to_write_done = (wbc->nr_to_write <= 0); 2207 eb_batch_release(&batch); 2208 cond_resched(); 2209 } 2210 if (!scanned && !done) { 2211 /* 2212 * We hit the last page and there is more work to be done: wrap 2213 * back to the start of the file 2214 */ 2215 scanned = 1; 2216 index = 0; 2217 goto retry; 2218 } 2219 /* 2220 * If something went wrong, don't allow any metadata write bio to be 2221 * submitted. 2222 * 2223 * This would prevent use-after-free if we had dirty pages not 2224 * cleaned up, which can still happen by fuzzed images. 2225 * 2226 * - Bad extent tree 2227 * Allowing existing tree block to be allocated for other trees. 2228 * 2229 * - Log tree operations 2230 * Exiting tree blocks get allocated to log tree, bumps its 2231 * generation, then get cleaned in tree re-balance. 2232 * Such tree block will not be written back, since it's clean, 2233 * thus no WRITTEN flag set. 2234 * And after log writes back, this tree block is not traced by 2235 * any dirty extent_io_tree. 2236 * 2237 * - Offending tree block gets re-dirtied from its original owner 2238 * Since it has bumped generation, no WRITTEN flag, it can be 2239 * reused without COWing. This tree block will not be traced 2240 * by btrfs_transaction::dirty_pages. 2241 * 2242 * Now such dirty tree block will not be cleaned by any dirty 2243 * extent io tree. Thus we don't want to submit such wild eb 2244 * if the fs already has error. 2245 * 2246 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2247 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2248 */ 2249 if (ret > 0) 2250 ret = 0; 2251 if (!ret && BTRFS_FS_ERROR(fs_info)) 2252 ret = -EROFS; 2253 2254 if (ctx.zoned_bg) 2255 btrfs_put_block_group(ctx.zoned_bg); 2256 btrfs_zoned_meta_io_unlock(fs_info); 2257 return ret; 2258 } 2259 2260 /* 2261 * Walk the list of dirty pages of the given address space and write all of them. 2262 * 2263 * @mapping: address space structure to write 2264 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2265 * @bio_ctrl: holds context for the write, namely the bio 2266 * 2267 * If a page is already under I/O, write_cache_pages() skips it, even 2268 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2269 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2270 * and msync() need to guarantee that all the data which was dirty at the time 2271 * the call was made get new I/O started against them. If wbc->sync_mode is 2272 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2273 * existing IO to complete. 2274 */ 2275 static int extent_write_cache_pages(struct address_space *mapping, 2276 struct btrfs_bio_ctrl *bio_ctrl) 2277 { 2278 struct writeback_control *wbc = bio_ctrl->wbc; 2279 struct inode *inode = mapping->host; 2280 int ret = 0; 2281 int done = 0; 2282 int nr_to_write_done = 0; 2283 struct folio_batch fbatch; 2284 unsigned int nr_folios; 2285 pgoff_t index; 2286 pgoff_t end; /* Inclusive */ 2287 pgoff_t done_index; 2288 int range_whole = 0; 2289 int scanned = 0; 2290 xa_mark_t tag; 2291 2292 /* 2293 * We have to hold onto the inode so that ordered extents can do their 2294 * work when the IO finishes. The alternative to this is failing to add 2295 * an ordered extent if the igrab() fails there and that is a huge pain 2296 * to deal with, so instead just hold onto the inode throughout the 2297 * writepages operation. If it fails here we are freeing up the inode 2298 * anyway and we'd rather not waste our time writing out stuff that is 2299 * going to be truncated anyway. 2300 */ 2301 if (!igrab(inode)) 2302 return 0; 2303 2304 folio_batch_init(&fbatch); 2305 if (wbc->range_cyclic) { 2306 index = mapping->writeback_index; /* Start from prev offset */ 2307 end = -1; 2308 /* 2309 * Start from the beginning does not need to cycle over the 2310 * range, mark it as scanned. 2311 */ 2312 scanned = (index == 0); 2313 } else { 2314 index = wbc->range_start >> PAGE_SHIFT; 2315 end = wbc->range_end >> PAGE_SHIFT; 2316 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2317 range_whole = 1; 2318 scanned = 1; 2319 } 2320 2321 /* 2322 * We do the tagged writepage as long as the snapshot flush bit is set 2323 * and we are the first one who do the filemap_flush() on this inode. 2324 * 2325 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2326 * not race in and drop the bit. 2327 */ 2328 if (range_whole && wbc->nr_to_write == LONG_MAX && 2329 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2330 &BTRFS_I(inode)->runtime_flags)) 2331 wbc->tagged_writepages = 1; 2332 2333 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2334 tag = PAGECACHE_TAG_TOWRITE; 2335 else 2336 tag = PAGECACHE_TAG_DIRTY; 2337 retry: 2338 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2339 tag_pages_for_writeback(mapping, index, end); 2340 done_index = index; 2341 while (!done && !nr_to_write_done && (index <= end) && 2342 (nr_folios = filemap_get_folios_tag(mapping, &index, 2343 end, tag, &fbatch))) { 2344 unsigned i; 2345 2346 for (i = 0; i < nr_folios; i++) { 2347 struct folio *folio = fbatch.folios[i]; 2348 2349 done_index = folio_next_index(folio); 2350 /* 2351 * At this point we hold neither the i_pages lock nor 2352 * the folio lock: the folio may be truncated or 2353 * invalidated (changing folio->mapping to NULL). 2354 */ 2355 if (!folio_trylock(folio)) { 2356 submit_write_bio(bio_ctrl, 0); 2357 folio_lock(folio); 2358 } 2359 2360 if (unlikely(folio->mapping != mapping)) { 2361 folio_unlock(folio); 2362 continue; 2363 } 2364 2365 if (!folio_test_dirty(folio)) { 2366 /* Someone wrote it for us. */ 2367 folio_unlock(folio); 2368 continue; 2369 } 2370 2371 /* 2372 * For subpage case, compression can lead to mixed 2373 * writeback and dirty flags, e.g: 2374 * 0 32K 64K 96K 128K 2375 * | |//////||/////| |//| 2376 * 2377 * In above case, [32K, 96K) is asynchronously submitted 2378 * for compression, and [124K, 128K) needs to be written back. 2379 * 2380 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2381 * won't be submitted as the page still has writeback flag 2382 * and will be skipped in the next check. 2383 * 2384 * This mixed writeback and dirty case is only possible for 2385 * subpage case. 2386 * 2387 * TODO: Remove this check after migrating compression to 2388 * regular submission. 2389 */ 2390 if (wbc->sync_mode != WB_SYNC_NONE || 2391 btrfs_is_subpage(inode_to_fs_info(inode), folio)) { 2392 if (folio_test_writeback(folio)) 2393 submit_write_bio(bio_ctrl, 0); 2394 folio_wait_writeback(folio); 2395 } 2396 2397 if (folio_test_writeback(folio) || 2398 !folio_clear_dirty_for_io(folio)) { 2399 folio_unlock(folio); 2400 continue; 2401 } 2402 2403 ret = extent_writepage(folio, bio_ctrl); 2404 if (ret < 0) { 2405 done = 1; 2406 break; 2407 } 2408 2409 /* 2410 * The filesystem may choose to bump up nr_to_write. 2411 * We have to make sure to honor the new nr_to_write 2412 * at any time. 2413 */ 2414 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2415 wbc->nr_to_write <= 0); 2416 } 2417 folio_batch_release(&fbatch); 2418 cond_resched(); 2419 } 2420 if (!scanned && !done) { 2421 /* 2422 * We hit the last page and there is more work to be done: wrap 2423 * back to the start of the file 2424 */ 2425 scanned = 1; 2426 index = 0; 2427 2428 /* 2429 * If we're looping we could run into a page that is locked by a 2430 * writer and that writer could be waiting on writeback for a 2431 * page in our current bio, and thus deadlock, so flush the 2432 * write bio here. 2433 */ 2434 submit_write_bio(bio_ctrl, 0); 2435 goto retry; 2436 } 2437 2438 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2439 mapping->writeback_index = done_index; 2440 2441 btrfs_add_delayed_iput(BTRFS_I(inode)); 2442 return ret; 2443 } 2444 2445 /* 2446 * Submit the pages in the range to bio for call sites which delalloc range has 2447 * already been ran (aka, ordered extent inserted) and all pages are still 2448 * locked. 2449 */ 2450 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2451 u64 start, u64 end, struct writeback_control *wbc, 2452 bool pages_dirty) 2453 { 2454 bool found_error = false; 2455 int ret = 0; 2456 struct address_space *mapping = inode->i_mapping; 2457 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2458 const u32 sectorsize = fs_info->sectorsize; 2459 loff_t i_size = i_size_read(inode); 2460 u64 cur = start; 2461 struct btrfs_bio_ctrl bio_ctrl = { 2462 .wbc = wbc, 2463 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2464 }; 2465 2466 if (wbc->no_cgroup_owner) 2467 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2468 2469 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2470 2471 while (cur <= end) { 2472 u64 cur_end; 2473 u32 cur_len; 2474 struct folio *folio; 2475 2476 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2477 2478 /* 2479 * This shouldn't happen, the pages are pinned and locked, this 2480 * code is just in case, but shouldn't actually be run. 2481 */ 2482 if (IS_ERR(folio)) { 2483 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2484 cur_len = cur_end + 1 - cur; 2485 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2486 cur, cur_len, false); 2487 mapping_set_error(mapping, PTR_ERR(folio)); 2488 cur = cur_end; 2489 continue; 2490 } 2491 2492 cur_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1, end); 2493 cur_len = cur_end + 1 - cur; 2494 2495 ASSERT(folio_test_locked(folio)); 2496 if (pages_dirty && folio != locked_folio) 2497 ASSERT(folio_test_dirty(folio)); 2498 2499 /* 2500 * Set the submission bitmap to submit all sectors. 2501 * extent_writepage_io() will do the truncation correctly. 2502 */ 2503 bio_ctrl.submit_bitmap = (unsigned long)-1; 2504 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2505 &bio_ctrl, i_size); 2506 if (ret == 1) 2507 goto next_page; 2508 2509 if (ret) 2510 mapping_set_error(mapping, ret); 2511 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2512 if (ret < 0) 2513 found_error = true; 2514 next_page: 2515 folio_put(folio); 2516 cur = cur_end + 1; 2517 } 2518 2519 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2520 } 2521 2522 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2523 { 2524 struct inode *inode = mapping->host; 2525 int ret = 0; 2526 struct btrfs_bio_ctrl bio_ctrl = { 2527 .wbc = wbc, 2528 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2529 }; 2530 2531 /* 2532 * Allow only a single thread to do the reloc work in zoned mode to 2533 * protect the write pointer updates. 2534 */ 2535 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2536 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2537 submit_write_bio(&bio_ctrl, ret); 2538 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2539 return ret; 2540 } 2541 2542 void btrfs_readahead(struct readahead_control *rac) 2543 { 2544 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2545 struct folio *folio; 2546 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); 2547 const u64 start = readahead_pos(rac); 2548 const u64 end = start + readahead_length(rac) - 1; 2549 struct extent_state *cached_state = NULL; 2550 struct extent_map *em_cached = NULL; 2551 u64 prev_em_start = (u64)-1; 2552 2553 lock_extents_for_read(inode, start, end, &cached_state); 2554 2555 while ((folio = readahead_folio(rac)) != NULL) 2556 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2557 2558 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); 2559 2560 if (em_cached) 2561 btrfs_free_extent_map(em_cached); 2562 submit_one_bio(&bio_ctrl); 2563 } 2564 2565 /* 2566 * basic invalidate_folio code, this waits on any locked or writeback 2567 * ranges corresponding to the folio, and then deletes any extent state 2568 * records from the tree 2569 */ 2570 int extent_invalidate_folio(struct extent_io_tree *tree, 2571 struct folio *folio, size_t offset) 2572 { 2573 struct extent_state *cached_state = NULL; 2574 u64 start = folio_pos(folio); 2575 u64 end = start + folio_size(folio) - 1; 2576 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2577 2578 /* This function is only called for the btree inode */ 2579 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2580 2581 start += ALIGN(offset, blocksize); 2582 if (start > end) 2583 return 0; 2584 2585 btrfs_lock_extent(tree, start, end, &cached_state); 2586 folio_wait_writeback(folio); 2587 2588 /* 2589 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2590 * so here we only need to unlock the extent range to free any 2591 * existing extent state. 2592 */ 2593 btrfs_unlock_extent(tree, start, end, &cached_state); 2594 return 0; 2595 } 2596 2597 /* 2598 * A helper for struct address_space_operations::release_folio, this tests for 2599 * areas of the folio that are locked or under IO and drops the related state 2600 * bits if it is safe to drop the folio. 2601 */ 2602 static bool try_release_extent_state(struct extent_io_tree *tree, 2603 struct folio *folio) 2604 { 2605 struct extent_state *cached_state = NULL; 2606 u64 start = folio_pos(folio); 2607 u64 end = start + folio_size(folio) - 1; 2608 u32 range_bits; 2609 u32 clear_bits; 2610 bool ret = false; 2611 int ret2; 2612 2613 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); 2614 2615 /* 2616 * We can release the folio if it's locked only for ordered extent 2617 * completion, since that doesn't require using the folio. 2618 */ 2619 if ((range_bits & EXTENT_LOCKED) && 2620 !(range_bits & EXTENT_FINISHING_ORDERED)) 2621 goto out; 2622 2623 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | 2624 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | 2625 EXTENT_FINISHING_ORDERED); 2626 /* 2627 * At this point we can safely clear everything except the locked, 2628 * nodatasum, delalloc new and finishing ordered bits. The delalloc new 2629 * bit will be cleared by ordered extent completion. 2630 */ 2631 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); 2632 /* 2633 * If clear_extent_bit failed for enomem reasons, we can't allow the 2634 * release to continue. 2635 */ 2636 if (ret2 == 0) 2637 ret = true; 2638 out: 2639 btrfs_free_extent_state(cached_state); 2640 2641 return ret; 2642 } 2643 2644 /* 2645 * a helper for release_folio. As long as there are no locked extents 2646 * in the range corresponding to the page, both state records and extent 2647 * map records are removed 2648 */ 2649 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2650 { 2651 u64 start = folio_pos(folio); 2652 u64 end = start + folio_size(folio) - 1; 2653 struct btrfs_inode *inode = folio_to_inode(folio); 2654 struct extent_io_tree *io_tree = &inode->io_tree; 2655 2656 while (start <= end) { 2657 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2658 const u64 len = end - start + 1; 2659 struct extent_map_tree *extent_tree = &inode->extent_tree; 2660 struct extent_map *em; 2661 2662 write_lock(&extent_tree->lock); 2663 em = btrfs_lookup_extent_mapping(extent_tree, start, len); 2664 if (!em) { 2665 write_unlock(&extent_tree->lock); 2666 break; 2667 } 2668 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2669 write_unlock(&extent_tree->lock); 2670 btrfs_free_extent_map(em); 2671 break; 2672 } 2673 if (btrfs_test_range_bit_exists(io_tree, em->start, 2674 btrfs_extent_map_end(em) - 1, 2675 EXTENT_LOCKED)) 2676 goto next; 2677 /* 2678 * If it's not in the list of modified extents, used by a fast 2679 * fsync, we can remove it. If it's being logged we can safely 2680 * remove it since fsync took an extra reference on the em. 2681 */ 2682 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2683 goto remove_em; 2684 /* 2685 * If it's in the list of modified extents, remove it only if 2686 * its generation is older then the current one, in which case 2687 * we don't need it for a fast fsync. Otherwise don't remove it, 2688 * we could be racing with an ongoing fast fsync that could miss 2689 * the new extent. 2690 */ 2691 if (em->generation >= cur_gen) 2692 goto next; 2693 remove_em: 2694 /* 2695 * We only remove extent maps that are not in the list of 2696 * modified extents or that are in the list but with a 2697 * generation lower then the current generation, so there is no 2698 * need to set the full fsync flag on the inode (it hurts the 2699 * fsync performance for workloads with a data size that exceeds 2700 * or is close to the system's memory). 2701 */ 2702 btrfs_remove_extent_mapping(inode, em); 2703 /* Once for the inode's extent map tree. */ 2704 btrfs_free_extent_map(em); 2705 next: 2706 start = btrfs_extent_map_end(em); 2707 write_unlock(&extent_tree->lock); 2708 2709 /* Once for us, for the lookup_extent_mapping() reference. */ 2710 btrfs_free_extent_map(em); 2711 2712 if (need_resched()) { 2713 /* 2714 * If we need to resched but we can't block just exit 2715 * and leave any remaining extent maps. 2716 */ 2717 if (!gfpflags_allow_blocking(mask)) 2718 break; 2719 2720 cond_resched(); 2721 } 2722 } 2723 return try_release_extent_state(io_tree, folio); 2724 } 2725 2726 static int extent_buffer_under_io(const struct extent_buffer *eb) 2727 { 2728 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2729 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2730 } 2731 2732 static bool folio_range_has_eb(struct folio *folio) 2733 { 2734 struct btrfs_subpage *subpage; 2735 2736 lockdep_assert_held(&folio->mapping->i_private_lock); 2737 2738 if (folio_test_private(folio)) { 2739 subpage = folio_get_private(folio); 2740 if (atomic_read(&subpage->eb_refs)) 2741 return true; 2742 } 2743 return false; 2744 } 2745 2746 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2747 { 2748 struct btrfs_fs_info *fs_info = eb->fs_info; 2749 struct address_space *mapping = folio->mapping; 2750 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2751 2752 /* 2753 * For mapped eb, we're going to change the folio private, which should 2754 * be done under the i_private_lock. 2755 */ 2756 if (mapped) 2757 spin_lock(&mapping->i_private_lock); 2758 2759 if (!folio_test_private(folio)) { 2760 if (mapped) 2761 spin_unlock(&mapping->i_private_lock); 2762 return; 2763 } 2764 2765 if (!btrfs_meta_is_subpage(fs_info)) { 2766 /* 2767 * We do this since we'll remove the pages after we've removed 2768 * the eb from the xarray, so we could race and have this page 2769 * now attached to the new eb. So only clear folio if it's 2770 * still connected to this eb. 2771 */ 2772 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2773 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2774 BUG_ON(folio_test_dirty(folio)); 2775 BUG_ON(folio_test_writeback(folio)); 2776 /* We need to make sure we haven't be attached to a new eb. */ 2777 folio_detach_private(folio); 2778 } 2779 if (mapped) 2780 spin_unlock(&mapping->i_private_lock); 2781 return; 2782 } 2783 2784 /* 2785 * For subpage, we can have dummy eb with folio private attached. In 2786 * this case, we can directly detach the private as such folio is only 2787 * attached to one dummy eb, no sharing. 2788 */ 2789 if (!mapped) { 2790 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2791 return; 2792 } 2793 2794 btrfs_folio_dec_eb_refs(fs_info, folio); 2795 2796 /* 2797 * We can only detach the folio private if there are no other ebs in the 2798 * page range and no unfinished IO. 2799 */ 2800 if (!folio_range_has_eb(folio)) 2801 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 2802 2803 spin_unlock(&mapping->i_private_lock); 2804 } 2805 2806 /* Release all folios attached to the extent buffer */ 2807 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2808 { 2809 ASSERT(!extent_buffer_under_io(eb)); 2810 2811 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2812 struct folio *folio = eb->folios[i]; 2813 2814 if (!folio) 2815 continue; 2816 2817 detach_extent_buffer_folio(eb, folio); 2818 } 2819 } 2820 2821 /* 2822 * Helper for releasing the extent buffer. 2823 */ 2824 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2825 { 2826 btrfs_release_extent_buffer_folios(eb); 2827 btrfs_leak_debug_del_eb(eb); 2828 kmem_cache_free(extent_buffer_cache, eb); 2829 } 2830 2831 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, 2832 u64 start) 2833 { 2834 struct extent_buffer *eb = NULL; 2835 2836 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2837 eb->start = start; 2838 eb->len = fs_info->nodesize; 2839 eb->fs_info = fs_info; 2840 init_rwsem(&eb->lock); 2841 2842 btrfs_leak_debug_add_eb(eb); 2843 2844 spin_lock_init(&eb->refs_lock); 2845 atomic_set(&eb->refs, 1); 2846 2847 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2848 2849 return eb; 2850 } 2851 2852 /* 2853 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() 2854 * does not call folio_put(), and we need to set the folios to NULL so that 2855 * btrfs_release_extent_buffer() will not detach them a second time. 2856 */ 2857 static void cleanup_extent_buffer_folios(struct extent_buffer *eb) 2858 { 2859 const int num_folios = num_extent_folios(eb); 2860 2861 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */ 2862 for (int i = 0; i < num_folios; i++) { 2863 ASSERT(eb->folios[i]); 2864 detach_extent_buffer_folio(eb, eb->folios[i]); 2865 folio_put(eb->folios[i]); 2866 eb->folios[i] = NULL; 2867 } 2868 } 2869 2870 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2871 { 2872 struct extent_buffer *new; 2873 int num_folios; 2874 int ret; 2875 2876 new = __alloc_extent_buffer(src->fs_info, src->start); 2877 if (new == NULL) 2878 return NULL; 2879 2880 /* 2881 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2882 * btrfs_release_extent_buffer() have different behavior for 2883 * UNMAPPED subpage extent buffer. 2884 */ 2885 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2886 2887 ret = alloc_eb_folio_array(new, false); 2888 if (ret) 2889 goto release_eb; 2890 2891 ASSERT(num_extent_folios(src) == num_extent_folios(new), 2892 "%d != %d", num_extent_folios(src), num_extent_folios(new)); 2893 /* Explicitly use the cached num_extent value from now on. */ 2894 num_folios = num_extent_folios(src); 2895 for (int i = 0; i < num_folios; i++) { 2896 struct folio *folio = new->folios[i]; 2897 2898 ret = attach_extent_buffer_folio(new, folio, NULL); 2899 if (ret < 0) 2900 goto cleanup_folios; 2901 WARN_ON(folio_test_dirty(folio)); 2902 } 2903 for (int i = 0; i < num_folios; i++) 2904 folio_put(new->folios[i]); 2905 2906 copy_extent_buffer_full(new, src); 2907 set_extent_buffer_uptodate(new); 2908 2909 return new; 2910 2911 cleanup_folios: 2912 cleanup_extent_buffer_folios(new); 2913 release_eb: 2914 btrfs_release_extent_buffer(new); 2915 return NULL; 2916 } 2917 2918 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2919 u64 start) 2920 { 2921 struct extent_buffer *eb; 2922 int ret; 2923 2924 eb = __alloc_extent_buffer(fs_info, start); 2925 if (!eb) 2926 return NULL; 2927 2928 ret = alloc_eb_folio_array(eb, false); 2929 if (ret) 2930 goto release_eb; 2931 2932 for (int i = 0; i < num_extent_folios(eb); i++) { 2933 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2934 if (ret < 0) 2935 goto cleanup_folios; 2936 } 2937 for (int i = 0; i < num_extent_folios(eb); i++) 2938 folio_put(eb->folios[i]); 2939 2940 set_extent_buffer_uptodate(eb); 2941 btrfs_set_header_nritems(eb, 0); 2942 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2943 2944 return eb; 2945 2946 cleanup_folios: 2947 cleanup_extent_buffer_folios(eb); 2948 release_eb: 2949 btrfs_release_extent_buffer(eb); 2950 return NULL; 2951 } 2952 2953 static void check_buffer_tree_ref(struct extent_buffer *eb) 2954 { 2955 int refs; 2956 /* 2957 * The TREE_REF bit is first set when the extent_buffer is added to the 2958 * xarray. It is also reset, if unset, when a new reference is created 2959 * by find_extent_buffer. 2960 * 2961 * It is only cleared in two cases: freeing the last non-tree 2962 * reference to the extent_buffer when its STALE bit is set or 2963 * calling release_folio when the tree reference is the only reference. 2964 * 2965 * In both cases, care is taken to ensure that the extent_buffer's 2966 * pages are not under io. However, release_folio can be concurrently 2967 * called with creating new references, which is prone to race 2968 * conditions between the calls to check_buffer_tree_ref in those 2969 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2970 * 2971 * The actual lifetime of the extent_buffer in the xarray is adequately 2972 * protected by the refcount, but the TREE_REF bit and its corresponding 2973 * reference are not. To protect against this class of races, we call 2974 * check_buffer_tree_ref() from the code paths which trigger io. Note that 2975 * once io is initiated, TREE_REF can no longer be cleared, so that is 2976 * the moment at which any such race is best fixed. 2977 */ 2978 refs = atomic_read(&eb->refs); 2979 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2980 return; 2981 2982 spin_lock(&eb->refs_lock); 2983 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2984 atomic_inc(&eb->refs); 2985 spin_unlock(&eb->refs_lock); 2986 } 2987 2988 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2989 { 2990 check_buffer_tree_ref(eb); 2991 2992 for (int i = 0; i < num_extent_folios(eb); i++) 2993 folio_mark_accessed(eb->folios[i]); 2994 } 2995 2996 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2997 u64 start) 2998 { 2999 struct extent_buffer *eb; 3000 3001 eb = find_extent_buffer_nolock(fs_info, start); 3002 if (!eb) 3003 return NULL; 3004 /* 3005 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3006 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3007 * another task running free_extent_buffer() might have seen that flag 3008 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3009 * writeback flags not set) and it's still in the tree (flag 3010 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3011 * decrementing the extent buffer's reference count twice. So here we 3012 * could race and increment the eb's reference count, clear its stale 3013 * flag, mark it as dirty and drop our reference before the other task 3014 * finishes executing free_extent_buffer, which would later result in 3015 * an attempt to free an extent buffer that is dirty. 3016 */ 3017 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3018 spin_lock(&eb->refs_lock); 3019 spin_unlock(&eb->refs_lock); 3020 } 3021 mark_extent_buffer_accessed(eb); 3022 return eb; 3023 } 3024 3025 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3026 u64 start) 3027 { 3028 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3029 struct extent_buffer *eb, *exists = NULL; 3030 int ret; 3031 3032 eb = find_extent_buffer(fs_info, start); 3033 if (eb) 3034 return eb; 3035 eb = alloc_dummy_extent_buffer(fs_info, start); 3036 if (!eb) 3037 return ERR_PTR(-ENOMEM); 3038 eb->fs_info = fs_info; 3039 again: 3040 xa_lock_irq(&fs_info->buffer_tree); 3041 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->sectorsize_bits, 3042 NULL, eb, GFP_NOFS); 3043 if (xa_is_err(exists)) { 3044 ret = xa_err(exists); 3045 xa_unlock_irq(&fs_info->buffer_tree); 3046 btrfs_release_extent_buffer(eb); 3047 return ERR_PTR(ret); 3048 } 3049 if (exists) { 3050 if (!atomic_inc_not_zero(&exists->refs)) { 3051 /* The extent buffer is being freed, retry. */ 3052 xa_unlock_irq(&fs_info->buffer_tree); 3053 goto again; 3054 } 3055 xa_unlock_irq(&fs_info->buffer_tree); 3056 btrfs_release_extent_buffer(eb); 3057 return exists; 3058 } 3059 xa_unlock_irq(&fs_info->buffer_tree); 3060 check_buffer_tree_ref(eb); 3061 3062 return eb; 3063 #else 3064 /* Stub to avoid linker error when compiled with optimizations turned off. */ 3065 return NULL; 3066 #endif 3067 } 3068 3069 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 3070 struct folio *folio) 3071 { 3072 struct extent_buffer *exists; 3073 3074 lockdep_assert_held(&folio->mapping->i_private_lock); 3075 3076 /* 3077 * For subpage case, we completely rely on xarray to ensure we don't try 3078 * to insert two ebs for the same bytenr. So here we always return NULL 3079 * and just continue. 3080 */ 3081 if (btrfs_meta_is_subpage(fs_info)) 3082 return NULL; 3083 3084 /* Page not yet attached to an extent buffer */ 3085 if (!folio_test_private(folio)) 3086 return NULL; 3087 3088 /* 3089 * We could have already allocated an eb for this folio and attached one 3090 * so lets see if we can get a ref on the existing eb, and if we can we 3091 * know it's good and we can just return that one, else we know we can 3092 * just overwrite folio private. 3093 */ 3094 exists = folio_get_private(folio); 3095 if (atomic_inc_not_zero(&exists->refs)) 3096 return exists; 3097 3098 WARN_ON(folio_test_dirty(folio)); 3099 folio_detach_private(folio); 3100 return NULL; 3101 } 3102 3103 /* 3104 * Validate alignment constraints of eb at logical address @start. 3105 */ 3106 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3107 { 3108 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3109 btrfs_err(fs_info, "bad tree block start %llu", start); 3110 return true; 3111 } 3112 3113 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) { 3114 btrfs_err(fs_info, 3115 "tree block is not nodesize aligned, start %llu nodesize %u", 3116 start, fs_info->nodesize); 3117 return true; 3118 } 3119 if (fs_info->nodesize >= PAGE_SIZE && 3120 !PAGE_ALIGNED(start)) { 3121 btrfs_err(fs_info, 3122 "tree block is not page aligned, start %llu nodesize %u", 3123 start, fs_info->nodesize); 3124 return true; 3125 } 3126 if (!IS_ALIGNED(start, fs_info->nodesize) && 3127 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 3128 btrfs_warn(fs_info, 3129 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 3130 start, fs_info->nodesize); 3131 } 3132 return false; 3133 } 3134 3135 /* 3136 * Return 0 if eb->folios[i] is attached to btree inode successfully. 3137 * Return >0 if there is already another extent buffer for the range, 3138 * and @found_eb_ret would be updated. 3139 * Return -EAGAIN if the filemap has an existing folio but with different size 3140 * than @eb. 3141 * The caller needs to free the existing folios and retry using the same order. 3142 */ 3143 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 3144 struct btrfs_subpage *prealloc, 3145 struct extent_buffer **found_eb_ret) 3146 { 3147 3148 struct btrfs_fs_info *fs_info = eb->fs_info; 3149 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3150 const unsigned long index = eb->start >> PAGE_SHIFT; 3151 struct folio *existing_folio; 3152 int ret; 3153 3154 ASSERT(found_eb_ret); 3155 3156 /* Caller should ensure the folio exists. */ 3157 ASSERT(eb->folios[i]); 3158 3159 retry: 3160 existing_folio = NULL; 3161 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 3162 GFP_NOFS | __GFP_NOFAIL); 3163 if (!ret) 3164 goto finish; 3165 3166 existing_folio = filemap_lock_folio(mapping, index + i); 3167 /* The page cache only exists for a very short time, just retry. */ 3168 if (IS_ERR(existing_folio)) 3169 goto retry; 3170 3171 /* For now, we should only have single-page folios for btree inode. */ 3172 ASSERT(folio_nr_pages(existing_folio) == 1); 3173 3174 if (folio_size(existing_folio) != eb->folio_size) { 3175 folio_unlock(existing_folio); 3176 folio_put(existing_folio); 3177 return -EAGAIN; 3178 } 3179 3180 finish: 3181 spin_lock(&mapping->i_private_lock); 3182 if (existing_folio && btrfs_meta_is_subpage(fs_info)) { 3183 /* We're going to reuse the existing page, can drop our folio now. */ 3184 __free_page(folio_page(eb->folios[i], 0)); 3185 eb->folios[i] = existing_folio; 3186 } else if (existing_folio) { 3187 struct extent_buffer *existing_eb; 3188 3189 existing_eb = grab_extent_buffer(fs_info, existing_folio); 3190 if (existing_eb) { 3191 /* The extent buffer still exists, we can use it directly. */ 3192 *found_eb_ret = existing_eb; 3193 spin_unlock(&mapping->i_private_lock); 3194 folio_unlock(existing_folio); 3195 folio_put(existing_folio); 3196 return 1; 3197 } 3198 /* The extent buffer no longer exists, we can reuse the folio. */ 3199 __free_page(folio_page(eb->folios[i], 0)); 3200 eb->folios[i] = existing_folio; 3201 } 3202 eb->folio_size = folio_size(eb->folios[i]); 3203 eb->folio_shift = folio_shift(eb->folios[i]); 3204 /* Should not fail, as we have preallocated the memory. */ 3205 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3206 ASSERT(!ret); 3207 /* 3208 * To inform we have an extra eb under allocation, so that 3209 * detach_extent_buffer_page() won't release the folio private when the 3210 * eb hasn't been inserted into the xarray yet. 3211 * 3212 * The ref will be decreased when the eb releases the page, in 3213 * detach_extent_buffer_page(). Thus needs no special handling in the 3214 * error path. 3215 */ 3216 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3217 spin_unlock(&mapping->i_private_lock); 3218 return 0; 3219 } 3220 3221 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3222 u64 start, u64 owner_root, int level) 3223 { 3224 int attached = 0; 3225 struct extent_buffer *eb; 3226 struct extent_buffer *existing_eb = NULL; 3227 struct btrfs_subpage *prealloc = NULL; 3228 u64 lockdep_owner = owner_root; 3229 bool page_contig = true; 3230 int uptodate = 1; 3231 int ret; 3232 3233 if (check_eb_alignment(fs_info, start)) 3234 return ERR_PTR(-EINVAL); 3235 3236 #if BITS_PER_LONG == 32 3237 if (start >= MAX_LFS_FILESIZE) { 3238 btrfs_err_rl(fs_info, 3239 "extent buffer %llu is beyond 32bit page cache limit", start); 3240 btrfs_err_32bit_limit(fs_info); 3241 return ERR_PTR(-EOVERFLOW); 3242 } 3243 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3244 btrfs_warn_32bit_limit(fs_info); 3245 #endif 3246 3247 eb = find_extent_buffer(fs_info, start); 3248 if (eb) 3249 return eb; 3250 3251 eb = __alloc_extent_buffer(fs_info, start); 3252 if (!eb) 3253 return ERR_PTR(-ENOMEM); 3254 3255 /* 3256 * The reloc trees are just snapshots, so we need them to appear to be 3257 * just like any other fs tree WRT lockdep. 3258 */ 3259 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3260 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3261 3262 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3263 3264 /* 3265 * Preallocate folio private for subpage case, so that we won't 3266 * allocate memory with i_private_lock nor page lock hold. 3267 * 3268 * The memory will be freed by attach_extent_buffer_page() or freed 3269 * manually if we exit earlier. 3270 */ 3271 if (btrfs_meta_is_subpage(fs_info)) { 3272 prealloc = btrfs_alloc_subpage(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); 3273 if (IS_ERR(prealloc)) { 3274 ret = PTR_ERR(prealloc); 3275 goto out; 3276 } 3277 } 3278 3279 reallocate: 3280 /* Allocate all pages first. */ 3281 ret = alloc_eb_folio_array(eb, true); 3282 if (ret < 0) { 3283 btrfs_free_subpage(prealloc); 3284 goto out; 3285 } 3286 3287 /* Attach all pages to the filemap. */ 3288 for (int i = 0; i < num_extent_folios(eb); i++) { 3289 struct folio *folio; 3290 3291 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3292 if (ret > 0) { 3293 ASSERT(existing_eb); 3294 goto out; 3295 } 3296 3297 /* 3298 * TODO: Special handling for a corner case where the order of 3299 * folios mismatch between the new eb and filemap. 3300 * 3301 * This happens when: 3302 * 3303 * - the new eb is using higher order folio 3304 * 3305 * - the filemap is still using 0-order folios for the range 3306 * This can happen at the previous eb allocation, and we don't 3307 * have higher order folio for the call. 3308 * 3309 * - the existing eb has already been freed 3310 * 3311 * In this case, we have to free the existing folios first, and 3312 * re-allocate using the same order. 3313 * Thankfully this is not going to happen yet, as we're still 3314 * using 0-order folios. 3315 */ 3316 if (unlikely(ret == -EAGAIN)) { 3317 DEBUG_WARN("folio order mismatch between new eb and filemap"); 3318 goto reallocate; 3319 } 3320 attached++; 3321 3322 /* 3323 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3324 * reliable, as we may choose to reuse the existing page cache 3325 * and free the allocated page. 3326 */ 3327 folio = eb->folios[i]; 3328 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); 3329 3330 /* 3331 * Check if the current page is physically contiguous with previous eb 3332 * page. 3333 * At this stage, either we allocated a large folio, thus @i 3334 * would only be 0, or we fall back to per-page allocation. 3335 */ 3336 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3337 page_contig = false; 3338 3339 if (!btrfs_meta_folio_test_uptodate(folio, eb)) 3340 uptodate = 0; 3341 3342 /* 3343 * We can't unlock the pages just yet since the extent buffer 3344 * hasn't been properly inserted into the xarray, this opens a 3345 * race with btree_release_folio() which can free a page while we 3346 * are still filling in all pages for the buffer and we could crash. 3347 */ 3348 } 3349 if (uptodate) 3350 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3351 /* All pages are physically contiguous, can skip cross page handling. */ 3352 if (page_contig) 3353 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3354 again: 3355 xa_lock_irq(&fs_info->buffer_tree); 3356 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, 3357 start >> fs_info->sectorsize_bits, NULL, eb, 3358 GFP_NOFS); 3359 if (xa_is_err(existing_eb)) { 3360 ret = xa_err(existing_eb); 3361 xa_unlock_irq(&fs_info->buffer_tree); 3362 goto out; 3363 } 3364 if (existing_eb) { 3365 if (!atomic_inc_not_zero(&existing_eb->refs)) { 3366 xa_unlock_irq(&fs_info->buffer_tree); 3367 goto again; 3368 } 3369 xa_unlock_irq(&fs_info->buffer_tree); 3370 goto out; 3371 } 3372 xa_unlock_irq(&fs_info->buffer_tree); 3373 3374 /* add one reference for the tree */ 3375 check_buffer_tree_ref(eb); 3376 3377 /* 3378 * Now it's safe to unlock the pages because any calls to 3379 * btree_release_folio will correctly detect that a page belongs to a 3380 * live buffer and won't free them prematurely. 3381 */ 3382 for (int i = 0; i < num_extent_folios(eb); i++) { 3383 folio_unlock(eb->folios[i]); 3384 /* 3385 * A folio that has been added to an address_space mapping 3386 * should not continue holding the refcount from its original 3387 * allocation indefinitely. 3388 */ 3389 folio_put(eb->folios[i]); 3390 } 3391 return eb; 3392 3393 out: 3394 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3395 3396 /* 3397 * Any attached folios need to be detached before we unlock them. This 3398 * is because when we're inserting our new folios into the mapping, and 3399 * then attaching our eb to that folio. If we fail to insert our folio 3400 * we'll lookup the folio for that index, and grab that EB. We do not 3401 * want that to grab this eb, as we're getting ready to free it. So we 3402 * have to detach it first and then unlock it. 3403 * 3404 * Note: the bounds is num_extent_pages() as we need to go through all slots. 3405 */ 3406 for (int i = 0; i < num_extent_pages(eb); i++) { 3407 struct folio *folio = eb->folios[i]; 3408 3409 if (i < attached) { 3410 ASSERT(folio); 3411 detach_extent_buffer_folio(eb, folio); 3412 folio_unlock(folio); 3413 } else if (!folio) { 3414 continue; 3415 } 3416 3417 folio_put(folio); 3418 eb->folios[i] = NULL; 3419 } 3420 btrfs_release_extent_buffer(eb); 3421 if (ret < 0) 3422 return ERR_PTR(ret); 3423 ASSERT(existing_eb); 3424 return existing_eb; 3425 } 3426 3427 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3428 { 3429 struct extent_buffer *eb = 3430 container_of(head, struct extent_buffer, rcu_head); 3431 3432 kmem_cache_free(extent_buffer_cache, eb); 3433 } 3434 3435 static int release_extent_buffer(struct extent_buffer *eb) 3436 __releases(&eb->refs_lock) 3437 { 3438 lockdep_assert_held(&eb->refs_lock); 3439 3440 WARN_ON(atomic_read(&eb->refs) == 0); 3441 if (atomic_dec_and_test(&eb->refs)) { 3442 struct btrfs_fs_info *fs_info = eb->fs_info; 3443 3444 spin_unlock(&eb->refs_lock); 3445 3446 /* 3447 * We're erasing, theoretically there will be no allocations, so 3448 * just use GFP_ATOMIC. 3449 * 3450 * We use cmpxchg instead of erase because we do not know if 3451 * this eb is actually in the tree or not, we could be cleaning 3452 * up an eb that we allocated but never inserted into the tree. 3453 * Thus use cmpxchg to remove it from the tree if it is there, 3454 * or leave the other entry if this isn't in the tree. 3455 * 3456 * The documentation says that putting a NULL value is the same 3457 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't 3458 * in this case. 3459 */ 3460 xa_cmpxchg_irq(&fs_info->buffer_tree, 3461 eb->start >> fs_info->sectorsize_bits, eb, NULL, 3462 GFP_ATOMIC); 3463 3464 btrfs_leak_debug_del_eb(eb); 3465 /* Should be safe to release folios at this point. */ 3466 btrfs_release_extent_buffer_folios(eb); 3467 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3468 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3469 kmem_cache_free(extent_buffer_cache, eb); 3470 return 1; 3471 } 3472 #endif 3473 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3474 return 1; 3475 } 3476 spin_unlock(&eb->refs_lock); 3477 3478 return 0; 3479 } 3480 3481 void free_extent_buffer(struct extent_buffer *eb) 3482 { 3483 int refs; 3484 if (!eb) 3485 return; 3486 3487 refs = atomic_read(&eb->refs); 3488 while (1) { 3489 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3490 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3491 refs == 1)) 3492 break; 3493 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3494 return; 3495 } 3496 3497 spin_lock(&eb->refs_lock); 3498 if (atomic_read(&eb->refs) == 2 && 3499 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3500 !extent_buffer_under_io(eb) && 3501 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3502 atomic_dec(&eb->refs); 3503 3504 /* 3505 * I know this is terrible, but it's temporary until we stop tracking 3506 * the uptodate bits and such for the extent buffers. 3507 */ 3508 release_extent_buffer(eb); 3509 } 3510 3511 void free_extent_buffer_stale(struct extent_buffer *eb) 3512 { 3513 if (!eb) 3514 return; 3515 3516 spin_lock(&eb->refs_lock); 3517 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3518 3519 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3520 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3521 atomic_dec(&eb->refs); 3522 release_extent_buffer(eb); 3523 } 3524 3525 static void btree_clear_folio_dirty_tag(struct folio *folio) 3526 { 3527 ASSERT(!folio_test_dirty(folio)); 3528 ASSERT(folio_test_locked(folio)); 3529 xa_lock_irq(&folio->mapping->i_pages); 3530 if (!folio_test_dirty(folio)) 3531 __xa_clear_mark(&folio->mapping->i_pages, folio->index, 3532 PAGECACHE_TAG_DIRTY); 3533 xa_unlock_irq(&folio->mapping->i_pages); 3534 } 3535 3536 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3537 struct extent_buffer *eb) 3538 { 3539 struct btrfs_fs_info *fs_info = eb->fs_info; 3540 3541 btrfs_assert_tree_write_locked(eb); 3542 3543 if (trans && btrfs_header_generation(eb) != trans->transid) 3544 return; 3545 3546 /* 3547 * Instead of clearing the dirty flag off of the buffer, mark it as 3548 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3549 * write-ordering in zoned mode, without the need to later re-dirty 3550 * the extent_buffer. 3551 * 3552 * The actual zeroout of the buffer will happen later in 3553 * btree_csum_one_bio. 3554 */ 3555 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3556 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3557 return; 3558 } 3559 3560 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3561 return; 3562 3563 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); 3564 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3565 fs_info->dirty_metadata_batch); 3566 3567 for (int i = 0; i < num_extent_folios(eb); i++) { 3568 struct folio *folio = eb->folios[i]; 3569 bool last; 3570 3571 if (!folio_test_dirty(folio)) 3572 continue; 3573 folio_lock(folio); 3574 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); 3575 if (last) 3576 btree_clear_folio_dirty_tag(folio); 3577 folio_unlock(folio); 3578 } 3579 WARN_ON(atomic_read(&eb->refs) == 0); 3580 } 3581 3582 void set_extent_buffer_dirty(struct extent_buffer *eb) 3583 { 3584 bool was_dirty; 3585 3586 check_buffer_tree_ref(eb); 3587 3588 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3589 3590 WARN_ON(atomic_read(&eb->refs) == 0); 3591 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3592 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3593 3594 if (!was_dirty) { 3595 bool subpage = btrfs_meta_is_subpage(eb->fs_info); 3596 3597 /* 3598 * For subpage case, we can have other extent buffers in the 3599 * same page, and in clear_extent_buffer_dirty() we 3600 * have to clear page dirty without subpage lock held. 3601 * This can cause race where our page gets dirty cleared after 3602 * we just set it. 3603 * 3604 * Thankfully, clear_extent_buffer_dirty() has locked 3605 * its page for other reasons, we can use page lock to prevent 3606 * the above race. 3607 */ 3608 if (subpage) 3609 folio_lock(eb->folios[0]); 3610 for (int i = 0; i < num_extent_folios(eb); i++) 3611 btrfs_meta_folio_set_dirty(eb->folios[i], eb); 3612 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); 3613 if (subpage) 3614 folio_unlock(eb->folios[0]); 3615 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3616 eb->len, 3617 eb->fs_info->dirty_metadata_batch); 3618 } 3619 #ifdef CONFIG_BTRFS_DEBUG 3620 for (int i = 0; i < num_extent_folios(eb); i++) 3621 ASSERT(folio_test_dirty(eb->folios[i])); 3622 #endif 3623 } 3624 3625 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3626 { 3627 3628 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3629 for (int i = 0; i < num_extent_folios(eb); i++) { 3630 struct folio *folio = eb->folios[i]; 3631 3632 if (!folio) 3633 continue; 3634 3635 btrfs_meta_folio_clear_uptodate(folio, eb); 3636 } 3637 } 3638 3639 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3640 { 3641 3642 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3643 for (int i = 0; i < num_extent_folios(eb); i++) 3644 btrfs_meta_folio_set_uptodate(eb->folios[i], eb); 3645 } 3646 3647 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3648 { 3649 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3650 smp_mb__after_atomic(); 3651 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3652 } 3653 3654 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3655 { 3656 struct extent_buffer *eb = bbio->private; 3657 bool uptodate = !bbio->bio.bi_status; 3658 3659 /* 3660 * If the extent buffer is marked UPTODATE before the read operation 3661 * completes, other calls to read_extent_buffer_pages() will return 3662 * early without waiting for the read to finish, causing data races. 3663 */ 3664 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3665 3666 eb->read_mirror = bbio->mirror_num; 3667 3668 if (uptodate && 3669 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3670 uptodate = false; 3671 3672 if (uptodate) 3673 set_extent_buffer_uptodate(eb); 3674 else 3675 clear_extent_buffer_uptodate(eb); 3676 3677 clear_extent_buffer_reading(eb); 3678 free_extent_buffer(eb); 3679 3680 bio_put(&bbio->bio); 3681 } 3682 3683 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3684 const struct btrfs_tree_parent_check *check) 3685 { 3686 struct btrfs_bio *bbio; 3687 3688 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3689 return 0; 3690 3691 /* 3692 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3693 * operation, which could potentially still be in flight. In this case 3694 * we simply want to return an error. 3695 */ 3696 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3697 return -EIO; 3698 3699 /* Someone else is already reading the buffer, just wait for it. */ 3700 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3701 return 0; 3702 3703 /* 3704 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3705 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3706 * started and finished reading the same eb. In this case, UPTODATE 3707 * will now be set, and we shouldn't read it in again. 3708 */ 3709 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3710 clear_extent_buffer_reading(eb); 3711 return 0; 3712 } 3713 3714 eb->read_mirror = 0; 3715 check_buffer_tree_ref(eb); 3716 atomic_inc(&eb->refs); 3717 3718 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3719 REQ_OP_READ | REQ_META, eb->fs_info, 3720 end_bbio_meta_read, eb); 3721 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3722 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3723 bbio->file_offset = eb->start; 3724 memcpy(&bbio->parent_check, check, sizeof(*check)); 3725 for (int i = 0; i < num_extent_folios(eb); i++) { 3726 struct folio *folio = eb->folios[i]; 3727 u64 range_start = max_t(u64, eb->start, folio_pos(folio)); 3728 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 3729 eb->start + eb->len) - range_start; 3730 3731 bio_add_folio_nofail(&bbio->bio, folio, range_len, 3732 offset_in_folio(folio, range_start)); 3733 } 3734 btrfs_submit_bbio(bbio, mirror_num); 3735 return 0; 3736 } 3737 3738 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3739 const struct btrfs_tree_parent_check *check) 3740 { 3741 int ret; 3742 3743 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3744 if (ret < 0) 3745 return ret; 3746 3747 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3748 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3749 return -EIO; 3750 return 0; 3751 } 3752 3753 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3754 unsigned long len) 3755 { 3756 btrfs_warn(eb->fs_info, 3757 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3758 eb->start, eb->len, start, len); 3759 DEBUG_WARN(); 3760 3761 return true; 3762 } 3763 3764 /* 3765 * Check if the [start, start + len) range is valid before reading/writing 3766 * the eb. 3767 * NOTE: @start and @len are offset inside the eb, not logical address. 3768 * 3769 * Caller should not touch the dst/src memory if this function returns error. 3770 */ 3771 static inline int check_eb_range(const struct extent_buffer *eb, 3772 unsigned long start, unsigned long len) 3773 { 3774 unsigned long offset; 3775 3776 /* start, start + len should not go beyond eb->len nor overflow */ 3777 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3778 return report_eb_range(eb, start, len); 3779 3780 return false; 3781 } 3782 3783 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3784 unsigned long start, unsigned long len) 3785 { 3786 const int unit_size = eb->folio_size; 3787 size_t cur; 3788 size_t offset; 3789 char *dst = (char *)dstv; 3790 unsigned long i = get_eb_folio_index(eb, start); 3791 3792 if (check_eb_range(eb, start, len)) { 3793 /* 3794 * Invalid range hit, reset the memory, so callers won't get 3795 * some random garbage for their uninitialized memory. 3796 */ 3797 memset(dstv, 0, len); 3798 return; 3799 } 3800 3801 if (eb->addr) { 3802 memcpy(dstv, eb->addr + start, len); 3803 return; 3804 } 3805 3806 offset = get_eb_offset_in_folio(eb, start); 3807 3808 while (len > 0) { 3809 char *kaddr; 3810 3811 cur = min(len, unit_size - offset); 3812 kaddr = folio_address(eb->folios[i]); 3813 memcpy(dst, kaddr + offset, cur); 3814 3815 dst += cur; 3816 len -= cur; 3817 offset = 0; 3818 i++; 3819 } 3820 } 3821 3822 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3823 void __user *dstv, 3824 unsigned long start, unsigned long len) 3825 { 3826 const int unit_size = eb->folio_size; 3827 size_t cur; 3828 size_t offset; 3829 char __user *dst = (char __user *)dstv; 3830 unsigned long i = get_eb_folio_index(eb, start); 3831 int ret = 0; 3832 3833 WARN_ON(start > eb->len); 3834 WARN_ON(start + len > eb->start + eb->len); 3835 3836 if (eb->addr) { 3837 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3838 ret = -EFAULT; 3839 return ret; 3840 } 3841 3842 offset = get_eb_offset_in_folio(eb, start); 3843 3844 while (len > 0) { 3845 char *kaddr; 3846 3847 cur = min(len, unit_size - offset); 3848 kaddr = folio_address(eb->folios[i]); 3849 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3850 ret = -EFAULT; 3851 break; 3852 } 3853 3854 dst += cur; 3855 len -= cur; 3856 offset = 0; 3857 i++; 3858 } 3859 3860 return ret; 3861 } 3862 3863 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3864 unsigned long start, unsigned long len) 3865 { 3866 const int unit_size = eb->folio_size; 3867 size_t cur; 3868 size_t offset; 3869 char *kaddr; 3870 char *ptr = (char *)ptrv; 3871 unsigned long i = get_eb_folio_index(eb, start); 3872 int ret = 0; 3873 3874 if (check_eb_range(eb, start, len)) 3875 return -EINVAL; 3876 3877 if (eb->addr) 3878 return memcmp(ptrv, eb->addr + start, len); 3879 3880 offset = get_eb_offset_in_folio(eb, start); 3881 3882 while (len > 0) { 3883 cur = min(len, unit_size - offset); 3884 kaddr = folio_address(eb->folios[i]); 3885 ret = memcmp(ptr, kaddr + offset, cur); 3886 if (ret) 3887 break; 3888 3889 ptr += cur; 3890 len -= cur; 3891 offset = 0; 3892 i++; 3893 } 3894 return ret; 3895 } 3896 3897 /* 3898 * Check that the extent buffer is uptodate. 3899 * 3900 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3901 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3902 */ 3903 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3904 { 3905 struct btrfs_fs_info *fs_info = eb->fs_info; 3906 struct folio *folio = eb->folios[i]; 3907 3908 ASSERT(folio); 3909 3910 /* 3911 * If we are using the commit root we could potentially clear a page 3912 * Uptodate while we're using the extent buffer that we've previously 3913 * looked up. We don't want to complain in this case, as the page was 3914 * valid before, we just didn't write it out. Instead we want to catch 3915 * the case where we didn't actually read the block properly, which 3916 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3917 */ 3918 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3919 return; 3920 3921 if (btrfs_meta_is_subpage(fs_info)) { 3922 folio = eb->folios[0]; 3923 ASSERT(i == 0); 3924 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3925 eb->start, eb->len))) 3926 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3927 } else { 3928 WARN_ON(!folio_test_uptodate(folio)); 3929 } 3930 } 3931 3932 static void __write_extent_buffer(const struct extent_buffer *eb, 3933 const void *srcv, unsigned long start, 3934 unsigned long len, bool use_memmove) 3935 { 3936 const int unit_size = eb->folio_size; 3937 size_t cur; 3938 size_t offset; 3939 char *kaddr; 3940 const char *src = (const char *)srcv; 3941 unsigned long i = get_eb_folio_index(eb, start); 3942 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3943 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3944 3945 if (check_eb_range(eb, start, len)) 3946 return; 3947 3948 if (eb->addr) { 3949 if (use_memmove) 3950 memmove(eb->addr + start, srcv, len); 3951 else 3952 memcpy(eb->addr + start, srcv, len); 3953 return; 3954 } 3955 3956 offset = get_eb_offset_in_folio(eb, start); 3957 3958 while (len > 0) { 3959 if (check_uptodate) 3960 assert_eb_folio_uptodate(eb, i); 3961 3962 cur = min(len, unit_size - offset); 3963 kaddr = folio_address(eb->folios[i]); 3964 if (use_memmove) 3965 memmove(kaddr + offset, src, cur); 3966 else 3967 memcpy(kaddr + offset, src, cur); 3968 3969 src += cur; 3970 len -= cur; 3971 offset = 0; 3972 i++; 3973 } 3974 } 3975 3976 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3977 unsigned long start, unsigned long len) 3978 { 3979 return __write_extent_buffer(eb, srcv, start, len, false); 3980 } 3981 3982 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3983 unsigned long start, unsigned long len) 3984 { 3985 const int unit_size = eb->folio_size; 3986 unsigned long cur = start; 3987 3988 if (eb->addr) { 3989 memset(eb->addr + start, c, len); 3990 return; 3991 } 3992 3993 while (cur < start + len) { 3994 unsigned long index = get_eb_folio_index(eb, cur); 3995 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3996 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3997 3998 assert_eb_folio_uptodate(eb, index); 3999 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 4000 4001 cur += cur_len; 4002 } 4003 } 4004 4005 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4006 unsigned long len) 4007 { 4008 if (check_eb_range(eb, start, len)) 4009 return; 4010 return memset_extent_buffer(eb, 0, start, len); 4011 } 4012 4013 void copy_extent_buffer_full(const struct extent_buffer *dst, 4014 const struct extent_buffer *src) 4015 { 4016 const int unit_size = src->folio_size; 4017 unsigned long cur = 0; 4018 4019 ASSERT(dst->len == src->len); 4020 4021 while (cur < src->len) { 4022 unsigned long index = get_eb_folio_index(src, cur); 4023 unsigned long offset = get_eb_offset_in_folio(src, cur); 4024 unsigned long cur_len = min(src->len, unit_size - offset); 4025 void *addr = folio_address(src->folios[index]) + offset; 4026 4027 write_extent_buffer(dst, addr, cur, cur_len); 4028 4029 cur += cur_len; 4030 } 4031 } 4032 4033 void copy_extent_buffer(const struct extent_buffer *dst, 4034 const struct extent_buffer *src, 4035 unsigned long dst_offset, unsigned long src_offset, 4036 unsigned long len) 4037 { 4038 const int unit_size = dst->folio_size; 4039 u64 dst_len = dst->len; 4040 size_t cur; 4041 size_t offset; 4042 char *kaddr; 4043 unsigned long i = get_eb_folio_index(dst, dst_offset); 4044 4045 if (check_eb_range(dst, dst_offset, len) || 4046 check_eb_range(src, src_offset, len)) 4047 return; 4048 4049 WARN_ON(src->len != dst_len); 4050 4051 offset = get_eb_offset_in_folio(dst, dst_offset); 4052 4053 while (len > 0) { 4054 assert_eb_folio_uptodate(dst, i); 4055 4056 cur = min(len, (unsigned long)(unit_size - offset)); 4057 4058 kaddr = folio_address(dst->folios[i]); 4059 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4060 4061 src_offset += cur; 4062 len -= cur; 4063 offset = 0; 4064 i++; 4065 } 4066 } 4067 4068 /* 4069 * Calculate the folio and offset of the byte containing the given bit number. 4070 * 4071 * @eb: the extent buffer 4072 * @start: offset of the bitmap item in the extent buffer 4073 * @nr: bit number 4074 * @folio_index: return index of the folio in the extent buffer that contains 4075 * the given bit number 4076 * @folio_offset: return offset into the folio given by folio_index 4077 * 4078 * This helper hides the ugliness of finding the byte in an extent buffer which 4079 * contains a given bit. 4080 */ 4081 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4082 unsigned long start, unsigned long nr, 4083 unsigned long *folio_index, 4084 size_t *folio_offset) 4085 { 4086 size_t byte_offset = BIT_BYTE(nr); 4087 size_t offset; 4088 4089 /* 4090 * The byte we want is the offset of the extent buffer + the offset of 4091 * the bitmap item in the extent buffer + the offset of the byte in the 4092 * bitmap item. 4093 */ 4094 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 4095 4096 *folio_index = offset >> eb->folio_shift; 4097 *folio_offset = offset_in_eb_folio(eb, offset); 4098 } 4099 4100 /* 4101 * Determine whether a bit in a bitmap item is set. 4102 * 4103 * @eb: the extent buffer 4104 * @start: offset of the bitmap item in the extent buffer 4105 * @nr: bit number to test 4106 */ 4107 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4108 unsigned long nr) 4109 { 4110 unsigned long i; 4111 size_t offset; 4112 u8 *kaddr; 4113 4114 eb_bitmap_offset(eb, start, nr, &i, &offset); 4115 assert_eb_folio_uptodate(eb, i); 4116 kaddr = folio_address(eb->folios[i]); 4117 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4118 } 4119 4120 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4121 { 4122 unsigned long index = get_eb_folio_index(eb, bytenr); 4123 4124 if (check_eb_range(eb, bytenr, 1)) 4125 return NULL; 4126 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 4127 } 4128 4129 /* 4130 * Set an area of a bitmap to 1. 4131 * 4132 * @eb: the extent buffer 4133 * @start: offset of the bitmap item in the extent buffer 4134 * @pos: bit number of the first bit 4135 * @len: number of bits to set 4136 */ 4137 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4138 unsigned long pos, unsigned long len) 4139 { 4140 unsigned int first_byte = start + BIT_BYTE(pos); 4141 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4142 const bool same_byte = (first_byte == last_byte); 4143 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4144 u8 *kaddr; 4145 4146 if (same_byte) 4147 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4148 4149 /* Handle the first byte. */ 4150 kaddr = extent_buffer_get_byte(eb, first_byte); 4151 *kaddr |= mask; 4152 if (same_byte) 4153 return; 4154 4155 /* Handle the byte aligned part. */ 4156 ASSERT(first_byte + 1 <= last_byte); 4157 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4158 4159 /* Handle the last byte. */ 4160 kaddr = extent_buffer_get_byte(eb, last_byte); 4161 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4162 } 4163 4164 4165 /* 4166 * Clear an area of a bitmap. 4167 * 4168 * @eb: the extent buffer 4169 * @start: offset of the bitmap item in the extent buffer 4170 * @pos: bit number of the first bit 4171 * @len: number of bits to clear 4172 */ 4173 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4174 unsigned long start, unsigned long pos, 4175 unsigned long len) 4176 { 4177 unsigned int first_byte = start + BIT_BYTE(pos); 4178 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4179 const bool same_byte = (first_byte == last_byte); 4180 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4181 u8 *kaddr; 4182 4183 if (same_byte) 4184 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4185 4186 /* Handle the first byte. */ 4187 kaddr = extent_buffer_get_byte(eb, first_byte); 4188 *kaddr &= ~mask; 4189 if (same_byte) 4190 return; 4191 4192 /* Handle the byte aligned part. */ 4193 ASSERT(first_byte + 1 <= last_byte); 4194 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4195 4196 /* Handle the last byte. */ 4197 kaddr = extent_buffer_get_byte(eb, last_byte); 4198 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4199 } 4200 4201 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4202 { 4203 unsigned long distance = (src > dst) ? src - dst : dst - src; 4204 return distance < len; 4205 } 4206 4207 void memcpy_extent_buffer(const struct extent_buffer *dst, 4208 unsigned long dst_offset, unsigned long src_offset, 4209 unsigned long len) 4210 { 4211 const int unit_size = dst->folio_size; 4212 unsigned long cur_off = 0; 4213 4214 if (check_eb_range(dst, dst_offset, len) || 4215 check_eb_range(dst, src_offset, len)) 4216 return; 4217 4218 if (dst->addr) { 4219 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4220 4221 if (use_memmove) 4222 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4223 else 4224 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4225 return; 4226 } 4227 4228 while (cur_off < len) { 4229 unsigned long cur_src = cur_off + src_offset; 4230 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4231 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4232 unsigned long cur_len = min(src_offset + len - cur_src, 4233 unit_size - folio_off); 4234 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4235 const bool use_memmove = areas_overlap(src_offset + cur_off, 4236 dst_offset + cur_off, cur_len); 4237 4238 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4239 use_memmove); 4240 cur_off += cur_len; 4241 } 4242 } 4243 4244 void memmove_extent_buffer(const struct extent_buffer *dst, 4245 unsigned long dst_offset, unsigned long src_offset, 4246 unsigned long len) 4247 { 4248 unsigned long dst_end = dst_offset + len - 1; 4249 unsigned long src_end = src_offset + len - 1; 4250 4251 if (check_eb_range(dst, dst_offset, len) || 4252 check_eb_range(dst, src_offset, len)) 4253 return; 4254 4255 if (dst_offset < src_offset) { 4256 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4257 return; 4258 } 4259 4260 if (dst->addr) { 4261 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4262 return; 4263 } 4264 4265 while (len > 0) { 4266 unsigned long src_i; 4267 size_t cur; 4268 size_t dst_off_in_folio; 4269 size_t src_off_in_folio; 4270 void *src_addr; 4271 bool use_memmove; 4272 4273 src_i = get_eb_folio_index(dst, src_end); 4274 4275 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4276 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4277 4278 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4279 cur = min(cur, dst_off_in_folio + 1); 4280 4281 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4282 cur + 1; 4283 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4284 cur); 4285 4286 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4287 use_memmove); 4288 4289 dst_end -= cur; 4290 src_end -= cur; 4291 len -= cur; 4292 } 4293 } 4294 4295 static int try_release_subpage_extent_buffer(struct folio *folio) 4296 { 4297 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4298 struct extent_buffer *eb; 4299 unsigned long start = (folio_pos(folio) >> fs_info->sectorsize_bits); 4300 unsigned long index = start; 4301 unsigned long end = index + (PAGE_SIZE >> fs_info->sectorsize_bits) - 1; 4302 int ret; 4303 4304 xa_lock_irq(&fs_info->buffer_tree); 4305 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { 4306 /* 4307 * The same as try_release_extent_buffer(), to ensure the eb 4308 * won't disappear out from under us. 4309 */ 4310 spin_lock(&eb->refs_lock); 4311 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4312 spin_unlock(&eb->refs_lock); 4313 continue; 4314 } 4315 4316 /* 4317 * If tree ref isn't set then we know the ref on this eb is a 4318 * real ref, so just return, this eb will likely be freed soon 4319 * anyway. 4320 */ 4321 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4322 spin_unlock(&eb->refs_lock); 4323 break; 4324 } 4325 4326 /* 4327 * Here we don't care about the return value, we will always 4328 * check the folio private at the end. And 4329 * release_extent_buffer() will release the refs_lock. 4330 */ 4331 xa_unlock_irq(&fs_info->buffer_tree); 4332 release_extent_buffer(eb); 4333 xa_lock_irq(&fs_info->buffer_tree); 4334 } 4335 xa_unlock_irq(&fs_info->buffer_tree); 4336 4337 /* 4338 * Finally to check if we have cleared folio private, as if we have 4339 * released all ebs in the page, the folio private should be cleared now. 4340 */ 4341 spin_lock(&folio->mapping->i_private_lock); 4342 if (!folio_test_private(folio)) 4343 ret = 1; 4344 else 4345 ret = 0; 4346 spin_unlock(&folio->mapping->i_private_lock); 4347 return ret; 4348 4349 } 4350 4351 int try_release_extent_buffer(struct folio *folio) 4352 { 4353 struct extent_buffer *eb; 4354 4355 if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) 4356 return try_release_subpage_extent_buffer(folio); 4357 4358 /* 4359 * We need to make sure nobody is changing folio private, as we rely on 4360 * folio private as the pointer to extent buffer. 4361 */ 4362 spin_lock(&folio->mapping->i_private_lock); 4363 if (!folio_test_private(folio)) { 4364 spin_unlock(&folio->mapping->i_private_lock); 4365 return 1; 4366 } 4367 4368 eb = folio_get_private(folio); 4369 BUG_ON(!eb); 4370 4371 /* 4372 * This is a little awful but should be ok, we need to make sure that 4373 * the eb doesn't disappear out from under us while we're looking at 4374 * this page. 4375 */ 4376 spin_lock(&eb->refs_lock); 4377 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4378 spin_unlock(&eb->refs_lock); 4379 spin_unlock(&folio->mapping->i_private_lock); 4380 return 0; 4381 } 4382 spin_unlock(&folio->mapping->i_private_lock); 4383 4384 /* 4385 * If tree ref isn't set then we know the ref on this eb is a real ref, 4386 * so just return, this page will likely be freed soon anyway. 4387 */ 4388 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4389 spin_unlock(&eb->refs_lock); 4390 return 0; 4391 } 4392 4393 return release_extent_buffer(eb); 4394 } 4395 4396 /* 4397 * Attempt to readahead a child block. 4398 * 4399 * @fs_info: the fs_info 4400 * @bytenr: bytenr to read 4401 * @owner_root: objectid of the root that owns this eb 4402 * @gen: generation for the uptodate check, can be 0 4403 * @level: level for the eb 4404 * 4405 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4406 * normal uptodate check of the eb, without checking the generation. If we have 4407 * to read the block we will not block on anything. 4408 */ 4409 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4410 u64 bytenr, u64 owner_root, u64 gen, int level) 4411 { 4412 struct btrfs_tree_parent_check check = { 4413 .level = level, 4414 .transid = gen 4415 }; 4416 struct extent_buffer *eb; 4417 int ret; 4418 4419 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4420 if (IS_ERR(eb)) 4421 return; 4422 4423 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4424 free_extent_buffer(eb); 4425 return; 4426 } 4427 4428 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4429 if (ret < 0) 4430 free_extent_buffer_stale(eb); 4431 else 4432 free_extent_buffer(eb); 4433 } 4434 4435 /* 4436 * Readahead a node's child block. 4437 * 4438 * @node: parent node we're reading from 4439 * @slot: slot in the parent node for the child we want to read 4440 * 4441 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4442 * the slot in the node provided. 4443 */ 4444 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4445 { 4446 btrfs_readahead_tree_block(node->fs_info, 4447 btrfs_node_blockptr(node, slot), 4448 btrfs_header_owner(node), 4449 btrfs_node_ptr_generation(node, slot), 4450 btrfs_header_level(node) - 1); 4451 } 4452