1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 struct btrfs_delayed_ref_node *node, 50 struct btrfs_delayed_extent_op *extra_op); 51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 52 struct extent_buffer *leaf, 53 struct btrfs_extent_item *ei); 54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 55 u64 parent, u64 root_objectid, 56 u64 flags, u64 owner, u64 offset, 57 struct btrfs_key *ins, int ref_mod, u64 oref_root); 58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 59 struct btrfs_delayed_ref_node *node, 60 struct btrfs_delayed_extent_op *extent_op); 61 static int find_next_key(struct btrfs_path *path, int level, 62 struct btrfs_key *key); 63 64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 65 { 66 return (cache->flags & bits) == bits; 67 } 68 69 /* simple helper to search for an existing data extent at a given offset */ 70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 71 { 72 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 73 struct btrfs_key key; 74 BTRFS_PATH_AUTO_FREE(path); 75 76 path = btrfs_alloc_path(); 77 if (!path) 78 return -ENOMEM; 79 80 key.objectid = start; 81 key.type = BTRFS_EXTENT_ITEM_KEY; 82 key.offset = len; 83 return btrfs_search_slot(NULL, root, &key, path, 0, 0); 84 } 85 86 /* 87 * helper function to lookup reference count and flags of a tree block. 88 * 89 * the head node for delayed ref is used to store the sum of all the 90 * reference count modifications queued up in the rbtree. the head 91 * node may also store the extent flags to set. This way you can check 92 * to see what the reference count and extent flags would be if all of 93 * the delayed refs are not processed. 94 */ 95 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 96 struct btrfs_fs_info *fs_info, u64 bytenr, 97 u64 offset, int metadata, u64 *refs, u64 *flags, 98 u64 *owning_root) 99 { 100 struct btrfs_root *extent_root; 101 struct btrfs_delayed_ref_head *head; 102 struct btrfs_delayed_ref_root *delayed_refs; 103 BTRFS_PATH_AUTO_FREE(path); 104 struct btrfs_key key; 105 u64 num_refs; 106 u64 extent_flags; 107 u64 owner = 0; 108 int ret; 109 110 /* 111 * If we don't have skinny metadata, don't bother doing anything 112 * different 113 */ 114 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 115 offset = fs_info->nodesize; 116 metadata = 0; 117 } 118 119 path = btrfs_alloc_path(); 120 if (!path) 121 return -ENOMEM; 122 123 search_again: 124 key.objectid = bytenr; 125 if (metadata) 126 key.type = BTRFS_METADATA_ITEM_KEY; 127 else 128 key.type = BTRFS_EXTENT_ITEM_KEY; 129 key.offset = offset; 130 131 extent_root = btrfs_extent_root(fs_info, bytenr); 132 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 133 if (ret < 0) 134 return ret; 135 136 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 137 if (path->slots[0]) { 138 path->slots[0]--; 139 btrfs_item_key_to_cpu(path->nodes[0], &key, 140 path->slots[0]); 141 if (key.objectid == bytenr && 142 key.type == BTRFS_EXTENT_ITEM_KEY && 143 key.offset == fs_info->nodesize) 144 ret = 0; 145 } 146 } 147 148 if (ret == 0) { 149 struct extent_buffer *leaf = path->nodes[0]; 150 struct btrfs_extent_item *ei; 151 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 152 153 if (unlikely(item_size < sizeof(*ei))) { 154 ret = -EUCLEAN; 155 btrfs_err(fs_info, 156 "unexpected extent item size, has %u expect >= %zu", 157 item_size, sizeof(*ei)); 158 btrfs_abort_transaction(trans, ret); 159 return ret; 160 } 161 162 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 163 num_refs = btrfs_extent_refs(leaf, ei); 164 if (unlikely(num_refs == 0)) { 165 ret = -EUCLEAN; 166 btrfs_err(fs_info, 167 "unexpected zero reference count for extent item (%llu %u %llu)", 168 key.objectid, key.type, key.offset); 169 btrfs_abort_transaction(trans, ret); 170 return ret; 171 } 172 extent_flags = btrfs_extent_flags(leaf, ei); 173 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 174 } else { 175 num_refs = 0; 176 extent_flags = 0; 177 ret = 0; 178 } 179 180 delayed_refs = &trans->transaction->delayed_refs; 181 spin_lock(&delayed_refs->lock); 182 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 183 if (head) { 184 if (!mutex_trylock(&head->mutex)) { 185 refcount_inc(&head->refs); 186 spin_unlock(&delayed_refs->lock); 187 188 btrfs_release_path(path); 189 190 /* 191 * Mutex was contended, block until it's released and try 192 * again 193 */ 194 mutex_lock(&head->mutex); 195 mutex_unlock(&head->mutex); 196 btrfs_put_delayed_ref_head(head); 197 goto search_again; 198 } 199 spin_lock(&head->lock); 200 if (head->extent_op && head->extent_op->update_flags) 201 extent_flags |= head->extent_op->flags_to_set; 202 203 num_refs += head->ref_mod; 204 spin_unlock(&head->lock); 205 mutex_unlock(&head->mutex); 206 } 207 spin_unlock(&delayed_refs->lock); 208 209 WARN_ON(num_refs == 0); 210 if (refs) 211 *refs = num_refs; 212 if (flags) 213 *flags = extent_flags; 214 if (owning_root) 215 *owning_root = owner; 216 217 return ret; 218 } 219 220 /* 221 * Back reference rules. Back refs have three main goals: 222 * 223 * 1) differentiate between all holders of references to an extent so that 224 * when a reference is dropped we can make sure it was a valid reference 225 * before freeing the extent. 226 * 227 * 2) Provide enough information to quickly find the holders of an extent 228 * if we notice a given block is corrupted or bad. 229 * 230 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 231 * maintenance. This is actually the same as #2, but with a slightly 232 * different use case. 233 * 234 * There are two kinds of back refs. The implicit back refs is optimized 235 * for pointers in non-shared tree blocks. For a given pointer in a block, 236 * back refs of this kind provide information about the block's owner tree 237 * and the pointer's key. These information allow us to find the block by 238 * b-tree searching. The full back refs is for pointers in tree blocks not 239 * referenced by their owner trees. The location of tree block is recorded 240 * in the back refs. Actually the full back refs is generic, and can be 241 * used in all cases the implicit back refs is used. The major shortcoming 242 * of the full back refs is its overhead. Every time a tree block gets 243 * COWed, we have to update back refs entry for all pointers in it. 244 * 245 * For a newly allocated tree block, we use implicit back refs for 246 * pointers in it. This means most tree related operations only involve 247 * implicit back refs. For a tree block created in old transaction, the 248 * only way to drop a reference to it is COW it. So we can detect the 249 * event that tree block loses its owner tree's reference and do the 250 * back refs conversion. 251 * 252 * When a tree block is COWed through a tree, there are four cases: 253 * 254 * The reference count of the block is one and the tree is the block's 255 * owner tree. Nothing to do in this case. 256 * 257 * The reference count of the block is one and the tree is not the 258 * block's owner tree. In this case, full back refs is used for pointers 259 * in the block. Remove these full back refs, add implicit back refs for 260 * every pointers in the new block. 261 * 262 * The reference count of the block is greater than one and the tree is 263 * the block's owner tree. In this case, implicit back refs is used for 264 * pointers in the block. Add full back refs for every pointers in the 265 * block, increase lower level extents' reference counts. The original 266 * implicit back refs are entailed to the new block. 267 * 268 * The reference count of the block is greater than one and the tree is 269 * not the block's owner tree. Add implicit back refs for every pointer in 270 * the new block, increase lower level extents' reference count. 271 * 272 * Back Reference Key composing: 273 * 274 * The key objectid corresponds to the first byte in the extent, 275 * The key type is used to differentiate between types of back refs. 276 * There are different meanings of the key offset for different types 277 * of back refs. 278 * 279 * File extents can be referenced by: 280 * 281 * - multiple snapshots, subvolumes, or different generations in one subvol 282 * - different files inside a single subvolume 283 * - different offsets inside a file (bookend extents in file.c) 284 * 285 * The extent ref structure for the implicit back refs has fields for: 286 * 287 * - Objectid of the subvolume root 288 * - objectid of the file holding the reference 289 * - original offset in the file 290 * - how many bookend extents 291 * 292 * The key offset for the implicit back refs is hash of the first 293 * three fields. 294 * 295 * The extent ref structure for the full back refs has field for: 296 * 297 * - number of pointers in the tree leaf 298 * 299 * The key offset for the implicit back refs is the first byte of 300 * the tree leaf 301 * 302 * When a file extent is allocated, The implicit back refs is used. 303 * the fields are filled in: 304 * 305 * (root_key.objectid, inode objectid, offset in file, 1) 306 * 307 * When a file extent is removed file truncation, we find the 308 * corresponding implicit back refs and check the following fields: 309 * 310 * (btrfs_header_owner(leaf), inode objectid, offset in file) 311 * 312 * Btree extents can be referenced by: 313 * 314 * - Different subvolumes 315 * 316 * Both the implicit back refs and the full back refs for tree blocks 317 * only consist of key. The key offset for the implicit back refs is 318 * objectid of block's owner tree. The key offset for the full back refs 319 * is the first byte of parent block. 320 * 321 * When implicit back refs is used, information about the lowest key and 322 * level of the tree block are required. These information are stored in 323 * tree block info structure. 324 */ 325 326 /* 327 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 328 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 329 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 330 */ 331 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 332 struct btrfs_extent_inline_ref *iref, 333 enum btrfs_inline_ref_type is_data) 334 { 335 struct btrfs_fs_info *fs_info = eb->fs_info; 336 int type = btrfs_extent_inline_ref_type(eb, iref); 337 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 338 339 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 340 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 341 return type; 342 } 343 344 if (type == BTRFS_TREE_BLOCK_REF_KEY || 345 type == BTRFS_SHARED_BLOCK_REF_KEY || 346 type == BTRFS_SHARED_DATA_REF_KEY || 347 type == BTRFS_EXTENT_DATA_REF_KEY) { 348 if (is_data == BTRFS_REF_TYPE_BLOCK) { 349 if (type == BTRFS_TREE_BLOCK_REF_KEY) 350 return type; 351 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 352 ASSERT(fs_info); 353 /* 354 * Every shared one has parent tree block, 355 * which must be aligned to sector size. 356 */ 357 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 358 return type; 359 } 360 } else if (is_data == BTRFS_REF_TYPE_DATA) { 361 if (type == BTRFS_EXTENT_DATA_REF_KEY) 362 return type; 363 if (type == BTRFS_SHARED_DATA_REF_KEY) { 364 ASSERT(fs_info); 365 /* 366 * Every shared one has parent tree block, 367 * which must be aligned to sector size. 368 */ 369 if (offset && 370 IS_ALIGNED(offset, fs_info->sectorsize)) 371 return type; 372 } 373 } else { 374 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 375 return type; 376 } 377 } 378 379 WARN_ON(1); 380 btrfs_print_leaf(eb); 381 btrfs_err(fs_info, 382 "eb %llu iref 0x%lx invalid extent inline ref type %d", 383 eb->start, (unsigned long)iref, type); 384 385 return BTRFS_REF_TYPE_INVALID; 386 } 387 388 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 389 { 390 u32 high_crc = ~(u32)0; 391 u32 low_crc = ~(u32)0; 392 __le64 lenum; 393 394 lenum = cpu_to_le64(root_objectid); 395 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 396 lenum = cpu_to_le64(owner); 397 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 398 lenum = cpu_to_le64(offset); 399 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 400 401 return ((u64)high_crc << 31) ^ (u64)low_crc; 402 } 403 404 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 405 struct btrfs_extent_data_ref *ref) 406 { 407 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 408 btrfs_extent_data_ref_objectid(leaf, ref), 409 btrfs_extent_data_ref_offset(leaf, ref)); 410 } 411 412 static bool match_extent_data_ref(struct extent_buffer *leaf, 413 struct btrfs_extent_data_ref *ref, 414 u64 root_objectid, u64 owner, u64 offset) 415 { 416 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 417 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 418 btrfs_extent_data_ref_offset(leaf, ref) != offset) 419 return false; 420 return true; 421 } 422 423 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 424 struct btrfs_path *path, 425 u64 bytenr, u64 parent, 426 u64 root_objectid, 427 u64 owner, u64 offset) 428 { 429 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 430 struct btrfs_key key; 431 struct btrfs_extent_data_ref *ref; 432 struct extent_buffer *leaf; 433 u32 nritems; 434 int recow; 435 int ret; 436 437 key.objectid = bytenr; 438 if (parent) { 439 key.type = BTRFS_SHARED_DATA_REF_KEY; 440 key.offset = parent; 441 } else { 442 key.type = BTRFS_EXTENT_DATA_REF_KEY; 443 key.offset = hash_extent_data_ref(root_objectid, 444 owner, offset); 445 } 446 again: 447 recow = 0; 448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 449 if (ret < 0) 450 return ret; 451 452 if (parent) { 453 if (ret) 454 return -ENOENT; 455 return 0; 456 } 457 458 ret = -ENOENT; 459 leaf = path->nodes[0]; 460 nritems = btrfs_header_nritems(leaf); 461 while (1) { 462 if (path->slots[0] >= nritems) { 463 ret = btrfs_next_leaf(root, path); 464 if (ret) { 465 if (ret > 0) 466 return -ENOENT; 467 return ret; 468 } 469 470 leaf = path->nodes[0]; 471 nritems = btrfs_header_nritems(leaf); 472 recow = 1; 473 } 474 475 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 476 if (key.objectid != bytenr || 477 key.type != BTRFS_EXTENT_DATA_REF_KEY) 478 goto fail; 479 480 ref = btrfs_item_ptr(leaf, path->slots[0], 481 struct btrfs_extent_data_ref); 482 483 if (match_extent_data_ref(leaf, ref, root_objectid, 484 owner, offset)) { 485 if (recow) { 486 btrfs_release_path(path); 487 goto again; 488 } 489 ret = 0; 490 break; 491 } 492 path->slots[0]++; 493 } 494 fail: 495 return ret; 496 } 497 498 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 499 struct btrfs_path *path, 500 struct btrfs_delayed_ref_node *node, 501 u64 bytenr) 502 { 503 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 504 struct btrfs_key key; 505 struct extent_buffer *leaf; 506 u64 owner = btrfs_delayed_ref_owner(node); 507 u64 offset = btrfs_delayed_ref_offset(node); 508 u32 size; 509 u32 num_refs; 510 int ret; 511 512 key.objectid = bytenr; 513 if (node->parent) { 514 key.type = BTRFS_SHARED_DATA_REF_KEY; 515 key.offset = node->parent; 516 size = sizeof(struct btrfs_shared_data_ref); 517 } else { 518 key.type = BTRFS_EXTENT_DATA_REF_KEY; 519 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 520 size = sizeof(struct btrfs_extent_data_ref); 521 } 522 523 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 524 if (ret && ret != -EEXIST) 525 goto fail; 526 527 leaf = path->nodes[0]; 528 if (node->parent) { 529 struct btrfs_shared_data_ref *ref; 530 ref = btrfs_item_ptr(leaf, path->slots[0], 531 struct btrfs_shared_data_ref); 532 if (ret == 0) { 533 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 534 } else { 535 num_refs = btrfs_shared_data_ref_count(leaf, ref); 536 num_refs += node->ref_mod; 537 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 538 } 539 } else { 540 struct btrfs_extent_data_ref *ref; 541 while (ret == -EEXIST) { 542 ref = btrfs_item_ptr(leaf, path->slots[0], 543 struct btrfs_extent_data_ref); 544 if (match_extent_data_ref(leaf, ref, node->ref_root, 545 owner, offset)) 546 break; 547 btrfs_release_path(path); 548 key.offset++; 549 ret = btrfs_insert_empty_item(trans, root, path, &key, 550 size); 551 if (ret && ret != -EEXIST) 552 goto fail; 553 554 leaf = path->nodes[0]; 555 } 556 ref = btrfs_item_ptr(leaf, path->slots[0], 557 struct btrfs_extent_data_ref); 558 if (ret == 0) { 559 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 560 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 561 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 562 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 563 } else { 564 num_refs = btrfs_extent_data_ref_count(leaf, ref); 565 num_refs += node->ref_mod; 566 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 567 } 568 } 569 ret = 0; 570 fail: 571 btrfs_release_path(path); 572 return ret; 573 } 574 575 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_path *path, 578 int refs_to_drop) 579 { 580 struct btrfs_key key; 581 struct btrfs_extent_data_ref *ref1 = NULL; 582 struct btrfs_shared_data_ref *ref2 = NULL; 583 struct extent_buffer *leaf; 584 u32 num_refs = 0; 585 int ret = 0; 586 587 leaf = path->nodes[0]; 588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 589 590 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 591 ref1 = btrfs_item_ptr(leaf, path->slots[0], 592 struct btrfs_extent_data_ref); 593 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 594 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 595 ref2 = btrfs_item_ptr(leaf, path->slots[0], 596 struct btrfs_shared_data_ref); 597 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 598 } else { 599 btrfs_err(trans->fs_info, 600 "unrecognized backref key (%llu %u %llu)", 601 key.objectid, key.type, key.offset); 602 btrfs_abort_transaction(trans, -EUCLEAN); 603 return -EUCLEAN; 604 } 605 606 BUG_ON(num_refs < refs_to_drop); 607 num_refs -= refs_to_drop; 608 609 if (num_refs == 0) { 610 ret = btrfs_del_item(trans, root, path); 611 } else { 612 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 613 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 614 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 615 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 616 } 617 return ret; 618 } 619 620 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 621 struct btrfs_extent_inline_ref *iref) 622 { 623 struct btrfs_key key; 624 struct extent_buffer *leaf; 625 struct btrfs_extent_data_ref *ref1; 626 struct btrfs_shared_data_ref *ref2; 627 u32 num_refs = 0; 628 int type; 629 630 leaf = path->nodes[0]; 631 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 632 633 if (iref) { 634 /* 635 * If type is invalid, we should have bailed out earlier than 636 * this call. 637 */ 638 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 639 ASSERT(type != BTRFS_REF_TYPE_INVALID); 640 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 641 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 642 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 643 } else { 644 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 645 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 646 } 647 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 648 ref1 = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_extent_data_ref); 650 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 651 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 652 ref2 = btrfs_item_ptr(leaf, path->slots[0], 653 struct btrfs_shared_data_ref); 654 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 655 } else { 656 WARN_ON(1); 657 } 658 return num_refs; 659 } 660 661 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 662 struct btrfs_path *path, 663 u64 bytenr, u64 parent, 664 u64 root_objectid) 665 { 666 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 667 struct btrfs_key key; 668 int ret; 669 670 key.objectid = bytenr; 671 if (parent) { 672 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 673 key.offset = parent; 674 } else { 675 key.type = BTRFS_TREE_BLOCK_REF_KEY; 676 key.offset = root_objectid; 677 } 678 679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 680 if (ret > 0) 681 ret = -ENOENT; 682 return ret; 683 } 684 685 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 struct btrfs_delayed_ref_node *node, 688 u64 bytenr) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (node->parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = node->parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = node->ref_root; 701 } 702 703 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 704 btrfs_release_path(path); 705 return ret; 706 } 707 708 static inline int extent_ref_type(u64 parent, u64 owner) 709 { 710 int type; 711 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 712 if (parent > 0) 713 type = BTRFS_SHARED_BLOCK_REF_KEY; 714 else 715 type = BTRFS_TREE_BLOCK_REF_KEY; 716 } else { 717 if (parent > 0) 718 type = BTRFS_SHARED_DATA_REF_KEY; 719 else 720 type = BTRFS_EXTENT_DATA_REF_KEY; 721 } 722 return type; 723 } 724 725 static int find_next_key(struct btrfs_path *path, int level, 726 struct btrfs_key *key) 727 728 { 729 for (; level < BTRFS_MAX_LEVEL; level++) { 730 if (!path->nodes[level]) 731 break; 732 if (path->slots[level] + 1 >= 733 btrfs_header_nritems(path->nodes[level])) 734 continue; 735 if (level == 0) 736 btrfs_item_key_to_cpu(path->nodes[level], key, 737 path->slots[level] + 1); 738 else 739 btrfs_node_key_to_cpu(path->nodes[level], key, 740 path->slots[level] + 1); 741 return 0; 742 } 743 return 1; 744 } 745 746 /* 747 * look for inline back ref. if back ref is found, *ref_ret is set 748 * to the address of inline back ref, and 0 is returned. 749 * 750 * if back ref isn't found, *ref_ret is set to the address where it 751 * should be inserted, and -ENOENT is returned. 752 * 753 * if insert is true and there are too many inline back refs, the path 754 * points to the extent item, and -EAGAIN is returned. 755 * 756 * NOTE: inline back refs are ordered in the same way that back ref 757 * items in the tree are ordered. 758 */ 759 static noinline_for_stack 760 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 761 struct btrfs_path *path, 762 struct btrfs_extent_inline_ref **ref_ret, 763 u64 bytenr, u64 num_bytes, 764 u64 parent, u64 root_objectid, 765 u64 owner, u64 offset, int insert) 766 { 767 struct btrfs_fs_info *fs_info = trans->fs_info; 768 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 769 struct btrfs_key key; 770 struct extent_buffer *leaf; 771 struct btrfs_extent_item *ei; 772 struct btrfs_extent_inline_ref *iref; 773 u64 flags; 774 u64 item_size; 775 unsigned long ptr; 776 unsigned long end; 777 int extra_size; 778 int type; 779 int want; 780 int ret; 781 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 782 int needed; 783 784 key.objectid = bytenr; 785 key.type = BTRFS_EXTENT_ITEM_KEY; 786 key.offset = num_bytes; 787 788 want = extent_ref_type(parent, owner); 789 if (insert) { 790 extra_size = btrfs_extent_inline_ref_size(want); 791 path->search_for_extension = 1; 792 } else 793 extra_size = -1; 794 795 /* 796 * Owner is our level, so we can just add one to get the level for the 797 * block we are interested in. 798 */ 799 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 800 key.type = BTRFS_METADATA_ITEM_KEY; 801 key.offset = owner; 802 } 803 804 again: 805 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 806 if (ret < 0) 807 goto out; 808 809 /* 810 * We may be a newly converted file system which still has the old fat 811 * extent entries for metadata, so try and see if we have one of those. 812 */ 813 if (ret > 0 && skinny_metadata) { 814 skinny_metadata = false; 815 if (path->slots[0]) { 816 path->slots[0]--; 817 btrfs_item_key_to_cpu(path->nodes[0], &key, 818 path->slots[0]); 819 if (key.objectid == bytenr && 820 key.type == BTRFS_EXTENT_ITEM_KEY && 821 key.offset == num_bytes) 822 ret = 0; 823 } 824 if (ret) { 825 key.objectid = bytenr; 826 key.type = BTRFS_EXTENT_ITEM_KEY; 827 key.offset = num_bytes; 828 btrfs_release_path(path); 829 goto again; 830 } 831 } 832 833 if (ret && !insert) { 834 ret = -ENOENT; 835 goto out; 836 } else if (WARN_ON(ret)) { 837 btrfs_print_leaf(path->nodes[0]); 838 btrfs_err(fs_info, 839 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 840 bytenr, num_bytes, parent, root_objectid, owner, 841 offset); 842 ret = -EUCLEAN; 843 goto out; 844 } 845 846 leaf = path->nodes[0]; 847 item_size = btrfs_item_size(leaf, path->slots[0]); 848 if (unlikely(item_size < sizeof(*ei))) { 849 ret = -EUCLEAN; 850 btrfs_err(fs_info, 851 "unexpected extent item size, has %llu expect >= %zu", 852 item_size, sizeof(*ei)); 853 btrfs_abort_transaction(trans, ret); 854 goto out; 855 } 856 857 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 858 flags = btrfs_extent_flags(leaf, ei); 859 860 ptr = (unsigned long)(ei + 1); 861 end = (unsigned long)ei + item_size; 862 863 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 864 ptr += sizeof(struct btrfs_tree_block_info); 865 BUG_ON(ptr > end); 866 } 867 868 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 869 needed = BTRFS_REF_TYPE_DATA; 870 else 871 needed = BTRFS_REF_TYPE_BLOCK; 872 873 ret = -ENOENT; 874 while (ptr < end) { 875 iref = (struct btrfs_extent_inline_ref *)ptr; 876 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 877 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 878 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 879 ptr += btrfs_extent_inline_ref_size(type); 880 continue; 881 } 882 if (type == BTRFS_REF_TYPE_INVALID) { 883 ret = -EUCLEAN; 884 goto out; 885 } 886 887 if (want < type) 888 break; 889 if (want > type) { 890 ptr += btrfs_extent_inline_ref_size(type); 891 continue; 892 } 893 894 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 895 struct btrfs_extent_data_ref *dref; 896 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 897 if (match_extent_data_ref(leaf, dref, root_objectid, 898 owner, offset)) { 899 ret = 0; 900 break; 901 } 902 if (hash_extent_data_ref_item(leaf, dref) < 903 hash_extent_data_ref(root_objectid, owner, offset)) 904 break; 905 } else { 906 u64 ref_offset; 907 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 908 if (parent > 0) { 909 if (parent == ref_offset) { 910 ret = 0; 911 break; 912 } 913 if (ref_offset < parent) 914 break; 915 } else { 916 if (root_objectid == ref_offset) { 917 ret = 0; 918 break; 919 } 920 if (ref_offset < root_objectid) 921 break; 922 } 923 } 924 ptr += btrfs_extent_inline_ref_size(type); 925 } 926 927 if (unlikely(ptr > end)) { 928 ret = -EUCLEAN; 929 btrfs_print_leaf(path->nodes[0]); 930 btrfs_crit(fs_info, 931 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 932 path->slots[0], root_objectid, owner, offset, parent); 933 goto out; 934 } 935 936 if (ret == -ENOENT && insert) { 937 if (item_size + extra_size >= 938 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 939 ret = -EAGAIN; 940 goto out; 941 } 942 943 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) { 944 struct btrfs_key tmp_key; 945 946 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1); 947 if (tmp_key.objectid == bytenr && 948 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 949 ret = -EAGAIN; 950 goto out; 951 } 952 goto out_no_entry; 953 } 954 955 if (!path->keep_locks) { 956 btrfs_release_path(path); 957 path->keep_locks = 1; 958 goto again; 959 } 960 961 /* 962 * To add new inline back ref, we have to make sure 963 * there is no corresponding back ref item. 964 * For simplicity, we just do not add new inline back 965 * ref if there is any kind of item for this block 966 */ 967 if (find_next_key(path, 0, &key) == 0 && 968 key.objectid == bytenr && 969 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 970 ret = -EAGAIN; 971 goto out; 972 } 973 } 974 out_no_entry: 975 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 976 out: 977 if (path->keep_locks) { 978 path->keep_locks = 0; 979 btrfs_unlock_up_safe(path, 1); 980 } 981 if (insert) 982 path->search_for_extension = 0; 983 return ret; 984 } 985 986 /* 987 * helper to add new inline back ref 988 */ 989 static noinline_for_stack 990 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 991 struct btrfs_path *path, 992 struct btrfs_extent_inline_ref *iref, 993 u64 parent, u64 root_objectid, 994 u64 owner, u64 offset, int refs_to_add, 995 struct btrfs_delayed_extent_op *extent_op) 996 { 997 struct extent_buffer *leaf; 998 struct btrfs_extent_item *ei; 999 unsigned long ptr; 1000 unsigned long end; 1001 unsigned long item_offset; 1002 u64 refs; 1003 int size; 1004 int type; 1005 1006 leaf = path->nodes[0]; 1007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1008 item_offset = (unsigned long)iref - (unsigned long)ei; 1009 1010 type = extent_ref_type(parent, owner); 1011 size = btrfs_extent_inline_ref_size(type); 1012 1013 btrfs_extend_item(trans, path, size); 1014 1015 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1016 refs = btrfs_extent_refs(leaf, ei); 1017 refs += refs_to_add; 1018 btrfs_set_extent_refs(leaf, ei, refs); 1019 if (extent_op) 1020 __run_delayed_extent_op(extent_op, leaf, ei); 1021 1022 ptr = (unsigned long)ei + item_offset; 1023 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1024 if (ptr < end - size) 1025 memmove_extent_buffer(leaf, ptr + size, ptr, 1026 end - size - ptr); 1027 1028 iref = (struct btrfs_extent_inline_ref *)ptr; 1029 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1030 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1031 struct btrfs_extent_data_ref *dref; 1032 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1033 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1034 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1035 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1036 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1037 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1038 struct btrfs_shared_data_ref *sref; 1039 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1040 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1042 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1044 } else { 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1046 } 1047 } 1048 1049 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1050 struct btrfs_path *path, 1051 struct btrfs_extent_inline_ref **ref_ret, 1052 u64 bytenr, u64 num_bytes, u64 parent, 1053 u64 root_objectid, u64 owner, u64 offset) 1054 { 1055 int ret; 1056 1057 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1058 num_bytes, parent, root_objectid, 1059 owner, offset, 0); 1060 if (ret != -ENOENT) 1061 return ret; 1062 1063 btrfs_release_path(path); 1064 *ref_ret = NULL; 1065 1066 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1067 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1068 root_objectid); 1069 } else { 1070 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1071 root_objectid, owner, offset); 1072 } 1073 return ret; 1074 } 1075 1076 /* 1077 * helper to update/remove inline back ref 1078 */ 1079 static noinline_for_stack int update_inline_extent_backref( 1080 struct btrfs_trans_handle *trans, 1081 struct btrfs_path *path, 1082 struct btrfs_extent_inline_ref *iref, 1083 int refs_to_mod, 1084 struct btrfs_delayed_extent_op *extent_op) 1085 { 1086 struct extent_buffer *leaf = path->nodes[0]; 1087 struct btrfs_fs_info *fs_info = leaf->fs_info; 1088 struct btrfs_extent_item *ei; 1089 struct btrfs_extent_data_ref *dref = NULL; 1090 struct btrfs_shared_data_ref *sref = NULL; 1091 unsigned long ptr; 1092 unsigned long end; 1093 u32 item_size; 1094 int size; 1095 int type; 1096 u64 refs; 1097 1098 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1099 refs = btrfs_extent_refs(leaf, ei); 1100 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1101 struct btrfs_key key; 1102 u32 extent_size; 1103 1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1105 if (key.type == BTRFS_METADATA_ITEM_KEY) 1106 extent_size = fs_info->nodesize; 1107 else 1108 extent_size = key.offset; 1109 btrfs_print_leaf(leaf); 1110 btrfs_err(fs_info, 1111 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1112 key.objectid, extent_size, refs_to_mod, refs); 1113 return -EUCLEAN; 1114 } 1115 refs += refs_to_mod; 1116 btrfs_set_extent_refs(leaf, ei, refs); 1117 if (extent_op) 1118 __run_delayed_extent_op(extent_op, leaf, ei); 1119 1120 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1121 /* 1122 * Function btrfs_get_extent_inline_ref_type() has already printed 1123 * error messages. 1124 */ 1125 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1126 return -EUCLEAN; 1127 1128 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1129 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1130 refs = btrfs_extent_data_ref_count(leaf, dref); 1131 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1132 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1133 refs = btrfs_shared_data_ref_count(leaf, sref); 1134 } else { 1135 refs = 1; 1136 /* 1137 * For tree blocks we can only drop one ref for it, and tree 1138 * blocks should not have refs > 1. 1139 * 1140 * Furthermore if we're inserting a new inline backref, we 1141 * won't reach this path either. That would be 1142 * setup_inline_extent_backref(). 1143 */ 1144 if (unlikely(refs_to_mod != -1)) { 1145 struct btrfs_key key; 1146 1147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1148 1149 btrfs_print_leaf(leaf); 1150 btrfs_err(fs_info, 1151 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1152 key.objectid, refs_to_mod); 1153 return -EUCLEAN; 1154 } 1155 } 1156 1157 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1158 struct btrfs_key key; 1159 u32 extent_size; 1160 1161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1162 if (key.type == BTRFS_METADATA_ITEM_KEY) 1163 extent_size = fs_info->nodesize; 1164 else 1165 extent_size = key.offset; 1166 btrfs_print_leaf(leaf); 1167 btrfs_err(fs_info, 1168 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1169 (unsigned long)iref, key.objectid, extent_size, 1170 refs_to_mod, refs); 1171 return -EUCLEAN; 1172 } 1173 refs += refs_to_mod; 1174 1175 if (refs > 0) { 1176 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1177 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1178 else 1179 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1180 } else { 1181 size = btrfs_extent_inline_ref_size(type); 1182 item_size = btrfs_item_size(leaf, path->slots[0]); 1183 ptr = (unsigned long)iref; 1184 end = (unsigned long)ei + item_size; 1185 if (ptr + size < end) 1186 memmove_extent_buffer(leaf, ptr, ptr + size, 1187 end - ptr - size); 1188 item_size -= size; 1189 btrfs_truncate_item(trans, path, item_size, 1); 1190 } 1191 return 0; 1192 } 1193 1194 static noinline_for_stack 1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1196 struct btrfs_path *path, 1197 u64 bytenr, u64 num_bytes, u64 parent, 1198 u64 root_objectid, u64 owner, 1199 u64 offset, int refs_to_add, 1200 struct btrfs_delayed_extent_op *extent_op) 1201 { 1202 struct btrfs_extent_inline_ref *iref; 1203 int ret; 1204 1205 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1206 num_bytes, parent, root_objectid, 1207 owner, offset, 1); 1208 if (ret == 0) { 1209 /* 1210 * We're adding refs to a tree block we already own, this 1211 * should not happen at all. 1212 */ 1213 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1214 btrfs_print_leaf(path->nodes[0]); 1215 btrfs_crit(trans->fs_info, 1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1217 bytenr, num_bytes, root_objectid, path->slots[0]); 1218 return -EUCLEAN; 1219 } 1220 ret = update_inline_extent_backref(trans, path, iref, 1221 refs_to_add, extent_op); 1222 } else if (ret == -ENOENT) { 1223 setup_inline_extent_backref(trans, path, iref, parent, 1224 root_objectid, owner, offset, 1225 refs_to_add, extent_op); 1226 ret = 0; 1227 } 1228 return ret; 1229 } 1230 1231 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1232 struct btrfs_root *root, 1233 struct btrfs_path *path, 1234 struct btrfs_extent_inline_ref *iref, 1235 int refs_to_drop, int is_data) 1236 { 1237 int ret = 0; 1238 1239 BUG_ON(!is_data && refs_to_drop != 1); 1240 if (iref) 1241 ret = update_inline_extent_backref(trans, path, iref, 1242 -refs_to_drop, NULL); 1243 else if (is_data) 1244 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1245 else 1246 ret = btrfs_del_item(trans, root, path); 1247 return ret; 1248 } 1249 1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1251 u64 *discarded_bytes) 1252 { 1253 int j, ret = 0; 1254 u64 bytes_left, end; 1255 u64 aligned_start = ALIGN(start, SECTOR_SIZE); 1256 1257 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1258 if (start != aligned_start) { 1259 len -= aligned_start - start; 1260 len = round_down(len, SECTOR_SIZE); 1261 start = aligned_start; 1262 } 1263 1264 *discarded_bytes = 0; 1265 1266 if (!len) 1267 return 0; 1268 1269 end = start + len; 1270 bytes_left = len; 1271 1272 /* Skip any superblocks on this device. */ 1273 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1274 u64 sb_start = btrfs_sb_offset(j); 1275 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1276 u64 size = sb_start - start; 1277 1278 if (!in_range(sb_start, start, bytes_left) && 1279 !in_range(sb_end, start, bytes_left) && 1280 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1281 continue; 1282 1283 /* 1284 * Superblock spans beginning of range. Adjust start and 1285 * try again. 1286 */ 1287 if (sb_start <= start) { 1288 start += sb_end - start; 1289 if (start > end) { 1290 bytes_left = 0; 1291 break; 1292 } 1293 bytes_left = end - start; 1294 continue; 1295 } 1296 1297 if (size) { 1298 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1299 size >> SECTOR_SHIFT, 1300 GFP_NOFS); 1301 if (!ret) 1302 *discarded_bytes += size; 1303 else if (ret != -EOPNOTSUPP) 1304 return ret; 1305 } 1306 1307 start = sb_end; 1308 if (start > end) { 1309 bytes_left = 0; 1310 break; 1311 } 1312 bytes_left = end - start; 1313 } 1314 1315 while (bytes_left) { 1316 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1317 1318 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1319 bytes_to_discard >> SECTOR_SHIFT, 1320 GFP_NOFS); 1321 1322 if (ret) { 1323 if (ret != -EOPNOTSUPP) 1324 break; 1325 continue; 1326 } 1327 1328 start += bytes_to_discard; 1329 bytes_left -= bytes_to_discard; 1330 *discarded_bytes += bytes_to_discard; 1331 1332 if (btrfs_trim_interrupted()) { 1333 ret = -ERESTARTSYS; 1334 break; 1335 } 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1342 { 1343 struct btrfs_device *dev = stripe->dev; 1344 struct btrfs_fs_info *fs_info = dev->fs_info; 1345 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1346 u64 phys = stripe->physical; 1347 u64 len = stripe->length; 1348 u64 discarded = 0; 1349 int ret = 0; 1350 1351 /* Zone reset on a zoned filesystem */ 1352 if (btrfs_can_zone_reset(dev, phys, len)) { 1353 u64 src_disc; 1354 1355 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1356 if (ret) 1357 goto out; 1358 1359 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1360 dev != dev_replace->srcdev) 1361 goto out; 1362 1363 src_disc = discarded; 1364 1365 /* Send to replace target as well */ 1366 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1367 &discarded); 1368 discarded += src_disc; 1369 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1370 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1371 } else { 1372 ret = 0; 1373 *bytes = 0; 1374 } 1375 1376 out: 1377 *bytes = discarded; 1378 return ret; 1379 } 1380 1381 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1382 u64 num_bytes, u64 *actual_bytes) 1383 { 1384 int ret = 0; 1385 u64 discarded_bytes = 0; 1386 u64 end = bytenr + num_bytes; 1387 u64 cur = bytenr; 1388 1389 /* 1390 * Avoid races with device replace and make sure the devices in the 1391 * stripes don't go away while we are discarding. 1392 */ 1393 btrfs_bio_counter_inc_blocked(fs_info); 1394 while (cur < end) { 1395 struct btrfs_discard_stripe *stripes; 1396 unsigned int num_stripes; 1397 int i; 1398 1399 num_bytes = end - cur; 1400 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1401 if (IS_ERR(stripes)) { 1402 ret = PTR_ERR(stripes); 1403 if (ret == -EOPNOTSUPP) 1404 ret = 0; 1405 break; 1406 } 1407 1408 for (i = 0; i < num_stripes; i++) { 1409 struct btrfs_discard_stripe *stripe = stripes + i; 1410 u64 bytes; 1411 1412 if (!stripe->dev->bdev) { 1413 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1414 continue; 1415 } 1416 1417 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1418 &stripe->dev->dev_state)) 1419 continue; 1420 1421 ret = do_discard_extent(stripe, &bytes); 1422 if (ret) { 1423 /* 1424 * Keep going if discard is not supported by the 1425 * device. 1426 */ 1427 if (ret != -EOPNOTSUPP) 1428 break; 1429 ret = 0; 1430 } else { 1431 discarded_bytes += bytes; 1432 } 1433 } 1434 kfree(stripes); 1435 if (ret) 1436 break; 1437 cur += num_bytes; 1438 } 1439 btrfs_bio_counter_dec(fs_info); 1440 if (actual_bytes) 1441 *actual_bytes = discarded_bytes; 1442 return ret; 1443 } 1444 1445 /* Can return -ENOMEM */ 1446 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1447 struct btrfs_ref *generic_ref) 1448 { 1449 struct btrfs_fs_info *fs_info = trans->fs_info; 1450 int ret; 1451 1452 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1453 generic_ref->action); 1454 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1455 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1456 1457 if (generic_ref->type == BTRFS_REF_METADATA) 1458 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1459 else 1460 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1461 1462 btrfs_ref_tree_mod(fs_info, generic_ref); 1463 1464 return ret; 1465 } 1466 1467 /* 1468 * Insert backreference for a given extent. 1469 * 1470 * The counterpart is in __btrfs_free_extent(), with examples and more details 1471 * how it works. 1472 * 1473 * @trans: Handle of transaction 1474 * 1475 * @node: The delayed ref node used to get the bytenr/length for 1476 * extent whose references are incremented. 1477 * 1478 * @extent_op Pointer to a structure, holding information necessary when 1479 * updating a tree block's flags 1480 * 1481 */ 1482 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1483 struct btrfs_delayed_ref_node *node, 1484 struct btrfs_delayed_extent_op *extent_op) 1485 { 1486 BTRFS_PATH_AUTO_FREE(path); 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *item; 1489 struct btrfs_key key; 1490 u64 bytenr = node->bytenr; 1491 u64 num_bytes = node->num_bytes; 1492 u64 owner = btrfs_delayed_ref_owner(node); 1493 u64 offset = btrfs_delayed_ref_offset(node); 1494 u64 refs; 1495 int refs_to_add = node->ref_mod; 1496 int ret; 1497 1498 path = btrfs_alloc_path(); 1499 if (!path) 1500 return -ENOMEM; 1501 1502 /* this will setup the path even if it fails to insert the back ref */ 1503 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1504 node->parent, node->ref_root, owner, 1505 offset, refs_to_add, extent_op); 1506 if ((ret < 0 && ret != -EAGAIN) || !ret) 1507 return ret; 1508 1509 /* 1510 * Ok we had -EAGAIN which means we didn't have space to insert and 1511 * inline extent ref, so just update the reference count and add a 1512 * normal backref. 1513 */ 1514 leaf = path->nodes[0]; 1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1517 refs = btrfs_extent_refs(leaf, item); 1518 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1519 if (extent_op) 1520 __run_delayed_extent_op(extent_op, leaf, item); 1521 1522 btrfs_release_path(path); 1523 1524 /* now insert the actual backref */ 1525 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1526 ret = insert_tree_block_ref(trans, path, node, bytenr); 1527 else 1528 ret = insert_extent_data_ref(trans, path, node, bytenr); 1529 1530 if (ret) 1531 btrfs_abort_transaction(trans, ret); 1532 1533 return ret; 1534 } 1535 1536 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1537 struct btrfs_delayed_ref_head *href) 1538 { 1539 u64 root = href->owning_root; 1540 1541 /* 1542 * Don't check must_insert_reserved, as this is called from contexts 1543 * where it has already been unset. 1544 */ 1545 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1546 !href->is_data || !is_fstree(root)) 1547 return; 1548 1549 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1550 BTRFS_QGROUP_RSV_DATA); 1551 } 1552 1553 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1554 struct btrfs_delayed_ref_head *href, 1555 struct btrfs_delayed_ref_node *node, 1556 struct btrfs_delayed_extent_op *extent_op, 1557 bool insert_reserved) 1558 { 1559 int ret = 0; 1560 u64 parent = 0; 1561 u64 flags = 0; 1562 1563 trace_run_delayed_data_ref(trans->fs_info, node); 1564 1565 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1566 parent = node->parent; 1567 1568 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1569 struct btrfs_key key; 1570 struct btrfs_squota_delta delta = { 1571 .root = href->owning_root, 1572 .num_bytes = node->num_bytes, 1573 .is_data = true, 1574 .is_inc = true, 1575 .generation = trans->transid, 1576 }; 1577 u64 owner = btrfs_delayed_ref_owner(node); 1578 u64 offset = btrfs_delayed_ref_offset(node); 1579 1580 if (extent_op) 1581 flags |= extent_op->flags_to_set; 1582 1583 key.objectid = node->bytenr; 1584 key.type = BTRFS_EXTENT_ITEM_KEY; 1585 key.offset = node->num_bytes; 1586 1587 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1588 flags, owner, offset, &key, 1589 node->ref_mod, 1590 href->owning_root); 1591 free_head_ref_squota_rsv(trans->fs_info, href); 1592 if (!ret) 1593 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1594 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1595 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1596 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1597 ret = __btrfs_free_extent(trans, href, node, extent_op); 1598 } else { 1599 BUG(); 1600 } 1601 return ret; 1602 } 1603 1604 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1605 struct extent_buffer *leaf, 1606 struct btrfs_extent_item *ei) 1607 { 1608 u64 flags = btrfs_extent_flags(leaf, ei); 1609 if (extent_op->update_flags) { 1610 flags |= extent_op->flags_to_set; 1611 btrfs_set_extent_flags(leaf, ei, flags); 1612 } 1613 1614 if (extent_op->update_key) { 1615 struct btrfs_tree_block_info *bi; 1616 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1617 bi = (struct btrfs_tree_block_info *)(ei + 1); 1618 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1619 } 1620 } 1621 1622 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1623 struct btrfs_delayed_ref_head *head, 1624 struct btrfs_delayed_extent_op *extent_op) 1625 { 1626 struct btrfs_fs_info *fs_info = trans->fs_info; 1627 struct btrfs_root *root; 1628 struct btrfs_key key; 1629 BTRFS_PATH_AUTO_FREE(path); 1630 struct btrfs_extent_item *ei; 1631 struct extent_buffer *leaf; 1632 u32 item_size; 1633 int ret; 1634 int metadata = 1; 1635 1636 if (TRANS_ABORTED(trans)) 1637 return 0; 1638 1639 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1640 metadata = 0; 1641 1642 path = btrfs_alloc_path(); 1643 if (!path) 1644 return -ENOMEM; 1645 1646 key.objectid = head->bytenr; 1647 1648 if (metadata) { 1649 key.type = BTRFS_METADATA_ITEM_KEY; 1650 key.offset = head->level; 1651 } else { 1652 key.type = BTRFS_EXTENT_ITEM_KEY; 1653 key.offset = head->num_bytes; 1654 } 1655 1656 root = btrfs_extent_root(fs_info, key.objectid); 1657 again: 1658 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1659 if (ret < 0) { 1660 return ret; 1661 } else if (ret > 0) { 1662 if (metadata) { 1663 if (path->slots[0] > 0) { 1664 path->slots[0]--; 1665 btrfs_item_key_to_cpu(path->nodes[0], &key, 1666 path->slots[0]); 1667 if (key.objectid == head->bytenr && 1668 key.type == BTRFS_EXTENT_ITEM_KEY && 1669 key.offset == head->num_bytes) 1670 ret = 0; 1671 } 1672 if (ret > 0) { 1673 btrfs_release_path(path); 1674 metadata = 0; 1675 1676 key.objectid = head->bytenr; 1677 key.type = BTRFS_EXTENT_ITEM_KEY; 1678 key.offset = head->num_bytes; 1679 goto again; 1680 } 1681 } else { 1682 ret = -EUCLEAN; 1683 btrfs_err(fs_info, 1684 "missing extent item for extent %llu num_bytes %llu level %d", 1685 head->bytenr, head->num_bytes, head->level); 1686 return ret; 1687 } 1688 } 1689 1690 leaf = path->nodes[0]; 1691 item_size = btrfs_item_size(leaf, path->slots[0]); 1692 1693 if (unlikely(item_size < sizeof(*ei))) { 1694 ret = -EUCLEAN; 1695 btrfs_err(fs_info, 1696 "unexpected extent item size, has %u expect >= %zu", 1697 item_size, sizeof(*ei)); 1698 btrfs_abort_transaction(trans, ret); 1699 return ret; 1700 } 1701 1702 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1703 __run_delayed_extent_op(extent_op, leaf, ei); 1704 1705 return ret; 1706 } 1707 1708 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1709 struct btrfs_delayed_ref_head *href, 1710 struct btrfs_delayed_ref_node *node, 1711 struct btrfs_delayed_extent_op *extent_op, 1712 bool insert_reserved) 1713 { 1714 int ret = 0; 1715 struct btrfs_fs_info *fs_info = trans->fs_info; 1716 u64 parent = 0; 1717 u64 ref_root = 0; 1718 1719 trace_run_delayed_tree_ref(trans->fs_info, node); 1720 1721 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1722 parent = node->parent; 1723 ref_root = node->ref_root; 1724 1725 if (unlikely(node->ref_mod != 1)) { 1726 btrfs_err(trans->fs_info, 1727 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1728 node->bytenr, node->ref_mod, node->action, ref_root, 1729 parent); 1730 return -EUCLEAN; 1731 } 1732 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1733 struct btrfs_squota_delta delta = { 1734 .root = href->owning_root, 1735 .num_bytes = fs_info->nodesize, 1736 .is_data = false, 1737 .is_inc = true, 1738 .generation = trans->transid, 1739 }; 1740 1741 ret = alloc_reserved_tree_block(trans, node, extent_op); 1742 if (!ret) 1743 btrfs_record_squota_delta(fs_info, &delta); 1744 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1745 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1746 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1747 ret = __btrfs_free_extent(trans, href, node, extent_op); 1748 } else { 1749 BUG(); 1750 } 1751 return ret; 1752 } 1753 1754 /* helper function to actually process a single delayed ref entry */ 1755 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1756 struct btrfs_delayed_ref_head *href, 1757 struct btrfs_delayed_ref_node *node, 1758 struct btrfs_delayed_extent_op *extent_op, 1759 bool insert_reserved) 1760 { 1761 int ret = 0; 1762 1763 if (TRANS_ABORTED(trans)) { 1764 if (insert_reserved) { 1765 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1766 free_head_ref_squota_rsv(trans->fs_info, href); 1767 } 1768 return 0; 1769 } 1770 1771 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1772 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1773 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1774 insert_reserved); 1775 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1776 node->type == BTRFS_SHARED_DATA_REF_KEY) 1777 ret = run_delayed_data_ref(trans, href, node, extent_op, 1778 insert_reserved); 1779 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1780 ret = 0; 1781 else 1782 BUG(); 1783 if (ret && insert_reserved) 1784 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1785 if (ret < 0) 1786 btrfs_err(trans->fs_info, 1787 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1788 node->bytenr, node->num_bytes, node->type, 1789 node->action, node->ref_mod, ret); 1790 return ret; 1791 } 1792 1793 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1794 struct btrfs_delayed_ref_head *head) 1795 { 1796 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1797 1798 if (!extent_op) 1799 return NULL; 1800 1801 if (head->must_insert_reserved) { 1802 head->extent_op = NULL; 1803 btrfs_free_delayed_extent_op(extent_op); 1804 return NULL; 1805 } 1806 return extent_op; 1807 } 1808 1809 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1810 struct btrfs_delayed_ref_head *head) 1811 { 1812 struct btrfs_delayed_extent_op *extent_op; 1813 int ret; 1814 1815 extent_op = cleanup_extent_op(head); 1816 if (!extent_op) 1817 return 0; 1818 head->extent_op = NULL; 1819 spin_unlock(&head->lock); 1820 ret = run_delayed_extent_op(trans, head, extent_op); 1821 btrfs_free_delayed_extent_op(extent_op); 1822 return ret ? ret : 1; 1823 } 1824 1825 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1826 struct btrfs_delayed_ref_root *delayed_refs, 1827 struct btrfs_delayed_ref_head *head) 1828 { 1829 u64 ret = 0; 1830 1831 /* 1832 * We had csum deletions accounted for in our delayed refs rsv, we need 1833 * to drop the csum leaves for this update from our delayed_refs_rsv. 1834 */ 1835 if (head->total_ref_mod < 0 && head->is_data) { 1836 int nr_csums; 1837 1838 spin_lock(&delayed_refs->lock); 1839 delayed_refs->pending_csums -= head->num_bytes; 1840 spin_unlock(&delayed_refs->lock); 1841 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1842 1843 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1844 1845 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1846 } 1847 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1848 if (head->must_insert_reserved) 1849 free_head_ref_squota_rsv(fs_info, head); 1850 1851 return ret; 1852 } 1853 1854 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1855 struct btrfs_delayed_ref_head *head, 1856 u64 *bytes_released) 1857 { 1858 1859 struct btrfs_fs_info *fs_info = trans->fs_info; 1860 struct btrfs_delayed_ref_root *delayed_refs; 1861 int ret; 1862 1863 delayed_refs = &trans->transaction->delayed_refs; 1864 1865 ret = run_and_cleanup_extent_op(trans, head); 1866 if (ret < 0) { 1867 btrfs_unselect_ref_head(delayed_refs, head); 1868 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1869 return ret; 1870 } else if (ret) { 1871 return ret; 1872 } 1873 1874 /* 1875 * Need to drop our head ref lock and re-acquire the delayed ref lock 1876 * and then re-check to make sure nobody got added. 1877 */ 1878 spin_unlock(&head->lock); 1879 spin_lock(&delayed_refs->lock); 1880 spin_lock(&head->lock); 1881 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1882 spin_unlock(&head->lock); 1883 spin_unlock(&delayed_refs->lock); 1884 return 1; 1885 } 1886 btrfs_delete_ref_head(fs_info, delayed_refs, head); 1887 spin_unlock(&head->lock); 1888 spin_unlock(&delayed_refs->lock); 1889 1890 if (head->must_insert_reserved) { 1891 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1892 if (head->is_data) { 1893 struct btrfs_root *csum_root; 1894 1895 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1896 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1897 head->num_bytes); 1898 } 1899 } 1900 1901 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1902 1903 trace_run_delayed_ref_head(fs_info, head, 0); 1904 btrfs_delayed_ref_unlock(head); 1905 btrfs_put_delayed_ref_head(head); 1906 return ret; 1907 } 1908 1909 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1910 struct btrfs_delayed_ref_head *locked_ref, 1911 u64 *bytes_released) 1912 { 1913 struct btrfs_fs_info *fs_info = trans->fs_info; 1914 struct btrfs_delayed_ref_root *delayed_refs; 1915 struct btrfs_delayed_extent_op *extent_op; 1916 struct btrfs_delayed_ref_node *ref; 1917 bool must_insert_reserved; 1918 int ret; 1919 1920 delayed_refs = &trans->transaction->delayed_refs; 1921 1922 lockdep_assert_held(&locked_ref->mutex); 1923 lockdep_assert_held(&locked_ref->lock); 1924 1925 while ((ref = btrfs_select_delayed_ref(locked_ref))) { 1926 if (ref->seq && 1927 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1928 spin_unlock(&locked_ref->lock); 1929 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1930 return -EAGAIN; 1931 } 1932 1933 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1934 RB_CLEAR_NODE(&ref->ref_node); 1935 if (!list_empty(&ref->add_list)) 1936 list_del(&ref->add_list); 1937 /* 1938 * When we play the delayed ref, also correct the ref_mod on 1939 * head 1940 */ 1941 switch (ref->action) { 1942 case BTRFS_ADD_DELAYED_REF: 1943 case BTRFS_ADD_DELAYED_EXTENT: 1944 locked_ref->ref_mod -= ref->ref_mod; 1945 break; 1946 case BTRFS_DROP_DELAYED_REF: 1947 locked_ref->ref_mod += ref->ref_mod; 1948 break; 1949 default: 1950 WARN_ON(1); 1951 } 1952 1953 /* 1954 * Record the must_insert_reserved flag before we drop the 1955 * spin lock. 1956 */ 1957 must_insert_reserved = locked_ref->must_insert_reserved; 1958 /* 1959 * Unsetting this on the head ref relinquishes ownership of 1960 * the rsv_bytes, so it is critical that every possible code 1961 * path from here forward frees all reserves including qgroup 1962 * reserve. 1963 */ 1964 locked_ref->must_insert_reserved = false; 1965 1966 extent_op = locked_ref->extent_op; 1967 locked_ref->extent_op = NULL; 1968 spin_unlock(&locked_ref->lock); 1969 1970 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 1971 must_insert_reserved); 1972 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 1973 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 1974 1975 btrfs_free_delayed_extent_op(extent_op); 1976 if (ret) { 1977 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1978 btrfs_put_delayed_ref(ref); 1979 return ret; 1980 } 1981 1982 btrfs_put_delayed_ref(ref); 1983 cond_resched(); 1984 1985 spin_lock(&locked_ref->lock); 1986 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 1987 } 1988 1989 return 0; 1990 } 1991 1992 /* 1993 * Returns 0 on success or if called with an already aborted transaction. 1994 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1995 */ 1996 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1997 u64 min_bytes) 1998 { 1999 struct btrfs_fs_info *fs_info = trans->fs_info; 2000 struct btrfs_delayed_ref_root *delayed_refs; 2001 struct btrfs_delayed_ref_head *locked_ref = NULL; 2002 int ret; 2003 unsigned long count = 0; 2004 unsigned long max_count = 0; 2005 u64 bytes_processed = 0; 2006 2007 delayed_refs = &trans->transaction->delayed_refs; 2008 if (min_bytes == 0) { 2009 /* 2010 * We may be subject to a harmless race if some task is 2011 * concurrently adding or removing a delayed ref, so silence 2012 * KCSAN and similar tools. 2013 */ 2014 max_count = data_race(delayed_refs->num_heads_ready); 2015 min_bytes = U64_MAX; 2016 } 2017 2018 do { 2019 if (!locked_ref) { 2020 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs); 2021 if (IS_ERR_OR_NULL(locked_ref)) { 2022 if (PTR_ERR(locked_ref) == -EAGAIN) { 2023 continue; 2024 } else { 2025 break; 2026 } 2027 } 2028 count++; 2029 } 2030 /* 2031 * We need to try and merge add/drops of the same ref since we 2032 * can run into issues with relocate dropping the implicit ref 2033 * and then it being added back again before the drop can 2034 * finish. If we merged anything we need to re-loop so we can 2035 * get a good ref. 2036 * Or we can get node references of the same type that weren't 2037 * merged when created due to bumps in the tree mod seq, and 2038 * we need to merge them to prevent adding an inline extent 2039 * backref before dropping it (triggering a BUG_ON at 2040 * insert_inline_extent_backref()). 2041 */ 2042 spin_lock(&locked_ref->lock); 2043 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2044 2045 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2046 if (ret < 0 && ret != -EAGAIN) { 2047 /* 2048 * Error, btrfs_run_delayed_refs_for_head already 2049 * unlocked everything so just bail out 2050 */ 2051 return ret; 2052 } else if (!ret) { 2053 /* 2054 * Success, perform the usual cleanup of a processed 2055 * head 2056 */ 2057 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2058 if (ret > 0 ) { 2059 /* We dropped our lock, we need to loop. */ 2060 ret = 0; 2061 continue; 2062 } else if (ret) { 2063 return ret; 2064 } 2065 } 2066 2067 /* 2068 * Either success case or btrfs_run_delayed_refs_for_head 2069 * returned -EAGAIN, meaning we need to select another head 2070 */ 2071 2072 locked_ref = NULL; 2073 cond_resched(); 2074 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2075 (max_count > 0 && count < max_count) || 2076 locked_ref); 2077 2078 return 0; 2079 } 2080 2081 #ifdef SCRAMBLE_DELAYED_REFS 2082 /* 2083 * Normally delayed refs get processed in ascending bytenr order. This 2084 * correlates in most cases to the order added. To expose dependencies on this 2085 * order, we start to process the tree in the middle instead of the beginning 2086 */ 2087 static u64 find_middle(struct rb_root *root) 2088 { 2089 struct rb_node *n = root->rb_node; 2090 struct btrfs_delayed_ref_node *entry; 2091 int alt = 1; 2092 u64 middle; 2093 u64 first = 0, last = 0; 2094 2095 n = rb_first(root); 2096 if (n) { 2097 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2098 first = entry->bytenr; 2099 } 2100 n = rb_last(root); 2101 if (n) { 2102 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2103 last = entry->bytenr; 2104 } 2105 n = root->rb_node; 2106 2107 while (n) { 2108 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2109 WARN_ON(!entry->in_tree); 2110 2111 middle = entry->bytenr; 2112 2113 if (alt) 2114 n = n->rb_left; 2115 else 2116 n = n->rb_right; 2117 2118 alt = 1 - alt; 2119 } 2120 return middle; 2121 } 2122 #endif 2123 2124 /* 2125 * Start processing the delayed reference count updates and extent insertions 2126 * we have queued up so far. 2127 * 2128 * @trans: Transaction handle. 2129 * @min_bytes: How many bytes of delayed references to process. After this 2130 * many bytes we stop processing delayed references if there are 2131 * any more. If 0 it means to run all existing delayed references, 2132 * but not new ones added after running all existing ones. 2133 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2134 * plus any new ones that are added. 2135 * 2136 * Returns 0 on success or if called with an aborted transaction 2137 * Returns <0 on error and aborts the transaction 2138 */ 2139 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2140 { 2141 struct btrfs_fs_info *fs_info = trans->fs_info; 2142 struct btrfs_delayed_ref_root *delayed_refs; 2143 int ret; 2144 2145 /* We'll clean this up in btrfs_cleanup_transaction */ 2146 if (TRANS_ABORTED(trans)) 2147 return 0; 2148 2149 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2150 return 0; 2151 2152 delayed_refs = &trans->transaction->delayed_refs; 2153 again: 2154 #ifdef SCRAMBLE_DELAYED_REFS 2155 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2156 #endif 2157 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2158 if (ret < 0) { 2159 btrfs_abort_transaction(trans, ret); 2160 return ret; 2161 } 2162 2163 if (min_bytes == U64_MAX) { 2164 btrfs_create_pending_block_groups(trans); 2165 2166 spin_lock(&delayed_refs->lock); 2167 if (xa_empty(&delayed_refs->head_refs)) { 2168 spin_unlock(&delayed_refs->lock); 2169 return 0; 2170 } 2171 spin_unlock(&delayed_refs->lock); 2172 2173 cond_resched(); 2174 goto again; 2175 } 2176 2177 return 0; 2178 } 2179 2180 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2181 struct extent_buffer *eb, u64 flags) 2182 { 2183 struct btrfs_delayed_extent_op *extent_op; 2184 int ret; 2185 2186 extent_op = btrfs_alloc_delayed_extent_op(); 2187 if (!extent_op) 2188 return -ENOMEM; 2189 2190 extent_op->flags_to_set = flags; 2191 extent_op->update_flags = true; 2192 extent_op->update_key = false; 2193 2194 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2195 btrfs_header_level(eb), extent_op); 2196 if (ret) 2197 btrfs_free_delayed_extent_op(extent_op); 2198 return ret; 2199 } 2200 2201 static noinline int check_delayed_ref(struct btrfs_inode *inode, 2202 struct btrfs_path *path, 2203 u64 offset, u64 bytenr) 2204 { 2205 struct btrfs_root *root = inode->root; 2206 struct btrfs_delayed_ref_head *head; 2207 struct btrfs_delayed_ref_node *ref; 2208 struct btrfs_delayed_ref_root *delayed_refs; 2209 struct btrfs_transaction *cur_trans; 2210 struct rb_node *node; 2211 int ret = 0; 2212 2213 spin_lock(&root->fs_info->trans_lock); 2214 cur_trans = root->fs_info->running_transaction; 2215 if (cur_trans) 2216 refcount_inc(&cur_trans->use_count); 2217 spin_unlock(&root->fs_info->trans_lock); 2218 if (!cur_trans) 2219 return 0; 2220 2221 delayed_refs = &cur_trans->delayed_refs; 2222 spin_lock(&delayed_refs->lock); 2223 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 2224 if (!head) { 2225 spin_unlock(&delayed_refs->lock); 2226 btrfs_put_transaction(cur_trans); 2227 return 0; 2228 } 2229 2230 if (!mutex_trylock(&head->mutex)) { 2231 if (path->nowait) { 2232 spin_unlock(&delayed_refs->lock); 2233 btrfs_put_transaction(cur_trans); 2234 return -EAGAIN; 2235 } 2236 2237 refcount_inc(&head->refs); 2238 spin_unlock(&delayed_refs->lock); 2239 2240 btrfs_release_path(path); 2241 2242 /* 2243 * Mutex was contended, block until it's released and let 2244 * caller try again 2245 */ 2246 mutex_lock(&head->mutex); 2247 mutex_unlock(&head->mutex); 2248 btrfs_put_delayed_ref_head(head); 2249 btrfs_put_transaction(cur_trans); 2250 return -EAGAIN; 2251 } 2252 spin_unlock(&delayed_refs->lock); 2253 2254 spin_lock(&head->lock); 2255 /* 2256 * XXX: We should replace this with a proper search function in the 2257 * future. 2258 */ 2259 for (node = rb_first_cached(&head->ref_tree); node; 2260 node = rb_next(node)) { 2261 u64 ref_owner; 2262 u64 ref_offset; 2263 2264 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2265 /* If it's a shared ref we know a cross reference exists */ 2266 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2267 ret = 1; 2268 break; 2269 } 2270 2271 ref_owner = btrfs_delayed_ref_owner(ref); 2272 ref_offset = btrfs_delayed_ref_offset(ref); 2273 2274 /* 2275 * If our ref doesn't match the one we're currently looking at 2276 * then we have a cross reference. 2277 */ 2278 if (ref->ref_root != btrfs_root_id(root) || 2279 ref_owner != btrfs_ino(inode) || ref_offset != offset) { 2280 ret = 1; 2281 break; 2282 } 2283 } 2284 spin_unlock(&head->lock); 2285 mutex_unlock(&head->mutex); 2286 btrfs_put_transaction(cur_trans); 2287 return ret; 2288 } 2289 2290 /* 2291 * Check if there are references for a data extent other than the one belonging 2292 * to the given inode and offset. 2293 * 2294 * @inode: The only inode we expect to find associated with the data extent. 2295 * @path: A path to use for searching the extent tree. 2296 * @offset: The only offset we expect to find associated with the data extent. 2297 * @bytenr: The logical address of the data extent. 2298 * 2299 * When the extent does not have any other references other than the one we 2300 * expect to find, we always return a value of 0 with the path having a locked 2301 * leaf that contains the extent's extent item - this is necessary to ensure 2302 * we don't race with a task running delayed references, and our caller must 2303 * have such a path when calling check_delayed_ref() - it must lock a delayed 2304 * ref head while holding the leaf locked. In case the extent item is not found 2305 * in the extent tree, we return -ENOENT with the path having the leaf (locked) 2306 * where the extent item should be, in order to prevent races with another task 2307 * running delayed references, so that we don't miss any reference when calling 2308 * check_delayed_ref(). 2309 * 2310 * Note: this may return false positives, and this is because we want to be 2311 * quick here as we're called in write paths (when flushing delalloc and 2312 * in the direct IO write path). For example we can have an extent with 2313 * a single reference but that reference is not inlined, or we may have 2314 * many references in the extent tree but we also have delayed references 2315 * that cancel all the reference except the one for our inode and offset, 2316 * but it would be expensive to do such checks and complex due to all 2317 * locking to avoid races between the checks and flushing delayed refs, 2318 * plus non-inline references may be located on leaves other than the one 2319 * that contains the extent item in the extent tree. The important thing 2320 * here is to not return false negatives and that the false positives are 2321 * not very common. 2322 * 2323 * Returns: 0 if there are no cross references and with the path having a locked 2324 * leaf from the extent tree that contains the extent's extent item. 2325 * 2326 * 1 if there are cross references (false positives can happen). 2327 * 2328 * < 0 in case of an error. In case of -ENOENT the leaf in the extent 2329 * tree where the extent item should be located at is read locked and 2330 * accessible in the given path. 2331 */ 2332 static noinline int check_committed_ref(struct btrfs_inode *inode, 2333 struct btrfs_path *path, 2334 u64 offset, u64 bytenr) 2335 { 2336 struct btrfs_root *root = inode->root; 2337 struct btrfs_fs_info *fs_info = root->fs_info; 2338 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2339 struct extent_buffer *leaf; 2340 struct btrfs_extent_data_ref *ref; 2341 struct btrfs_extent_inline_ref *iref; 2342 struct btrfs_extent_item *ei; 2343 struct btrfs_key key; 2344 u32 item_size; 2345 u32 expected_size; 2346 int type; 2347 int ret; 2348 2349 key.objectid = bytenr; 2350 key.type = BTRFS_EXTENT_ITEM_KEY; 2351 key.offset = (u64)-1; 2352 2353 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2354 if (ret < 0) 2355 return ret; 2356 if (ret == 0) { 2357 /* 2358 * Key with offset -1 found, there would have to exist an extent 2359 * item with such offset, but this is out of the valid range. 2360 */ 2361 return -EUCLEAN; 2362 } 2363 2364 if (path->slots[0] == 0) 2365 return -ENOENT; 2366 2367 path->slots[0]--; 2368 leaf = path->nodes[0]; 2369 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2370 2371 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2372 return -ENOENT; 2373 2374 item_size = btrfs_item_size(leaf, path->slots[0]); 2375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2376 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2377 2378 /* No inline refs; we need to bail before checking for owner ref. */ 2379 if (item_size == sizeof(*ei)) 2380 return 1; 2381 2382 /* Check for an owner ref; skip over it to the real inline refs. */ 2383 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2384 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2385 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2386 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2387 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2388 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2389 } 2390 2391 /* If extent item has more than 1 inline ref then it's shared */ 2392 if (item_size != expected_size) 2393 return 1; 2394 2395 /* If this extent has SHARED_DATA_REF then it's shared */ 2396 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2397 return 1; 2398 2399 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2400 if (btrfs_extent_refs(leaf, ei) != 2401 btrfs_extent_data_ref_count(leaf, ref) || 2402 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2403 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) || 2404 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2405 return 1; 2406 2407 return 0; 2408 } 2409 2410 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset, 2411 u64 bytenr, struct btrfs_path *path) 2412 { 2413 int ret; 2414 2415 do { 2416 ret = check_committed_ref(inode, path, offset, bytenr); 2417 if (ret && ret != -ENOENT) 2418 goto out; 2419 2420 /* 2421 * The path must have a locked leaf from the extent tree where 2422 * the extent item for our extent is located, in case it exists, 2423 * or where it should be located in case it doesn't exist yet 2424 * because it's new and its delayed ref was not yet flushed. 2425 * We need to lock the delayed ref head at check_delayed_ref(), 2426 * if one exists, while holding the leaf locked in order to not 2427 * race with delayed ref flushing, missing references and 2428 * incorrectly reporting that the extent is not shared. 2429 */ 2430 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 2431 struct extent_buffer *leaf = path->nodes[0]; 2432 2433 ASSERT(leaf != NULL); 2434 btrfs_assert_tree_read_locked(leaf); 2435 2436 if (ret != -ENOENT) { 2437 struct btrfs_key key; 2438 2439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2440 ASSERT(key.objectid == bytenr); 2441 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY); 2442 } 2443 } 2444 2445 ret = check_delayed_ref(inode, path, offset, bytenr); 2446 } while (ret == -EAGAIN && !path->nowait); 2447 2448 out: 2449 btrfs_release_path(path); 2450 if (btrfs_is_data_reloc_root(inode->root)) 2451 WARN_ON(ret > 0); 2452 return ret; 2453 } 2454 2455 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2456 struct btrfs_root *root, 2457 struct extent_buffer *buf, 2458 int full_backref, int inc) 2459 { 2460 struct btrfs_fs_info *fs_info = root->fs_info; 2461 u64 parent; 2462 u64 ref_root; 2463 u32 nritems; 2464 struct btrfs_key key; 2465 struct btrfs_file_extent_item *fi; 2466 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2467 int i; 2468 int action; 2469 int level; 2470 int ret = 0; 2471 2472 if (btrfs_is_testing(fs_info)) 2473 return 0; 2474 2475 ref_root = btrfs_header_owner(buf); 2476 nritems = btrfs_header_nritems(buf); 2477 level = btrfs_header_level(buf); 2478 2479 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2480 return 0; 2481 2482 if (full_backref) 2483 parent = buf->start; 2484 else 2485 parent = 0; 2486 if (inc) 2487 action = BTRFS_ADD_DELAYED_REF; 2488 else 2489 action = BTRFS_DROP_DELAYED_REF; 2490 2491 for (i = 0; i < nritems; i++) { 2492 struct btrfs_ref ref = { 2493 .action = action, 2494 .parent = parent, 2495 .ref_root = ref_root, 2496 }; 2497 2498 if (level == 0) { 2499 btrfs_item_key_to_cpu(buf, &key, i); 2500 if (key.type != BTRFS_EXTENT_DATA_KEY) 2501 continue; 2502 fi = btrfs_item_ptr(buf, i, 2503 struct btrfs_file_extent_item); 2504 if (btrfs_file_extent_type(buf, fi) == 2505 BTRFS_FILE_EXTENT_INLINE) 2506 continue; 2507 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2508 if (ref.bytenr == 0) 2509 continue; 2510 2511 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2512 ref.owning_root = ref_root; 2513 2514 key.offset -= btrfs_file_extent_offset(buf, fi); 2515 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2516 btrfs_root_id(root), for_reloc); 2517 if (inc) 2518 ret = btrfs_inc_extent_ref(trans, &ref); 2519 else 2520 ret = btrfs_free_extent(trans, &ref); 2521 if (ret) 2522 goto fail; 2523 } else { 2524 /* We don't know the owning_root, leave as 0. */ 2525 ref.bytenr = btrfs_node_blockptr(buf, i); 2526 ref.num_bytes = fs_info->nodesize; 2527 2528 btrfs_init_tree_ref(&ref, level - 1, 2529 btrfs_root_id(root), for_reloc); 2530 if (inc) 2531 ret = btrfs_inc_extent_ref(trans, &ref); 2532 else 2533 ret = btrfs_free_extent(trans, &ref); 2534 if (ret) 2535 goto fail; 2536 } 2537 } 2538 return 0; 2539 fail: 2540 return ret; 2541 } 2542 2543 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2544 struct extent_buffer *buf, int full_backref) 2545 { 2546 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2547 } 2548 2549 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2550 struct extent_buffer *buf, int full_backref) 2551 { 2552 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2553 } 2554 2555 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2556 { 2557 struct btrfs_fs_info *fs_info = root->fs_info; 2558 u64 flags; 2559 u64 ret; 2560 2561 if (data) 2562 flags = BTRFS_BLOCK_GROUP_DATA; 2563 else if (root == fs_info->chunk_root) 2564 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2565 else 2566 flags = BTRFS_BLOCK_GROUP_METADATA; 2567 2568 ret = btrfs_get_alloc_profile(fs_info, flags); 2569 return ret; 2570 } 2571 2572 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2573 { 2574 struct rb_node *leftmost; 2575 u64 bytenr = 0; 2576 2577 read_lock(&fs_info->block_group_cache_lock); 2578 /* Get the block group with the lowest logical start address. */ 2579 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2580 if (leftmost) { 2581 struct btrfs_block_group *bg; 2582 2583 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2584 bytenr = bg->start; 2585 } 2586 read_unlock(&fs_info->block_group_cache_lock); 2587 2588 return bytenr; 2589 } 2590 2591 static int pin_down_extent(struct btrfs_trans_handle *trans, 2592 struct btrfs_block_group *cache, 2593 u64 bytenr, u64 num_bytes, int reserved) 2594 { 2595 spin_lock(&cache->space_info->lock); 2596 spin_lock(&cache->lock); 2597 cache->pinned += num_bytes; 2598 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes); 2599 if (reserved) { 2600 cache->reserved -= num_bytes; 2601 cache->space_info->bytes_reserved -= num_bytes; 2602 } 2603 spin_unlock(&cache->lock); 2604 spin_unlock(&cache->space_info->lock); 2605 2606 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2607 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2608 return 0; 2609 } 2610 2611 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2612 u64 bytenr, u64 num_bytes, int reserved) 2613 { 2614 struct btrfs_block_group *cache; 2615 2616 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2617 BUG_ON(!cache); /* Logic error */ 2618 2619 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2620 2621 btrfs_put_block_group(cache); 2622 return 0; 2623 } 2624 2625 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2626 const struct extent_buffer *eb) 2627 { 2628 struct btrfs_block_group *cache; 2629 int ret; 2630 2631 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2632 if (!cache) 2633 return -EINVAL; 2634 2635 /* 2636 * Fully cache the free space first so that our pin removes the free space 2637 * from the cache. 2638 */ 2639 ret = btrfs_cache_block_group(cache, true); 2640 if (ret) 2641 goto out; 2642 2643 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2644 2645 /* remove us from the free space cache (if we're there at all) */ 2646 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2647 out: 2648 btrfs_put_block_group(cache); 2649 return ret; 2650 } 2651 2652 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2653 u64 start, u64 num_bytes) 2654 { 2655 int ret; 2656 struct btrfs_block_group *block_group; 2657 2658 block_group = btrfs_lookup_block_group(fs_info, start); 2659 if (!block_group) 2660 return -EINVAL; 2661 2662 ret = btrfs_cache_block_group(block_group, true); 2663 if (ret) 2664 goto out; 2665 2666 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2667 out: 2668 btrfs_put_block_group(block_group); 2669 return ret; 2670 } 2671 2672 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2673 { 2674 struct btrfs_fs_info *fs_info = eb->fs_info; 2675 struct btrfs_file_extent_item *item; 2676 struct btrfs_key key; 2677 int found_type; 2678 int i; 2679 int ret = 0; 2680 2681 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2682 return 0; 2683 2684 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2685 btrfs_item_key_to_cpu(eb, &key, i); 2686 if (key.type != BTRFS_EXTENT_DATA_KEY) 2687 continue; 2688 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2689 found_type = btrfs_file_extent_type(eb, item); 2690 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2691 continue; 2692 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2693 continue; 2694 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2695 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2696 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2697 if (ret) 2698 break; 2699 } 2700 2701 return ret; 2702 } 2703 2704 static void 2705 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2706 { 2707 atomic_inc(&bg->reservations); 2708 } 2709 2710 /* 2711 * Returns the free cluster for the given space info and sets empty_cluster to 2712 * what it should be based on the mount options. 2713 */ 2714 static struct btrfs_free_cluster * 2715 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2716 struct btrfs_space_info *space_info, u64 *empty_cluster) 2717 { 2718 struct btrfs_free_cluster *ret = NULL; 2719 2720 *empty_cluster = 0; 2721 if (btrfs_mixed_space_info(space_info)) 2722 return ret; 2723 2724 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2725 ret = &fs_info->meta_alloc_cluster; 2726 if (btrfs_test_opt(fs_info, SSD)) 2727 *empty_cluster = SZ_2M; 2728 else 2729 *empty_cluster = SZ_64K; 2730 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2731 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2732 *empty_cluster = SZ_2M; 2733 ret = &fs_info->data_alloc_cluster; 2734 } 2735 2736 return ret; 2737 } 2738 2739 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2740 u64 start, u64 end, 2741 const bool return_free_space) 2742 { 2743 struct btrfs_block_group *cache = NULL; 2744 struct btrfs_space_info *space_info; 2745 struct btrfs_free_cluster *cluster = NULL; 2746 u64 total_unpinned = 0; 2747 u64 empty_cluster = 0; 2748 bool readonly; 2749 int ret = 0; 2750 2751 while (start <= end) { 2752 u64 len; 2753 2754 readonly = false; 2755 if (!cache || 2756 start >= cache->start + cache->length) { 2757 if (cache) 2758 btrfs_put_block_group(cache); 2759 total_unpinned = 0; 2760 cache = btrfs_lookup_block_group(fs_info, start); 2761 if (cache == NULL) { 2762 /* Logic error, something removed the block group. */ 2763 ret = -EUCLEAN; 2764 goto out; 2765 } 2766 2767 cluster = fetch_cluster_info(fs_info, 2768 cache->space_info, 2769 &empty_cluster); 2770 empty_cluster <<= 1; 2771 } 2772 2773 len = cache->start + cache->length - start; 2774 len = min(len, end + 1 - start); 2775 2776 if (return_free_space) 2777 btrfs_add_free_space(cache, start, len); 2778 2779 start += len; 2780 total_unpinned += len; 2781 space_info = cache->space_info; 2782 2783 /* 2784 * If this space cluster has been marked as fragmented and we've 2785 * unpinned enough in this block group to potentially allow a 2786 * cluster to be created inside of it go ahead and clear the 2787 * fragmented check. 2788 */ 2789 if (cluster && cluster->fragmented && 2790 total_unpinned > empty_cluster) { 2791 spin_lock(&cluster->lock); 2792 cluster->fragmented = 0; 2793 spin_unlock(&cluster->lock); 2794 } 2795 2796 spin_lock(&space_info->lock); 2797 spin_lock(&cache->lock); 2798 cache->pinned -= len; 2799 btrfs_space_info_update_bytes_pinned(space_info, -len); 2800 space_info->max_extent_size = 0; 2801 if (cache->ro) { 2802 space_info->bytes_readonly += len; 2803 readonly = true; 2804 } else if (btrfs_is_zoned(fs_info)) { 2805 /* Need reset before reusing in a zoned block group */ 2806 btrfs_space_info_update_bytes_zone_unusable(space_info, len); 2807 readonly = true; 2808 } 2809 spin_unlock(&cache->lock); 2810 if (!readonly && return_free_space) 2811 btrfs_return_free_space(space_info, len); 2812 spin_unlock(&space_info->lock); 2813 } 2814 2815 if (cache) 2816 btrfs_put_block_group(cache); 2817 out: 2818 return ret; 2819 } 2820 2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2822 { 2823 struct btrfs_fs_info *fs_info = trans->fs_info; 2824 struct btrfs_block_group *block_group, *tmp; 2825 struct list_head *deleted_bgs; 2826 struct extent_io_tree *unpin = &trans->transaction->pinned_extents; 2827 struct extent_state *cached_state = NULL; 2828 u64 start; 2829 u64 end; 2830 int unpin_error = 0; 2831 int ret; 2832 2833 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2834 btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state); 2835 2836 while (!TRANS_ABORTED(trans) && cached_state) { 2837 struct extent_state *next_state; 2838 2839 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2840 ret = btrfs_discard_extent(fs_info, start, 2841 end + 1 - start, NULL); 2842 2843 next_state = btrfs_next_extent_state(unpin, cached_state); 2844 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 2845 ret = unpin_extent_range(fs_info, start, end, true); 2846 /* 2847 * If we get an error unpinning an extent range, store the first 2848 * error to return later after trying to unpin all ranges and do 2849 * the sync discards. Our caller will abort the transaction 2850 * (which already wrote new superblocks) and on the next mount 2851 * the space will be available as it was pinned by in-memory 2852 * only structures in this phase. 2853 */ 2854 if (ret) { 2855 btrfs_err_rl(fs_info, 2856 "failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)", 2857 start, end, trans->transid, 2858 btrfs_decode_error(ret), ret); 2859 if (!unpin_error) 2860 unpin_error = ret; 2861 } 2862 2863 btrfs_free_extent_state(cached_state); 2864 2865 if (need_resched()) { 2866 btrfs_free_extent_state(next_state); 2867 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2868 cond_resched(); 2869 cached_state = NULL; 2870 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2871 btrfs_find_first_extent_bit(unpin, 0, &start, &end, 2872 EXTENT_DIRTY, &cached_state); 2873 } else { 2874 cached_state = next_state; 2875 if (cached_state) { 2876 start = cached_state->start; 2877 end = cached_state->end; 2878 } 2879 } 2880 } 2881 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2882 btrfs_free_extent_state(cached_state); 2883 2884 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2885 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2886 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2887 } 2888 2889 /* 2890 * Transaction is finished. We don't need the lock anymore. We 2891 * do need to clean up the block groups in case of a transaction 2892 * abort. 2893 */ 2894 deleted_bgs = &trans->transaction->deleted_bgs; 2895 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2896 ret = -EROFS; 2897 if (!TRANS_ABORTED(trans)) 2898 ret = btrfs_discard_extent(fs_info, block_group->start, 2899 block_group->length, NULL); 2900 2901 /* 2902 * Not strictly necessary to lock, as the block_group should be 2903 * read-only from btrfs_delete_unused_bgs(). 2904 */ 2905 ASSERT(block_group->ro); 2906 spin_lock(&fs_info->unused_bgs_lock); 2907 list_del_init(&block_group->bg_list); 2908 spin_unlock(&fs_info->unused_bgs_lock); 2909 2910 btrfs_unfreeze_block_group(block_group); 2911 btrfs_put_block_group(block_group); 2912 2913 if (ret) { 2914 const char *errstr = btrfs_decode_error(ret); 2915 btrfs_warn(fs_info, 2916 "discard failed while removing blockgroup: errno=%d %s", 2917 ret, errstr); 2918 } 2919 } 2920 2921 return unpin_error; 2922 } 2923 2924 /* 2925 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2926 * 2927 * @fs_info: the btrfs_fs_info for this mount 2928 * @leaf: a leaf in the extent tree containing the extent item 2929 * @slot: the slot in the leaf where the extent item is found 2930 * 2931 * Returns the objectid of the root that originally allocated the extent item 2932 * if the inline owner ref is expected and present, otherwise 0. 2933 * 2934 * If an extent item has an owner ref item, it will be the first inline ref 2935 * item. Therefore the logic is to check whether there are any inline ref 2936 * items, then check the type of the first one. 2937 */ 2938 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2939 struct extent_buffer *leaf, int slot) 2940 { 2941 struct btrfs_extent_item *ei; 2942 struct btrfs_extent_inline_ref *iref; 2943 struct btrfs_extent_owner_ref *oref; 2944 unsigned long ptr; 2945 unsigned long end; 2946 int type; 2947 2948 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2949 return 0; 2950 2951 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2952 ptr = (unsigned long)(ei + 1); 2953 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2954 2955 /* No inline ref items of any kind, can't check type. */ 2956 if (ptr == end) 2957 return 0; 2958 2959 iref = (struct btrfs_extent_inline_ref *)ptr; 2960 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2961 2962 /* We found an owner ref, get the root out of it. */ 2963 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2964 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2965 return btrfs_extent_owner_ref_root_id(leaf, oref); 2966 } 2967 2968 /* We have inline refs, but not an owner ref. */ 2969 return 0; 2970 } 2971 2972 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2973 u64 bytenr, struct btrfs_squota_delta *delta) 2974 { 2975 int ret; 2976 u64 num_bytes = delta->num_bytes; 2977 2978 if (delta->is_data) { 2979 struct btrfs_root *csum_root; 2980 2981 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2982 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2983 if (ret) { 2984 btrfs_abort_transaction(trans, ret); 2985 return ret; 2986 } 2987 2988 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2989 if (ret) { 2990 btrfs_abort_transaction(trans, ret); 2991 return ret; 2992 } 2993 } 2994 2995 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2996 if (ret) { 2997 btrfs_abort_transaction(trans, ret); 2998 return ret; 2999 } 3000 3001 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3002 if (ret) { 3003 btrfs_abort_transaction(trans, ret); 3004 return ret; 3005 } 3006 3007 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3008 if (ret) 3009 btrfs_abort_transaction(trans, ret); 3010 3011 return ret; 3012 } 3013 3014 #define abort_and_dump(trans, path, fmt, args...) \ 3015 ({ \ 3016 btrfs_abort_transaction(trans, -EUCLEAN); \ 3017 btrfs_print_leaf(path->nodes[0]); \ 3018 btrfs_crit(trans->fs_info, fmt, ##args); \ 3019 }) 3020 3021 /* 3022 * Drop one or more refs of @node. 3023 * 3024 * 1. Locate the extent refs. 3025 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3026 * Locate it, then reduce the refs number or remove the ref line completely. 3027 * 3028 * 2. Update the refs count in EXTENT/METADATA_ITEM 3029 * 3030 * Inline backref case: 3031 * 3032 * in extent tree we have: 3033 * 3034 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3035 * refs 2 gen 6 flags DATA 3036 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3037 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3038 * 3039 * This function gets called with: 3040 * 3041 * node->bytenr = 13631488 3042 * node->num_bytes = 1048576 3043 * root_objectid = FS_TREE 3044 * owner_objectid = 257 3045 * owner_offset = 0 3046 * refs_to_drop = 1 3047 * 3048 * Then we should get some like: 3049 * 3050 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3051 * refs 1 gen 6 flags DATA 3052 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3053 * 3054 * Keyed backref case: 3055 * 3056 * in extent tree we have: 3057 * 3058 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3059 * refs 754 gen 6 flags DATA 3060 * [...] 3061 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3062 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3063 * 3064 * This function get called with: 3065 * 3066 * node->bytenr = 13631488 3067 * node->num_bytes = 1048576 3068 * root_objectid = FS_TREE 3069 * owner_objectid = 866 3070 * owner_offset = 0 3071 * refs_to_drop = 1 3072 * 3073 * Then we should get some like: 3074 * 3075 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3076 * refs 753 gen 6 flags DATA 3077 * 3078 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3079 */ 3080 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3081 struct btrfs_delayed_ref_head *href, 3082 struct btrfs_delayed_ref_node *node, 3083 struct btrfs_delayed_extent_op *extent_op) 3084 { 3085 struct btrfs_fs_info *info = trans->fs_info; 3086 struct btrfs_key key; 3087 struct btrfs_path *path; 3088 struct btrfs_root *extent_root; 3089 struct extent_buffer *leaf; 3090 struct btrfs_extent_item *ei; 3091 struct btrfs_extent_inline_ref *iref; 3092 int ret; 3093 int is_data; 3094 int extent_slot = 0; 3095 int found_extent = 0; 3096 int num_to_del = 1; 3097 int refs_to_drop = node->ref_mod; 3098 u32 item_size; 3099 u64 refs; 3100 u64 bytenr = node->bytenr; 3101 u64 num_bytes = node->num_bytes; 3102 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3103 u64 owner_offset = btrfs_delayed_ref_offset(node); 3104 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3105 u64 delayed_ref_root = href->owning_root; 3106 3107 extent_root = btrfs_extent_root(info, bytenr); 3108 ASSERT(extent_root); 3109 3110 path = btrfs_alloc_path(); 3111 if (!path) 3112 return -ENOMEM; 3113 3114 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3115 3116 if (!is_data && refs_to_drop != 1) { 3117 btrfs_crit(info, 3118 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3119 node->bytenr, refs_to_drop); 3120 ret = -EINVAL; 3121 btrfs_abort_transaction(trans, ret); 3122 goto out; 3123 } 3124 3125 if (is_data) 3126 skinny_metadata = false; 3127 3128 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3129 node->parent, node->ref_root, owner_objectid, 3130 owner_offset); 3131 if (ret == 0) { 3132 /* 3133 * Either the inline backref or the SHARED_DATA_REF/ 3134 * SHARED_BLOCK_REF is found 3135 * 3136 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3137 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3138 */ 3139 extent_slot = path->slots[0]; 3140 while (extent_slot >= 0) { 3141 btrfs_item_key_to_cpu(path->nodes[0], &key, 3142 extent_slot); 3143 if (key.objectid != bytenr) 3144 break; 3145 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3146 key.offset == num_bytes) { 3147 found_extent = 1; 3148 break; 3149 } 3150 if (key.type == BTRFS_METADATA_ITEM_KEY && 3151 key.offset == owner_objectid) { 3152 found_extent = 1; 3153 break; 3154 } 3155 3156 /* Quick path didn't find the EXTENT/METADATA_ITEM */ 3157 if (path->slots[0] - extent_slot > 5) 3158 break; 3159 extent_slot--; 3160 } 3161 3162 if (!found_extent) { 3163 if (iref) { 3164 abort_and_dump(trans, path, 3165 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3166 path->slots[0]); 3167 ret = -EUCLEAN; 3168 goto out; 3169 } 3170 /* Must be SHARED_* item, remove the backref first */ 3171 ret = remove_extent_backref(trans, extent_root, path, 3172 NULL, refs_to_drop, is_data); 3173 if (ret) { 3174 btrfs_abort_transaction(trans, ret); 3175 goto out; 3176 } 3177 btrfs_release_path(path); 3178 3179 /* Slow path to locate EXTENT/METADATA_ITEM */ 3180 key.objectid = bytenr; 3181 key.type = BTRFS_EXTENT_ITEM_KEY; 3182 key.offset = num_bytes; 3183 3184 if (!is_data && skinny_metadata) { 3185 key.type = BTRFS_METADATA_ITEM_KEY; 3186 key.offset = owner_objectid; 3187 } 3188 3189 ret = btrfs_search_slot(trans, extent_root, 3190 &key, path, -1, 1); 3191 if (ret > 0 && skinny_metadata && path->slots[0]) { 3192 /* 3193 * Couldn't find our skinny metadata item, 3194 * see if we have ye olde extent item. 3195 */ 3196 path->slots[0]--; 3197 btrfs_item_key_to_cpu(path->nodes[0], &key, 3198 path->slots[0]); 3199 if (key.objectid == bytenr && 3200 key.type == BTRFS_EXTENT_ITEM_KEY && 3201 key.offset == num_bytes) 3202 ret = 0; 3203 } 3204 3205 if (ret > 0 && skinny_metadata) { 3206 skinny_metadata = false; 3207 key.objectid = bytenr; 3208 key.type = BTRFS_EXTENT_ITEM_KEY; 3209 key.offset = num_bytes; 3210 btrfs_release_path(path); 3211 ret = btrfs_search_slot(trans, extent_root, 3212 &key, path, -1, 1); 3213 } 3214 3215 if (ret) { 3216 if (ret > 0) 3217 btrfs_print_leaf(path->nodes[0]); 3218 btrfs_err(info, 3219 "umm, got %d back from search, was looking for %llu, slot %d", 3220 ret, bytenr, path->slots[0]); 3221 } 3222 if (ret < 0) { 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 extent_slot = path->slots[0]; 3227 } 3228 } else if (WARN_ON(ret == -ENOENT)) { 3229 abort_and_dump(trans, path, 3230 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3231 bytenr, node->parent, node->ref_root, owner_objectid, 3232 owner_offset, path->slots[0]); 3233 goto out; 3234 } else { 3235 btrfs_abort_transaction(trans, ret); 3236 goto out; 3237 } 3238 3239 leaf = path->nodes[0]; 3240 item_size = btrfs_item_size(leaf, extent_slot); 3241 if (unlikely(item_size < sizeof(*ei))) { 3242 ret = -EUCLEAN; 3243 btrfs_err(trans->fs_info, 3244 "unexpected extent item size, has %u expect >= %zu", 3245 item_size, sizeof(*ei)); 3246 btrfs_abort_transaction(trans, ret); 3247 goto out; 3248 } 3249 ei = btrfs_item_ptr(leaf, extent_slot, 3250 struct btrfs_extent_item); 3251 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3252 key.type == BTRFS_EXTENT_ITEM_KEY) { 3253 struct btrfs_tree_block_info *bi; 3254 3255 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3256 abort_and_dump(trans, path, 3257 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3258 key.objectid, key.type, key.offset, 3259 path->slots[0], owner_objectid, item_size, 3260 sizeof(*ei) + sizeof(*bi)); 3261 ret = -EUCLEAN; 3262 goto out; 3263 } 3264 bi = (struct btrfs_tree_block_info *)(ei + 1); 3265 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3266 } 3267 3268 refs = btrfs_extent_refs(leaf, ei); 3269 if (refs < refs_to_drop) { 3270 abort_and_dump(trans, path, 3271 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3272 refs_to_drop, refs, bytenr, path->slots[0]); 3273 ret = -EUCLEAN; 3274 goto out; 3275 } 3276 refs -= refs_to_drop; 3277 3278 if (refs > 0) { 3279 if (extent_op) 3280 __run_delayed_extent_op(extent_op, leaf, ei); 3281 /* 3282 * In the case of inline back ref, reference count will 3283 * be updated by remove_extent_backref 3284 */ 3285 if (iref) { 3286 if (!found_extent) { 3287 abort_and_dump(trans, path, 3288 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3289 path->slots[0]); 3290 ret = -EUCLEAN; 3291 goto out; 3292 } 3293 } else { 3294 btrfs_set_extent_refs(leaf, ei, refs); 3295 } 3296 if (found_extent) { 3297 ret = remove_extent_backref(trans, extent_root, path, 3298 iref, refs_to_drop, is_data); 3299 if (ret) { 3300 btrfs_abort_transaction(trans, ret); 3301 goto out; 3302 } 3303 } 3304 } else { 3305 struct btrfs_squota_delta delta = { 3306 .root = delayed_ref_root, 3307 .num_bytes = num_bytes, 3308 .is_data = is_data, 3309 .is_inc = false, 3310 .generation = btrfs_extent_generation(leaf, ei), 3311 }; 3312 3313 /* In this branch refs == 1 */ 3314 if (found_extent) { 3315 if (is_data && refs_to_drop != 3316 extent_data_ref_count(path, iref)) { 3317 abort_and_dump(trans, path, 3318 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3319 extent_data_ref_count(path, iref), 3320 refs_to_drop, path->slots[0]); 3321 ret = -EUCLEAN; 3322 goto out; 3323 } 3324 if (iref) { 3325 if (path->slots[0] != extent_slot) { 3326 abort_and_dump(trans, path, 3327 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3328 key.objectid, key.type, 3329 key.offset, path->slots[0]); 3330 ret = -EUCLEAN; 3331 goto out; 3332 } 3333 } else { 3334 /* 3335 * No inline ref, we must be at SHARED_* item, 3336 * And it's single ref, it must be: 3337 * | extent_slot ||extent_slot + 1| 3338 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3339 */ 3340 if (path->slots[0] != extent_slot + 1) { 3341 abort_and_dump(trans, path, 3342 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3343 path->slots[0]); 3344 ret = -EUCLEAN; 3345 goto out; 3346 } 3347 path->slots[0] = extent_slot; 3348 num_to_del = 2; 3349 } 3350 } 3351 /* 3352 * We can't infer the data owner from the delayed ref, so we need 3353 * to try to get it from the owning ref item. 3354 * 3355 * If it is not present, then that extent was not written under 3356 * simple quotas mode, so we don't need to account for its deletion. 3357 */ 3358 if (is_data) 3359 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3360 leaf, extent_slot); 3361 3362 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3363 num_to_del); 3364 if (ret) { 3365 btrfs_abort_transaction(trans, ret); 3366 goto out; 3367 } 3368 btrfs_release_path(path); 3369 3370 ret = do_free_extent_accounting(trans, bytenr, &delta); 3371 } 3372 btrfs_release_path(path); 3373 3374 out: 3375 btrfs_free_path(path); 3376 return ret; 3377 } 3378 3379 /* 3380 * when we free an block, it is possible (and likely) that we free the last 3381 * delayed ref for that extent as well. This searches the delayed ref tree for 3382 * a given extent, and if there are no other delayed refs to be processed, it 3383 * removes it from the tree. 3384 */ 3385 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3386 u64 bytenr) 3387 { 3388 struct btrfs_fs_info *fs_info = trans->fs_info; 3389 struct btrfs_delayed_ref_head *head; 3390 struct btrfs_delayed_ref_root *delayed_refs; 3391 int ret = 0; 3392 3393 delayed_refs = &trans->transaction->delayed_refs; 3394 spin_lock(&delayed_refs->lock); 3395 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 3396 if (!head) 3397 goto out_delayed_unlock; 3398 3399 spin_lock(&head->lock); 3400 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3401 goto out; 3402 3403 if (cleanup_extent_op(head) != NULL) 3404 goto out; 3405 3406 /* 3407 * waiting for the lock here would deadlock. If someone else has it 3408 * locked they are already in the process of dropping it anyway 3409 */ 3410 if (!mutex_trylock(&head->mutex)) 3411 goto out; 3412 3413 btrfs_delete_ref_head(fs_info, delayed_refs, head); 3414 head->processing = false; 3415 3416 spin_unlock(&head->lock); 3417 spin_unlock(&delayed_refs->lock); 3418 3419 BUG_ON(head->extent_op); 3420 if (head->must_insert_reserved) 3421 ret = 1; 3422 3423 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 3424 mutex_unlock(&head->mutex); 3425 btrfs_put_delayed_ref_head(head); 3426 return ret; 3427 out: 3428 spin_unlock(&head->lock); 3429 3430 out_delayed_unlock: 3431 spin_unlock(&delayed_refs->lock); 3432 return 0; 3433 } 3434 3435 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3436 u64 root_id, 3437 struct extent_buffer *buf, 3438 u64 parent, int last_ref) 3439 { 3440 struct btrfs_fs_info *fs_info = trans->fs_info; 3441 struct btrfs_block_group *bg; 3442 int ret; 3443 3444 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3445 struct btrfs_ref generic_ref = { 3446 .action = BTRFS_DROP_DELAYED_REF, 3447 .bytenr = buf->start, 3448 .num_bytes = buf->len, 3449 .parent = parent, 3450 .owning_root = btrfs_header_owner(buf), 3451 .ref_root = root_id, 3452 }; 3453 3454 /* 3455 * Assert that the extent buffer is not cleared due to 3456 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3457 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3458 * detail. 3459 */ 3460 ASSERT(btrfs_header_bytenr(buf) != 0); 3461 3462 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3463 btrfs_ref_tree_mod(fs_info, &generic_ref); 3464 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3465 if (ret < 0) 3466 return ret; 3467 } 3468 3469 if (!last_ref) 3470 return 0; 3471 3472 if (btrfs_header_generation(buf) != trans->transid) 3473 goto out; 3474 3475 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3476 ret = check_ref_cleanup(trans, buf->start); 3477 if (!ret) 3478 goto out; 3479 } 3480 3481 bg = btrfs_lookup_block_group(fs_info, buf->start); 3482 3483 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3484 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3485 btrfs_put_block_group(bg); 3486 goto out; 3487 } 3488 3489 /* 3490 * If there are tree mod log users we may have recorded mod log 3491 * operations for this node. If we re-allocate this node we 3492 * could replay operations on this node that happened when it 3493 * existed in a completely different root. For example if it 3494 * was part of root A, then was reallocated to root B, and we 3495 * are doing a btrfs_old_search_slot(root b), we could replay 3496 * operations that happened when the block was part of root A, 3497 * giving us an inconsistent view of the btree. 3498 * 3499 * We are safe from races here because at this point no other 3500 * node or root points to this extent buffer, so if after this 3501 * check a new tree mod log user joins we will not have an 3502 * existing log of operations on this node that we have to 3503 * contend with. 3504 */ 3505 3506 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3507 || btrfs_is_zoned(fs_info)) { 3508 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3509 btrfs_put_block_group(bg); 3510 goto out; 3511 } 3512 3513 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3514 3515 btrfs_add_free_space(bg, buf->start, buf->len); 3516 btrfs_free_reserved_bytes(bg, buf->len, false); 3517 btrfs_put_block_group(bg); 3518 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3519 3520 out: 3521 return 0; 3522 } 3523 3524 /* Can return -ENOMEM */ 3525 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3526 { 3527 struct btrfs_fs_info *fs_info = trans->fs_info; 3528 int ret; 3529 3530 if (btrfs_is_testing(fs_info)) 3531 return 0; 3532 3533 /* 3534 * tree log blocks never actually go into the extent allocation 3535 * tree, just update pinning info and exit early. 3536 */ 3537 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3538 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); 3539 ret = 0; 3540 } else if (ref->type == BTRFS_REF_METADATA) { 3541 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3542 } else { 3543 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3544 } 3545 3546 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3547 btrfs_ref_tree_mod(fs_info, ref); 3548 3549 return ret; 3550 } 3551 3552 enum btrfs_loop_type { 3553 /* 3554 * Start caching block groups but do not wait for progress or for them 3555 * to be done. 3556 */ 3557 LOOP_CACHING_NOWAIT, 3558 3559 /* 3560 * Wait for the block group free_space >= the space we're waiting for if 3561 * the block group isn't cached. 3562 */ 3563 LOOP_CACHING_WAIT, 3564 3565 /* 3566 * Allow allocations to happen from block groups that do not yet have a 3567 * size classification. 3568 */ 3569 LOOP_UNSET_SIZE_CLASS, 3570 3571 /* 3572 * Allocate a chunk and then retry the allocation. 3573 */ 3574 LOOP_ALLOC_CHUNK, 3575 3576 /* 3577 * Ignore the size class restrictions for this allocation. 3578 */ 3579 LOOP_WRONG_SIZE_CLASS, 3580 3581 /* 3582 * Ignore the empty size, only try to allocate the number of bytes 3583 * needed for this allocation. 3584 */ 3585 LOOP_NO_EMPTY_SIZE, 3586 }; 3587 3588 static inline void 3589 btrfs_lock_block_group(struct btrfs_block_group *cache, 3590 int delalloc) 3591 { 3592 if (delalloc) 3593 down_read(&cache->data_rwsem); 3594 } 3595 3596 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3597 int delalloc) 3598 { 3599 btrfs_get_block_group(cache); 3600 if (delalloc) 3601 down_read(&cache->data_rwsem); 3602 } 3603 3604 static struct btrfs_block_group *btrfs_lock_cluster( 3605 struct btrfs_block_group *block_group, 3606 struct btrfs_free_cluster *cluster, 3607 int delalloc) 3608 __acquires(&cluster->refill_lock) 3609 { 3610 struct btrfs_block_group *used_bg = NULL; 3611 3612 spin_lock(&cluster->refill_lock); 3613 while (1) { 3614 used_bg = cluster->block_group; 3615 if (!used_bg) 3616 return NULL; 3617 3618 if (used_bg == block_group) 3619 return used_bg; 3620 3621 btrfs_get_block_group(used_bg); 3622 3623 if (!delalloc) 3624 return used_bg; 3625 3626 if (down_read_trylock(&used_bg->data_rwsem)) 3627 return used_bg; 3628 3629 spin_unlock(&cluster->refill_lock); 3630 3631 /* We should only have one-level nested. */ 3632 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3633 3634 spin_lock(&cluster->refill_lock); 3635 if (used_bg == cluster->block_group) 3636 return used_bg; 3637 3638 up_read(&used_bg->data_rwsem); 3639 btrfs_put_block_group(used_bg); 3640 } 3641 } 3642 3643 static inline void 3644 btrfs_release_block_group(struct btrfs_block_group *cache, 3645 int delalloc) 3646 { 3647 if (delalloc) 3648 up_read(&cache->data_rwsem); 3649 btrfs_put_block_group(cache); 3650 } 3651 3652 /* 3653 * Helper function for find_free_extent(). 3654 * 3655 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3656 * Return >0 to inform caller that we find nothing 3657 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3658 */ 3659 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3660 struct find_free_extent_ctl *ffe_ctl, 3661 struct btrfs_block_group **cluster_bg_ret) 3662 { 3663 struct btrfs_block_group *cluster_bg; 3664 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3665 u64 aligned_cluster; 3666 u64 offset; 3667 int ret; 3668 3669 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3670 if (!cluster_bg) 3671 goto refill_cluster; 3672 if (cluster_bg != bg && (cluster_bg->ro || 3673 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3674 goto release_cluster; 3675 3676 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3677 ffe_ctl->num_bytes, cluster_bg->start, 3678 &ffe_ctl->max_extent_size); 3679 if (offset) { 3680 /* We have a block, we're done */ 3681 spin_unlock(&last_ptr->refill_lock); 3682 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3683 *cluster_bg_ret = cluster_bg; 3684 ffe_ctl->found_offset = offset; 3685 return 0; 3686 } 3687 WARN_ON(last_ptr->block_group != cluster_bg); 3688 3689 release_cluster: 3690 /* 3691 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3692 * lets just skip it and let the allocator find whatever block it can 3693 * find. If we reach this point, we will have tried the cluster 3694 * allocator plenty of times and not have found anything, so we are 3695 * likely way too fragmented for the clustering stuff to find anything. 3696 * 3697 * However, if the cluster is taken from the current block group, 3698 * release the cluster first, so that we stand a better chance of 3699 * succeeding in the unclustered allocation. 3700 */ 3701 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3702 spin_unlock(&last_ptr->refill_lock); 3703 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3704 return -ENOENT; 3705 } 3706 3707 /* This cluster didn't work out, free it and start over */ 3708 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3709 3710 if (cluster_bg != bg) 3711 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3712 3713 refill_cluster: 3714 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3715 spin_unlock(&last_ptr->refill_lock); 3716 return -ENOENT; 3717 } 3718 3719 aligned_cluster = max_t(u64, 3720 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3721 bg->full_stripe_len); 3722 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3723 ffe_ctl->num_bytes, aligned_cluster); 3724 if (ret == 0) { 3725 /* Now pull our allocation out of this cluster */ 3726 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3727 ffe_ctl->num_bytes, ffe_ctl->search_start, 3728 &ffe_ctl->max_extent_size); 3729 if (offset) { 3730 /* We found one, proceed */ 3731 spin_unlock(&last_ptr->refill_lock); 3732 ffe_ctl->found_offset = offset; 3733 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3734 return 0; 3735 } 3736 } 3737 /* 3738 * At this point we either didn't find a cluster or we weren't able to 3739 * allocate a block from our cluster. Free the cluster we've been 3740 * trying to use, and go to the next block group. 3741 */ 3742 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3743 spin_unlock(&last_ptr->refill_lock); 3744 return 1; 3745 } 3746 3747 /* 3748 * Return >0 to inform caller that we find nothing 3749 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3750 */ 3751 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3752 struct find_free_extent_ctl *ffe_ctl) 3753 { 3754 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3755 u64 offset; 3756 3757 /* 3758 * We are doing an unclustered allocation, set the fragmented flag so 3759 * we don't bother trying to setup a cluster again until we get more 3760 * space. 3761 */ 3762 if (unlikely(last_ptr)) { 3763 spin_lock(&last_ptr->lock); 3764 last_ptr->fragmented = 1; 3765 spin_unlock(&last_ptr->lock); 3766 } 3767 if (ffe_ctl->cached) { 3768 struct btrfs_free_space_ctl *free_space_ctl; 3769 3770 free_space_ctl = bg->free_space_ctl; 3771 spin_lock(&free_space_ctl->tree_lock); 3772 if (free_space_ctl->free_space < 3773 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3774 ffe_ctl->empty_size) { 3775 ffe_ctl->total_free_space = max_t(u64, 3776 ffe_ctl->total_free_space, 3777 free_space_ctl->free_space); 3778 spin_unlock(&free_space_ctl->tree_lock); 3779 return 1; 3780 } 3781 spin_unlock(&free_space_ctl->tree_lock); 3782 } 3783 3784 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3785 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3786 &ffe_ctl->max_extent_size); 3787 if (!offset) 3788 return 1; 3789 ffe_ctl->found_offset = offset; 3790 return 0; 3791 } 3792 3793 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3794 struct find_free_extent_ctl *ffe_ctl, 3795 struct btrfs_block_group **bg_ret) 3796 { 3797 int ret; 3798 3799 /* We want to try and use the cluster allocator, so lets look there */ 3800 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3801 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3802 if (ret >= 0) 3803 return ret; 3804 /* ret == -ENOENT case falls through */ 3805 } 3806 3807 return find_free_extent_unclustered(block_group, ffe_ctl); 3808 } 3809 3810 /* 3811 * Tree-log block group locking 3812 * ============================ 3813 * 3814 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3815 * indicates the starting address of a block group, which is reserved only 3816 * for tree-log metadata. 3817 * 3818 * Lock nesting 3819 * ============ 3820 * 3821 * space_info::lock 3822 * block_group::lock 3823 * fs_info::treelog_bg_lock 3824 */ 3825 3826 /* 3827 * Simple allocator for sequential-only block group. It only allows sequential 3828 * allocation. No need to play with trees. This function also reserves the 3829 * bytes as in btrfs_add_reserved_bytes. 3830 */ 3831 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3832 struct find_free_extent_ctl *ffe_ctl, 3833 struct btrfs_block_group **bg_ret) 3834 { 3835 struct btrfs_fs_info *fs_info = block_group->fs_info; 3836 struct btrfs_space_info *space_info = block_group->space_info; 3837 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3838 u64 start = block_group->start; 3839 u64 num_bytes = ffe_ctl->num_bytes; 3840 u64 avail; 3841 u64 bytenr = block_group->start; 3842 u64 log_bytenr; 3843 u64 data_reloc_bytenr; 3844 int ret = 0; 3845 bool skip = false; 3846 3847 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3848 3849 /* 3850 * Do not allow non-tree-log blocks in the dedicated tree-log block 3851 * group, and vice versa. 3852 */ 3853 spin_lock(&fs_info->treelog_bg_lock); 3854 log_bytenr = fs_info->treelog_bg; 3855 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3856 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3857 skip = true; 3858 spin_unlock(&fs_info->treelog_bg_lock); 3859 if (skip) 3860 return 1; 3861 3862 /* 3863 * Do not allow non-relocation blocks in the dedicated relocation block 3864 * group, and vice versa. 3865 */ 3866 spin_lock(&fs_info->relocation_bg_lock); 3867 data_reloc_bytenr = fs_info->data_reloc_bg; 3868 if (data_reloc_bytenr && 3869 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3870 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3871 skip = true; 3872 spin_unlock(&fs_info->relocation_bg_lock); 3873 if (skip) 3874 return 1; 3875 3876 /* Check RO and no space case before trying to activate it */ 3877 spin_lock(&block_group->lock); 3878 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3879 ret = 1; 3880 /* 3881 * May need to clear fs_info->{treelog,data_reloc}_bg. 3882 * Return the error after taking the locks. 3883 */ 3884 } 3885 spin_unlock(&block_group->lock); 3886 3887 /* Metadata block group is activated at write time. */ 3888 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3889 !btrfs_zone_activate(block_group)) { 3890 ret = 1; 3891 /* 3892 * May need to clear fs_info->{treelog,data_reloc}_bg. 3893 * Return the error after taking the locks. 3894 */ 3895 } 3896 3897 spin_lock(&space_info->lock); 3898 spin_lock(&block_group->lock); 3899 spin_lock(&fs_info->treelog_bg_lock); 3900 spin_lock(&fs_info->relocation_bg_lock); 3901 3902 if (ret) 3903 goto out; 3904 3905 ASSERT(!ffe_ctl->for_treelog || 3906 block_group->start == fs_info->treelog_bg || 3907 fs_info->treelog_bg == 0); 3908 ASSERT(!ffe_ctl->for_data_reloc || 3909 block_group->start == fs_info->data_reloc_bg || 3910 fs_info->data_reloc_bg == 0); 3911 3912 if (block_group->ro || 3913 (!ffe_ctl->for_data_reloc && 3914 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3915 ret = 1; 3916 goto out; 3917 } 3918 3919 /* 3920 * Do not allow currently using block group to be tree-log dedicated 3921 * block group. 3922 */ 3923 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3924 (block_group->used || block_group->reserved)) { 3925 ret = 1; 3926 goto out; 3927 } 3928 3929 /* 3930 * Do not allow currently used block group to be the data relocation 3931 * dedicated block group. 3932 */ 3933 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3934 (block_group->used || block_group->reserved)) { 3935 ret = 1; 3936 goto out; 3937 } 3938 3939 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3940 avail = block_group->zone_capacity - block_group->alloc_offset; 3941 if (avail < num_bytes) { 3942 if (ffe_ctl->max_extent_size < avail) { 3943 /* 3944 * With sequential allocator, free space is always 3945 * contiguous 3946 */ 3947 ffe_ctl->max_extent_size = avail; 3948 ffe_ctl->total_free_space = avail; 3949 } 3950 ret = 1; 3951 goto out; 3952 } 3953 3954 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3955 fs_info->treelog_bg = block_group->start; 3956 3957 if (ffe_ctl->for_data_reloc) { 3958 if (!fs_info->data_reloc_bg) 3959 fs_info->data_reloc_bg = block_group->start; 3960 /* 3961 * Do not allow allocations from this block group, unless it is 3962 * for data relocation. Compared to increasing the ->ro, setting 3963 * the ->zoned_data_reloc_ongoing flag still allows nocow 3964 * writers to come in. See btrfs_inc_nocow_writers(). 3965 * 3966 * We need to disable an allocation to avoid an allocation of 3967 * regular (non-relocation data) extent. With mix of relocation 3968 * extents and regular extents, we can dispatch WRITE commands 3969 * (for relocation extents) and ZONE APPEND commands (for 3970 * regular extents) at the same time to the same zone, which 3971 * easily break the write pointer. 3972 * 3973 * Also, this flag avoids this block group to be zone finished. 3974 */ 3975 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3976 } 3977 3978 ffe_ctl->found_offset = start + block_group->alloc_offset; 3979 block_group->alloc_offset += num_bytes; 3980 spin_lock(&ctl->tree_lock); 3981 ctl->free_space -= num_bytes; 3982 spin_unlock(&ctl->tree_lock); 3983 3984 /* 3985 * We do not check if found_offset is aligned to stripesize. The 3986 * address is anyway rewritten when using zone append writing. 3987 */ 3988 3989 ffe_ctl->search_start = ffe_ctl->found_offset; 3990 3991 out: 3992 if (ret && ffe_ctl->for_treelog) 3993 fs_info->treelog_bg = 0; 3994 if (ret && ffe_ctl->for_data_reloc) 3995 fs_info->data_reloc_bg = 0; 3996 spin_unlock(&fs_info->relocation_bg_lock); 3997 spin_unlock(&fs_info->treelog_bg_lock); 3998 spin_unlock(&block_group->lock); 3999 spin_unlock(&space_info->lock); 4000 return ret; 4001 } 4002 4003 static int do_allocation(struct btrfs_block_group *block_group, 4004 struct find_free_extent_ctl *ffe_ctl, 4005 struct btrfs_block_group **bg_ret) 4006 { 4007 switch (ffe_ctl->policy) { 4008 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4009 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4010 case BTRFS_EXTENT_ALLOC_ZONED: 4011 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4012 default: 4013 BUG(); 4014 } 4015 } 4016 4017 static void release_block_group(struct btrfs_block_group *block_group, 4018 struct find_free_extent_ctl *ffe_ctl, 4019 int delalloc) 4020 { 4021 switch (ffe_ctl->policy) { 4022 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4023 ffe_ctl->retry_uncached = false; 4024 break; 4025 case BTRFS_EXTENT_ALLOC_ZONED: 4026 /* Nothing to do */ 4027 break; 4028 default: 4029 BUG(); 4030 } 4031 4032 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4033 ffe_ctl->index); 4034 btrfs_release_block_group(block_group, delalloc); 4035 } 4036 4037 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4038 struct btrfs_key *ins) 4039 { 4040 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4041 4042 if (!ffe_ctl->use_cluster && last_ptr) { 4043 spin_lock(&last_ptr->lock); 4044 last_ptr->window_start = ins->objectid; 4045 spin_unlock(&last_ptr->lock); 4046 } 4047 } 4048 4049 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4050 struct btrfs_key *ins) 4051 { 4052 switch (ffe_ctl->policy) { 4053 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4054 found_extent_clustered(ffe_ctl, ins); 4055 break; 4056 case BTRFS_EXTENT_ALLOC_ZONED: 4057 /* Nothing to do */ 4058 break; 4059 default: 4060 BUG(); 4061 } 4062 } 4063 4064 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4065 struct find_free_extent_ctl *ffe_ctl) 4066 { 4067 /* Block group's activeness is not a requirement for METADATA block groups. */ 4068 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4069 return 0; 4070 4071 /* If we can activate new zone, just allocate a chunk and use it */ 4072 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4073 return 0; 4074 4075 /* 4076 * We already reached the max active zones. Try to finish one block 4077 * group to make a room for a new block group. This is only possible 4078 * for a data block group because btrfs_zone_finish() may need to wait 4079 * for a running transaction which can cause a deadlock for metadata 4080 * allocation. 4081 */ 4082 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4083 int ret = btrfs_zone_finish_one_bg(fs_info); 4084 4085 if (ret == 1) 4086 return 0; 4087 else if (ret < 0) 4088 return ret; 4089 } 4090 4091 /* 4092 * If we have enough free space left in an already active block group 4093 * and we can't activate any other zone now, do not allow allocating a 4094 * new chunk and let find_free_extent() retry with a smaller size. 4095 */ 4096 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4097 return -ENOSPC; 4098 4099 /* 4100 * Even min_alloc_size is not left in any block groups. Since we cannot 4101 * activate a new block group, allocating it may not help. Let's tell a 4102 * caller to try again and hope it progress something by writing some 4103 * parts of the region. That is only possible for data block groups, 4104 * where a part of the region can be written. 4105 */ 4106 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4107 return -EAGAIN; 4108 4109 /* 4110 * We cannot activate a new block group and no enough space left in any 4111 * block groups. So, allocating a new block group may not help. But, 4112 * there is nothing to do anyway, so let's go with it. 4113 */ 4114 return 0; 4115 } 4116 4117 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4118 struct find_free_extent_ctl *ffe_ctl) 4119 { 4120 switch (ffe_ctl->policy) { 4121 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4122 return 0; 4123 case BTRFS_EXTENT_ALLOC_ZONED: 4124 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4125 default: 4126 BUG(); 4127 } 4128 } 4129 4130 /* 4131 * Return >0 means caller needs to re-search for free extent 4132 * Return 0 means we have the needed free extent. 4133 * Return <0 means we failed to locate any free extent. 4134 */ 4135 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4136 struct btrfs_key *ins, 4137 struct find_free_extent_ctl *ffe_ctl, 4138 struct btrfs_space_info *space_info, 4139 bool full_search) 4140 { 4141 struct btrfs_root *root = fs_info->chunk_root; 4142 int ret; 4143 4144 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4145 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4146 ffe_ctl->orig_have_caching_bg = true; 4147 4148 if (ins->objectid) { 4149 found_extent(ffe_ctl, ins); 4150 return 0; 4151 } 4152 4153 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4154 return 1; 4155 4156 ffe_ctl->index++; 4157 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4158 return 1; 4159 4160 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4161 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4162 ffe_ctl->index = 0; 4163 /* 4164 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4165 * any uncached bgs and we've already done a full search 4166 * through. 4167 */ 4168 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4169 (!ffe_ctl->orig_have_caching_bg && full_search)) 4170 ffe_ctl->loop++; 4171 ffe_ctl->loop++; 4172 4173 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4174 struct btrfs_trans_handle *trans; 4175 int exist = 0; 4176 4177 /* Check if allocation policy allows to create a new chunk */ 4178 ret = can_allocate_chunk(fs_info, ffe_ctl); 4179 if (ret) 4180 return ret; 4181 4182 trans = current->journal_info; 4183 if (trans) 4184 exist = 1; 4185 else 4186 trans = btrfs_join_transaction(root); 4187 4188 if (IS_ERR(trans)) { 4189 ret = PTR_ERR(trans); 4190 return ret; 4191 } 4192 4193 ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags, 4194 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4195 4196 /* Do not bail out on ENOSPC since we can do more. */ 4197 if (ret == -ENOSPC) { 4198 ret = 0; 4199 ffe_ctl->loop++; 4200 } 4201 else if (ret < 0) 4202 btrfs_abort_transaction(trans, ret); 4203 else 4204 ret = 0; 4205 if (!exist) 4206 btrfs_end_transaction(trans); 4207 if (ret) 4208 return ret; 4209 } 4210 4211 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4212 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4213 return -ENOSPC; 4214 4215 /* 4216 * Don't loop again if we already have no empty_size and 4217 * no empty_cluster. 4218 */ 4219 if (ffe_ctl->empty_size == 0 && 4220 ffe_ctl->empty_cluster == 0) 4221 return -ENOSPC; 4222 ffe_ctl->empty_size = 0; 4223 ffe_ctl->empty_cluster = 0; 4224 } 4225 return 1; 4226 } 4227 return -ENOSPC; 4228 } 4229 4230 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4231 struct btrfs_block_group *bg) 4232 { 4233 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4234 return true; 4235 if (!btrfs_block_group_should_use_size_class(bg)) 4236 return true; 4237 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4238 return true; 4239 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4240 bg->size_class == BTRFS_BG_SZ_NONE) 4241 return true; 4242 return ffe_ctl->size_class == bg->size_class; 4243 } 4244 4245 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4246 struct find_free_extent_ctl *ffe_ctl, 4247 struct btrfs_space_info *space_info, 4248 struct btrfs_key *ins) 4249 { 4250 /* 4251 * If our free space is heavily fragmented we may not be able to make 4252 * big contiguous allocations, so instead of doing the expensive search 4253 * for free space, simply return ENOSPC with our max_extent_size so we 4254 * can go ahead and search for a more manageable chunk. 4255 * 4256 * If our max_extent_size is large enough for our allocation simply 4257 * disable clustering since we will likely not be able to find enough 4258 * space to create a cluster and induce latency trying. 4259 */ 4260 if (space_info->max_extent_size) { 4261 spin_lock(&space_info->lock); 4262 if (space_info->max_extent_size && 4263 ffe_ctl->num_bytes > space_info->max_extent_size) { 4264 ins->offset = space_info->max_extent_size; 4265 spin_unlock(&space_info->lock); 4266 return -ENOSPC; 4267 } else if (space_info->max_extent_size) { 4268 ffe_ctl->use_cluster = false; 4269 } 4270 spin_unlock(&space_info->lock); 4271 } 4272 4273 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4274 &ffe_ctl->empty_cluster); 4275 if (ffe_ctl->last_ptr) { 4276 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4277 4278 spin_lock(&last_ptr->lock); 4279 if (last_ptr->block_group) 4280 ffe_ctl->hint_byte = last_ptr->window_start; 4281 if (last_ptr->fragmented) { 4282 /* 4283 * We still set window_start so we can keep track of the 4284 * last place we found an allocation to try and save 4285 * some time. 4286 */ 4287 ffe_ctl->hint_byte = last_ptr->window_start; 4288 ffe_ctl->use_cluster = false; 4289 } 4290 spin_unlock(&last_ptr->lock); 4291 } 4292 4293 return 0; 4294 } 4295 4296 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4297 struct find_free_extent_ctl *ffe_ctl) 4298 { 4299 if (ffe_ctl->for_treelog) { 4300 spin_lock(&fs_info->treelog_bg_lock); 4301 if (fs_info->treelog_bg) 4302 ffe_ctl->hint_byte = fs_info->treelog_bg; 4303 spin_unlock(&fs_info->treelog_bg_lock); 4304 } else if (ffe_ctl->for_data_reloc) { 4305 spin_lock(&fs_info->relocation_bg_lock); 4306 if (fs_info->data_reloc_bg) 4307 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4308 spin_unlock(&fs_info->relocation_bg_lock); 4309 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4310 struct btrfs_block_group *block_group; 4311 4312 spin_lock(&fs_info->zone_active_bgs_lock); 4313 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4314 /* 4315 * No lock is OK here because avail is monotinically 4316 * decreasing, and this is just a hint. 4317 */ 4318 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4319 4320 if (block_group_bits(block_group, ffe_ctl->flags) && 4321 avail >= ffe_ctl->num_bytes) { 4322 ffe_ctl->hint_byte = block_group->start; 4323 break; 4324 } 4325 } 4326 spin_unlock(&fs_info->zone_active_bgs_lock); 4327 } 4328 4329 return 0; 4330 } 4331 4332 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4333 struct find_free_extent_ctl *ffe_ctl, 4334 struct btrfs_space_info *space_info, 4335 struct btrfs_key *ins) 4336 { 4337 switch (ffe_ctl->policy) { 4338 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4339 return prepare_allocation_clustered(fs_info, ffe_ctl, 4340 space_info, ins); 4341 case BTRFS_EXTENT_ALLOC_ZONED: 4342 return prepare_allocation_zoned(fs_info, ffe_ctl); 4343 default: 4344 BUG(); 4345 } 4346 } 4347 4348 /* 4349 * walks the btree of allocated extents and find a hole of a given size. 4350 * The key ins is changed to record the hole: 4351 * ins->objectid == start position 4352 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4353 * ins->offset == the size of the hole. 4354 * Any available blocks before search_start are skipped. 4355 * 4356 * If there is no suitable free space, we will record the max size of 4357 * the free space extent currently. 4358 * 4359 * The overall logic and call chain: 4360 * 4361 * find_free_extent() 4362 * |- Iterate through all block groups 4363 * | |- Get a valid block group 4364 * | |- Try to do clustered allocation in that block group 4365 * | |- Try to do unclustered allocation in that block group 4366 * | |- Check if the result is valid 4367 * | | |- If valid, then exit 4368 * | |- Jump to next block group 4369 * | 4370 * |- Push harder to find free extents 4371 * |- If not found, re-iterate all block groups 4372 */ 4373 static noinline int find_free_extent(struct btrfs_root *root, 4374 struct btrfs_key *ins, 4375 struct find_free_extent_ctl *ffe_ctl) 4376 { 4377 struct btrfs_fs_info *fs_info = root->fs_info; 4378 int ret = 0; 4379 int cache_block_group_error = 0; 4380 struct btrfs_block_group *block_group = NULL; 4381 struct btrfs_space_info *space_info; 4382 bool full_search = false; 4383 4384 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4385 4386 ffe_ctl->search_start = 0; 4387 /* For clustered allocation */ 4388 ffe_ctl->empty_cluster = 0; 4389 ffe_ctl->last_ptr = NULL; 4390 ffe_ctl->use_cluster = true; 4391 ffe_ctl->have_caching_bg = false; 4392 ffe_ctl->orig_have_caching_bg = false; 4393 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4394 ffe_ctl->loop = 0; 4395 ffe_ctl->retry_uncached = false; 4396 ffe_ctl->cached = 0; 4397 ffe_ctl->max_extent_size = 0; 4398 ffe_ctl->total_free_space = 0; 4399 ffe_ctl->found_offset = 0; 4400 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4401 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4402 4403 if (btrfs_is_zoned(fs_info)) 4404 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4405 4406 ins->type = BTRFS_EXTENT_ITEM_KEY; 4407 ins->objectid = 0; 4408 ins->offset = 0; 4409 4410 trace_btrfs_find_free_extent(root, ffe_ctl); 4411 4412 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4413 if (btrfs_is_zoned(fs_info) && space_info) { 4414 /* Use dedicated sub-space_info for dedicated block group users. */ 4415 if (ffe_ctl->for_data_reloc) { 4416 space_info = space_info->sub_group[0]; 4417 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC); 4418 } else if (ffe_ctl->for_treelog) { 4419 space_info = space_info->sub_group[0]; 4420 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG); 4421 } 4422 } 4423 if (!space_info) { 4424 btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d", 4425 ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc); 4426 return -ENOSPC; 4427 } 4428 4429 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4430 if (ret < 0) 4431 return ret; 4432 4433 ffe_ctl->search_start = max(ffe_ctl->search_start, 4434 first_logical_byte(fs_info)); 4435 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4436 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4437 block_group = btrfs_lookup_block_group(fs_info, 4438 ffe_ctl->search_start); 4439 /* 4440 * we don't want to use the block group if it doesn't match our 4441 * allocation bits, or if its not cached. 4442 * 4443 * However if we are re-searching with an ideal block group 4444 * picked out then we don't care that the block group is cached. 4445 */ 4446 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4447 block_group->space_info == space_info && 4448 block_group->cached != BTRFS_CACHE_NO) { 4449 down_read(&space_info->groups_sem); 4450 if (list_empty(&block_group->list) || 4451 block_group->ro) { 4452 /* 4453 * someone is removing this block group, 4454 * we can't jump into the have_block_group 4455 * target because our list pointers are not 4456 * valid 4457 */ 4458 btrfs_put_block_group(block_group); 4459 up_read(&space_info->groups_sem); 4460 } else { 4461 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4462 block_group->flags); 4463 btrfs_lock_block_group(block_group, 4464 ffe_ctl->delalloc); 4465 ffe_ctl->hinted = true; 4466 goto have_block_group; 4467 } 4468 } else if (block_group) { 4469 btrfs_put_block_group(block_group); 4470 } 4471 } 4472 search: 4473 trace_btrfs_find_free_extent_search_loop(root, ffe_ctl); 4474 ffe_ctl->have_caching_bg = false; 4475 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4476 ffe_ctl->index == 0) 4477 full_search = true; 4478 down_read(&space_info->groups_sem); 4479 list_for_each_entry(block_group, 4480 &space_info->block_groups[ffe_ctl->index], list) { 4481 struct btrfs_block_group *bg_ret; 4482 4483 ffe_ctl->hinted = false; 4484 /* If the block group is read-only, we can skip it entirely. */ 4485 if (unlikely(block_group->ro)) { 4486 if (ffe_ctl->for_treelog) 4487 btrfs_clear_treelog_bg(block_group); 4488 if (ffe_ctl->for_data_reloc) 4489 btrfs_clear_data_reloc_bg(block_group); 4490 continue; 4491 } 4492 4493 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4494 ffe_ctl->search_start = block_group->start; 4495 4496 /* 4497 * this can happen if we end up cycling through all the 4498 * raid types, but we want to make sure we only allocate 4499 * for the proper type. 4500 */ 4501 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4502 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4503 BTRFS_BLOCK_GROUP_RAID1_MASK | 4504 BTRFS_BLOCK_GROUP_RAID56_MASK | 4505 BTRFS_BLOCK_GROUP_RAID10; 4506 4507 /* 4508 * if they asked for extra copies and this block group 4509 * doesn't provide them, bail. This does allow us to 4510 * fill raid0 from raid1. 4511 */ 4512 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4513 goto loop; 4514 4515 /* 4516 * This block group has different flags than we want. 4517 * It's possible that we have MIXED_GROUP flag but no 4518 * block group is mixed. Just skip such block group. 4519 */ 4520 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4521 continue; 4522 } 4523 4524 have_block_group: 4525 trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4526 ffe_ctl->cached = btrfs_block_group_done(block_group); 4527 if (unlikely(!ffe_ctl->cached)) { 4528 ffe_ctl->have_caching_bg = true; 4529 ret = btrfs_cache_block_group(block_group, false); 4530 4531 /* 4532 * If we get ENOMEM here or something else we want to 4533 * try other block groups, because it may not be fatal. 4534 * However if we can't find anything else we need to 4535 * save our return here so that we return the actual 4536 * error that caused problems, not ENOSPC. 4537 */ 4538 if (ret < 0) { 4539 if (!cache_block_group_error) 4540 cache_block_group_error = ret; 4541 ret = 0; 4542 goto loop; 4543 } 4544 ret = 0; 4545 } 4546 4547 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4548 if (!cache_block_group_error) 4549 cache_block_group_error = -EIO; 4550 goto loop; 4551 } 4552 4553 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4554 goto loop; 4555 4556 bg_ret = NULL; 4557 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4558 if (ret > 0) 4559 goto loop; 4560 4561 if (bg_ret && bg_ret != block_group) { 4562 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4563 block_group = bg_ret; 4564 } 4565 4566 /* Checks */ 4567 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4568 fs_info->stripesize); 4569 4570 /* move on to the next group */ 4571 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4572 block_group->start + block_group->length) { 4573 btrfs_add_free_space_unused(block_group, 4574 ffe_ctl->found_offset, 4575 ffe_ctl->num_bytes); 4576 goto loop; 4577 } 4578 4579 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4580 btrfs_add_free_space_unused(block_group, 4581 ffe_ctl->found_offset, 4582 ffe_ctl->search_start - ffe_ctl->found_offset); 4583 4584 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4585 ffe_ctl->num_bytes, 4586 ffe_ctl->delalloc, 4587 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4588 if (ret == -EAGAIN) { 4589 btrfs_add_free_space_unused(block_group, 4590 ffe_ctl->found_offset, 4591 ffe_ctl->num_bytes); 4592 goto loop; 4593 } 4594 btrfs_inc_block_group_reservations(block_group); 4595 4596 /* we are all good, lets return */ 4597 ins->objectid = ffe_ctl->search_start; 4598 ins->offset = ffe_ctl->num_bytes; 4599 4600 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4601 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4602 break; 4603 loop: 4604 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4605 !ffe_ctl->retry_uncached) { 4606 ffe_ctl->retry_uncached = true; 4607 btrfs_wait_block_group_cache_progress(block_group, 4608 ffe_ctl->num_bytes + 4609 ffe_ctl->empty_cluster + 4610 ffe_ctl->empty_size); 4611 goto have_block_group; 4612 } 4613 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4614 cond_resched(); 4615 } 4616 up_read(&space_info->groups_sem); 4617 4618 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info, 4619 full_search); 4620 if (ret > 0) 4621 goto search; 4622 4623 if (ret == -ENOSPC && !cache_block_group_error) { 4624 /* 4625 * Use ffe_ctl->total_free_space as fallback if we can't find 4626 * any contiguous hole. 4627 */ 4628 if (!ffe_ctl->max_extent_size) 4629 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4630 spin_lock(&space_info->lock); 4631 space_info->max_extent_size = ffe_ctl->max_extent_size; 4632 spin_unlock(&space_info->lock); 4633 ins->offset = ffe_ctl->max_extent_size; 4634 } else if (ret == -ENOSPC) { 4635 ret = cache_block_group_error; 4636 } 4637 return ret; 4638 } 4639 4640 /* 4641 * Entry point to the extent allocator. Tries to find a hole that is at least 4642 * as big as @num_bytes. 4643 * 4644 * @root - The root that will contain this extent 4645 * 4646 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4647 * is used for accounting purposes. This value differs 4648 * from @num_bytes only in the case of compressed extents. 4649 * 4650 * @num_bytes - Number of bytes to allocate on-disk. 4651 * 4652 * @min_alloc_size - Indicates the minimum amount of space that the 4653 * allocator should try to satisfy. In some cases 4654 * @num_bytes may be larger than what is required and if 4655 * the filesystem is fragmented then allocation fails. 4656 * However, the presence of @min_alloc_size gives a 4657 * chance to try and satisfy the smaller allocation. 4658 * 4659 * @empty_size - A hint that you plan on doing more COW. This is the 4660 * size in bytes the allocator should try to find free 4661 * next to the block it returns. This is just a hint and 4662 * may be ignored by the allocator. 4663 * 4664 * @hint_byte - Hint to the allocator to start searching above the byte 4665 * address passed. It might be ignored. 4666 * 4667 * @ins - This key is modified to record the found hole. It will 4668 * have the following values: 4669 * ins->objectid == start position 4670 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4671 * ins->offset == the size of the hole. 4672 * 4673 * @is_data - Boolean flag indicating whether an extent is 4674 * allocated for data (true) or metadata (false) 4675 * 4676 * @delalloc - Boolean flag indicating whether this allocation is for 4677 * delalloc or not. If 'true' data_rwsem of block groups 4678 * is going to be acquired. 4679 * 4680 * 4681 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4682 * case -ENOSPC is returned then @ins->offset will contain the size of the 4683 * largest available hole the allocator managed to find. 4684 */ 4685 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4686 u64 num_bytes, u64 min_alloc_size, 4687 u64 empty_size, u64 hint_byte, 4688 struct btrfs_key *ins, int is_data, int delalloc) 4689 { 4690 struct btrfs_fs_info *fs_info = root->fs_info; 4691 struct find_free_extent_ctl ffe_ctl = {}; 4692 bool final_tried = num_bytes == min_alloc_size; 4693 u64 flags; 4694 int ret; 4695 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4696 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4697 4698 flags = get_alloc_profile_by_root(root, is_data); 4699 again: 4700 WARN_ON(num_bytes < fs_info->sectorsize); 4701 4702 ffe_ctl.ram_bytes = ram_bytes; 4703 ffe_ctl.num_bytes = num_bytes; 4704 ffe_ctl.min_alloc_size = min_alloc_size; 4705 ffe_ctl.empty_size = empty_size; 4706 ffe_ctl.flags = flags; 4707 ffe_ctl.delalloc = delalloc; 4708 ffe_ctl.hint_byte = hint_byte; 4709 ffe_ctl.for_treelog = for_treelog; 4710 ffe_ctl.for_data_reloc = for_data_reloc; 4711 4712 ret = find_free_extent(root, ins, &ffe_ctl); 4713 if (!ret && !is_data) { 4714 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4715 } else if (ret == -ENOSPC) { 4716 if (!final_tried && ins->offset) { 4717 num_bytes = min(num_bytes >> 1, ins->offset); 4718 num_bytes = round_down(num_bytes, 4719 fs_info->sectorsize); 4720 num_bytes = max(num_bytes, min_alloc_size); 4721 ram_bytes = num_bytes; 4722 if (num_bytes == min_alloc_size) 4723 final_tried = true; 4724 goto again; 4725 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4726 struct btrfs_space_info *sinfo; 4727 4728 sinfo = btrfs_find_space_info(fs_info, flags); 4729 btrfs_err(fs_info, 4730 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4731 flags, num_bytes, for_treelog, for_data_reloc); 4732 if (sinfo) 4733 btrfs_dump_space_info(fs_info, sinfo, 4734 num_bytes, 1); 4735 } 4736 } 4737 4738 return ret; 4739 } 4740 4741 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len, 4742 bool is_delalloc) 4743 { 4744 struct btrfs_block_group *cache; 4745 4746 cache = btrfs_lookup_block_group(fs_info, start); 4747 if (!cache) { 4748 btrfs_err(fs_info, "Unable to find block group for %llu", 4749 start); 4750 return -ENOSPC; 4751 } 4752 4753 btrfs_add_free_space(cache, start, len); 4754 btrfs_free_reserved_bytes(cache, len, is_delalloc); 4755 trace_btrfs_reserved_extent_free(fs_info, start, len); 4756 4757 btrfs_put_block_group(cache); 4758 return 0; 4759 } 4760 4761 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4762 const struct extent_buffer *eb) 4763 { 4764 struct btrfs_block_group *cache; 4765 int ret = 0; 4766 4767 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4768 if (!cache) { 4769 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4770 eb->start); 4771 return -ENOSPC; 4772 } 4773 4774 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4775 btrfs_put_block_group(cache); 4776 return ret; 4777 } 4778 4779 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4780 u64 num_bytes) 4781 { 4782 struct btrfs_fs_info *fs_info = trans->fs_info; 4783 int ret; 4784 4785 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4786 if (ret) 4787 return ret; 4788 4789 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4790 if (ret) { 4791 ASSERT(!ret); 4792 btrfs_err(fs_info, "update block group failed for %llu %llu", 4793 bytenr, num_bytes); 4794 return ret; 4795 } 4796 4797 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4798 return 0; 4799 } 4800 4801 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4802 u64 parent, u64 root_objectid, 4803 u64 flags, u64 owner, u64 offset, 4804 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4805 { 4806 struct btrfs_fs_info *fs_info = trans->fs_info; 4807 struct btrfs_root *extent_root; 4808 int ret; 4809 struct btrfs_extent_item *extent_item; 4810 struct btrfs_extent_owner_ref *oref; 4811 struct btrfs_extent_inline_ref *iref; 4812 struct btrfs_path *path; 4813 struct extent_buffer *leaf; 4814 int type; 4815 u32 size; 4816 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4817 4818 if (parent > 0) 4819 type = BTRFS_SHARED_DATA_REF_KEY; 4820 else 4821 type = BTRFS_EXTENT_DATA_REF_KEY; 4822 4823 size = sizeof(*extent_item); 4824 if (simple_quota) 4825 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4826 size += btrfs_extent_inline_ref_size(type); 4827 4828 path = btrfs_alloc_path(); 4829 if (!path) 4830 return -ENOMEM; 4831 4832 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4833 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4834 if (ret) { 4835 btrfs_free_path(path); 4836 return ret; 4837 } 4838 4839 leaf = path->nodes[0]; 4840 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4841 struct btrfs_extent_item); 4842 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4843 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4844 btrfs_set_extent_flags(leaf, extent_item, 4845 flags | BTRFS_EXTENT_FLAG_DATA); 4846 4847 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4848 if (simple_quota) { 4849 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4850 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4851 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4852 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4853 } 4854 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4855 4856 if (parent > 0) { 4857 struct btrfs_shared_data_ref *ref; 4858 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4859 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4860 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4861 } else { 4862 struct btrfs_extent_data_ref *ref; 4863 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4864 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4865 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4866 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4867 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4868 } 4869 4870 btrfs_free_path(path); 4871 4872 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4873 } 4874 4875 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4876 struct btrfs_delayed_ref_node *node, 4877 struct btrfs_delayed_extent_op *extent_op) 4878 { 4879 struct btrfs_fs_info *fs_info = trans->fs_info; 4880 struct btrfs_root *extent_root; 4881 int ret; 4882 struct btrfs_extent_item *extent_item; 4883 struct btrfs_key extent_key; 4884 struct btrfs_tree_block_info *block_info; 4885 struct btrfs_extent_inline_ref *iref; 4886 struct btrfs_path *path; 4887 struct extent_buffer *leaf; 4888 u32 size = sizeof(*extent_item) + sizeof(*iref); 4889 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4890 /* The owner of a tree block is the level. */ 4891 int level = btrfs_delayed_ref_owner(node); 4892 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4893 4894 extent_key.objectid = node->bytenr; 4895 if (skinny_metadata) { 4896 /* The owner of a tree block is the level. */ 4897 extent_key.offset = level; 4898 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4899 } else { 4900 extent_key.offset = node->num_bytes; 4901 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4902 size += sizeof(*block_info); 4903 } 4904 4905 path = btrfs_alloc_path(); 4906 if (!path) 4907 return -ENOMEM; 4908 4909 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4910 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4911 size); 4912 if (ret) { 4913 btrfs_free_path(path); 4914 return ret; 4915 } 4916 4917 leaf = path->nodes[0]; 4918 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4919 struct btrfs_extent_item); 4920 btrfs_set_extent_refs(leaf, extent_item, 1); 4921 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4922 btrfs_set_extent_flags(leaf, extent_item, 4923 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4924 4925 if (skinny_metadata) { 4926 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4927 } else { 4928 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4929 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4930 btrfs_set_tree_block_level(leaf, block_info, level); 4931 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4932 } 4933 4934 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4935 btrfs_set_extent_inline_ref_type(leaf, iref, 4936 BTRFS_SHARED_BLOCK_REF_KEY); 4937 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4938 } else { 4939 btrfs_set_extent_inline_ref_type(leaf, iref, 4940 BTRFS_TREE_BLOCK_REF_KEY); 4941 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4942 } 4943 4944 btrfs_free_path(path); 4945 4946 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4947 } 4948 4949 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4950 struct btrfs_root *root, u64 owner, 4951 u64 offset, u64 ram_bytes, 4952 struct btrfs_key *ins) 4953 { 4954 struct btrfs_ref generic_ref = { 4955 .action = BTRFS_ADD_DELAYED_EXTENT, 4956 .bytenr = ins->objectid, 4957 .num_bytes = ins->offset, 4958 .owning_root = btrfs_root_id(root), 4959 .ref_root = btrfs_root_id(root), 4960 }; 4961 4962 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4963 4964 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4965 generic_ref.owning_root = root->relocation_src_root; 4966 4967 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4968 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4969 4970 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4971 } 4972 4973 /* 4974 * this is used by the tree logging recovery code. It records that 4975 * an extent has been allocated and makes sure to clear the free 4976 * space cache bits as well 4977 */ 4978 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4979 u64 root_objectid, u64 owner, u64 offset, 4980 struct btrfs_key *ins) 4981 { 4982 struct btrfs_fs_info *fs_info = trans->fs_info; 4983 int ret; 4984 struct btrfs_block_group *block_group; 4985 struct btrfs_space_info *space_info; 4986 struct btrfs_squota_delta delta = { 4987 .root = root_objectid, 4988 .num_bytes = ins->offset, 4989 .generation = trans->transid, 4990 .is_data = true, 4991 .is_inc = true, 4992 }; 4993 4994 /* 4995 * Mixed block groups will exclude before processing the log so we only 4996 * need to do the exclude dance if this fs isn't mixed. 4997 */ 4998 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4999 ret = __exclude_logged_extent(fs_info, ins->objectid, 5000 ins->offset); 5001 if (ret) 5002 return ret; 5003 } 5004 5005 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 5006 if (!block_group) 5007 return -EINVAL; 5008 5009 space_info = block_group->space_info; 5010 spin_lock(&space_info->lock); 5011 spin_lock(&block_group->lock); 5012 space_info->bytes_reserved += ins->offset; 5013 block_group->reserved += ins->offset; 5014 spin_unlock(&block_group->lock); 5015 spin_unlock(&space_info->lock); 5016 5017 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 5018 offset, ins, 1, root_objectid); 5019 if (ret) 5020 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 5021 ret = btrfs_record_squota_delta(fs_info, &delta); 5022 btrfs_put_block_group(block_group); 5023 return ret; 5024 } 5025 5026 #ifdef CONFIG_BTRFS_DEBUG 5027 /* 5028 * Extra safety check in case the extent tree is corrupted and extent allocator 5029 * chooses to use a tree block which is already used and locked. 5030 */ 5031 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5032 { 5033 if (eb->lock_owner == current->pid) { 5034 btrfs_err_rl(eb->fs_info, 5035 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5036 eb->start, btrfs_header_owner(eb), current->pid); 5037 return true; 5038 } 5039 return false; 5040 } 5041 #else 5042 static bool check_eb_lock_owner(struct extent_buffer *eb) 5043 { 5044 return false; 5045 } 5046 #endif 5047 5048 static struct extent_buffer * 5049 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5050 u64 bytenr, int level, u64 owner, 5051 enum btrfs_lock_nesting nest) 5052 { 5053 struct btrfs_fs_info *fs_info = root->fs_info; 5054 struct extent_buffer *buf; 5055 u64 lockdep_owner = owner; 5056 5057 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5058 if (IS_ERR(buf)) 5059 return buf; 5060 5061 if (check_eb_lock_owner(buf)) { 5062 free_extent_buffer(buf); 5063 return ERR_PTR(-EUCLEAN); 5064 } 5065 5066 /* 5067 * The reloc trees are just snapshots, so we need them to appear to be 5068 * just like any other fs tree WRT lockdep. 5069 * 5070 * The exception however is in replace_path() in relocation, where we 5071 * hold the lock on the original fs root and then search for the reloc 5072 * root. At that point we need to make sure any reloc root buffers are 5073 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5074 * lockdep happy. 5075 */ 5076 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5077 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5078 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5079 5080 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5081 btrfs_set_header_generation(buf, trans->transid); 5082 5083 /* 5084 * This needs to stay, because we could allocate a freed block from an 5085 * old tree into a new tree, so we need to make sure this new block is 5086 * set to the appropriate level and owner. 5087 */ 5088 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5089 5090 btrfs_tree_lock_nested(buf, nest); 5091 btrfs_clear_buffer_dirty(trans, buf); 5092 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5093 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5094 5095 set_extent_buffer_uptodate(buf); 5096 5097 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5098 btrfs_set_header_level(buf, level); 5099 btrfs_set_header_bytenr(buf, buf->start); 5100 btrfs_set_header_generation(buf, trans->transid); 5101 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5102 btrfs_set_header_owner(buf, owner); 5103 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5104 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5105 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5106 buf->log_index = root->log_transid % 2; 5107 /* 5108 * we allow two log transactions at a time, use different 5109 * EXTENT bit to differentiate dirty pages. 5110 */ 5111 if (buf->log_index == 0) 5112 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5113 buf->start + buf->len - 1, 5114 EXTENT_DIRTY, NULL); 5115 else 5116 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5117 buf->start + buf->len - 1, 5118 EXTENT_NEW, NULL); 5119 } else { 5120 buf->log_index = -1; 5121 btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5122 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5123 } 5124 /* this returns a buffer locked for blocking */ 5125 return buf; 5126 } 5127 5128 /* 5129 * finds a free extent and does all the dirty work required for allocation 5130 * returns the tree buffer or an ERR_PTR on error. 5131 */ 5132 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5133 struct btrfs_root *root, 5134 u64 parent, u64 root_objectid, 5135 const struct btrfs_disk_key *key, 5136 int level, u64 hint, 5137 u64 empty_size, 5138 u64 reloc_src_root, 5139 enum btrfs_lock_nesting nest) 5140 { 5141 struct btrfs_fs_info *fs_info = root->fs_info; 5142 struct btrfs_key ins; 5143 struct btrfs_block_rsv *block_rsv; 5144 struct extent_buffer *buf; 5145 u64 flags = 0; 5146 int ret; 5147 u32 blocksize = fs_info->nodesize; 5148 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5149 u64 owning_root; 5150 5151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5152 if (btrfs_is_testing(fs_info)) { 5153 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5154 level, root_objectid, nest); 5155 if (!IS_ERR(buf)) 5156 root->alloc_bytenr += blocksize; 5157 return buf; 5158 } 5159 #endif 5160 5161 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5162 if (IS_ERR(block_rsv)) 5163 return ERR_CAST(block_rsv); 5164 5165 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5166 empty_size, hint, &ins, 0, 0); 5167 if (ret) 5168 goto out_unuse; 5169 5170 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5171 root_objectid, nest); 5172 if (IS_ERR(buf)) { 5173 ret = PTR_ERR(buf); 5174 goto out_free_reserved; 5175 } 5176 owning_root = btrfs_header_owner(buf); 5177 5178 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5179 if (parent == 0) 5180 parent = ins.objectid; 5181 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5182 owning_root = reloc_src_root; 5183 } else 5184 BUG_ON(parent > 0); 5185 5186 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5187 struct btrfs_delayed_extent_op *extent_op; 5188 struct btrfs_ref generic_ref = { 5189 .action = BTRFS_ADD_DELAYED_EXTENT, 5190 .bytenr = ins.objectid, 5191 .num_bytes = ins.offset, 5192 .parent = parent, 5193 .owning_root = owning_root, 5194 .ref_root = root_objectid, 5195 }; 5196 5197 if (!skinny_metadata || flags != 0) { 5198 extent_op = btrfs_alloc_delayed_extent_op(); 5199 if (!extent_op) { 5200 ret = -ENOMEM; 5201 goto out_free_buf; 5202 } 5203 if (key) 5204 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5205 else 5206 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5207 extent_op->flags_to_set = flags; 5208 extent_op->update_key = (skinny_metadata ? false : true); 5209 extent_op->update_flags = (flags != 0); 5210 } else { 5211 extent_op = NULL; 5212 } 5213 5214 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5215 btrfs_ref_tree_mod(fs_info, &generic_ref); 5216 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5217 if (ret) { 5218 btrfs_free_delayed_extent_op(extent_op); 5219 goto out_free_buf; 5220 } 5221 } 5222 return buf; 5223 5224 out_free_buf: 5225 btrfs_tree_unlock(buf); 5226 free_extent_buffer(buf); 5227 out_free_reserved: 5228 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false); 5229 out_unuse: 5230 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5231 return ERR_PTR(ret); 5232 } 5233 5234 struct walk_control { 5235 u64 refs[BTRFS_MAX_LEVEL]; 5236 u64 flags[BTRFS_MAX_LEVEL]; 5237 struct btrfs_key update_progress; 5238 struct btrfs_key drop_progress; 5239 int drop_level; 5240 int stage; 5241 int level; 5242 int shared_level; 5243 int update_ref; 5244 int keep_locks; 5245 int reada_slot; 5246 int reada_count; 5247 int restarted; 5248 /* Indicate that extent info needs to be looked up when walking the tree. */ 5249 int lookup_info; 5250 }; 5251 5252 /* 5253 * This is our normal stage. We are traversing blocks the current snapshot owns 5254 * and we are dropping any of our references to any children we are able to, and 5255 * then freeing the block once we've processed all of the children. 5256 */ 5257 #define DROP_REFERENCE 1 5258 5259 /* 5260 * We enter this stage when we have to walk into a child block (meaning we can't 5261 * simply drop our reference to it from our current parent node) and there are 5262 * more than one reference on it. If we are the owner of any of the children 5263 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5264 * on them in order to drop our normal ref and add the shared ref. 5265 */ 5266 #define UPDATE_BACKREF 2 5267 5268 /* 5269 * Decide if we need to walk down into this node to adjust the references. 5270 * 5271 * @root: the root we are currently deleting 5272 * @wc: the walk control for this deletion 5273 * @eb: the parent eb that we're currently visiting 5274 * @refs: the number of refs for wc->level - 1 5275 * @flags: the flags for wc->level - 1 5276 * @slot: the slot in the eb that we're currently checking 5277 * 5278 * This is meant to be called when we're evaluating if a node we point to at 5279 * wc->level should be read and walked into, or if we can simply delete our 5280 * reference to it. We return true if we should walk into the node, false if we 5281 * can skip it. 5282 * 5283 * We have assertions in here to make sure this is called correctly. We assume 5284 * that sanity checking on the blocks read to this point has been done, so any 5285 * corrupted file systems must have been caught before calling this function. 5286 */ 5287 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5288 struct extent_buffer *eb, u64 flags, int slot) 5289 { 5290 struct btrfs_key key; 5291 u64 generation; 5292 int level = wc->level; 5293 5294 ASSERT(level > 0); 5295 ASSERT(wc->refs[level - 1] > 0); 5296 5297 /* 5298 * The update backref stage we only want to skip if we already have 5299 * FULL_BACKREF set, otherwise we need to read. 5300 */ 5301 if (wc->stage == UPDATE_BACKREF) { 5302 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5303 return false; 5304 return true; 5305 } 5306 5307 /* 5308 * We're the last ref on this block, we must walk into it and process 5309 * any refs it's pointing at. 5310 */ 5311 if (wc->refs[level - 1] == 1) 5312 return true; 5313 5314 /* 5315 * If we're already FULL_BACKREF then we know we can just drop our 5316 * current reference. 5317 */ 5318 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5319 return false; 5320 5321 /* 5322 * This block is older than our creation generation, we can drop our 5323 * reference to it. 5324 */ 5325 generation = btrfs_node_ptr_generation(eb, slot); 5326 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root)) 5327 return false; 5328 5329 /* 5330 * This block was processed from a previous snapshot deletion run, we 5331 * can skip it. 5332 */ 5333 btrfs_node_key_to_cpu(eb, &key, slot); 5334 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5335 return false; 5336 5337 /* All other cases we need to wander into the node. */ 5338 return true; 5339 } 5340 5341 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5342 struct btrfs_root *root, 5343 struct walk_control *wc, 5344 struct btrfs_path *path) 5345 { 5346 struct btrfs_fs_info *fs_info = root->fs_info; 5347 u64 bytenr; 5348 u64 generation; 5349 u64 refs; 5350 u64 flags; 5351 u32 nritems; 5352 struct extent_buffer *eb; 5353 int ret; 5354 int slot; 5355 int nread = 0; 5356 5357 if (path->slots[wc->level] < wc->reada_slot) { 5358 wc->reada_count = wc->reada_count * 2 / 3; 5359 wc->reada_count = max(wc->reada_count, 2); 5360 } else { 5361 wc->reada_count = wc->reada_count * 3 / 2; 5362 wc->reada_count = min_t(int, wc->reada_count, 5363 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5364 } 5365 5366 eb = path->nodes[wc->level]; 5367 nritems = btrfs_header_nritems(eb); 5368 5369 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5370 if (nread >= wc->reada_count) 5371 break; 5372 5373 cond_resched(); 5374 bytenr = btrfs_node_blockptr(eb, slot); 5375 generation = btrfs_node_ptr_generation(eb, slot); 5376 5377 if (slot == path->slots[wc->level]) 5378 goto reada; 5379 5380 if (wc->stage == UPDATE_BACKREF && 5381 generation <= btrfs_root_origin_generation(root)) 5382 continue; 5383 5384 /* We don't lock the tree block, it's OK to be racy here */ 5385 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5386 wc->level - 1, 1, &refs, 5387 &flags, NULL); 5388 /* We don't care about errors in readahead. */ 5389 if (ret < 0) 5390 continue; 5391 5392 /* 5393 * This could be racey, it's conceivable that we raced and end 5394 * up with a bogus refs count, if that's the case just skip, if 5395 * we are actually corrupt we will notice when we look up 5396 * everything again with our locks. 5397 */ 5398 if (refs == 0) 5399 continue; 5400 5401 /* If we don't need to visit this node don't reada. */ 5402 if (!visit_node_for_delete(root, wc, eb, flags, slot)) 5403 continue; 5404 reada: 5405 btrfs_readahead_node_child(eb, slot); 5406 nread++; 5407 } 5408 wc->reada_slot = slot; 5409 } 5410 5411 /* 5412 * helper to process tree block while walking down the tree. 5413 * 5414 * when wc->stage == UPDATE_BACKREF, this function updates 5415 * back refs for pointers in the block. 5416 * 5417 * NOTE: return value 1 means we should stop walking down. 5418 */ 5419 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5420 struct btrfs_root *root, 5421 struct btrfs_path *path, 5422 struct walk_control *wc) 5423 { 5424 struct btrfs_fs_info *fs_info = root->fs_info; 5425 int level = wc->level; 5426 struct extent_buffer *eb = path->nodes[level]; 5427 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5428 int ret; 5429 5430 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5431 return 1; 5432 5433 /* 5434 * when reference count of tree block is 1, it won't increase 5435 * again. once full backref flag is set, we never clear it. 5436 */ 5437 if (wc->lookup_info && 5438 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5439 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5440 ASSERT(path->locks[level]); 5441 ret = btrfs_lookup_extent_info(trans, fs_info, 5442 eb->start, level, 1, 5443 &wc->refs[level], 5444 &wc->flags[level], 5445 NULL); 5446 if (ret) 5447 return ret; 5448 if (unlikely(wc->refs[level] == 0)) { 5449 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5450 eb->start); 5451 return -EUCLEAN; 5452 } 5453 } 5454 5455 if (wc->stage == DROP_REFERENCE) { 5456 if (wc->refs[level] > 1) 5457 return 1; 5458 5459 if (path->locks[level] && !wc->keep_locks) { 5460 btrfs_tree_unlock_rw(eb, path->locks[level]); 5461 path->locks[level] = 0; 5462 } 5463 return 0; 5464 } 5465 5466 /* wc->stage == UPDATE_BACKREF */ 5467 if (!(wc->flags[level] & flag)) { 5468 ASSERT(path->locks[level]); 5469 ret = btrfs_inc_ref(trans, root, eb, 1); 5470 if (ret) { 5471 btrfs_abort_transaction(trans, ret); 5472 return ret; 5473 } 5474 ret = btrfs_dec_ref(trans, root, eb, 0); 5475 if (ret) { 5476 btrfs_abort_transaction(trans, ret); 5477 return ret; 5478 } 5479 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5480 if (ret) { 5481 btrfs_abort_transaction(trans, ret); 5482 return ret; 5483 } 5484 wc->flags[level] |= flag; 5485 } 5486 5487 /* 5488 * the block is shared by multiple trees, so it's not good to 5489 * keep the tree lock 5490 */ 5491 if (path->locks[level] && level > 0) { 5492 btrfs_tree_unlock_rw(eb, path->locks[level]); 5493 path->locks[level] = 0; 5494 } 5495 return 0; 5496 } 5497 5498 /* 5499 * This is used to verify a ref exists for this root to deal with a bug where we 5500 * would have a drop_progress key that hadn't been updated properly. 5501 */ 5502 static int check_ref_exists(struct btrfs_trans_handle *trans, 5503 struct btrfs_root *root, u64 bytenr, u64 parent, 5504 int level) 5505 { 5506 struct btrfs_delayed_ref_root *delayed_refs; 5507 struct btrfs_delayed_ref_head *head; 5508 BTRFS_PATH_AUTO_FREE(path); 5509 struct btrfs_extent_inline_ref *iref; 5510 int ret; 5511 bool exists = false; 5512 5513 path = btrfs_alloc_path(); 5514 if (!path) 5515 return -ENOMEM; 5516 again: 5517 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5518 root->fs_info->nodesize, parent, 5519 btrfs_root_id(root), level, 0); 5520 if (ret != -ENOENT) { 5521 /* 5522 * If we get 0 then we found our reference, return 1, else 5523 * return the error if it's not -ENOENT; 5524 */ 5525 return (ret < 0 ) ? ret : 1; 5526 } 5527 5528 /* 5529 * We could have a delayed ref with this reference, so look it up while 5530 * we're holding the path open to make sure we don't race with the 5531 * delayed ref running. 5532 */ 5533 delayed_refs = &trans->transaction->delayed_refs; 5534 spin_lock(&delayed_refs->lock); 5535 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 5536 if (!head) 5537 goto out; 5538 if (!mutex_trylock(&head->mutex)) { 5539 /* 5540 * We're contended, means that the delayed ref is running, get a 5541 * reference and wait for the ref head to be complete and then 5542 * try again. 5543 */ 5544 refcount_inc(&head->refs); 5545 spin_unlock(&delayed_refs->lock); 5546 5547 btrfs_release_path(path); 5548 5549 mutex_lock(&head->mutex); 5550 mutex_unlock(&head->mutex); 5551 btrfs_put_delayed_ref_head(head); 5552 goto again; 5553 } 5554 5555 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent); 5556 mutex_unlock(&head->mutex); 5557 out: 5558 spin_unlock(&delayed_refs->lock); 5559 return exists ? 1 : 0; 5560 } 5561 5562 /* 5563 * We may not have an uptodate block, so if we are going to walk down into this 5564 * block we need to drop the lock, read it off of the disk, re-lock it and 5565 * return to continue dropping the snapshot. 5566 */ 5567 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5568 struct btrfs_root *root, 5569 struct btrfs_path *path, 5570 struct walk_control *wc, 5571 struct extent_buffer *next) 5572 { 5573 struct btrfs_tree_parent_check check = { 0 }; 5574 u64 generation; 5575 int level = wc->level; 5576 int ret; 5577 5578 btrfs_assert_tree_write_locked(next); 5579 5580 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5581 5582 if (btrfs_buffer_uptodate(next, generation, 0)) 5583 return 0; 5584 5585 check.level = level - 1; 5586 check.transid = generation; 5587 check.owner_root = btrfs_root_id(root); 5588 check.has_first_key = true; 5589 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5590 5591 btrfs_tree_unlock(next); 5592 if (level == 1) 5593 reada_walk_down(trans, root, wc, path); 5594 ret = btrfs_read_extent_buffer(next, &check); 5595 if (ret) { 5596 free_extent_buffer(next); 5597 return ret; 5598 } 5599 btrfs_tree_lock(next); 5600 wc->lookup_info = 1; 5601 return 0; 5602 } 5603 5604 /* 5605 * If we determine that we don't have to visit wc->level - 1 then we need to 5606 * determine if we can drop our reference. 5607 * 5608 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5609 * 5610 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5611 * reference, skipping it if we dropped it from a previous incompleted drop, or 5612 * dropping it if we still have a reference to it. 5613 */ 5614 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5615 struct btrfs_path *path, struct walk_control *wc, 5616 struct extent_buffer *next, u64 owner_root) 5617 { 5618 struct btrfs_ref ref = { 5619 .action = BTRFS_DROP_DELAYED_REF, 5620 .bytenr = next->start, 5621 .num_bytes = root->fs_info->nodesize, 5622 .owning_root = owner_root, 5623 .ref_root = btrfs_root_id(root), 5624 }; 5625 int level = wc->level; 5626 int ret; 5627 5628 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5629 if (wc->stage == UPDATE_BACKREF) 5630 return 0; 5631 5632 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5633 ref.parent = path->nodes[level]->start; 5634 } else { 5635 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5636 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { 5637 btrfs_err(root->fs_info, "mismatched block owner"); 5638 return -EIO; 5639 } 5640 } 5641 5642 /* 5643 * If we had a drop_progress we need to verify the refs are set as 5644 * expected. If we find our ref then we know that from here on out 5645 * everything should be correct, and we can clear the 5646 * ->restarted flag. 5647 */ 5648 if (wc->restarted) { 5649 ret = check_ref_exists(trans, root, next->start, ref.parent, 5650 level - 1); 5651 if (ret <= 0) 5652 return ret; 5653 ret = 0; 5654 wc->restarted = 0; 5655 } 5656 5657 /* 5658 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5659 * accounted them at merge time (replace_path), thus we could skip 5660 * expensive subtree trace here. 5661 */ 5662 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5663 wc->refs[level - 1] > 1) { 5664 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5665 path->slots[level]); 5666 5667 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5668 if (ret) { 5669 btrfs_err_rl(root->fs_info, 5670 "error %d accounting shared subtree, quota is out of sync, rescan required", 5671 ret); 5672 } 5673 } 5674 5675 /* 5676 * We need to update the next key in our walk control so we can update 5677 * the drop_progress key accordingly. We don't care if find_next_key 5678 * doesn't find a key because that means we're at the end and are going 5679 * to clean up now. 5680 */ 5681 wc->drop_level = level; 5682 find_next_key(path, level, &wc->drop_progress); 5683 5684 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5685 return btrfs_free_extent(trans, &ref); 5686 } 5687 5688 /* 5689 * helper to process tree block pointer. 5690 * 5691 * when wc->stage == DROP_REFERENCE, this function checks 5692 * reference count of the block pointed to. if the block 5693 * is shared and we need update back refs for the subtree 5694 * rooted at the block, this function changes wc->stage to 5695 * UPDATE_BACKREF. if the block is shared and there is no 5696 * need to update back, this function drops the reference 5697 * to the block. 5698 * 5699 * NOTE: return value 1 means we should stop walking down. 5700 */ 5701 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5702 struct btrfs_root *root, 5703 struct btrfs_path *path, 5704 struct walk_control *wc) 5705 { 5706 struct btrfs_fs_info *fs_info = root->fs_info; 5707 u64 bytenr; 5708 u64 generation; 5709 u64 owner_root = 0; 5710 struct extent_buffer *next; 5711 int level = wc->level; 5712 int ret = 0; 5713 5714 generation = btrfs_node_ptr_generation(path->nodes[level], 5715 path->slots[level]); 5716 /* 5717 * if the lower level block was created before the snapshot 5718 * was created, we know there is no need to update back refs 5719 * for the subtree 5720 */ 5721 if (wc->stage == UPDATE_BACKREF && 5722 generation <= btrfs_root_origin_generation(root)) { 5723 wc->lookup_info = 1; 5724 return 1; 5725 } 5726 5727 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5728 5729 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5730 level - 1); 5731 if (IS_ERR(next)) 5732 return PTR_ERR(next); 5733 5734 btrfs_tree_lock(next); 5735 5736 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5737 &wc->refs[level - 1], 5738 &wc->flags[level - 1], 5739 &owner_root); 5740 if (ret < 0) 5741 goto out_unlock; 5742 5743 if (unlikely(wc->refs[level - 1] == 0)) { 5744 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5745 bytenr); 5746 ret = -EUCLEAN; 5747 goto out_unlock; 5748 } 5749 wc->lookup_info = 0; 5750 5751 /* If we don't have to walk into this node skip it. */ 5752 if (!visit_node_for_delete(root, wc, path->nodes[level], 5753 wc->flags[level - 1], path->slots[level])) 5754 goto skip; 5755 5756 /* 5757 * We have to walk down into this node, and if we're currently at the 5758 * DROP_REFERNCE stage and this block is shared then we need to switch 5759 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5760 */ 5761 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5762 wc->stage = UPDATE_BACKREF; 5763 wc->shared_level = level - 1; 5764 } 5765 5766 ret = check_next_block_uptodate(trans, root, path, wc, next); 5767 if (ret) 5768 return ret; 5769 5770 level--; 5771 ASSERT(level == btrfs_header_level(next)); 5772 if (level != btrfs_header_level(next)) { 5773 btrfs_err(root->fs_info, "mismatched level"); 5774 ret = -EIO; 5775 goto out_unlock; 5776 } 5777 path->nodes[level] = next; 5778 path->slots[level] = 0; 5779 path->locks[level] = BTRFS_WRITE_LOCK; 5780 wc->level = level; 5781 if (wc->level == 1) 5782 wc->reada_slot = 0; 5783 return 0; 5784 skip: 5785 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5786 if (ret) 5787 goto out_unlock; 5788 wc->refs[level - 1] = 0; 5789 wc->flags[level - 1] = 0; 5790 wc->lookup_info = 1; 5791 ret = 1; 5792 5793 out_unlock: 5794 btrfs_tree_unlock(next); 5795 free_extent_buffer(next); 5796 5797 return ret; 5798 } 5799 5800 /* 5801 * helper to process tree block while walking up the tree. 5802 * 5803 * when wc->stage == DROP_REFERENCE, this function drops 5804 * reference count on the block. 5805 * 5806 * when wc->stage == UPDATE_BACKREF, this function changes 5807 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5808 * to UPDATE_BACKREF previously while processing the block. 5809 * 5810 * NOTE: return value 1 means we should stop walking up. 5811 */ 5812 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5813 struct btrfs_root *root, 5814 struct btrfs_path *path, 5815 struct walk_control *wc) 5816 { 5817 struct btrfs_fs_info *fs_info = root->fs_info; 5818 int ret = 0; 5819 int level = wc->level; 5820 struct extent_buffer *eb = path->nodes[level]; 5821 u64 parent = 0; 5822 5823 if (wc->stage == UPDATE_BACKREF) { 5824 ASSERT(wc->shared_level >= level); 5825 if (level < wc->shared_level) 5826 goto out; 5827 5828 ret = find_next_key(path, level + 1, &wc->update_progress); 5829 if (ret > 0) 5830 wc->update_ref = 0; 5831 5832 wc->stage = DROP_REFERENCE; 5833 wc->shared_level = -1; 5834 path->slots[level] = 0; 5835 5836 /* 5837 * check reference count again if the block isn't locked. 5838 * we should start walking down the tree again if reference 5839 * count is one. 5840 */ 5841 if (!path->locks[level]) { 5842 ASSERT(level > 0); 5843 btrfs_tree_lock(eb); 5844 path->locks[level] = BTRFS_WRITE_LOCK; 5845 5846 ret = btrfs_lookup_extent_info(trans, fs_info, 5847 eb->start, level, 1, 5848 &wc->refs[level], 5849 &wc->flags[level], 5850 NULL); 5851 if (ret < 0) { 5852 btrfs_tree_unlock_rw(eb, path->locks[level]); 5853 path->locks[level] = 0; 5854 return ret; 5855 } 5856 if (unlikely(wc->refs[level] == 0)) { 5857 btrfs_tree_unlock_rw(eb, path->locks[level]); 5858 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5859 eb->start); 5860 return -EUCLEAN; 5861 } 5862 if (wc->refs[level] == 1) { 5863 btrfs_tree_unlock_rw(eb, path->locks[level]); 5864 path->locks[level] = 0; 5865 return 1; 5866 } 5867 } 5868 } 5869 5870 /* wc->stage == DROP_REFERENCE */ 5871 ASSERT(path->locks[level] || wc->refs[level] == 1); 5872 5873 if (wc->refs[level] == 1) { 5874 if (level == 0) { 5875 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5876 ret = btrfs_dec_ref(trans, root, eb, 1); 5877 else 5878 ret = btrfs_dec_ref(trans, root, eb, 0); 5879 if (ret) { 5880 btrfs_abort_transaction(trans, ret); 5881 return ret; 5882 } 5883 if (is_fstree(btrfs_root_id(root))) { 5884 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5885 if (ret) { 5886 btrfs_err_rl(fs_info, 5887 "error %d accounting leaf items, quota is out of sync, rescan required", 5888 ret); 5889 } 5890 } 5891 } 5892 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5893 if (!path->locks[level]) { 5894 btrfs_tree_lock(eb); 5895 path->locks[level] = BTRFS_WRITE_LOCK; 5896 } 5897 btrfs_clear_buffer_dirty(trans, eb); 5898 } 5899 5900 if (eb == root->node) { 5901 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5902 parent = eb->start; 5903 else if (btrfs_root_id(root) != btrfs_header_owner(eb)) 5904 goto owner_mismatch; 5905 } else { 5906 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5907 parent = path->nodes[level + 1]->start; 5908 else if (btrfs_root_id(root) != 5909 btrfs_header_owner(path->nodes[level + 1])) 5910 goto owner_mismatch; 5911 } 5912 5913 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5914 wc->refs[level] == 1); 5915 if (ret < 0) 5916 btrfs_abort_transaction(trans, ret); 5917 out: 5918 wc->refs[level] = 0; 5919 wc->flags[level] = 0; 5920 return ret; 5921 5922 owner_mismatch: 5923 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5924 btrfs_header_owner(eb), btrfs_root_id(root)); 5925 return -EUCLEAN; 5926 } 5927 5928 /* 5929 * walk_down_tree consists of two steps. 5930 * 5931 * walk_down_proc(). Look up the reference count and reference of our current 5932 * wc->level. At this point path->nodes[wc->level] should be populated and 5933 * uptodate, and in most cases should already be locked. If we are in 5934 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5935 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5936 * FULL_BACKREF on this node if it's not already set, and then do the 5937 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5938 * the shared reference to all of this nodes children. 5939 * 5940 * do_walk_down(). This is where we actually start iterating on the children of 5941 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5942 * our reference to the children that return false from visit_node_for_delete(), 5943 * which has various conditions where we know we can just drop our reference 5944 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5945 * visit_node_for_delete() returns false for, only walking down when necessary. 5946 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5947 * snapshot deletion. 5948 */ 5949 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5950 struct btrfs_root *root, 5951 struct btrfs_path *path, 5952 struct walk_control *wc) 5953 { 5954 int level = wc->level; 5955 int ret = 0; 5956 5957 wc->lookup_info = 1; 5958 while (level >= 0) { 5959 ret = walk_down_proc(trans, root, path, wc); 5960 if (ret) 5961 break; 5962 5963 if (level == 0) 5964 break; 5965 5966 if (path->slots[level] >= 5967 btrfs_header_nritems(path->nodes[level])) 5968 break; 5969 5970 ret = do_walk_down(trans, root, path, wc); 5971 if (ret > 0) { 5972 path->slots[level]++; 5973 continue; 5974 } else if (ret < 0) 5975 break; 5976 level = wc->level; 5977 } 5978 return (ret == 1) ? 0 : ret; 5979 } 5980 5981 /* 5982 * walk_up_tree() is responsible for making sure we visit every slot on our 5983 * current node, and if we're at the end of that node then we call 5984 * walk_up_proc() on our current node which will do one of a few things based on 5985 * our stage. 5986 * 5987 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5988 * then we need to walk back up the tree, and then going back down into the 5989 * other slots via walk_down_tree to update any other children from our original 5990 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5991 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 5992 * 5993 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 5994 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 5995 * in our current leaf. After that we call btrfs_free_tree_block() on the 5996 * current node and walk up to the next node to walk down the next slot. 5997 */ 5998 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5999 struct btrfs_root *root, 6000 struct btrfs_path *path, 6001 struct walk_control *wc, int max_level) 6002 { 6003 int level = wc->level; 6004 int ret; 6005 6006 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6007 while (level < max_level && path->nodes[level]) { 6008 wc->level = level; 6009 if (path->slots[level] + 1 < 6010 btrfs_header_nritems(path->nodes[level])) { 6011 path->slots[level]++; 6012 return 0; 6013 } else { 6014 ret = walk_up_proc(trans, root, path, wc); 6015 if (ret > 0) 6016 return 0; 6017 if (ret < 0) 6018 return ret; 6019 6020 if (path->locks[level]) { 6021 btrfs_tree_unlock_rw(path->nodes[level], 6022 path->locks[level]); 6023 path->locks[level] = 0; 6024 } 6025 free_extent_buffer(path->nodes[level]); 6026 path->nodes[level] = NULL; 6027 level++; 6028 } 6029 } 6030 return 1; 6031 } 6032 6033 /* 6034 * drop a subvolume tree. 6035 * 6036 * this function traverses the tree freeing any blocks that only 6037 * referenced by the tree. 6038 * 6039 * when a shared tree block is found. this function decreases its 6040 * reference count by one. if update_ref is true, this function 6041 * also make sure backrefs for the shared block and all lower level 6042 * blocks are properly updated. 6043 * 6044 * If called with for_reloc == 0, may exit early with -EAGAIN 6045 */ 6046 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 6047 { 6048 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 6049 struct btrfs_fs_info *fs_info = root->fs_info; 6050 struct btrfs_path *path; 6051 struct btrfs_trans_handle *trans; 6052 struct btrfs_root *tree_root = fs_info->tree_root; 6053 struct btrfs_root_item *root_item = &root->root_item; 6054 struct walk_control *wc; 6055 struct btrfs_key key; 6056 const u64 rootid = btrfs_root_id(root); 6057 int ret = 0; 6058 int level; 6059 bool root_dropped = false; 6060 bool unfinished_drop = false; 6061 6062 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 6063 6064 path = btrfs_alloc_path(); 6065 if (!path) { 6066 ret = -ENOMEM; 6067 goto out; 6068 } 6069 6070 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6071 if (!wc) { 6072 btrfs_free_path(path); 6073 ret = -ENOMEM; 6074 goto out; 6075 } 6076 6077 /* 6078 * Use join to avoid potential EINTR from transaction start. See 6079 * wait_reserve_ticket and the whole reservation callchain. 6080 */ 6081 if (for_reloc) 6082 trans = btrfs_join_transaction(tree_root); 6083 else 6084 trans = btrfs_start_transaction(tree_root, 0); 6085 if (IS_ERR(trans)) { 6086 ret = PTR_ERR(trans); 6087 goto out_free; 6088 } 6089 6090 ret = btrfs_run_delayed_items(trans); 6091 if (ret) 6092 goto out_end_trans; 6093 6094 /* 6095 * This will help us catch people modifying the fs tree while we're 6096 * dropping it. It is unsafe to mess with the fs tree while it's being 6097 * dropped as we unlock the root node and parent nodes as we walk down 6098 * the tree, assuming nothing will change. If something does change 6099 * then we'll have stale information and drop references to blocks we've 6100 * already dropped. 6101 */ 6102 set_bit(BTRFS_ROOT_DELETING, &root->state); 6103 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6104 6105 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6106 level = btrfs_header_level(root->node); 6107 path->nodes[level] = btrfs_lock_root_node(root); 6108 path->slots[level] = 0; 6109 path->locks[level] = BTRFS_WRITE_LOCK; 6110 memset(&wc->update_progress, 0, 6111 sizeof(wc->update_progress)); 6112 } else { 6113 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6114 memcpy(&wc->update_progress, &key, 6115 sizeof(wc->update_progress)); 6116 6117 level = btrfs_root_drop_level(root_item); 6118 BUG_ON(level == 0); 6119 path->lowest_level = level; 6120 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6121 path->lowest_level = 0; 6122 if (ret < 0) 6123 goto out_end_trans; 6124 6125 WARN_ON(ret > 0); 6126 ret = 0; 6127 6128 /* 6129 * unlock our path, this is safe because only this 6130 * function is allowed to delete this snapshot 6131 */ 6132 btrfs_unlock_up_safe(path, 0); 6133 6134 level = btrfs_header_level(root->node); 6135 while (1) { 6136 btrfs_tree_lock(path->nodes[level]); 6137 path->locks[level] = BTRFS_WRITE_LOCK; 6138 6139 /* 6140 * btrfs_lookup_extent_info() returns 0 for success, 6141 * or < 0 for error. 6142 */ 6143 ret = btrfs_lookup_extent_info(trans, fs_info, 6144 path->nodes[level]->start, 6145 level, 1, &wc->refs[level], 6146 &wc->flags[level], NULL); 6147 if (ret < 0) 6148 goto out_end_trans; 6149 6150 BUG_ON(wc->refs[level] == 0); 6151 6152 if (level == btrfs_root_drop_level(root_item)) 6153 break; 6154 6155 btrfs_tree_unlock(path->nodes[level]); 6156 path->locks[level] = 0; 6157 WARN_ON(wc->refs[level] != 1); 6158 level--; 6159 } 6160 } 6161 6162 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6163 wc->level = level; 6164 wc->shared_level = -1; 6165 wc->stage = DROP_REFERENCE; 6166 wc->update_ref = update_ref; 6167 wc->keep_locks = 0; 6168 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6169 6170 while (1) { 6171 6172 ret = walk_down_tree(trans, root, path, wc); 6173 if (ret < 0) { 6174 btrfs_abort_transaction(trans, ret); 6175 break; 6176 } 6177 6178 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6179 if (ret < 0) { 6180 btrfs_abort_transaction(trans, ret); 6181 break; 6182 } 6183 6184 if (ret > 0) { 6185 BUG_ON(wc->stage != DROP_REFERENCE); 6186 ret = 0; 6187 break; 6188 } 6189 6190 if (wc->stage == DROP_REFERENCE) { 6191 wc->drop_level = wc->level; 6192 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6193 &wc->drop_progress, 6194 path->slots[wc->drop_level]); 6195 } 6196 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6197 &wc->drop_progress); 6198 btrfs_set_root_drop_level(root_item, wc->drop_level); 6199 6200 BUG_ON(wc->level == 0); 6201 if (btrfs_should_end_transaction(trans) || 6202 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6203 ret = btrfs_update_root(trans, tree_root, 6204 &root->root_key, 6205 root_item); 6206 if (ret) { 6207 btrfs_abort_transaction(trans, ret); 6208 goto out_end_trans; 6209 } 6210 6211 if (!is_reloc_root) 6212 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6213 6214 btrfs_end_transaction_throttle(trans); 6215 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6216 btrfs_debug(fs_info, 6217 "drop snapshot early exit"); 6218 ret = -EAGAIN; 6219 goto out_free; 6220 } 6221 6222 /* 6223 * Use join to avoid potential EINTR from transaction 6224 * start. See wait_reserve_ticket and the whole 6225 * reservation callchain. 6226 */ 6227 if (for_reloc) 6228 trans = btrfs_join_transaction(tree_root); 6229 else 6230 trans = btrfs_start_transaction(tree_root, 0); 6231 if (IS_ERR(trans)) { 6232 ret = PTR_ERR(trans); 6233 goto out_free; 6234 } 6235 } 6236 } 6237 btrfs_release_path(path); 6238 if (ret) 6239 goto out_end_trans; 6240 6241 ret = btrfs_del_root(trans, &root->root_key); 6242 if (ret) { 6243 btrfs_abort_transaction(trans, ret); 6244 goto out_end_trans; 6245 } 6246 6247 if (!is_reloc_root) { 6248 ret = btrfs_find_root(tree_root, &root->root_key, path, 6249 NULL, NULL); 6250 if (ret < 0) { 6251 btrfs_abort_transaction(trans, ret); 6252 goto out_end_trans; 6253 } else if (ret > 0) { 6254 ret = 0; 6255 /* 6256 * If we fail to delete the orphan item this time 6257 * around, it'll get picked up the next time. 6258 * 6259 * The most common failure here is just -ENOENT. 6260 */ 6261 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6262 } 6263 } 6264 6265 /* 6266 * This subvolume is going to be completely dropped, and won't be 6267 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6268 * commit transaction time. So free it here manually. 6269 */ 6270 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6271 btrfs_qgroup_free_meta_all_pertrans(root); 6272 6273 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6274 btrfs_add_dropped_root(trans, root); 6275 else 6276 btrfs_put_root(root); 6277 root_dropped = true; 6278 out_end_trans: 6279 if (!is_reloc_root) 6280 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6281 6282 btrfs_end_transaction_throttle(trans); 6283 out_free: 6284 kfree(wc); 6285 btrfs_free_path(path); 6286 out: 6287 if (!ret && root_dropped) { 6288 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6289 if (ret < 0) 6290 btrfs_warn_rl(fs_info, 6291 "failed to cleanup qgroup 0/%llu: %d", 6292 rootid, ret); 6293 ret = 0; 6294 } 6295 /* 6296 * We were an unfinished drop root, check to see if there are any 6297 * pending, and if not clear and wake up any waiters. 6298 */ 6299 if (!ret && unfinished_drop) 6300 btrfs_maybe_wake_unfinished_drop(fs_info); 6301 6302 /* 6303 * So if we need to stop dropping the snapshot for whatever reason we 6304 * need to make sure to add it back to the dead root list so that we 6305 * keep trying to do the work later. This also cleans up roots if we 6306 * don't have it in the radix (like when we recover after a power fail 6307 * or unmount) so we don't leak memory. 6308 */ 6309 if (!for_reloc && !root_dropped) 6310 btrfs_add_dead_root(root); 6311 return ret; 6312 } 6313 6314 /* 6315 * drop subtree rooted at tree block 'node'. 6316 * 6317 * NOTE: this function will unlock and release tree block 'node' 6318 * only used by relocation code 6319 */ 6320 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6321 struct btrfs_root *root, 6322 struct extent_buffer *node, 6323 struct extent_buffer *parent) 6324 { 6325 struct btrfs_fs_info *fs_info = root->fs_info; 6326 BTRFS_PATH_AUTO_FREE(path); 6327 struct walk_control *wc; 6328 int level; 6329 int parent_level; 6330 int ret = 0; 6331 6332 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6333 6334 path = btrfs_alloc_path(); 6335 if (!path) 6336 return -ENOMEM; 6337 6338 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6339 if (!wc) 6340 return -ENOMEM; 6341 6342 btrfs_assert_tree_write_locked(parent); 6343 parent_level = btrfs_header_level(parent); 6344 atomic_inc(&parent->refs); 6345 path->nodes[parent_level] = parent; 6346 path->slots[parent_level] = btrfs_header_nritems(parent); 6347 6348 btrfs_assert_tree_write_locked(node); 6349 level = btrfs_header_level(node); 6350 path->nodes[level] = node; 6351 path->slots[level] = 0; 6352 path->locks[level] = BTRFS_WRITE_LOCK; 6353 6354 wc->refs[parent_level] = 1; 6355 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6356 wc->level = level; 6357 wc->shared_level = -1; 6358 wc->stage = DROP_REFERENCE; 6359 wc->update_ref = 0; 6360 wc->keep_locks = 1; 6361 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6362 6363 while (1) { 6364 ret = walk_down_tree(trans, root, path, wc); 6365 if (ret < 0) 6366 break; 6367 6368 ret = walk_up_tree(trans, root, path, wc, parent_level); 6369 if (ret) { 6370 if (ret > 0) 6371 ret = 0; 6372 break; 6373 } 6374 } 6375 6376 kfree(wc); 6377 return ret; 6378 } 6379 6380 /* 6381 * Unpin the extent range in an error context and don't add the space back. 6382 * Errors are not propagated further. 6383 */ 6384 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6385 { 6386 unpin_extent_range(fs_info, start, end, false); 6387 } 6388 6389 /* 6390 * It used to be that old block groups would be left around forever. 6391 * Iterating over them would be enough to trim unused space. Since we 6392 * now automatically remove them, we also need to iterate over unallocated 6393 * space. 6394 * 6395 * We don't want a transaction for this since the discard may take a 6396 * substantial amount of time. We don't require that a transaction be 6397 * running, but we do need to take a running transaction into account 6398 * to ensure that we're not discarding chunks that were released or 6399 * allocated in the current transaction. 6400 * 6401 * Holding the chunks lock will prevent other threads from allocating 6402 * or releasing chunks, but it won't prevent a running transaction 6403 * from committing and releasing the memory that the pending chunks 6404 * list head uses. For that, we need to take a reference to the 6405 * transaction and hold the commit root sem. We only need to hold 6406 * it while performing the free space search since we have already 6407 * held back allocations. 6408 */ 6409 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6410 { 6411 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6412 int ret; 6413 6414 *trimmed = 0; 6415 6416 /* Discard not supported = nothing to do. */ 6417 if (!bdev_max_discard_sectors(device->bdev)) 6418 return 0; 6419 6420 /* Not writable = nothing to do. */ 6421 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6422 return 0; 6423 6424 /* No free space = nothing to do. */ 6425 if (device->total_bytes <= device->bytes_used) 6426 return 0; 6427 6428 ret = 0; 6429 6430 while (1) { 6431 struct btrfs_fs_info *fs_info = device->fs_info; 6432 u64 bytes; 6433 6434 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6435 if (ret) 6436 break; 6437 6438 btrfs_find_first_clear_extent_bit(&device->alloc_state, start, 6439 &start, &end, 6440 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6441 6442 /* Check if there are any CHUNK_* bits left */ 6443 if (start > device->total_bytes) { 6444 DEBUG_WARN(); 6445 btrfs_warn_in_rcu(fs_info, 6446 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6447 start, end - start + 1, 6448 btrfs_dev_name(device), 6449 device->total_bytes); 6450 mutex_unlock(&fs_info->chunk_mutex); 6451 ret = 0; 6452 break; 6453 } 6454 6455 /* Ensure we skip the reserved space on each device. */ 6456 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6457 6458 /* 6459 * If find_first_clear_extent_bit find a range that spans the 6460 * end of the device it will set end to -1, in this case it's up 6461 * to the caller to trim the value to the size of the device. 6462 */ 6463 end = min(end, device->total_bytes - 1); 6464 6465 len = end - start + 1; 6466 6467 /* We didn't find any extents */ 6468 if (!len) { 6469 mutex_unlock(&fs_info->chunk_mutex); 6470 ret = 0; 6471 break; 6472 } 6473 6474 ret = btrfs_issue_discard(device->bdev, start, len, 6475 &bytes); 6476 if (!ret) 6477 btrfs_set_extent_bit(&device->alloc_state, start, 6478 start + bytes - 1, CHUNK_TRIMMED, NULL); 6479 mutex_unlock(&fs_info->chunk_mutex); 6480 6481 if (ret) 6482 break; 6483 6484 start += len; 6485 *trimmed += bytes; 6486 6487 if (btrfs_trim_interrupted()) { 6488 ret = -ERESTARTSYS; 6489 break; 6490 } 6491 6492 cond_resched(); 6493 } 6494 6495 return ret; 6496 } 6497 6498 /* 6499 * Trim the whole filesystem by: 6500 * 1) trimming the free space in each block group 6501 * 2) trimming the unallocated space on each device 6502 * 6503 * This will also continue trimming even if a block group or device encounters 6504 * an error. The return value will be the last error, or 0 if nothing bad 6505 * happens. 6506 */ 6507 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6508 { 6509 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6510 struct btrfs_block_group *cache = NULL; 6511 struct btrfs_device *device; 6512 u64 group_trimmed; 6513 u64 range_end = U64_MAX; 6514 u64 start; 6515 u64 end; 6516 u64 trimmed = 0; 6517 u64 bg_failed = 0; 6518 u64 dev_failed = 0; 6519 int bg_ret = 0; 6520 int dev_ret = 0; 6521 int ret = 0; 6522 6523 if (range->start == U64_MAX) 6524 return -EINVAL; 6525 6526 /* 6527 * Check range overflow if range->len is set. 6528 * The default range->len is U64_MAX. 6529 */ 6530 if (range->len != U64_MAX && 6531 check_add_overflow(range->start, range->len, &range_end)) 6532 return -EINVAL; 6533 6534 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6535 for (; cache; cache = btrfs_next_block_group(cache)) { 6536 if (cache->start >= range_end) { 6537 btrfs_put_block_group(cache); 6538 break; 6539 } 6540 6541 start = max(range->start, cache->start); 6542 end = min(range_end, cache->start + cache->length); 6543 6544 if (end - start >= range->minlen) { 6545 if (!btrfs_block_group_done(cache)) { 6546 ret = btrfs_cache_block_group(cache, true); 6547 if (ret) { 6548 bg_failed++; 6549 bg_ret = ret; 6550 continue; 6551 } 6552 } 6553 ret = btrfs_trim_block_group(cache, 6554 &group_trimmed, 6555 start, 6556 end, 6557 range->minlen); 6558 6559 trimmed += group_trimmed; 6560 if (ret) { 6561 bg_failed++; 6562 bg_ret = ret; 6563 continue; 6564 } 6565 } 6566 } 6567 6568 if (bg_failed) 6569 btrfs_warn(fs_info, 6570 "failed to trim %llu block group(s), last error %d", 6571 bg_failed, bg_ret); 6572 6573 mutex_lock(&fs_devices->device_list_mutex); 6574 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6575 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6576 continue; 6577 6578 ret = btrfs_trim_free_extents(device, &group_trimmed); 6579 6580 trimmed += group_trimmed; 6581 if (ret) { 6582 dev_failed++; 6583 dev_ret = ret; 6584 break; 6585 } 6586 } 6587 mutex_unlock(&fs_devices->device_list_mutex); 6588 6589 if (dev_failed) 6590 btrfs_warn(fs_info, 6591 "failed to trim %llu device(s), last error %d", 6592 dev_failed, dev_ret); 6593 range->len = trimmed; 6594 if (bg_ret) 6595 return bg_ret; 6596 return dev_ret; 6597 } 6598