1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int ret = 0; 186 187 if (sb_rdonly(fs_info->sb)) 188 return -EROFS; 189 190 for (int i = 0; i < num_extent_folios(eb); i++) { 191 struct folio *folio = eb->folios[i]; 192 u64 start = max_t(u64, eb->start, folio_pos(folio)); 193 u64 end = min_t(u64, eb->start + eb->len, 194 folio_pos(folio) + eb->folio_size); 195 u32 len = end - start; 196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + 197 offset_in_folio(folio, start); 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, 200 paddr, mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 ret = read_extent_buffer_pages(eb, mirror_num, check); 229 if (!ret) 230 break; 231 232 num_copies = btrfs_num_copies(fs_info, 233 eb->start, eb->len); 234 if (num_copies == 1) 235 break; 236 237 if (!failed_mirror) { 238 failed = 1; 239 failed_mirror = eb->read_mirror; 240 } 241 242 mirror_num++; 243 if (mirror_num == failed_mirror) 244 mirror_num++; 245 246 if (mirror_num > num_copies) 247 break; 248 } 249 250 if (failed && !ret && failed_mirror) 251 btrfs_repair_eb_io_failure(eb, failed_mirror); 252 253 return ret; 254 } 255 256 /* 257 * Checksum a dirty tree block before IO. 258 */ 259 int btree_csum_one_bio(struct btrfs_bio *bbio) 260 { 261 struct extent_buffer *eb = bbio->private; 262 struct btrfs_fs_info *fs_info = eb->fs_info; 263 u64 found_start = btrfs_header_bytenr(eb); 264 u64 last_trans; 265 u8 result[BTRFS_CSUM_SIZE]; 266 int ret; 267 268 /* Btree blocks are always contiguous on disk. */ 269 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 270 return -EIO; 271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 272 return -EIO; 273 274 /* 275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 276 * checksum it but zero-out its content. This is done to preserve 277 * ordering of I/O without unnecessarily writing out data. 278 */ 279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 280 memzero_extent_buffer(eb, 0, eb->len); 281 return 0; 282 } 283 284 if (WARN_ON_ONCE(found_start != eb->start)) 285 return -EIO; 286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 287 return -EIO; 288 289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 290 offsetof(struct btrfs_header, fsid), 291 BTRFS_FSID_SIZE) == 0); 292 csum_tree_block(eb, result); 293 294 if (btrfs_header_level(eb)) 295 ret = btrfs_check_node(eb); 296 else 297 ret = btrfs_check_leaf(eb); 298 299 if (ret < 0) 300 goto error; 301 302 /* 303 * Also check the generation, the eb reached here must be newer than 304 * last committed. Or something seriously wrong happened. 305 */ 306 last_trans = btrfs_get_last_trans_committed(fs_info); 307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 308 ret = -EUCLEAN; 309 btrfs_err(fs_info, 310 "block=%llu bad generation, have %llu expect > %llu", 311 eb->start, btrfs_header_generation(eb), last_trans); 312 goto error; 313 } 314 write_extent_buffer(eb, result, 0, fs_info->csum_size); 315 return 0; 316 317 error: 318 btrfs_print_tree(eb, 0); 319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 320 eb->start); 321 /* 322 * Be noisy if this is an extent buffer from a log tree. We don't abort 323 * a transaction in case there's a bad log tree extent buffer, we just 324 * fallback to a transaction commit. Still we want to know when there is 325 * a bad log tree extent buffer, as that may signal a bug somewhere. 326 */ 327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 329 return ret; 330 } 331 332 static bool check_tree_block_fsid(struct extent_buffer *eb) 333 { 334 struct btrfs_fs_info *fs_info = eb->fs_info; 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 336 u8 fsid[BTRFS_FSID_SIZE]; 337 338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE); 340 341 /* 342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 343 * This is then overwritten by metadata_uuid if it is present in the 344 * device_list_add(). The same true for a seed device as well. So use of 345 * fs_devices::metadata_uuid is appropriate here. 346 */ 347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 348 return false; 349 350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 352 return false; 353 354 return true; 355 } 356 357 /* Do basic extent buffer checks at read time */ 358 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 359 const struct btrfs_tree_parent_check *check) 360 { 361 struct btrfs_fs_info *fs_info = eb->fs_info; 362 u64 found_start; 363 const u32 csum_size = fs_info->csum_size; 364 u8 found_level; 365 u8 result[BTRFS_CSUM_SIZE]; 366 const u8 *header_csum; 367 int ret = 0; 368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 369 370 ASSERT(check); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != eb->start) { 374 btrfs_err_rl(fs_info, 375 "bad tree block start, mirror %u want %llu have %llu", 376 eb->read_mirror, eb->start, found_start); 377 ret = -EIO; 378 goto out; 379 } 380 if (check_tree_block_fsid(eb)) { 381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 382 eb->start, eb->read_mirror); 383 ret = -EIO; 384 goto out; 385 } 386 found_level = btrfs_header_level(eb); 387 if (found_level >= BTRFS_MAX_LEVEL) { 388 btrfs_err(fs_info, 389 "bad tree block level, mirror %u level %d on logical %llu", 390 eb->read_mirror, btrfs_header_level(eb), eb->start); 391 ret = -EIO; 392 goto out; 393 } 394 395 csum_tree_block(eb, result); 396 header_csum = folio_address(eb->folios[0]) + 397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 398 399 if (memcmp(result, header_csum, csum_size) != 0) { 400 btrfs_warn_rl(fs_info, 401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 402 eb->start, eb->read_mirror, 403 CSUM_FMT_VALUE(csum_size, header_csum), 404 CSUM_FMT_VALUE(csum_size, result), 405 btrfs_header_level(eb), 406 ignore_csum ? ", ignored" : ""); 407 if (!ignore_csum) { 408 ret = -EUCLEAN; 409 goto out; 410 } 411 } 412 413 if (found_level != check->level) { 414 btrfs_err(fs_info, 415 "level verify failed on logical %llu mirror %u wanted %u found %u", 416 eb->start, eb->read_mirror, check->level, found_level); 417 ret = -EIO; 418 goto out; 419 } 420 if (unlikely(check->transid && 421 btrfs_header_generation(eb) != check->transid)) { 422 btrfs_err_rl(eb->fs_info, 423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 424 eb->start, eb->read_mirror, check->transid, 425 btrfs_header_generation(eb)); 426 ret = -EIO; 427 goto out; 428 } 429 if (check->has_first_key) { 430 const struct btrfs_key *expect_key = &check->first_key; 431 struct btrfs_key found_key; 432 433 if (found_level) 434 btrfs_node_key_to_cpu(eb, &found_key, 0); 435 else 436 btrfs_item_key_to_cpu(eb, &found_key, 0); 437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 438 btrfs_err(fs_info, 439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 440 eb->start, check->transid, 441 expect_key->objectid, 442 expect_key->type, expect_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 ret = -EUCLEAN; 446 goto out; 447 } 448 } 449 if (check->owner_root) { 450 ret = btrfs_check_eb_owner(eb, check->owner_root); 451 if (ret < 0) 452 goto out; 453 } 454 455 /* If this is a leaf block and it is corrupt, just return -EIO. */ 456 if (found_level == 0 && btrfs_check_leaf(eb)) 457 ret = -EIO; 458 459 if (found_level > 0 && btrfs_check_node(eb)) 460 ret = -EIO; 461 462 if (ret) 463 btrfs_err(fs_info, 464 "read time tree block corruption detected on logical %llu mirror %u", 465 eb->start, eb->read_mirror); 466 out: 467 return ret; 468 } 469 470 #ifdef CONFIG_MIGRATION 471 static int btree_migrate_folio(struct address_space *mapping, 472 struct folio *dst, struct folio *src, enum migrate_mode mode) 473 { 474 /* 475 * we can't safely write a btree page from here, 476 * we haven't done the locking hook 477 */ 478 if (folio_test_dirty(src)) 479 return -EAGAIN; 480 /* 481 * Buffers may be managed in a filesystem specific way. 482 * We must have no buffers or drop them. 483 */ 484 if (folio_get_private(src) && 485 !filemap_release_folio(src, GFP_KERNEL)) 486 return -EAGAIN; 487 return migrate_folio(mapping, dst, src, mode); 488 } 489 #else 490 #define btree_migrate_folio NULL 491 #endif 492 493 static int btree_writepages(struct address_space *mapping, 494 struct writeback_control *wbc) 495 { 496 int ret; 497 498 if (wbc->sync_mode == WB_SYNC_NONE) { 499 struct btrfs_fs_info *fs_info; 500 501 if (wbc->for_kupdate) 502 return 0; 503 504 fs_info = inode_to_fs_info(mapping->host); 505 /* this is a bit racy, but that's ok */ 506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 507 BTRFS_DIRTY_METADATA_THRESH, 508 fs_info->dirty_metadata_batch); 509 if (ret < 0) 510 return 0; 511 } 512 return btree_write_cache_pages(mapping, wbc); 513 } 514 515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 516 { 517 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 518 return false; 519 520 return try_release_extent_buffer(folio); 521 } 522 523 static void btree_invalidate_folio(struct folio *folio, size_t offset, 524 size_t length) 525 { 526 struct extent_io_tree *tree; 527 528 tree = &folio_to_inode(folio)->io_tree; 529 extent_invalidate_folio(tree, folio, offset); 530 btree_release_folio(folio, GFP_NOFS); 531 if (folio_get_private(folio)) { 532 btrfs_warn(folio_to_fs_info(folio), 533 "folio private not zero on folio %llu", 534 (unsigned long long)folio_pos(folio)); 535 folio_detach_private(folio); 536 } 537 } 538 539 #ifdef DEBUG 540 static bool btree_dirty_folio(struct address_space *mapping, 541 struct folio *folio) 542 { 543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 544 struct btrfs_subpage_info *spi = fs_info->subpage_info; 545 struct btrfs_subpage *subpage; 546 struct extent_buffer *eb; 547 int cur_bit = 0; 548 u64 page_start = folio_pos(folio); 549 550 if (fs_info->sectorsize == PAGE_SIZE) { 551 eb = folio_get_private(folio); 552 BUG_ON(!eb); 553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 554 BUG_ON(!atomic_read(&eb->refs)); 555 btrfs_assert_tree_write_locked(eb); 556 return filemap_dirty_folio(mapping, folio); 557 } 558 559 ASSERT(spi); 560 subpage = folio_get_private(folio); 561 562 for (cur_bit = spi->dirty_offset; 563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 564 cur_bit++) { 565 unsigned long flags; 566 u64 cur; 567 568 spin_lock_irqsave(&subpage->lock, flags); 569 if (!test_bit(cur_bit, subpage->bitmaps)) { 570 spin_unlock_irqrestore(&subpage->lock, flags); 571 continue; 572 } 573 spin_unlock_irqrestore(&subpage->lock, flags); 574 cur = page_start + cur_bit * fs_info->sectorsize; 575 576 eb = find_extent_buffer(fs_info, cur); 577 ASSERT(eb); 578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 579 ASSERT(atomic_read(&eb->refs)); 580 btrfs_assert_tree_write_locked(eb); 581 free_extent_buffer(eb); 582 583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 584 } 585 return filemap_dirty_folio(mapping, folio); 586 } 587 #else 588 #define btree_dirty_folio filemap_dirty_folio 589 #endif 590 591 static const struct address_space_operations btree_aops = { 592 .writepages = btree_writepages, 593 .release_folio = btree_release_folio, 594 .invalidate_folio = btree_invalidate_folio, 595 .migrate_folio = btree_migrate_folio, 596 .dirty_folio = btree_dirty_folio, 597 }; 598 599 struct extent_buffer *btrfs_find_create_tree_block( 600 struct btrfs_fs_info *fs_info, 601 u64 bytenr, u64 owner_root, 602 int level) 603 { 604 if (btrfs_is_testing(fs_info)) 605 return alloc_test_extent_buffer(fs_info, bytenr); 606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 607 } 608 609 /* 610 * Read tree block at logical address @bytenr and do variant basic but critical 611 * verification. 612 * 613 * @check: expected tree parentness check, see comments of the 614 * structure for details. 615 */ 616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 617 struct btrfs_tree_parent_check *check) 618 { 619 struct extent_buffer *buf = NULL; 620 int ret; 621 622 ASSERT(check); 623 624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 625 check->level); 626 if (IS_ERR(buf)) 627 return buf; 628 629 ret = btrfs_read_extent_buffer(buf, check); 630 if (ret) { 631 free_extent_buffer_stale(buf); 632 return ERR_PTR(ret); 633 } 634 return buf; 635 636 } 637 638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 639 u64 objectid, gfp_t flags) 640 { 641 struct btrfs_root *root; 642 bool dummy = btrfs_is_testing(fs_info); 643 644 root = kzalloc(sizeof(*root), flags); 645 if (!root) 646 return NULL; 647 648 memset(&root->root_key, 0, sizeof(root->root_key)); 649 memset(&root->root_item, 0, sizeof(root->root_item)); 650 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 651 root->fs_info = fs_info; 652 root->root_key.objectid = objectid; 653 root->node = NULL; 654 root->commit_root = NULL; 655 root->state = 0; 656 RB_CLEAR_NODE(&root->rb_node); 657 658 btrfs_set_root_last_trans(root, 0); 659 root->free_objectid = 0; 660 root->nr_delalloc_inodes = 0; 661 root->nr_ordered_extents = 0; 662 xa_init(&root->inodes); 663 xa_init(&root->delayed_nodes); 664 665 btrfs_init_root_block_rsv(root); 666 667 INIT_LIST_HEAD(&root->dirty_list); 668 INIT_LIST_HEAD(&root->root_list); 669 INIT_LIST_HEAD(&root->delalloc_inodes); 670 INIT_LIST_HEAD(&root->delalloc_root); 671 INIT_LIST_HEAD(&root->ordered_extents); 672 INIT_LIST_HEAD(&root->ordered_root); 673 INIT_LIST_HEAD(&root->reloc_dirty_list); 674 spin_lock_init(&root->delalloc_lock); 675 spin_lock_init(&root->ordered_extent_lock); 676 spin_lock_init(&root->accounting_lock); 677 spin_lock_init(&root->qgroup_meta_rsv_lock); 678 mutex_init(&root->objectid_mutex); 679 mutex_init(&root->log_mutex); 680 mutex_init(&root->ordered_extent_mutex); 681 mutex_init(&root->delalloc_mutex); 682 init_waitqueue_head(&root->qgroup_flush_wait); 683 init_waitqueue_head(&root->log_writer_wait); 684 init_waitqueue_head(&root->log_commit_wait[0]); 685 init_waitqueue_head(&root->log_commit_wait[1]); 686 INIT_LIST_HEAD(&root->log_ctxs[0]); 687 INIT_LIST_HEAD(&root->log_ctxs[1]); 688 atomic_set(&root->log_commit[0], 0); 689 atomic_set(&root->log_commit[1], 0); 690 atomic_set(&root->log_writers, 0); 691 atomic_set(&root->log_batch, 0); 692 refcount_set(&root->refs, 1); 693 atomic_set(&root->snapshot_force_cow, 0); 694 atomic_set(&root->nr_swapfiles, 0); 695 btrfs_set_root_log_transid(root, 0); 696 root->log_transid_committed = -1; 697 btrfs_set_root_last_log_commit(root, 0); 698 root->anon_dev = 0; 699 if (!dummy) { 700 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 701 IO_TREE_ROOT_DIRTY_LOG_PAGES); 702 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 703 IO_TREE_LOG_CSUM_RANGE); 704 } 705 706 spin_lock_init(&root->root_item_lock); 707 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 708 #ifdef CONFIG_BTRFS_DEBUG 709 INIT_LIST_HEAD(&root->leak_list); 710 spin_lock(&fs_info->fs_roots_radix_lock); 711 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 712 spin_unlock(&fs_info->fs_roots_radix_lock); 713 #endif 714 715 return root; 716 } 717 718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 719 /* Should only be used by the testing infrastructure */ 720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 721 { 722 struct btrfs_root *root; 723 724 if (!fs_info) 725 return ERR_PTR(-EINVAL); 726 727 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 728 if (!root) 729 return ERR_PTR(-ENOMEM); 730 731 /* We don't use the stripesize in selftest, set it as sectorsize */ 732 root->alloc_bytenr = 0; 733 734 return root; 735 } 736 #endif 737 738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 739 { 740 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 741 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 742 743 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 744 } 745 746 static int global_root_key_cmp(const void *k, const struct rb_node *node) 747 { 748 const struct btrfs_key *key = k; 749 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 750 751 return btrfs_comp_cpu_keys(key, &root->root_key); 752 } 753 754 int btrfs_global_root_insert(struct btrfs_root *root) 755 { 756 struct btrfs_fs_info *fs_info = root->fs_info; 757 struct rb_node *tmp; 758 int ret = 0; 759 760 write_lock(&fs_info->global_root_lock); 761 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 762 write_unlock(&fs_info->global_root_lock); 763 764 if (tmp) { 765 ret = -EEXIST; 766 btrfs_warn(fs_info, "global root %llu %llu already exists", 767 btrfs_root_id(root), root->root_key.offset); 768 } 769 return ret; 770 } 771 772 void btrfs_global_root_delete(struct btrfs_root *root) 773 { 774 struct btrfs_fs_info *fs_info = root->fs_info; 775 776 write_lock(&fs_info->global_root_lock); 777 rb_erase(&root->rb_node, &fs_info->global_root_tree); 778 write_unlock(&fs_info->global_root_lock); 779 } 780 781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 782 struct btrfs_key *key) 783 { 784 struct rb_node *node; 785 struct btrfs_root *root = NULL; 786 787 read_lock(&fs_info->global_root_lock); 788 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 789 if (node) 790 root = container_of(node, struct btrfs_root, rb_node); 791 read_unlock(&fs_info->global_root_lock); 792 793 return root; 794 } 795 796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 797 { 798 struct btrfs_block_group *block_group; 799 u64 ret; 800 801 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 802 return 0; 803 804 if (bytenr) 805 block_group = btrfs_lookup_block_group(fs_info, bytenr); 806 else 807 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 808 ASSERT(block_group); 809 if (!block_group) 810 return 0; 811 ret = block_group->global_root_id; 812 btrfs_put_block_group(block_group); 813 814 return ret; 815 } 816 817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 818 { 819 struct btrfs_key key = { 820 .objectid = BTRFS_CSUM_TREE_OBJECTID, 821 .type = BTRFS_ROOT_ITEM_KEY, 822 .offset = btrfs_global_root_id(fs_info, bytenr), 823 }; 824 825 return btrfs_global_root(fs_info, &key); 826 } 827 828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 829 { 830 struct btrfs_key key = { 831 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 832 .type = BTRFS_ROOT_ITEM_KEY, 833 .offset = btrfs_global_root_id(fs_info, bytenr), 834 }; 835 836 return btrfs_global_root(fs_info, &key); 837 } 838 839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 840 u64 objectid) 841 { 842 struct btrfs_fs_info *fs_info = trans->fs_info; 843 struct extent_buffer *leaf; 844 struct btrfs_root *tree_root = fs_info->tree_root; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 unsigned int nofs_flag; 848 int ret = 0; 849 850 /* 851 * We're holding a transaction handle, so use a NOFS memory allocation 852 * context to avoid deadlock if reclaim happens. 853 */ 854 nofs_flag = memalloc_nofs_save(); 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 856 memalloc_nofs_restore(nofs_flag); 857 if (!root) 858 return ERR_PTR(-ENOMEM); 859 860 root->root_key.objectid = objectid; 861 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 862 root->root_key.offset = 0; 863 864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 865 0, BTRFS_NESTING_NORMAL); 866 if (IS_ERR(leaf)) { 867 ret = PTR_ERR(leaf); 868 leaf = NULL; 869 goto fail; 870 } 871 872 root->node = leaf; 873 btrfs_mark_buffer_dirty(trans, leaf); 874 875 root->commit_root = btrfs_root_node(root); 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 877 878 btrfs_set_root_flags(&root->root_item, 0); 879 btrfs_set_root_limit(&root->root_item, 0); 880 btrfs_set_root_bytenr(&root->root_item, leaf->start); 881 btrfs_set_root_generation(&root->root_item, trans->transid); 882 btrfs_set_root_level(&root->root_item, 0); 883 btrfs_set_root_refs(&root->root_item, 1); 884 btrfs_set_root_used(&root->root_item, leaf->len); 885 btrfs_set_root_last_snapshot(&root->root_item, 0); 886 btrfs_set_root_dirid(&root->root_item, 0); 887 if (is_fstree(objectid)) 888 generate_random_guid(root->root_item.uuid); 889 else 890 export_guid(root->root_item.uuid, &guid_null); 891 btrfs_set_root_drop_level(&root->root_item, 0); 892 893 btrfs_tree_unlock(leaf); 894 895 key.objectid = objectid; 896 key.type = BTRFS_ROOT_ITEM_KEY; 897 key.offset = 0; 898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 899 if (ret) 900 goto fail; 901 902 return root; 903 904 fail: 905 btrfs_put_root(root); 906 907 return ERR_PTR(ret); 908 } 909 910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 911 { 912 struct btrfs_root *root; 913 914 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 915 if (!root) 916 return ERR_PTR(-ENOMEM); 917 918 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 919 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 920 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 921 922 return root; 923 } 924 925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root) 927 { 928 struct extent_buffer *leaf; 929 930 /* 931 * DON'T set SHAREABLE bit for log trees. 932 * 933 * Log trees are not exposed to user space thus can't be snapshotted, 934 * and they go away before a real commit is actually done. 935 * 936 * They do store pointers to file data extents, and those reference 937 * counts still get updated (along with back refs to the log tree). 938 */ 939 940 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 941 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 942 if (IS_ERR(leaf)) 943 return PTR_ERR(leaf); 944 945 root->node = leaf; 946 947 btrfs_mark_buffer_dirty(trans, root->node); 948 btrfs_tree_unlock(root->node); 949 950 return 0; 951 } 952 953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 954 struct btrfs_fs_info *fs_info) 955 { 956 struct btrfs_root *log_root; 957 958 log_root = alloc_log_tree(fs_info); 959 if (IS_ERR(log_root)) 960 return PTR_ERR(log_root); 961 962 if (!btrfs_is_zoned(fs_info)) { 963 int ret = btrfs_alloc_log_tree_node(trans, log_root); 964 965 if (ret) { 966 btrfs_put_root(log_root); 967 return ret; 968 } 969 } 970 971 WARN_ON(fs_info->log_root_tree); 972 fs_info->log_root_tree = log_root; 973 return 0; 974 } 975 976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root) 978 { 979 struct btrfs_fs_info *fs_info = root->fs_info; 980 struct btrfs_root *log_root; 981 struct btrfs_inode_item *inode_item; 982 int ret; 983 984 log_root = alloc_log_tree(fs_info); 985 if (IS_ERR(log_root)) 986 return PTR_ERR(log_root); 987 988 ret = btrfs_alloc_log_tree_node(trans, log_root); 989 if (ret) { 990 btrfs_put_root(log_root); 991 return ret; 992 } 993 994 btrfs_set_root_last_trans(log_root, trans->transid); 995 log_root->root_key.offset = btrfs_root_id(root); 996 997 inode_item = &log_root->root_item.inode; 998 btrfs_set_stack_inode_generation(inode_item, 1); 999 btrfs_set_stack_inode_size(inode_item, 3); 1000 btrfs_set_stack_inode_nlink(inode_item, 1); 1001 btrfs_set_stack_inode_nbytes(inode_item, 1002 fs_info->nodesize); 1003 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1004 1005 btrfs_set_root_node(&log_root->root_item, log_root->node); 1006 1007 WARN_ON(root->log_root); 1008 root->log_root = log_root; 1009 btrfs_set_root_log_transid(root, 0); 1010 root->log_transid_committed = -1; 1011 btrfs_set_root_last_log_commit(root, 0); 1012 return 0; 1013 } 1014 1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1016 struct btrfs_path *path, 1017 const struct btrfs_key *key) 1018 { 1019 struct btrfs_root *root; 1020 struct btrfs_tree_parent_check check = { 0 }; 1021 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1022 u64 generation; 1023 int ret; 1024 int level; 1025 1026 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1027 if (!root) 1028 return ERR_PTR(-ENOMEM); 1029 1030 ret = btrfs_find_root(tree_root, key, path, 1031 &root->root_item, &root->root_key); 1032 if (ret) { 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 goto fail; 1036 } 1037 1038 generation = btrfs_root_generation(&root->root_item); 1039 level = btrfs_root_level(&root->root_item); 1040 check.level = level; 1041 check.transid = generation; 1042 check.owner_root = key->objectid; 1043 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1044 &check); 1045 if (IS_ERR(root->node)) { 1046 ret = PTR_ERR(root->node); 1047 root->node = NULL; 1048 goto fail; 1049 } 1050 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1051 ret = -EIO; 1052 goto fail; 1053 } 1054 1055 /* 1056 * For real fs, and not log/reloc trees, root owner must 1057 * match its root node owner 1058 */ 1059 if (!btrfs_is_testing(fs_info) && 1060 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1061 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1062 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1063 btrfs_crit(fs_info, 1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1065 btrfs_root_id(root), root->node->start, 1066 btrfs_header_owner(root->node), 1067 btrfs_root_id(root)); 1068 ret = -EUCLEAN; 1069 goto fail; 1070 } 1071 root->commit_root = btrfs_root_node(root); 1072 return root; 1073 fail: 1074 btrfs_put_root(root); 1075 return ERR_PTR(ret); 1076 } 1077 1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1079 const struct btrfs_key *key) 1080 { 1081 struct btrfs_root *root; 1082 BTRFS_PATH_AUTO_FREE(path); 1083 1084 path = btrfs_alloc_path(); 1085 if (!path) 1086 return ERR_PTR(-ENOMEM); 1087 root = read_tree_root_path(tree_root, path, key); 1088 1089 return root; 1090 } 1091 1092 /* 1093 * Initialize subvolume root in-memory structure. 1094 * 1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1096 * 1097 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1098 */ 1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1100 { 1101 int ret; 1102 1103 btrfs_drew_lock_init(&root->snapshot_lock); 1104 1105 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1106 !btrfs_is_data_reloc_root(root) && 1107 is_fstree(btrfs_root_id(root))) { 1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1109 btrfs_check_and_init_root_item(&root->root_item); 1110 } 1111 1112 /* 1113 * Don't assign anonymous block device to roots that are not exposed to 1114 * userspace, the id pool is limited to 1M 1115 */ 1116 if (is_fstree(btrfs_root_id(root)) && 1117 btrfs_root_refs(&root->root_item) > 0) { 1118 if (!anon_dev) { 1119 ret = get_anon_bdev(&root->anon_dev); 1120 if (ret) 1121 return ret; 1122 } else { 1123 root->anon_dev = anon_dev; 1124 } 1125 } 1126 1127 mutex_lock(&root->objectid_mutex); 1128 ret = btrfs_init_root_free_objectid(root); 1129 if (ret) { 1130 mutex_unlock(&root->objectid_mutex); 1131 return ret; 1132 } 1133 1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1135 1136 mutex_unlock(&root->objectid_mutex); 1137 1138 return 0; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->stripe_root); 1184 default: 1185 return NULL; 1186 } 1187 } 1188 1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 1194 ret = radix_tree_preload(GFP_NOFS); 1195 if (ret) 1196 return ret; 1197 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1200 (unsigned long)btrfs_root_id(root), 1201 root); 1202 if (ret == 0) { 1203 btrfs_grab_root(root); 1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1205 } 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 radix_tree_preload_end(); 1208 1209 return ret; 1210 } 1211 1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1213 { 1214 #ifdef CONFIG_BTRFS_DEBUG 1215 struct btrfs_root *root; 1216 1217 while (!list_empty(&fs_info->allocated_roots)) { 1218 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1219 1220 root = list_first_entry(&fs_info->allocated_roots, 1221 struct btrfs_root, leak_list); 1222 btrfs_err(fs_info, "leaked root %s refcount %d", 1223 btrfs_root_name(&root->root_key, buf), 1224 refcount_read(&root->refs)); 1225 WARN_ON_ONCE(1); 1226 while (refcount_read(&root->refs) > 1) 1227 btrfs_put_root(root); 1228 btrfs_put_root(root); 1229 } 1230 #endif 1231 } 1232 1233 static void free_global_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 struct rb_node *node; 1237 1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1239 root = rb_entry(node, struct btrfs_root, rb_node); 1240 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1241 btrfs_put_root(root); 1242 } 1243 } 1244 1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1246 { 1247 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1248 1249 percpu_counter_destroy(&fs_info->stats_read_blocks); 1250 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1251 percpu_counter_destroy(&fs_info->delalloc_bytes); 1252 percpu_counter_destroy(&fs_info->ordered_bytes); 1253 if (percpu_counter_initialized(em_counter)) 1254 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1255 percpu_counter_destroy(em_counter); 1256 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1257 btrfs_free_csum_hash(fs_info); 1258 btrfs_free_stripe_hash_table(fs_info); 1259 btrfs_free_ref_cache(fs_info); 1260 kfree(fs_info->balance_ctl); 1261 kfree(fs_info->delayed_root); 1262 free_global_roots(fs_info); 1263 btrfs_put_root(fs_info->tree_root); 1264 btrfs_put_root(fs_info->chunk_root); 1265 btrfs_put_root(fs_info->dev_root); 1266 btrfs_put_root(fs_info->quota_root); 1267 btrfs_put_root(fs_info->uuid_root); 1268 btrfs_put_root(fs_info->fs_root); 1269 btrfs_put_root(fs_info->data_reloc_root); 1270 btrfs_put_root(fs_info->block_group_root); 1271 btrfs_put_root(fs_info->stripe_root); 1272 btrfs_check_leaked_roots(fs_info); 1273 btrfs_extent_buffer_leak_debug_check(fs_info); 1274 kfree(fs_info->super_copy); 1275 kfree(fs_info->super_for_commit); 1276 kvfree(fs_info); 1277 } 1278 1279 1280 /* 1281 * Get an in-memory reference of a root structure. 1282 * 1283 * For essential trees like root/extent tree, we grab it from fs_info directly. 1284 * For subvolume trees, we check the cached filesystem roots first. If not 1285 * found, then read it from disk and add it to cached fs roots. 1286 * 1287 * Caller should release the root by calling btrfs_put_root() after the usage. 1288 * 1289 * NOTE: Reloc and log trees can't be read by this function as they share the 1290 * same root objectid. 1291 * 1292 * @objectid: root id 1293 * @anon_dev: preallocated anonymous block device number for new roots, 1294 * pass NULL for a new allocation. 1295 * @check_ref: whether to check root item references, If true, return -ENOENT 1296 * for orphan roots 1297 */ 1298 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1299 u64 objectid, dev_t *anon_dev, 1300 bool check_ref) 1301 { 1302 struct btrfs_root *root; 1303 struct btrfs_path *path; 1304 struct btrfs_key key; 1305 int ret; 1306 1307 root = btrfs_get_global_root(fs_info, objectid); 1308 if (root) 1309 return root; 1310 1311 /* 1312 * If we're called for non-subvolume trees, and above function didn't 1313 * find one, do not try to read it from disk. 1314 * 1315 * This is namely for free-space-tree and quota tree, which can change 1316 * at runtime and should only be grabbed from fs_info. 1317 */ 1318 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1319 return ERR_PTR(-ENOENT); 1320 again: 1321 root = btrfs_lookup_fs_root(fs_info, objectid); 1322 if (root) { 1323 /* 1324 * Some other caller may have read out the newly inserted 1325 * subvolume already (for things like backref walk etc). Not 1326 * that common but still possible. In that case, we just need 1327 * to free the anon_dev. 1328 */ 1329 if (unlikely(anon_dev && *anon_dev)) { 1330 free_anon_bdev(*anon_dev); 1331 *anon_dev = 0; 1332 } 1333 1334 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1335 btrfs_put_root(root); 1336 return ERR_PTR(-ENOENT); 1337 } 1338 return root; 1339 } 1340 1341 key.objectid = objectid; 1342 key.type = BTRFS_ROOT_ITEM_KEY; 1343 key.offset = (u64)-1; 1344 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1345 if (IS_ERR(root)) 1346 return root; 1347 1348 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1349 ret = -ENOENT; 1350 goto fail; 1351 } 1352 1353 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1354 if (ret) 1355 goto fail; 1356 1357 path = btrfs_alloc_path(); 1358 if (!path) { 1359 ret = -ENOMEM; 1360 goto fail; 1361 } 1362 key.objectid = BTRFS_ORPHAN_OBJECTID; 1363 key.type = BTRFS_ORPHAN_ITEM_KEY; 1364 key.offset = objectid; 1365 1366 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1367 btrfs_free_path(path); 1368 if (ret < 0) 1369 goto fail; 1370 if (ret == 0) 1371 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1372 1373 ret = btrfs_insert_fs_root(fs_info, root); 1374 if (ret) { 1375 if (ret == -EEXIST) { 1376 btrfs_put_root(root); 1377 goto again; 1378 } 1379 goto fail; 1380 } 1381 return root; 1382 fail: 1383 /* 1384 * If our caller provided us an anonymous device, then it's his 1385 * responsibility to free it in case we fail. So we have to set our 1386 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1387 * and once again by our caller. 1388 */ 1389 if (anon_dev && *anon_dev) 1390 root->anon_dev = 0; 1391 btrfs_put_root(root); 1392 return ERR_PTR(ret); 1393 } 1394 1395 /* 1396 * Get in-memory reference of a root structure 1397 * 1398 * @objectid: tree objectid 1399 * @check_ref: if set, verify that the tree exists and the item has at least 1400 * one reference 1401 */ 1402 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1403 u64 objectid, bool check_ref) 1404 { 1405 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1406 } 1407 1408 /* 1409 * Get in-memory reference of a root structure, created as new, optionally pass 1410 * the anonymous block device id 1411 * 1412 * @objectid: tree objectid 1413 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1414 * parameter value if not NULL 1415 */ 1416 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1417 u64 objectid, dev_t *anon_dev) 1418 { 1419 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1420 } 1421 1422 /* 1423 * Return a root for the given objectid. 1424 * 1425 * @fs_info: the fs_info 1426 * @objectid: the objectid we need to lookup 1427 * 1428 * This is exclusively used for backref walking, and exists specifically because 1429 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1430 * creation time, which means we may have to read the tree_root in order to look 1431 * up a fs root that is not in memory. If the root is not in memory we will 1432 * read the tree root commit root and look up the fs root from there. This is a 1433 * temporary root, it will not be inserted into the radix tree as it doesn't 1434 * have the most uptodate information, it'll simply be discarded once the 1435 * backref code is finished using the root. 1436 */ 1437 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1438 struct btrfs_path *path, 1439 u64 objectid) 1440 { 1441 struct btrfs_root *root; 1442 struct btrfs_key key; 1443 1444 ASSERT(path->search_commit_root && path->skip_locking); 1445 1446 /* 1447 * This can return -ENOENT if we ask for a root that doesn't exist, but 1448 * since this is called via the backref walking code we won't be looking 1449 * up a root that doesn't exist, unless there's corruption. So if root 1450 * != NULL just return it. 1451 */ 1452 root = btrfs_get_global_root(fs_info, objectid); 1453 if (root) 1454 return root; 1455 1456 root = btrfs_lookup_fs_root(fs_info, objectid); 1457 if (root) 1458 return root; 1459 1460 key.objectid = objectid; 1461 key.type = BTRFS_ROOT_ITEM_KEY; 1462 key.offset = (u64)-1; 1463 root = read_tree_root_path(fs_info->tree_root, path, &key); 1464 btrfs_release_path(path); 1465 1466 return root; 1467 } 1468 1469 static int cleaner_kthread(void *arg) 1470 { 1471 struct btrfs_fs_info *fs_info = arg; 1472 int again; 1473 1474 while (1) { 1475 again = 0; 1476 1477 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1478 1479 /* Make the cleaner go to sleep early. */ 1480 if (btrfs_need_cleaner_sleep(fs_info)) 1481 goto sleep; 1482 1483 /* 1484 * Do not do anything if we might cause open_ctree() to block 1485 * before we have finished mounting the filesystem. 1486 */ 1487 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1488 goto sleep; 1489 1490 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1491 goto sleep; 1492 1493 /* 1494 * Avoid the problem that we change the status of the fs 1495 * during the above check and trylock. 1496 */ 1497 if (btrfs_need_cleaner_sleep(fs_info)) { 1498 mutex_unlock(&fs_info->cleaner_mutex); 1499 goto sleep; 1500 } 1501 1502 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1503 btrfs_sysfs_feature_update(fs_info); 1504 1505 btrfs_run_delayed_iputs(fs_info); 1506 1507 again = btrfs_clean_one_deleted_snapshot(fs_info); 1508 mutex_unlock(&fs_info->cleaner_mutex); 1509 1510 /* 1511 * The defragger has dealt with the R/O remount and umount, 1512 * needn't do anything special here. 1513 */ 1514 btrfs_run_defrag_inodes(fs_info); 1515 1516 /* 1517 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1518 * with relocation (btrfs_relocate_chunk) and relocation 1519 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1520 * after acquiring fs_info->reclaim_bgs_lock. So we 1521 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1522 * unused block groups. 1523 */ 1524 btrfs_delete_unused_bgs(fs_info); 1525 1526 /* 1527 * Reclaim block groups in the reclaim_bgs list after we deleted 1528 * all unused block_groups. This possibly gives us some more free 1529 * space. 1530 */ 1531 btrfs_reclaim_bgs(fs_info); 1532 sleep: 1533 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1534 if (kthread_should_park()) 1535 kthread_parkme(); 1536 if (kthread_should_stop()) 1537 return 0; 1538 if (!again) { 1539 set_current_state(TASK_INTERRUPTIBLE); 1540 schedule(); 1541 __set_current_state(TASK_RUNNING); 1542 } 1543 } 1544 } 1545 1546 static int transaction_kthread(void *arg) 1547 { 1548 struct btrfs_root *root = arg; 1549 struct btrfs_fs_info *fs_info = root->fs_info; 1550 struct btrfs_trans_handle *trans; 1551 struct btrfs_transaction *cur; 1552 u64 transid; 1553 time64_t delta; 1554 unsigned long delay; 1555 bool cannot_commit; 1556 1557 do { 1558 cannot_commit = false; 1559 delay = secs_to_jiffies(fs_info->commit_interval); 1560 mutex_lock(&fs_info->transaction_kthread_mutex); 1561 1562 spin_lock(&fs_info->trans_lock); 1563 cur = fs_info->running_transaction; 1564 if (!cur) { 1565 spin_unlock(&fs_info->trans_lock); 1566 goto sleep; 1567 } 1568 1569 delta = ktime_get_seconds() - cur->start_time; 1570 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1571 cur->state < TRANS_STATE_COMMIT_PREP && 1572 delta < fs_info->commit_interval) { 1573 spin_unlock(&fs_info->trans_lock); 1574 delay -= secs_to_jiffies(delta - 1); 1575 delay = min(delay, 1576 secs_to_jiffies(fs_info->commit_interval)); 1577 goto sleep; 1578 } 1579 transid = cur->transid; 1580 spin_unlock(&fs_info->trans_lock); 1581 1582 /* If the file system is aborted, this will always fail. */ 1583 trans = btrfs_attach_transaction(root); 1584 if (IS_ERR(trans)) { 1585 if (PTR_ERR(trans) != -ENOENT) 1586 cannot_commit = true; 1587 goto sleep; 1588 } 1589 if (transid == trans->transid) { 1590 btrfs_commit_transaction(trans); 1591 } else { 1592 btrfs_end_transaction(trans); 1593 } 1594 sleep: 1595 wake_up_process(fs_info->cleaner_kthread); 1596 mutex_unlock(&fs_info->transaction_kthread_mutex); 1597 1598 if (BTRFS_FS_ERROR(fs_info)) 1599 btrfs_cleanup_transaction(fs_info); 1600 if (!kthread_should_stop() && 1601 (!btrfs_transaction_blocked(fs_info) || 1602 cannot_commit)) 1603 schedule_timeout_interruptible(delay); 1604 } while (!kthread_should_stop()); 1605 return 0; 1606 } 1607 1608 /* 1609 * This will find the highest generation in the array of root backups. The 1610 * index of the highest array is returned, or -EINVAL if we can't find 1611 * anything. 1612 * 1613 * We check to make sure the array is valid by comparing the 1614 * generation of the latest root in the array with the generation 1615 * in the super block. If they don't match we pitch it. 1616 */ 1617 static int find_newest_super_backup(struct btrfs_fs_info *info) 1618 { 1619 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1620 u64 cur; 1621 struct btrfs_root_backup *root_backup; 1622 int i; 1623 1624 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1625 root_backup = info->super_copy->super_roots + i; 1626 cur = btrfs_backup_tree_root_gen(root_backup); 1627 if (cur == newest_gen) 1628 return i; 1629 } 1630 1631 return -EINVAL; 1632 } 1633 1634 /* 1635 * copy all the root pointers into the super backup array. 1636 * this will bump the backup pointer by one when it is 1637 * done 1638 */ 1639 static void backup_super_roots(struct btrfs_fs_info *info) 1640 { 1641 const int next_backup = info->backup_root_index; 1642 struct btrfs_root_backup *root_backup; 1643 1644 root_backup = info->super_for_commit->super_roots + next_backup; 1645 1646 /* 1647 * make sure all of our padding and empty slots get zero filled 1648 * regardless of which ones we use today 1649 */ 1650 memset(root_backup, 0, sizeof(*root_backup)); 1651 1652 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1653 1654 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1655 btrfs_set_backup_tree_root_gen(root_backup, 1656 btrfs_header_generation(info->tree_root->node)); 1657 1658 btrfs_set_backup_tree_root_level(root_backup, 1659 btrfs_header_level(info->tree_root->node)); 1660 1661 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1662 btrfs_set_backup_chunk_root_gen(root_backup, 1663 btrfs_header_generation(info->chunk_root->node)); 1664 btrfs_set_backup_chunk_root_level(root_backup, 1665 btrfs_header_level(info->chunk_root->node)); 1666 1667 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1668 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1669 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1670 1671 btrfs_set_backup_extent_root(root_backup, 1672 extent_root->node->start); 1673 btrfs_set_backup_extent_root_gen(root_backup, 1674 btrfs_header_generation(extent_root->node)); 1675 btrfs_set_backup_extent_root_level(root_backup, 1676 btrfs_header_level(extent_root->node)); 1677 1678 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1679 btrfs_set_backup_csum_root_gen(root_backup, 1680 btrfs_header_generation(csum_root->node)); 1681 btrfs_set_backup_csum_root_level(root_backup, 1682 btrfs_header_level(csum_root->node)); 1683 } 1684 1685 /* 1686 * we might commit during log recovery, which happens before we set 1687 * the fs_root. Make sure it is valid before we fill it in. 1688 */ 1689 if (info->fs_root && info->fs_root->node) { 1690 btrfs_set_backup_fs_root(root_backup, 1691 info->fs_root->node->start); 1692 btrfs_set_backup_fs_root_gen(root_backup, 1693 btrfs_header_generation(info->fs_root->node)); 1694 btrfs_set_backup_fs_root_level(root_backup, 1695 btrfs_header_level(info->fs_root->node)); 1696 } 1697 1698 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1699 btrfs_set_backup_dev_root_gen(root_backup, 1700 btrfs_header_generation(info->dev_root->node)); 1701 btrfs_set_backup_dev_root_level(root_backup, 1702 btrfs_header_level(info->dev_root->node)); 1703 1704 btrfs_set_backup_total_bytes(root_backup, 1705 btrfs_super_total_bytes(info->super_copy)); 1706 btrfs_set_backup_bytes_used(root_backup, 1707 btrfs_super_bytes_used(info->super_copy)); 1708 btrfs_set_backup_num_devices(root_backup, 1709 btrfs_super_num_devices(info->super_copy)); 1710 1711 /* 1712 * if we don't copy this out to the super_copy, it won't get remembered 1713 * for the next commit 1714 */ 1715 memcpy(&info->super_copy->super_roots, 1716 &info->super_for_commit->super_roots, 1717 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1718 } 1719 1720 /* 1721 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1722 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1723 * 1724 * @fs_info: filesystem whose backup roots need to be read 1725 * @priority: priority of backup root required 1726 * 1727 * Returns backup root index on success and -EINVAL otherwise. 1728 */ 1729 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1730 { 1731 int backup_index = find_newest_super_backup(fs_info); 1732 struct btrfs_super_block *super = fs_info->super_copy; 1733 struct btrfs_root_backup *root_backup; 1734 1735 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1736 if (priority == 0) 1737 return backup_index; 1738 1739 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1740 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1741 } else { 1742 return -EINVAL; 1743 } 1744 1745 root_backup = super->super_roots + backup_index; 1746 1747 btrfs_set_super_generation(super, 1748 btrfs_backup_tree_root_gen(root_backup)); 1749 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1750 btrfs_set_super_root_level(super, 1751 btrfs_backup_tree_root_level(root_backup)); 1752 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1753 1754 /* 1755 * Fixme: the total bytes and num_devices need to match or we should 1756 * need a fsck 1757 */ 1758 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1759 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1760 1761 return backup_index; 1762 } 1763 1764 /* helper to cleanup workers */ 1765 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1766 { 1767 btrfs_destroy_workqueue(fs_info->fixup_workers); 1768 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1769 btrfs_destroy_workqueue(fs_info->workers); 1770 if (fs_info->endio_workers) 1771 destroy_workqueue(fs_info->endio_workers); 1772 if (fs_info->rmw_workers) 1773 destroy_workqueue(fs_info->rmw_workers); 1774 if (fs_info->compressed_write_workers) 1775 destroy_workqueue(fs_info->compressed_write_workers); 1776 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1777 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1778 btrfs_destroy_workqueue(fs_info->delayed_workers); 1779 btrfs_destroy_workqueue(fs_info->caching_workers); 1780 btrfs_destroy_workqueue(fs_info->flush_workers); 1781 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1782 if (fs_info->discard_ctl.discard_workers) 1783 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1784 /* 1785 * Now that all other work queues are destroyed, we can safely destroy 1786 * the queues used for metadata I/O, since tasks from those other work 1787 * queues can do metadata I/O operations. 1788 */ 1789 if (fs_info->endio_meta_workers) 1790 destroy_workqueue(fs_info->endio_meta_workers); 1791 } 1792 1793 static void free_root_extent_buffers(struct btrfs_root *root) 1794 { 1795 if (root) { 1796 free_extent_buffer(root->node); 1797 free_extent_buffer(root->commit_root); 1798 root->node = NULL; 1799 root->commit_root = NULL; 1800 } 1801 } 1802 1803 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1804 { 1805 struct btrfs_root *root, *tmp; 1806 1807 rbtree_postorder_for_each_entry_safe(root, tmp, 1808 &fs_info->global_root_tree, 1809 rb_node) 1810 free_root_extent_buffers(root); 1811 } 1812 1813 /* helper to cleanup tree roots */ 1814 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1815 { 1816 free_root_extent_buffers(info->tree_root); 1817 1818 free_global_root_pointers(info); 1819 free_root_extent_buffers(info->dev_root); 1820 free_root_extent_buffers(info->quota_root); 1821 free_root_extent_buffers(info->uuid_root); 1822 free_root_extent_buffers(info->fs_root); 1823 free_root_extent_buffers(info->data_reloc_root); 1824 free_root_extent_buffers(info->block_group_root); 1825 free_root_extent_buffers(info->stripe_root); 1826 if (free_chunk_root) 1827 free_root_extent_buffers(info->chunk_root); 1828 } 1829 1830 void btrfs_put_root(struct btrfs_root *root) 1831 { 1832 if (!root) 1833 return; 1834 1835 if (refcount_dec_and_test(&root->refs)) { 1836 if (WARN_ON(!xa_empty(&root->inodes))) 1837 xa_destroy(&root->inodes); 1838 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1839 xa_destroy(&root->delayed_nodes); 1840 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1841 if (root->anon_dev) 1842 free_anon_bdev(root->anon_dev); 1843 free_root_extent_buffers(root); 1844 #ifdef CONFIG_BTRFS_DEBUG 1845 spin_lock(&root->fs_info->fs_roots_radix_lock); 1846 list_del_init(&root->leak_list); 1847 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1848 #endif 1849 kfree(root); 1850 } 1851 } 1852 1853 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1854 { 1855 int ret; 1856 struct btrfs_root *gang[8]; 1857 int i; 1858 1859 while (!list_empty(&fs_info->dead_roots)) { 1860 gang[0] = list_first_entry(&fs_info->dead_roots, 1861 struct btrfs_root, root_list); 1862 list_del(&gang[0]->root_list); 1863 1864 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1865 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1866 btrfs_put_root(gang[0]); 1867 } 1868 1869 while (1) { 1870 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1871 (void **)gang, 0, 1872 ARRAY_SIZE(gang)); 1873 if (!ret) 1874 break; 1875 for (i = 0; i < ret; i++) 1876 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1877 } 1878 } 1879 1880 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1881 { 1882 mutex_init(&fs_info->scrub_lock); 1883 atomic_set(&fs_info->scrubs_running, 0); 1884 atomic_set(&fs_info->scrub_pause_req, 0); 1885 atomic_set(&fs_info->scrubs_paused, 0); 1886 atomic_set(&fs_info->scrub_cancel_req, 0); 1887 init_waitqueue_head(&fs_info->scrub_pause_wait); 1888 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1889 } 1890 1891 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1892 { 1893 spin_lock_init(&fs_info->balance_lock); 1894 mutex_init(&fs_info->balance_mutex); 1895 atomic_set(&fs_info->balance_pause_req, 0); 1896 atomic_set(&fs_info->balance_cancel_req, 0); 1897 fs_info->balance_ctl = NULL; 1898 init_waitqueue_head(&fs_info->balance_wait_q); 1899 atomic_set(&fs_info->reloc_cancel_req, 0); 1900 } 1901 1902 static int btrfs_init_btree_inode(struct super_block *sb) 1903 { 1904 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1905 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1906 fs_info->tree_root); 1907 struct inode *inode; 1908 1909 inode = new_inode(sb); 1910 if (!inode) 1911 return -ENOMEM; 1912 1913 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1914 set_nlink(inode, 1); 1915 /* 1916 * we set the i_size on the btree inode to the max possible int. 1917 * the real end of the address space is determined by all of 1918 * the devices in the system 1919 */ 1920 inode->i_size = OFFSET_MAX; 1921 inode->i_mapping->a_ops = &btree_aops; 1922 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1923 1924 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1925 IO_TREE_BTREE_INODE_IO); 1926 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1927 1928 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1929 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1930 __insert_inode_hash(inode, hash); 1931 fs_info->btree_inode = inode; 1932 1933 return 0; 1934 } 1935 1936 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1937 { 1938 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1939 init_rwsem(&fs_info->dev_replace.rwsem); 1940 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1941 } 1942 1943 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1944 { 1945 spin_lock_init(&fs_info->qgroup_lock); 1946 mutex_init(&fs_info->qgroup_ioctl_lock); 1947 fs_info->qgroup_tree = RB_ROOT; 1948 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1949 fs_info->qgroup_seq = 1; 1950 fs_info->qgroup_ulist = NULL; 1951 fs_info->qgroup_rescan_running = false; 1952 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1953 mutex_init(&fs_info->qgroup_rescan_lock); 1954 } 1955 1956 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1957 { 1958 u32 max_active = fs_info->thread_pool_size; 1959 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1960 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1961 1962 fs_info->workers = 1963 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1964 1965 fs_info->delalloc_workers = 1966 btrfs_alloc_workqueue(fs_info, "delalloc", 1967 flags, max_active, 2); 1968 1969 fs_info->flush_workers = 1970 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1971 flags, max_active, 0); 1972 1973 fs_info->caching_workers = 1974 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1975 1976 fs_info->fixup_workers = 1977 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1978 1979 fs_info->endio_workers = 1980 alloc_workqueue("btrfs-endio", flags, max_active); 1981 fs_info->endio_meta_workers = 1982 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1983 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1984 fs_info->endio_write_workers = 1985 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1986 max_active, 2); 1987 fs_info->compressed_write_workers = 1988 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1989 fs_info->endio_freespace_worker = 1990 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1991 max_active, 0); 1992 fs_info->delayed_workers = 1993 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1994 max_active, 0); 1995 fs_info->qgroup_rescan_workers = 1996 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1997 ordered_flags); 1998 fs_info->discard_ctl.discard_workers = 1999 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 2000 2001 if (!(fs_info->workers && 2002 fs_info->delalloc_workers && fs_info->flush_workers && 2003 fs_info->endio_workers && fs_info->endio_meta_workers && 2004 fs_info->compressed_write_workers && 2005 fs_info->endio_write_workers && 2006 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2007 fs_info->caching_workers && fs_info->fixup_workers && 2008 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2009 fs_info->discard_ctl.discard_workers)) { 2010 return -ENOMEM; 2011 } 2012 2013 return 0; 2014 } 2015 2016 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2017 { 2018 struct crypto_shash *csum_shash; 2019 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2020 2021 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2022 2023 if (IS_ERR(csum_shash)) { 2024 btrfs_err(fs_info, "error allocating %s hash for checksum", 2025 csum_driver); 2026 return PTR_ERR(csum_shash); 2027 } 2028 2029 fs_info->csum_shash = csum_shash; 2030 2031 /* 2032 * Check if the checksum implementation is a fast accelerated one. 2033 * As-is this is a bit of a hack and should be replaced once the csum 2034 * implementations provide that information themselves. 2035 */ 2036 switch (csum_type) { 2037 case BTRFS_CSUM_TYPE_CRC32: 2038 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2039 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2040 break; 2041 case BTRFS_CSUM_TYPE_XXHASH: 2042 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2043 break; 2044 default: 2045 break; 2046 } 2047 2048 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2049 btrfs_super_csum_name(csum_type), 2050 crypto_shash_driver_name(csum_shash)); 2051 return 0; 2052 } 2053 2054 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2055 struct btrfs_fs_devices *fs_devices) 2056 { 2057 int ret; 2058 struct btrfs_tree_parent_check check = { 0 }; 2059 struct btrfs_root *log_tree_root; 2060 struct btrfs_super_block *disk_super = fs_info->super_copy; 2061 u64 bytenr = btrfs_super_log_root(disk_super); 2062 int level = btrfs_super_log_root_level(disk_super); 2063 2064 if (fs_devices->rw_devices == 0) { 2065 btrfs_warn(fs_info, "log replay required on RO media"); 2066 return -EIO; 2067 } 2068 2069 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2070 GFP_KERNEL); 2071 if (!log_tree_root) 2072 return -ENOMEM; 2073 2074 check.level = level; 2075 check.transid = fs_info->generation + 1; 2076 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2077 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2078 if (IS_ERR(log_tree_root->node)) { 2079 btrfs_warn(fs_info, "failed to read log tree"); 2080 ret = PTR_ERR(log_tree_root->node); 2081 log_tree_root->node = NULL; 2082 btrfs_put_root(log_tree_root); 2083 return ret; 2084 } 2085 if (!extent_buffer_uptodate(log_tree_root->node)) { 2086 btrfs_err(fs_info, "failed to read log tree"); 2087 btrfs_put_root(log_tree_root); 2088 return -EIO; 2089 } 2090 2091 /* returns with log_tree_root freed on success */ 2092 ret = btrfs_recover_log_trees(log_tree_root); 2093 if (ret) { 2094 btrfs_handle_fs_error(fs_info, ret, 2095 "Failed to recover log tree"); 2096 btrfs_put_root(log_tree_root); 2097 return ret; 2098 } 2099 2100 if (sb_rdonly(fs_info->sb)) { 2101 ret = btrfs_commit_super(fs_info); 2102 if (ret) 2103 return ret; 2104 } 2105 2106 return 0; 2107 } 2108 2109 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2110 struct btrfs_path *path, u64 objectid, 2111 const char *name) 2112 { 2113 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2114 struct btrfs_root *root; 2115 u64 max_global_id = 0; 2116 int ret; 2117 struct btrfs_key key = { 2118 .objectid = objectid, 2119 .type = BTRFS_ROOT_ITEM_KEY, 2120 .offset = 0, 2121 }; 2122 bool found = false; 2123 2124 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2125 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2126 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2127 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2128 return 0; 2129 } 2130 2131 while (1) { 2132 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2133 if (ret < 0) 2134 break; 2135 2136 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2137 ret = btrfs_next_leaf(tree_root, path); 2138 if (ret) { 2139 if (ret > 0) 2140 ret = 0; 2141 break; 2142 } 2143 } 2144 ret = 0; 2145 2146 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2147 if (key.objectid != objectid) 2148 break; 2149 btrfs_release_path(path); 2150 2151 /* 2152 * Just worry about this for extent tree, it'll be the same for 2153 * everybody. 2154 */ 2155 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2156 max_global_id = max(max_global_id, key.offset); 2157 2158 found = true; 2159 root = read_tree_root_path(tree_root, path, &key); 2160 if (IS_ERR(root)) { 2161 ret = PTR_ERR(root); 2162 break; 2163 } 2164 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2165 ret = btrfs_global_root_insert(root); 2166 if (ret) { 2167 btrfs_put_root(root); 2168 break; 2169 } 2170 key.offset++; 2171 } 2172 btrfs_release_path(path); 2173 2174 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2175 fs_info->nr_global_roots = max_global_id + 1; 2176 2177 if (!found || ret) { 2178 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2179 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2180 2181 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2182 ret = ret ? ret : -ENOENT; 2183 else 2184 ret = 0; 2185 btrfs_err(fs_info, "failed to load root %s", name); 2186 } 2187 return ret; 2188 } 2189 2190 static int load_global_roots(struct btrfs_root *tree_root) 2191 { 2192 BTRFS_PATH_AUTO_FREE(path); 2193 int ret; 2194 2195 path = btrfs_alloc_path(); 2196 if (!path) 2197 return -ENOMEM; 2198 2199 ret = load_global_roots_objectid(tree_root, path, 2200 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2201 if (ret) 2202 return ret; 2203 ret = load_global_roots_objectid(tree_root, path, 2204 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2205 if (ret) 2206 return ret; 2207 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2208 return ret; 2209 ret = load_global_roots_objectid(tree_root, path, 2210 BTRFS_FREE_SPACE_TREE_OBJECTID, 2211 "free space"); 2212 2213 return ret; 2214 } 2215 2216 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2217 { 2218 struct btrfs_root *tree_root = fs_info->tree_root; 2219 struct btrfs_root *root; 2220 struct btrfs_key location; 2221 int ret; 2222 2223 ASSERT(fs_info->tree_root); 2224 2225 ret = load_global_roots(tree_root); 2226 if (ret) 2227 return ret; 2228 2229 location.type = BTRFS_ROOT_ITEM_KEY; 2230 location.offset = 0; 2231 2232 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2233 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2234 root = btrfs_read_tree_root(tree_root, &location); 2235 if (IS_ERR(root)) { 2236 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2237 ret = PTR_ERR(root); 2238 goto out; 2239 } 2240 } else { 2241 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2242 fs_info->block_group_root = root; 2243 } 2244 } 2245 2246 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2247 root = btrfs_read_tree_root(tree_root, &location); 2248 if (IS_ERR(root)) { 2249 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2250 ret = PTR_ERR(root); 2251 goto out; 2252 } 2253 } else { 2254 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2255 fs_info->dev_root = root; 2256 } 2257 /* Initialize fs_info for all devices in any case */ 2258 ret = btrfs_init_devices_late(fs_info); 2259 if (ret) 2260 goto out; 2261 2262 /* 2263 * This tree can share blocks with some other fs tree during relocation 2264 * and we need a proper setup by btrfs_get_fs_root 2265 */ 2266 root = btrfs_get_fs_root(tree_root->fs_info, 2267 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2268 if (IS_ERR(root)) { 2269 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 } else { 2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2275 fs_info->data_reloc_root = root; 2276 } 2277 2278 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2279 root = btrfs_read_tree_root(tree_root, &location); 2280 if (!IS_ERR(root)) { 2281 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2282 fs_info->quota_root = root; 2283 } 2284 2285 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2286 root = btrfs_read_tree_root(tree_root, &location); 2287 if (IS_ERR(root)) { 2288 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2289 ret = PTR_ERR(root); 2290 if (ret != -ENOENT) 2291 goto out; 2292 } 2293 } else { 2294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2295 fs_info->uuid_root = root; 2296 } 2297 2298 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2299 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2300 root = btrfs_read_tree_root(tree_root, &location); 2301 if (IS_ERR(root)) { 2302 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2303 ret = PTR_ERR(root); 2304 goto out; 2305 } 2306 } else { 2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2308 fs_info->stripe_root = root; 2309 } 2310 } 2311 2312 return 0; 2313 out: 2314 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2315 location.objectid, ret); 2316 return ret; 2317 } 2318 2319 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2320 const struct btrfs_super_block *sb) 2321 { 2322 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2323 /* 2324 * At sb read time, fs_info is not fully initialized. Thus we have 2325 * to use super block sectorsize, which should have been validated. 2326 */ 2327 const u32 sectorsize = btrfs_super_sectorsize(sb); 2328 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2329 2330 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2331 btrfs_err(fs_info, "system chunk array too big %u > %u", 2332 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2333 return -EUCLEAN; 2334 } 2335 2336 while (cur < sys_array_size) { 2337 struct btrfs_disk_key *disk_key; 2338 struct btrfs_chunk *chunk; 2339 struct btrfs_key key; 2340 u64 type; 2341 u16 num_stripes; 2342 u32 len; 2343 int ret; 2344 2345 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2346 len = sizeof(*disk_key); 2347 2348 if (cur + len > sys_array_size) 2349 goto short_read; 2350 cur += len; 2351 2352 btrfs_disk_key_to_cpu(&key, disk_key); 2353 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 2354 btrfs_err(fs_info, 2355 "unexpected item type %u in sys_array at offset %u", 2356 key.type, cur); 2357 return -EUCLEAN; 2358 } 2359 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2360 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2361 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) 2362 goto short_read; 2363 type = btrfs_stack_chunk_type(chunk); 2364 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { 2365 btrfs_err(fs_info, 2366 "invalid chunk type %llu in sys_array at offset %u", 2367 type, cur); 2368 return -EUCLEAN; 2369 } 2370 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2371 sectorsize); 2372 if (ret < 0) 2373 return ret; 2374 cur += btrfs_chunk_item_size(num_stripes); 2375 } 2376 return 0; 2377 short_read: 2378 btrfs_err(fs_info, 2379 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2380 cur, sys_array_size); 2381 return -EUCLEAN; 2382 } 2383 2384 /* 2385 * Real super block validation 2386 * NOTE: super csum type and incompat features will not be checked here. 2387 * 2388 * @sb: super block to check 2389 * @mirror_num: the super block number to check its bytenr: 2390 * 0 the primary (1st) sb 2391 * 1, 2 2nd and 3rd backup copy 2392 * -1 skip bytenr check 2393 */ 2394 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2395 const struct btrfs_super_block *sb, int mirror_num) 2396 { 2397 u64 nodesize = btrfs_super_nodesize(sb); 2398 u64 sectorsize = btrfs_super_sectorsize(sb); 2399 int ret = 0; 2400 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2401 2402 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2403 btrfs_err(fs_info, "no valid FS found"); 2404 ret = -EINVAL; 2405 } 2406 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2407 if (!ignore_flags) { 2408 btrfs_err(fs_info, 2409 "unrecognized or unsupported super flag 0x%llx", 2410 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2411 ret = -EINVAL; 2412 } else { 2413 btrfs_info(fs_info, 2414 "unrecognized or unsupported super flags: 0x%llx, ignored", 2415 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2416 } 2417 } 2418 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2419 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2420 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2421 ret = -EINVAL; 2422 } 2423 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2424 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2425 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2429 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2430 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2431 ret = -EINVAL; 2432 } 2433 2434 /* 2435 * Check sectorsize and nodesize first, other check will need it. 2436 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2437 */ 2438 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2439 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2440 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2441 ret = -EINVAL; 2442 } 2443 2444 /* 2445 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. 2446 * 2447 * For 4K page sized systems with non-debug builds, all 3 matches (4K). 2448 * For 4K page sized systems with debug builds, there are two block sizes 2449 * supported. (4K and 2K) 2450 * 2451 * We can support 16K sectorsize with 64K page size without problem, 2452 * but such sectorsize/pagesize combination doesn't make much sense. 2453 * 4K will be our future standard, PAGE_SIZE is supported from the very 2454 * beginning. 2455 */ 2456 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && 2457 sectorsize != PAGE_SIZE && 2458 sectorsize != BTRFS_MIN_BLOCKSIZE)) { 2459 btrfs_err(fs_info, 2460 "sectorsize %llu not yet supported for page size %lu", 2461 sectorsize, PAGE_SIZE); 2462 ret = -EINVAL; 2463 } 2464 2465 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2466 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2467 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2468 ret = -EINVAL; 2469 } 2470 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2471 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2472 le32_to_cpu(sb->__unused_leafsize), nodesize); 2473 ret = -EINVAL; 2474 } 2475 2476 /* Root alignment check */ 2477 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2478 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2479 btrfs_super_root(sb)); 2480 ret = -EINVAL; 2481 } 2482 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2483 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2484 btrfs_super_chunk_root(sb)); 2485 ret = -EINVAL; 2486 } 2487 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2488 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2489 btrfs_super_log_root(sb)); 2490 ret = -EINVAL; 2491 } 2492 2493 if (!fs_info->fs_devices->temp_fsid && 2494 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2495 btrfs_err(fs_info, 2496 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2497 sb->fsid, fs_info->fs_devices->fsid); 2498 ret = -EINVAL; 2499 } 2500 2501 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2502 BTRFS_FSID_SIZE) != 0) { 2503 btrfs_err(fs_info, 2504 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2505 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2506 ret = -EINVAL; 2507 } 2508 2509 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2510 BTRFS_FSID_SIZE) != 0) { 2511 btrfs_err(fs_info, 2512 "dev_item UUID does not match metadata fsid: %pU != %pU", 2513 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2514 ret = -EINVAL; 2515 } 2516 2517 /* 2518 * Artificial requirement for block-group-tree to force newer features 2519 * (free-space-tree, no-holes) so the test matrix is smaller. 2520 */ 2521 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2522 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2523 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2524 btrfs_err(fs_info, 2525 "block-group-tree feature requires free-space-tree and no-holes"); 2526 ret = -EINVAL; 2527 } 2528 2529 /* 2530 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2531 * done later 2532 */ 2533 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2534 btrfs_err(fs_info, "bytes_used is too small %llu", 2535 btrfs_super_bytes_used(sb)); 2536 ret = -EINVAL; 2537 } 2538 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2539 btrfs_err(fs_info, "invalid stripesize %u", 2540 btrfs_super_stripesize(sb)); 2541 ret = -EINVAL; 2542 } 2543 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2544 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2545 btrfs_super_num_devices(sb)); 2546 if (btrfs_super_num_devices(sb) == 0) { 2547 btrfs_err(fs_info, "number of devices is 0"); 2548 ret = -EINVAL; 2549 } 2550 2551 if (mirror_num >= 0 && 2552 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2553 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2554 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2555 ret = -EINVAL; 2556 } 2557 2558 if (ret) 2559 return ret; 2560 2561 ret = validate_sys_chunk_array(fs_info, sb); 2562 2563 /* 2564 * Obvious sys_chunk_array corruptions, it must hold at least one key 2565 * and one chunk 2566 */ 2567 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2568 btrfs_err(fs_info, "system chunk array too big %u > %u", 2569 btrfs_super_sys_array_size(sb), 2570 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2571 ret = -EINVAL; 2572 } 2573 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2574 + sizeof(struct btrfs_chunk)) { 2575 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2576 btrfs_super_sys_array_size(sb), 2577 sizeof(struct btrfs_disk_key) 2578 + sizeof(struct btrfs_chunk)); 2579 ret = -EINVAL; 2580 } 2581 2582 /* 2583 * The generation is a global counter, we'll trust it more than the others 2584 * but it's still possible that it's the one that's wrong. 2585 */ 2586 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2587 btrfs_warn(fs_info, 2588 "suspicious: generation < chunk_root_generation: %llu < %llu", 2589 btrfs_super_generation(sb), 2590 btrfs_super_chunk_root_generation(sb)); 2591 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2592 && btrfs_super_cache_generation(sb) != (u64)-1) 2593 btrfs_warn(fs_info, 2594 "suspicious: generation < cache_generation: %llu < %llu", 2595 btrfs_super_generation(sb), 2596 btrfs_super_cache_generation(sb)); 2597 2598 return ret; 2599 } 2600 2601 /* 2602 * Validation of super block at mount time. 2603 * Some checks already done early at mount time, like csum type and incompat 2604 * flags will be skipped. 2605 */ 2606 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2607 { 2608 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2609 } 2610 2611 /* 2612 * Validation of super block at write time. 2613 * Some checks like bytenr check will be skipped as their values will be 2614 * overwritten soon. 2615 * Extra checks like csum type and incompat flags will be done here. 2616 */ 2617 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2618 struct btrfs_super_block *sb) 2619 { 2620 int ret; 2621 2622 ret = btrfs_validate_super(fs_info, sb, -1); 2623 if (ret < 0) 2624 goto out; 2625 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2626 ret = -EUCLEAN; 2627 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2628 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2629 goto out; 2630 } 2631 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2632 ret = -EUCLEAN; 2633 btrfs_err(fs_info, 2634 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2635 btrfs_super_incompat_flags(sb), 2636 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2637 goto out; 2638 } 2639 out: 2640 if (ret < 0) 2641 btrfs_err(fs_info, 2642 "super block corruption detected before writing it to disk"); 2643 return ret; 2644 } 2645 2646 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2647 { 2648 struct btrfs_tree_parent_check check = { 2649 .level = level, 2650 .transid = gen, 2651 .owner_root = btrfs_root_id(root) 2652 }; 2653 int ret = 0; 2654 2655 root->node = read_tree_block(root->fs_info, bytenr, &check); 2656 if (IS_ERR(root->node)) { 2657 ret = PTR_ERR(root->node); 2658 root->node = NULL; 2659 return ret; 2660 } 2661 if (!extent_buffer_uptodate(root->node)) { 2662 free_extent_buffer(root->node); 2663 root->node = NULL; 2664 return -EIO; 2665 } 2666 2667 btrfs_set_root_node(&root->root_item, root->node); 2668 root->commit_root = btrfs_root_node(root); 2669 btrfs_set_root_refs(&root->root_item, 1); 2670 return ret; 2671 } 2672 2673 static int load_important_roots(struct btrfs_fs_info *fs_info) 2674 { 2675 struct btrfs_super_block *sb = fs_info->super_copy; 2676 u64 gen, bytenr; 2677 int level, ret; 2678 2679 bytenr = btrfs_super_root(sb); 2680 gen = btrfs_super_generation(sb); 2681 level = btrfs_super_root_level(sb); 2682 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2683 if (ret) { 2684 btrfs_warn(fs_info, "couldn't read tree root"); 2685 return ret; 2686 } 2687 return 0; 2688 } 2689 2690 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2691 { 2692 int backup_index = find_newest_super_backup(fs_info); 2693 struct btrfs_super_block *sb = fs_info->super_copy; 2694 struct btrfs_root *tree_root = fs_info->tree_root; 2695 bool handle_error = false; 2696 int ret = 0; 2697 int i; 2698 2699 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2700 if (handle_error) { 2701 if (!IS_ERR(tree_root->node)) 2702 free_extent_buffer(tree_root->node); 2703 tree_root->node = NULL; 2704 2705 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2706 break; 2707 2708 free_root_pointers(fs_info, 0); 2709 2710 /* 2711 * Don't use the log in recovery mode, it won't be 2712 * valid 2713 */ 2714 btrfs_set_super_log_root(sb, 0); 2715 2716 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2717 ret = read_backup_root(fs_info, i); 2718 backup_index = ret; 2719 if (ret < 0) 2720 return ret; 2721 } 2722 2723 ret = load_important_roots(fs_info); 2724 if (ret) { 2725 handle_error = true; 2726 continue; 2727 } 2728 2729 /* 2730 * No need to hold btrfs_root::objectid_mutex since the fs 2731 * hasn't been fully initialised and we are the only user 2732 */ 2733 ret = btrfs_init_root_free_objectid(tree_root); 2734 if (ret < 0) { 2735 handle_error = true; 2736 continue; 2737 } 2738 2739 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2740 2741 ret = btrfs_read_roots(fs_info); 2742 if (ret < 0) { 2743 handle_error = true; 2744 continue; 2745 } 2746 2747 /* All successful */ 2748 fs_info->generation = btrfs_header_generation(tree_root->node); 2749 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2750 fs_info->last_reloc_trans = 0; 2751 2752 /* Always begin writing backup roots after the one being used */ 2753 if (backup_index < 0) { 2754 fs_info->backup_root_index = 0; 2755 } else { 2756 fs_info->backup_root_index = backup_index + 1; 2757 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2758 } 2759 break; 2760 } 2761 2762 return ret; 2763 } 2764 2765 /* 2766 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2767 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2768 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2769 */ 2770 static struct lock_class_key buffer_xa_class; 2771 2772 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2773 { 2774 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2775 2776 /* Use the same flags as mapping->i_pages. */ 2777 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2778 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2779 2780 INIT_LIST_HEAD(&fs_info->trans_list); 2781 INIT_LIST_HEAD(&fs_info->dead_roots); 2782 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2783 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2784 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2785 spin_lock_init(&fs_info->delalloc_root_lock); 2786 spin_lock_init(&fs_info->trans_lock); 2787 spin_lock_init(&fs_info->fs_roots_radix_lock); 2788 spin_lock_init(&fs_info->delayed_iput_lock); 2789 spin_lock_init(&fs_info->defrag_inodes_lock); 2790 spin_lock_init(&fs_info->super_lock); 2791 spin_lock_init(&fs_info->unused_bgs_lock); 2792 spin_lock_init(&fs_info->treelog_bg_lock); 2793 spin_lock_init(&fs_info->zone_active_bgs_lock); 2794 spin_lock_init(&fs_info->relocation_bg_lock); 2795 rwlock_init(&fs_info->tree_mod_log_lock); 2796 rwlock_init(&fs_info->global_root_lock); 2797 mutex_init(&fs_info->unused_bg_unpin_mutex); 2798 mutex_init(&fs_info->reclaim_bgs_lock); 2799 mutex_init(&fs_info->reloc_mutex); 2800 mutex_init(&fs_info->delalloc_root_mutex); 2801 mutex_init(&fs_info->zoned_meta_io_lock); 2802 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2803 seqlock_init(&fs_info->profiles_lock); 2804 2805 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2806 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2807 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2808 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2809 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2810 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2811 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2812 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2813 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2814 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2815 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2816 BTRFS_LOCKDEP_TRANS_COMPLETED); 2817 2818 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2819 INIT_LIST_HEAD(&fs_info->space_info); 2820 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2821 INIT_LIST_HEAD(&fs_info->unused_bgs); 2822 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2823 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2824 #ifdef CONFIG_BTRFS_DEBUG 2825 INIT_LIST_HEAD(&fs_info->allocated_roots); 2826 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2827 spin_lock_init(&fs_info->eb_leak_lock); 2828 #endif 2829 fs_info->mapping_tree = RB_ROOT_CACHED; 2830 rwlock_init(&fs_info->mapping_tree_lock); 2831 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2832 BTRFS_BLOCK_RSV_GLOBAL); 2833 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2834 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2835 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2836 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2837 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2838 BTRFS_BLOCK_RSV_DELOPS); 2839 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2840 BTRFS_BLOCK_RSV_DELREFS); 2841 2842 atomic_set(&fs_info->async_delalloc_pages, 0); 2843 atomic_set(&fs_info->defrag_running, 0); 2844 atomic_set(&fs_info->nr_delayed_iputs, 0); 2845 atomic64_set(&fs_info->tree_mod_seq, 0); 2846 fs_info->global_root_tree = RB_ROOT; 2847 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2848 fs_info->metadata_ratio = 0; 2849 fs_info->defrag_inodes = RB_ROOT; 2850 atomic64_set(&fs_info->free_chunk_space, 0); 2851 fs_info->tree_mod_log = RB_ROOT; 2852 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2853 btrfs_init_ref_verify(fs_info); 2854 2855 fs_info->thread_pool_size = min_t(unsigned long, 2856 num_online_cpus() + 2, 8); 2857 2858 INIT_LIST_HEAD(&fs_info->ordered_roots); 2859 spin_lock_init(&fs_info->ordered_root_lock); 2860 2861 btrfs_init_scrub(fs_info); 2862 btrfs_init_balance(fs_info); 2863 btrfs_init_async_reclaim_work(fs_info); 2864 btrfs_init_extent_map_shrinker_work(fs_info); 2865 2866 rwlock_init(&fs_info->block_group_cache_lock); 2867 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2868 2869 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2870 IO_TREE_FS_EXCLUDED_EXTENTS); 2871 2872 mutex_init(&fs_info->ordered_operations_mutex); 2873 mutex_init(&fs_info->tree_log_mutex); 2874 mutex_init(&fs_info->chunk_mutex); 2875 mutex_init(&fs_info->transaction_kthread_mutex); 2876 mutex_init(&fs_info->cleaner_mutex); 2877 mutex_init(&fs_info->ro_block_group_mutex); 2878 init_rwsem(&fs_info->commit_root_sem); 2879 init_rwsem(&fs_info->cleanup_work_sem); 2880 init_rwsem(&fs_info->subvol_sem); 2881 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2882 2883 btrfs_init_dev_replace_locks(fs_info); 2884 btrfs_init_qgroup(fs_info); 2885 btrfs_discard_init(fs_info); 2886 2887 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2888 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2889 2890 init_waitqueue_head(&fs_info->transaction_throttle); 2891 init_waitqueue_head(&fs_info->transaction_wait); 2892 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2893 init_waitqueue_head(&fs_info->async_submit_wait); 2894 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2895 2896 /* Usable values until the real ones are cached from the superblock */ 2897 fs_info->nodesize = 4096; 2898 fs_info->sectorsize = 4096; 2899 fs_info->sectorsize_bits = ilog2(4096); 2900 fs_info->stripesize = 4096; 2901 2902 /* Default compress algorithm when user does -o compress */ 2903 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2904 2905 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2906 2907 spin_lock_init(&fs_info->swapfile_pins_lock); 2908 fs_info->swapfile_pins = RB_ROOT; 2909 2910 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2911 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2912 } 2913 2914 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2915 { 2916 int ret; 2917 2918 fs_info->sb = sb; 2919 /* Temporary fixed values for block size until we read the superblock. */ 2920 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2921 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2922 2923 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2924 if (ret) 2925 return ret; 2926 2927 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2928 if (ret) 2929 return ret; 2930 2931 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2932 if (ret) 2933 return ret; 2934 2935 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2936 if (ret) 2937 return ret; 2938 2939 fs_info->dirty_metadata_batch = PAGE_SIZE * 2940 (1 + ilog2(nr_cpu_ids)); 2941 2942 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2943 if (ret) 2944 return ret; 2945 2946 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2947 GFP_KERNEL); 2948 if (ret) 2949 return ret; 2950 2951 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2952 GFP_KERNEL); 2953 if (!fs_info->delayed_root) 2954 return -ENOMEM; 2955 btrfs_init_delayed_root(fs_info->delayed_root); 2956 2957 if (sb_rdonly(sb)) 2958 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2959 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2960 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2961 2962 return btrfs_alloc_stripe_hash_table(fs_info); 2963 } 2964 2965 static int btrfs_uuid_rescan_kthread(void *data) 2966 { 2967 struct btrfs_fs_info *fs_info = data; 2968 int ret; 2969 2970 /* 2971 * 1st step is to iterate through the existing UUID tree and 2972 * to delete all entries that contain outdated data. 2973 * 2nd step is to add all missing entries to the UUID tree. 2974 */ 2975 ret = btrfs_uuid_tree_iterate(fs_info); 2976 if (ret < 0) { 2977 if (ret != -EINTR) 2978 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2979 ret); 2980 up(&fs_info->uuid_tree_rescan_sem); 2981 return ret; 2982 } 2983 return btrfs_uuid_scan_kthread(data); 2984 } 2985 2986 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2987 { 2988 struct task_struct *task; 2989 2990 down(&fs_info->uuid_tree_rescan_sem); 2991 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2992 if (IS_ERR(task)) { 2993 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2994 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2995 up(&fs_info->uuid_tree_rescan_sem); 2996 return PTR_ERR(task); 2997 } 2998 2999 return 0; 3000 } 3001 3002 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3003 { 3004 u64 root_objectid = 0; 3005 struct btrfs_root *gang[8]; 3006 int ret = 0; 3007 3008 while (1) { 3009 unsigned int found; 3010 3011 spin_lock(&fs_info->fs_roots_radix_lock); 3012 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3013 (void **)gang, root_objectid, 3014 ARRAY_SIZE(gang)); 3015 if (!found) { 3016 spin_unlock(&fs_info->fs_roots_radix_lock); 3017 break; 3018 } 3019 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3020 3021 for (int i = 0; i < found; i++) { 3022 /* Avoid to grab roots in dead_roots. */ 3023 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3024 gang[i] = NULL; 3025 continue; 3026 } 3027 /* Grab all the search result for later use. */ 3028 gang[i] = btrfs_grab_root(gang[i]); 3029 } 3030 spin_unlock(&fs_info->fs_roots_radix_lock); 3031 3032 for (int i = 0; i < found; i++) { 3033 if (!gang[i]) 3034 continue; 3035 root_objectid = btrfs_root_id(gang[i]); 3036 /* 3037 * Continue to release the remaining roots after the first 3038 * error without cleanup and preserve the first error 3039 * for the return. 3040 */ 3041 if (!ret) 3042 ret = btrfs_orphan_cleanup(gang[i]); 3043 btrfs_put_root(gang[i]); 3044 } 3045 if (ret) 3046 break; 3047 3048 root_objectid++; 3049 } 3050 return ret; 3051 } 3052 3053 /* 3054 * Mounting logic specific to read-write file systems. Shared by open_ctree 3055 * and btrfs_remount when remounting from read-only to read-write. 3056 */ 3057 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3058 { 3059 int ret; 3060 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3061 bool rebuild_free_space_tree = false; 3062 3063 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3064 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3065 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3066 btrfs_warn(fs_info, 3067 "'clear_cache' option is ignored with extent tree v2"); 3068 else 3069 rebuild_free_space_tree = true; 3070 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3071 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3072 btrfs_warn(fs_info, "free space tree is invalid"); 3073 rebuild_free_space_tree = true; 3074 } 3075 3076 if (rebuild_free_space_tree) { 3077 btrfs_info(fs_info, "rebuilding free space tree"); 3078 ret = btrfs_rebuild_free_space_tree(fs_info); 3079 if (ret) { 3080 btrfs_warn(fs_info, 3081 "failed to rebuild free space tree: %d", ret); 3082 goto out; 3083 } 3084 } 3085 3086 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3087 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3088 btrfs_info(fs_info, "disabling free space tree"); 3089 ret = btrfs_delete_free_space_tree(fs_info); 3090 if (ret) { 3091 btrfs_warn(fs_info, 3092 "failed to disable free space tree: %d", ret); 3093 goto out; 3094 } 3095 } 3096 3097 /* 3098 * btrfs_find_orphan_roots() is responsible for finding all the dead 3099 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3100 * them into the fs_info->fs_roots_radix tree. This must be done before 3101 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3102 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3103 * item before the root's tree is deleted - this means that if we unmount 3104 * or crash before the deletion completes, on the next mount we will not 3105 * delete what remains of the tree because the orphan item does not 3106 * exists anymore, which is what tells us we have a pending deletion. 3107 */ 3108 ret = btrfs_find_orphan_roots(fs_info); 3109 if (ret) 3110 goto out; 3111 3112 ret = btrfs_cleanup_fs_roots(fs_info); 3113 if (ret) 3114 goto out; 3115 3116 down_read(&fs_info->cleanup_work_sem); 3117 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3118 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3119 up_read(&fs_info->cleanup_work_sem); 3120 goto out; 3121 } 3122 up_read(&fs_info->cleanup_work_sem); 3123 3124 mutex_lock(&fs_info->cleaner_mutex); 3125 ret = btrfs_recover_relocation(fs_info); 3126 mutex_unlock(&fs_info->cleaner_mutex); 3127 if (ret < 0) { 3128 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3129 goto out; 3130 } 3131 3132 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3133 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3134 btrfs_info(fs_info, "creating free space tree"); 3135 ret = btrfs_create_free_space_tree(fs_info); 3136 if (ret) { 3137 btrfs_warn(fs_info, 3138 "failed to create free space tree: %d", ret); 3139 goto out; 3140 } 3141 } 3142 3143 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3144 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3145 if (ret) 3146 goto out; 3147 } 3148 3149 ret = btrfs_resume_balance_async(fs_info); 3150 if (ret) 3151 goto out; 3152 3153 ret = btrfs_resume_dev_replace_async(fs_info); 3154 if (ret) { 3155 btrfs_warn(fs_info, "failed to resume dev_replace"); 3156 goto out; 3157 } 3158 3159 btrfs_qgroup_rescan_resume(fs_info); 3160 3161 if (!fs_info->uuid_root) { 3162 btrfs_info(fs_info, "creating UUID tree"); 3163 ret = btrfs_create_uuid_tree(fs_info); 3164 if (ret) { 3165 btrfs_warn(fs_info, 3166 "failed to create the UUID tree %d", ret); 3167 goto out; 3168 } 3169 } 3170 3171 out: 3172 return ret; 3173 } 3174 3175 /* 3176 * Do various sanity and dependency checks of different features. 3177 * 3178 * @is_rw_mount: If the mount is read-write. 3179 * 3180 * This is the place for less strict checks (like for subpage or artificial 3181 * feature dependencies). 3182 * 3183 * For strict checks or possible corruption detection, see 3184 * btrfs_validate_super(). 3185 * 3186 * This should be called after btrfs_parse_options(), as some mount options 3187 * (space cache related) can modify on-disk format like free space tree and 3188 * screw up certain feature dependencies. 3189 */ 3190 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3191 { 3192 struct btrfs_super_block *disk_super = fs_info->super_copy; 3193 u64 incompat = btrfs_super_incompat_flags(disk_super); 3194 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3195 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3196 3197 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3198 btrfs_err(fs_info, 3199 "cannot mount because of unknown incompat features (0x%llx)", 3200 incompat); 3201 return -EINVAL; 3202 } 3203 3204 /* Runtime limitation for mixed block groups. */ 3205 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3206 (fs_info->sectorsize != fs_info->nodesize)) { 3207 btrfs_err(fs_info, 3208 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3209 fs_info->nodesize, fs_info->sectorsize); 3210 return -EINVAL; 3211 } 3212 3213 /* Mixed backref is an always-enabled feature. */ 3214 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3215 3216 /* Set compression related flags just in case. */ 3217 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3218 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3219 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3220 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3221 3222 /* 3223 * An ancient flag, which should really be marked deprecated. 3224 * Such runtime limitation doesn't really need a incompat flag. 3225 */ 3226 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3227 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3228 3229 if (compat_ro_unsupp && is_rw_mount) { 3230 btrfs_err(fs_info, 3231 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3232 compat_ro); 3233 return -EINVAL; 3234 } 3235 3236 /* 3237 * We have unsupported RO compat features, although RO mounted, we 3238 * should not cause any metadata writes, including log replay. 3239 * Or we could screw up whatever the new feature requires. 3240 */ 3241 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3242 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3243 btrfs_err(fs_info, 3244 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3245 compat_ro); 3246 return -EINVAL; 3247 } 3248 3249 /* 3250 * Artificial limitations for block group tree, to force 3251 * block-group-tree to rely on no-holes and free-space-tree. 3252 */ 3253 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3254 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3255 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3256 btrfs_err(fs_info, 3257 "block-group-tree feature requires no-holes and free-space-tree features"); 3258 return -EINVAL; 3259 } 3260 3261 /* 3262 * Subpage runtime limitation on v1 cache. 3263 * 3264 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3265 * we're already defaulting to v2 cache, no need to bother v1 as it's 3266 * going to be deprecated anyway. 3267 */ 3268 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3269 btrfs_warn(fs_info, 3270 "v1 space cache is not supported for page size %lu with sectorsize %u", 3271 PAGE_SIZE, fs_info->sectorsize); 3272 return -EINVAL; 3273 } 3274 3275 /* This can be called by remount, we need to protect the super block. */ 3276 spin_lock(&fs_info->super_lock); 3277 btrfs_set_super_incompat_flags(disk_super, incompat); 3278 spin_unlock(&fs_info->super_lock); 3279 3280 return 0; 3281 } 3282 3283 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3284 { 3285 u32 sectorsize; 3286 u32 nodesize; 3287 u32 stripesize; 3288 u64 generation; 3289 u16 csum_type; 3290 struct btrfs_super_block *disk_super; 3291 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3292 struct btrfs_root *tree_root; 3293 struct btrfs_root *chunk_root; 3294 int ret; 3295 int level; 3296 3297 ret = init_mount_fs_info(fs_info, sb); 3298 if (ret) 3299 goto fail; 3300 3301 /* These need to be init'ed before we start creating inodes and such. */ 3302 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3303 GFP_KERNEL); 3304 fs_info->tree_root = tree_root; 3305 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3306 GFP_KERNEL); 3307 fs_info->chunk_root = chunk_root; 3308 if (!tree_root || !chunk_root) { 3309 ret = -ENOMEM; 3310 goto fail; 3311 } 3312 3313 ret = btrfs_init_btree_inode(sb); 3314 if (ret) 3315 goto fail; 3316 3317 invalidate_bdev(fs_devices->latest_dev->bdev); 3318 3319 /* 3320 * Read super block and check the signature bytes only 3321 */ 3322 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3323 if (IS_ERR(disk_super)) { 3324 ret = PTR_ERR(disk_super); 3325 goto fail_alloc; 3326 } 3327 3328 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3329 /* 3330 * Verify the type first, if that or the checksum value are 3331 * corrupted, we'll find out 3332 */ 3333 csum_type = btrfs_super_csum_type(disk_super); 3334 if (!btrfs_supported_super_csum(csum_type)) { 3335 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3336 csum_type); 3337 ret = -EINVAL; 3338 btrfs_release_disk_super(disk_super); 3339 goto fail_alloc; 3340 } 3341 3342 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3343 3344 ret = btrfs_init_csum_hash(fs_info, csum_type); 3345 if (ret) { 3346 btrfs_release_disk_super(disk_super); 3347 goto fail_alloc; 3348 } 3349 3350 /* 3351 * We want to check superblock checksum, the type is stored inside. 3352 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3353 */ 3354 if (btrfs_check_super_csum(fs_info, disk_super)) { 3355 btrfs_err(fs_info, "superblock checksum mismatch"); 3356 ret = -EINVAL; 3357 btrfs_release_disk_super(disk_super); 3358 goto fail_alloc; 3359 } 3360 3361 /* 3362 * super_copy is zeroed at allocation time and we never touch the 3363 * following bytes up to INFO_SIZE, the checksum is calculated from 3364 * the whole block of INFO_SIZE 3365 */ 3366 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3367 btrfs_release_disk_super(disk_super); 3368 3369 disk_super = fs_info->super_copy; 3370 3371 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3372 sizeof(*fs_info->super_for_commit)); 3373 3374 ret = btrfs_validate_mount_super(fs_info); 3375 if (ret) { 3376 btrfs_err(fs_info, "superblock contains fatal errors"); 3377 ret = -EINVAL; 3378 goto fail_alloc; 3379 } 3380 3381 if (!btrfs_super_root(disk_super)) { 3382 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3383 ret = -EINVAL; 3384 goto fail_alloc; 3385 } 3386 3387 /* check FS state, whether FS is broken. */ 3388 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3389 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3390 3391 /* Set up fs_info before parsing mount options */ 3392 nodesize = btrfs_super_nodesize(disk_super); 3393 sectorsize = btrfs_super_sectorsize(disk_super); 3394 stripesize = sectorsize; 3395 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3396 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3397 3398 fs_info->nodesize = nodesize; 3399 fs_info->sectorsize = sectorsize; 3400 fs_info->sectorsize_bits = ilog2(sectorsize); 3401 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3402 fs_info->stripesize = stripesize; 3403 fs_info->fs_devices->fs_info = fs_info; 3404 3405 /* 3406 * Handle the space caching options appropriately now that we have the 3407 * super block loaded and validated. 3408 */ 3409 btrfs_set_free_space_cache_settings(fs_info); 3410 3411 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3412 ret = -EINVAL; 3413 goto fail_alloc; 3414 } 3415 3416 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3417 if (ret < 0) 3418 goto fail_alloc; 3419 3420 /* 3421 * At this point our mount options are validated, if we set ->max_inline 3422 * to something non-standard make sure we truncate it to sectorsize. 3423 */ 3424 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3425 3426 ret = btrfs_init_workqueues(fs_info); 3427 if (ret) 3428 goto fail_sb_buffer; 3429 3430 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3431 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3432 3433 /* Update the values for the current filesystem. */ 3434 sb->s_blocksize = sectorsize; 3435 sb->s_blocksize_bits = blksize_bits(sectorsize); 3436 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3437 3438 mutex_lock(&fs_info->chunk_mutex); 3439 ret = btrfs_read_sys_array(fs_info); 3440 mutex_unlock(&fs_info->chunk_mutex); 3441 if (ret) { 3442 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3443 goto fail_sb_buffer; 3444 } 3445 3446 generation = btrfs_super_chunk_root_generation(disk_super); 3447 level = btrfs_super_chunk_root_level(disk_super); 3448 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3449 generation, level); 3450 if (ret) { 3451 btrfs_err(fs_info, "failed to read chunk root"); 3452 goto fail_tree_roots; 3453 } 3454 3455 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3456 offsetof(struct btrfs_header, chunk_tree_uuid), 3457 BTRFS_UUID_SIZE); 3458 3459 ret = btrfs_read_chunk_tree(fs_info); 3460 if (ret) { 3461 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3462 goto fail_tree_roots; 3463 } 3464 3465 /* 3466 * At this point we know all the devices that make this filesystem, 3467 * including the seed devices but we don't know yet if the replace 3468 * target is required. So free devices that are not part of this 3469 * filesystem but skip the replace target device which is checked 3470 * below in btrfs_init_dev_replace(). 3471 */ 3472 btrfs_free_extra_devids(fs_devices); 3473 if (!fs_devices->latest_dev->bdev) { 3474 btrfs_err(fs_info, "failed to read devices"); 3475 ret = -EIO; 3476 goto fail_tree_roots; 3477 } 3478 3479 ret = init_tree_roots(fs_info); 3480 if (ret) 3481 goto fail_tree_roots; 3482 3483 /* 3484 * Get zone type information of zoned block devices. This will also 3485 * handle emulation of a zoned filesystem if a regular device has the 3486 * zoned incompat feature flag set. 3487 */ 3488 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3489 if (ret) { 3490 btrfs_err(fs_info, 3491 "zoned: failed to read device zone info: %d", ret); 3492 goto fail_block_groups; 3493 } 3494 3495 /* 3496 * If we have a uuid root and we're not being told to rescan we need to 3497 * check the generation here so we can set the 3498 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3499 * transaction during a balance or the log replay without updating the 3500 * uuid generation, and then if we crash we would rescan the uuid tree, 3501 * even though it was perfectly fine. 3502 */ 3503 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3504 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3505 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3506 3507 ret = btrfs_verify_dev_extents(fs_info); 3508 if (ret) { 3509 btrfs_err(fs_info, 3510 "failed to verify dev extents against chunks: %d", 3511 ret); 3512 goto fail_block_groups; 3513 } 3514 ret = btrfs_recover_balance(fs_info); 3515 if (ret) { 3516 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3517 goto fail_block_groups; 3518 } 3519 3520 ret = btrfs_init_dev_stats(fs_info); 3521 if (ret) { 3522 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3523 goto fail_block_groups; 3524 } 3525 3526 ret = btrfs_init_dev_replace(fs_info); 3527 if (ret) { 3528 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3529 goto fail_block_groups; 3530 } 3531 3532 ret = btrfs_check_zoned_mode(fs_info); 3533 if (ret) { 3534 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3535 ret); 3536 goto fail_block_groups; 3537 } 3538 3539 ret = btrfs_sysfs_add_fsid(fs_devices); 3540 if (ret) { 3541 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3542 ret); 3543 goto fail_block_groups; 3544 } 3545 3546 ret = btrfs_sysfs_add_mounted(fs_info); 3547 if (ret) { 3548 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3549 goto fail_fsdev_sysfs; 3550 } 3551 3552 ret = btrfs_init_space_info(fs_info); 3553 if (ret) { 3554 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3555 goto fail_sysfs; 3556 } 3557 3558 ret = btrfs_read_block_groups(fs_info); 3559 if (ret) { 3560 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3561 goto fail_sysfs; 3562 } 3563 3564 btrfs_free_zone_cache(fs_info); 3565 3566 btrfs_check_active_zone_reservation(fs_info); 3567 3568 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3569 !btrfs_check_rw_degradable(fs_info, NULL)) { 3570 btrfs_warn(fs_info, 3571 "writable mount is not allowed due to too many missing devices"); 3572 ret = -EINVAL; 3573 goto fail_sysfs; 3574 } 3575 3576 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3577 "btrfs-cleaner"); 3578 if (IS_ERR(fs_info->cleaner_kthread)) { 3579 ret = PTR_ERR(fs_info->cleaner_kthread); 3580 goto fail_sysfs; 3581 } 3582 3583 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3584 tree_root, 3585 "btrfs-transaction"); 3586 if (IS_ERR(fs_info->transaction_kthread)) { 3587 ret = PTR_ERR(fs_info->transaction_kthread); 3588 goto fail_cleaner; 3589 } 3590 3591 ret = btrfs_read_qgroup_config(fs_info); 3592 if (ret) 3593 goto fail_trans_kthread; 3594 3595 if (btrfs_build_ref_tree(fs_info)) 3596 btrfs_err(fs_info, "couldn't build ref tree"); 3597 3598 /* do not make disk changes in broken FS or nologreplay is given */ 3599 if (btrfs_super_log_root(disk_super) != 0 && 3600 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3601 btrfs_info(fs_info, "start tree-log replay"); 3602 ret = btrfs_replay_log(fs_info, fs_devices); 3603 if (ret) 3604 goto fail_qgroup; 3605 } 3606 3607 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3608 if (IS_ERR(fs_info->fs_root)) { 3609 ret = PTR_ERR(fs_info->fs_root); 3610 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3611 fs_info->fs_root = NULL; 3612 goto fail_qgroup; 3613 } 3614 3615 if (sb_rdonly(sb)) 3616 return 0; 3617 3618 ret = btrfs_start_pre_rw_mount(fs_info); 3619 if (ret) { 3620 close_ctree(fs_info); 3621 return ret; 3622 } 3623 btrfs_discard_resume(fs_info); 3624 3625 if (fs_info->uuid_root && 3626 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3627 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3628 btrfs_info(fs_info, "checking UUID tree"); 3629 ret = btrfs_check_uuid_tree(fs_info); 3630 if (ret) { 3631 btrfs_warn(fs_info, 3632 "failed to check the UUID tree: %d", ret); 3633 close_ctree(fs_info); 3634 return ret; 3635 } 3636 } 3637 3638 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3639 3640 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3641 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3642 wake_up_process(fs_info->cleaner_kthread); 3643 3644 return 0; 3645 3646 fail_qgroup: 3647 btrfs_free_qgroup_config(fs_info); 3648 fail_trans_kthread: 3649 kthread_stop(fs_info->transaction_kthread); 3650 btrfs_cleanup_transaction(fs_info); 3651 btrfs_free_fs_roots(fs_info); 3652 fail_cleaner: 3653 kthread_stop(fs_info->cleaner_kthread); 3654 3655 /* 3656 * make sure we're done with the btree inode before we stop our 3657 * kthreads 3658 */ 3659 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3660 3661 fail_sysfs: 3662 btrfs_sysfs_remove_mounted(fs_info); 3663 3664 fail_fsdev_sysfs: 3665 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3666 3667 fail_block_groups: 3668 btrfs_put_block_group_cache(fs_info); 3669 3670 fail_tree_roots: 3671 if (fs_info->data_reloc_root) 3672 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3673 free_root_pointers(fs_info, true); 3674 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3675 3676 fail_sb_buffer: 3677 btrfs_stop_all_workers(fs_info); 3678 btrfs_free_block_groups(fs_info); 3679 fail_alloc: 3680 btrfs_mapping_tree_free(fs_info); 3681 3682 iput(fs_info->btree_inode); 3683 fail: 3684 btrfs_close_devices(fs_info->fs_devices); 3685 ASSERT(ret < 0); 3686 return ret; 3687 } 3688 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3689 3690 static void btrfs_end_super_write(struct bio *bio) 3691 { 3692 struct btrfs_device *device = bio->bi_private; 3693 struct folio_iter fi; 3694 3695 bio_for_each_folio_all(fi, bio) { 3696 if (bio->bi_status) { 3697 btrfs_warn_rl_in_rcu(device->fs_info, 3698 "lost super block write due to IO error on %s (%d)", 3699 btrfs_dev_name(device), 3700 blk_status_to_errno(bio->bi_status)); 3701 btrfs_dev_stat_inc_and_print(device, 3702 BTRFS_DEV_STAT_WRITE_ERRS); 3703 /* Ensure failure if the primary sb fails. */ 3704 if (bio->bi_opf & REQ_FUA) 3705 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3706 &device->sb_write_errors); 3707 else 3708 atomic_inc(&device->sb_write_errors); 3709 } 3710 folio_unlock(fi.folio); 3711 folio_put(fi.folio); 3712 } 3713 3714 bio_put(bio); 3715 } 3716 3717 /* 3718 * Write superblock @sb to the @device. Do not wait for completion, all the 3719 * folios we use for writing are locked. 3720 * 3721 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3722 * the expected device size at commit time. Note that max_mirrors must be 3723 * same for write and wait phases. 3724 * 3725 * Return number of errors when folio is not found or submission fails. 3726 */ 3727 static int write_dev_supers(struct btrfs_device *device, 3728 struct btrfs_super_block *sb, int max_mirrors) 3729 { 3730 struct btrfs_fs_info *fs_info = device->fs_info; 3731 struct address_space *mapping = device->bdev->bd_mapping; 3732 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3733 int i; 3734 int ret; 3735 u64 bytenr, bytenr_orig; 3736 3737 atomic_set(&device->sb_write_errors, 0); 3738 3739 if (max_mirrors == 0) 3740 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3741 3742 shash->tfm = fs_info->csum_shash; 3743 3744 for (i = 0; i < max_mirrors; i++) { 3745 struct folio *folio; 3746 struct bio *bio; 3747 struct btrfs_super_block *disk_super; 3748 size_t offset; 3749 3750 bytenr_orig = btrfs_sb_offset(i); 3751 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3752 if (ret == -ENOENT) { 3753 continue; 3754 } else if (ret < 0) { 3755 btrfs_err(device->fs_info, 3756 "couldn't get super block location for mirror %d error %d", 3757 i, ret); 3758 atomic_inc(&device->sb_write_errors); 3759 continue; 3760 } 3761 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3762 device->commit_total_bytes) 3763 break; 3764 3765 btrfs_set_super_bytenr(sb, bytenr_orig); 3766 3767 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3768 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3769 sb->csum); 3770 3771 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3772 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3773 GFP_NOFS); 3774 if (IS_ERR(folio)) { 3775 btrfs_err(device->fs_info, 3776 "couldn't get super block page for bytenr %llu error %ld", 3777 bytenr, PTR_ERR(folio)); 3778 atomic_inc(&device->sb_write_errors); 3779 continue; 3780 } 3781 3782 offset = offset_in_folio(folio, bytenr); 3783 disk_super = folio_address(folio) + offset; 3784 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3785 3786 /* 3787 * Directly use bios here instead of relying on the page cache 3788 * to do I/O, so we don't lose the ability to do integrity 3789 * checking. 3790 */ 3791 bio = bio_alloc(device->bdev, 1, 3792 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3793 GFP_NOFS); 3794 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3795 bio->bi_private = device; 3796 bio->bi_end_io = btrfs_end_super_write; 3797 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3798 3799 /* 3800 * We FUA only the first super block. The others we allow to 3801 * go down lazy and there's a short window where the on-disk 3802 * copies might still contain the older version. 3803 */ 3804 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3805 bio->bi_opf |= REQ_FUA; 3806 submit_bio(bio); 3807 3808 if (btrfs_advance_sb_log(device, i)) 3809 atomic_inc(&device->sb_write_errors); 3810 } 3811 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3812 } 3813 3814 /* 3815 * Wait for write completion of superblocks done by write_dev_supers, 3816 * @max_mirrors same for write and wait phases. 3817 * 3818 * Return -1 if primary super block write failed or when there were no super block 3819 * copies written. Otherwise 0. 3820 */ 3821 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3822 { 3823 int i; 3824 int errors = 0; 3825 bool primary_failed = false; 3826 int ret; 3827 u64 bytenr; 3828 3829 if (max_mirrors == 0) 3830 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3831 3832 for (i = 0; i < max_mirrors; i++) { 3833 struct folio *folio; 3834 3835 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3836 if (ret == -ENOENT) { 3837 break; 3838 } else if (ret < 0) { 3839 errors++; 3840 if (i == 0) 3841 primary_failed = true; 3842 continue; 3843 } 3844 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3845 device->commit_total_bytes) 3846 break; 3847 3848 folio = filemap_get_folio(device->bdev->bd_mapping, 3849 bytenr >> PAGE_SHIFT); 3850 /* If the folio has been removed, then we know it completed. */ 3851 if (IS_ERR(folio)) 3852 continue; 3853 3854 /* Folio will be unlocked once the write completes. */ 3855 folio_wait_locked(folio); 3856 folio_put(folio); 3857 } 3858 3859 errors += atomic_read(&device->sb_write_errors); 3860 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3861 primary_failed = true; 3862 if (primary_failed) { 3863 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3864 device->devid); 3865 return -1; 3866 } 3867 3868 return errors < i ? 0 : -1; 3869 } 3870 3871 /* 3872 * endio for the write_dev_flush, this will wake anyone waiting 3873 * for the barrier when it is done 3874 */ 3875 static void btrfs_end_empty_barrier(struct bio *bio) 3876 { 3877 bio_uninit(bio); 3878 complete(bio->bi_private); 3879 } 3880 3881 /* 3882 * Submit a flush request to the device if it supports it. Error handling is 3883 * done in the waiting counterpart. 3884 */ 3885 static void write_dev_flush(struct btrfs_device *device) 3886 { 3887 struct bio *bio = &device->flush_bio; 3888 3889 device->last_flush_error = BLK_STS_OK; 3890 3891 bio_init(bio, device->bdev, NULL, 0, 3892 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3893 bio->bi_end_io = btrfs_end_empty_barrier; 3894 init_completion(&device->flush_wait); 3895 bio->bi_private = &device->flush_wait; 3896 submit_bio(bio); 3897 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3898 } 3899 3900 /* 3901 * If the flush bio has been submitted by write_dev_flush, wait for it. 3902 * Return true for any error, and false otherwise. 3903 */ 3904 static bool wait_dev_flush(struct btrfs_device *device) 3905 { 3906 struct bio *bio = &device->flush_bio; 3907 3908 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3909 return false; 3910 3911 wait_for_completion_io(&device->flush_wait); 3912 3913 if (bio->bi_status) { 3914 device->last_flush_error = bio->bi_status; 3915 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3916 return true; 3917 } 3918 3919 return false; 3920 } 3921 3922 /* 3923 * send an empty flush down to each device in parallel, 3924 * then wait for them 3925 */ 3926 static int barrier_all_devices(struct btrfs_fs_info *info) 3927 { 3928 struct list_head *head; 3929 struct btrfs_device *dev; 3930 int errors_wait = 0; 3931 3932 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3933 /* send down all the barriers */ 3934 head = &info->fs_devices->devices; 3935 list_for_each_entry(dev, head, dev_list) { 3936 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3937 continue; 3938 if (!dev->bdev) 3939 continue; 3940 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3941 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3942 continue; 3943 3944 write_dev_flush(dev); 3945 } 3946 3947 /* wait for all the barriers */ 3948 list_for_each_entry(dev, head, dev_list) { 3949 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3950 continue; 3951 if (!dev->bdev) { 3952 errors_wait++; 3953 continue; 3954 } 3955 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3956 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3957 continue; 3958 3959 if (wait_dev_flush(dev)) 3960 errors_wait++; 3961 } 3962 3963 /* 3964 * Checks last_flush_error of disks in order to determine the device 3965 * state. 3966 */ 3967 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3968 return -EIO; 3969 3970 return 0; 3971 } 3972 3973 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3974 { 3975 int raid_type; 3976 int min_tolerated = INT_MAX; 3977 3978 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3979 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3980 min_tolerated = min_t(int, min_tolerated, 3981 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3982 tolerated_failures); 3983 3984 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3985 if (raid_type == BTRFS_RAID_SINGLE) 3986 continue; 3987 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3988 continue; 3989 min_tolerated = min_t(int, min_tolerated, 3990 btrfs_raid_array[raid_type]. 3991 tolerated_failures); 3992 } 3993 3994 if (min_tolerated == INT_MAX) { 3995 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3996 min_tolerated = 0; 3997 } 3998 3999 return min_tolerated; 4000 } 4001 4002 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4003 { 4004 struct list_head *head; 4005 struct btrfs_device *dev; 4006 struct btrfs_super_block *sb; 4007 struct btrfs_dev_item *dev_item; 4008 int ret; 4009 int do_barriers; 4010 int max_errors; 4011 int total_errors = 0; 4012 u64 flags; 4013 4014 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4015 4016 /* 4017 * max_mirrors == 0 indicates we're from commit_transaction, 4018 * not from fsync where the tree roots in fs_info have not 4019 * been consistent on disk. 4020 */ 4021 if (max_mirrors == 0) 4022 backup_super_roots(fs_info); 4023 4024 sb = fs_info->super_for_commit; 4025 dev_item = &sb->dev_item; 4026 4027 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4028 head = &fs_info->fs_devices->devices; 4029 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4030 4031 if (do_barriers) { 4032 ret = barrier_all_devices(fs_info); 4033 if (ret) { 4034 mutex_unlock( 4035 &fs_info->fs_devices->device_list_mutex); 4036 btrfs_handle_fs_error(fs_info, ret, 4037 "errors while submitting device barriers."); 4038 return ret; 4039 } 4040 } 4041 4042 list_for_each_entry(dev, head, dev_list) { 4043 if (!dev->bdev) { 4044 total_errors++; 4045 continue; 4046 } 4047 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4048 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4049 continue; 4050 4051 btrfs_set_stack_device_generation(dev_item, 0); 4052 btrfs_set_stack_device_type(dev_item, dev->type); 4053 btrfs_set_stack_device_id(dev_item, dev->devid); 4054 btrfs_set_stack_device_total_bytes(dev_item, 4055 dev->commit_total_bytes); 4056 btrfs_set_stack_device_bytes_used(dev_item, 4057 dev->commit_bytes_used); 4058 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4059 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4060 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4061 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4062 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4063 BTRFS_FSID_SIZE); 4064 4065 flags = btrfs_super_flags(sb); 4066 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4067 4068 ret = btrfs_validate_write_super(fs_info, sb); 4069 if (ret < 0) { 4070 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4071 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4072 "unexpected superblock corruption detected"); 4073 return -EUCLEAN; 4074 } 4075 4076 ret = write_dev_supers(dev, sb, max_mirrors); 4077 if (ret) 4078 total_errors++; 4079 } 4080 if (total_errors > max_errors) { 4081 btrfs_err(fs_info, "%d errors while writing supers", 4082 total_errors); 4083 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4084 4085 /* FUA is masked off if unsupported and can't be the reason */ 4086 btrfs_handle_fs_error(fs_info, -EIO, 4087 "%d errors while writing supers", 4088 total_errors); 4089 return -EIO; 4090 } 4091 4092 total_errors = 0; 4093 list_for_each_entry(dev, head, dev_list) { 4094 if (!dev->bdev) 4095 continue; 4096 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4097 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4098 continue; 4099 4100 ret = wait_dev_supers(dev, max_mirrors); 4101 if (ret) 4102 total_errors++; 4103 } 4104 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4105 if (total_errors > max_errors) { 4106 btrfs_handle_fs_error(fs_info, -EIO, 4107 "%d errors while writing supers", 4108 total_errors); 4109 return -EIO; 4110 } 4111 return 0; 4112 } 4113 4114 /* Drop a fs root from the radix tree and free it. */ 4115 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4116 struct btrfs_root *root) 4117 { 4118 bool drop_ref = false; 4119 4120 spin_lock(&fs_info->fs_roots_radix_lock); 4121 radix_tree_delete(&fs_info->fs_roots_radix, 4122 (unsigned long)btrfs_root_id(root)); 4123 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4124 drop_ref = true; 4125 spin_unlock(&fs_info->fs_roots_radix_lock); 4126 4127 if (BTRFS_FS_ERROR(fs_info)) { 4128 ASSERT(root->log_root == NULL); 4129 if (root->reloc_root) { 4130 btrfs_put_root(root->reloc_root); 4131 root->reloc_root = NULL; 4132 } 4133 } 4134 4135 if (drop_ref) 4136 btrfs_put_root(root); 4137 } 4138 4139 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4140 { 4141 mutex_lock(&fs_info->cleaner_mutex); 4142 btrfs_run_delayed_iputs(fs_info); 4143 mutex_unlock(&fs_info->cleaner_mutex); 4144 wake_up_process(fs_info->cleaner_kthread); 4145 4146 /* wait until ongoing cleanup work done */ 4147 down_write(&fs_info->cleanup_work_sem); 4148 up_write(&fs_info->cleanup_work_sem); 4149 4150 return btrfs_commit_current_transaction(fs_info->tree_root); 4151 } 4152 4153 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4154 { 4155 struct btrfs_transaction *trans; 4156 struct btrfs_transaction *tmp; 4157 bool found = false; 4158 4159 /* 4160 * This function is only called at the very end of close_ctree(), 4161 * thus no other running transaction, no need to take trans_lock. 4162 */ 4163 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4164 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4165 struct extent_state *cached = NULL; 4166 u64 dirty_bytes = 0; 4167 u64 cur = 0; 4168 u64 found_start; 4169 u64 found_end; 4170 4171 found = true; 4172 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4173 &found_start, &found_end, 4174 EXTENT_DIRTY, &cached)) { 4175 dirty_bytes += found_end + 1 - found_start; 4176 cur = found_end + 1; 4177 } 4178 btrfs_warn(fs_info, 4179 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4180 trans->transid, dirty_bytes); 4181 btrfs_cleanup_one_transaction(trans); 4182 4183 if (trans == fs_info->running_transaction) 4184 fs_info->running_transaction = NULL; 4185 list_del_init(&trans->list); 4186 4187 btrfs_put_transaction(trans); 4188 trace_btrfs_transaction_commit(fs_info); 4189 } 4190 ASSERT(!found); 4191 } 4192 4193 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4194 { 4195 int ret; 4196 4197 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4198 4199 /* 4200 * If we had UNFINISHED_DROPS we could still be processing them, so 4201 * clear that bit and wake up relocation so it can stop. 4202 * We must do this before stopping the block group reclaim task, because 4203 * at btrfs_relocate_block_group() we wait for this bit, and after the 4204 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4205 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4206 * return 1. 4207 */ 4208 btrfs_wake_unfinished_drop(fs_info); 4209 4210 /* 4211 * We may have the reclaim task running and relocating a data block group, 4212 * in which case it may create delayed iputs. So stop it before we park 4213 * the cleaner kthread otherwise we can get new delayed iputs after 4214 * parking the cleaner, and that can make the async reclaim task to hang 4215 * if it's waiting for delayed iputs to complete, since the cleaner is 4216 * parked and can not run delayed iputs - this will make us hang when 4217 * trying to stop the async reclaim task. 4218 */ 4219 cancel_work_sync(&fs_info->reclaim_bgs_work); 4220 /* 4221 * We don't want the cleaner to start new transactions, add more delayed 4222 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4223 * because that frees the task_struct, and the transaction kthread might 4224 * still try to wake up the cleaner. 4225 */ 4226 kthread_park(fs_info->cleaner_kthread); 4227 4228 /* wait for the qgroup rescan worker to stop */ 4229 btrfs_qgroup_wait_for_completion(fs_info, false); 4230 4231 /* wait for the uuid_scan task to finish */ 4232 down(&fs_info->uuid_tree_rescan_sem); 4233 /* avoid complains from lockdep et al., set sem back to initial state */ 4234 up(&fs_info->uuid_tree_rescan_sem); 4235 4236 /* pause restriper - we want to resume on mount */ 4237 btrfs_pause_balance(fs_info); 4238 4239 btrfs_dev_replace_suspend_for_unmount(fs_info); 4240 4241 btrfs_scrub_cancel(fs_info); 4242 4243 /* wait for any defraggers to finish */ 4244 wait_event(fs_info->transaction_wait, 4245 (atomic_read(&fs_info->defrag_running) == 0)); 4246 4247 /* clear out the rbtree of defraggable inodes */ 4248 btrfs_cleanup_defrag_inodes(fs_info); 4249 4250 /* 4251 * Handle the error fs first, as it will flush and wait for all ordered 4252 * extents. This will generate delayed iputs, thus we want to handle 4253 * it first. 4254 */ 4255 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4256 btrfs_error_commit_super(fs_info); 4257 4258 /* 4259 * Wait for any fixup workers to complete. 4260 * If we don't wait for them here and they are still running by the time 4261 * we call kthread_stop() against the cleaner kthread further below, we 4262 * get an use-after-free on the cleaner because the fixup worker adds an 4263 * inode to the list of delayed iputs and then attempts to wakeup the 4264 * cleaner kthread, which was already stopped and destroyed. We parked 4265 * already the cleaner, but below we run all pending delayed iputs. 4266 */ 4267 btrfs_flush_workqueue(fs_info->fixup_workers); 4268 /* 4269 * Similar case here, we have to wait for delalloc workers before we 4270 * proceed below and stop the cleaner kthread, otherwise we trigger a 4271 * use-after-tree on the cleaner kthread task_struct when a delalloc 4272 * worker running submit_compressed_extents() adds a delayed iput, which 4273 * does a wake up on the cleaner kthread, which was already freed below 4274 * when we call kthread_stop(). 4275 */ 4276 btrfs_flush_workqueue(fs_info->delalloc_workers); 4277 4278 /* 4279 * We can have ordered extents getting their last reference dropped from 4280 * the fs_info->workers queue because for async writes for data bios we 4281 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4282 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4283 * has an error, and that later function can do the final 4284 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4285 * which adds a delayed iput for the inode. So we must flush the queue 4286 * so that we don't have delayed iputs after committing the current 4287 * transaction below and stopping the cleaner and transaction kthreads. 4288 */ 4289 btrfs_flush_workqueue(fs_info->workers); 4290 4291 /* 4292 * When finishing a compressed write bio we schedule a work queue item 4293 * to finish an ordered extent - btrfs_finish_compressed_write_work() 4294 * calls btrfs_finish_ordered_extent() which in turns does a call to 4295 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4296 * completion either in the endio_write_workers work queue or in the 4297 * fs_info->endio_freespace_worker work queue. We flush those queues 4298 * below, so before we flush them we must flush this queue for the 4299 * workers of compressed writes. 4300 */ 4301 flush_workqueue(fs_info->compressed_write_workers); 4302 4303 /* 4304 * After we parked the cleaner kthread, ordered extents may have 4305 * completed and created new delayed iputs. If one of the async reclaim 4306 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4307 * can hang forever trying to stop it, because if a delayed iput is 4308 * added after it ran btrfs_run_delayed_iputs() and before it called 4309 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4310 * no one else to run iputs. 4311 * 4312 * So wait for all ongoing ordered extents to complete and then run 4313 * delayed iputs. This works because once we reach this point no one 4314 * can create new ordered extents, but delayed iputs can still be added 4315 * by a reclaim worker (see comments further below). 4316 * 4317 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4318 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4319 * but the delayed iput for the respective inode is made only when doing 4320 * the final btrfs_put_ordered_extent() (which must happen at 4321 * btrfs_finish_ordered_io() when we are unmounting). 4322 */ 4323 btrfs_flush_workqueue(fs_info->endio_write_workers); 4324 /* Ordered extents for free space inodes. */ 4325 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4326 /* 4327 * Run delayed iputs in case an async reclaim worker is waiting for them 4328 * to be run as mentioned above. 4329 */ 4330 btrfs_run_delayed_iputs(fs_info); 4331 4332 cancel_work_sync(&fs_info->async_reclaim_work); 4333 cancel_work_sync(&fs_info->async_data_reclaim_work); 4334 cancel_work_sync(&fs_info->preempt_reclaim_work); 4335 cancel_work_sync(&fs_info->em_shrinker_work); 4336 4337 /* 4338 * Run delayed iputs again because an async reclaim worker may have 4339 * added new ones if it was flushing delalloc: 4340 * 4341 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4342 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4343 */ 4344 btrfs_run_delayed_iputs(fs_info); 4345 4346 /* There should be no more workload to generate new delayed iputs. */ 4347 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4348 4349 /* Cancel or finish ongoing discard work */ 4350 btrfs_discard_cleanup(fs_info); 4351 4352 if (!sb_rdonly(fs_info->sb)) { 4353 /* 4354 * The cleaner kthread is stopped, so do one final pass over 4355 * unused block groups. 4356 */ 4357 btrfs_delete_unused_bgs(fs_info); 4358 4359 /* 4360 * There might be existing delayed inode workers still running 4361 * and holding an empty delayed inode item. We must wait for 4362 * them to complete first because they can create a transaction. 4363 * This happens when someone calls btrfs_balance_delayed_items() 4364 * and then a transaction commit runs the same delayed nodes 4365 * before any delayed worker has done something with the nodes. 4366 * We must wait for any worker here and not at transaction 4367 * commit time since that could cause a deadlock. 4368 * This is a very rare case. 4369 */ 4370 btrfs_flush_workqueue(fs_info->delayed_workers); 4371 4372 ret = btrfs_commit_super(fs_info); 4373 if (ret) 4374 btrfs_err(fs_info, "commit super ret %d", ret); 4375 } 4376 4377 kthread_stop(fs_info->transaction_kthread); 4378 kthread_stop(fs_info->cleaner_kthread); 4379 4380 ASSERT(list_empty(&fs_info->delayed_iputs)); 4381 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4382 4383 if (btrfs_check_quota_leak(fs_info)) { 4384 DEBUG_WARN("qgroup reserved space leaked"); 4385 btrfs_err(fs_info, "qgroup reserved space leaked"); 4386 } 4387 4388 btrfs_free_qgroup_config(fs_info); 4389 ASSERT(list_empty(&fs_info->delalloc_roots)); 4390 4391 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4392 btrfs_info(fs_info, "at unmount delalloc count %lld", 4393 percpu_counter_sum(&fs_info->delalloc_bytes)); 4394 } 4395 4396 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4397 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4398 percpu_counter_sum(&fs_info->ordered_bytes)); 4399 4400 btrfs_sysfs_remove_mounted(fs_info); 4401 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4402 4403 btrfs_put_block_group_cache(fs_info); 4404 4405 /* 4406 * we must make sure there is not any read request to 4407 * submit after we stopping all workers. 4408 */ 4409 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4410 btrfs_stop_all_workers(fs_info); 4411 4412 /* We shouldn't have any transaction open at this point */ 4413 warn_about_uncommitted_trans(fs_info); 4414 4415 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4416 free_root_pointers(fs_info, true); 4417 btrfs_free_fs_roots(fs_info); 4418 4419 /* 4420 * We must free the block groups after dropping the fs_roots as we could 4421 * have had an IO error and have left over tree log blocks that aren't 4422 * cleaned up until the fs roots are freed. This makes the block group 4423 * accounting appear to be wrong because there's pending reserved bytes, 4424 * so make sure we do the block group cleanup afterwards. 4425 */ 4426 btrfs_free_block_groups(fs_info); 4427 4428 iput(fs_info->btree_inode); 4429 4430 btrfs_mapping_tree_free(fs_info); 4431 btrfs_close_devices(fs_info->fs_devices); 4432 } 4433 4434 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4435 struct extent_buffer *buf) 4436 { 4437 struct btrfs_fs_info *fs_info = buf->fs_info; 4438 u64 transid = btrfs_header_generation(buf); 4439 4440 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4441 /* 4442 * This is a fast path so only do this check if we have sanity tests 4443 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4444 * outside of the sanity tests. 4445 */ 4446 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4447 return; 4448 #endif 4449 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4450 ASSERT(trans->transid == fs_info->generation); 4451 btrfs_assert_tree_write_locked(buf); 4452 if (unlikely(transid != fs_info->generation)) { 4453 btrfs_abort_transaction(trans, -EUCLEAN); 4454 btrfs_crit(fs_info, 4455 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4456 buf->start, transid, fs_info->generation); 4457 } 4458 set_extent_buffer_dirty(buf); 4459 } 4460 4461 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4462 int flush_delayed) 4463 { 4464 /* 4465 * looks as though older kernels can get into trouble with 4466 * this code, they end up stuck in balance_dirty_pages forever 4467 */ 4468 int ret; 4469 4470 if (current->flags & PF_MEMALLOC) 4471 return; 4472 4473 if (flush_delayed) 4474 btrfs_balance_delayed_items(fs_info); 4475 4476 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4477 BTRFS_DIRTY_METADATA_THRESH, 4478 fs_info->dirty_metadata_batch); 4479 if (ret > 0) { 4480 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4481 } 4482 } 4483 4484 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4485 { 4486 __btrfs_btree_balance_dirty(fs_info, 1); 4487 } 4488 4489 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4490 { 4491 __btrfs_btree_balance_dirty(fs_info, 0); 4492 } 4493 4494 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4495 { 4496 /* cleanup FS via transaction */ 4497 btrfs_cleanup_transaction(fs_info); 4498 4499 down_write(&fs_info->cleanup_work_sem); 4500 up_write(&fs_info->cleanup_work_sem); 4501 } 4502 4503 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4504 { 4505 struct btrfs_root *gang[8]; 4506 u64 root_objectid = 0; 4507 int ret; 4508 4509 spin_lock(&fs_info->fs_roots_radix_lock); 4510 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4511 (void **)gang, root_objectid, 4512 ARRAY_SIZE(gang))) != 0) { 4513 int i; 4514 4515 for (i = 0; i < ret; i++) 4516 gang[i] = btrfs_grab_root(gang[i]); 4517 spin_unlock(&fs_info->fs_roots_radix_lock); 4518 4519 for (i = 0; i < ret; i++) { 4520 if (!gang[i]) 4521 continue; 4522 root_objectid = btrfs_root_id(gang[i]); 4523 btrfs_free_log(NULL, gang[i]); 4524 btrfs_put_root(gang[i]); 4525 } 4526 root_objectid++; 4527 spin_lock(&fs_info->fs_roots_radix_lock); 4528 } 4529 spin_unlock(&fs_info->fs_roots_radix_lock); 4530 btrfs_free_log_root_tree(NULL, fs_info); 4531 } 4532 4533 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4534 { 4535 struct btrfs_ordered_extent *ordered; 4536 4537 spin_lock(&root->ordered_extent_lock); 4538 /* 4539 * This will just short circuit the ordered completion stuff which will 4540 * make sure the ordered extent gets properly cleaned up. 4541 */ 4542 list_for_each_entry(ordered, &root->ordered_extents, 4543 root_extent_list) 4544 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4545 spin_unlock(&root->ordered_extent_lock); 4546 } 4547 4548 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4549 { 4550 struct btrfs_root *root; 4551 LIST_HEAD(splice); 4552 4553 spin_lock(&fs_info->ordered_root_lock); 4554 list_splice_init(&fs_info->ordered_roots, &splice); 4555 while (!list_empty(&splice)) { 4556 root = list_first_entry(&splice, struct btrfs_root, 4557 ordered_root); 4558 list_move_tail(&root->ordered_root, 4559 &fs_info->ordered_roots); 4560 4561 spin_unlock(&fs_info->ordered_root_lock); 4562 btrfs_destroy_ordered_extents(root); 4563 4564 cond_resched(); 4565 spin_lock(&fs_info->ordered_root_lock); 4566 } 4567 spin_unlock(&fs_info->ordered_root_lock); 4568 4569 /* 4570 * We need this here because if we've been flipped read-only we won't 4571 * get sync() from the umount, so we need to make sure any ordered 4572 * extents that haven't had their dirty pages IO start writeout yet 4573 * actually get run and error out properly. 4574 */ 4575 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4576 } 4577 4578 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4579 { 4580 struct btrfs_inode *btrfs_inode; 4581 LIST_HEAD(splice); 4582 4583 spin_lock(&root->delalloc_lock); 4584 list_splice_init(&root->delalloc_inodes, &splice); 4585 4586 while (!list_empty(&splice)) { 4587 struct inode *inode = NULL; 4588 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4589 delalloc_inodes); 4590 btrfs_del_delalloc_inode(btrfs_inode); 4591 spin_unlock(&root->delalloc_lock); 4592 4593 /* 4594 * Make sure we get a live inode and that it'll not disappear 4595 * meanwhile. 4596 */ 4597 inode = igrab(&btrfs_inode->vfs_inode); 4598 if (inode) { 4599 unsigned int nofs_flag; 4600 4601 nofs_flag = memalloc_nofs_save(); 4602 invalidate_inode_pages2(inode->i_mapping); 4603 memalloc_nofs_restore(nofs_flag); 4604 iput(inode); 4605 } 4606 spin_lock(&root->delalloc_lock); 4607 } 4608 spin_unlock(&root->delalloc_lock); 4609 } 4610 4611 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4612 { 4613 struct btrfs_root *root; 4614 LIST_HEAD(splice); 4615 4616 spin_lock(&fs_info->delalloc_root_lock); 4617 list_splice_init(&fs_info->delalloc_roots, &splice); 4618 while (!list_empty(&splice)) { 4619 root = list_first_entry(&splice, struct btrfs_root, 4620 delalloc_root); 4621 root = btrfs_grab_root(root); 4622 BUG_ON(!root); 4623 spin_unlock(&fs_info->delalloc_root_lock); 4624 4625 btrfs_destroy_delalloc_inodes(root); 4626 btrfs_put_root(root); 4627 4628 spin_lock(&fs_info->delalloc_root_lock); 4629 } 4630 spin_unlock(&fs_info->delalloc_root_lock); 4631 } 4632 4633 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4634 struct extent_io_tree *dirty_pages, 4635 int mark) 4636 { 4637 struct extent_buffer *eb; 4638 u64 start = 0; 4639 u64 end; 4640 4641 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4642 mark, NULL)) { 4643 btrfs_clear_extent_bits(dirty_pages, start, end, mark); 4644 while (start <= end) { 4645 eb = find_extent_buffer(fs_info, start); 4646 start += fs_info->nodesize; 4647 if (!eb) 4648 continue; 4649 4650 btrfs_tree_lock(eb); 4651 wait_on_extent_buffer_writeback(eb); 4652 btrfs_clear_buffer_dirty(NULL, eb); 4653 btrfs_tree_unlock(eb); 4654 4655 free_extent_buffer_stale(eb); 4656 } 4657 } 4658 } 4659 4660 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4661 struct extent_io_tree *unpin) 4662 { 4663 u64 start; 4664 u64 end; 4665 4666 while (1) { 4667 struct extent_state *cached_state = NULL; 4668 4669 /* 4670 * The btrfs_finish_extent_commit() may get the same range as 4671 * ours between find_first_extent_bit and clear_extent_dirty. 4672 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4673 * the same extent range. 4674 */ 4675 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4676 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4677 EXTENT_DIRTY, &cached_state)) { 4678 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4679 break; 4680 } 4681 4682 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4683 btrfs_free_extent_state(cached_state); 4684 btrfs_error_unpin_extent_range(fs_info, start, end); 4685 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4686 cond_resched(); 4687 } 4688 } 4689 4690 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4691 { 4692 struct inode *inode; 4693 4694 inode = cache->io_ctl.inode; 4695 if (inode) { 4696 unsigned int nofs_flag; 4697 4698 nofs_flag = memalloc_nofs_save(); 4699 invalidate_inode_pages2(inode->i_mapping); 4700 memalloc_nofs_restore(nofs_flag); 4701 4702 BTRFS_I(inode)->generation = 0; 4703 cache->io_ctl.inode = NULL; 4704 iput(inode); 4705 } 4706 ASSERT(cache->io_ctl.pages == NULL); 4707 btrfs_put_block_group(cache); 4708 } 4709 4710 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4711 struct btrfs_fs_info *fs_info) 4712 { 4713 struct btrfs_block_group *cache; 4714 4715 spin_lock(&cur_trans->dirty_bgs_lock); 4716 while (!list_empty(&cur_trans->dirty_bgs)) { 4717 cache = list_first_entry(&cur_trans->dirty_bgs, 4718 struct btrfs_block_group, 4719 dirty_list); 4720 4721 if (!list_empty(&cache->io_list)) { 4722 spin_unlock(&cur_trans->dirty_bgs_lock); 4723 list_del_init(&cache->io_list); 4724 btrfs_cleanup_bg_io(cache); 4725 spin_lock(&cur_trans->dirty_bgs_lock); 4726 } 4727 4728 list_del_init(&cache->dirty_list); 4729 spin_lock(&cache->lock); 4730 cache->disk_cache_state = BTRFS_DC_ERROR; 4731 spin_unlock(&cache->lock); 4732 4733 spin_unlock(&cur_trans->dirty_bgs_lock); 4734 btrfs_put_block_group(cache); 4735 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4736 spin_lock(&cur_trans->dirty_bgs_lock); 4737 } 4738 spin_unlock(&cur_trans->dirty_bgs_lock); 4739 4740 /* 4741 * Refer to the definition of io_bgs member for details why it's safe 4742 * to use it without any locking 4743 */ 4744 while (!list_empty(&cur_trans->io_bgs)) { 4745 cache = list_first_entry(&cur_trans->io_bgs, 4746 struct btrfs_block_group, 4747 io_list); 4748 4749 list_del_init(&cache->io_list); 4750 spin_lock(&cache->lock); 4751 cache->disk_cache_state = BTRFS_DC_ERROR; 4752 spin_unlock(&cache->lock); 4753 btrfs_cleanup_bg_io(cache); 4754 } 4755 } 4756 4757 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4758 { 4759 struct btrfs_root *gang[8]; 4760 int i; 4761 int ret; 4762 4763 spin_lock(&fs_info->fs_roots_radix_lock); 4764 while (1) { 4765 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4766 (void **)gang, 0, 4767 ARRAY_SIZE(gang), 4768 BTRFS_ROOT_TRANS_TAG); 4769 if (ret == 0) 4770 break; 4771 for (i = 0; i < ret; i++) { 4772 struct btrfs_root *root = gang[i]; 4773 4774 btrfs_qgroup_free_meta_all_pertrans(root); 4775 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4776 (unsigned long)btrfs_root_id(root), 4777 BTRFS_ROOT_TRANS_TAG); 4778 } 4779 } 4780 spin_unlock(&fs_info->fs_roots_radix_lock); 4781 } 4782 4783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4784 { 4785 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4786 struct btrfs_device *dev, *tmp; 4787 4788 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4789 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4790 ASSERT(list_empty(&cur_trans->io_bgs)); 4791 4792 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4793 post_commit_list) { 4794 list_del_init(&dev->post_commit_list); 4795 } 4796 4797 btrfs_destroy_delayed_refs(cur_trans); 4798 4799 cur_trans->state = TRANS_STATE_COMMIT_START; 4800 wake_up(&fs_info->transaction_blocked_wait); 4801 4802 cur_trans->state = TRANS_STATE_UNBLOCKED; 4803 wake_up(&fs_info->transaction_wait); 4804 4805 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4806 EXTENT_DIRTY); 4807 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4808 4809 cur_trans->state =TRANS_STATE_COMPLETED; 4810 wake_up(&cur_trans->commit_wait); 4811 } 4812 4813 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4814 { 4815 struct btrfs_transaction *t; 4816 4817 mutex_lock(&fs_info->transaction_kthread_mutex); 4818 4819 spin_lock(&fs_info->trans_lock); 4820 while (!list_empty(&fs_info->trans_list)) { 4821 t = list_first_entry(&fs_info->trans_list, 4822 struct btrfs_transaction, list); 4823 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4824 refcount_inc(&t->use_count); 4825 spin_unlock(&fs_info->trans_lock); 4826 btrfs_wait_for_commit(fs_info, t->transid); 4827 btrfs_put_transaction(t); 4828 spin_lock(&fs_info->trans_lock); 4829 continue; 4830 } 4831 if (t == fs_info->running_transaction) { 4832 t->state = TRANS_STATE_COMMIT_DOING; 4833 spin_unlock(&fs_info->trans_lock); 4834 /* 4835 * We wait for 0 num_writers since we don't hold a trans 4836 * handle open currently for this transaction. 4837 */ 4838 wait_event(t->writer_wait, 4839 atomic_read(&t->num_writers) == 0); 4840 } else { 4841 spin_unlock(&fs_info->trans_lock); 4842 } 4843 btrfs_cleanup_one_transaction(t); 4844 4845 spin_lock(&fs_info->trans_lock); 4846 if (t == fs_info->running_transaction) 4847 fs_info->running_transaction = NULL; 4848 list_del_init(&t->list); 4849 spin_unlock(&fs_info->trans_lock); 4850 4851 btrfs_put_transaction(t); 4852 trace_btrfs_transaction_commit(fs_info); 4853 spin_lock(&fs_info->trans_lock); 4854 } 4855 spin_unlock(&fs_info->trans_lock); 4856 btrfs_destroy_all_ordered_extents(fs_info); 4857 btrfs_destroy_delayed_inodes(fs_info); 4858 btrfs_assert_delayed_root_empty(fs_info); 4859 btrfs_destroy_all_delalloc_inodes(fs_info); 4860 btrfs_drop_all_logs(fs_info); 4861 btrfs_free_all_qgroup_pertrans(fs_info); 4862 mutex_unlock(&fs_info->transaction_kthread_mutex); 4863 4864 return 0; 4865 } 4866 4867 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4868 { 4869 BTRFS_PATH_AUTO_FREE(path); 4870 int ret; 4871 struct extent_buffer *l; 4872 struct btrfs_key search_key; 4873 struct btrfs_key found_key; 4874 int slot; 4875 4876 path = btrfs_alloc_path(); 4877 if (!path) 4878 return -ENOMEM; 4879 4880 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4881 search_key.type = -1; 4882 search_key.offset = (u64)-1; 4883 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4884 if (ret < 0) 4885 return ret; 4886 if (ret == 0) { 4887 /* 4888 * Key with offset -1 found, there would have to exist a root 4889 * with such id, but this is out of valid range. 4890 */ 4891 return -EUCLEAN; 4892 } 4893 if (path->slots[0] > 0) { 4894 slot = path->slots[0] - 1; 4895 l = path->nodes[0]; 4896 btrfs_item_key_to_cpu(l, &found_key, slot); 4897 root->free_objectid = max_t(u64, found_key.objectid + 1, 4898 BTRFS_FIRST_FREE_OBJECTID); 4899 } else { 4900 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4901 } 4902 4903 return 0; 4904 } 4905 4906 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4907 { 4908 int ret; 4909 mutex_lock(&root->objectid_mutex); 4910 4911 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4912 btrfs_warn(root->fs_info, 4913 "the objectid of root %llu reaches its highest value", 4914 btrfs_root_id(root)); 4915 ret = -ENOSPC; 4916 goto out; 4917 } 4918 4919 *objectid = root->free_objectid++; 4920 ret = 0; 4921 out: 4922 mutex_unlock(&root->objectid_mutex); 4923 return ret; 4924 } 4925