1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 const struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 /* 77 * Determine if async discard should be running. 78 * 79 * @discard_ctl: discard control 80 * 81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 82 */ 83 static bool btrfs_run_discard_work(const struct btrfs_discard_ctl *discard_ctl) 84 { 85 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 86 struct btrfs_fs_info, 87 discard_ctl); 88 89 return (!(fs_info->sb->s_flags & SB_RDONLY) && 90 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 91 } 92 93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 94 struct btrfs_block_group *block_group) 95 { 96 lockdep_assert_held(&discard_ctl->lock); 97 if (!btrfs_run_discard_work(discard_ctl)) 98 return; 99 100 if (list_empty(&block_group->discard_list) || 101 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 102 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 103 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 104 block_group->discard_eligible_time = (ktime_get_ns() + 105 BTRFS_DISCARD_DELAY); 106 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 107 } 108 if (list_empty(&block_group->discard_list)) 109 btrfs_get_block_group(block_group); 110 111 list_move_tail(&block_group->discard_list, 112 get_discard_list(discard_ctl, block_group)); 113 } 114 115 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 116 struct btrfs_block_group *block_group) 117 { 118 if (!btrfs_is_block_group_data_only(block_group)) 119 return; 120 121 spin_lock(&discard_ctl->lock); 122 __add_to_discard_list(discard_ctl, block_group); 123 spin_unlock(&discard_ctl->lock); 124 } 125 126 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 127 struct btrfs_block_group *block_group) 128 { 129 bool queued; 130 131 spin_lock(&discard_ctl->lock); 132 133 queued = !list_empty(&block_group->discard_list); 134 135 if (!btrfs_run_discard_work(discard_ctl)) { 136 spin_unlock(&discard_ctl->lock); 137 return; 138 } 139 140 list_del_init(&block_group->discard_list); 141 142 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 143 block_group->discard_eligible_time = (ktime_get_ns() + 144 BTRFS_DISCARD_UNUSED_DELAY); 145 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 146 if (!queued) 147 btrfs_get_block_group(block_group); 148 list_add_tail(&block_group->discard_list, 149 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 150 151 spin_unlock(&discard_ctl->lock); 152 } 153 154 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 155 struct btrfs_block_group *block_group) 156 { 157 bool running = false; 158 bool queued = false; 159 160 spin_lock(&discard_ctl->lock); 161 162 if (block_group == discard_ctl->block_group) { 163 running = true; 164 discard_ctl->block_group = NULL; 165 } 166 167 block_group->discard_eligible_time = 0; 168 queued = !list_empty(&block_group->discard_list); 169 list_del_init(&block_group->discard_list); 170 if (queued) 171 btrfs_put_block_group(block_group); 172 173 spin_unlock(&discard_ctl->lock); 174 175 return running; 176 } 177 178 /* 179 * Find block_group that's up next for discarding. 180 * 181 * @discard_ctl: discard control 182 * @now: current time 183 * 184 * Iterate over the discard lists to find the next block_group up for 185 * discarding checking the discard_eligible_time of block_group. 186 */ 187 static struct btrfs_block_group *find_next_block_group( 188 struct btrfs_discard_ctl *discard_ctl, 189 u64 now) 190 { 191 struct btrfs_block_group *ret_block_group = NULL, *block_group; 192 int i; 193 194 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 195 struct list_head *discard_list = &discard_ctl->discard_list[i]; 196 197 if (!list_empty(discard_list)) { 198 block_group = list_first_entry(discard_list, 199 struct btrfs_block_group, 200 discard_list); 201 202 if (!ret_block_group) 203 ret_block_group = block_group; 204 205 if (ret_block_group->discard_eligible_time < now) 206 break; 207 208 if (ret_block_group->discard_eligible_time > 209 block_group->discard_eligible_time) 210 ret_block_group = block_group; 211 } 212 } 213 214 return ret_block_group; 215 } 216 217 /* 218 * Look up next block group and set it for use. 219 * 220 * @discard_ctl: discard control 221 * @discard_state: the discard_state of the block_group after state management 222 * @discard_index: the discard_index of the block_group after state management 223 * @now: time when discard was invoked, in ns 224 * 225 * Wrap find_next_block_group() and set the block_group to be in use. 226 * @discard_state's control flow is managed here. Variables related to 227 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 228 * and @discard_index are remembered as it may change while we're discarding, 229 * but we want the discard to execute in the context determined here. 230 */ 231 static struct btrfs_block_group *peek_discard_list( 232 struct btrfs_discard_ctl *discard_ctl, 233 enum btrfs_discard_state *discard_state, 234 int *discard_index, u64 now) 235 { 236 struct btrfs_block_group *block_group; 237 238 spin_lock(&discard_ctl->lock); 239 again: 240 block_group = find_next_block_group(discard_ctl, now); 241 242 if (block_group && now >= block_group->discard_eligible_time) { 243 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 244 block_group->used != 0) { 245 if (btrfs_is_block_group_data_only(block_group)) { 246 __add_to_discard_list(discard_ctl, block_group); 247 } else { 248 list_del_init(&block_group->discard_list); 249 btrfs_put_block_group(block_group); 250 } 251 goto again; 252 } 253 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 254 block_group->discard_cursor = block_group->start; 255 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 256 } 257 } 258 if (block_group) { 259 btrfs_get_block_group(block_group); 260 discard_ctl->block_group = block_group; 261 *discard_state = block_group->discard_state; 262 *discard_index = block_group->discard_index; 263 } 264 spin_unlock(&discard_ctl->lock); 265 266 return block_group; 267 } 268 269 /* 270 * Update a block group's filters. 271 * 272 * @block_group: block group of interest 273 * @bytes: recently freed region size after coalescing 274 * 275 * Async discard maintains multiple lists with progressively smaller filters 276 * to prioritize discarding based on size. Should a free space that matches 277 * a larger filter be returned to the free_space_cache, prioritize that discard 278 * by moving @block_group to the proper filter. 279 */ 280 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 281 u64 bytes) 282 { 283 struct btrfs_discard_ctl *discard_ctl; 284 285 if (!block_group || 286 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 287 return; 288 289 discard_ctl = &block_group->fs_info->discard_ctl; 290 291 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 292 bytes >= discard_minlen[block_group->discard_index - 1]) { 293 int i; 294 295 remove_from_discard_list(discard_ctl, block_group); 296 297 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 298 i++) { 299 if (bytes >= discard_minlen[i]) { 300 block_group->discard_index = i; 301 add_to_discard_list(discard_ctl, block_group); 302 break; 303 } 304 } 305 } 306 } 307 308 /* 309 * Move a block group along the discard lists. 310 * 311 * @discard_ctl: discard control 312 * @block_group: block_group of interest 313 * 314 * Increment @block_group's discard_index. If it falls of the list, let it be. 315 * Otherwise add it back to the appropriate list. 316 */ 317 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 318 struct btrfs_block_group *block_group) 319 { 320 block_group->discard_index++; 321 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 322 block_group->discard_index = 1; 323 return; 324 } 325 326 add_to_discard_list(discard_ctl, block_group); 327 } 328 329 /* 330 * Remove a block_group from the discard lists. 331 * 332 * @discard_ctl: discard control 333 * @block_group: block_group of interest 334 * 335 * Remove @block_group from the discard lists. If necessary, wait on the 336 * current work and then reschedule the delayed work. 337 */ 338 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 339 struct btrfs_block_group *block_group) 340 { 341 if (remove_from_discard_list(discard_ctl, block_group)) { 342 cancel_delayed_work_sync(&discard_ctl->work); 343 btrfs_discard_schedule_work(discard_ctl, true); 344 } 345 } 346 347 /* 348 * Handles queuing the block_groups. 349 * 350 * @discard_ctl: discard control 351 * @block_group: block_group of interest 352 * 353 * Maintain the LRU order of the discard lists. 354 */ 355 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 356 struct btrfs_block_group *block_group) 357 { 358 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 359 return; 360 361 if (block_group->used == 0) 362 add_to_discard_unused_list(discard_ctl, block_group); 363 else 364 add_to_discard_list(discard_ctl, block_group); 365 366 if (!delayed_work_pending(&discard_ctl->work)) 367 btrfs_discard_schedule_work(discard_ctl, false); 368 } 369 370 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 371 u64 now, bool override) 372 { 373 struct btrfs_block_group *block_group; 374 375 if (!btrfs_run_discard_work(discard_ctl)) 376 return; 377 if (!override && delayed_work_pending(&discard_ctl->work)) 378 return; 379 380 block_group = find_next_block_group(discard_ctl, now); 381 if (block_group) { 382 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 383 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 384 385 /* 386 * A single delayed workqueue item is responsible for 387 * discarding, so we can manage the bytes rate limit by keeping 388 * track of the previous discard. 389 */ 390 if (kbps_limit && discard_ctl->prev_discard) { 391 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 392 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 393 NSEC_PER_SEC, bps_limit); 394 395 delay = max(delay, bps_delay); 396 } 397 398 /* 399 * This timeout is to hopefully prevent immediate discarding 400 * in a recently allocated block group. 401 */ 402 if (now < block_group->discard_eligible_time) { 403 u64 bg_timeout = block_group->discard_eligible_time - now; 404 405 delay = max(delay, bg_timeout); 406 } 407 408 if (override && discard_ctl->prev_discard) { 409 u64 elapsed = now - discard_ctl->prev_discard_time; 410 411 if (delay > elapsed) 412 delay -= elapsed; 413 else 414 delay = 0; 415 } 416 417 mod_delayed_work(discard_ctl->discard_workers, 418 &discard_ctl->work, nsecs_to_jiffies(delay)); 419 } 420 } 421 422 /* 423 * Responsible for scheduling the discard work. 424 * 425 * @discard_ctl: discard control 426 * @override: override the current timer 427 * 428 * Discards are issued by a delayed workqueue item. @override is used to 429 * update the current delay as the baseline delay interval is reevaluated on 430 * transaction commit. This is also maxed with any other rate limit. 431 */ 432 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 433 bool override) 434 { 435 const u64 now = ktime_get_ns(); 436 437 spin_lock(&discard_ctl->lock); 438 __btrfs_discard_schedule_work(discard_ctl, now, override); 439 spin_unlock(&discard_ctl->lock); 440 } 441 442 /* 443 * Determine next step of a block_group. 444 * 445 * @discard_ctl: discard control 446 * @block_group: block_group of interest 447 * 448 * Determine the next step for a block group after it's finished going through 449 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 450 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 451 * appropriate filter list or let it fall off. 452 */ 453 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 454 struct btrfs_block_group *block_group) 455 { 456 remove_from_discard_list(discard_ctl, block_group); 457 458 if (block_group->used == 0) { 459 if (btrfs_is_free_space_trimmed(block_group)) 460 btrfs_mark_bg_unused(block_group); 461 else 462 add_to_discard_unused_list(discard_ctl, block_group); 463 } else { 464 btrfs_update_discard_index(discard_ctl, block_group); 465 } 466 } 467 468 /* 469 * Discard work queue callback 470 * 471 * @work: work 472 * 473 * Find the next block_group to start discarding and then discard a single 474 * region. It does this in a two-pass fashion: first extents and second 475 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 476 */ 477 static void btrfs_discard_workfn(struct work_struct *work) 478 { 479 struct btrfs_discard_ctl *discard_ctl; 480 struct btrfs_block_group *block_group; 481 enum btrfs_discard_state discard_state; 482 int discard_index = 0; 483 u64 trimmed = 0; 484 u64 minlen = 0; 485 u64 now = ktime_get_ns(); 486 487 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 488 489 block_group = peek_discard_list(discard_ctl, &discard_state, 490 &discard_index, now); 491 if (!block_group) 492 return; 493 if (!btrfs_run_discard_work(discard_ctl)) { 494 spin_lock(&discard_ctl->lock); 495 btrfs_put_block_group(block_group); 496 discard_ctl->block_group = NULL; 497 spin_unlock(&discard_ctl->lock); 498 return; 499 } 500 if (now < block_group->discard_eligible_time) { 501 spin_lock(&discard_ctl->lock); 502 btrfs_put_block_group(block_group); 503 discard_ctl->block_group = NULL; 504 spin_unlock(&discard_ctl->lock); 505 btrfs_discard_schedule_work(discard_ctl, false); 506 return; 507 } 508 509 /* Perform discarding */ 510 minlen = discard_minlen[discard_index]; 511 512 if (discard_state == BTRFS_DISCARD_BITMAPS) { 513 u64 maxlen = 0; 514 515 /* 516 * Use the previous levels minimum discard length as the max 517 * length filter. In the case something is added to make a 518 * region go beyond the max filter, the entire bitmap is set 519 * back to BTRFS_TRIM_STATE_UNTRIMMED. 520 */ 521 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 522 maxlen = discard_minlen[discard_index - 1]; 523 524 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 525 block_group->discard_cursor, 526 btrfs_block_group_end(block_group), 527 minlen, maxlen, true); 528 discard_ctl->discard_bitmap_bytes += trimmed; 529 } else { 530 btrfs_trim_block_group_extents(block_group, &trimmed, 531 block_group->discard_cursor, 532 btrfs_block_group_end(block_group), 533 minlen, true); 534 discard_ctl->discard_extent_bytes += trimmed; 535 } 536 537 /* Determine next steps for a block_group */ 538 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 539 if (discard_state == BTRFS_DISCARD_BITMAPS) { 540 btrfs_finish_discard_pass(discard_ctl, block_group); 541 } else { 542 block_group->discard_cursor = block_group->start; 543 spin_lock(&discard_ctl->lock); 544 if (block_group->discard_state != 545 BTRFS_DISCARD_RESET_CURSOR) 546 block_group->discard_state = 547 BTRFS_DISCARD_BITMAPS; 548 spin_unlock(&discard_ctl->lock); 549 } 550 } 551 552 now = ktime_get_ns(); 553 spin_lock(&discard_ctl->lock); 554 discard_ctl->prev_discard = trimmed; 555 discard_ctl->prev_discard_time = now; 556 btrfs_put_block_group(block_group); 557 discard_ctl->block_group = NULL; 558 __btrfs_discard_schedule_work(discard_ctl, now, false); 559 spin_unlock(&discard_ctl->lock); 560 } 561 562 /* 563 * Recalculate the base delay. 564 * 565 * @discard_ctl: discard control 566 * 567 * Recalculate the base delay which is based off the total number of 568 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 569 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 570 */ 571 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 572 { 573 s32 discardable_extents; 574 s64 discardable_bytes; 575 u32 iops_limit; 576 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 577 unsigned long delay; 578 579 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 580 if (!discardable_extents) 581 return; 582 583 spin_lock(&discard_ctl->lock); 584 585 /* 586 * The following is to fix a potential -1 discrepancy that we're not 587 * sure how to reproduce. But given that this is the only place that 588 * utilizes these numbers and this is only called by from 589 * btrfs_finish_extent_commit() which is synchronized, we can correct 590 * here. 591 */ 592 if (discardable_extents < 0) 593 atomic_add(-discardable_extents, 594 &discard_ctl->discardable_extents); 595 596 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 597 if (discardable_bytes < 0) 598 atomic64_add(-discardable_bytes, 599 &discard_ctl->discardable_bytes); 600 601 if (discardable_extents <= 0) { 602 spin_unlock(&discard_ctl->lock); 603 return; 604 } 605 606 iops_limit = READ_ONCE(discard_ctl->iops_limit); 607 608 if (iops_limit) { 609 delay = MSEC_PER_SEC / iops_limit; 610 } else { 611 /* 612 * Unset iops_limit means go as fast as possible, so allow a 613 * delay of 0. 614 */ 615 delay = 0; 616 min_delay = 0; 617 } 618 619 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 620 discard_ctl->delay_ms = delay; 621 622 spin_unlock(&discard_ctl->lock); 623 } 624 625 /* 626 * Propagate discard counters. 627 * 628 * @block_group: block_group of interest 629 * 630 * Propagate deltas of counters up to the discard_ctl. It maintains a current 631 * counter and a previous counter passing the delta up to the global stat. 632 * Then the current counter value becomes the previous counter value. 633 */ 634 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 635 { 636 struct btrfs_free_space_ctl *ctl; 637 struct btrfs_discard_ctl *discard_ctl; 638 s32 extents_delta; 639 s64 bytes_delta; 640 641 if (!block_group || 642 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 643 !btrfs_is_block_group_data_only(block_group)) 644 return; 645 646 ctl = block_group->free_space_ctl; 647 discard_ctl = &block_group->fs_info->discard_ctl; 648 649 lockdep_assert_held(&ctl->tree_lock); 650 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 651 ctl->discardable_extents[BTRFS_STAT_PREV]; 652 if (extents_delta) { 653 atomic_add(extents_delta, &discard_ctl->discardable_extents); 654 ctl->discardable_extents[BTRFS_STAT_PREV] = 655 ctl->discardable_extents[BTRFS_STAT_CURR]; 656 } 657 658 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 659 ctl->discardable_bytes[BTRFS_STAT_PREV]; 660 if (bytes_delta) { 661 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 662 ctl->discardable_bytes[BTRFS_STAT_PREV] = 663 ctl->discardable_bytes[BTRFS_STAT_CURR]; 664 } 665 } 666 667 /* 668 * Punt unused_bgs list to discard lists. 669 * 670 * @fs_info: fs_info of interest 671 * 672 * The unused_bgs list needs to be punted to the discard lists because the 673 * order of operations is changed. In the normal synchronous discard path, the 674 * block groups are trimmed via a single large trim in transaction commit. This 675 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 676 * it must be done before going down the unused_bgs path. 677 */ 678 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 679 { 680 struct btrfs_block_group *block_group, *next; 681 682 spin_lock(&fs_info->unused_bgs_lock); 683 /* We enabled async discard, so punt all to the queue */ 684 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 685 bg_list) { 686 list_del_init(&block_group->bg_list); 687 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 688 /* 689 * This put is for the get done by btrfs_mark_bg_unused. 690 * Queueing discard incremented it for discard's reference. 691 */ 692 btrfs_put_block_group(block_group); 693 } 694 spin_unlock(&fs_info->unused_bgs_lock); 695 } 696 697 /* 698 * Purge discard lists. 699 * 700 * @discard_ctl: discard control 701 * 702 * If we are disabling async discard, we may have intercepted block groups that 703 * are completely free and ready for the unused_bgs path. As discarding will 704 * now happen in transaction commit or not at all, we can safely mark the 705 * corresponding block groups as unused and they will be sent on their merry 706 * way to the unused_bgs list. 707 */ 708 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 709 { 710 struct btrfs_block_group *block_group, *next; 711 int i; 712 713 spin_lock(&discard_ctl->lock); 714 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 715 list_for_each_entry_safe(block_group, next, 716 &discard_ctl->discard_list[i], 717 discard_list) { 718 list_del_init(&block_group->discard_list); 719 spin_unlock(&discard_ctl->lock); 720 if (block_group->used == 0) 721 btrfs_mark_bg_unused(block_group); 722 spin_lock(&discard_ctl->lock); 723 btrfs_put_block_group(block_group); 724 } 725 } 726 spin_unlock(&discard_ctl->lock); 727 } 728 729 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 730 { 731 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 732 btrfs_discard_cleanup(fs_info); 733 return; 734 } 735 736 btrfs_discard_punt_unused_bgs_list(fs_info); 737 738 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 739 } 740 741 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 742 { 743 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 744 } 745 746 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 747 { 748 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 749 int i; 750 751 spin_lock_init(&discard_ctl->lock); 752 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 753 754 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 755 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 756 757 discard_ctl->prev_discard = 0; 758 discard_ctl->prev_discard_time = 0; 759 atomic_set(&discard_ctl->discardable_extents, 0); 760 atomic64_set(&discard_ctl->discardable_bytes, 0); 761 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 762 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 763 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 764 discard_ctl->kbps_limit = 0; 765 discard_ctl->discard_extent_bytes = 0; 766 discard_ctl->discard_bitmap_bytes = 0; 767 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 768 } 769 770 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 771 { 772 btrfs_discard_stop(fs_info); 773 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 774 btrfs_discard_purge_list(&fs_info->discard_ctl); 775 } 776