1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 const struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 /* 77 * Determine if async discard should be running. 78 * 79 * @discard_ctl: discard control 80 * 81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 82 */ 83 static bool btrfs_run_discard_work(const struct btrfs_discard_ctl *discard_ctl) 84 { 85 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 86 struct btrfs_fs_info, 87 discard_ctl); 88 89 return (!(fs_info->sb->s_flags & SB_RDONLY) && 90 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 91 } 92 93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 94 struct btrfs_block_group *block_group) 95 { 96 lockdep_assert_held(&discard_ctl->lock); 97 98 if (list_empty(&block_group->discard_list) || 99 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 100 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 101 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 102 block_group->discard_eligible_time = (ktime_get_ns() + 103 BTRFS_DISCARD_DELAY); 104 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 105 } 106 if (list_empty(&block_group->discard_list)) 107 btrfs_get_block_group(block_group); 108 109 list_move_tail(&block_group->discard_list, 110 get_discard_list(discard_ctl, block_group)); 111 } 112 113 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 114 struct btrfs_block_group *block_group) 115 { 116 if (!btrfs_is_block_group_data_only(block_group)) 117 return; 118 119 if (!btrfs_run_discard_work(discard_ctl)) 120 return; 121 122 spin_lock(&discard_ctl->lock); 123 __add_to_discard_list(discard_ctl, block_group); 124 spin_unlock(&discard_ctl->lock); 125 } 126 127 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 128 struct btrfs_block_group *block_group) 129 { 130 bool queued; 131 132 spin_lock(&discard_ctl->lock); 133 134 queued = !list_empty(&block_group->discard_list); 135 136 if (!btrfs_run_discard_work(discard_ctl)) { 137 spin_unlock(&discard_ctl->lock); 138 return; 139 } 140 141 list_del_init(&block_group->discard_list); 142 143 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 144 block_group->discard_eligible_time = (ktime_get_ns() + 145 BTRFS_DISCARD_UNUSED_DELAY); 146 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 147 if (!queued) 148 btrfs_get_block_group(block_group); 149 list_add_tail(&block_group->discard_list, 150 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 151 152 spin_unlock(&discard_ctl->lock); 153 } 154 155 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 156 struct btrfs_block_group *block_group) 157 { 158 bool running = false; 159 bool queued = false; 160 161 spin_lock(&discard_ctl->lock); 162 163 if (block_group == discard_ctl->block_group) { 164 running = true; 165 discard_ctl->block_group = NULL; 166 } 167 168 block_group->discard_eligible_time = 0; 169 queued = !list_empty(&block_group->discard_list); 170 list_del_init(&block_group->discard_list); 171 if (queued) 172 btrfs_put_block_group(block_group); 173 174 spin_unlock(&discard_ctl->lock); 175 176 return running; 177 } 178 179 /* 180 * Find block_group that's up next for discarding. 181 * 182 * @discard_ctl: discard control 183 * @now: current time 184 * 185 * Iterate over the discard lists to find the next block_group up for 186 * discarding checking the discard_eligible_time of block_group. 187 */ 188 static struct btrfs_block_group *find_next_block_group( 189 struct btrfs_discard_ctl *discard_ctl, 190 u64 now) 191 { 192 struct btrfs_block_group *ret_block_group = NULL, *block_group; 193 int i; 194 195 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 196 struct list_head *discard_list = &discard_ctl->discard_list[i]; 197 198 if (!list_empty(discard_list)) { 199 block_group = list_first_entry(discard_list, 200 struct btrfs_block_group, 201 discard_list); 202 203 if (!ret_block_group) 204 ret_block_group = block_group; 205 206 if (ret_block_group->discard_eligible_time < now) 207 break; 208 209 if (ret_block_group->discard_eligible_time > 210 block_group->discard_eligible_time) 211 ret_block_group = block_group; 212 } 213 } 214 215 return ret_block_group; 216 } 217 218 /* 219 * Look up next block group and set it for use. 220 * 221 * @discard_ctl: discard control 222 * @discard_state: the discard_state of the block_group after state management 223 * @discard_index: the discard_index of the block_group after state management 224 * @now: time when discard was invoked, in ns 225 * 226 * Wrap find_next_block_group() and set the block_group to be in use. 227 * @discard_state's control flow is managed here. Variables related to 228 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 229 * and @discard_index are remembered as it may change while we're discarding, 230 * but we want the discard to execute in the context determined here. 231 */ 232 static struct btrfs_block_group *peek_discard_list( 233 struct btrfs_discard_ctl *discard_ctl, 234 enum btrfs_discard_state *discard_state, 235 int *discard_index, u64 now) 236 { 237 struct btrfs_block_group *block_group; 238 239 spin_lock(&discard_ctl->lock); 240 again: 241 block_group = find_next_block_group(discard_ctl, now); 242 243 if (block_group && now >= block_group->discard_eligible_time) { 244 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 245 block_group->used != 0) { 246 if (btrfs_is_block_group_data_only(block_group)) { 247 __add_to_discard_list(discard_ctl, block_group); 248 /* 249 * The block group must have been moved to other 250 * discard list even if discard was disabled in 251 * the meantime or a transaction abort happened, 252 * otherwise we can end up in an infinite loop, 253 * always jumping into the 'again' label and 254 * keep getting this block group over and over 255 * in case there are no other block groups in 256 * the discard lists. 257 */ 258 ASSERT(block_group->discard_index != 259 BTRFS_DISCARD_INDEX_UNUSED, 260 "discard_index=%d", 261 block_group->discard_index); 262 } else { 263 list_del_init(&block_group->discard_list); 264 btrfs_put_block_group(block_group); 265 } 266 goto again; 267 } 268 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 269 block_group->discard_cursor = block_group->start; 270 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 271 } 272 } 273 if (block_group) { 274 btrfs_get_block_group(block_group); 275 discard_ctl->block_group = block_group; 276 *discard_state = block_group->discard_state; 277 *discard_index = block_group->discard_index; 278 } 279 spin_unlock(&discard_ctl->lock); 280 281 return block_group; 282 } 283 284 /* 285 * Update a block group's filters. 286 * 287 * @block_group: block group of interest 288 * @bytes: recently freed region size after coalescing 289 * 290 * Async discard maintains multiple lists with progressively smaller filters 291 * to prioritize discarding based on size. Should a free space that matches 292 * a larger filter be returned to the free_space_cache, prioritize that discard 293 * by moving @block_group to the proper filter. 294 */ 295 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 296 u64 bytes) 297 { 298 struct btrfs_discard_ctl *discard_ctl; 299 300 if (!block_group || 301 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 302 return; 303 304 discard_ctl = &block_group->fs_info->discard_ctl; 305 306 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 307 bytes >= discard_minlen[block_group->discard_index - 1]) { 308 int i; 309 310 remove_from_discard_list(discard_ctl, block_group); 311 312 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 313 i++) { 314 if (bytes >= discard_minlen[i]) { 315 block_group->discard_index = i; 316 add_to_discard_list(discard_ctl, block_group); 317 break; 318 } 319 } 320 } 321 } 322 323 /* 324 * Move a block group along the discard lists. 325 * 326 * @discard_ctl: discard control 327 * @block_group: block_group of interest 328 * 329 * Increment @block_group's discard_index. If it falls of the list, let it be. 330 * Otherwise add it back to the appropriate list. 331 */ 332 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 333 struct btrfs_block_group *block_group) 334 { 335 block_group->discard_index++; 336 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 337 block_group->discard_index = 1; 338 return; 339 } 340 341 add_to_discard_list(discard_ctl, block_group); 342 } 343 344 /* 345 * Remove a block_group from the discard lists. 346 * 347 * @discard_ctl: discard control 348 * @block_group: block_group of interest 349 * 350 * Remove @block_group from the discard lists. If necessary, wait on the 351 * current work and then reschedule the delayed work. 352 */ 353 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 354 struct btrfs_block_group *block_group) 355 { 356 if (remove_from_discard_list(discard_ctl, block_group)) { 357 cancel_delayed_work_sync(&discard_ctl->work); 358 btrfs_discard_schedule_work(discard_ctl, true); 359 } 360 } 361 362 /* 363 * Handles queuing the block_groups. 364 * 365 * @discard_ctl: discard control 366 * @block_group: block_group of interest 367 * 368 * Maintain the LRU order of the discard lists. 369 */ 370 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 371 struct btrfs_block_group *block_group) 372 { 373 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 374 return; 375 376 if (block_group->used == 0) 377 add_to_discard_unused_list(discard_ctl, block_group); 378 else 379 add_to_discard_list(discard_ctl, block_group); 380 381 if (!delayed_work_pending(&discard_ctl->work)) 382 btrfs_discard_schedule_work(discard_ctl, false); 383 } 384 385 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 386 u64 now, bool override) 387 { 388 struct btrfs_block_group *block_group; 389 390 if (!btrfs_run_discard_work(discard_ctl)) 391 return; 392 if (!override && delayed_work_pending(&discard_ctl->work)) 393 return; 394 395 block_group = find_next_block_group(discard_ctl, now); 396 if (block_group) { 397 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 398 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 399 400 /* 401 * A single delayed workqueue item is responsible for 402 * discarding, so we can manage the bytes rate limit by keeping 403 * track of the previous discard. 404 */ 405 if (kbps_limit && discard_ctl->prev_discard) { 406 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 407 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 408 NSEC_PER_SEC, bps_limit); 409 410 delay = max(delay, bps_delay); 411 } 412 413 /* 414 * This timeout is to hopefully prevent immediate discarding 415 * in a recently allocated block group. 416 */ 417 if (now < block_group->discard_eligible_time) { 418 u64 bg_timeout = block_group->discard_eligible_time - now; 419 420 delay = max(delay, bg_timeout); 421 } 422 423 if (override && discard_ctl->prev_discard) { 424 u64 elapsed = now - discard_ctl->prev_discard_time; 425 426 if (delay > elapsed) 427 delay -= elapsed; 428 else 429 delay = 0; 430 } 431 432 mod_delayed_work(discard_ctl->discard_workers, 433 &discard_ctl->work, nsecs_to_jiffies(delay)); 434 } 435 } 436 437 /* 438 * Responsible for scheduling the discard work. 439 * 440 * @discard_ctl: discard control 441 * @override: override the current timer 442 * 443 * Discards are issued by a delayed workqueue item. @override is used to 444 * update the current delay as the baseline delay interval is reevaluated on 445 * transaction commit. This is also maxed with any other rate limit. 446 */ 447 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 448 bool override) 449 { 450 const u64 now = ktime_get_ns(); 451 452 spin_lock(&discard_ctl->lock); 453 __btrfs_discard_schedule_work(discard_ctl, now, override); 454 spin_unlock(&discard_ctl->lock); 455 } 456 457 /* 458 * Determine next step of a block_group. 459 * 460 * @discard_ctl: discard control 461 * @block_group: block_group of interest 462 * 463 * Determine the next step for a block group after it's finished going through 464 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 465 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 466 * appropriate filter list or let it fall off. 467 */ 468 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 469 struct btrfs_block_group *block_group) 470 { 471 remove_from_discard_list(discard_ctl, block_group); 472 473 if (block_group->used == 0) { 474 if (btrfs_is_free_space_trimmed(block_group)) 475 btrfs_mark_bg_unused(block_group); 476 else 477 add_to_discard_unused_list(discard_ctl, block_group); 478 } else { 479 btrfs_update_discard_index(discard_ctl, block_group); 480 } 481 } 482 483 /* 484 * Discard work queue callback 485 * 486 * @work: work 487 * 488 * Find the next block_group to start discarding and then discard a single 489 * region. It does this in a two-pass fashion: first extents and second 490 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 491 */ 492 static void btrfs_discard_workfn(struct work_struct *work) 493 { 494 struct btrfs_discard_ctl *discard_ctl; 495 struct btrfs_block_group *block_group; 496 enum btrfs_discard_state discard_state; 497 int discard_index = 0; 498 u64 trimmed = 0; 499 u64 minlen = 0; 500 u64 now = ktime_get_ns(); 501 502 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 503 504 block_group = peek_discard_list(discard_ctl, &discard_state, 505 &discard_index, now); 506 if (!block_group) 507 return; 508 if (!btrfs_run_discard_work(discard_ctl)) { 509 spin_lock(&discard_ctl->lock); 510 btrfs_put_block_group(block_group); 511 discard_ctl->block_group = NULL; 512 spin_unlock(&discard_ctl->lock); 513 return; 514 } 515 if (now < block_group->discard_eligible_time) { 516 spin_lock(&discard_ctl->lock); 517 btrfs_put_block_group(block_group); 518 discard_ctl->block_group = NULL; 519 spin_unlock(&discard_ctl->lock); 520 btrfs_discard_schedule_work(discard_ctl, false); 521 return; 522 } 523 524 /* Perform discarding */ 525 minlen = discard_minlen[discard_index]; 526 527 if (discard_state == BTRFS_DISCARD_BITMAPS) { 528 u64 maxlen = 0; 529 530 /* 531 * Use the previous levels minimum discard length as the max 532 * length filter. In the case something is added to make a 533 * region go beyond the max filter, the entire bitmap is set 534 * back to BTRFS_TRIM_STATE_UNTRIMMED. 535 */ 536 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 537 maxlen = discard_minlen[discard_index - 1]; 538 539 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 540 block_group->discard_cursor, 541 btrfs_block_group_end(block_group), 542 minlen, maxlen, true); 543 discard_ctl->discard_bitmap_bytes += trimmed; 544 } else { 545 btrfs_trim_block_group_extents(block_group, &trimmed, 546 block_group->discard_cursor, 547 btrfs_block_group_end(block_group), 548 minlen, true); 549 discard_ctl->discard_extent_bytes += trimmed; 550 } 551 552 /* Determine next steps for a block_group */ 553 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 554 if (discard_state == BTRFS_DISCARD_BITMAPS) { 555 btrfs_finish_discard_pass(discard_ctl, block_group); 556 } else { 557 block_group->discard_cursor = block_group->start; 558 spin_lock(&discard_ctl->lock); 559 if (block_group->discard_state != 560 BTRFS_DISCARD_RESET_CURSOR) 561 block_group->discard_state = 562 BTRFS_DISCARD_BITMAPS; 563 spin_unlock(&discard_ctl->lock); 564 } 565 } 566 567 now = ktime_get_ns(); 568 spin_lock(&discard_ctl->lock); 569 discard_ctl->prev_discard = trimmed; 570 discard_ctl->prev_discard_time = now; 571 btrfs_put_block_group(block_group); 572 discard_ctl->block_group = NULL; 573 __btrfs_discard_schedule_work(discard_ctl, now, false); 574 spin_unlock(&discard_ctl->lock); 575 } 576 577 /* 578 * Recalculate the base delay. 579 * 580 * @discard_ctl: discard control 581 * 582 * Recalculate the base delay which is based off the total number of 583 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 584 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 585 */ 586 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 587 { 588 s32 discardable_extents; 589 s64 discardable_bytes; 590 u32 iops_limit; 591 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 592 unsigned long delay; 593 594 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 595 if (!discardable_extents) 596 return; 597 598 spin_lock(&discard_ctl->lock); 599 600 /* 601 * The following is to fix a potential -1 discrepancy that we're not 602 * sure how to reproduce. But given that this is the only place that 603 * utilizes these numbers and this is only called by from 604 * btrfs_finish_extent_commit() which is synchronized, we can correct 605 * here. 606 */ 607 if (discardable_extents < 0) 608 atomic_add(-discardable_extents, 609 &discard_ctl->discardable_extents); 610 611 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 612 if (discardable_bytes < 0) 613 atomic64_add(-discardable_bytes, 614 &discard_ctl->discardable_bytes); 615 616 if (discardable_extents <= 0) { 617 spin_unlock(&discard_ctl->lock); 618 return; 619 } 620 621 iops_limit = READ_ONCE(discard_ctl->iops_limit); 622 623 if (iops_limit) { 624 delay = MSEC_PER_SEC / iops_limit; 625 } else { 626 /* 627 * Unset iops_limit means go as fast as possible, so allow a 628 * delay of 0. 629 */ 630 delay = 0; 631 min_delay = 0; 632 } 633 634 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 635 discard_ctl->delay_ms = delay; 636 637 spin_unlock(&discard_ctl->lock); 638 } 639 640 /* 641 * Propagate discard counters. 642 * 643 * @block_group: block_group of interest 644 * 645 * Propagate deltas of counters up to the discard_ctl. It maintains a current 646 * counter and a previous counter passing the delta up to the global stat. 647 * Then the current counter value becomes the previous counter value. 648 */ 649 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 650 { 651 struct btrfs_free_space_ctl *ctl; 652 struct btrfs_discard_ctl *discard_ctl; 653 s32 extents_delta; 654 s64 bytes_delta; 655 656 if (!block_group || 657 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 658 !btrfs_is_block_group_data_only(block_group)) 659 return; 660 661 ctl = block_group->free_space_ctl; 662 discard_ctl = &block_group->fs_info->discard_ctl; 663 664 lockdep_assert_held(&ctl->tree_lock); 665 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 666 ctl->discardable_extents[BTRFS_STAT_PREV]; 667 if (extents_delta) { 668 atomic_add(extents_delta, &discard_ctl->discardable_extents); 669 ctl->discardable_extents[BTRFS_STAT_PREV] = 670 ctl->discardable_extents[BTRFS_STAT_CURR]; 671 } 672 673 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 674 ctl->discardable_bytes[BTRFS_STAT_PREV]; 675 if (bytes_delta) { 676 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 677 ctl->discardable_bytes[BTRFS_STAT_PREV] = 678 ctl->discardable_bytes[BTRFS_STAT_CURR]; 679 } 680 } 681 682 /* 683 * Punt unused_bgs list to discard lists. 684 * 685 * @fs_info: fs_info of interest 686 * 687 * The unused_bgs list needs to be punted to the discard lists because the 688 * order of operations is changed. In the normal synchronous discard path, the 689 * block groups are trimmed via a single large trim in transaction commit. This 690 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 691 * it must be done before going down the unused_bgs path. 692 */ 693 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 694 { 695 struct btrfs_block_group *block_group, *next; 696 697 spin_lock(&fs_info->unused_bgs_lock); 698 /* We enabled async discard, so punt all to the queue */ 699 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 700 bg_list) { 701 list_del_init(&block_group->bg_list); 702 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 703 /* 704 * This put is for the get done by btrfs_mark_bg_unused. 705 * Queueing discard incremented it for discard's reference. 706 */ 707 btrfs_put_block_group(block_group); 708 } 709 spin_unlock(&fs_info->unused_bgs_lock); 710 } 711 712 /* 713 * Purge discard lists. 714 * 715 * @discard_ctl: discard control 716 * 717 * If we are disabling async discard, we may have intercepted block groups that 718 * are completely free and ready for the unused_bgs path. As discarding will 719 * now happen in transaction commit or not at all, we can safely mark the 720 * corresponding block groups as unused and they will be sent on their merry 721 * way to the unused_bgs list. 722 */ 723 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 724 { 725 struct btrfs_block_group *block_group, *next; 726 int i; 727 728 spin_lock(&discard_ctl->lock); 729 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 730 list_for_each_entry_safe(block_group, next, 731 &discard_ctl->discard_list[i], 732 discard_list) { 733 list_del_init(&block_group->discard_list); 734 spin_unlock(&discard_ctl->lock); 735 if (block_group->used == 0) 736 btrfs_mark_bg_unused(block_group); 737 spin_lock(&discard_ctl->lock); 738 btrfs_put_block_group(block_group); 739 } 740 } 741 spin_unlock(&discard_ctl->lock); 742 } 743 744 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 745 { 746 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 747 btrfs_discard_cleanup(fs_info); 748 return; 749 } 750 751 btrfs_discard_punt_unused_bgs_list(fs_info); 752 753 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 754 } 755 756 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 757 { 758 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 759 } 760 761 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 762 { 763 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 764 int i; 765 766 spin_lock_init(&discard_ctl->lock); 767 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 768 769 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 770 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 771 772 discard_ctl->prev_discard = 0; 773 discard_ctl->prev_discard_time = 0; 774 atomic_set(&discard_ctl->discardable_extents, 0); 775 atomic64_set(&discard_ctl->discardable_bytes, 0); 776 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 777 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 778 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 779 discard_ctl->kbps_limit = 0; 780 discard_ctl->discard_extent_bytes = 0; 781 discard_ctl->discard_bitmap_bytes = 0; 782 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 783 } 784 785 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 786 { 787 btrfs_discard_stop(fs_info); 788 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 789 btrfs_discard_purge_list(&fs_info->discard_ctl); 790 } 791