1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	delayed_node->ins_root = RB_ROOT_CACHED;
61 	delayed_node->del_root = RB_ROOT_CACHED;
62 	mutex_init(&delayed_node->mutex);
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	xa_lock(&root->delayed_nodes);
81 	node = xa_load(&root->delayed_nodes, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			xa_unlock(&root->delayed_nodes);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the xarray.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the xarray at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the xarray, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		xa_unlock(&root->delayed_nodes);
115 		return node;
116 	}
117 	xa_unlock(&root->delayed_nodes);
118 
119 	return NULL;
120 }
121 
122 /*
123  * Look up an existing delayed node associated with @btrfs_inode or create a new
124  * one and insert it to the delayed nodes of the root.
125  *
126  * Return the delayed node, or error pointer on failure.
127  */
128 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
129 		struct btrfs_inode *btrfs_inode)
130 {
131 	struct btrfs_delayed_node *node;
132 	struct btrfs_root *root = btrfs_inode->root;
133 	u64 ino = btrfs_ino(btrfs_inode);
134 	int ret;
135 	void *ptr;
136 
137 again:
138 	node = btrfs_get_delayed_node(btrfs_inode);
139 	if (node)
140 		return node;
141 
142 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
143 	if (!node)
144 		return ERR_PTR(-ENOMEM);
145 	btrfs_init_delayed_node(node, root, ino);
146 
147 	/* Cached in the inode and can be accessed. */
148 	refcount_set(&node->refs, 2);
149 
150 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
151 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
152 	if (ret == -ENOMEM) {
153 		kmem_cache_free(delayed_node_cache, node);
154 		return ERR_PTR(-ENOMEM);
155 	}
156 	xa_lock(&root->delayed_nodes);
157 	ptr = xa_load(&root->delayed_nodes, ino);
158 	if (ptr) {
159 		/* Somebody inserted it, go back and read it. */
160 		xa_unlock(&root->delayed_nodes);
161 		kmem_cache_free(delayed_node_cache, node);
162 		node = NULL;
163 		goto again;
164 	}
165 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
166 	ASSERT(xa_err(ptr) != -EINVAL);
167 	ASSERT(xa_err(ptr) != -ENOMEM);
168 	ASSERT(ptr == NULL);
169 	btrfs_inode->delayed_node = node;
170 	xa_unlock(&root->delayed_nodes);
171 
172 	return node;
173 }
174 
175 /*
176  * Call it when holding delayed_node->mutex
177  *
178  * If mod = 1, add this node into the prepared list.
179  */
180 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
181 				     struct btrfs_delayed_node *node,
182 				     int mod)
183 {
184 	spin_lock(&root->lock);
185 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
186 		if (!list_empty(&node->p_list))
187 			list_move_tail(&node->p_list, &root->prepare_list);
188 		else if (mod)
189 			list_add_tail(&node->p_list, &root->prepare_list);
190 	} else {
191 		list_add_tail(&node->n_list, &root->node_list);
192 		list_add_tail(&node->p_list, &root->prepare_list);
193 		refcount_inc(&node->refs);	/* inserted into list */
194 		root->nodes++;
195 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 	}
197 	spin_unlock(&root->lock);
198 }
199 
200 /* Call it when holding delayed_node->mutex */
201 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
202 				       struct btrfs_delayed_node *node)
203 {
204 	spin_lock(&root->lock);
205 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
206 		root->nodes--;
207 		refcount_dec(&node->refs);	/* not in the list */
208 		list_del_init(&node->n_list);
209 		if (!list_empty(&node->p_list))
210 			list_del_init(&node->p_list);
211 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
212 	}
213 	spin_unlock(&root->lock);
214 }
215 
216 static struct btrfs_delayed_node *btrfs_first_delayed_node(
217 			struct btrfs_delayed_root *delayed_root)
218 {
219 	struct btrfs_delayed_node *node;
220 
221 	spin_lock(&delayed_root->lock);
222 	node = list_first_entry_or_null(&delayed_root->node_list,
223 					struct btrfs_delayed_node, n_list);
224 	if (node)
225 		refcount_inc(&node->refs);
226 	spin_unlock(&delayed_root->lock);
227 
228 	return node;
229 }
230 
231 static struct btrfs_delayed_node *btrfs_next_delayed_node(
232 						struct btrfs_delayed_node *node)
233 {
234 	struct btrfs_delayed_root *delayed_root;
235 	struct list_head *p;
236 	struct btrfs_delayed_node *next = NULL;
237 
238 	delayed_root = node->root->fs_info->delayed_root;
239 	spin_lock(&delayed_root->lock);
240 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
241 		/* not in the list */
242 		if (list_empty(&delayed_root->node_list))
243 			goto out;
244 		p = delayed_root->node_list.next;
245 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
246 		goto out;
247 	else
248 		p = node->n_list.next;
249 
250 	next = list_entry(p, struct btrfs_delayed_node, n_list);
251 	refcount_inc(&next->refs);
252 out:
253 	spin_unlock(&delayed_root->lock);
254 
255 	return next;
256 }
257 
258 static void __btrfs_release_delayed_node(
259 				struct btrfs_delayed_node *delayed_node,
260 				int mod)
261 {
262 	struct btrfs_delayed_root *delayed_root;
263 
264 	if (!delayed_node)
265 		return;
266 
267 	delayed_root = delayed_node->root->fs_info->delayed_root;
268 
269 	mutex_lock(&delayed_node->mutex);
270 	if (delayed_node->count)
271 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
272 	else
273 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
274 	mutex_unlock(&delayed_node->mutex);
275 
276 	if (refcount_dec_and_test(&delayed_node->refs)) {
277 		struct btrfs_root *root = delayed_node->root;
278 
279 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
280 		/*
281 		 * Once our refcount goes to zero, nobody is allowed to bump it
282 		 * back up.  We can delete it now.
283 		 */
284 		ASSERT(refcount_read(&delayed_node->refs) == 0);
285 		kmem_cache_free(delayed_node_cache, delayed_node);
286 	}
287 }
288 
289 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
290 {
291 	__btrfs_release_delayed_node(node, 0);
292 }
293 
294 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
295 					struct btrfs_delayed_root *delayed_root)
296 {
297 	struct btrfs_delayed_node *node;
298 
299 	spin_lock(&delayed_root->lock);
300 	node = list_first_entry_or_null(&delayed_root->prepare_list,
301 					struct btrfs_delayed_node, p_list);
302 	if (node) {
303 		list_del_init(&node->p_list);
304 		refcount_inc(&node->refs);
305 	}
306 	spin_unlock(&delayed_root->lock);
307 
308 	return node;
309 }
310 
311 static inline void btrfs_release_prepared_delayed_node(
312 					struct btrfs_delayed_node *node)
313 {
314 	__btrfs_release_delayed_node(node, 1);
315 }
316 
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
318 					   struct btrfs_delayed_node *node,
319 					   enum btrfs_delayed_item_type type)
320 {
321 	struct btrfs_delayed_item *item;
322 
323 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
324 	if (item) {
325 		item->data_len = data_len;
326 		item->type = type;
327 		item->bytes_reserved = 0;
328 		item->delayed_node = node;
329 		RB_CLEAR_NODE(&item->rb_node);
330 		INIT_LIST_HEAD(&item->log_list);
331 		item->logged = false;
332 		refcount_set(&item->refs, 1);
333 	}
334 	return item;
335 }
336 
337 /*
338  * Look up the delayed item by key.
339  *
340  * @delayed_node: pointer to the delayed node
341  * @index:	  the dir index value to lookup (offset of a dir index key)
342  *
343  * Note: if we don't find the right item, we will return the prev item and
344  * the next item.
345  */
346 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
347 				struct rb_root *root,
348 				u64 index)
349 {
350 	struct rb_node *node = root->rb_node;
351 	struct btrfs_delayed_item *delayed_item = NULL;
352 
353 	while (node) {
354 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 					rb_node);
356 		if (delayed_item->index < index)
357 			node = node->rb_right;
358 		else if (delayed_item->index > index)
359 			node = node->rb_left;
360 		else
361 			return delayed_item;
362 	}
363 
364 	return NULL;
365 }
366 
367 static int btrfs_delayed_item_cmp(const struct rb_node *new,
368 				  const struct rb_node *exist)
369 {
370 	const struct btrfs_delayed_item *new_item =
371 		rb_entry(new, struct btrfs_delayed_item, rb_node);
372 	const struct btrfs_delayed_item *exist_item =
373 		rb_entry(exist, struct btrfs_delayed_item, rb_node);
374 
375 	if (new_item->index < exist_item->index)
376 		return -1;
377 	if (new_item->index > exist_item->index)
378 		return 1;
379 	return 0;
380 }
381 
382 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
383 				    struct btrfs_delayed_item *ins)
384 {
385 	struct rb_root_cached *root;
386 	struct rb_node *exist;
387 
388 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
389 		root = &delayed_node->ins_root;
390 	else
391 		root = &delayed_node->del_root;
392 
393 	exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
394 	if (exist)
395 		return -EEXIST;
396 
397 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
398 	    ins->index >= delayed_node->index_cnt)
399 		delayed_node->index_cnt = ins->index + 1;
400 
401 	delayed_node->count++;
402 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
403 	return 0;
404 }
405 
406 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
407 {
408 	int seq = atomic_inc_return(&delayed_root->items_seq);
409 
410 	/* atomic_dec_return implies a barrier */
411 	if ((atomic_dec_return(&delayed_root->items) <
412 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
413 		cond_wake_up_nomb(&delayed_root->wait);
414 }
415 
416 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
417 {
418 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
419 	struct rb_root_cached *root;
420 	struct btrfs_delayed_root *delayed_root;
421 
422 	/* Not inserted, ignore it. */
423 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
424 		return;
425 
426 	/* If it's in a rbtree, then we need to have delayed node locked. */
427 	lockdep_assert_held(&delayed_node->mutex);
428 
429 	delayed_root = delayed_node->root->fs_info->delayed_root;
430 
431 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
432 		root = &delayed_node->ins_root;
433 	else
434 		root = &delayed_node->del_root;
435 
436 	rb_erase_cached(&delayed_item->rb_node, root);
437 	RB_CLEAR_NODE(&delayed_item->rb_node);
438 	delayed_node->count--;
439 
440 	finish_one_item(delayed_root);
441 }
442 
443 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
444 {
445 	if (item) {
446 		__btrfs_remove_delayed_item(item);
447 		if (refcount_dec_and_test(&item->refs))
448 			kfree(item);
449 	}
450 }
451 
452 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
453 					struct btrfs_delayed_node *delayed_node)
454 {
455 	struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
456 
457 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
458 }
459 
460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 					struct btrfs_delayed_node *delayed_node)
462 {
463 	struct rb_node *p = rb_first_cached(&delayed_node->del_root);
464 
465 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
466 }
467 
468 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
469 						struct btrfs_delayed_item *item)
470 {
471 	struct rb_node *p = rb_next(&item->rb_node);
472 
473 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
474 }
475 
476 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
477 					       struct btrfs_delayed_item *item)
478 {
479 	struct btrfs_block_rsv *src_rsv;
480 	struct btrfs_block_rsv *dst_rsv;
481 	struct btrfs_fs_info *fs_info = trans->fs_info;
482 	u64 num_bytes;
483 	int ret;
484 
485 	if (!trans->bytes_reserved)
486 		return 0;
487 
488 	src_rsv = trans->block_rsv;
489 	dst_rsv = &fs_info->delayed_block_rsv;
490 
491 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
492 
493 	/*
494 	 * Here we migrate space rsv from transaction rsv, since have already
495 	 * reserved space when starting a transaction.  So no need to reserve
496 	 * qgroup space here.
497 	 */
498 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
499 	if (!ret) {
500 		trace_btrfs_space_reservation(fs_info, "delayed_item",
501 					      item->delayed_node->inode_id,
502 					      num_bytes, 1);
503 		/*
504 		 * For insertions we track reserved metadata space by accounting
505 		 * for the number of leaves that will be used, based on the delayed
506 		 * node's curr_index_batch_size and index_item_leaves fields.
507 		 */
508 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
509 			item->bytes_reserved = num_bytes;
510 	}
511 
512 	return ret;
513 }
514 
515 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
516 						struct btrfs_delayed_item *item)
517 {
518 	struct btrfs_block_rsv *rsv;
519 	struct btrfs_fs_info *fs_info = root->fs_info;
520 
521 	if (!item->bytes_reserved)
522 		return;
523 
524 	rsv = &fs_info->delayed_block_rsv;
525 	/*
526 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
527 	 * to release/reserve qgroup space.
528 	 */
529 	trace_btrfs_space_reservation(fs_info, "delayed_item",
530 				      item->delayed_node->inode_id,
531 				      item->bytes_reserved, 0);
532 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
533 }
534 
535 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
536 					      unsigned int num_leaves)
537 {
538 	struct btrfs_fs_info *fs_info = node->root->fs_info;
539 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
540 
541 	/* There are no space reservations during log replay, bail out. */
542 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 		return;
544 
545 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
546 				      bytes, 0);
547 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
548 }
549 
550 static int btrfs_delayed_inode_reserve_metadata(
551 					struct btrfs_trans_handle *trans,
552 					struct btrfs_root *root,
553 					struct btrfs_delayed_node *node)
554 {
555 	struct btrfs_fs_info *fs_info = root->fs_info;
556 	struct btrfs_block_rsv *src_rsv;
557 	struct btrfs_block_rsv *dst_rsv;
558 	u64 num_bytes;
559 	int ret;
560 
561 	src_rsv = trans->block_rsv;
562 	dst_rsv = &fs_info->delayed_block_rsv;
563 
564 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
565 
566 	/*
567 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
568 	 * which doesn't reserve space for speed.  This is a problem since we
569 	 * still need to reserve space for this update, so try to reserve the
570 	 * space.
571 	 *
572 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
573 	 * we always reserve enough to update the inode item.
574 	 */
575 	if (!src_rsv || (!trans->bytes_reserved &&
576 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
577 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
578 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
579 		if (ret < 0)
580 			return ret;
581 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
582 					  BTRFS_RESERVE_NO_FLUSH);
583 		/* NO_FLUSH could only fail with -ENOSPC */
584 		ASSERT(ret == 0 || ret == -ENOSPC);
585 		if (ret)
586 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
587 	} else {
588 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
589 	}
590 
591 	if (!ret) {
592 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
593 					      node->inode_id, num_bytes, 1);
594 		node->bytes_reserved = num_bytes;
595 	}
596 
597 	return ret;
598 }
599 
600 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
601 						struct btrfs_delayed_node *node,
602 						bool qgroup_free)
603 {
604 	struct btrfs_block_rsv *rsv;
605 
606 	if (!node->bytes_reserved)
607 		return;
608 
609 	rsv = &fs_info->delayed_block_rsv;
610 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
611 				      node->inode_id, node->bytes_reserved, 0);
612 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
613 	if (qgroup_free)
614 		btrfs_qgroup_free_meta_prealloc(node->root,
615 				node->bytes_reserved);
616 	else
617 		btrfs_qgroup_convert_reserved_meta(node->root,
618 				node->bytes_reserved);
619 	node->bytes_reserved = 0;
620 }
621 
622 /*
623  * Insert a single delayed item or a batch of delayed items, as many as possible
624  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
625  * in the rbtree, and if there's a gap between two consecutive dir index items,
626  * then it means at some point we had delayed dir indexes to add but they got
627  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
628  * into the subvolume tree. Dir index keys also have their offsets coming from a
629  * monotonically increasing counter, so we can't get new keys with an offset that
630  * fits within a gap between delayed dir index items.
631  */
632 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
633 				     struct btrfs_root *root,
634 				     struct btrfs_path *path,
635 				     struct btrfs_delayed_item *first_item)
636 {
637 	struct btrfs_fs_info *fs_info = root->fs_info;
638 	struct btrfs_delayed_node *node = first_item->delayed_node;
639 	LIST_HEAD(item_list);
640 	struct btrfs_delayed_item *curr;
641 	struct btrfs_delayed_item *next;
642 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
643 	struct btrfs_item_batch batch;
644 	struct btrfs_key first_key;
645 	const u32 first_data_size = first_item->data_len;
646 	int total_size;
647 	char *ins_data = NULL;
648 	int ret;
649 	bool continuous_keys_only = false;
650 
651 	lockdep_assert_held(&node->mutex);
652 
653 	/*
654 	 * During normal operation the delayed index offset is continuously
655 	 * increasing, so we can batch insert all items as there will not be any
656 	 * overlapping keys in the tree.
657 	 *
658 	 * The exception to this is log replay, where we may have interleaved
659 	 * offsets in the tree, so our batch needs to be continuous keys only in
660 	 * order to ensure we do not end up with out of order items in our leaf.
661 	 */
662 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
663 		continuous_keys_only = true;
664 
665 	/*
666 	 * For delayed items to insert, we track reserved metadata bytes based
667 	 * on the number of leaves that we will use.
668 	 * See btrfs_insert_delayed_dir_index() and
669 	 * btrfs_delayed_item_reserve_metadata()).
670 	 */
671 	ASSERT(first_item->bytes_reserved == 0);
672 
673 	list_add_tail(&first_item->tree_list, &item_list);
674 	batch.total_data_size = first_data_size;
675 	batch.nr = 1;
676 	total_size = first_data_size + sizeof(struct btrfs_item);
677 	curr = first_item;
678 
679 	while (true) {
680 		int next_size;
681 
682 		next = __btrfs_next_delayed_item(curr);
683 		if (!next)
684 			break;
685 
686 		/*
687 		 * We cannot allow gaps in the key space if we're doing log
688 		 * replay.
689 		 */
690 		if (continuous_keys_only && (next->index != curr->index + 1))
691 			break;
692 
693 		ASSERT(next->bytes_reserved == 0);
694 
695 		next_size = next->data_len + sizeof(struct btrfs_item);
696 		if (total_size + next_size > max_size)
697 			break;
698 
699 		list_add_tail(&next->tree_list, &item_list);
700 		batch.nr++;
701 		total_size += next_size;
702 		batch.total_data_size += next->data_len;
703 		curr = next;
704 	}
705 
706 	if (batch.nr == 1) {
707 		first_key.objectid = node->inode_id;
708 		first_key.type = BTRFS_DIR_INDEX_KEY;
709 		first_key.offset = first_item->index;
710 		batch.keys = &first_key;
711 		batch.data_sizes = &first_data_size;
712 	} else {
713 		struct btrfs_key *ins_keys;
714 		u32 *ins_sizes;
715 		int i = 0;
716 
717 		ins_data = kmalloc(batch.nr * sizeof(u32) +
718 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
719 		if (!ins_data) {
720 			ret = -ENOMEM;
721 			goto out;
722 		}
723 		ins_sizes = (u32 *)ins_data;
724 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
725 		batch.keys = ins_keys;
726 		batch.data_sizes = ins_sizes;
727 		list_for_each_entry(curr, &item_list, tree_list) {
728 			ins_keys[i].objectid = node->inode_id;
729 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
730 			ins_keys[i].offset = curr->index;
731 			ins_sizes[i] = curr->data_len;
732 			i++;
733 		}
734 	}
735 
736 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
737 	if (ret)
738 		goto out;
739 
740 	list_for_each_entry(curr, &item_list, tree_list) {
741 		char *data_ptr;
742 
743 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
744 		write_extent_buffer(path->nodes[0], &curr->data,
745 				    (unsigned long)data_ptr, curr->data_len);
746 		path->slots[0]++;
747 	}
748 
749 	/*
750 	 * Now release our path before releasing the delayed items and their
751 	 * metadata reservations, so that we don't block other tasks for more
752 	 * time than needed.
753 	 */
754 	btrfs_release_path(path);
755 
756 	ASSERT(node->index_item_leaves > 0);
757 
758 	/*
759 	 * For normal operations we will batch an entire leaf's worth of delayed
760 	 * items, so if there are more items to process we can decrement
761 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
762 	 *
763 	 * However for log replay we may not have inserted an entire leaf's
764 	 * worth of items, we may have not had continuous items, so decrementing
765 	 * here would mess up the index_item_leaves accounting.  For this case
766 	 * only clean up the accounting when there are no items left.
767 	 */
768 	if (next && !continuous_keys_only) {
769 		/*
770 		 * We inserted one batch of items into a leaf a there are more
771 		 * items to flush in a future batch, now release one unit of
772 		 * metadata space from the delayed block reserve, corresponding
773 		 * the leaf we just flushed to.
774 		 */
775 		btrfs_delayed_item_release_leaves(node, 1);
776 		node->index_item_leaves--;
777 	} else if (!next) {
778 		/*
779 		 * There are no more items to insert. We can have a number of
780 		 * reserved leaves > 1 here - this happens when many dir index
781 		 * items are added and then removed before they are flushed (file
782 		 * names with a very short life, never span a transaction). So
783 		 * release all remaining leaves.
784 		 */
785 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
786 		node->index_item_leaves = 0;
787 	}
788 
789 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
790 		list_del(&curr->tree_list);
791 		btrfs_release_delayed_item(curr);
792 	}
793 out:
794 	kfree(ins_data);
795 	return ret;
796 }
797 
798 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
799 				      struct btrfs_path *path,
800 				      struct btrfs_root *root,
801 				      struct btrfs_delayed_node *node)
802 {
803 	int ret = 0;
804 
805 	while (ret == 0) {
806 		struct btrfs_delayed_item *curr;
807 
808 		mutex_lock(&node->mutex);
809 		curr = __btrfs_first_delayed_insertion_item(node);
810 		if (!curr) {
811 			mutex_unlock(&node->mutex);
812 			break;
813 		}
814 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
815 		mutex_unlock(&node->mutex);
816 	}
817 
818 	return ret;
819 }
820 
821 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
822 				    struct btrfs_root *root,
823 				    struct btrfs_path *path,
824 				    struct btrfs_delayed_item *item)
825 {
826 	const u64 ino = item->delayed_node->inode_id;
827 	struct btrfs_fs_info *fs_info = root->fs_info;
828 	struct btrfs_delayed_item *curr, *next;
829 	struct extent_buffer *leaf = path->nodes[0];
830 	LIST_HEAD(batch_list);
831 	int nitems, slot, last_slot;
832 	int ret;
833 	u64 total_reserved_size = item->bytes_reserved;
834 
835 	ASSERT(leaf != NULL);
836 
837 	slot = path->slots[0];
838 	last_slot = btrfs_header_nritems(leaf) - 1;
839 	/*
840 	 * Our caller always gives us a path pointing to an existing item, so
841 	 * this can not happen.
842 	 */
843 	ASSERT(slot <= last_slot);
844 	if (WARN_ON(slot > last_slot))
845 		return -ENOENT;
846 
847 	nitems = 1;
848 	curr = item;
849 	list_add_tail(&curr->tree_list, &batch_list);
850 
851 	/*
852 	 * Keep checking if the next delayed item matches the next item in the
853 	 * leaf - if so, we can add it to the batch of items to delete from the
854 	 * leaf.
855 	 */
856 	while (slot < last_slot) {
857 		struct btrfs_key key;
858 
859 		next = __btrfs_next_delayed_item(curr);
860 		if (!next)
861 			break;
862 
863 		slot++;
864 		btrfs_item_key_to_cpu(leaf, &key, slot);
865 		if (key.objectid != ino ||
866 		    key.type != BTRFS_DIR_INDEX_KEY ||
867 		    key.offset != next->index)
868 			break;
869 		nitems++;
870 		curr = next;
871 		list_add_tail(&curr->tree_list, &batch_list);
872 		total_reserved_size += curr->bytes_reserved;
873 	}
874 
875 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
876 	if (ret)
877 		return ret;
878 
879 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
880 	if (total_reserved_size > 0) {
881 		/*
882 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
883 		 * don't need to release/reserve qgroup space.
884 		 */
885 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
886 					      total_reserved_size, 0);
887 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
888 					total_reserved_size, NULL);
889 	}
890 
891 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
892 		list_del(&curr->tree_list);
893 		btrfs_release_delayed_item(curr);
894 	}
895 
896 	return 0;
897 }
898 
899 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
900 				      struct btrfs_path *path,
901 				      struct btrfs_root *root,
902 				      struct btrfs_delayed_node *node)
903 {
904 	struct btrfs_key key;
905 	int ret = 0;
906 
907 	key.objectid = node->inode_id;
908 	key.type = BTRFS_DIR_INDEX_KEY;
909 
910 	while (ret == 0) {
911 		struct btrfs_delayed_item *item;
912 
913 		mutex_lock(&node->mutex);
914 		item = __btrfs_first_delayed_deletion_item(node);
915 		if (!item) {
916 			mutex_unlock(&node->mutex);
917 			break;
918 		}
919 
920 		key.offset = item->index;
921 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
922 		if (ret > 0) {
923 			/*
924 			 * There's no matching item in the leaf. This means we
925 			 * have already deleted this item in a past run of the
926 			 * delayed items. We ignore errors when running delayed
927 			 * items from an async context, through a work queue job
928 			 * running btrfs_async_run_delayed_root(), and don't
929 			 * release delayed items that failed to complete. This
930 			 * is because we will retry later, and at transaction
931 			 * commit time we always run delayed items and will
932 			 * then deal with errors if they fail to run again.
933 			 *
934 			 * So just release delayed items for which we can't find
935 			 * an item in the tree, and move to the next item.
936 			 */
937 			btrfs_release_path(path);
938 			btrfs_release_delayed_item(item);
939 			ret = 0;
940 		} else if (ret == 0) {
941 			ret = btrfs_batch_delete_items(trans, root, path, item);
942 			btrfs_release_path(path);
943 		}
944 
945 		/*
946 		 * We unlock and relock on each iteration, this is to prevent
947 		 * blocking other tasks for too long while we are being run from
948 		 * the async context (work queue job). Those tasks are typically
949 		 * running system calls like creat/mkdir/rename/unlink/etc which
950 		 * need to add delayed items to this delayed node.
951 		 */
952 		mutex_unlock(&node->mutex);
953 	}
954 
955 	return ret;
956 }
957 
958 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
959 {
960 	struct btrfs_delayed_root *delayed_root;
961 
962 	if (delayed_node &&
963 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
964 		ASSERT(delayed_node->root);
965 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
966 		delayed_node->count--;
967 
968 		delayed_root = delayed_node->root->fs_info->delayed_root;
969 		finish_one_item(delayed_root);
970 	}
971 }
972 
973 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
974 {
975 
976 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
977 		struct btrfs_delayed_root *delayed_root;
978 
979 		ASSERT(delayed_node->root);
980 		delayed_node->count--;
981 
982 		delayed_root = delayed_node->root->fs_info->delayed_root;
983 		finish_one_item(delayed_root);
984 	}
985 }
986 
987 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
988 					struct btrfs_root *root,
989 					struct btrfs_path *path,
990 					struct btrfs_delayed_node *node)
991 {
992 	struct btrfs_fs_info *fs_info = root->fs_info;
993 	struct btrfs_key key;
994 	struct btrfs_inode_item *inode_item;
995 	struct extent_buffer *leaf;
996 	int mod;
997 	int ret;
998 
999 	key.objectid = node->inode_id;
1000 	key.type = BTRFS_INODE_ITEM_KEY;
1001 	key.offset = 0;
1002 
1003 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1004 		mod = -1;
1005 	else
1006 		mod = 1;
1007 
1008 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1009 	if (ret > 0)
1010 		ret = -ENOENT;
1011 	if (ret < 0)
1012 		goto out;
1013 
1014 	leaf = path->nodes[0];
1015 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1016 				    struct btrfs_inode_item);
1017 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1018 			    sizeof(struct btrfs_inode_item));
1019 
1020 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1021 		goto out;
1022 
1023 	/*
1024 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1025 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1026 	 *
1027 	 * But if we're the last item already, release and search for the last
1028 	 * INODE_REF/EXTREF.
1029 	 */
1030 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1031 		key.objectid = node->inode_id;
1032 		key.type = BTRFS_INODE_EXTREF_KEY;
1033 		key.offset = (u64)-1;
1034 
1035 		btrfs_release_path(path);
1036 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1037 		if (ret < 0)
1038 			goto err_out;
1039 		ASSERT(ret > 0);
1040 		ASSERT(path->slots[0] > 0);
1041 		ret = 0;
1042 		path->slots[0]--;
1043 		leaf = path->nodes[0];
1044 	} else {
1045 		path->slots[0]++;
1046 	}
1047 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1048 	if (key.objectid != node->inode_id)
1049 		goto out;
1050 	if (key.type != BTRFS_INODE_REF_KEY &&
1051 	    key.type != BTRFS_INODE_EXTREF_KEY)
1052 		goto out;
1053 
1054 	/*
1055 	 * Delayed iref deletion is for the inode who has only one link,
1056 	 * so there is only one iref. The case that several irefs are
1057 	 * in the same item doesn't exist.
1058 	 */
1059 	ret = btrfs_del_item(trans, root, path);
1060 out:
1061 	btrfs_release_delayed_iref(node);
1062 	btrfs_release_path(path);
1063 err_out:
1064 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1065 	btrfs_release_delayed_inode(node);
1066 
1067 	/*
1068 	 * If we fail to update the delayed inode we need to abort the
1069 	 * transaction, because we could leave the inode with the improper
1070 	 * counts behind.
1071 	 */
1072 	if (ret && ret != -ENOENT)
1073 		btrfs_abort_transaction(trans, ret);
1074 
1075 	return ret;
1076 }
1077 
1078 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1079 					     struct btrfs_root *root,
1080 					     struct btrfs_path *path,
1081 					     struct btrfs_delayed_node *node)
1082 {
1083 	int ret;
1084 
1085 	mutex_lock(&node->mutex);
1086 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1087 		mutex_unlock(&node->mutex);
1088 		return 0;
1089 	}
1090 
1091 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1092 	mutex_unlock(&node->mutex);
1093 	return ret;
1094 }
1095 
1096 static inline int
1097 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1098 				   struct btrfs_path *path,
1099 				   struct btrfs_delayed_node *node)
1100 {
1101 	int ret;
1102 
1103 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1104 	if (ret)
1105 		return ret;
1106 
1107 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1108 	if (ret)
1109 		return ret;
1110 
1111 	ret = btrfs_record_root_in_trans(trans, node->root);
1112 	if (ret)
1113 		return ret;
1114 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Called when committing the transaction.
1120  * Returns 0 on success.
1121  * Returns < 0 on error and returns with an aborted transaction with any
1122  * outstanding delayed items cleaned up.
1123  */
1124 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1125 {
1126 	struct btrfs_fs_info *fs_info = trans->fs_info;
1127 	struct btrfs_delayed_root *delayed_root;
1128 	struct btrfs_delayed_node *curr_node, *prev_node;
1129 	struct btrfs_path *path;
1130 	struct btrfs_block_rsv *block_rsv;
1131 	int ret = 0;
1132 	bool count = (nr > 0);
1133 
1134 	if (TRANS_ABORTED(trans))
1135 		return -EIO;
1136 
1137 	path = btrfs_alloc_path();
1138 	if (!path)
1139 		return -ENOMEM;
1140 
1141 	block_rsv = trans->block_rsv;
1142 	trans->block_rsv = &fs_info->delayed_block_rsv;
1143 
1144 	delayed_root = fs_info->delayed_root;
1145 
1146 	curr_node = btrfs_first_delayed_node(delayed_root);
1147 	while (curr_node && (!count || nr--)) {
1148 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1149 							 curr_node);
1150 		if (ret) {
1151 			btrfs_abort_transaction(trans, ret);
1152 			break;
1153 		}
1154 
1155 		prev_node = curr_node;
1156 		curr_node = btrfs_next_delayed_node(curr_node);
1157 		/*
1158 		 * See the comment below about releasing path before releasing
1159 		 * node. If the commit of delayed items was successful the path
1160 		 * should always be released, but in case of an error, it may
1161 		 * point to locked extent buffers (a leaf at the very least).
1162 		 */
1163 		ASSERT(path->nodes[0] == NULL);
1164 		btrfs_release_delayed_node(prev_node);
1165 	}
1166 
1167 	/*
1168 	 * Release the path to avoid a potential deadlock and lockdep splat when
1169 	 * releasing the delayed node, as that requires taking the delayed node's
1170 	 * mutex. If another task starts running delayed items before we take
1171 	 * the mutex, it will first lock the mutex and then it may try to lock
1172 	 * the same btree path (leaf).
1173 	 */
1174 	btrfs_free_path(path);
1175 
1176 	if (curr_node)
1177 		btrfs_release_delayed_node(curr_node);
1178 	trans->block_rsv = block_rsv;
1179 
1180 	return ret;
1181 }
1182 
1183 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1184 {
1185 	return __btrfs_run_delayed_items(trans, -1);
1186 }
1187 
1188 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1189 {
1190 	return __btrfs_run_delayed_items(trans, nr);
1191 }
1192 
1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 				     struct btrfs_inode *inode)
1195 {
1196 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 	BTRFS_PATH_AUTO_FREE(path);
1198 	struct btrfs_block_rsv *block_rsv;
1199 	int ret;
1200 
1201 	if (!delayed_node)
1202 		return 0;
1203 
1204 	mutex_lock(&delayed_node->mutex);
1205 	if (!delayed_node->count) {
1206 		mutex_unlock(&delayed_node->mutex);
1207 		btrfs_release_delayed_node(delayed_node);
1208 		return 0;
1209 	}
1210 	mutex_unlock(&delayed_node->mutex);
1211 
1212 	path = btrfs_alloc_path();
1213 	if (!path) {
1214 		btrfs_release_delayed_node(delayed_node);
1215 		return -ENOMEM;
1216 	}
1217 
1218 	block_rsv = trans->block_rsv;
1219 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1220 
1221 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1222 
1223 	btrfs_release_delayed_node(delayed_node);
1224 	trans->block_rsv = block_rsv;
1225 
1226 	return ret;
1227 }
1228 
1229 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1230 {
1231 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1232 	struct btrfs_trans_handle *trans;
1233 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1234 	struct btrfs_path *path;
1235 	struct btrfs_block_rsv *block_rsv;
1236 	int ret;
1237 
1238 	if (!delayed_node)
1239 		return 0;
1240 
1241 	mutex_lock(&delayed_node->mutex);
1242 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1243 		mutex_unlock(&delayed_node->mutex);
1244 		btrfs_release_delayed_node(delayed_node);
1245 		return 0;
1246 	}
1247 	mutex_unlock(&delayed_node->mutex);
1248 
1249 	trans = btrfs_join_transaction(delayed_node->root);
1250 	if (IS_ERR(trans)) {
1251 		ret = PTR_ERR(trans);
1252 		goto out;
1253 	}
1254 
1255 	path = btrfs_alloc_path();
1256 	if (!path) {
1257 		ret = -ENOMEM;
1258 		goto trans_out;
1259 	}
1260 
1261 	block_rsv = trans->block_rsv;
1262 	trans->block_rsv = &fs_info->delayed_block_rsv;
1263 
1264 	mutex_lock(&delayed_node->mutex);
1265 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1266 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1267 						   path, delayed_node);
1268 	else
1269 		ret = 0;
1270 	mutex_unlock(&delayed_node->mutex);
1271 
1272 	btrfs_free_path(path);
1273 	trans->block_rsv = block_rsv;
1274 trans_out:
1275 	btrfs_end_transaction(trans);
1276 	btrfs_btree_balance_dirty(fs_info);
1277 out:
1278 	btrfs_release_delayed_node(delayed_node);
1279 
1280 	return ret;
1281 }
1282 
1283 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1284 {
1285 	struct btrfs_delayed_node *delayed_node;
1286 
1287 	delayed_node = READ_ONCE(inode->delayed_node);
1288 	if (!delayed_node)
1289 		return;
1290 
1291 	inode->delayed_node = NULL;
1292 	btrfs_release_delayed_node(delayed_node);
1293 }
1294 
1295 struct btrfs_async_delayed_work {
1296 	struct btrfs_delayed_root *delayed_root;
1297 	int nr;
1298 	struct btrfs_work work;
1299 };
1300 
1301 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1302 {
1303 	struct btrfs_async_delayed_work *async_work;
1304 	struct btrfs_delayed_root *delayed_root;
1305 	struct btrfs_trans_handle *trans;
1306 	struct btrfs_path *path;
1307 	struct btrfs_delayed_node *delayed_node = NULL;
1308 	struct btrfs_root *root;
1309 	struct btrfs_block_rsv *block_rsv;
1310 	int total_done = 0;
1311 
1312 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1313 	delayed_root = async_work->delayed_root;
1314 
1315 	path = btrfs_alloc_path();
1316 	if (!path)
1317 		goto out;
1318 
1319 	do {
1320 		if (atomic_read(&delayed_root->items) <
1321 		    BTRFS_DELAYED_BACKGROUND / 2)
1322 			break;
1323 
1324 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1325 		if (!delayed_node)
1326 			break;
1327 
1328 		root = delayed_node->root;
1329 
1330 		trans = btrfs_join_transaction(root);
1331 		if (IS_ERR(trans)) {
1332 			btrfs_release_path(path);
1333 			btrfs_release_prepared_delayed_node(delayed_node);
1334 			total_done++;
1335 			continue;
1336 		}
1337 
1338 		block_rsv = trans->block_rsv;
1339 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1340 
1341 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1342 
1343 		trans->block_rsv = block_rsv;
1344 		btrfs_end_transaction(trans);
1345 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1346 
1347 		btrfs_release_path(path);
1348 		btrfs_release_prepared_delayed_node(delayed_node);
1349 		total_done++;
1350 
1351 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1352 		 || total_done < async_work->nr);
1353 
1354 	btrfs_free_path(path);
1355 out:
1356 	wake_up(&delayed_root->wait);
1357 	kfree(async_work);
1358 }
1359 
1360 
1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1362 				     struct btrfs_fs_info *fs_info, int nr)
1363 {
1364 	struct btrfs_async_delayed_work *async_work;
1365 
1366 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1367 	if (!async_work)
1368 		return -ENOMEM;
1369 
1370 	async_work->delayed_root = delayed_root;
1371 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1372 	async_work->nr = nr;
1373 
1374 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 	return 0;
1376 }
1377 
1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379 {
1380 	struct btrfs_delayed_node *node = btrfs_first_delayed_node(fs_info->delayed_root);
1381 
1382 	if (WARN_ON(node))
1383 		refcount_dec(&node->refs);
1384 }
1385 
1386 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1387 {
1388 	int val = atomic_read(&delayed_root->items_seq);
1389 
1390 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1391 		return true;
1392 
1393 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1394 		return true;
1395 
1396 	return false;
1397 }
1398 
1399 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1400 {
1401 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1402 
1403 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1404 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1405 		return;
1406 
1407 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1408 		int seq;
1409 		int ret;
1410 
1411 		seq = atomic_read(&delayed_root->items_seq);
1412 
1413 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1414 		if (ret)
1415 			return;
1416 
1417 		wait_event_interruptible(delayed_root->wait,
1418 					 could_end_wait(delayed_root, seq));
1419 		return;
1420 	}
1421 
1422 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1423 }
1424 
1425 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1426 {
1427 	struct btrfs_fs_info *fs_info = trans->fs_info;
1428 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1429 
1430 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1431 		return;
1432 
1433 	/*
1434 	 * Adding the new dir index item does not require touching another
1435 	 * leaf, so we can release 1 unit of metadata that was previously
1436 	 * reserved when starting the transaction. This applies only to
1437 	 * the case where we had a transaction start and excludes the
1438 	 * transaction join case (when replaying log trees).
1439 	 */
1440 	trace_btrfs_space_reservation(fs_info, "transaction",
1441 				      trans->transid, bytes, 0);
1442 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1443 	ASSERT(trans->bytes_reserved >= bytes);
1444 	trans->bytes_reserved -= bytes;
1445 }
1446 
1447 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1448 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1449 				   const char *name, int name_len,
1450 				   struct btrfs_inode *dir,
1451 				   const struct btrfs_disk_key *disk_key, u8 flags,
1452 				   u64 index)
1453 {
1454 	struct btrfs_fs_info *fs_info = trans->fs_info;
1455 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1456 	struct btrfs_delayed_node *delayed_node;
1457 	struct btrfs_delayed_item *delayed_item;
1458 	struct btrfs_dir_item *dir_item;
1459 	bool reserve_leaf_space;
1460 	u32 data_len;
1461 	int ret;
1462 
1463 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1464 	if (IS_ERR(delayed_node))
1465 		return PTR_ERR(delayed_node);
1466 
1467 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1468 						delayed_node,
1469 						BTRFS_DELAYED_INSERTION_ITEM);
1470 	if (!delayed_item) {
1471 		ret = -ENOMEM;
1472 		goto release_node;
1473 	}
1474 
1475 	delayed_item->index = index;
1476 
1477 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1478 	dir_item->location = *disk_key;
1479 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1480 	btrfs_set_stack_dir_data_len(dir_item, 0);
1481 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1482 	btrfs_set_stack_dir_flags(dir_item, flags);
1483 	memcpy((char *)(dir_item + 1), name, name_len);
1484 
1485 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1486 
1487 	mutex_lock(&delayed_node->mutex);
1488 
1489 	/*
1490 	 * First attempt to insert the delayed item. This is to make the error
1491 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1492 	 * any other task coming in and running the delayed item before we do
1493 	 * the metadata space reservation below, because we are holding the
1494 	 * delayed node's mutex and that mutex must also be locked before the
1495 	 * node's delayed items can be run.
1496 	 */
1497 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1498 	if (unlikely(ret)) {
1499 		btrfs_err(trans->fs_info,
1500 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1501 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1502 			  delayed_node->inode_id, dir->index_cnt,
1503 			  delayed_node->index_cnt, ret);
1504 		btrfs_release_delayed_item(delayed_item);
1505 		btrfs_release_dir_index_item_space(trans);
1506 		mutex_unlock(&delayed_node->mutex);
1507 		goto release_node;
1508 	}
1509 
1510 	if (delayed_node->index_item_leaves == 0 ||
1511 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1512 		delayed_node->curr_index_batch_size = data_len;
1513 		reserve_leaf_space = true;
1514 	} else {
1515 		delayed_node->curr_index_batch_size += data_len;
1516 		reserve_leaf_space = false;
1517 	}
1518 
1519 	if (reserve_leaf_space) {
1520 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1521 		/*
1522 		 * Space was reserved for a dir index item insertion when we
1523 		 * started the transaction, so getting a failure here should be
1524 		 * impossible.
1525 		 */
1526 		if (WARN_ON(ret)) {
1527 			btrfs_release_delayed_item(delayed_item);
1528 			mutex_unlock(&delayed_node->mutex);
1529 			goto release_node;
1530 		}
1531 
1532 		delayed_node->index_item_leaves++;
1533 	} else {
1534 		btrfs_release_dir_index_item_space(trans);
1535 	}
1536 	mutex_unlock(&delayed_node->mutex);
1537 
1538 release_node:
1539 	btrfs_release_delayed_node(delayed_node);
1540 	return ret;
1541 }
1542 
1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1544 					       u64 index)
1545 {
1546 	struct btrfs_delayed_item *item;
1547 
1548 	mutex_lock(&node->mutex);
1549 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1550 	if (!item) {
1551 		mutex_unlock(&node->mutex);
1552 		return 1;
1553 	}
1554 
1555 	/*
1556 	 * For delayed items to insert, we track reserved metadata bytes based
1557 	 * on the number of leaves that we will use.
1558 	 * See btrfs_insert_delayed_dir_index() and
1559 	 * btrfs_delayed_item_reserve_metadata()).
1560 	 */
1561 	ASSERT(item->bytes_reserved == 0);
1562 	ASSERT(node->index_item_leaves > 0);
1563 
1564 	/*
1565 	 * If there's only one leaf reserved, we can decrement this item from the
1566 	 * current batch, otherwise we can not because we don't know which leaf
1567 	 * it belongs to. With the current limit on delayed items, we rarely
1568 	 * accumulate enough dir index items to fill more than one leaf (even
1569 	 * when using a leaf size of 4K).
1570 	 */
1571 	if (node->index_item_leaves == 1) {
1572 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1573 
1574 		ASSERT(node->curr_index_batch_size >= data_len);
1575 		node->curr_index_batch_size -= data_len;
1576 	}
1577 
1578 	btrfs_release_delayed_item(item);
1579 
1580 	/* If we now have no more dir index items, we can release all leaves. */
1581 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1582 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1583 		node->index_item_leaves = 0;
1584 	}
1585 
1586 	mutex_unlock(&node->mutex);
1587 	return 0;
1588 }
1589 
1590 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1591 				   struct btrfs_inode *dir, u64 index)
1592 {
1593 	struct btrfs_delayed_node *node;
1594 	struct btrfs_delayed_item *item;
1595 	int ret;
1596 
1597 	node = btrfs_get_or_create_delayed_node(dir);
1598 	if (IS_ERR(node))
1599 		return PTR_ERR(node);
1600 
1601 	ret = btrfs_delete_delayed_insertion_item(node, index);
1602 	if (!ret)
1603 		goto end;
1604 
1605 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1606 	if (!item) {
1607 		ret = -ENOMEM;
1608 		goto end;
1609 	}
1610 
1611 	item->index = index;
1612 
1613 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1614 	/*
1615 	 * we have reserved enough space when we start a new transaction,
1616 	 * so reserving metadata failure is impossible.
1617 	 */
1618 	if (ret < 0) {
1619 		btrfs_err(trans->fs_info,
1620 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1621 		btrfs_release_delayed_item(item);
1622 		goto end;
1623 	}
1624 
1625 	mutex_lock(&node->mutex);
1626 	ret = __btrfs_add_delayed_item(node, item);
1627 	if (unlikely(ret)) {
1628 		btrfs_err(trans->fs_info,
1629 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1630 			  index, btrfs_root_id(node->root),
1631 			  node->inode_id, ret);
1632 		btrfs_delayed_item_release_metadata(dir->root, item);
1633 		btrfs_release_delayed_item(item);
1634 	}
1635 	mutex_unlock(&node->mutex);
1636 end:
1637 	btrfs_release_delayed_node(node);
1638 	return ret;
1639 }
1640 
1641 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1642 {
1643 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1644 
1645 	if (!delayed_node)
1646 		return -ENOENT;
1647 
1648 	/*
1649 	 * Since we have held i_mutex of this directory, it is impossible that
1650 	 * a new directory index is added into the delayed node and index_cnt
1651 	 * is updated now. So we needn't lock the delayed node.
1652 	 */
1653 	if (!delayed_node->index_cnt) {
1654 		btrfs_release_delayed_node(delayed_node);
1655 		return -EINVAL;
1656 	}
1657 
1658 	inode->index_cnt = delayed_node->index_cnt;
1659 	btrfs_release_delayed_node(delayed_node);
1660 	return 0;
1661 }
1662 
1663 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1664 				     u64 last_index,
1665 				     struct list_head *ins_list,
1666 				     struct list_head *del_list)
1667 {
1668 	struct btrfs_delayed_node *delayed_node;
1669 	struct btrfs_delayed_item *item;
1670 
1671 	delayed_node = btrfs_get_delayed_node(inode);
1672 	if (!delayed_node)
1673 		return false;
1674 
1675 	/*
1676 	 * We can only do one readdir with delayed items at a time because of
1677 	 * item->readdir_list.
1678 	 */
1679 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1680 	btrfs_inode_lock(inode, 0);
1681 
1682 	mutex_lock(&delayed_node->mutex);
1683 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1684 	while (item && item->index <= last_index) {
1685 		refcount_inc(&item->refs);
1686 		list_add_tail(&item->readdir_list, ins_list);
1687 		item = __btrfs_next_delayed_item(item);
1688 	}
1689 
1690 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1691 	while (item && item->index <= last_index) {
1692 		refcount_inc(&item->refs);
1693 		list_add_tail(&item->readdir_list, del_list);
1694 		item = __btrfs_next_delayed_item(item);
1695 	}
1696 	mutex_unlock(&delayed_node->mutex);
1697 	/*
1698 	 * This delayed node is still cached in the btrfs inode, so refs
1699 	 * must be > 1 now, and we needn't check it is going to be freed
1700 	 * or not.
1701 	 *
1702 	 * Besides that, this function is used to read dir, we do not
1703 	 * insert/delete delayed items in this period. So we also needn't
1704 	 * requeue or dequeue this delayed node.
1705 	 */
1706 	refcount_dec(&delayed_node->refs);
1707 
1708 	return true;
1709 }
1710 
1711 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1712 				     struct list_head *ins_list,
1713 				     struct list_head *del_list)
1714 {
1715 	struct btrfs_delayed_item *curr, *next;
1716 
1717 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1718 		list_del(&curr->readdir_list);
1719 		if (refcount_dec_and_test(&curr->refs))
1720 			kfree(curr);
1721 	}
1722 
1723 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1724 		list_del(&curr->readdir_list);
1725 		if (refcount_dec_and_test(&curr->refs))
1726 			kfree(curr);
1727 	}
1728 
1729 	/*
1730 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1731 	 * read lock.
1732 	 */
1733 	downgrade_write(&inode->vfs_inode.i_rwsem);
1734 }
1735 
1736 int btrfs_should_delete_dir_index(const struct list_head *del_list,
1737 				  u64 index)
1738 {
1739 	struct btrfs_delayed_item *curr;
1740 	int ret = 0;
1741 
1742 	list_for_each_entry(curr, del_list, readdir_list) {
1743 		if (curr->index > index)
1744 			break;
1745 		if (curr->index == index) {
1746 			ret = 1;
1747 			break;
1748 		}
1749 	}
1750 	return ret;
1751 }
1752 
1753 /*
1754  * Read dir info stored in the delayed tree.
1755  */
1756 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1757 				    const struct list_head *ins_list)
1758 {
1759 	struct btrfs_dir_item *di;
1760 	struct btrfs_delayed_item *curr, *next;
1761 	struct btrfs_key location;
1762 	char *name;
1763 	int name_len;
1764 	int over = 0;
1765 	unsigned char d_type;
1766 
1767 	/*
1768 	 * Changing the data of the delayed item is impossible. So
1769 	 * we needn't lock them. And we have held i_mutex of the
1770 	 * directory, nobody can delete any directory indexes now.
1771 	 */
1772 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1773 		list_del(&curr->readdir_list);
1774 
1775 		if (curr->index < ctx->pos) {
1776 			if (refcount_dec_and_test(&curr->refs))
1777 				kfree(curr);
1778 			continue;
1779 		}
1780 
1781 		ctx->pos = curr->index;
1782 
1783 		di = (struct btrfs_dir_item *)curr->data;
1784 		name = (char *)(di + 1);
1785 		name_len = btrfs_stack_dir_name_len(di);
1786 
1787 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1788 		btrfs_disk_key_to_cpu(&location, &di->location);
1789 
1790 		over = !dir_emit(ctx, name, name_len,
1791 			       location.objectid, d_type);
1792 
1793 		if (refcount_dec_and_test(&curr->refs))
1794 			kfree(curr);
1795 
1796 		if (over)
1797 			return 1;
1798 		ctx->pos++;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1804 				  struct btrfs_inode_item *inode_item,
1805 				  struct btrfs_inode *inode)
1806 {
1807 	struct inode *vfs_inode = &inode->vfs_inode;
1808 	u64 flags;
1809 
1810 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1811 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1812 	btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1813 	btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1814 	btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1815 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1816 	btrfs_set_stack_inode_generation(inode_item, inode->generation);
1817 	btrfs_set_stack_inode_sequence(inode_item,
1818 				       inode_peek_iversion(vfs_inode));
1819 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1820 	btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1821 	flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1822 	btrfs_set_stack_inode_flags(inode_item, flags);
1823 	btrfs_set_stack_inode_block_group(inode_item, 0);
1824 
1825 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1826 				     inode_get_atime_sec(vfs_inode));
1827 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1828 				      inode_get_atime_nsec(vfs_inode));
1829 
1830 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1831 				     inode_get_mtime_sec(vfs_inode));
1832 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1833 				      inode_get_mtime_nsec(vfs_inode));
1834 
1835 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1836 				     inode_get_ctime_sec(vfs_inode));
1837 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1838 				      inode_get_ctime_nsec(vfs_inode));
1839 
1840 	btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1841 	btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1842 }
1843 
1844 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1845 {
1846 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1847 	struct btrfs_delayed_node *delayed_node;
1848 	struct btrfs_inode_item *inode_item;
1849 	struct inode *vfs_inode = &inode->vfs_inode;
1850 
1851 	delayed_node = btrfs_get_delayed_node(inode);
1852 	if (!delayed_node)
1853 		return -ENOENT;
1854 
1855 	mutex_lock(&delayed_node->mutex);
1856 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1857 		mutex_unlock(&delayed_node->mutex);
1858 		btrfs_release_delayed_node(delayed_node);
1859 		return -ENOENT;
1860 	}
1861 
1862 	inode_item = &delayed_node->inode_item;
1863 
1864 	i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1865 	i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1866 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1867 	btrfs_inode_set_file_extent_range(inode, 0,
1868 			round_up(i_size_read(vfs_inode), fs_info->sectorsize));
1869 	vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1870 	set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1871 	inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1872 	inode->generation = btrfs_stack_inode_generation(inode_item);
1873 	inode->last_trans = btrfs_stack_inode_transid(inode_item);
1874 
1875 	inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1876 	vfs_inode->i_rdev = 0;
1877 	*rdev = btrfs_stack_inode_rdev(inode_item);
1878 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1879 				&inode->flags, &inode->ro_flags);
1880 
1881 	inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1882 			btrfs_stack_timespec_nsec(&inode_item->atime));
1883 
1884 	inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1885 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1886 
1887 	inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1888 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1889 
1890 	inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1891 	inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1892 
1893 	vfs_inode->i_generation = inode->generation;
1894 	if (S_ISDIR(vfs_inode->i_mode))
1895 		inode->index_cnt = (u64)-1;
1896 
1897 	mutex_unlock(&delayed_node->mutex);
1898 	btrfs_release_delayed_node(delayed_node);
1899 	return 0;
1900 }
1901 
1902 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1903 			       struct btrfs_inode *inode)
1904 {
1905 	struct btrfs_root *root = inode->root;
1906 	struct btrfs_delayed_node *delayed_node;
1907 	int ret = 0;
1908 
1909 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1910 	if (IS_ERR(delayed_node))
1911 		return PTR_ERR(delayed_node);
1912 
1913 	mutex_lock(&delayed_node->mutex);
1914 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1915 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1916 		goto release_node;
1917 	}
1918 
1919 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1920 	if (ret)
1921 		goto release_node;
1922 
1923 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1924 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1925 	delayed_node->count++;
1926 	atomic_inc(&root->fs_info->delayed_root->items);
1927 release_node:
1928 	mutex_unlock(&delayed_node->mutex);
1929 	btrfs_release_delayed_node(delayed_node);
1930 	return ret;
1931 }
1932 
1933 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1934 {
1935 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1936 	struct btrfs_delayed_node *delayed_node;
1937 
1938 	/*
1939 	 * we don't do delayed inode updates during log recovery because it
1940 	 * leads to enospc problems.  This means we also can't do
1941 	 * delayed inode refs
1942 	 */
1943 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1944 		return -EAGAIN;
1945 
1946 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1947 	if (IS_ERR(delayed_node))
1948 		return PTR_ERR(delayed_node);
1949 
1950 	/*
1951 	 * We don't reserve space for inode ref deletion is because:
1952 	 * - We ONLY do async inode ref deletion for the inode who has only
1953 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1954 	 *   And in most case, the inode ref and the inode item are in the
1955 	 *   same leaf, and we will deal with them at the same time.
1956 	 *   Since we are sure we will reserve the space for the inode item,
1957 	 *   it is unnecessary to reserve space for inode ref deletion.
1958 	 * - If the inode ref and the inode item are not in the same leaf,
1959 	 *   We also needn't worry about enospc problem, because we reserve
1960 	 *   much more space for the inode update than it needs.
1961 	 * - At the worst, we can steal some space from the global reservation.
1962 	 *   It is very rare.
1963 	 */
1964 	mutex_lock(&delayed_node->mutex);
1965 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1966 		goto release_node;
1967 
1968 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1969 	delayed_node->count++;
1970 	atomic_inc(&fs_info->delayed_root->items);
1971 release_node:
1972 	mutex_unlock(&delayed_node->mutex);
1973 	btrfs_release_delayed_node(delayed_node);
1974 	return 0;
1975 }
1976 
1977 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1978 {
1979 	struct btrfs_root *root = delayed_node->root;
1980 	struct btrfs_fs_info *fs_info = root->fs_info;
1981 	struct btrfs_delayed_item *curr_item, *prev_item;
1982 
1983 	mutex_lock(&delayed_node->mutex);
1984 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1985 	while (curr_item) {
1986 		prev_item = curr_item;
1987 		curr_item = __btrfs_next_delayed_item(prev_item);
1988 		btrfs_release_delayed_item(prev_item);
1989 	}
1990 
1991 	if (delayed_node->index_item_leaves > 0) {
1992 		btrfs_delayed_item_release_leaves(delayed_node,
1993 					  delayed_node->index_item_leaves);
1994 		delayed_node->index_item_leaves = 0;
1995 	}
1996 
1997 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1998 	while (curr_item) {
1999 		btrfs_delayed_item_release_metadata(root, curr_item);
2000 		prev_item = curr_item;
2001 		curr_item = __btrfs_next_delayed_item(prev_item);
2002 		btrfs_release_delayed_item(prev_item);
2003 	}
2004 
2005 	btrfs_release_delayed_iref(delayed_node);
2006 
2007 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2008 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2009 		btrfs_release_delayed_inode(delayed_node);
2010 	}
2011 	mutex_unlock(&delayed_node->mutex);
2012 }
2013 
2014 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2015 {
2016 	struct btrfs_delayed_node *delayed_node;
2017 
2018 	delayed_node = btrfs_get_delayed_node(inode);
2019 	if (!delayed_node)
2020 		return;
2021 
2022 	__btrfs_kill_delayed_node(delayed_node);
2023 	btrfs_release_delayed_node(delayed_node);
2024 }
2025 
2026 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2027 {
2028 	unsigned long index = 0;
2029 	struct btrfs_delayed_node *delayed_nodes[8];
2030 
2031 	while (1) {
2032 		struct btrfs_delayed_node *node;
2033 		int count;
2034 
2035 		xa_lock(&root->delayed_nodes);
2036 		if (xa_empty(&root->delayed_nodes)) {
2037 			xa_unlock(&root->delayed_nodes);
2038 			return;
2039 		}
2040 
2041 		count = 0;
2042 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2043 			/*
2044 			 * Don't increase refs in case the node is dead and
2045 			 * about to be removed from the tree in the loop below
2046 			 */
2047 			if (refcount_inc_not_zero(&node->refs)) {
2048 				delayed_nodes[count] = node;
2049 				count++;
2050 			}
2051 			if (count >= ARRAY_SIZE(delayed_nodes))
2052 				break;
2053 		}
2054 		xa_unlock(&root->delayed_nodes);
2055 		index++;
2056 
2057 		for (int i = 0; i < count; i++) {
2058 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2059 			btrfs_release_delayed_node(delayed_nodes[i]);
2060 		}
2061 	}
2062 }
2063 
2064 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2065 {
2066 	struct btrfs_delayed_node *curr_node, *prev_node;
2067 
2068 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2069 	while (curr_node) {
2070 		__btrfs_kill_delayed_node(curr_node);
2071 
2072 		prev_node = curr_node;
2073 		curr_node = btrfs_next_delayed_node(curr_node);
2074 		btrfs_release_delayed_node(prev_node);
2075 	}
2076 }
2077 
2078 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2079 				 struct list_head *ins_list,
2080 				 struct list_head *del_list)
2081 {
2082 	struct btrfs_delayed_node *node;
2083 	struct btrfs_delayed_item *item;
2084 
2085 	node = btrfs_get_delayed_node(inode);
2086 	if (!node)
2087 		return;
2088 
2089 	mutex_lock(&node->mutex);
2090 	item = __btrfs_first_delayed_insertion_item(node);
2091 	while (item) {
2092 		/*
2093 		 * It's possible that the item is already in a log list. This
2094 		 * can happen in case two tasks are trying to log the same
2095 		 * directory. For example if we have tasks A and task B:
2096 		 *
2097 		 * Task A collected the delayed items into a log list while
2098 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2099 		 * only releases the items after logging the inodes they point
2100 		 * to (if they are new inodes), which happens after unlocking
2101 		 * the log mutex;
2102 		 *
2103 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2104 		 * of the same directory inode, before task B releases the
2105 		 * delayed items. This can happen for example when logging some
2106 		 * inode we need to trigger logging of its parent directory, so
2107 		 * logging two files that have the same parent directory can
2108 		 * lead to this.
2109 		 *
2110 		 * If this happens, just ignore delayed items already in a log
2111 		 * list. All the tasks logging the directory are under a log
2112 		 * transaction and whichever finishes first can not sync the log
2113 		 * before the other completes and leaves the log transaction.
2114 		 */
2115 		if (!item->logged && list_empty(&item->log_list)) {
2116 			refcount_inc(&item->refs);
2117 			list_add_tail(&item->log_list, ins_list);
2118 		}
2119 		item = __btrfs_next_delayed_item(item);
2120 	}
2121 
2122 	item = __btrfs_first_delayed_deletion_item(node);
2123 	while (item) {
2124 		/* It may be non-empty, for the same reason mentioned above. */
2125 		if (!item->logged && list_empty(&item->log_list)) {
2126 			refcount_inc(&item->refs);
2127 			list_add_tail(&item->log_list, del_list);
2128 		}
2129 		item = __btrfs_next_delayed_item(item);
2130 	}
2131 	mutex_unlock(&node->mutex);
2132 
2133 	/*
2134 	 * We are called during inode logging, which means the inode is in use
2135 	 * and can not be evicted before we finish logging the inode. So we never
2136 	 * have the last reference on the delayed inode.
2137 	 * Also, we don't use btrfs_release_delayed_node() because that would
2138 	 * requeue the delayed inode (change its order in the list of prepared
2139 	 * nodes) and we don't want to do such change because we don't create or
2140 	 * delete delayed items.
2141 	 */
2142 	ASSERT(refcount_read(&node->refs) > 1);
2143 	refcount_dec(&node->refs);
2144 }
2145 
2146 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2147 				 struct list_head *ins_list,
2148 				 struct list_head *del_list)
2149 {
2150 	struct btrfs_delayed_node *node;
2151 	struct btrfs_delayed_item *item;
2152 	struct btrfs_delayed_item *next;
2153 
2154 	node = btrfs_get_delayed_node(inode);
2155 	if (!node)
2156 		return;
2157 
2158 	mutex_lock(&node->mutex);
2159 
2160 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2161 		item->logged = true;
2162 		list_del_init(&item->log_list);
2163 		if (refcount_dec_and_test(&item->refs))
2164 			kfree(item);
2165 	}
2166 
2167 	list_for_each_entry_safe(item, next, del_list, log_list) {
2168 		item->logged = true;
2169 		list_del_init(&item->log_list);
2170 		if (refcount_dec_and_test(&item->refs))
2171 			kfree(item);
2172 	}
2173 
2174 	mutex_unlock(&node->mutex);
2175 
2176 	/*
2177 	 * We are called during inode logging, which means the inode is in use
2178 	 * and can not be evicted before we finish logging the inode. So we never
2179 	 * have the last reference on the delayed inode.
2180 	 * Also, we don't use btrfs_release_delayed_node() because that would
2181 	 * requeue the delayed inode (change its order in the list of prepared
2182 	 * nodes) and we don't want to do such change because we don't create or
2183 	 * delete delayed items.
2184 	 */
2185 	ASSERT(refcount_read(&node->refs) > 1);
2186 	refcount_dec(&node->refs);
2187 }
2188