1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 delayed_node->ins_root = RB_ROOT_CACHED; 61 delayed_node->del_root = RB_ROOT_CACHED; 62 mutex_init(&delayed_node->mutex); 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 xa_lock(&root->delayed_nodes); 81 node = xa_load(&root->delayed_nodes, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 xa_unlock(&root->delayed_nodes); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the xarray. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the xarray at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the xarray, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 xa_unlock(&root->delayed_nodes); 115 return node; 116 } 117 xa_unlock(&root->delayed_nodes); 118 119 return NULL; 120 } 121 122 /* 123 * Look up an existing delayed node associated with @btrfs_inode or create a new 124 * one and insert it to the delayed nodes of the root. 125 * 126 * Return the delayed node, or error pointer on failure. 127 */ 128 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 129 struct btrfs_inode *btrfs_inode) 130 { 131 struct btrfs_delayed_node *node; 132 struct btrfs_root *root = btrfs_inode->root; 133 u64 ino = btrfs_ino(btrfs_inode); 134 int ret; 135 void *ptr; 136 137 again: 138 node = btrfs_get_delayed_node(btrfs_inode); 139 if (node) 140 return node; 141 142 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 143 if (!node) 144 return ERR_PTR(-ENOMEM); 145 btrfs_init_delayed_node(node, root, ino); 146 147 /* Cached in the inode and can be accessed. */ 148 refcount_set(&node->refs, 2); 149 150 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 151 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 152 if (ret == -ENOMEM) { 153 kmem_cache_free(delayed_node_cache, node); 154 return ERR_PTR(-ENOMEM); 155 } 156 xa_lock(&root->delayed_nodes); 157 ptr = xa_load(&root->delayed_nodes, ino); 158 if (ptr) { 159 /* Somebody inserted it, go back and read it. */ 160 xa_unlock(&root->delayed_nodes); 161 kmem_cache_free(delayed_node_cache, node); 162 node = NULL; 163 goto again; 164 } 165 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 166 ASSERT(xa_err(ptr) != -EINVAL); 167 ASSERT(xa_err(ptr) != -ENOMEM); 168 ASSERT(ptr == NULL); 169 btrfs_inode->delayed_node = node; 170 xa_unlock(&root->delayed_nodes); 171 172 return node; 173 } 174 175 /* 176 * Call it when holding delayed_node->mutex 177 * 178 * If mod = 1, add this node into the prepared list. 179 */ 180 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 181 struct btrfs_delayed_node *node, 182 int mod) 183 { 184 spin_lock(&root->lock); 185 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 186 if (!list_empty(&node->p_list)) 187 list_move_tail(&node->p_list, &root->prepare_list); 188 else if (mod) 189 list_add_tail(&node->p_list, &root->prepare_list); 190 } else { 191 list_add_tail(&node->n_list, &root->node_list); 192 list_add_tail(&node->p_list, &root->prepare_list); 193 refcount_inc(&node->refs); /* inserted into list */ 194 root->nodes++; 195 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 196 } 197 spin_unlock(&root->lock); 198 } 199 200 /* Call it when holding delayed_node->mutex */ 201 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 202 struct btrfs_delayed_node *node) 203 { 204 spin_lock(&root->lock); 205 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 206 root->nodes--; 207 refcount_dec(&node->refs); /* not in the list */ 208 list_del_init(&node->n_list); 209 if (!list_empty(&node->p_list)) 210 list_del_init(&node->p_list); 211 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 212 } 213 spin_unlock(&root->lock); 214 } 215 216 static struct btrfs_delayed_node *btrfs_first_delayed_node( 217 struct btrfs_delayed_root *delayed_root) 218 { 219 struct btrfs_delayed_node *node; 220 221 spin_lock(&delayed_root->lock); 222 node = list_first_entry_or_null(&delayed_root->node_list, 223 struct btrfs_delayed_node, n_list); 224 if (node) 225 refcount_inc(&node->refs); 226 spin_unlock(&delayed_root->lock); 227 228 return node; 229 } 230 231 static struct btrfs_delayed_node *btrfs_next_delayed_node( 232 struct btrfs_delayed_node *node) 233 { 234 struct btrfs_delayed_root *delayed_root; 235 struct list_head *p; 236 struct btrfs_delayed_node *next = NULL; 237 238 delayed_root = node->root->fs_info->delayed_root; 239 spin_lock(&delayed_root->lock); 240 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 241 /* not in the list */ 242 if (list_empty(&delayed_root->node_list)) 243 goto out; 244 p = delayed_root->node_list.next; 245 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 246 goto out; 247 else 248 p = node->n_list.next; 249 250 next = list_entry(p, struct btrfs_delayed_node, n_list); 251 refcount_inc(&next->refs); 252 out: 253 spin_unlock(&delayed_root->lock); 254 255 return next; 256 } 257 258 static void __btrfs_release_delayed_node( 259 struct btrfs_delayed_node *delayed_node, 260 int mod) 261 { 262 struct btrfs_delayed_root *delayed_root; 263 264 if (!delayed_node) 265 return; 266 267 delayed_root = delayed_node->root->fs_info->delayed_root; 268 269 mutex_lock(&delayed_node->mutex); 270 if (delayed_node->count) 271 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 272 else 273 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 274 mutex_unlock(&delayed_node->mutex); 275 276 if (refcount_dec_and_test(&delayed_node->refs)) { 277 struct btrfs_root *root = delayed_node->root; 278 279 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 280 /* 281 * Once our refcount goes to zero, nobody is allowed to bump it 282 * back up. We can delete it now. 283 */ 284 ASSERT(refcount_read(&delayed_node->refs) == 0); 285 kmem_cache_free(delayed_node_cache, delayed_node); 286 } 287 } 288 289 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 290 { 291 __btrfs_release_delayed_node(node, 0); 292 } 293 294 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 295 struct btrfs_delayed_root *delayed_root) 296 { 297 struct btrfs_delayed_node *node; 298 299 spin_lock(&delayed_root->lock); 300 node = list_first_entry_or_null(&delayed_root->prepare_list, 301 struct btrfs_delayed_node, p_list); 302 if (node) { 303 list_del_init(&node->p_list); 304 refcount_inc(&node->refs); 305 } 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 318 struct btrfs_delayed_node *node, 319 enum btrfs_delayed_item_type type) 320 { 321 struct btrfs_delayed_item *item; 322 323 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 324 if (item) { 325 item->data_len = data_len; 326 item->type = type; 327 item->bytes_reserved = 0; 328 item->delayed_node = node; 329 RB_CLEAR_NODE(&item->rb_node); 330 INIT_LIST_HEAD(&item->log_list); 331 item->logged = false; 332 refcount_set(&item->refs, 1); 333 } 334 return item; 335 } 336 337 /* 338 * Look up the delayed item by key. 339 * 340 * @delayed_node: pointer to the delayed node 341 * @index: the dir index value to lookup (offset of a dir index key) 342 * 343 * Note: if we don't find the right item, we will return the prev item and 344 * the next item. 345 */ 346 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 347 struct rb_root *root, 348 u64 index) 349 { 350 struct rb_node *node = root->rb_node; 351 struct btrfs_delayed_item *delayed_item = NULL; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 if (delayed_item->index < index) 357 node = node->rb_right; 358 else if (delayed_item->index > index) 359 node = node->rb_left; 360 else 361 return delayed_item; 362 } 363 364 return NULL; 365 } 366 367 static int btrfs_delayed_item_cmp(const struct rb_node *new, 368 const struct rb_node *exist) 369 { 370 const struct btrfs_delayed_item *new_item = 371 rb_entry(new, struct btrfs_delayed_item, rb_node); 372 const struct btrfs_delayed_item *exist_item = 373 rb_entry(exist, struct btrfs_delayed_item, rb_node); 374 375 if (new_item->index < exist_item->index) 376 return -1; 377 if (new_item->index > exist_item->index) 378 return 1; 379 return 0; 380 } 381 382 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 383 struct btrfs_delayed_item *ins) 384 { 385 struct rb_root_cached *root; 386 struct rb_node *exist; 387 388 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 389 root = &delayed_node->ins_root; 390 else 391 root = &delayed_node->del_root; 392 393 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 394 if (exist) 395 return -EEXIST; 396 397 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 398 ins->index >= delayed_node->index_cnt) 399 delayed_node->index_cnt = ins->index + 1; 400 401 delayed_node->count++; 402 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 403 return 0; 404 } 405 406 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 407 { 408 int seq = atomic_inc_return(&delayed_root->items_seq); 409 410 /* atomic_dec_return implies a barrier */ 411 if ((atomic_dec_return(&delayed_root->items) < 412 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 413 cond_wake_up_nomb(&delayed_root->wait); 414 } 415 416 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 417 { 418 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 419 struct rb_root_cached *root; 420 struct btrfs_delayed_root *delayed_root; 421 422 /* Not inserted, ignore it. */ 423 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 424 return; 425 426 /* If it's in a rbtree, then we need to have delayed node locked. */ 427 lockdep_assert_held(&delayed_node->mutex); 428 429 delayed_root = delayed_node->root->fs_info->delayed_root; 430 431 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 432 root = &delayed_node->ins_root; 433 else 434 root = &delayed_node->del_root; 435 436 rb_erase_cached(&delayed_item->rb_node, root); 437 RB_CLEAR_NODE(&delayed_item->rb_node); 438 delayed_node->count--; 439 440 finish_one_item(delayed_root); 441 } 442 443 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 444 { 445 if (item) { 446 __btrfs_remove_delayed_item(item); 447 if (refcount_dec_and_test(&item->refs)) 448 kfree(item); 449 } 450 } 451 452 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 453 struct btrfs_delayed_node *delayed_node) 454 { 455 struct rb_node *p = rb_first_cached(&delayed_node->ins_root); 456 457 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 458 } 459 460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 461 struct btrfs_delayed_node *delayed_node) 462 { 463 struct rb_node *p = rb_first_cached(&delayed_node->del_root); 464 465 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 466 } 467 468 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 469 struct btrfs_delayed_item *item) 470 { 471 struct rb_node *p = rb_next(&item->rb_node); 472 473 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 474 } 475 476 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 477 struct btrfs_delayed_item *item) 478 { 479 struct btrfs_block_rsv *src_rsv; 480 struct btrfs_block_rsv *dst_rsv; 481 struct btrfs_fs_info *fs_info = trans->fs_info; 482 u64 num_bytes; 483 int ret; 484 485 if (!trans->bytes_reserved) 486 return 0; 487 488 src_rsv = trans->block_rsv; 489 dst_rsv = &fs_info->delayed_block_rsv; 490 491 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 492 493 /* 494 * Here we migrate space rsv from transaction rsv, since have already 495 * reserved space when starting a transaction. So no need to reserve 496 * qgroup space here. 497 */ 498 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 499 if (!ret) { 500 trace_btrfs_space_reservation(fs_info, "delayed_item", 501 item->delayed_node->inode_id, 502 num_bytes, 1); 503 /* 504 * For insertions we track reserved metadata space by accounting 505 * for the number of leaves that will be used, based on the delayed 506 * node's curr_index_batch_size and index_item_leaves fields. 507 */ 508 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 509 item->bytes_reserved = num_bytes; 510 } 511 512 return ret; 513 } 514 515 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 516 struct btrfs_delayed_item *item) 517 { 518 struct btrfs_block_rsv *rsv; 519 struct btrfs_fs_info *fs_info = root->fs_info; 520 521 if (!item->bytes_reserved) 522 return; 523 524 rsv = &fs_info->delayed_block_rsv; 525 /* 526 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 527 * to release/reserve qgroup space. 528 */ 529 trace_btrfs_space_reservation(fs_info, "delayed_item", 530 item->delayed_node->inode_id, 531 item->bytes_reserved, 0); 532 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 533 } 534 535 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 536 unsigned int num_leaves) 537 { 538 struct btrfs_fs_info *fs_info = node->root->fs_info; 539 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 540 541 /* There are no space reservations during log replay, bail out. */ 542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 543 return; 544 545 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 546 bytes, 0); 547 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 548 } 549 550 static int btrfs_delayed_inode_reserve_metadata( 551 struct btrfs_trans_handle *trans, 552 struct btrfs_root *root, 553 struct btrfs_delayed_node *node) 554 { 555 struct btrfs_fs_info *fs_info = root->fs_info; 556 struct btrfs_block_rsv *src_rsv; 557 struct btrfs_block_rsv *dst_rsv; 558 u64 num_bytes; 559 int ret; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 565 566 /* 567 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 568 * which doesn't reserve space for speed. This is a problem since we 569 * still need to reserve space for this update, so try to reserve the 570 * space. 571 * 572 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 573 * we always reserve enough to update the inode item. 574 */ 575 if (!src_rsv || (!trans->bytes_reserved && 576 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 577 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 578 BTRFS_QGROUP_RSV_META_PREALLOC, true); 579 if (ret < 0) 580 return ret; 581 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 582 BTRFS_RESERVE_NO_FLUSH); 583 /* NO_FLUSH could only fail with -ENOSPC */ 584 ASSERT(ret == 0 || ret == -ENOSPC); 585 if (ret) 586 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 587 } else { 588 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 589 } 590 591 if (!ret) { 592 trace_btrfs_space_reservation(fs_info, "delayed_inode", 593 node->inode_id, num_bytes, 1); 594 node->bytes_reserved = num_bytes; 595 } 596 597 return ret; 598 } 599 600 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 601 struct btrfs_delayed_node *node, 602 bool qgroup_free) 603 { 604 struct btrfs_block_rsv *rsv; 605 606 if (!node->bytes_reserved) 607 return; 608 609 rsv = &fs_info->delayed_block_rsv; 610 trace_btrfs_space_reservation(fs_info, "delayed_inode", 611 node->inode_id, node->bytes_reserved, 0); 612 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 613 if (qgroup_free) 614 btrfs_qgroup_free_meta_prealloc(node->root, 615 node->bytes_reserved); 616 else 617 btrfs_qgroup_convert_reserved_meta(node->root, 618 node->bytes_reserved); 619 node->bytes_reserved = 0; 620 } 621 622 /* 623 * Insert a single delayed item or a batch of delayed items, as many as possible 624 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 625 * in the rbtree, and if there's a gap between two consecutive dir index items, 626 * then it means at some point we had delayed dir indexes to add but they got 627 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 628 * into the subvolume tree. Dir index keys also have their offsets coming from a 629 * monotonically increasing counter, so we can't get new keys with an offset that 630 * fits within a gap between delayed dir index items. 631 */ 632 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 633 struct btrfs_root *root, 634 struct btrfs_path *path, 635 struct btrfs_delayed_item *first_item) 636 { 637 struct btrfs_fs_info *fs_info = root->fs_info; 638 struct btrfs_delayed_node *node = first_item->delayed_node; 639 LIST_HEAD(item_list); 640 struct btrfs_delayed_item *curr; 641 struct btrfs_delayed_item *next; 642 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 643 struct btrfs_item_batch batch; 644 struct btrfs_key first_key; 645 const u32 first_data_size = first_item->data_len; 646 int total_size; 647 char *ins_data = NULL; 648 int ret; 649 bool continuous_keys_only = false; 650 651 lockdep_assert_held(&node->mutex); 652 653 /* 654 * During normal operation the delayed index offset is continuously 655 * increasing, so we can batch insert all items as there will not be any 656 * overlapping keys in the tree. 657 * 658 * The exception to this is log replay, where we may have interleaved 659 * offsets in the tree, so our batch needs to be continuous keys only in 660 * order to ensure we do not end up with out of order items in our leaf. 661 */ 662 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 663 continuous_keys_only = true; 664 665 /* 666 * For delayed items to insert, we track reserved metadata bytes based 667 * on the number of leaves that we will use. 668 * See btrfs_insert_delayed_dir_index() and 669 * btrfs_delayed_item_reserve_metadata()). 670 */ 671 ASSERT(first_item->bytes_reserved == 0); 672 673 list_add_tail(&first_item->tree_list, &item_list); 674 batch.total_data_size = first_data_size; 675 batch.nr = 1; 676 total_size = first_data_size + sizeof(struct btrfs_item); 677 curr = first_item; 678 679 while (true) { 680 int next_size; 681 682 next = __btrfs_next_delayed_item(curr); 683 if (!next) 684 break; 685 686 /* 687 * We cannot allow gaps in the key space if we're doing log 688 * replay. 689 */ 690 if (continuous_keys_only && (next->index != curr->index + 1)) 691 break; 692 693 ASSERT(next->bytes_reserved == 0); 694 695 next_size = next->data_len + sizeof(struct btrfs_item); 696 if (total_size + next_size > max_size) 697 break; 698 699 list_add_tail(&next->tree_list, &item_list); 700 batch.nr++; 701 total_size += next_size; 702 batch.total_data_size += next->data_len; 703 curr = next; 704 } 705 706 if (batch.nr == 1) { 707 first_key.objectid = node->inode_id; 708 first_key.type = BTRFS_DIR_INDEX_KEY; 709 first_key.offset = first_item->index; 710 batch.keys = &first_key; 711 batch.data_sizes = &first_data_size; 712 } else { 713 struct btrfs_key *ins_keys; 714 u32 *ins_sizes; 715 int i = 0; 716 717 ins_data = kmalloc(batch.nr * sizeof(u32) + 718 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 719 if (!ins_data) { 720 ret = -ENOMEM; 721 goto out; 722 } 723 ins_sizes = (u32 *)ins_data; 724 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 725 batch.keys = ins_keys; 726 batch.data_sizes = ins_sizes; 727 list_for_each_entry(curr, &item_list, tree_list) { 728 ins_keys[i].objectid = node->inode_id; 729 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 730 ins_keys[i].offset = curr->index; 731 ins_sizes[i] = curr->data_len; 732 i++; 733 } 734 } 735 736 ret = btrfs_insert_empty_items(trans, root, path, &batch); 737 if (ret) 738 goto out; 739 740 list_for_each_entry(curr, &item_list, tree_list) { 741 char *data_ptr; 742 743 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 744 write_extent_buffer(path->nodes[0], &curr->data, 745 (unsigned long)data_ptr, curr->data_len); 746 path->slots[0]++; 747 } 748 749 /* 750 * Now release our path before releasing the delayed items and their 751 * metadata reservations, so that we don't block other tasks for more 752 * time than needed. 753 */ 754 btrfs_release_path(path); 755 756 ASSERT(node->index_item_leaves > 0); 757 758 /* 759 * For normal operations we will batch an entire leaf's worth of delayed 760 * items, so if there are more items to process we can decrement 761 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 762 * 763 * However for log replay we may not have inserted an entire leaf's 764 * worth of items, we may have not had continuous items, so decrementing 765 * here would mess up the index_item_leaves accounting. For this case 766 * only clean up the accounting when there are no items left. 767 */ 768 if (next && !continuous_keys_only) { 769 /* 770 * We inserted one batch of items into a leaf a there are more 771 * items to flush in a future batch, now release one unit of 772 * metadata space from the delayed block reserve, corresponding 773 * the leaf we just flushed to. 774 */ 775 btrfs_delayed_item_release_leaves(node, 1); 776 node->index_item_leaves--; 777 } else if (!next) { 778 /* 779 * There are no more items to insert. We can have a number of 780 * reserved leaves > 1 here - this happens when many dir index 781 * items are added and then removed before they are flushed (file 782 * names with a very short life, never span a transaction). So 783 * release all remaining leaves. 784 */ 785 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 786 node->index_item_leaves = 0; 787 } 788 789 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 790 list_del(&curr->tree_list); 791 btrfs_release_delayed_item(curr); 792 } 793 out: 794 kfree(ins_data); 795 return ret; 796 } 797 798 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 799 struct btrfs_path *path, 800 struct btrfs_root *root, 801 struct btrfs_delayed_node *node) 802 { 803 int ret = 0; 804 805 while (ret == 0) { 806 struct btrfs_delayed_item *curr; 807 808 mutex_lock(&node->mutex); 809 curr = __btrfs_first_delayed_insertion_item(node); 810 if (!curr) { 811 mutex_unlock(&node->mutex); 812 break; 813 } 814 ret = btrfs_insert_delayed_item(trans, root, path, curr); 815 mutex_unlock(&node->mutex); 816 } 817 818 return ret; 819 } 820 821 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root, 823 struct btrfs_path *path, 824 struct btrfs_delayed_item *item) 825 { 826 const u64 ino = item->delayed_node->inode_id; 827 struct btrfs_fs_info *fs_info = root->fs_info; 828 struct btrfs_delayed_item *curr, *next; 829 struct extent_buffer *leaf = path->nodes[0]; 830 LIST_HEAD(batch_list); 831 int nitems, slot, last_slot; 832 int ret; 833 u64 total_reserved_size = item->bytes_reserved; 834 835 ASSERT(leaf != NULL); 836 837 slot = path->slots[0]; 838 last_slot = btrfs_header_nritems(leaf) - 1; 839 /* 840 * Our caller always gives us a path pointing to an existing item, so 841 * this can not happen. 842 */ 843 ASSERT(slot <= last_slot); 844 if (WARN_ON(slot > last_slot)) 845 return -ENOENT; 846 847 nitems = 1; 848 curr = item; 849 list_add_tail(&curr->tree_list, &batch_list); 850 851 /* 852 * Keep checking if the next delayed item matches the next item in the 853 * leaf - if so, we can add it to the batch of items to delete from the 854 * leaf. 855 */ 856 while (slot < last_slot) { 857 struct btrfs_key key; 858 859 next = __btrfs_next_delayed_item(curr); 860 if (!next) 861 break; 862 863 slot++; 864 btrfs_item_key_to_cpu(leaf, &key, slot); 865 if (key.objectid != ino || 866 key.type != BTRFS_DIR_INDEX_KEY || 867 key.offset != next->index) 868 break; 869 nitems++; 870 curr = next; 871 list_add_tail(&curr->tree_list, &batch_list); 872 total_reserved_size += curr->bytes_reserved; 873 } 874 875 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 876 if (ret) 877 return ret; 878 879 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 880 if (total_reserved_size > 0) { 881 /* 882 * Check btrfs_delayed_item_reserve_metadata() to see why we 883 * don't need to release/reserve qgroup space. 884 */ 885 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 886 total_reserved_size, 0); 887 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 888 total_reserved_size, NULL); 889 } 890 891 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 892 list_del(&curr->tree_list); 893 btrfs_release_delayed_item(curr); 894 } 895 896 return 0; 897 } 898 899 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 900 struct btrfs_path *path, 901 struct btrfs_root *root, 902 struct btrfs_delayed_node *node) 903 { 904 struct btrfs_key key; 905 int ret = 0; 906 907 key.objectid = node->inode_id; 908 key.type = BTRFS_DIR_INDEX_KEY; 909 910 while (ret == 0) { 911 struct btrfs_delayed_item *item; 912 913 mutex_lock(&node->mutex); 914 item = __btrfs_first_delayed_deletion_item(node); 915 if (!item) { 916 mutex_unlock(&node->mutex); 917 break; 918 } 919 920 key.offset = item->index; 921 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 922 if (ret > 0) { 923 /* 924 * There's no matching item in the leaf. This means we 925 * have already deleted this item in a past run of the 926 * delayed items. We ignore errors when running delayed 927 * items from an async context, through a work queue job 928 * running btrfs_async_run_delayed_root(), and don't 929 * release delayed items that failed to complete. This 930 * is because we will retry later, and at transaction 931 * commit time we always run delayed items and will 932 * then deal with errors if they fail to run again. 933 * 934 * So just release delayed items for which we can't find 935 * an item in the tree, and move to the next item. 936 */ 937 btrfs_release_path(path); 938 btrfs_release_delayed_item(item); 939 ret = 0; 940 } else if (ret == 0) { 941 ret = btrfs_batch_delete_items(trans, root, path, item); 942 btrfs_release_path(path); 943 } 944 945 /* 946 * We unlock and relock on each iteration, this is to prevent 947 * blocking other tasks for too long while we are being run from 948 * the async context (work queue job). Those tasks are typically 949 * running system calls like creat/mkdir/rename/unlink/etc which 950 * need to add delayed items to this delayed node. 951 */ 952 mutex_unlock(&node->mutex); 953 } 954 955 return ret; 956 } 957 958 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 959 { 960 struct btrfs_delayed_root *delayed_root; 961 962 if (delayed_node && 963 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 964 ASSERT(delayed_node->root); 965 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 966 delayed_node->count--; 967 968 delayed_root = delayed_node->root->fs_info->delayed_root; 969 finish_one_item(delayed_root); 970 } 971 } 972 973 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 974 { 975 976 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 977 struct btrfs_delayed_root *delayed_root; 978 979 ASSERT(delayed_node->root); 980 delayed_node->count--; 981 982 delayed_root = delayed_node->root->fs_info->delayed_root; 983 finish_one_item(delayed_root); 984 } 985 } 986 987 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 988 struct btrfs_root *root, 989 struct btrfs_path *path, 990 struct btrfs_delayed_node *node) 991 { 992 struct btrfs_fs_info *fs_info = root->fs_info; 993 struct btrfs_key key; 994 struct btrfs_inode_item *inode_item; 995 struct extent_buffer *leaf; 996 int mod; 997 int ret; 998 999 key.objectid = node->inode_id; 1000 key.type = BTRFS_INODE_ITEM_KEY; 1001 key.offset = 0; 1002 1003 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1004 mod = -1; 1005 else 1006 mod = 1; 1007 1008 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1009 if (ret > 0) 1010 ret = -ENOENT; 1011 if (ret < 0) 1012 goto out; 1013 1014 leaf = path->nodes[0]; 1015 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1016 struct btrfs_inode_item); 1017 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1018 sizeof(struct btrfs_inode_item)); 1019 1020 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1021 goto out; 1022 1023 /* 1024 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1025 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1026 * 1027 * But if we're the last item already, release and search for the last 1028 * INODE_REF/EXTREF. 1029 */ 1030 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1031 key.objectid = node->inode_id; 1032 key.type = BTRFS_INODE_EXTREF_KEY; 1033 key.offset = (u64)-1; 1034 1035 btrfs_release_path(path); 1036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1037 if (ret < 0) 1038 goto err_out; 1039 ASSERT(ret > 0); 1040 ASSERT(path->slots[0] > 0); 1041 ret = 0; 1042 path->slots[0]--; 1043 leaf = path->nodes[0]; 1044 } else { 1045 path->slots[0]++; 1046 } 1047 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1048 if (key.objectid != node->inode_id) 1049 goto out; 1050 if (key.type != BTRFS_INODE_REF_KEY && 1051 key.type != BTRFS_INODE_EXTREF_KEY) 1052 goto out; 1053 1054 /* 1055 * Delayed iref deletion is for the inode who has only one link, 1056 * so there is only one iref. The case that several irefs are 1057 * in the same item doesn't exist. 1058 */ 1059 ret = btrfs_del_item(trans, root, path); 1060 out: 1061 btrfs_release_delayed_iref(node); 1062 btrfs_release_path(path); 1063 err_out: 1064 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1065 btrfs_release_delayed_inode(node); 1066 1067 /* 1068 * If we fail to update the delayed inode we need to abort the 1069 * transaction, because we could leave the inode with the improper 1070 * counts behind. 1071 */ 1072 if (ret && ret != -ENOENT) 1073 btrfs_abort_transaction(trans, ret); 1074 1075 return ret; 1076 } 1077 1078 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1079 struct btrfs_root *root, 1080 struct btrfs_path *path, 1081 struct btrfs_delayed_node *node) 1082 { 1083 int ret; 1084 1085 mutex_lock(&node->mutex); 1086 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1087 mutex_unlock(&node->mutex); 1088 return 0; 1089 } 1090 1091 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1092 mutex_unlock(&node->mutex); 1093 return ret; 1094 } 1095 1096 static inline int 1097 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1098 struct btrfs_path *path, 1099 struct btrfs_delayed_node *node) 1100 { 1101 int ret; 1102 1103 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1104 if (ret) 1105 return ret; 1106 1107 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1108 if (ret) 1109 return ret; 1110 1111 ret = btrfs_record_root_in_trans(trans, node->root); 1112 if (ret) 1113 return ret; 1114 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1115 return ret; 1116 } 1117 1118 /* 1119 * Called when committing the transaction. 1120 * Returns 0 on success. 1121 * Returns < 0 on error and returns with an aborted transaction with any 1122 * outstanding delayed items cleaned up. 1123 */ 1124 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1125 { 1126 struct btrfs_fs_info *fs_info = trans->fs_info; 1127 struct btrfs_delayed_root *delayed_root; 1128 struct btrfs_delayed_node *curr_node, *prev_node; 1129 struct btrfs_path *path; 1130 struct btrfs_block_rsv *block_rsv; 1131 int ret = 0; 1132 bool count = (nr > 0); 1133 1134 if (TRANS_ABORTED(trans)) 1135 return -EIO; 1136 1137 path = btrfs_alloc_path(); 1138 if (!path) 1139 return -ENOMEM; 1140 1141 block_rsv = trans->block_rsv; 1142 trans->block_rsv = &fs_info->delayed_block_rsv; 1143 1144 delayed_root = fs_info->delayed_root; 1145 1146 curr_node = btrfs_first_delayed_node(delayed_root); 1147 while (curr_node && (!count || nr--)) { 1148 ret = __btrfs_commit_inode_delayed_items(trans, path, 1149 curr_node); 1150 if (ret) { 1151 btrfs_abort_transaction(trans, ret); 1152 break; 1153 } 1154 1155 prev_node = curr_node; 1156 curr_node = btrfs_next_delayed_node(curr_node); 1157 /* 1158 * See the comment below about releasing path before releasing 1159 * node. If the commit of delayed items was successful the path 1160 * should always be released, but in case of an error, it may 1161 * point to locked extent buffers (a leaf at the very least). 1162 */ 1163 ASSERT(path->nodes[0] == NULL); 1164 btrfs_release_delayed_node(prev_node); 1165 } 1166 1167 /* 1168 * Release the path to avoid a potential deadlock and lockdep splat when 1169 * releasing the delayed node, as that requires taking the delayed node's 1170 * mutex. If another task starts running delayed items before we take 1171 * the mutex, it will first lock the mutex and then it may try to lock 1172 * the same btree path (leaf). 1173 */ 1174 btrfs_free_path(path); 1175 1176 if (curr_node) 1177 btrfs_release_delayed_node(curr_node); 1178 trans->block_rsv = block_rsv; 1179 1180 return ret; 1181 } 1182 1183 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1184 { 1185 return __btrfs_run_delayed_items(trans, -1); 1186 } 1187 1188 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1189 { 1190 return __btrfs_run_delayed_items(trans, nr); 1191 } 1192 1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1194 struct btrfs_inode *inode) 1195 { 1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1197 BTRFS_PATH_AUTO_FREE(path); 1198 struct btrfs_block_rsv *block_rsv; 1199 int ret; 1200 1201 if (!delayed_node) 1202 return 0; 1203 1204 mutex_lock(&delayed_node->mutex); 1205 if (!delayed_node->count) { 1206 mutex_unlock(&delayed_node->mutex); 1207 btrfs_release_delayed_node(delayed_node); 1208 return 0; 1209 } 1210 mutex_unlock(&delayed_node->mutex); 1211 1212 path = btrfs_alloc_path(); 1213 if (!path) { 1214 btrfs_release_delayed_node(delayed_node); 1215 return -ENOMEM; 1216 } 1217 1218 block_rsv = trans->block_rsv; 1219 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1220 1221 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1222 1223 btrfs_release_delayed_node(delayed_node); 1224 trans->block_rsv = block_rsv; 1225 1226 return ret; 1227 } 1228 1229 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1230 { 1231 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1232 struct btrfs_trans_handle *trans; 1233 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1234 struct btrfs_path *path; 1235 struct btrfs_block_rsv *block_rsv; 1236 int ret; 1237 1238 if (!delayed_node) 1239 return 0; 1240 1241 mutex_lock(&delayed_node->mutex); 1242 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1243 mutex_unlock(&delayed_node->mutex); 1244 btrfs_release_delayed_node(delayed_node); 1245 return 0; 1246 } 1247 mutex_unlock(&delayed_node->mutex); 1248 1249 trans = btrfs_join_transaction(delayed_node->root); 1250 if (IS_ERR(trans)) { 1251 ret = PTR_ERR(trans); 1252 goto out; 1253 } 1254 1255 path = btrfs_alloc_path(); 1256 if (!path) { 1257 ret = -ENOMEM; 1258 goto trans_out; 1259 } 1260 1261 block_rsv = trans->block_rsv; 1262 trans->block_rsv = &fs_info->delayed_block_rsv; 1263 1264 mutex_lock(&delayed_node->mutex); 1265 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1266 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1267 path, delayed_node); 1268 else 1269 ret = 0; 1270 mutex_unlock(&delayed_node->mutex); 1271 1272 btrfs_free_path(path); 1273 trans->block_rsv = block_rsv; 1274 trans_out: 1275 btrfs_end_transaction(trans); 1276 btrfs_btree_balance_dirty(fs_info); 1277 out: 1278 btrfs_release_delayed_node(delayed_node); 1279 1280 return ret; 1281 } 1282 1283 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1284 { 1285 struct btrfs_delayed_node *delayed_node; 1286 1287 delayed_node = READ_ONCE(inode->delayed_node); 1288 if (!delayed_node) 1289 return; 1290 1291 inode->delayed_node = NULL; 1292 btrfs_release_delayed_node(delayed_node); 1293 } 1294 1295 struct btrfs_async_delayed_work { 1296 struct btrfs_delayed_root *delayed_root; 1297 int nr; 1298 struct btrfs_work work; 1299 }; 1300 1301 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1302 { 1303 struct btrfs_async_delayed_work *async_work; 1304 struct btrfs_delayed_root *delayed_root; 1305 struct btrfs_trans_handle *trans; 1306 struct btrfs_path *path; 1307 struct btrfs_delayed_node *delayed_node = NULL; 1308 struct btrfs_root *root; 1309 struct btrfs_block_rsv *block_rsv; 1310 int total_done = 0; 1311 1312 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1313 delayed_root = async_work->delayed_root; 1314 1315 path = btrfs_alloc_path(); 1316 if (!path) 1317 goto out; 1318 1319 do { 1320 if (atomic_read(&delayed_root->items) < 1321 BTRFS_DELAYED_BACKGROUND / 2) 1322 break; 1323 1324 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1325 if (!delayed_node) 1326 break; 1327 1328 root = delayed_node->root; 1329 1330 trans = btrfs_join_transaction(root); 1331 if (IS_ERR(trans)) { 1332 btrfs_release_path(path); 1333 btrfs_release_prepared_delayed_node(delayed_node); 1334 total_done++; 1335 continue; 1336 } 1337 1338 block_rsv = trans->block_rsv; 1339 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1340 1341 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1342 1343 trans->block_rsv = block_rsv; 1344 btrfs_end_transaction(trans); 1345 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1346 1347 btrfs_release_path(path); 1348 btrfs_release_prepared_delayed_node(delayed_node); 1349 total_done++; 1350 1351 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1352 || total_done < async_work->nr); 1353 1354 btrfs_free_path(path); 1355 out: 1356 wake_up(&delayed_root->wait); 1357 kfree(async_work); 1358 } 1359 1360 1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1362 struct btrfs_fs_info *fs_info, int nr) 1363 { 1364 struct btrfs_async_delayed_work *async_work; 1365 1366 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1367 if (!async_work) 1368 return -ENOMEM; 1369 1370 async_work->delayed_root = delayed_root; 1371 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1372 async_work->nr = nr; 1373 1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1375 return 0; 1376 } 1377 1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1379 { 1380 struct btrfs_delayed_node *node = btrfs_first_delayed_node(fs_info->delayed_root); 1381 1382 if (WARN_ON(node)) 1383 refcount_dec(&node->refs); 1384 } 1385 1386 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1387 { 1388 int val = atomic_read(&delayed_root->items_seq); 1389 1390 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1391 return true; 1392 1393 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1394 return true; 1395 1396 return false; 1397 } 1398 1399 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1400 { 1401 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1402 1403 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1404 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1405 return; 1406 1407 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1408 int seq; 1409 int ret; 1410 1411 seq = atomic_read(&delayed_root->items_seq); 1412 1413 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1414 if (ret) 1415 return; 1416 1417 wait_event_interruptible(delayed_root->wait, 1418 could_end_wait(delayed_root, seq)); 1419 return; 1420 } 1421 1422 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1423 } 1424 1425 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1426 { 1427 struct btrfs_fs_info *fs_info = trans->fs_info; 1428 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1429 1430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1431 return; 1432 1433 /* 1434 * Adding the new dir index item does not require touching another 1435 * leaf, so we can release 1 unit of metadata that was previously 1436 * reserved when starting the transaction. This applies only to 1437 * the case where we had a transaction start and excludes the 1438 * transaction join case (when replaying log trees). 1439 */ 1440 trace_btrfs_space_reservation(fs_info, "transaction", 1441 trans->transid, bytes, 0); 1442 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1443 ASSERT(trans->bytes_reserved >= bytes); 1444 trans->bytes_reserved -= bytes; 1445 } 1446 1447 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1448 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1449 const char *name, int name_len, 1450 struct btrfs_inode *dir, 1451 const struct btrfs_disk_key *disk_key, u8 flags, 1452 u64 index) 1453 { 1454 struct btrfs_fs_info *fs_info = trans->fs_info; 1455 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1456 struct btrfs_delayed_node *delayed_node; 1457 struct btrfs_delayed_item *delayed_item; 1458 struct btrfs_dir_item *dir_item; 1459 bool reserve_leaf_space; 1460 u32 data_len; 1461 int ret; 1462 1463 delayed_node = btrfs_get_or_create_delayed_node(dir); 1464 if (IS_ERR(delayed_node)) 1465 return PTR_ERR(delayed_node); 1466 1467 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1468 delayed_node, 1469 BTRFS_DELAYED_INSERTION_ITEM); 1470 if (!delayed_item) { 1471 ret = -ENOMEM; 1472 goto release_node; 1473 } 1474 1475 delayed_item->index = index; 1476 1477 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1478 dir_item->location = *disk_key; 1479 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1480 btrfs_set_stack_dir_data_len(dir_item, 0); 1481 btrfs_set_stack_dir_name_len(dir_item, name_len); 1482 btrfs_set_stack_dir_flags(dir_item, flags); 1483 memcpy((char *)(dir_item + 1), name, name_len); 1484 1485 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1486 1487 mutex_lock(&delayed_node->mutex); 1488 1489 /* 1490 * First attempt to insert the delayed item. This is to make the error 1491 * handling path simpler in case we fail (-EEXIST). There's no risk of 1492 * any other task coming in and running the delayed item before we do 1493 * the metadata space reservation below, because we are holding the 1494 * delayed node's mutex and that mutex must also be locked before the 1495 * node's delayed items can be run. 1496 */ 1497 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1498 if (unlikely(ret)) { 1499 btrfs_err(trans->fs_info, 1500 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1501 name_len, name, index, btrfs_root_id(delayed_node->root), 1502 delayed_node->inode_id, dir->index_cnt, 1503 delayed_node->index_cnt, ret); 1504 btrfs_release_delayed_item(delayed_item); 1505 btrfs_release_dir_index_item_space(trans); 1506 mutex_unlock(&delayed_node->mutex); 1507 goto release_node; 1508 } 1509 1510 if (delayed_node->index_item_leaves == 0 || 1511 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1512 delayed_node->curr_index_batch_size = data_len; 1513 reserve_leaf_space = true; 1514 } else { 1515 delayed_node->curr_index_batch_size += data_len; 1516 reserve_leaf_space = false; 1517 } 1518 1519 if (reserve_leaf_space) { 1520 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1521 /* 1522 * Space was reserved for a dir index item insertion when we 1523 * started the transaction, so getting a failure here should be 1524 * impossible. 1525 */ 1526 if (WARN_ON(ret)) { 1527 btrfs_release_delayed_item(delayed_item); 1528 mutex_unlock(&delayed_node->mutex); 1529 goto release_node; 1530 } 1531 1532 delayed_node->index_item_leaves++; 1533 } else { 1534 btrfs_release_dir_index_item_space(trans); 1535 } 1536 mutex_unlock(&delayed_node->mutex); 1537 1538 release_node: 1539 btrfs_release_delayed_node(delayed_node); 1540 return ret; 1541 } 1542 1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1544 u64 index) 1545 { 1546 struct btrfs_delayed_item *item; 1547 1548 mutex_lock(&node->mutex); 1549 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1550 if (!item) { 1551 mutex_unlock(&node->mutex); 1552 return 1; 1553 } 1554 1555 /* 1556 * For delayed items to insert, we track reserved metadata bytes based 1557 * on the number of leaves that we will use. 1558 * See btrfs_insert_delayed_dir_index() and 1559 * btrfs_delayed_item_reserve_metadata()). 1560 */ 1561 ASSERT(item->bytes_reserved == 0); 1562 ASSERT(node->index_item_leaves > 0); 1563 1564 /* 1565 * If there's only one leaf reserved, we can decrement this item from the 1566 * current batch, otherwise we can not because we don't know which leaf 1567 * it belongs to. With the current limit on delayed items, we rarely 1568 * accumulate enough dir index items to fill more than one leaf (even 1569 * when using a leaf size of 4K). 1570 */ 1571 if (node->index_item_leaves == 1) { 1572 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1573 1574 ASSERT(node->curr_index_batch_size >= data_len); 1575 node->curr_index_batch_size -= data_len; 1576 } 1577 1578 btrfs_release_delayed_item(item); 1579 1580 /* If we now have no more dir index items, we can release all leaves. */ 1581 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1582 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1583 node->index_item_leaves = 0; 1584 } 1585 1586 mutex_unlock(&node->mutex); 1587 return 0; 1588 } 1589 1590 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1591 struct btrfs_inode *dir, u64 index) 1592 { 1593 struct btrfs_delayed_node *node; 1594 struct btrfs_delayed_item *item; 1595 int ret; 1596 1597 node = btrfs_get_or_create_delayed_node(dir); 1598 if (IS_ERR(node)) 1599 return PTR_ERR(node); 1600 1601 ret = btrfs_delete_delayed_insertion_item(node, index); 1602 if (!ret) 1603 goto end; 1604 1605 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1606 if (!item) { 1607 ret = -ENOMEM; 1608 goto end; 1609 } 1610 1611 item->index = index; 1612 1613 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1614 /* 1615 * we have reserved enough space when we start a new transaction, 1616 * so reserving metadata failure is impossible. 1617 */ 1618 if (ret < 0) { 1619 btrfs_err(trans->fs_info, 1620 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1621 btrfs_release_delayed_item(item); 1622 goto end; 1623 } 1624 1625 mutex_lock(&node->mutex); 1626 ret = __btrfs_add_delayed_item(node, item); 1627 if (unlikely(ret)) { 1628 btrfs_err(trans->fs_info, 1629 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1630 index, btrfs_root_id(node->root), 1631 node->inode_id, ret); 1632 btrfs_delayed_item_release_metadata(dir->root, item); 1633 btrfs_release_delayed_item(item); 1634 } 1635 mutex_unlock(&node->mutex); 1636 end: 1637 btrfs_release_delayed_node(node); 1638 return ret; 1639 } 1640 1641 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1642 { 1643 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1644 1645 if (!delayed_node) 1646 return -ENOENT; 1647 1648 /* 1649 * Since we have held i_mutex of this directory, it is impossible that 1650 * a new directory index is added into the delayed node and index_cnt 1651 * is updated now. So we needn't lock the delayed node. 1652 */ 1653 if (!delayed_node->index_cnt) { 1654 btrfs_release_delayed_node(delayed_node); 1655 return -EINVAL; 1656 } 1657 1658 inode->index_cnt = delayed_node->index_cnt; 1659 btrfs_release_delayed_node(delayed_node); 1660 return 0; 1661 } 1662 1663 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1664 u64 last_index, 1665 struct list_head *ins_list, 1666 struct list_head *del_list) 1667 { 1668 struct btrfs_delayed_node *delayed_node; 1669 struct btrfs_delayed_item *item; 1670 1671 delayed_node = btrfs_get_delayed_node(inode); 1672 if (!delayed_node) 1673 return false; 1674 1675 /* 1676 * We can only do one readdir with delayed items at a time because of 1677 * item->readdir_list. 1678 */ 1679 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1680 btrfs_inode_lock(inode, 0); 1681 1682 mutex_lock(&delayed_node->mutex); 1683 item = __btrfs_first_delayed_insertion_item(delayed_node); 1684 while (item && item->index <= last_index) { 1685 refcount_inc(&item->refs); 1686 list_add_tail(&item->readdir_list, ins_list); 1687 item = __btrfs_next_delayed_item(item); 1688 } 1689 1690 item = __btrfs_first_delayed_deletion_item(delayed_node); 1691 while (item && item->index <= last_index) { 1692 refcount_inc(&item->refs); 1693 list_add_tail(&item->readdir_list, del_list); 1694 item = __btrfs_next_delayed_item(item); 1695 } 1696 mutex_unlock(&delayed_node->mutex); 1697 /* 1698 * This delayed node is still cached in the btrfs inode, so refs 1699 * must be > 1 now, and we needn't check it is going to be freed 1700 * or not. 1701 * 1702 * Besides that, this function is used to read dir, we do not 1703 * insert/delete delayed items in this period. So we also needn't 1704 * requeue or dequeue this delayed node. 1705 */ 1706 refcount_dec(&delayed_node->refs); 1707 1708 return true; 1709 } 1710 1711 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1712 struct list_head *ins_list, 1713 struct list_head *del_list) 1714 { 1715 struct btrfs_delayed_item *curr, *next; 1716 1717 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1718 list_del(&curr->readdir_list); 1719 if (refcount_dec_and_test(&curr->refs)) 1720 kfree(curr); 1721 } 1722 1723 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1724 list_del(&curr->readdir_list); 1725 if (refcount_dec_and_test(&curr->refs)) 1726 kfree(curr); 1727 } 1728 1729 /* 1730 * The VFS is going to do up_read(), so we need to downgrade back to a 1731 * read lock. 1732 */ 1733 downgrade_write(&inode->vfs_inode.i_rwsem); 1734 } 1735 1736 int btrfs_should_delete_dir_index(const struct list_head *del_list, 1737 u64 index) 1738 { 1739 struct btrfs_delayed_item *curr; 1740 int ret = 0; 1741 1742 list_for_each_entry(curr, del_list, readdir_list) { 1743 if (curr->index > index) 1744 break; 1745 if (curr->index == index) { 1746 ret = 1; 1747 break; 1748 } 1749 } 1750 return ret; 1751 } 1752 1753 /* 1754 * Read dir info stored in the delayed tree. 1755 */ 1756 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1757 const struct list_head *ins_list) 1758 { 1759 struct btrfs_dir_item *di; 1760 struct btrfs_delayed_item *curr, *next; 1761 struct btrfs_key location; 1762 char *name; 1763 int name_len; 1764 int over = 0; 1765 unsigned char d_type; 1766 1767 /* 1768 * Changing the data of the delayed item is impossible. So 1769 * we needn't lock them. And we have held i_mutex of the 1770 * directory, nobody can delete any directory indexes now. 1771 */ 1772 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1773 list_del(&curr->readdir_list); 1774 1775 if (curr->index < ctx->pos) { 1776 if (refcount_dec_and_test(&curr->refs)) 1777 kfree(curr); 1778 continue; 1779 } 1780 1781 ctx->pos = curr->index; 1782 1783 di = (struct btrfs_dir_item *)curr->data; 1784 name = (char *)(di + 1); 1785 name_len = btrfs_stack_dir_name_len(di); 1786 1787 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1788 btrfs_disk_key_to_cpu(&location, &di->location); 1789 1790 over = !dir_emit(ctx, name, name_len, 1791 location.objectid, d_type); 1792 1793 if (refcount_dec_and_test(&curr->refs)) 1794 kfree(curr); 1795 1796 if (over) 1797 return 1; 1798 ctx->pos++; 1799 } 1800 return 0; 1801 } 1802 1803 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1804 struct btrfs_inode_item *inode_item, 1805 struct btrfs_inode *inode) 1806 { 1807 struct inode *vfs_inode = &inode->vfs_inode; 1808 u64 flags; 1809 1810 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1811 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1812 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1813 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1814 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1815 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1816 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1817 btrfs_set_stack_inode_sequence(inode_item, 1818 inode_peek_iversion(vfs_inode)); 1819 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1820 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1821 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1822 btrfs_set_stack_inode_flags(inode_item, flags); 1823 btrfs_set_stack_inode_block_group(inode_item, 0); 1824 1825 btrfs_set_stack_timespec_sec(&inode_item->atime, 1826 inode_get_atime_sec(vfs_inode)); 1827 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1828 inode_get_atime_nsec(vfs_inode)); 1829 1830 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1831 inode_get_mtime_sec(vfs_inode)); 1832 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1833 inode_get_mtime_nsec(vfs_inode)); 1834 1835 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1836 inode_get_ctime_sec(vfs_inode)); 1837 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1838 inode_get_ctime_nsec(vfs_inode)); 1839 1840 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1841 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1842 } 1843 1844 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1845 { 1846 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1847 struct btrfs_delayed_node *delayed_node; 1848 struct btrfs_inode_item *inode_item; 1849 struct inode *vfs_inode = &inode->vfs_inode; 1850 1851 delayed_node = btrfs_get_delayed_node(inode); 1852 if (!delayed_node) 1853 return -ENOENT; 1854 1855 mutex_lock(&delayed_node->mutex); 1856 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1857 mutex_unlock(&delayed_node->mutex); 1858 btrfs_release_delayed_node(delayed_node); 1859 return -ENOENT; 1860 } 1861 1862 inode_item = &delayed_node->inode_item; 1863 1864 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1865 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1866 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1867 btrfs_inode_set_file_extent_range(inode, 0, 1868 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 1869 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1870 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1871 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1872 inode->generation = btrfs_stack_inode_generation(inode_item); 1873 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1874 1875 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1876 vfs_inode->i_rdev = 0; 1877 *rdev = btrfs_stack_inode_rdev(inode_item); 1878 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1879 &inode->flags, &inode->ro_flags); 1880 1881 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1882 btrfs_stack_timespec_nsec(&inode_item->atime)); 1883 1884 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1885 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1886 1887 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1888 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1889 1890 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1891 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1892 1893 vfs_inode->i_generation = inode->generation; 1894 if (S_ISDIR(vfs_inode->i_mode)) 1895 inode->index_cnt = (u64)-1; 1896 1897 mutex_unlock(&delayed_node->mutex); 1898 btrfs_release_delayed_node(delayed_node); 1899 return 0; 1900 } 1901 1902 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1903 struct btrfs_inode *inode) 1904 { 1905 struct btrfs_root *root = inode->root; 1906 struct btrfs_delayed_node *delayed_node; 1907 int ret = 0; 1908 1909 delayed_node = btrfs_get_or_create_delayed_node(inode); 1910 if (IS_ERR(delayed_node)) 1911 return PTR_ERR(delayed_node); 1912 1913 mutex_lock(&delayed_node->mutex); 1914 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1915 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1916 goto release_node; 1917 } 1918 1919 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1920 if (ret) 1921 goto release_node; 1922 1923 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1924 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1925 delayed_node->count++; 1926 atomic_inc(&root->fs_info->delayed_root->items); 1927 release_node: 1928 mutex_unlock(&delayed_node->mutex); 1929 btrfs_release_delayed_node(delayed_node); 1930 return ret; 1931 } 1932 1933 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1934 { 1935 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1936 struct btrfs_delayed_node *delayed_node; 1937 1938 /* 1939 * we don't do delayed inode updates during log recovery because it 1940 * leads to enospc problems. This means we also can't do 1941 * delayed inode refs 1942 */ 1943 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1944 return -EAGAIN; 1945 1946 delayed_node = btrfs_get_or_create_delayed_node(inode); 1947 if (IS_ERR(delayed_node)) 1948 return PTR_ERR(delayed_node); 1949 1950 /* 1951 * We don't reserve space for inode ref deletion is because: 1952 * - We ONLY do async inode ref deletion for the inode who has only 1953 * one link(i_nlink == 1), it means there is only one inode ref. 1954 * And in most case, the inode ref and the inode item are in the 1955 * same leaf, and we will deal with them at the same time. 1956 * Since we are sure we will reserve the space for the inode item, 1957 * it is unnecessary to reserve space for inode ref deletion. 1958 * - If the inode ref and the inode item are not in the same leaf, 1959 * We also needn't worry about enospc problem, because we reserve 1960 * much more space for the inode update than it needs. 1961 * - At the worst, we can steal some space from the global reservation. 1962 * It is very rare. 1963 */ 1964 mutex_lock(&delayed_node->mutex); 1965 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1966 goto release_node; 1967 1968 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1969 delayed_node->count++; 1970 atomic_inc(&fs_info->delayed_root->items); 1971 release_node: 1972 mutex_unlock(&delayed_node->mutex); 1973 btrfs_release_delayed_node(delayed_node); 1974 return 0; 1975 } 1976 1977 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1978 { 1979 struct btrfs_root *root = delayed_node->root; 1980 struct btrfs_fs_info *fs_info = root->fs_info; 1981 struct btrfs_delayed_item *curr_item, *prev_item; 1982 1983 mutex_lock(&delayed_node->mutex); 1984 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1985 while (curr_item) { 1986 prev_item = curr_item; 1987 curr_item = __btrfs_next_delayed_item(prev_item); 1988 btrfs_release_delayed_item(prev_item); 1989 } 1990 1991 if (delayed_node->index_item_leaves > 0) { 1992 btrfs_delayed_item_release_leaves(delayed_node, 1993 delayed_node->index_item_leaves); 1994 delayed_node->index_item_leaves = 0; 1995 } 1996 1997 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1998 while (curr_item) { 1999 btrfs_delayed_item_release_metadata(root, curr_item); 2000 prev_item = curr_item; 2001 curr_item = __btrfs_next_delayed_item(prev_item); 2002 btrfs_release_delayed_item(prev_item); 2003 } 2004 2005 btrfs_release_delayed_iref(delayed_node); 2006 2007 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2008 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2009 btrfs_release_delayed_inode(delayed_node); 2010 } 2011 mutex_unlock(&delayed_node->mutex); 2012 } 2013 2014 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2015 { 2016 struct btrfs_delayed_node *delayed_node; 2017 2018 delayed_node = btrfs_get_delayed_node(inode); 2019 if (!delayed_node) 2020 return; 2021 2022 __btrfs_kill_delayed_node(delayed_node); 2023 btrfs_release_delayed_node(delayed_node); 2024 } 2025 2026 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2027 { 2028 unsigned long index = 0; 2029 struct btrfs_delayed_node *delayed_nodes[8]; 2030 2031 while (1) { 2032 struct btrfs_delayed_node *node; 2033 int count; 2034 2035 xa_lock(&root->delayed_nodes); 2036 if (xa_empty(&root->delayed_nodes)) { 2037 xa_unlock(&root->delayed_nodes); 2038 return; 2039 } 2040 2041 count = 0; 2042 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2043 /* 2044 * Don't increase refs in case the node is dead and 2045 * about to be removed from the tree in the loop below 2046 */ 2047 if (refcount_inc_not_zero(&node->refs)) { 2048 delayed_nodes[count] = node; 2049 count++; 2050 } 2051 if (count >= ARRAY_SIZE(delayed_nodes)) 2052 break; 2053 } 2054 xa_unlock(&root->delayed_nodes); 2055 index++; 2056 2057 for (int i = 0; i < count; i++) { 2058 __btrfs_kill_delayed_node(delayed_nodes[i]); 2059 btrfs_release_delayed_node(delayed_nodes[i]); 2060 } 2061 } 2062 } 2063 2064 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2065 { 2066 struct btrfs_delayed_node *curr_node, *prev_node; 2067 2068 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2069 while (curr_node) { 2070 __btrfs_kill_delayed_node(curr_node); 2071 2072 prev_node = curr_node; 2073 curr_node = btrfs_next_delayed_node(curr_node); 2074 btrfs_release_delayed_node(prev_node); 2075 } 2076 } 2077 2078 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2079 struct list_head *ins_list, 2080 struct list_head *del_list) 2081 { 2082 struct btrfs_delayed_node *node; 2083 struct btrfs_delayed_item *item; 2084 2085 node = btrfs_get_delayed_node(inode); 2086 if (!node) 2087 return; 2088 2089 mutex_lock(&node->mutex); 2090 item = __btrfs_first_delayed_insertion_item(node); 2091 while (item) { 2092 /* 2093 * It's possible that the item is already in a log list. This 2094 * can happen in case two tasks are trying to log the same 2095 * directory. For example if we have tasks A and task B: 2096 * 2097 * Task A collected the delayed items into a log list while 2098 * under the inode's log_mutex (at btrfs_log_inode()), but it 2099 * only releases the items after logging the inodes they point 2100 * to (if they are new inodes), which happens after unlocking 2101 * the log mutex; 2102 * 2103 * Task B enters btrfs_log_inode() and acquires the log_mutex 2104 * of the same directory inode, before task B releases the 2105 * delayed items. This can happen for example when logging some 2106 * inode we need to trigger logging of its parent directory, so 2107 * logging two files that have the same parent directory can 2108 * lead to this. 2109 * 2110 * If this happens, just ignore delayed items already in a log 2111 * list. All the tasks logging the directory are under a log 2112 * transaction and whichever finishes first can not sync the log 2113 * before the other completes and leaves the log transaction. 2114 */ 2115 if (!item->logged && list_empty(&item->log_list)) { 2116 refcount_inc(&item->refs); 2117 list_add_tail(&item->log_list, ins_list); 2118 } 2119 item = __btrfs_next_delayed_item(item); 2120 } 2121 2122 item = __btrfs_first_delayed_deletion_item(node); 2123 while (item) { 2124 /* It may be non-empty, for the same reason mentioned above. */ 2125 if (!item->logged && list_empty(&item->log_list)) { 2126 refcount_inc(&item->refs); 2127 list_add_tail(&item->log_list, del_list); 2128 } 2129 item = __btrfs_next_delayed_item(item); 2130 } 2131 mutex_unlock(&node->mutex); 2132 2133 /* 2134 * We are called during inode logging, which means the inode is in use 2135 * and can not be evicted before we finish logging the inode. So we never 2136 * have the last reference on the delayed inode. 2137 * Also, we don't use btrfs_release_delayed_node() because that would 2138 * requeue the delayed inode (change its order in the list of prepared 2139 * nodes) and we don't want to do such change because we don't create or 2140 * delete delayed items. 2141 */ 2142 ASSERT(refcount_read(&node->refs) > 1); 2143 refcount_dec(&node->refs); 2144 } 2145 2146 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2147 struct list_head *ins_list, 2148 struct list_head *del_list) 2149 { 2150 struct btrfs_delayed_node *node; 2151 struct btrfs_delayed_item *item; 2152 struct btrfs_delayed_item *next; 2153 2154 node = btrfs_get_delayed_node(inode); 2155 if (!node) 2156 return; 2157 2158 mutex_lock(&node->mutex); 2159 2160 list_for_each_entry_safe(item, next, ins_list, log_list) { 2161 item->logged = true; 2162 list_del_init(&item->log_list); 2163 if (refcount_dec_and_test(&item->refs)) 2164 kfree(item); 2165 } 2166 2167 list_for_each_entry_safe(item, next, del_list, log_list) { 2168 item->logged = true; 2169 list_del_init(&item->log_list); 2170 if (refcount_dec_and_test(&item->refs)) 2171 kfree(item); 2172 } 2173 2174 mutex_unlock(&node->mutex); 2175 2176 /* 2177 * We are called during inode logging, which means the inode is in use 2178 * and can not be evicted before we finish logging the inode. So we never 2179 * have the last reference on the delayed inode. 2180 * Also, we don't use btrfs_release_delayed_node() because that would 2181 * requeue the delayed inode (change its order in the list of prepared 2182 * nodes) and we don't want to do such change because we don't create or 2183 * delete delayed items. 2184 */ 2185 ASSERT(refcount_read(&node->refs) > 1); 2186 refcount_dec(&node->refs); 2187 } 2188