1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "messages.h"
4 #include "ctree.h"
5 #include "delalloc-space.h"
6 #include "block-rsv.h"
7 #include "btrfs_inode.h"
8 #include "space-info.h"
9 #include "qgroup.h"
10 #include "fs.h"
11 
12 /*
13  * HOW DOES THIS WORK
14  *
15  * There are two stages to data reservations, one for data and one for metadata
16  * to handle the new extents and checksums generated by writing data.
17  *
18  *
19  * DATA RESERVATION
20  *   The general flow of the data reservation is as follows
21  *
22  *   -> Reserve
23  *     We call into btrfs_reserve_data_bytes() for the user request bytes that
24  *     they wish to write.  We make this reservation and add it to
25  *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
26  *     for the range and carry on if this is buffered, or follow up trying to
27  *     make a real allocation if we are pre-allocating or doing O_DIRECT.
28  *
29  *   -> Use
30  *     At writepages()/prealloc/O_DIRECT time we will call into
31  *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
32  *     will make the allocation and subtract space_info->bytes_may_use by the
33  *     original requested length and increase the space_info->bytes_reserved by
34  *     the allocated length.  This distinction is important because compression
35  *     may allocate a smaller on disk extent than we previously reserved.
36  *
37  *   -> Allocation
38  *     finish_ordered_io() will insert the new file extent item for this range,
39  *     and then add a delayed ref update for the extent tree.  Once that delayed
40  *     ref is written the extent size is subtracted from
41  *     space_info->bytes_reserved and added to space_info->bytes_used.
42  *
43  *   Error handling
44  *
45  *   -> By the reservation maker
46  *     This is the simplest case, we haven't completed our operation and we know
47  *     how much we reserved, we can simply call
48  *     btrfs_free_reserved_data_space*() and it will be removed from
49  *     space_info->bytes_may_use.
50  *
51  *   -> After the reservation has been made, but before cow_file_range()
52  *     This is specifically for the delalloc case.  You must clear
53  *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54  *     be subtracted from space_info->bytes_may_use.
55  *
56  * METADATA RESERVATION
57  *   The general metadata reservation lifetimes are discussed elsewhere, this
58  *   will just focus on how it is used for delalloc space.
59  *
60  *   We keep track of two things on a per inode bases
61  *
62  *   ->outstanding_extents
63  *     This is the number of file extent items we'll need to handle all of the
64  *     outstanding DELALLOC space we have in this inode.  We limit the maximum
65  *     size of an extent, so a large contiguous dirty area may require more than
66  *     one outstanding_extent, which is why count_max_extents() is used to
67  *     determine how many outstanding_extents get added.
68  *
69  *   ->csum_bytes
70  *     This is essentially how many dirty bytes we have for this inode, so we
71  *     can calculate the number of checksum items we would have to add in order
72  *     to checksum our outstanding data.
73  *
74  *   We keep a per-inode block_rsv in order to make it easier to keep track of
75  *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
76  *   calculate the current theoretical maximum reservation we would need for the
77  *   metadata for this inode.  We call this and then adjust our reservation as
78  *   necessary, either by attempting to reserve more space, or freeing up excess
79  *   space.
80  *
81  * OUTSTANDING_EXTENTS HANDLING
82  *
83  *  ->outstanding_extents is used for keeping track of how many extents we will
84  *  need to use for this inode, and it will fluctuate depending on where you are
85  *  in the life cycle of the dirty data.  Consider the following normal case for
86  *  a completely clean inode, with a num_bytes < our maximum allowed extent size
87  *
88  *  -> reserve
89  *    ->outstanding_extents += 1 (current value is 1)
90  *
91  *  -> set_delalloc
92  *    ->outstanding_extents += 1 (current value is 2)
93  *
94  *  -> btrfs_delalloc_release_extents()
95  *    ->outstanding_extents -= 1 (current value is 1)
96  *
97  *    We must call this once we are done, as we hold our reservation for the
98  *    duration of our operation, and then assume set_delalloc will update the
99  *    counter appropriately.
100  *
101  *  -> add ordered extent
102  *    ->outstanding_extents += 1 (current value is 2)
103  *
104  *  -> btrfs_clear_delalloc_extent
105  *    ->outstanding_extents -= 1 (current value is 1)
106  *
107  *  -> finish_ordered_io/btrfs_remove_ordered_extent
108  *    ->outstanding_extents -= 1 (current value is 0)
109  *
110  *  Each stage is responsible for their own accounting of the extent, thus
111  *  making error handling and cleanup easier.
112  */
113 
114 static inline struct btrfs_space_info *data_sinfo_for_inode(const struct btrfs_inode *inode)
115 {
116 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
117 
118 	if (btrfs_is_zoned(fs_info) && btrfs_is_data_reloc_root(inode->root)) {
119 		ASSERT(fs_info->data_sinfo->sub_group[0]->subgroup_id ==
120 		       BTRFS_SUB_GROUP_DATA_RELOC);
121 		return fs_info->data_sinfo->sub_group[0];
122 	}
123 	return fs_info->data_sinfo;
124 }
125 
126 int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes)
127 {
128 	struct btrfs_root *root = inode->root;
129 	struct btrfs_fs_info *fs_info = root->fs_info;
130 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
131 
132 	/* Make sure bytes are sectorsize aligned */
133 	bytes = ALIGN(bytes, fs_info->sectorsize);
134 
135 	if (btrfs_is_free_space_inode(inode))
136 		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
137 
138 	return btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), bytes, flush);
139 }
140 
141 int btrfs_check_data_free_space(struct btrfs_inode *inode,
142 				struct extent_changeset **reserved, u64 start,
143 				u64 len, bool noflush)
144 {
145 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
146 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
147 	int ret;
148 
149 	/* align the range */
150 	len = round_up(start + len, fs_info->sectorsize) -
151 	      round_down(start, fs_info->sectorsize);
152 	start = round_down(start, fs_info->sectorsize);
153 
154 	if (noflush)
155 		flush = BTRFS_RESERVE_NO_FLUSH;
156 	else if (btrfs_is_free_space_inode(inode))
157 		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
158 
159 	ret = btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), len, flush);
160 	if (ret < 0)
161 		return ret;
162 
163 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
164 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
165 	if (ret < 0) {
166 		btrfs_free_reserved_data_space_noquota(inode, len);
167 		extent_changeset_free(*reserved);
168 		*reserved = NULL;
169 	} else {
170 		ret = 0;
171 	}
172 	return ret;
173 }
174 
175 /*
176  * Called if we need to clear a data reservation for this inode
177  * Normally in a error case.
178  *
179  * This one will *NOT* use accurate qgroup reserved space API, just for case
180  * which we can't sleep and is sure it won't affect qgroup reserved space.
181  * Like clear_bit_hook().
182  */
183 void btrfs_free_reserved_data_space_noquota(struct btrfs_inode *inode, u64 len)
184 {
185 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 
187 	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
188 
189 	btrfs_space_info_free_bytes_may_use(data_sinfo_for_inode(inode), len);
190 }
191 
192 /*
193  * Called if we need to clear a data reservation for this inode
194  * Normally in a error case.
195  *
196  * This one will handle the per-inode data rsv map for accurate reserved
197  * space framework.
198  */
199 void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
200 			struct extent_changeset *reserved, u64 start, u64 len)
201 {
202 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
203 
204 	/* Make sure the range is aligned to sectorsize */
205 	len = round_up(start + len, fs_info->sectorsize) -
206 	      round_down(start, fs_info->sectorsize);
207 	start = round_down(start, fs_info->sectorsize);
208 
209 	btrfs_free_reserved_data_space_noquota(inode, len);
210 	btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
211 }
212 
213 /*
214  * Release any excessive reservations for an inode.
215  *
216  * @inode:       the inode we need to release from
217  * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
218  *               meta reservation needs to know if we are freeing qgroup
219  *               reservation or just converting it into per-trans.  Normally
220  *               @qgroup_free is true for error handling, and false for normal
221  *               release.
222  *
223  * This is the same as btrfs_block_rsv_release, except that it handles the
224  * tracepoint for the reservation.
225  */
226 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
227 {
228 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
229 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
230 	u64 released = 0;
231 	u64 qgroup_to_release = 0;
232 
233 	/*
234 	 * Since we statically set the block_rsv->size we just want to say we
235 	 * are releasing 0 bytes, and then we'll just get the reservation over
236 	 * the size free'd.
237 	 */
238 	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
239 					   &qgroup_to_release);
240 	if (released > 0)
241 		trace_btrfs_space_reservation(fs_info, "delalloc",
242 					      btrfs_ino(inode), released, 0);
243 	if (qgroup_free)
244 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
245 	else
246 		btrfs_qgroup_convert_reserved_meta(inode->root,
247 						   qgroup_to_release);
248 }
249 
250 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
251 						 struct btrfs_inode *inode)
252 {
253 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
254 	u64 reserve_size = 0;
255 	u64 qgroup_rsv_size = 0;
256 	unsigned outstanding_extents;
257 
258 	lockdep_assert_held(&inode->lock);
259 	outstanding_extents = inode->outstanding_extents;
260 
261 	/*
262 	 * Insert size for the number of outstanding extents, 1 normal size for
263 	 * updating the inode.
264 	 */
265 	if (outstanding_extents) {
266 		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
267 						outstanding_extents);
268 		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
269 	}
270 	if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
271 		u64 csum_leaves;
272 
273 		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
274 		reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
275 	}
276 	/*
277 	 * For qgroup rsv, the calculation is very simple:
278 	 * account one nodesize for each outstanding extent
279 	 *
280 	 * This is overestimating in most cases.
281 	 */
282 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
283 
284 	spin_lock(&block_rsv->lock);
285 	block_rsv->size = reserve_size;
286 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
287 	spin_unlock(&block_rsv->lock);
288 }
289 
290 static void calc_inode_reservations(struct btrfs_inode *inode,
291 				    u64 num_bytes, u64 disk_num_bytes,
292 				    u64 *meta_reserve, u64 *qgroup_reserve)
293 {
294 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
295 	u64 nr_extents = count_max_extents(fs_info, num_bytes);
296 	u64 csum_leaves;
297 	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
298 
299 	if (inode->flags & BTRFS_INODE_NODATASUM)
300 		csum_leaves = 0;
301 	else
302 		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
303 
304 	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
305 						nr_extents + csum_leaves);
306 
307 	/*
308 	 * finish_ordered_io has to update the inode, so add the space required
309 	 * for an inode update.
310 	 */
311 	*meta_reserve += inode_update;
312 	*qgroup_reserve = nr_extents * fs_info->nodesize;
313 }
314 
315 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
316 				    u64 disk_num_bytes, bool noflush)
317 {
318 	struct btrfs_root *root = inode->root;
319 	struct btrfs_fs_info *fs_info = root->fs_info;
320 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
321 	u64 meta_reserve, qgroup_reserve;
322 	unsigned nr_extents;
323 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
324 	int ret = 0;
325 
326 	/*
327 	 * If we are a free space inode we need to not flush since we will be in
328 	 * the middle of a transaction commit.  We also don't need the delalloc
329 	 * mutex since we won't race with anybody.  We need this mostly to make
330 	 * lockdep shut its filthy mouth.
331 	 *
332 	 * If we have a transaction open (can happen if we call truncate_block
333 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
334 	 */
335 	if (noflush || btrfs_is_free_space_inode(inode)) {
336 		flush = BTRFS_RESERVE_NO_FLUSH;
337 	} else {
338 		if (current->journal_info)
339 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
340 	}
341 
342 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
343 	disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
344 
345 	/*
346 	 * We always want to do it this way, every other way is wrong and ends
347 	 * in tears.  Pre-reserving the amount we are going to add will always
348 	 * be the right way, because otherwise if we have enough parallelism we
349 	 * could end up with thousands of inodes all holding little bits of
350 	 * reservations they were able to make previously and the only way to
351 	 * reclaim that space is to ENOSPC out the operations and clear
352 	 * everything out and try again, which is bad.  This way we just
353 	 * over-reserve slightly, and clean up the mess when we are done.
354 	 */
355 	calc_inode_reservations(inode, num_bytes, disk_num_bytes,
356 				&meta_reserve, &qgroup_reserve);
357 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
358 						 noflush);
359 	if (ret)
360 		return ret;
361 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
362 					   meta_reserve, flush);
363 	if (ret) {
364 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
365 		return ret;
366 	}
367 
368 	/*
369 	 * Now we need to update our outstanding extents and csum bytes _first_
370 	 * and then add the reservation to the block_rsv.  This keeps us from
371 	 * racing with an ordered completion or some such that would think it
372 	 * needs to free the reservation we just made.
373 	 */
374 	nr_extents = count_max_extents(fs_info, num_bytes);
375 	spin_lock(&inode->lock);
376 	btrfs_mod_outstanding_extents(inode, nr_extents);
377 	if (!(inode->flags & BTRFS_INODE_NODATASUM))
378 		inode->csum_bytes += disk_num_bytes;
379 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
380 	spin_unlock(&inode->lock);
381 
382 	/* Now we can safely add our space to our block rsv */
383 	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
384 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
385 				      btrfs_ino(inode), meta_reserve, 1);
386 
387 	spin_lock(&block_rsv->lock);
388 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
389 	spin_unlock(&block_rsv->lock);
390 
391 	return 0;
392 }
393 
394 /*
395  * Release a metadata reservation for an inode.
396  *
397  * @inode:        the inode to release the reservation for.
398  * @num_bytes:    the number of bytes we are releasing.
399  * @qgroup_free:  free qgroup reservation or convert it to per-trans reservation
400  *
401  * This will release the metadata reservation for an inode.  This can be called
402  * once we complete IO for a given set of bytes to release their metadata
403  * reservations, or on error for the same reason.
404  */
405 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
406 				     bool qgroup_free)
407 {
408 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
409 
410 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
411 	spin_lock(&inode->lock);
412 	if (!(inode->flags & BTRFS_INODE_NODATASUM))
413 		inode->csum_bytes -= num_bytes;
414 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
415 	spin_unlock(&inode->lock);
416 
417 	if (btrfs_is_testing(fs_info))
418 		return;
419 
420 	btrfs_inode_rsv_release(inode, qgroup_free);
421 }
422 
423 /*
424  * Release our outstanding_extents for an inode.
425  *
426  * @inode:      the inode to balance the reservation for.
427  * @num_bytes:  the number of bytes we originally reserved with
428  *
429  * When we reserve space we increase outstanding_extents for the extents we may
430  * add.  Once we've set the range as delalloc or created our ordered extents we
431  * have outstanding_extents to track the real usage, so we use this to free our
432  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
433  * with btrfs_delalloc_reserve_metadata.
434  */
435 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
436 {
437 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
438 	unsigned num_extents;
439 
440 	spin_lock(&inode->lock);
441 	num_extents = count_max_extents(fs_info, num_bytes);
442 	btrfs_mod_outstanding_extents(inode, -num_extents);
443 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
444 	spin_unlock(&inode->lock);
445 
446 	if (btrfs_is_testing(fs_info))
447 		return;
448 
449 	btrfs_inode_rsv_release(inode, true);
450 }
451 
452 /* Shrink a previously reserved extent to a new length. */
453 void btrfs_delalloc_shrink_extents(struct btrfs_inode *inode, u64 reserved_len, u64 new_len)
454 {
455 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
456 	const u32 reserved_num_extents = count_max_extents(fs_info, reserved_len);
457 	const u32 new_num_extents = count_max_extents(fs_info, new_len);
458 	const int diff_num_extents = new_num_extents - reserved_num_extents;
459 
460 	ASSERT(new_len <= reserved_len);
461 	if (new_num_extents == reserved_num_extents)
462 		return;
463 
464 	spin_lock(&inode->lock);
465 	btrfs_mod_outstanding_extents(inode, diff_num_extents);
466 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
467 	spin_unlock(&inode->lock);
468 
469 	if (btrfs_is_testing(fs_info))
470 		return;
471 
472 	btrfs_inode_rsv_release(inode, true);
473 }
474 
475 /*
476  * Reserve data and metadata space for delalloc
477  *
478  * @inode:     inode we're writing to
479  * @start:     start range we are writing to
480  * @len:       how long the range we are writing to
481  * @reserved:  mandatory parameter, record actually reserved qgroup ranges of
482  * 	       current reservation.
483  *
484  * This will do the following things
485  *
486  * - reserve space in data space info for num bytes and reserve precious
487  *   corresponding qgroup space
488  *   (Done in check_data_free_space)
489  *
490  * - reserve space for metadata space, based on the number of outstanding
491  *   extents and how much csums will be needed also reserve metadata space in a
492  *   per root over-reserve method.
493  * - add to the inodes->delalloc_bytes
494  * - add it to the fs_info's delalloc inodes list.
495  *   (Above 3 all done in delalloc_reserve_metadata)
496  *
497  * Return 0 for success
498  * Return <0 for error(-ENOSPC or -EDQUOT)
499  */
500 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
501 			struct extent_changeset **reserved, u64 start, u64 len)
502 {
503 	int ret;
504 
505 	ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
506 	if (ret < 0)
507 		return ret;
508 	ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
509 	if (ret < 0) {
510 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
511 		extent_changeset_free(*reserved);
512 		*reserved = NULL;
513 	}
514 	return ret;
515 }
516 
517 /*
518  * Release data and metadata space for delalloc
519  *
520  * @inode:       inode we're releasing space for
521  * @reserved:    list of changed/reserved ranges
522  * @start:       start position of the space already reserved
523  * @len:         length of the space already reserved
524  * @qgroup_free: should qgroup reserved-space also be freed
525  *
526  * Release the metadata space that was not used and will decrement
527  * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
528  * there are no delalloc bytes left.  Also it will handle the qgroup reserved
529  * space.
530  */
531 void btrfs_delalloc_release_space(struct btrfs_inode *inode,
532 				  struct extent_changeset *reserved,
533 				  u64 start, u64 len, bool qgroup_free)
534 {
535 	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
536 	btrfs_free_reserved_data_space(inode, reserved, start, len);
537 }
538