1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "messages.h" 4 #include "ctree.h" 5 #include "delalloc-space.h" 6 #include "block-rsv.h" 7 #include "btrfs_inode.h" 8 #include "space-info.h" 9 #include "qgroup.h" 10 #include "fs.h" 11 12 /* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (current value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114 static inline struct btrfs_space_info *data_sinfo_for_inode(const struct btrfs_inode *inode) 115 { 116 struct btrfs_fs_info *fs_info = inode->root->fs_info; 117 118 if (btrfs_is_zoned(fs_info) && btrfs_is_data_reloc_root(inode->root)) { 119 ASSERT(fs_info->data_sinfo->sub_group[0]->subgroup_id == 120 BTRFS_SUB_GROUP_DATA_RELOC); 121 return fs_info->data_sinfo->sub_group[0]; 122 } 123 return fs_info->data_sinfo; 124 } 125 126 int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes) 127 { 128 struct btrfs_root *root = inode->root; 129 struct btrfs_fs_info *fs_info = root->fs_info; 130 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 131 132 /* Make sure bytes are sectorsize aligned */ 133 bytes = ALIGN(bytes, fs_info->sectorsize); 134 135 if (btrfs_is_free_space_inode(inode)) 136 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 137 138 return btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), bytes, flush); 139 } 140 141 int btrfs_check_data_free_space(struct btrfs_inode *inode, 142 struct extent_changeset **reserved, u64 start, 143 u64 len, bool noflush) 144 { 145 struct btrfs_fs_info *fs_info = inode->root->fs_info; 146 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 147 int ret; 148 149 /* align the range */ 150 len = round_up(start + len, fs_info->sectorsize) - 151 round_down(start, fs_info->sectorsize); 152 start = round_down(start, fs_info->sectorsize); 153 154 if (noflush) 155 flush = BTRFS_RESERVE_NO_FLUSH; 156 else if (btrfs_is_free_space_inode(inode)) 157 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 158 159 ret = btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), len, flush); 160 if (ret < 0) 161 return ret; 162 163 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 164 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 165 if (ret < 0) { 166 btrfs_free_reserved_data_space_noquota(inode, len); 167 extent_changeset_free(*reserved); 168 *reserved = NULL; 169 } else { 170 ret = 0; 171 } 172 return ret; 173 } 174 175 /* 176 * Called if we need to clear a data reservation for this inode 177 * Normally in a error case. 178 * 179 * This one will *NOT* use accurate qgroup reserved space API, just for case 180 * which we can't sleep and is sure it won't affect qgroup reserved space. 181 * Like clear_bit_hook(). 182 */ 183 void btrfs_free_reserved_data_space_noquota(struct btrfs_inode *inode, u64 len) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 187 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 188 189 btrfs_space_info_free_bytes_may_use(data_sinfo_for_inode(inode), len); 190 } 191 192 /* 193 * Called if we need to clear a data reservation for this inode 194 * Normally in a error case. 195 * 196 * This one will handle the per-inode data rsv map for accurate reserved 197 * space framework. 198 */ 199 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 200 struct extent_changeset *reserved, u64 start, u64 len) 201 { 202 struct btrfs_fs_info *fs_info = inode->root->fs_info; 203 204 /* Make sure the range is aligned to sectorsize */ 205 len = round_up(start + len, fs_info->sectorsize) - 206 round_down(start, fs_info->sectorsize); 207 start = round_down(start, fs_info->sectorsize); 208 209 btrfs_free_reserved_data_space_noquota(inode, len); 210 btrfs_qgroup_free_data(inode, reserved, start, len, NULL); 211 } 212 213 /* 214 * Release any excessive reservations for an inode. 215 * 216 * @inode: the inode we need to release from 217 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 218 * meta reservation needs to know if we are freeing qgroup 219 * reservation or just converting it into per-trans. Normally 220 * @qgroup_free is true for error handling, and false for normal 221 * release. 222 * 223 * This is the same as btrfs_block_rsv_release, except that it handles the 224 * tracepoint for the reservation. 225 */ 226 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 227 { 228 struct btrfs_fs_info *fs_info = inode->root->fs_info; 229 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 230 u64 released = 0; 231 u64 qgroup_to_release = 0; 232 233 /* 234 * Since we statically set the block_rsv->size we just want to say we 235 * are releasing 0 bytes, and then we'll just get the reservation over 236 * the size free'd. 237 */ 238 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 239 &qgroup_to_release); 240 if (released > 0) 241 trace_btrfs_space_reservation(fs_info, "delalloc", 242 btrfs_ino(inode), released, 0); 243 if (qgroup_free) 244 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 245 else 246 btrfs_qgroup_convert_reserved_meta(inode->root, 247 qgroup_to_release); 248 } 249 250 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 251 struct btrfs_inode *inode) 252 { 253 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 254 u64 reserve_size = 0; 255 u64 qgroup_rsv_size = 0; 256 unsigned outstanding_extents; 257 258 lockdep_assert_held(&inode->lock); 259 outstanding_extents = inode->outstanding_extents; 260 261 /* 262 * Insert size for the number of outstanding extents, 1 normal size for 263 * updating the inode. 264 */ 265 if (outstanding_extents) { 266 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 267 outstanding_extents); 268 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 269 } 270 if (!(inode->flags & BTRFS_INODE_NODATASUM)) { 271 u64 csum_leaves; 272 273 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 274 reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves); 275 } 276 /* 277 * For qgroup rsv, the calculation is very simple: 278 * account one nodesize for each outstanding extent 279 * 280 * This is overestimating in most cases. 281 */ 282 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 283 284 spin_lock(&block_rsv->lock); 285 block_rsv->size = reserve_size; 286 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 287 spin_unlock(&block_rsv->lock); 288 } 289 290 static void calc_inode_reservations(struct btrfs_inode *inode, 291 u64 num_bytes, u64 disk_num_bytes, 292 u64 *meta_reserve, u64 *qgroup_reserve) 293 { 294 struct btrfs_fs_info *fs_info = inode->root->fs_info; 295 u64 nr_extents = count_max_extents(fs_info, num_bytes); 296 u64 csum_leaves; 297 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 298 299 if (inode->flags & BTRFS_INODE_NODATASUM) 300 csum_leaves = 0; 301 else 302 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 303 304 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 305 nr_extents + csum_leaves); 306 307 /* 308 * finish_ordered_io has to update the inode, so add the space required 309 * for an inode update. 310 */ 311 *meta_reserve += inode_update; 312 *qgroup_reserve = nr_extents * fs_info->nodesize; 313 } 314 315 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 316 u64 disk_num_bytes, bool noflush) 317 { 318 struct btrfs_root *root = inode->root; 319 struct btrfs_fs_info *fs_info = root->fs_info; 320 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 321 u64 meta_reserve, qgroup_reserve; 322 unsigned nr_extents; 323 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 324 int ret = 0; 325 326 /* 327 * If we are a free space inode we need to not flush since we will be in 328 * the middle of a transaction commit. We also don't need the delalloc 329 * mutex since we won't race with anybody. We need this mostly to make 330 * lockdep shut its filthy mouth. 331 * 332 * If we have a transaction open (can happen if we call truncate_block 333 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 334 */ 335 if (noflush || btrfs_is_free_space_inode(inode)) { 336 flush = BTRFS_RESERVE_NO_FLUSH; 337 } else { 338 if (current->journal_info) 339 flush = BTRFS_RESERVE_FLUSH_LIMIT; 340 } 341 342 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 343 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 344 345 /* 346 * We always want to do it this way, every other way is wrong and ends 347 * in tears. Pre-reserving the amount we are going to add will always 348 * be the right way, because otherwise if we have enough parallelism we 349 * could end up with thousands of inodes all holding little bits of 350 * reservations they were able to make previously and the only way to 351 * reclaim that space is to ENOSPC out the operations and clear 352 * everything out and try again, which is bad. This way we just 353 * over-reserve slightly, and clean up the mess when we are done. 354 */ 355 calc_inode_reservations(inode, num_bytes, disk_num_bytes, 356 &meta_reserve, &qgroup_reserve); 357 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 358 noflush); 359 if (ret) 360 return ret; 361 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 362 meta_reserve, flush); 363 if (ret) { 364 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 365 return ret; 366 } 367 368 /* 369 * Now we need to update our outstanding extents and csum bytes _first_ 370 * and then add the reservation to the block_rsv. This keeps us from 371 * racing with an ordered completion or some such that would think it 372 * needs to free the reservation we just made. 373 */ 374 nr_extents = count_max_extents(fs_info, num_bytes); 375 spin_lock(&inode->lock); 376 btrfs_mod_outstanding_extents(inode, nr_extents); 377 if (!(inode->flags & BTRFS_INODE_NODATASUM)) 378 inode->csum_bytes += disk_num_bytes; 379 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 380 spin_unlock(&inode->lock); 381 382 /* Now we can safely add our space to our block rsv */ 383 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 384 trace_btrfs_space_reservation(root->fs_info, "delalloc", 385 btrfs_ino(inode), meta_reserve, 1); 386 387 spin_lock(&block_rsv->lock); 388 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 389 spin_unlock(&block_rsv->lock); 390 391 return 0; 392 } 393 394 /* 395 * Release a metadata reservation for an inode. 396 * 397 * @inode: the inode to release the reservation for. 398 * @num_bytes: the number of bytes we are releasing. 399 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 400 * 401 * This will release the metadata reservation for an inode. This can be called 402 * once we complete IO for a given set of bytes to release their metadata 403 * reservations, or on error for the same reason. 404 */ 405 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 406 bool qgroup_free) 407 { 408 struct btrfs_fs_info *fs_info = inode->root->fs_info; 409 410 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 411 spin_lock(&inode->lock); 412 if (!(inode->flags & BTRFS_INODE_NODATASUM)) 413 inode->csum_bytes -= num_bytes; 414 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 415 spin_unlock(&inode->lock); 416 417 if (btrfs_is_testing(fs_info)) 418 return; 419 420 btrfs_inode_rsv_release(inode, qgroup_free); 421 } 422 423 /* 424 * Release our outstanding_extents for an inode. 425 * 426 * @inode: the inode to balance the reservation for. 427 * @num_bytes: the number of bytes we originally reserved with 428 * 429 * When we reserve space we increase outstanding_extents for the extents we may 430 * add. Once we've set the range as delalloc or created our ordered extents we 431 * have outstanding_extents to track the real usage, so we use this to free our 432 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 433 * with btrfs_delalloc_reserve_metadata. 434 */ 435 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 436 { 437 struct btrfs_fs_info *fs_info = inode->root->fs_info; 438 unsigned num_extents; 439 440 spin_lock(&inode->lock); 441 num_extents = count_max_extents(fs_info, num_bytes); 442 btrfs_mod_outstanding_extents(inode, -num_extents); 443 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 444 spin_unlock(&inode->lock); 445 446 if (btrfs_is_testing(fs_info)) 447 return; 448 449 btrfs_inode_rsv_release(inode, true); 450 } 451 452 /* Shrink a previously reserved extent to a new length. */ 453 void btrfs_delalloc_shrink_extents(struct btrfs_inode *inode, u64 reserved_len, u64 new_len) 454 { 455 struct btrfs_fs_info *fs_info = inode->root->fs_info; 456 const u32 reserved_num_extents = count_max_extents(fs_info, reserved_len); 457 const u32 new_num_extents = count_max_extents(fs_info, new_len); 458 const int diff_num_extents = new_num_extents - reserved_num_extents; 459 460 ASSERT(new_len <= reserved_len); 461 if (new_num_extents == reserved_num_extents) 462 return; 463 464 spin_lock(&inode->lock); 465 btrfs_mod_outstanding_extents(inode, diff_num_extents); 466 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 467 spin_unlock(&inode->lock); 468 469 if (btrfs_is_testing(fs_info)) 470 return; 471 472 btrfs_inode_rsv_release(inode, true); 473 } 474 475 /* 476 * Reserve data and metadata space for delalloc 477 * 478 * @inode: inode we're writing to 479 * @start: start range we are writing to 480 * @len: how long the range we are writing to 481 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 482 * current reservation. 483 * 484 * This will do the following things 485 * 486 * - reserve space in data space info for num bytes and reserve precious 487 * corresponding qgroup space 488 * (Done in check_data_free_space) 489 * 490 * - reserve space for metadata space, based on the number of outstanding 491 * extents and how much csums will be needed also reserve metadata space in a 492 * per root over-reserve method. 493 * - add to the inodes->delalloc_bytes 494 * - add it to the fs_info's delalloc inodes list. 495 * (Above 3 all done in delalloc_reserve_metadata) 496 * 497 * Return 0 for success 498 * Return <0 for error(-ENOSPC or -EDQUOT) 499 */ 500 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 501 struct extent_changeset **reserved, u64 start, u64 len) 502 { 503 int ret; 504 505 ret = btrfs_check_data_free_space(inode, reserved, start, len, false); 506 if (ret < 0) 507 return ret; 508 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 509 if (ret < 0) { 510 btrfs_free_reserved_data_space(inode, *reserved, start, len); 511 extent_changeset_free(*reserved); 512 *reserved = NULL; 513 } 514 return ret; 515 } 516 517 /* 518 * Release data and metadata space for delalloc 519 * 520 * @inode: inode we're releasing space for 521 * @reserved: list of changed/reserved ranges 522 * @start: start position of the space already reserved 523 * @len: length of the space already reserved 524 * @qgroup_free: should qgroup reserved-space also be freed 525 * 526 * Release the metadata space that was not used and will decrement 527 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if 528 * there are no delalloc bytes left. Also it will handle the qgroup reserved 529 * space. 530 */ 531 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 532 struct extent_changeset *reserved, 533 u64 start, u64 len, bool qgroup_free) 534 { 535 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 536 btrfs_free_reserved_data_space(inode, reserved, start, len); 537 } 538