1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include "ctree.h" 8 #include "disk-io.h" 9 #include "transaction.h" 10 #include "locking.h" 11 #include "accessors.h" 12 #include "messages.h" 13 #include "delalloc-space.h" 14 #include "subpage.h" 15 #include "defrag.h" 16 #include "file-item.h" 17 #include "super.h" 18 19 static struct kmem_cache *btrfs_inode_defrag_cachep; 20 21 /* 22 * When auto defrag is enabled we queue up these defrag structs to remember 23 * which inodes need defragging passes. 24 */ 25 struct inode_defrag { 26 struct rb_node rb_node; 27 /* Inode number */ 28 u64 ino; 29 /* 30 * Transid where the defrag was added, we search for extents newer than 31 * this. 32 */ 33 u64 transid; 34 35 /* Root objectid */ 36 u64 root; 37 38 /* 39 * The extent size threshold for autodefrag. 40 * 41 * This value is different for compressed/non-compressed extents, thus 42 * needs to be passed from higher layer. 43 * (aka, inode_should_defrag()) 44 */ 45 u32 extent_thresh; 46 }; 47 48 static int compare_inode_defrag(const struct inode_defrag *defrag1, 49 const struct inode_defrag *defrag2) 50 { 51 if (defrag1->root > defrag2->root) 52 return 1; 53 else if (defrag1->root < defrag2->root) 54 return -1; 55 else if (defrag1->ino > defrag2->ino) 56 return 1; 57 else if (defrag1->ino < defrag2->ino) 58 return -1; 59 else 60 return 0; 61 } 62 63 /* 64 * Insert a record for an inode into the defrag tree. The lock must be held 65 * already. 66 * 67 * If you're inserting a record for an older transid than an existing record, 68 * the transid already in the tree is lowered. 69 */ 70 static int btrfs_insert_inode_defrag(struct btrfs_inode *inode, 71 struct inode_defrag *defrag) 72 { 73 struct btrfs_fs_info *fs_info = inode->root->fs_info; 74 struct inode_defrag *entry; 75 struct rb_node **p; 76 struct rb_node *parent = NULL; 77 int ret; 78 79 p = &fs_info->defrag_inodes.rb_node; 80 while (*p) { 81 parent = *p; 82 entry = rb_entry(parent, struct inode_defrag, rb_node); 83 84 ret = compare_inode_defrag(defrag, entry); 85 if (ret < 0) 86 p = &parent->rb_left; 87 else if (ret > 0) 88 p = &parent->rb_right; 89 else { 90 /* 91 * If we're reinserting an entry for an old defrag run, 92 * make sure to lower the transid of our existing 93 * record. 94 */ 95 if (defrag->transid < entry->transid) 96 entry->transid = defrag->transid; 97 entry->extent_thresh = min(defrag->extent_thresh, 98 entry->extent_thresh); 99 return -EEXIST; 100 } 101 } 102 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 103 rb_link_node(&defrag->rb_node, parent, p); 104 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 105 return 0; 106 } 107 108 static inline bool need_auto_defrag(struct btrfs_fs_info *fs_info) 109 { 110 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 111 return false; 112 113 if (btrfs_fs_closing(fs_info)) 114 return false; 115 116 return true; 117 } 118 119 /* 120 * Insert a defrag record for this inode if auto defrag is enabled. No errors 121 * returned as they're not considered fatal. 122 */ 123 void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh) 124 { 125 struct btrfs_root *root = inode->root; 126 struct btrfs_fs_info *fs_info = root->fs_info; 127 struct inode_defrag *defrag; 128 int ret; 129 130 if (!need_auto_defrag(fs_info)) 131 return; 132 133 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 134 return; 135 136 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 137 if (!defrag) 138 return; 139 140 defrag->ino = btrfs_ino(inode); 141 defrag->transid = btrfs_get_root_last_trans(root); 142 defrag->root = btrfs_root_id(root); 143 defrag->extent_thresh = extent_thresh; 144 145 spin_lock(&fs_info->defrag_inodes_lock); 146 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 147 /* 148 * If we set IN_DEFRAG flag and evict the inode from memory, 149 * and then re-read this inode, this new inode doesn't have 150 * IN_DEFRAG flag. At the case, we may find the existed defrag. 151 */ 152 ret = btrfs_insert_inode_defrag(inode, defrag); 153 if (ret) 154 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 155 } else { 156 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 157 } 158 spin_unlock(&fs_info->defrag_inodes_lock); 159 } 160 161 /* 162 * Pick the defragable inode that we want, if it doesn't exist, we will get the 163 * next one. 164 */ 165 static struct inode_defrag *btrfs_pick_defrag_inode( 166 struct btrfs_fs_info *fs_info, u64 root, u64 ino) 167 { 168 struct inode_defrag *entry = NULL; 169 struct inode_defrag tmp; 170 struct rb_node *p; 171 struct rb_node *parent = NULL; 172 int ret; 173 174 tmp.ino = ino; 175 tmp.root = root; 176 177 spin_lock(&fs_info->defrag_inodes_lock); 178 p = fs_info->defrag_inodes.rb_node; 179 while (p) { 180 parent = p; 181 entry = rb_entry(parent, struct inode_defrag, rb_node); 182 183 ret = compare_inode_defrag(&tmp, entry); 184 if (ret < 0) 185 p = parent->rb_left; 186 else if (ret > 0) 187 p = parent->rb_right; 188 else 189 goto out; 190 } 191 192 if (parent && compare_inode_defrag(&tmp, entry) > 0) { 193 parent = rb_next(parent); 194 entry = rb_entry_safe(parent, struct inode_defrag, rb_node); 195 } 196 out: 197 if (entry) 198 rb_erase(parent, &fs_info->defrag_inodes); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 return entry; 201 } 202 203 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 204 { 205 struct inode_defrag *defrag, *next; 206 207 spin_lock(&fs_info->defrag_inodes_lock); 208 209 rbtree_postorder_for_each_entry_safe(defrag, next, 210 &fs_info->defrag_inodes, rb_node) 211 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 212 213 fs_info->defrag_inodes = RB_ROOT; 214 215 spin_unlock(&fs_info->defrag_inodes_lock); 216 } 217 218 #define BTRFS_DEFRAG_BATCH 1024 219 220 static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 221 struct inode_defrag *defrag, 222 struct file_ra_state *ra) 223 { 224 struct btrfs_root *inode_root; 225 struct btrfs_inode *inode; 226 struct btrfs_ioctl_defrag_range_args range; 227 int ret = 0; 228 u64 cur = 0; 229 230 again: 231 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 232 goto cleanup; 233 if (!need_auto_defrag(fs_info)) 234 goto cleanup; 235 236 /* Get the inode */ 237 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 238 if (IS_ERR(inode_root)) { 239 ret = PTR_ERR(inode_root); 240 goto cleanup; 241 } 242 243 inode = btrfs_iget(defrag->ino, inode_root); 244 btrfs_put_root(inode_root); 245 if (IS_ERR(inode)) { 246 ret = PTR_ERR(inode); 247 goto cleanup; 248 } 249 250 if (cur >= i_size_read(&inode->vfs_inode)) { 251 iput(&inode->vfs_inode); 252 goto cleanup; 253 } 254 255 /* Do a chunk of defrag */ 256 clear_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 257 memset(&range, 0, sizeof(range)); 258 range.len = (u64)-1; 259 range.start = cur; 260 range.extent_thresh = defrag->extent_thresh; 261 file_ra_state_init(ra, inode->vfs_inode.i_mapping); 262 263 sb_start_write(fs_info->sb); 264 ret = btrfs_defrag_file(inode, ra, &range, defrag->transid, 265 BTRFS_DEFRAG_BATCH); 266 sb_end_write(fs_info->sb); 267 iput(&inode->vfs_inode); 268 269 if (ret < 0) 270 goto cleanup; 271 272 cur = max(cur + fs_info->sectorsize, range.start); 273 goto again; 274 275 cleanup: 276 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 277 return ret; 278 } 279 280 /* 281 * Run through the list of inodes in the FS that need defragging. 282 */ 283 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 284 { 285 struct inode_defrag *defrag; 286 u64 first_ino = 0; 287 u64 root_objectid = 0; 288 289 atomic_inc(&fs_info->defrag_running); 290 while (1) { 291 struct file_ra_state ra = { 0 }; 292 293 /* Pause the auto defragger. */ 294 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 295 break; 296 297 if (!need_auto_defrag(fs_info)) 298 break; 299 300 /* find an inode to defrag */ 301 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); 302 if (!defrag) { 303 if (root_objectid || first_ino) { 304 root_objectid = 0; 305 first_ino = 0; 306 continue; 307 } else { 308 break; 309 } 310 } 311 312 first_ino = defrag->ino + 1; 313 root_objectid = defrag->root; 314 315 btrfs_run_defrag_inode(fs_info, defrag, &ra); 316 } 317 atomic_dec(&fs_info->defrag_running); 318 319 /* 320 * During unmount, we use the transaction_wait queue to wait for the 321 * defragger to stop. 322 */ 323 wake_up(&fs_info->transaction_wait); 324 return 0; 325 } 326 327 /* 328 * Check if two blocks addresses are close, used by defrag. 329 */ 330 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) 331 { 332 if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) 333 return true; 334 if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) 335 return true; 336 return false; 337 } 338 339 /* 340 * Go through all the leaves pointed to by a node and reallocate them so that 341 * disk order is close to key order. 342 */ 343 static int btrfs_realloc_node(struct btrfs_trans_handle *trans, 344 struct btrfs_root *root, 345 struct extent_buffer *parent, 346 int start_slot, u64 *last_ret, 347 struct btrfs_key *progress) 348 { 349 struct btrfs_fs_info *fs_info = root->fs_info; 350 const u32 blocksize = fs_info->nodesize; 351 const int end_slot = btrfs_header_nritems(parent) - 1; 352 u64 search_start = *last_ret; 353 u64 last_block = 0; 354 int ret = 0; 355 bool progress_passed = false; 356 357 /* 358 * COWing must happen through a running transaction, which always 359 * matches the current fs generation (it's a transaction with a state 360 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 361 * into error state to prevent the commit of any transaction. 362 */ 363 if (unlikely(trans->transaction != fs_info->running_transaction || 364 trans->transid != fs_info->generation)) { 365 btrfs_abort_transaction(trans, -EUCLEAN); 366 btrfs_crit(fs_info, 367 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", 368 parent->start, btrfs_root_id(root), trans->transid, 369 fs_info->running_transaction->transid, 370 fs_info->generation); 371 return -EUCLEAN; 372 } 373 374 if (btrfs_header_nritems(parent) <= 1) 375 return 0; 376 377 for (int i = start_slot; i <= end_slot; i++) { 378 struct extent_buffer *cur; 379 struct btrfs_disk_key disk_key; 380 u64 blocknr; 381 u64 other; 382 bool close = true; 383 384 btrfs_node_key(parent, &disk_key, i); 385 if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) 386 continue; 387 388 progress_passed = true; 389 blocknr = btrfs_node_blockptr(parent, i); 390 if (last_block == 0) 391 last_block = blocknr; 392 393 if (i > 0) { 394 other = btrfs_node_blockptr(parent, i - 1); 395 close = close_blocks(blocknr, other, blocksize); 396 } 397 if (!close && i < end_slot) { 398 other = btrfs_node_blockptr(parent, i + 1); 399 close = close_blocks(blocknr, other, blocksize); 400 } 401 if (close) { 402 last_block = blocknr; 403 continue; 404 } 405 406 cur = btrfs_read_node_slot(parent, i); 407 if (IS_ERR(cur)) 408 return PTR_ERR(cur); 409 if (search_start == 0) 410 search_start = last_block; 411 412 btrfs_tree_lock(cur); 413 ret = btrfs_force_cow_block(trans, root, cur, parent, i, 414 &cur, search_start, 415 min(16 * blocksize, 416 (end_slot - i) * blocksize), 417 BTRFS_NESTING_COW); 418 if (ret) { 419 btrfs_tree_unlock(cur); 420 free_extent_buffer(cur); 421 break; 422 } 423 search_start = cur->start; 424 last_block = cur->start; 425 *last_ret = search_start; 426 btrfs_tree_unlock(cur); 427 free_extent_buffer(cur); 428 } 429 return ret; 430 } 431 432 /* 433 * Defrag all the leaves in a given btree. 434 * Read all the leaves and try to get key order to 435 * better reflect disk order 436 */ 437 438 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 439 struct btrfs_root *root) 440 { 441 struct btrfs_path *path = NULL; 442 struct btrfs_key key; 443 int ret = 0; 444 int wret; 445 int level; 446 int next_key_ret = 0; 447 u64 last_ret = 0; 448 449 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 450 goto out; 451 452 path = btrfs_alloc_path(); 453 if (!path) { 454 ret = -ENOMEM; 455 goto out; 456 } 457 458 level = btrfs_header_level(root->node); 459 460 if (level == 0) 461 goto out; 462 463 if (root->defrag_progress.objectid == 0) { 464 struct extent_buffer *root_node; 465 u32 nritems; 466 467 root_node = btrfs_lock_root_node(root); 468 nritems = btrfs_header_nritems(root_node); 469 root->defrag_max.objectid = 0; 470 /* from above we know this is not a leaf */ 471 btrfs_node_key_to_cpu(root_node, &root->defrag_max, 472 nritems - 1); 473 btrfs_tree_unlock(root_node); 474 free_extent_buffer(root_node); 475 memset(&key, 0, sizeof(key)); 476 } else { 477 memcpy(&key, &root->defrag_progress, sizeof(key)); 478 } 479 480 path->keep_locks = 1; 481 482 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); 483 if (ret < 0) 484 goto out; 485 if (ret > 0) { 486 ret = 0; 487 goto out; 488 } 489 btrfs_release_path(path); 490 /* 491 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all 492 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later 493 * a deadlock (attempting to write lock an already write locked leaf). 494 */ 495 path->lowest_level = 1; 496 wret = btrfs_search_slot(trans, root, &key, path, 0, 1); 497 498 if (wret < 0) { 499 ret = wret; 500 goto out; 501 } 502 if (!path->nodes[1]) { 503 ret = 0; 504 goto out; 505 } 506 /* 507 * The node at level 1 must always be locked when our path has 508 * keep_locks set and lowest_level is 1, regardless of the value of 509 * path->slots[1]. 510 */ 511 ASSERT(path->locks[1] != 0); 512 ret = btrfs_realloc_node(trans, root, 513 path->nodes[1], 0, 514 &last_ret, 515 &root->defrag_progress); 516 if (ret) { 517 WARN_ON(ret == -EAGAIN); 518 goto out; 519 } 520 /* 521 * Now that we reallocated the node we can find the next key. Note that 522 * btrfs_find_next_key() can release our path and do another search 523 * without COWing, this is because even with path->keep_locks = 1, 524 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a 525 * node when path->slots[node_level - 1] does not point to the last 526 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore 527 * we search for the next key after reallocating our node. 528 */ 529 path->slots[1] = btrfs_header_nritems(path->nodes[1]); 530 next_key_ret = btrfs_find_next_key(root, path, &key, 1, 531 BTRFS_OLDEST_GENERATION); 532 if (next_key_ret == 0) { 533 memcpy(&root->defrag_progress, &key, sizeof(key)); 534 ret = -EAGAIN; 535 } 536 out: 537 btrfs_free_path(path); 538 if (ret == -EAGAIN) { 539 if (root->defrag_max.objectid > root->defrag_progress.objectid) 540 goto done; 541 if (root->defrag_max.type > root->defrag_progress.type) 542 goto done; 543 if (root->defrag_max.offset > root->defrag_progress.offset) 544 goto done; 545 ret = 0; 546 } 547 done: 548 if (ret != -EAGAIN) 549 memset(&root->defrag_progress, 0, 550 sizeof(root->defrag_progress)); 551 552 return ret; 553 } 554 555 /* 556 * Defrag a given btree. Every leaf in the btree is read and defragmented. 557 */ 558 int btrfs_defrag_root(struct btrfs_root *root) 559 { 560 struct btrfs_fs_info *fs_info = root->fs_info; 561 int ret; 562 563 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 564 return 0; 565 566 while (1) { 567 struct btrfs_trans_handle *trans; 568 569 trans = btrfs_start_transaction(root, 0); 570 if (IS_ERR(trans)) { 571 ret = PTR_ERR(trans); 572 break; 573 } 574 575 ret = btrfs_defrag_leaves(trans, root); 576 577 btrfs_end_transaction(trans); 578 btrfs_btree_balance_dirty(fs_info); 579 cond_resched(); 580 581 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) 582 break; 583 584 if (btrfs_defrag_cancelled(fs_info)) { 585 btrfs_debug(fs_info, "defrag_root cancelled"); 586 ret = -EAGAIN; 587 break; 588 } 589 } 590 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 591 return ret; 592 } 593 594 /* 595 * Defrag specific helper to get an extent map. 596 * 597 * Differences between this and btrfs_get_extent() are: 598 * 599 * - No extent_map will be added to inode->extent_tree 600 * To reduce memory usage in the long run. 601 * 602 * - Extra optimization to skip file extents older than @newer_than 603 * By using btrfs_search_forward() we can skip entire file ranges that 604 * have extents created in past transactions, because btrfs_search_forward() 605 * will not visit leaves and nodes with a generation smaller than given 606 * minimal generation threshold (@newer_than). 607 * 608 * Return valid em if we find a file extent matching the requirement. 609 * Return NULL if we can not find a file extent matching the requirement. 610 * 611 * Return ERR_PTR() for error. 612 */ 613 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 614 u64 start, u64 newer_than) 615 { 616 struct btrfs_root *root = inode->root; 617 struct btrfs_file_extent_item *fi; 618 struct btrfs_path path = { 0 }; 619 struct extent_map *em; 620 struct btrfs_key key; 621 u64 ino = btrfs_ino(inode); 622 int ret; 623 624 em = btrfs_alloc_extent_map(); 625 if (!em) { 626 ret = -ENOMEM; 627 goto err; 628 } 629 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = start; 633 634 if (newer_than) { 635 ret = btrfs_search_forward(root, &key, &path, newer_than); 636 if (ret < 0) 637 goto err; 638 /* Can't find anything newer */ 639 if (ret > 0) 640 goto not_found; 641 } else { 642 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 643 if (ret < 0) 644 goto err; 645 } 646 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 647 /* 648 * If btrfs_search_slot() makes path to point beyond nritems, 649 * we should not have an empty leaf, as this inode must at 650 * least have its INODE_ITEM. 651 */ 652 ASSERT(btrfs_header_nritems(path.nodes[0])); 653 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 654 } 655 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 656 /* Perfect match, no need to go one slot back */ 657 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 658 key.offset == start) 659 goto iterate; 660 661 /* We didn't find a perfect match, needs to go one slot back */ 662 if (path.slots[0] > 0) { 663 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 664 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 665 path.slots[0]--; 666 } 667 668 iterate: 669 /* Iterate through the path to find a file extent covering @start */ 670 while (true) { 671 u64 extent_end; 672 673 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 674 goto next; 675 676 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 677 678 /* 679 * We may go one slot back to INODE_REF/XATTR item, then 680 * need to go forward until we reach an EXTENT_DATA. 681 * But we should still has the correct ino as key.objectid. 682 */ 683 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 684 goto next; 685 686 /* It's beyond our target range, definitely not extent found */ 687 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 688 goto not_found; 689 690 /* 691 * | |<- File extent ->| 692 * \- start 693 * 694 * This means there is a hole between start and key.offset. 695 */ 696 if (key.offset > start) { 697 em->start = start; 698 em->disk_bytenr = EXTENT_MAP_HOLE; 699 em->disk_num_bytes = 0; 700 em->ram_bytes = 0; 701 em->offset = 0; 702 em->len = key.offset - start; 703 break; 704 } 705 706 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 707 struct btrfs_file_extent_item); 708 extent_end = btrfs_file_extent_end(&path); 709 710 /* 711 * |<- file extent ->| | 712 * \- start 713 * 714 * We haven't reached start, search next slot. 715 */ 716 if (extent_end <= start) 717 goto next; 718 719 /* Now this extent covers @start, convert it to em */ 720 btrfs_extent_item_to_extent_map(inode, &path, fi, em); 721 break; 722 next: 723 ret = btrfs_next_item(root, &path); 724 if (ret < 0) 725 goto err; 726 if (ret > 0) 727 goto not_found; 728 } 729 btrfs_release_path(&path); 730 return em; 731 732 not_found: 733 btrfs_release_path(&path); 734 btrfs_free_extent_map(em); 735 return NULL; 736 737 err: 738 btrfs_release_path(&path); 739 btrfs_free_extent_map(em); 740 return ERR_PTR(ret); 741 } 742 743 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 744 u64 newer_than, bool locked) 745 { 746 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 747 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 748 struct extent_map *em; 749 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 750 751 /* 752 * Hopefully we have this extent in the tree already, try without the 753 * full extent lock. 754 */ 755 read_lock(&em_tree->lock); 756 em = btrfs_lookup_extent_mapping(em_tree, start, sectorsize); 757 read_unlock(&em_tree->lock); 758 759 /* 760 * We can get a merged extent, in that case, we need to re-search 761 * tree to get the original em for defrag. 762 * 763 * This is because even if we have adjacent extents that are contiguous 764 * and compatible (same type and flags), we still want to defrag them 765 * so that we use less metadata (extent items in the extent tree and 766 * file extent items in the inode's subvolume tree). 767 */ 768 if (em && (em->flags & EXTENT_FLAG_MERGED)) { 769 btrfs_free_extent_map(em); 770 em = NULL; 771 } 772 773 if (!em) { 774 struct extent_state *cached = NULL; 775 u64 end = start + sectorsize - 1; 776 777 /* Get the big lock and read metadata off disk. */ 778 if (!locked) 779 btrfs_lock_extent(io_tree, start, end, &cached); 780 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 781 if (!locked) 782 btrfs_unlock_extent(io_tree, start, end, &cached); 783 784 if (IS_ERR(em)) 785 return NULL; 786 } 787 788 return em; 789 } 790 791 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, 792 const struct extent_map *em) 793 { 794 if (btrfs_extent_map_is_compressed(em)) 795 return BTRFS_MAX_COMPRESSED; 796 return fs_info->max_extent_size; 797 } 798 799 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 800 u32 extent_thresh, u64 newer_than, bool locked) 801 { 802 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 803 struct extent_map *next; 804 bool ret = false; 805 806 /* This is the last extent */ 807 if (em->start + em->len >= i_size_read(inode)) 808 return false; 809 810 /* 811 * Here we need to pass @newer_then when checking the next extent, or 812 * we will hit a case we mark current extent for defrag, but the next 813 * one will not be a target. 814 * This will just cause extra IO without really reducing the fragments. 815 */ 816 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 817 /* No more em or hole */ 818 if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE) 819 goto out; 820 if (next->flags & EXTENT_FLAG_PREALLOC) 821 goto out; 822 /* 823 * If the next extent is at its max capacity, defragging current extent 824 * makes no sense, as the total number of extents won't change. 825 */ 826 if (next->len >= get_extent_max_capacity(fs_info, em)) 827 goto out; 828 /* Skip older extent */ 829 if (next->generation < newer_than) 830 goto out; 831 /* Also check extent size */ 832 if (next->len >= extent_thresh) 833 goto out; 834 835 ret = true; 836 out: 837 btrfs_free_extent_map(next); 838 return ret; 839 } 840 841 /* 842 * Prepare one page to be defragged. 843 * 844 * This will ensure: 845 * 846 * - Returned page is locked and has been set up properly. 847 * - No ordered extent exists in the page. 848 * - The page is uptodate. 849 * 850 * NOTE: Caller should also wait for page writeback after the cluster is 851 * prepared, here we don't do writeback wait for each page. 852 */ 853 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) 854 { 855 struct address_space *mapping = inode->vfs_inode.i_mapping; 856 gfp_t mask = btrfs_alloc_write_mask(mapping); 857 u64 folio_start; 858 u64 folio_end; 859 struct extent_state *cached_state = NULL; 860 struct folio *folio; 861 int ret; 862 863 again: 864 /* TODO: Add order fgp order flags when large folios are fully enabled. */ 865 folio = __filemap_get_folio(mapping, index, 866 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 867 if (IS_ERR(folio)) 868 return folio; 869 870 /* 871 * Since we can defragment files opened read-only, we can encounter 872 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). 873 * 874 * The IO for such large folios is not fully tested, thus return 875 * an error to reject such folios unless it's an experimental build. 876 * 877 * Filesystem transparent huge pages are typically only used for 878 * executables that explicitly enable them, so this isn't very 879 * restrictive. 880 */ 881 if (!IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && folio_test_large(folio)) { 882 folio_unlock(folio); 883 folio_put(folio); 884 return ERR_PTR(-ETXTBSY); 885 } 886 887 ret = set_folio_extent_mapped(folio); 888 if (ret < 0) { 889 folio_unlock(folio); 890 folio_put(folio); 891 return ERR_PTR(ret); 892 } 893 894 folio_start = folio_pos(folio); 895 folio_end = folio_pos(folio) + folio_size(folio) - 1; 896 /* Wait for any existing ordered extent in the range */ 897 while (1) { 898 struct btrfs_ordered_extent *ordered; 899 900 btrfs_lock_extent(&inode->io_tree, folio_start, folio_end, &cached_state); 901 ordered = btrfs_lookup_ordered_range(inode, folio_start, folio_size(folio)); 902 btrfs_unlock_extent(&inode->io_tree, folio_start, folio_end, &cached_state); 903 if (!ordered) 904 break; 905 906 folio_unlock(folio); 907 btrfs_start_ordered_extent(ordered); 908 btrfs_put_ordered_extent(ordered); 909 folio_lock(folio); 910 /* 911 * We unlocked the folio above, so we need check if it was 912 * released or not. 913 */ 914 if (folio->mapping != mapping || !folio->private) { 915 folio_unlock(folio); 916 folio_put(folio); 917 goto again; 918 } 919 } 920 921 /* 922 * Now the page range has no ordered extent any more. Read the page to 923 * make it uptodate. 924 */ 925 if (!folio_test_uptodate(folio)) { 926 btrfs_read_folio(NULL, folio); 927 folio_lock(folio); 928 if (folio->mapping != mapping || !folio->private) { 929 folio_unlock(folio); 930 folio_put(folio); 931 goto again; 932 } 933 if (!folio_test_uptodate(folio)) { 934 folio_unlock(folio); 935 folio_put(folio); 936 return ERR_PTR(-EIO); 937 } 938 } 939 return folio; 940 } 941 942 struct defrag_target_range { 943 struct list_head list; 944 u64 start; 945 u64 len; 946 }; 947 948 /* 949 * Collect all valid target extents. 950 * 951 * @start: file offset to lookup 952 * @len: length to lookup 953 * @extent_thresh: file extent size threshold, any extent size >= this value 954 * will be ignored 955 * @newer_than: only defrag extents newer than this value 956 * @do_compress: whether the defrag is doing compression 957 * if true, @extent_thresh will be ignored and all regular 958 * file extents meeting @newer_than will be targets. 959 * @locked: if the range has already held extent lock 960 * @target_list: list of targets file extents 961 */ 962 static int defrag_collect_targets(struct btrfs_inode *inode, 963 u64 start, u64 len, u32 extent_thresh, 964 u64 newer_than, bool do_compress, 965 bool locked, struct list_head *target_list, 966 u64 *last_scanned_ret) 967 { 968 struct btrfs_fs_info *fs_info = inode->root->fs_info; 969 bool last_is_target = false; 970 u64 cur = start; 971 int ret = 0; 972 973 while (cur < start + len) { 974 struct extent_map *em; 975 struct defrag_target_range *new; 976 bool next_mergeable = true; 977 u64 range_len; 978 979 last_is_target = false; 980 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); 981 if (!em) 982 break; 983 984 /* 985 * If the file extent is an inlined one, we may still want to 986 * defrag it (fallthrough) if it will cause a regular extent. 987 * This is for users who want to convert inline extents to 988 * regular ones through max_inline= mount option. 989 */ 990 if (em->disk_bytenr == EXTENT_MAP_INLINE && 991 em->len <= inode->root->fs_info->max_inline) 992 goto next; 993 994 /* Skip holes and preallocated extents. */ 995 if (em->disk_bytenr == EXTENT_MAP_HOLE || 996 (em->flags & EXTENT_FLAG_PREALLOC)) 997 goto next; 998 999 /* Skip older extent */ 1000 if (em->generation < newer_than) 1001 goto next; 1002 1003 /* This em is under writeback, no need to defrag */ 1004 if (em->generation == (u64)-1) 1005 goto next; 1006 1007 /* 1008 * Our start offset might be in the middle of an existing extent 1009 * map, so take that into account. 1010 */ 1011 range_len = em->len - (cur - em->start); 1012 /* 1013 * If this range of the extent map is already flagged for delalloc, 1014 * skip it, because: 1015 * 1016 * 1) We could deadlock later, when trying to reserve space for 1017 * delalloc, because in case we can't immediately reserve space 1018 * the flusher can start delalloc and wait for the respective 1019 * ordered extents to complete. The deadlock would happen 1020 * because we do the space reservation while holding the range 1021 * locked, and starting writeback, or finishing an ordered 1022 * extent, requires locking the range; 1023 * 1024 * 2) If there's delalloc there, it means there's dirty pages for 1025 * which writeback has not started yet (we clean the delalloc 1026 * flag when starting writeback and after creating an ordered 1027 * extent). If we mark pages in an adjacent range for defrag, 1028 * then we will have a larger contiguous range for delalloc, 1029 * very likely resulting in a larger extent after writeback is 1030 * triggered (except in a case of free space fragmentation). 1031 */ 1032 if (btrfs_test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, 1033 EXTENT_DELALLOC)) 1034 goto next; 1035 1036 /* 1037 * For do_compress case, we want to compress all valid file 1038 * extents, thus no @extent_thresh or mergeable check. 1039 */ 1040 if (do_compress) 1041 goto add; 1042 1043 /* Skip too large extent */ 1044 if (em->len >= extent_thresh) 1045 goto next; 1046 1047 /* 1048 * Skip extents already at its max capacity, this is mostly for 1049 * compressed extents, which max cap is only 128K. 1050 */ 1051 if (em->len >= get_extent_max_capacity(fs_info, em)) 1052 goto next; 1053 1054 /* 1055 * Normally there are no more extents after an inline one, thus 1056 * @next_mergeable will normally be false and not defragged. 1057 * So if an inline extent passed all above checks, just add it 1058 * for defrag, and be converted to regular extents. 1059 */ 1060 if (em->disk_bytenr == EXTENT_MAP_INLINE) 1061 goto add; 1062 1063 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1064 extent_thresh, newer_than, locked); 1065 if (!next_mergeable) { 1066 struct defrag_target_range *last; 1067 1068 /* Empty target list, no way to merge with last entry */ 1069 if (list_empty(target_list)) 1070 goto next; 1071 last = list_last_entry(target_list, 1072 struct defrag_target_range, list); 1073 /* Not mergeable with last entry */ 1074 if (last->start + last->len != cur) 1075 goto next; 1076 1077 /* Mergeable, fall through to add it to @target_list. */ 1078 } 1079 1080 add: 1081 last_is_target = true; 1082 range_len = min(btrfs_extent_map_end(em), start + len) - cur; 1083 /* 1084 * This one is a good target, check if it can be merged into 1085 * last range of the target list. 1086 */ 1087 if (!list_empty(target_list)) { 1088 struct defrag_target_range *last; 1089 1090 last = list_last_entry(target_list, 1091 struct defrag_target_range, list); 1092 ASSERT(last->start + last->len <= cur); 1093 if (last->start + last->len == cur) { 1094 /* Mergeable, enlarge the last entry */ 1095 last->len += range_len; 1096 goto next; 1097 } 1098 /* Fall through to allocate a new entry */ 1099 } 1100 1101 /* Allocate new defrag_target_range */ 1102 new = kmalloc(sizeof(*new), GFP_NOFS); 1103 if (!new) { 1104 btrfs_free_extent_map(em); 1105 ret = -ENOMEM; 1106 break; 1107 } 1108 new->start = cur; 1109 new->len = range_len; 1110 list_add_tail(&new->list, target_list); 1111 1112 next: 1113 cur = btrfs_extent_map_end(em); 1114 btrfs_free_extent_map(em); 1115 } 1116 if (ret < 0) { 1117 struct defrag_target_range *entry; 1118 struct defrag_target_range *tmp; 1119 1120 list_for_each_entry_safe(entry, tmp, target_list, list) { 1121 list_del_init(&entry->list); 1122 kfree(entry); 1123 } 1124 } 1125 if (!ret && last_scanned_ret) { 1126 /* 1127 * If the last extent is not a target, the caller can skip to 1128 * the end of that extent. 1129 * Otherwise, we can only go the end of the specified range. 1130 */ 1131 if (!last_is_target) 1132 *last_scanned_ret = max(cur, *last_scanned_ret); 1133 else 1134 *last_scanned_ret = max(start + len, *last_scanned_ret); 1135 } 1136 return ret; 1137 } 1138 1139 #define CLUSTER_SIZE (SZ_256K) 1140 static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); 1141 1142 /* 1143 * Defrag one contiguous target range. 1144 * 1145 * @inode: target inode 1146 * @target: target range to defrag 1147 * @pages: locked pages covering the defrag range 1148 * @nr_pages: number of locked pages 1149 * 1150 * Caller should ensure: 1151 * 1152 * - Pages are prepared 1153 * Pages should be locked, no ordered extent in the pages range, 1154 * no writeback. 1155 * 1156 * - Extent bits are locked 1157 */ 1158 static int defrag_one_locked_target(struct btrfs_inode *inode, 1159 struct defrag_target_range *target, 1160 struct folio **folios, int nr_pages, 1161 struct extent_state **cached_state) 1162 { 1163 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1164 struct extent_changeset *data_reserved = NULL; 1165 const u64 start = target->start; 1166 const u64 len = target->len; 1167 int ret = 0; 1168 1169 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1170 if (ret < 0) 1171 return ret; 1172 btrfs_clear_extent_bit(&inode->io_tree, start, start + len - 1, 1173 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1174 EXTENT_DEFRAG, cached_state); 1175 btrfs_set_extent_bit(&inode->io_tree, start, start + len - 1, 1176 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); 1177 1178 /* 1179 * Update the page status. 1180 * Due to possible large folios, we have to check all folios one by one. 1181 */ 1182 for (int i = 0; i < nr_pages && folios[i]; i++) { 1183 struct folio *folio = folios[i]; 1184 1185 if (!folio) 1186 break; 1187 if (start >= folio_pos(folio) + folio_size(folio) || 1188 start + len <= folio_pos(folio)) 1189 continue; 1190 btrfs_folio_clamp_clear_checked(fs_info, folio, start, len); 1191 btrfs_folio_clamp_set_dirty(fs_info, folio, start, len); 1192 } 1193 btrfs_delalloc_release_extents(inode, len); 1194 extent_changeset_free(data_reserved); 1195 1196 return ret; 1197 } 1198 1199 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1200 u32 extent_thresh, u64 newer_than, bool do_compress, 1201 u64 *last_scanned_ret) 1202 { 1203 struct extent_state *cached_state = NULL; 1204 struct defrag_target_range *entry; 1205 struct defrag_target_range *tmp; 1206 LIST_HEAD(target_list); 1207 struct folio **folios; 1208 const u32 sectorsize = inode->root->fs_info->sectorsize; 1209 u64 cur = start; 1210 const unsigned int nr_pages = ((start + len - 1) >> PAGE_SHIFT) - 1211 (start >> PAGE_SHIFT) + 1; 1212 int ret = 0; 1213 1214 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1215 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1216 1217 folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); 1218 if (!folios) 1219 return -ENOMEM; 1220 1221 /* Prepare all pages */ 1222 for (int i = 0; cur < start + len && i < nr_pages; i++) { 1223 folios[i] = defrag_prepare_one_folio(inode, cur >> PAGE_SHIFT); 1224 if (IS_ERR(folios[i])) { 1225 ret = PTR_ERR(folios[i]); 1226 folios[i] = NULL; 1227 goto free_folios; 1228 } 1229 cur = folio_pos(folios[i]) + folio_size(folios[i]); 1230 } 1231 for (int i = 0; i < nr_pages; i++) { 1232 if (!folios[i]) 1233 break; 1234 folio_wait_writeback(folios[i]); 1235 } 1236 1237 /* We should get at least one folio. */ 1238 ASSERT(folios[0]); 1239 /* Lock the pages range */ 1240 btrfs_lock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state); 1241 /* 1242 * Now we have a consistent view about the extent map, re-check 1243 * which range really needs to be defragged. 1244 * 1245 * And this time we have extent locked already, pass @locked = true 1246 * so that we won't relock the extent range and cause deadlock. 1247 */ 1248 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1249 newer_than, do_compress, true, 1250 &target_list, last_scanned_ret); 1251 if (ret < 0) 1252 goto unlock_extent; 1253 1254 list_for_each_entry(entry, &target_list, list) { 1255 ret = defrag_one_locked_target(inode, entry, folios, nr_pages, 1256 &cached_state); 1257 if (ret < 0) 1258 break; 1259 } 1260 1261 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1262 list_del_init(&entry->list); 1263 kfree(entry); 1264 } 1265 unlock_extent: 1266 btrfs_unlock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state); 1267 free_folios: 1268 for (int i = 0; i < nr_pages; i++) { 1269 if (!folios[i]) 1270 break; 1271 folio_unlock(folios[i]); 1272 folio_put(folios[i]); 1273 } 1274 kfree(folios); 1275 return ret; 1276 } 1277 1278 static int defrag_one_cluster(struct btrfs_inode *inode, 1279 struct file_ra_state *ra, 1280 u64 start, u32 len, u32 extent_thresh, 1281 u64 newer_than, bool do_compress, 1282 unsigned long *sectors_defragged, 1283 unsigned long max_sectors, 1284 u64 *last_scanned_ret) 1285 { 1286 const u32 sectorsize = inode->root->fs_info->sectorsize; 1287 struct defrag_target_range *entry; 1288 struct defrag_target_range *tmp; 1289 LIST_HEAD(target_list); 1290 int ret; 1291 1292 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1293 newer_than, do_compress, false, 1294 &target_list, NULL); 1295 if (ret < 0) 1296 goto out; 1297 1298 list_for_each_entry(entry, &target_list, list) { 1299 u32 range_len = entry->len; 1300 1301 /* Reached or beyond the limit */ 1302 if (max_sectors && *sectors_defragged >= max_sectors) { 1303 ret = 1; 1304 break; 1305 } 1306 1307 if (max_sectors) 1308 range_len = min_t(u32, range_len, 1309 (max_sectors - *sectors_defragged) * sectorsize); 1310 1311 /* 1312 * If defrag_one_range() has updated last_scanned_ret, 1313 * our range may already be invalid (e.g. hole punched). 1314 * Skip if our range is before last_scanned_ret, as there is 1315 * no need to defrag the range anymore. 1316 */ 1317 if (entry->start + range_len <= *last_scanned_ret) 1318 continue; 1319 1320 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1321 ra, NULL, entry->start >> PAGE_SHIFT, 1322 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1323 (entry->start >> PAGE_SHIFT) + 1); 1324 /* 1325 * Here we may not defrag any range if holes are punched before 1326 * we locked the pages. 1327 * But that's fine, it only affects the @sectors_defragged 1328 * accounting. 1329 */ 1330 ret = defrag_one_range(inode, entry->start, range_len, 1331 extent_thresh, newer_than, do_compress, 1332 last_scanned_ret); 1333 if (ret < 0) 1334 break; 1335 *sectors_defragged += range_len >> 1336 inode->root->fs_info->sectorsize_bits; 1337 } 1338 out: 1339 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1340 list_del_init(&entry->list); 1341 kfree(entry); 1342 } 1343 if (ret >= 0) 1344 *last_scanned_ret = max(*last_scanned_ret, start + len); 1345 return ret; 1346 } 1347 1348 /* 1349 * Entry point to file defragmentation. 1350 * 1351 * @inode: inode to be defragged 1352 * @ra: readahead state 1353 * @range: defrag options including range and flags 1354 * @newer_than: minimum transid to defrag 1355 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1356 * will be defragged. 1357 * 1358 * Return <0 for error. 1359 * Return >=0 for the number of sectors defragged, and range->start will be updated 1360 * to indicate the file offset where next defrag should be started at. 1361 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1362 * defragging all the range). 1363 */ 1364 int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra, 1365 struct btrfs_ioctl_defrag_range_args *range, 1366 u64 newer_than, unsigned long max_to_defrag) 1367 { 1368 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1369 unsigned long sectors_defragged = 0; 1370 u64 isize = i_size_read(&inode->vfs_inode); 1371 u64 cur; 1372 u64 last_byte; 1373 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); 1374 int compress_type = BTRFS_COMPRESS_ZLIB; 1375 int compress_level = 0; 1376 int ret = 0; 1377 u32 extent_thresh = range->extent_thresh; 1378 pgoff_t start_index; 1379 1380 ASSERT(ra); 1381 1382 if (isize == 0) 1383 return 0; 1384 1385 if (range->start >= isize) 1386 return -EINVAL; 1387 1388 if (do_compress) { 1389 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS_LEVEL) { 1390 if (range->compress.type >= BTRFS_NR_COMPRESS_TYPES) 1391 return -EINVAL; 1392 if (range->compress.type) { 1393 compress_type = range->compress.type; 1394 compress_level = range->compress.level; 1395 if (!btrfs_compress_level_valid(compress_type, compress_level)) 1396 return -EINVAL; 1397 } 1398 } else { 1399 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1400 return -EINVAL; 1401 if (range->compress_type) 1402 compress_type = range->compress_type; 1403 } 1404 } 1405 1406 if (extent_thresh == 0) 1407 extent_thresh = SZ_256K; 1408 1409 if (range->start + range->len > range->start) { 1410 /* Got a specific range */ 1411 last_byte = min(isize, range->start + range->len); 1412 } else { 1413 /* Defrag until file end */ 1414 last_byte = isize; 1415 } 1416 1417 /* Align the range */ 1418 cur = round_down(range->start, fs_info->sectorsize); 1419 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1420 1421 /* 1422 * Make writeback start from the beginning of the range, so that the 1423 * defrag range can be written sequentially. 1424 */ 1425 start_index = cur >> PAGE_SHIFT; 1426 if (start_index < inode->vfs_inode.i_mapping->writeback_index) 1427 inode->vfs_inode.i_mapping->writeback_index = start_index; 1428 1429 while (cur < last_byte) { 1430 const unsigned long prev_sectors_defragged = sectors_defragged; 1431 u64 last_scanned = cur; 1432 u64 cluster_end; 1433 1434 if (btrfs_defrag_cancelled(fs_info)) { 1435 ret = -EAGAIN; 1436 break; 1437 } 1438 1439 /* We want the cluster end at page boundary when possible */ 1440 cluster_end = (((cur >> PAGE_SHIFT) + 1441 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1442 cluster_end = min(cluster_end, last_byte); 1443 1444 btrfs_inode_lock(inode, 0); 1445 if (IS_SWAPFILE(&inode->vfs_inode)) { 1446 ret = -ETXTBSY; 1447 btrfs_inode_unlock(inode, 0); 1448 break; 1449 } 1450 if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) { 1451 btrfs_inode_unlock(inode, 0); 1452 break; 1453 } 1454 if (do_compress) { 1455 inode->defrag_compress = compress_type; 1456 inode->defrag_compress_level = compress_level; 1457 } 1458 ret = defrag_one_cluster(inode, ra, cur, 1459 cluster_end + 1 - cur, extent_thresh, 1460 newer_than, do_compress, §ors_defragged, 1461 max_to_defrag, &last_scanned); 1462 1463 if (sectors_defragged > prev_sectors_defragged) 1464 balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping); 1465 1466 btrfs_inode_unlock(inode, 0); 1467 if (ret < 0) 1468 break; 1469 cur = max(cluster_end + 1, last_scanned); 1470 if (ret > 0) { 1471 ret = 0; 1472 break; 1473 } 1474 cond_resched(); 1475 } 1476 1477 /* 1478 * Update range.start for autodefrag, this will indicate where to start 1479 * in next run. 1480 */ 1481 range->start = cur; 1482 if (sectors_defragged) { 1483 /* 1484 * We have defragged some sectors, for compression case they 1485 * need to be written back immediately. 1486 */ 1487 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1488 filemap_flush(inode->vfs_inode.i_mapping); 1489 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1490 &inode->runtime_flags)) 1491 filemap_flush(inode->vfs_inode.i_mapping); 1492 } 1493 if (range->compress_type == BTRFS_COMPRESS_LZO) 1494 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1495 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1496 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1497 ret = sectors_defragged; 1498 } 1499 if (do_compress) { 1500 btrfs_inode_lock(inode, 0); 1501 inode->defrag_compress = BTRFS_COMPRESS_NONE; 1502 btrfs_inode_unlock(inode, 0); 1503 } 1504 return ret; 1505 } 1506 1507 void __cold btrfs_auto_defrag_exit(void) 1508 { 1509 kmem_cache_destroy(btrfs_inode_defrag_cachep); 1510 } 1511 1512 int __init btrfs_auto_defrag_init(void) 1513 { 1514 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 1515 sizeof(struct inode_defrag), 0, 0, NULL); 1516 if (!btrfs_inode_defrag_cachep) 1517 return -ENOMEM; 1518 1519 return 0; 1520 } 1521