1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/cleanup.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/mutex.h> 13 #include <linux/wait.h> 14 #include <linux/list.h> 15 #include <linux/atomic.h> 16 #include <linux/xarray.h> 17 #include <linux/refcount.h> 18 #include <uapi/linux/btrfs_tree.h> 19 #include "locking.h" 20 #include "fs.h" 21 #include "accessors.h" 22 #include "extent-io-tree.h" 23 24 struct extent_buffer; 25 struct btrfs_block_rsv; 26 struct btrfs_trans_handle; 27 struct btrfs_block_group; 28 29 /* Read ahead values for struct btrfs_path.reada */ 30 enum { 31 READA_NONE, 32 READA_BACK, 33 READA_FORWARD, 34 /* 35 * Similar to READA_FORWARD but unlike it: 36 * 37 * 1) It will trigger readahead even for leaves that are not close to 38 * each other on disk; 39 * 2) It also triggers readahead for nodes; 40 * 3) During a search, even when a node or leaf is already in memory, it 41 * will still trigger readahead for other nodes and leaves that follow 42 * it. 43 * 44 * This is meant to be used only when we know we are iterating over the 45 * entire tree or a very large part of it. 46 */ 47 READA_FORWARD_ALWAYS, 48 }; 49 50 /* 51 * btrfs_paths remember the path taken from the root down to the leaf. 52 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 53 * to any other levels that are present. 54 * 55 * The slots array records the index of the item or block pointer 56 * used while walking the tree. 57 */ 58 struct btrfs_path { 59 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 60 int slots[BTRFS_MAX_LEVEL]; 61 /* if there is real range locking, this locks field will change */ 62 u8 locks[BTRFS_MAX_LEVEL]; 63 u8 reada; 64 u8 lowest_level; 65 66 /* 67 * set by btrfs_split_item, tells search_slot to keep all locks 68 * and to force calls to keep space in the nodes 69 */ 70 unsigned int search_for_split:1; 71 /* Keep some upper locks as we walk down. */ 72 unsigned int keep_locks:1; 73 unsigned int skip_locking:1; 74 unsigned int search_commit_root:1; 75 unsigned int need_commit_sem:1; 76 unsigned int skip_release_on_error:1; 77 /* 78 * Indicate that new item (btrfs_search_slot) is extending already 79 * existing item and ins_len contains only the data size and not item 80 * header (ie. sizeof(struct btrfs_item) is not included). 81 */ 82 unsigned int search_for_extension:1; 83 /* Stop search if any locks need to be taken (for read) */ 84 unsigned int nowait:1; 85 }; 86 87 #define BTRFS_PATH_AUTO_FREE(path_name) \ 88 struct btrfs_path *path_name __free(btrfs_free_path) = NULL 89 90 /* 91 * The state of btrfs root 92 */ 93 enum { 94 /* 95 * btrfs_record_root_in_trans is a multi-step process, and it can race 96 * with the balancing code. But the race is very small, and only the 97 * first time the root is added to each transaction. So IN_TRANS_SETUP 98 * is used to tell us when more checks are required 99 */ 100 BTRFS_ROOT_IN_TRANS_SETUP, 101 102 /* 103 * Set if tree blocks of this root can be shared by other roots. 104 * Only subvolume trees and their reloc trees have this bit set. 105 * Conflicts with TRACK_DIRTY bit. 106 * 107 * This affects two things: 108 * 109 * - How balance works 110 * For shareable roots, we need to use reloc tree and do path 111 * replacement for balance, and need various pre/post hooks for 112 * snapshot creation to handle them. 113 * 114 * While for non-shareable trees, we just simply do a tree search 115 * with COW. 116 * 117 * - How dirty roots are tracked 118 * For shareable roots, btrfs_record_root_in_trans() is needed to 119 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 120 * don't need to set this manually. 121 */ 122 BTRFS_ROOT_SHAREABLE, 123 BTRFS_ROOT_TRACK_DIRTY, 124 BTRFS_ROOT_IN_RADIX, 125 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 126 BTRFS_ROOT_DEFRAG_RUNNING, 127 BTRFS_ROOT_FORCE_COW, 128 BTRFS_ROOT_MULTI_LOG_TASKS, 129 BTRFS_ROOT_DIRTY, 130 BTRFS_ROOT_DELETING, 131 132 /* 133 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 134 * 135 * Set for the subvolume tree owning the reloc tree. 136 */ 137 BTRFS_ROOT_DEAD_RELOC_TREE, 138 /* Mark dead root stored on device whose cleanup needs to be resumed */ 139 BTRFS_ROOT_DEAD_TREE, 140 /* The root has a log tree. Used for subvolume roots and the tree root. */ 141 BTRFS_ROOT_HAS_LOG_TREE, 142 /* Qgroup flushing is in progress */ 143 BTRFS_ROOT_QGROUP_FLUSHING, 144 /* We started the orphan cleanup for this root. */ 145 BTRFS_ROOT_ORPHAN_CLEANUP, 146 /* This root has a drop operation that was started previously. */ 147 BTRFS_ROOT_UNFINISHED_DROP, 148 /* This reloc root needs to have its buffers lockdep class reset. */ 149 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 150 }; 151 152 /* 153 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 154 * code. For detail check comment in fs/btrfs/qgroup.c. 155 */ 156 struct btrfs_qgroup_swapped_blocks { 157 spinlock_t lock; 158 /* RM_EMPTY_ROOT() of above blocks[] */ 159 bool swapped; 160 struct rb_root blocks[BTRFS_MAX_LEVEL]; 161 }; 162 163 /* 164 * in ram representation of the tree. extent_root is used for all allocations 165 * and for the extent tree extent_root root. 166 */ 167 struct btrfs_root { 168 struct rb_node rb_node; 169 170 struct extent_buffer *node; 171 172 struct extent_buffer *commit_root; 173 struct btrfs_root *log_root; 174 struct btrfs_root *reloc_root; 175 176 unsigned long state; 177 struct btrfs_root_item root_item; 178 struct btrfs_key root_key; 179 struct btrfs_fs_info *fs_info; 180 struct extent_io_tree dirty_log_pages; 181 182 struct mutex objectid_mutex; 183 184 spinlock_t accounting_lock; 185 struct btrfs_block_rsv *block_rsv; 186 187 struct mutex log_mutex; 188 wait_queue_head_t log_writer_wait; 189 wait_queue_head_t log_commit_wait[2]; 190 struct list_head log_ctxs[2]; 191 /* Used only for log trees of subvolumes, not for the log root tree */ 192 atomic_t log_writers; 193 atomic_t log_commit[2]; 194 /* Used only for log trees of subvolumes, not for the log root tree */ 195 atomic_t log_batch; 196 /* 197 * Protected by the 'log_mutex' lock but can be read without holding 198 * that lock to avoid unnecessary lock contention, in which case it 199 * should be read using btrfs_get_root_log_transid() except if it's a 200 * log tree in which case it can be directly accessed. Updates to this 201 * field should always use btrfs_set_root_log_transid(), except for log 202 * trees where the field can be updated directly. 203 */ 204 int log_transid; 205 /* No matter the commit succeeds or not*/ 206 int log_transid_committed; 207 /* 208 * Just be updated when the commit succeeds. Use 209 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() 210 * to access this field. 211 */ 212 int last_log_commit; 213 pid_t log_start_pid; 214 215 u64 last_trans; 216 217 u64 free_objectid; 218 219 struct btrfs_key defrag_progress; 220 struct btrfs_key defrag_max; 221 222 /* The dirty list is only used by non-shareable roots */ 223 struct list_head dirty_list; 224 225 struct list_head root_list; 226 227 /* 228 * Xarray that keeps track of in-memory inodes, protected by the lock 229 * @inode_lock. 230 */ 231 struct xarray inodes; 232 233 /* 234 * Xarray that keeps track of delayed nodes of every inode, protected 235 * by @inode_lock. 236 */ 237 struct xarray delayed_nodes; 238 /* 239 * right now this just gets used so that a root has its own devid 240 * for stat. It may be used for more later 241 */ 242 dev_t anon_dev; 243 244 spinlock_t root_item_lock; 245 refcount_t refs; 246 247 struct mutex delalloc_mutex; 248 spinlock_t delalloc_lock; 249 /* 250 * all of the inodes that have delalloc bytes. It is possible for 251 * this list to be empty even when there is still dirty data=ordered 252 * extents waiting to finish IO. 253 */ 254 struct list_head delalloc_inodes; 255 struct list_head delalloc_root; 256 u64 nr_delalloc_inodes; 257 258 struct mutex ordered_extent_mutex; 259 /* 260 * this is used by the balancing code to wait for all the pending 261 * ordered extents 262 */ 263 spinlock_t ordered_extent_lock; 264 265 /* 266 * all of the data=ordered extents pending writeback 267 * these can span multiple transactions and basically include 268 * every dirty data page that isn't from nodatacow 269 */ 270 struct list_head ordered_extents; 271 struct list_head ordered_root; 272 u64 nr_ordered_extents; 273 274 /* 275 * Not empty if this subvolume root has gone through tree block swap 276 * (relocation) 277 * 278 * Will be used by reloc_control::dirty_subvol_roots. 279 */ 280 struct list_head reloc_dirty_list; 281 282 /* 283 * Number of currently running SEND ioctls to prevent 284 * manipulation with the read-only status via SUBVOL_SETFLAGS 285 */ 286 int send_in_progress; 287 /* 288 * Number of currently running deduplication operations that have a 289 * destination inode belonging to this root. Protected by the lock 290 * root_item_lock. 291 */ 292 int dedupe_in_progress; 293 /* For exclusion of snapshot creation and nocow writes */ 294 struct btrfs_drew_lock snapshot_lock; 295 296 atomic_t snapshot_force_cow; 297 298 /* For qgroup metadata reserved space */ 299 spinlock_t qgroup_meta_rsv_lock; 300 u64 qgroup_meta_rsv_pertrans; 301 u64 qgroup_meta_rsv_prealloc; 302 wait_queue_head_t qgroup_flush_wait; 303 304 /* Number of active swapfiles */ 305 atomic_t nr_swapfiles; 306 307 /* Record pairs of swapped blocks for qgroup */ 308 struct btrfs_qgroup_swapped_blocks swapped_blocks; 309 310 /* Used only by log trees, when logging csum items */ 311 struct extent_io_tree log_csum_range; 312 313 /* Used in simple quotas, track root during relocation. */ 314 u64 relocation_src_root; 315 316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 317 u64 alloc_bytenr; 318 #endif 319 320 #ifdef CONFIG_BTRFS_DEBUG 321 struct list_head leak_list; 322 #endif 323 }; 324 325 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 326 { 327 /* Byte-swap the constant at compile time, root_item::flags is LE */ 328 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 329 } 330 331 static inline bool btrfs_root_dead(const struct btrfs_root *root) 332 { 333 /* Byte-swap the constant at compile time, root_item::flags is LE */ 334 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 335 } 336 337 static inline u64 btrfs_root_id(const struct btrfs_root *root) 338 { 339 return root->root_key.objectid; 340 } 341 342 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) 343 { 344 return READ_ONCE(root->log_transid); 345 } 346 347 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) 348 { 349 WRITE_ONCE(root->log_transid, log_transid); 350 } 351 352 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) 353 { 354 return READ_ONCE(root->last_log_commit); 355 } 356 357 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) 358 { 359 WRITE_ONCE(root->last_log_commit, commit_id); 360 } 361 362 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) 363 { 364 return READ_ONCE(root->last_trans); 365 } 366 367 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) 368 { 369 WRITE_ONCE(root->last_trans, transid); 370 } 371 372 /* 373 * Return the generation this root started with. 374 * 375 * Every normal root that is created with root->root_key.offset set to it's 376 * originating generation. If it is a snapshot it is the generation when the 377 * snapshot was created. 378 * 379 * However for TREE_RELOC roots root_key.offset is the objectid of the owning 380 * tree root. Thankfully we copy the root item of the owning tree root, which 381 * has it's last_snapshot set to what we would have root_key.offset set to, so 382 * return that if this is a TREE_RELOC root. 383 */ 384 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root) 385 { 386 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 387 return btrfs_root_last_snapshot(&root->root_item); 388 return root->root_key.offset; 389 } 390 391 /* 392 * Structure that conveys information about an extent that is going to replace 393 * all the extents in a file range. 394 */ 395 struct btrfs_replace_extent_info { 396 u64 disk_offset; 397 u64 disk_len; 398 u64 data_offset; 399 u64 data_len; 400 u64 file_offset; 401 /* Pointer to a file extent item of type regular or prealloc. */ 402 char *extent_buf; 403 /* 404 * Set to true when attempting to replace a file range with a new extent 405 * described by this structure, set to false when attempting to clone an 406 * existing extent into a file range. 407 */ 408 bool is_new_extent; 409 /* Indicate if we should update the inode's mtime and ctime. */ 410 bool update_times; 411 /* Meaningful only if is_new_extent is true. */ 412 int qgroup_reserved; 413 /* 414 * Meaningful only if is_new_extent is true. 415 * Used to track how many extent items we have already inserted in a 416 * subvolume tree that refer to the extent described by this structure, 417 * so that we know when to create a new delayed ref or update an existing 418 * one. 419 */ 420 int insertions; 421 }; 422 423 /* Arguments for btrfs_drop_extents() */ 424 struct btrfs_drop_extents_args { 425 /* Input parameters */ 426 427 /* 428 * If NULL, btrfs_drop_extents() will allocate and free its own path. 429 * If 'replace_extent' is true, this must not be NULL. Also the path 430 * is always released except if 'replace_extent' is true and 431 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 432 * the path is kept locked. 433 */ 434 struct btrfs_path *path; 435 /* Start offset of the range to drop extents from */ 436 u64 start; 437 /* End (exclusive, last byte + 1) of the range to drop extents from */ 438 u64 end; 439 /* If true drop all the extent maps in the range */ 440 bool drop_cache; 441 /* 442 * If true it means we want to insert a new extent after dropping all 443 * the extents in the range. If this is true, the 'extent_item_size' 444 * parameter must be set as well and the 'extent_inserted' field will 445 * be set to true by btrfs_drop_extents() if it could insert the new 446 * extent. 447 * Note: when this is set to true the path must not be NULL. 448 */ 449 bool replace_extent; 450 /* 451 * Used if 'replace_extent' is true. Size of the file extent item to 452 * insert after dropping all existing extents in the range 453 */ 454 u32 extent_item_size; 455 456 /* Output parameters */ 457 458 /* 459 * Set to the minimum between the input parameter 'end' and the end 460 * (exclusive, last byte + 1) of the last dropped extent. This is always 461 * set even if btrfs_drop_extents() returns an error. 462 */ 463 u64 drop_end; 464 /* 465 * The number of allocated bytes found in the range. This can be smaller 466 * than the range's length when there are holes in the range. 467 */ 468 u64 bytes_found; 469 /* 470 * Only set if 'replace_extent' is true. Set to true if we were able 471 * to insert a replacement extent after dropping all extents in the 472 * range, otherwise set to false by btrfs_drop_extents(). 473 * Also, if btrfs_drop_extents() has set this to true it means it 474 * returned with the path locked, otherwise if it has set this to 475 * false it has returned with the path released. 476 */ 477 bool extent_inserted; 478 }; 479 480 struct btrfs_file_private { 481 void *filldir_buf; 482 u64 last_index; 483 struct extent_state *llseek_cached_state; 484 /* Task that allocated this structure. */ 485 struct task_struct *owner_task; 486 }; 487 488 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 489 { 490 return info->nodesize - sizeof(struct btrfs_header); 491 } 492 493 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 494 { 495 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 496 } 497 498 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 499 { 500 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 501 } 502 503 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 504 { 505 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 506 } 507 508 int __init btrfs_ctree_init(void); 509 void __cold btrfs_ctree_exit(void); 510 511 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 512 const struct btrfs_key *key, int *slot); 513 514 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 515 516 #ifdef __LITTLE_ENDIAN 517 518 /* 519 * Compare two keys, on little-endian the disk order is same as CPU order and 520 * we can avoid the conversion. 521 */ 522 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, 523 const struct btrfs_key *k2) 524 { 525 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 526 527 return btrfs_comp_cpu_keys(k1, k2); 528 } 529 530 #else 531 532 /* Compare two keys in a memcmp fashion. */ 533 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, 534 const struct btrfs_key *k2) 535 { 536 struct btrfs_key k1; 537 538 btrfs_disk_key_to_cpu(&k1, disk); 539 540 return btrfs_comp_cpu_keys(&k1, k2); 541 } 542 543 #endif 544 545 int btrfs_previous_item(struct btrfs_root *root, 546 struct btrfs_path *path, u64 min_objectid, 547 int type); 548 int btrfs_previous_extent_item(struct btrfs_root *root, 549 struct btrfs_path *path, u64 min_objectid); 550 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 551 const struct btrfs_path *path, 552 const struct btrfs_key *new_key); 553 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 554 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 555 struct btrfs_key *key, int lowest_level, 556 u64 min_trans); 557 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 558 struct btrfs_path *path, 559 u64 min_trans); 560 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 561 int slot); 562 563 int btrfs_cow_block(struct btrfs_trans_handle *trans, 564 struct btrfs_root *root, struct extent_buffer *buf, 565 struct extent_buffer *parent, int parent_slot, 566 struct extent_buffer **cow_ret, 567 enum btrfs_lock_nesting nest); 568 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 569 struct btrfs_root *root, 570 struct extent_buffer *buf, 571 struct extent_buffer *parent, int parent_slot, 572 struct extent_buffer **cow_ret, 573 u64 search_start, u64 empty_size, 574 enum btrfs_lock_nesting nest); 575 int btrfs_copy_root(struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct extent_buffer *buf, 578 struct extent_buffer **cow_ret, u64 new_root_objectid); 579 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct extent_buffer *buf); 582 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 583 struct btrfs_path *path, int level, int slot); 584 void btrfs_extend_item(struct btrfs_trans_handle *trans, 585 const struct btrfs_path *path, u32 data_size); 586 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 587 const struct btrfs_path *path, u32 new_size, int from_end); 588 int btrfs_split_item(struct btrfs_trans_handle *trans, 589 struct btrfs_root *root, 590 struct btrfs_path *path, 591 const struct btrfs_key *new_key, 592 unsigned long split_offset); 593 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 594 struct btrfs_root *root, 595 struct btrfs_path *path, 596 const struct btrfs_key *new_key); 597 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 598 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 599 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 600 const struct btrfs_key *key, struct btrfs_path *p, 601 int ins_len, int cow); 602 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 603 struct btrfs_path *p, u64 time_seq); 604 int btrfs_search_slot_for_read(struct btrfs_root *root, 605 const struct btrfs_key *key, 606 struct btrfs_path *p, int find_higher, 607 int return_any); 608 void btrfs_release_path(struct btrfs_path *p); 609 struct btrfs_path *btrfs_alloc_path(void); 610 void btrfs_free_path(struct btrfs_path *p); 611 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T)) 612 613 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 614 struct btrfs_path *path, int slot, int nr); 615 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 616 struct btrfs_root *root, 617 struct btrfs_path *path) 618 { 619 return btrfs_del_items(trans, root, path, path->slots[0], 1); 620 } 621 622 /* 623 * Describes a batch of items to insert in a btree. This is used by 624 * btrfs_insert_empty_items(). 625 */ 626 struct btrfs_item_batch { 627 /* 628 * Pointer to an array containing the keys of the items to insert (in 629 * sorted order). 630 */ 631 const struct btrfs_key *keys; 632 /* Pointer to an array containing the data size for each item to insert. */ 633 const u32 *data_sizes; 634 /* 635 * The sum of data sizes for all items. The caller can compute this while 636 * setting up the data_sizes array, so it ends up being more efficient 637 * than having btrfs_insert_empty_items() or setup_item_for_insert() 638 * doing it, as it would avoid an extra loop over a potentially large 639 * array, and in the case of setup_item_for_insert(), we would be doing 640 * it while holding a write lock on a leaf and often on upper level nodes 641 * too, unnecessarily increasing the size of a critical section. 642 */ 643 u32 total_data_size; 644 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 645 int nr; 646 }; 647 648 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 649 struct btrfs_root *root, 650 struct btrfs_path *path, 651 const struct btrfs_key *key, 652 u32 data_size); 653 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 654 const struct btrfs_key *key, void *data, u32 data_size); 655 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 656 struct btrfs_root *root, 657 struct btrfs_path *path, 658 const struct btrfs_item_batch *batch); 659 660 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 661 struct btrfs_root *root, 662 struct btrfs_path *path, 663 const struct btrfs_key *key, 664 u32 data_size) 665 { 666 struct btrfs_item_batch batch; 667 668 batch.keys = key; 669 batch.data_sizes = &data_size; 670 batch.total_data_size = data_size; 671 batch.nr = 1; 672 673 return btrfs_insert_empty_items(trans, root, path, &batch); 674 } 675 676 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 677 u64 time_seq); 678 679 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 680 struct btrfs_path *path); 681 682 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 683 struct btrfs_path *path); 684 685 /* 686 * Search in @root for a given @key, and store the slot found in @found_key. 687 * 688 * @root: The root node of the tree. 689 * @key: The key we are looking for. 690 * @found_key: Will hold the found item. 691 * @path: Holds the current slot/leaf. 692 * @iter_ret: Contains the value returned from btrfs_search_slot or 693 * btrfs_get_next_valid_item, whichever was executed last. 694 * 695 * The @iter_ret is an output variable that will contain the return value of 696 * btrfs_search_slot, if it encountered an error, or the value returned from 697 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 698 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 699 * 700 * It's recommended to use a separate variable for iter_ret and then use it to 701 * set the function return value so there's no confusion of the 0/1/errno 702 * values stemming from btrfs_search_slot. 703 */ 704 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 705 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 706 (iter_ret) >= 0 && \ 707 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 708 (path)->slots[0]++ \ 709 ) 710 711 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); 712 713 /* 714 * Search the tree again to find a leaf with greater keys. 715 * 716 * Returns 0 if it found something or 1 if there are no greater leaves. 717 * Returns < 0 on error. 718 */ 719 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 720 { 721 return btrfs_next_old_leaf(root, path, 0); 722 } 723 724 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 725 { 726 return btrfs_next_old_item(root, p, 0); 727 } 728 int btrfs_leaf_free_space(const struct extent_buffer *leaf); 729 730 static inline int is_fstree(u64 rootid) 731 { 732 if (rootid == BTRFS_FS_TREE_OBJECTID || 733 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 734 !btrfs_qgroup_level(rootid))) 735 return 1; 736 return 0; 737 } 738 739 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 740 { 741 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 742 } 743 744 #endif 745