1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include <linux/spinlock.h> 12 #include <linux/mutex.h> 13 #include <linux/rwsem.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/compiler.h> 17 #include <linux/fscrypt.h> 18 #include <linux/lockdep.h> 19 #include <uapi/linux/btrfs_tree.h> 20 #include <trace/events/btrfs.h> 21 #include "block-rsv.h" 22 #include "extent_map.h" 23 #include "extent_io.h" 24 #include "extent-io-tree.h" 25 #include "ordered-data.h" 26 #include "delayed-inode.h" 27 28 struct extent_state; 29 struct posix_acl; 30 struct iov_iter; 31 struct writeback_control; 32 struct btrfs_root; 33 struct btrfs_fs_info; 34 struct btrfs_trans_handle; 35 36 /* 37 * Since we search a directory based on f_pos (struct dir_context::pos) we have 38 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 39 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 40 */ 41 #define BTRFS_DIR_START_INDEX 2 42 43 /* 44 * ordered_data_close is set by truncate when a file that used 45 * to have good data has been truncated to zero. When it is set 46 * the btrfs file release call will add this inode to the 47 * ordered operations list so that we make sure to flush out any 48 * new data the application may have written before commit. 49 */ 50 enum { 51 BTRFS_INODE_FLUSH_ON_CLOSE, 52 BTRFS_INODE_DUMMY, 53 BTRFS_INODE_IN_DEFRAG, 54 BTRFS_INODE_HAS_ASYNC_EXTENT, 55 /* 56 * Always set under the VFS' inode lock, otherwise it can cause races 57 * during fsync (we start as a fast fsync and then end up in a full 58 * fsync racing with ordered extent completion). 59 */ 60 BTRFS_INODE_NEEDS_FULL_SYNC, 61 BTRFS_INODE_COPY_EVERYTHING, 62 BTRFS_INODE_HAS_PROPS, 63 BTRFS_INODE_SNAPSHOT_FLUSH, 64 /* 65 * Set and used when logging an inode and it serves to signal that an 66 * inode does not have xattrs, so subsequent fsyncs can avoid searching 67 * for xattrs to log. This bit must be cleared whenever a xattr is added 68 * to an inode. 69 */ 70 BTRFS_INODE_NO_XATTRS, 71 /* 72 * Set when we are in a context where we need to start a transaction and 73 * have dirty pages with the respective file range locked. This is to 74 * ensure that when reserving space for the transaction, if we are low 75 * on available space and need to flush delalloc, we will not flush 76 * delalloc for this inode, because that could result in a deadlock (on 77 * the file range, inode's io_tree). 78 */ 79 BTRFS_INODE_NO_DELALLOC_FLUSH, 80 /* 81 * Set when we are working on enabling verity for a file. Computing and 82 * writing the whole Merkle tree can take a while so we want to prevent 83 * races where two separate tasks attempt to simultaneously start verity 84 * on the same file. 85 */ 86 BTRFS_INODE_VERITY_IN_PROGRESS, 87 /* Set when this inode is a free space inode. */ 88 BTRFS_INODE_FREE_SPACE_INODE, 89 /* Set when there are no capabilities in XATTs for the inode. */ 90 BTRFS_INODE_NO_CAP_XATTR, 91 /* 92 * Set if an error happened when doing a COW write before submitting a 93 * bio or during writeback. Used for both buffered writes and direct IO 94 * writes. This is to signal a fast fsync that it has to wait for 95 * ordered extents to complete and therefore not log extent maps that 96 * point to unwritten extents (when an ordered extent completes and it 97 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its 98 * range). 99 */ 100 BTRFS_INODE_COW_WRITE_ERROR, 101 /* 102 * Indicate this is a directory that points to a subvolume for which 103 * there is no root reference item. That's a case like the following: 104 * 105 * $ btrfs subvolume create /mnt/parent 106 * $ btrfs subvolume create /mnt/parent/child 107 * $ btrfs subvolume snapshot /mnt/parent /mnt/snap 108 * 109 * If subvolume "parent" is root 256, subvolume "child" is root 257 and 110 * snapshot "snap" is root 258, then there's no root reference item (key 111 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child" 112 * associated to root 258 (the snapshot) - there's only for the root 113 * of the "parent" subvolume (root 256). In the chunk root we have a 114 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a 115 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we 116 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a 117 * (257 BTRFS_ROOT_BACKREF_KEY 258) key. 118 * 119 * So when opening the "child" dentry from the snapshot's directory, 120 * we don't find a root ref item and we create a stub inode. This is 121 * done at new_simple_dir(), called from btrfs_lookup_dentry(). 122 */ 123 BTRFS_INODE_ROOT_STUB, 124 }; 125 126 /* in memory btrfs inode */ 127 struct btrfs_inode { 128 /* which subvolume this inode belongs to */ 129 struct btrfs_root *root; 130 131 #if BITS_PER_LONG == 32 132 /* 133 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY. 134 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an 135 * unsigned long and therefore 64 bits on such platforms. 136 */ 137 u64 objectid; 138 #endif 139 140 /* Cached value of inode property 'compression'. */ 141 u8 prop_compress; 142 143 /* 144 * Force compression on the file using the defrag ioctl, could be 145 * different from prop_compress and takes precedence if set. 146 */ 147 u8 defrag_compress; 148 s8 defrag_compress_level; 149 150 /* 151 * Lock for counters and all fields used to determine if the inode is in 152 * the log or not (last_trans, last_sub_trans, last_log_commit, 153 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes, 154 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to 155 * update the VFS' inode number of bytes used. 156 * Also protects setting struct file::private_data. 157 */ 158 spinlock_t lock; 159 160 /* the extent_tree has caches of all the extent mappings to disk */ 161 struct extent_map_tree extent_tree; 162 163 /* the io_tree does range state (DIRTY, LOCKED etc) */ 164 struct extent_io_tree io_tree; 165 166 /* 167 * Keep track of where the inode has extent items mapped in order to 168 * make sure the i_size adjustments are accurate. Not required when the 169 * filesystem is NO_HOLES, the status can't be set while mounted as 170 * it's a mkfs-time feature. 171 */ 172 struct extent_io_tree *file_extent_tree; 173 174 /* held while logging the inode in tree-log.c */ 175 struct mutex log_mutex; 176 177 /* 178 * Counters to keep track of the number of extent item's we may use due 179 * to delalloc and such. outstanding_extents is the number of extent 180 * items we think we'll end up using, and reserved_extents is the number 181 * of extent items we've reserved metadata for. Protected by 'lock'. 182 */ 183 unsigned outstanding_extents; 184 185 /* used to order data wrt metadata */ 186 spinlock_t ordered_tree_lock; 187 struct rb_root ordered_tree; 188 struct rb_node *ordered_tree_last; 189 190 /* list of all the delalloc inodes in the FS. There are times we need 191 * to write all the delalloc pages to disk, and this list is used 192 * to walk them all. 193 */ 194 struct list_head delalloc_inodes; 195 196 unsigned long runtime_flags; 197 198 /* full 64 bit generation number, struct vfs_inode doesn't have a big 199 * enough field for this. 200 */ 201 u64 generation; 202 203 /* 204 * ID of the transaction handle that last modified this inode. 205 * Protected by 'lock'. 206 */ 207 u64 last_trans; 208 209 /* 210 * ID of the transaction that last logged this inode. 211 * Protected by 'lock'. 212 */ 213 u64 logged_trans; 214 215 /* 216 * Log transaction ID when this inode was last modified. 217 * Protected by 'lock'. 218 */ 219 int last_sub_trans; 220 221 /* A local copy of root's last_log_commit. Protected by 'lock'. */ 222 int last_log_commit; 223 224 union { 225 /* 226 * Total number of bytes pending delalloc, used by stat to 227 * calculate the real block usage of the file. This is used 228 * only for files. Protected by 'lock'. 229 */ 230 u64 delalloc_bytes; 231 /* 232 * The lowest possible index of the next dir index key which 233 * points to an inode that needs to be logged. 234 * This is used only for directories. 235 * Use the helpers btrfs_get_first_dir_index_to_log() and 236 * btrfs_set_first_dir_index_to_log() to access this field. 237 */ 238 u64 first_dir_index_to_log; 239 }; 240 241 union { 242 /* 243 * Total number of bytes pending delalloc that fall within a file 244 * range that is either a hole or beyond EOF (and no prealloc extent 245 * exists in the range). This is always <= delalloc_bytes and this 246 * is used only for files. Protected by 'lock'. 247 */ 248 u64 new_delalloc_bytes; 249 /* 250 * The offset of the last dir index key that was logged. 251 * This is used only for directories. 252 */ 253 u64 last_dir_index_offset; 254 }; 255 256 union { 257 /* 258 * Total number of bytes pending defrag, used by stat to check whether 259 * it needs COW. Protected by 'lock'. 260 * Used by inodes other than the data relocation inode. 261 */ 262 u64 defrag_bytes; 263 264 /* 265 * Logical address of the block group being relocated. 266 * Used only by the data relocation inode. 267 */ 268 u64 reloc_block_group_start; 269 }; 270 271 /* 272 * The size of the file stored in the metadata on disk. data=ordered 273 * means the in-memory i_size might be larger than the size on disk 274 * because not all the blocks are written yet. Protected by 'lock'. 275 */ 276 u64 disk_i_size; 277 278 union { 279 /* 280 * If this is a directory then index_cnt is the counter for the 281 * index number for new files that are created. For an empty 282 * directory, this must be initialized to BTRFS_DIR_START_INDEX. 283 */ 284 u64 index_cnt; 285 286 /* 287 * If this is not a directory, this is the number of bytes 288 * outstanding that are going to need csums. This is used in 289 * ENOSPC accounting. Protected by 'lock'. 290 */ 291 u64 csum_bytes; 292 }; 293 294 /* Cache the directory index number to speed the dir/file remove */ 295 u64 dir_index; 296 297 /* the fsync log has some corner cases that mean we have to check 298 * directories to see if any unlinks have been done before 299 * the directory was logged. See tree-log.c for all the 300 * details 301 */ 302 u64 last_unlink_trans; 303 304 union { 305 /* 306 * The id/generation of the last transaction where this inode 307 * was either the source or the destination of a clone/dedupe 308 * operation. Used when logging an inode to know if there are 309 * shared extents that need special care when logging checksum 310 * items, to avoid duplicate checksum items in a log (which can 311 * lead to a corruption where we end up with missing checksum 312 * ranges after log replay). Protected by the VFS inode lock. 313 * Used for regular files only. 314 */ 315 u64 last_reflink_trans; 316 317 /* 318 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set), 319 * the ID of that root. 320 */ 321 u64 ref_root_id; 322 }; 323 324 /* Backwards incompatible flags, lower half of inode_item::flags */ 325 u32 flags; 326 /* Read-only compatibility flags, upper half of inode_item::flags */ 327 u32 ro_flags; 328 329 struct btrfs_block_rsv block_rsv; 330 331 struct btrfs_delayed_node *delayed_node; 332 333 /* File creation time. */ 334 u64 i_otime_sec; 335 u32 i_otime_nsec; 336 337 /* Hook into fs_info->delayed_iputs */ 338 struct list_head delayed_iput; 339 340 struct rw_semaphore i_mmap_lock; 341 struct inode vfs_inode; 342 }; 343 344 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) 345 { 346 return READ_ONCE(inode->first_dir_index_to_log); 347 } 348 349 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, 350 u64 index) 351 { 352 WRITE_ONCE(inode->first_dir_index_to_log, index); 353 } 354 355 /* Type checked and const-preserving VFS inode -> btrfs inode. */ 356 #define BTRFS_I(_inode) \ 357 _Generic(_inode, \ 358 struct inode *: container_of(_inode, struct btrfs_inode, vfs_inode), \ 359 const struct inode *: (const struct btrfs_inode *)container_of( \ 360 _inode, const struct btrfs_inode, vfs_inode)) 361 362 static inline unsigned long btrfs_inode_hash(u64 objectid, 363 const struct btrfs_root *root) 364 { 365 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 366 367 #if BITS_PER_LONG == 32 368 h = (h >> 32) ^ (h & 0xffffffff); 369 #endif 370 371 return (unsigned long)h; 372 } 373 374 #if BITS_PER_LONG == 32 375 376 /* 377 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so 378 * we use the inode's location objectid which is a u64 to avoid truncation. 379 */ 380 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 381 { 382 u64 ino = inode->objectid; 383 384 if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags)) 385 ino = inode->vfs_inode.i_ino; 386 return ino; 387 } 388 389 #else 390 391 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 392 { 393 return inode->vfs_inode.i_ino; 394 } 395 396 #endif 397 398 static inline void btrfs_get_inode_key(const struct btrfs_inode *inode, 399 struct btrfs_key *key) 400 { 401 key->objectid = btrfs_ino(inode); 402 key->type = BTRFS_INODE_ITEM_KEY; 403 key->offset = 0; 404 } 405 406 static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino) 407 { 408 #if BITS_PER_LONG == 32 409 inode->objectid = ino; 410 #endif 411 inode->vfs_inode.i_ino = ino; 412 } 413 414 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 415 { 416 i_size_write(&inode->vfs_inode, size); 417 inode->disk_i_size = size; 418 } 419 420 static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode) 421 { 422 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); 423 } 424 425 static inline bool is_data_inode(const struct btrfs_inode *inode) 426 { 427 return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID; 428 } 429 430 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 431 int mod) 432 { 433 lockdep_assert_held(&inode->lock); 434 inode->outstanding_extents += mod; 435 if (btrfs_is_free_space_inode(inode)) 436 return; 437 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 438 mod, inode->outstanding_extents); 439 } 440 441 /* 442 * Called every time after doing a buffered, direct IO or memory mapped write. 443 * 444 * This is to ensure that if we write to a file that was previously fsynced in 445 * the current transaction, then try to fsync it again in the same transaction, 446 * we will know that there were changes in the file and that it needs to be 447 * logged. 448 */ 449 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 450 { 451 spin_lock(&inode->lock); 452 inode->last_sub_trans = inode->root->log_transid; 453 spin_unlock(&inode->lock); 454 } 455 456 /* 457 * Should be called while holding the inode's VFS lock in exclusive mode, or 458 * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in 459 * either shared or exclusive mode, or in a context where no one else can access 460 * the inode concurrently (during inode creation or when loading an inode from 461 * disk). 462 */ 463 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 464 { 465 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 466 /* 467 * The inode may have been part of a reflink operation in the last 468 * transaction that modified it, and then a fsync has reset the 469 * last_reflink_trans to avoid subsequent fsyncs in the same 470 * transaction to do unnecessary work. So update last_reflink_trans 471 * to the last_trans value (we have to be pessimistic and assume a 472 * reflink happened). 473 * 474 * The ->last_trans is protected by the inode's spinlock and we can 475 * have a concurrent ordered extent completion update it. Also set 476 * last_reflink_trans to ->last_trans only if the former is less than 477 * the later, because we can be called in a context where 478 * last_reflink_trans was set to the current transaction generation 479 * while ->last_trans was not yet updated in the current transaction, 480 * and therefore has a lower value. 481 */ 482 spin_lock(&inode->lock); 483 if (inode->last_reflink_trans < inode->last_trans) 484 inode->last_reflink_trans = inode->last_trans; 485 spin_unlock(&inode->lock); 486 } 487 488 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 489 { 490 bool ret = false; 491 492 spin_lock(&inode->lock); 493 if (inode->logged_trans == generation && 494 inode->last_sub_trans <= inode->last_log_commit && 495 inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root)) 496 ret = true; 497 spin_unlock(&inode->lock); 498 return ret; 499 } 500 501 /* 502 * Check if the inode has flags compatible with compression 503 */ 504 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 505 { 506 if (inode->flags & BTRFS_INODE_NODATACOW || 507 inode->flags & BTRFS_INODE_NODATASUM) 508 return false; 509 return true; 510 } 511 512 static inline void btrfs_assert_inode_locked(struct btrfs_inode *inode) 513 { 514 /* Immediately trigger a crash if the inode is not locked. */ 515 ASSERT(inode_is_locked(&inode->vfs_inode)); 516 /* Trigger a splat in dmesg if this task is not holding the lock. */ 517 lockdep_assert_held(&inode->vfs_inode.i_rwsem); 518 } 519 520 static inline void btrfs_update_inode_mapping_flags(struct btrfs_inode *inode) 521 { 522 if (inode->flags & BTRFS_INODE_NODATASUM) 523 mapping_clear_stable_writes(inode->vfs_inode.i_mapping); 524 else 525 mapping_set_stable_writes(inode->vfs_inode.i_mapping); 526 } 527 528 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 529 #define CSUM_FMT "0x%*phN" 530 #define CSUM_FMT_VALUE(size, bytes) size, bytes 531 532 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 533 const u8 * const csum_expected); 534 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 535 u32 bio_offset, struct bio_vec *bv); 536 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 537 struct btrfs_file_extent *file_extent, 538 bool nowait); 539 540 void btrfs_del_delalloc_inode(struct btrfs_inode *inode); 541 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 542 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 543 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 544 struct btrfs_inode *dir, struct btrfs_inode *inode, 545 const struct fscrypt_str *name); 546 int btrfs_add_link(struct btrfs_trans_handle *trans, 547 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 548 const struct fscrypt_str *name, int add_backref, u64 index); 549 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); 550 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end); 551 552 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 553 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 554 bool in_reclaim_context); 555 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 556 unsigned int extra_bits, 557 struct extent_state **cached_state); 558 559 struct btrfs_new_inode_args { 560 /* Input */ 561 struct inode *dir; 562 struct dentry *dentry; 563 struct inode *inode; 564 bool orphan; 565 bool subvol; 566 567 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ 568 struct posix_acl *default_acl; 569 struct posix_acl *acl; 570 struct fscrypt_name fname; 571 }; 572 573 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 574 unsigned int *trans_num_items); 575 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 576 struct btrfs_new_inode_args *args); 577 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 578 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 579 struct inode *dir); 580 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 581 u32 bits); 582 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 583 struct extent_state *state, u32 bits); 584 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 585 struct extent_state *other); 586 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 587 struct extent_state *orig, u64 split); 588 void btrfs_evict_inode(struct inode *inode); 589 struct inode *btrfs_alloc_inode(struct super_block *sb); 590 void btrfs_destroy_inode(struct inode *inode); 591 void btrfs_free_inode(struct inode *inode); 592 int btrfs_drop_inode(struct inode *inode); 593 int __init btrfs_init_cachep(void); 594 void __cold btrfs_destroy_cachep(void); 595 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 596 struct btrfs_path *path); 597 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root); 598 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 599 struct folio *folio, u64 start, u64 len); 600 int btrfs_update_inode(struct btrfs_trans_handle *trans, 601 struct btrfs_inode *inode); 602 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 603 struct btrfs_inode *inode); 604 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); 605 int btrfs_orphan_cleanup(struct btrfs_root *root); 606 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 607 void btrfs_add_delayed_iput(struct btrfs_inode *inode); 608 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 609 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 610 int btrfs_prealloc_file_range(struct inode *inode, int mode, 611 u64 start, u64 num_bytes, u64 min_size, 612 loff_t actual_len, u64 *alloc_hint); 613 int btrfs_prealloc_file_range_trans(struct inode *inode, 614 struct btrfs_trans_handle *trans, int mode, 615 u64 start, u64 num_bytes, u64 min_size, 616 loff_t actual_len, u64 *alloc_hint); 617 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 618 u64 start, u64 end, struct writeback_control *wbc); 619 int btrfs_writepage_cow_fixup(struct folio *folio); 620 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 621 int compress_type); 622 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 623 u64 disk_bytenr, u64 disk_io_size, 624 struct page **pages, void *uring_ctx); 625 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 626 struct btrfs_ioctl_encoded_io_args *encoded, 627 struct extent_state **cached_state, 628 u64 *disk_bytenr, u64 *disk_io_size); 629 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 630 u64 start, u64 lockend, 631 struct extent_state **cached_state, 632 u64 disk_bytenr, u64 disk_io_size, 633 size_t count, bool compressed, bool *unlocked); 634 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 635 const struct btrfs_ioctl_encoded_io_args *encoded); 636 637 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino); 638 639 extern const struct dentry_operations btrfs_dentry_operations; 640 641 /* Inode locking type flags, by default the exclusive lock is taken. */ 642 enum btrfs_ilock_type { 643 ENUM_BIT(BTRFS_ILOCK_SHARED), 644 ENUM_BIT(BTRFS_ILOCK_TRY), 645 ENUM_BIT(BTRFS_ILOCK_MMAP), 646 }; 647 648 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); 649 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); 650 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, 651 const u64 del_bytes); 652 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 653 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 654 u64 num_bytes); 655 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 656 const struct btrfs_file_extent *file_extent, 657 int type); 658 659 #endif 660