1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 static int btrfs_bg_start_cmp(const struct rb_node *new, 177 const struct rb_node *exist) 178 { 179 const struct btrfs_block_group *new_bg = 180 rb_entry(new, struct btrfs_block_group, cache_node); 181 const struct btrfs_block_group *exist_bg = 182 rb_entry(exist, struct btrfs_block_group, cache_node); 183 184 if (new_bg->start < exist_bg->start) 185 return -1; 186 if (new_bg->start > exist_bg->start) 187 return 1; 188 return 0; 189 } 190 191 /* 192 * This adds the block group to the fs_info rb tree for the block group cache 193 */ 194 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group) 195 { 196 struct btrfs_fs_info *fs_info = block_group->fs_info; 197 struct rb_node *exist; 198 int ret = 0; 199 200 ASSERT(block_group->length != 0); 201 202 write_lock(&fs_info->block_group_cache_lock); 203 204 exist = rb_find_add_cached(&block_group->cache_node, 205 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp); 206 if (exist) 207 ret = -EEXIST; 208 write_unlock(&fs_info->block_group_cache_lock); 209 210 return ret; 211 } 212 213 /* 214 * This will return the block group at or after bytenr if contains is 0, else 215 * it will return the block group that contains the bytenr 216 */ 217 static struct btrfs_block_group *block_group_cache_tree_search( 218 struct btrfs_fs_info *info, u64 bytenr, int contains) 219 { 220 struct btrfs_block_group *cache, *ret = NULL; 221 struct rb_node *n; 222 u64 end, start; 223 224 read_lock(&info->block_group_cache_lock); 225 n = info->block_group_cache_tree.rb_root.rb_node; 226 227 while (n) { 228 cache = rb_entry(n, struct btrfs_block_group, cache_node); 229 end = cache->start + cache->length - 1; 230 start = cache->start; 231 232 if (bytenr < start) { 233 if (!contains && (!ret || start < ret->start)) 234 ret = cache; 235 n = n->rb_left; 236 } else if (bytenr > start) { 237 if (contains && bytenr <= end) { 238 ret = cache; 239 break; 240 } 241 n = n->rb_right; 242 } else { 243 ret = cache; 244 break; 245 } 246 } 247 if (ret) 248 btrfs_get_block_group(ret); 249 read_unlock(&info->block_group_cache_lock); 250 251 return ret; 252 } 253 254 /* 255 * Return the block group that starts at or after bytenr 256 */ 257 struct btrfs_block_group *btrfs_lookup_first_block_group( 258 struct btrfs_fs_info *info, u64 bytenr) 259 { 260 return block_group_cache_tree_search(info, bytenr, 0); 261 } 262 263 /* 264 * Return the block group that contains the given bytenr 265 */ 266 struct btrfs_block_group *btrfs_lookup_block_group( 267 struct btrfs_fs_info *info, u64 bytenr) 268 { 269 return block_group_cache_tree_search(info, bytenr, 1); 270 } 271 272 struct btrfs_block_group *btrfs_next_block_group( 273 struct btrfs_block_group *cache) 274 { 275 struct btrfs_fs_info *fs_info = cache->fs_info; 276 struct rb_node *node; 277 278 read_lock(&fs_info->block_group_cache_lock); 279 280 /* If our block group was removed, we need a full search. */ 281 if (RB_EMPTY_NODE(&cache->cache_node)) { 282 const u64 next_bytenr = cache->start + cache->length; 283 284 read_unlock(&fs_info->block_group_cache_lock); 285 btrfs_put_block_group(cache); 286 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 287 } 288 node = rb_next(&cache->cache_node); 289 btrfs_put_block_group(cache); 290 if (node) { 291 cache = rb_entry(node, struct btrfs_block_group, cache_node); 292 btrfs_get_block_group(cache); 293 } else 294 cache = NULL; 295 read_unlock(&fs_info->block_group_cache_lock); 296 return cache; 297 } 298 299 /* 300 * Check if we can do a NOCOW write for a given extent. 301 * 302 * @fs_info: The filesystem information object. 303 * @bytenr: Logical start address of the extent. 304 * 305 * Check if we can do a NOCOW write for the given extent, and increments the 306 * number of NOCOW writers in the block group that contains the extent, as long 307 * as the block group exists and it's currently not in read-only mode. 308 * 309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 310 * is responsible for calling btrfs_dec_nocow_writers() later. 311 * 312 * Or NULL if we can not do a NOCOW write 313 */ 314 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 315 u64 bytenr) 316 { 317 struct btrfs_block_group *bg; 318 bool can_nocow = true; 319 320 bg = btrfs_lookup_block_group(fs_info, bytenr); 321 if (!bg) 322 return NULL; 323 324 spin_lock(&bg->lock); 325 if (bg->ro) 326 can_nocow = false; 327 else 328 atomic_inc(&bg->nocow_writers); 329 spin_unlock(&bg->lock); 330 331 if (!can_nocow) { 332 btrfs_put_block_group(bg); 333 return NULL; 334 } 335 336 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 337 return bg; 338 } 339 340 /* 341 * Decrement the number of NOCOW writers in a block group. 342 * 343 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 344 * and on the block group returned by that call. Typically this is called after 345 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 346 * relocation. 347 * 348 * After this call, the caller should not use the block group anymore. It it wants 349 * to use it, then it should get a reference on it before calling this function. 350 */ 351 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 352 { 353 if (atomic_dec_and_test(&bg->nocow_writers)) 354 wake_up_var(&bg->nocow_writers); 355 356 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 357 btrfs_put_block_group(bg); 358 } 359 360 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 361 { 362 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 363 } 364 365 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 366 const u64 start) 367 { 368 struct btrfs_block_group *bg; 369 370 bg = btrfs_lookup_block_group(fs_info, start); 371 ASSERT(bg); 372 if (atomic_dec_and_test(&bg->reservations)) 373 wake_up_var(&bg->reservations); 374 btrfs_put_block_group(bg); 375 } 376 377 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 378 { 379 struct btrfs_space_info *space_info = bg->space_info; 380 381 ASSERT(bg->ro); 382 383 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 384 return; 385 386 /* 387 * Our block group is read only but before we set it to read only, 388 * some task might have had allocated an extent from it already, but it 389 * has not yet created a respective ordered extent (and added it to a 390 * root's list of ordered extents). 391 * Therefore wait for any task currently allocating extents, since the 392 * block group's reservations counter is incremented while a read lock 393 * on the groups' semaphore is held and decremented after releasing 394 * the read access on that semaphore and creating the ordered extent. 395 */ 396 down_write(&space_info->groups_sem); 397 up_write(&space_info->groups_sem); 398 399 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 400 } 401 402 struct btrfs_caching_control *btrfs_get_caching_control( 403 struct btrfs_block_group *cache) 404 { 405 struct btrfs_caching_control *ctl; 406 407 spin_lock(&cache->lock); 408 if (!cache->caching_ctl) { 409 spin_unlock(&cache->lock); 410 return NULL; 411 } 412 413 ctl = cache->caching_ctl; 414 refcount_inc(&ctl->count); 415 spin_unlock(&cache->lock); 416 return ctl; 417 } 418 419 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 420 { 421 if (refcount_dec_and_test(&ctl->count)) 422 kfree(ctl); 423 } 424 425 /* 426 * When we wait for progress in the block group caching, its because our 427 * allocation attempt failed at least once. So, we must sleep and let some 428 * progress happen before we try again. 429 * 430 * This function will sleep at least once waiting for new free space to show 431 * up, and then it will check the block group free space numbers for our min 432 * num_bytes. Another option is to have it go ahead and look in the rbtree for 433 * a free extent of a given size, but this is a good start. 434 * 435 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 436 * any of the information in this block group. 437 */ 438 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 439 u64 num_bytes) 440 { 441 struct btrfs_caching_control *caching_ctl; 442 int progress; 443 444 caching_ctl = btrfs_get_caching_control(cache); 445 if (!caching_ctl) 446 return; 447 448 /* 449 * We've already failed to allocate from this block group, so even if 450 * there's enough space in the block group it isn't contiguous enough to 451 * allow for an allocation, so wait for at least the next wakeup tick, 452 * or for the thing to be done. 453 */ 454 progress = atomic_read(&caching_ctl->progress); 455 456 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 457 (progress != atomic_read(&caching_ctl->progress) && 458 (cache->free_space_ctl->free_space >= num_bytes))); 459 460 btrfs_put_caching_control(caching_ctl); 461 } 462 463 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 464 struct btrfs_caching_control *caching_ctl) 465 { 466 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 467 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 468 } 469 470 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 471 { 472 struct btrfs_caching_control *caching_ctl; 473 int ret; 474 475 caching_ctl = btrfs_get_caching_control(cache); 476 if (!caching_ctl) 477 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 478 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 479 btrfs_put_caching_control(caching_ctl); 480 return ret; 481 } 482 483 #ifdef CONFIG_BTRFS_DEBUG 484 static void fragment_free_space(struct btrfs_block_group *block_group) 485 { 486 struct btrfs_fs_info *fs_info = block_group->fs_info; 487 u64 start = block_group->start; 488 u64 len = block_group->length; 489 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 490 fs_info->nodesize : fs_info->sectorsize; 491 u64 step = chunk << 1; 492 493 while (len > chunk) { 494 btrfs_remove_free_space(block_group, start, chunk); 495 start += step; 496 if (len < step) 497 len = 0; 498 else 499 len -= step; 500 } 501 } 502 #endif 503 504 /* 505 * Add a free space range to the in memory free space cache of a block group. 506 * This checks if the range contains super block locations and any such 507 * locations are not added to the free space cache. 508 * 509 * @block_group: The target block group. 510 * @start: Start offset of the range. 511 * @end: End offset of the range (exclusive). 512 * @total_added_ret: Optional pointer to return the total amount of space 513 * added to the block group's free space cache. 514 * 515 * Returns 0 on success or < 0 on error. 516 */ 517 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 518 u64 end, u64 *total_added_ret) 519 { 520 struct btrfs_fs_info *info = block_group->fs_info; 521 u64 extent_start, extent_end, size; 522 int ret; 523 524 if (total_added_ret) 525 *total_added_ret = 0; 526 527 while (start < end) { 528 if (!find_first_extent_bit(&info->excluded_extents, start, 529 &extent_start, &extent_end, 530 EXTENT_DIRTY | EXTENT_UPTODATE, 531 NULL)) 532 break; 533 534 if (extent_start <= start) { 535 start = extent_end + 1; 536 } else if (extent_start > start && extent_start < end) { 537 size = extent_start - start; 538 ret = btrfs_add_free_space_async_trimmed(block_group, 539 start, size); 540 if (ret) 541 return ret; 542 if (total_added_ret) 543 *total_added_ret += size; 544 start = extent_end + 1; 545 } else { 546 break; 547 } 548 } 549 550 if (start < end) { 551 size = end - start; 552 ret = btrfs_add_free_space_async_trimmed(block_group, start, 553 size); 554 if (ret) 555 return ret; 556 if (total_added_ret) 557 *total_added_ret += size; 558 } 559 560 return 0; 561 } 562 563 /* 564 * Get an arbitrary extent item index / max_index through the block group 565 * 566 * @block_group the block group to sample from 567 * @index: the integral step through the block group to grab from 568 * @max_index: the granularity of the sampling 569 * @key: return value parameter for the item we find 570 * 571 * Pre-conditions on indices: 572 * 0 <= index <= max_index 573 * 0 < max_index 574 * 575 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 576 * error code on error. 577 */ 578 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 579 struct btrfs_block_group *block_group, 580 int index, int max_index, 581 struct btrfs_key *found_key) 582 { 583 struct btrfs_fs_info *fs_info = block_group->fs_info; 584 struct btrfs_root *extent_root; 585 u64 search_offset; 586 u64 search_end = block_group->start + block_group->length; 587 BTRFS_PATH_AUTO_FREE(path); 588 struct btrfs_key search_key; 589 int ret = 0; 590 591 ASSERT(index >= 0); 592 ASSERT(index <= max_index); 593 ASSERT(max_index > 0); 594 lockdep_assert_held(&caching_ctl->mutex); 595 lockdep_assert_held_read(&fs_info->commit_root_sem); 596 597 path = btrfs_alloc_path(); 598 if (!path) 599 return -ENOMEM; 600 601 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 602 BTRFS_SUPER_INFO_OFFSET)); 603 604 path->skip_locking = 1; 605 path->search_commit_root = 1; 606 path->reada = READA_FORWARD; 607 608 search_offset = index * div_u64(block_group->length, max_index); 609 search_key.objectid = block_group->start + search_offset; 610 search_key.type = BTRFS_EXTENT_ITEM_KEY; 611 search_key.offset = 0; 612 613 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 614 /* Success; sampled an extent item in the block group */ 615 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 616 found_key->objectid >= block_group->start && 617 found_key->objectid + found_key->offset <= search_end) 618 break; 619 620 /* We can't possibly find a valid extent item anymore */ 621 if (found_key->objectid >= search_end) { 622 ret = 1; 623 break; 624 } 625 } 626 627 lockdep_assert_held(&caching_ctl->mutex); 628 lockdep_assert_held_read(&fs_info->commit_root_sem); 629 return ret; 630 } 631 632 /* 633 * Best effort attempt to compute a block group's size class while caching it. 634 * 635 * @block_group: the block group we are caching 636 * 637 * We cannot infer the size class while adding free space extents, because that 638 * logic doesn't care about contiguous file extents (it doesn't differentiate 639 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 640 * file extent items. Reading all of them is quite wasteful, because usually 641 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 642 * them at even steps through the block group and pick the smallest size class 643 * we see. Since size class is best effort, and not guaranteed in general, 644 * inaccuracy is acceptable. 645 * 646 * To be more explicit about why this algorithm makes sense: 647 * 648 * If we are caching in a block group from disk, then there are three major cases 649 * to consider: 650 * 1. the block group is well behaved and all extents in it are the same size 651 * class. 652 * 2. the block group is mostly one size class with rare exceptions for last 653 * ditch allocations 654 * 3. the block group was populated before size classes and can have a totally 655 * arbitrary mix of size classes. 656 * 657 * In case 1, looking at any extent in the block group will yield the correct 658 * result. For the mixed cases, taking the minimum size class seems like a good 659 * approximation, since gaps from frees will be usable to the size class. For 660 * 2., a small handful of file extents is likely to yield the right answer. For 661 * 3, we can either read every file extent, or admit that this is best effort 662 * anyway and try to stay fast. 663 * 664 * Returns: 0 on success, negative error code on error. 665 */ 666 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 667 struct btrfs_block_group *block_group) 668 { 669 struct btrfs_fs_info *fs_info = block_group->fs_info; 670 struct btrfs_key key; 671 int i; 672 u64 min_size = block_group->length; 673 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 674 int ret; 675 676 if (!btrfs_block_group_should_use_size_class(block_group)) 677 return 0; 678 679 lockdep_assert_held(&caching_ctl->mutex); 680 lockdep_assert_held_read(&fs_info->commit_root_sem); 681 for (i = 0; i < 5; ++i) { 682 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 683 if (ret < 0) 684 goto out; 685 if (ret > 0) 686 continue; 687 min_size = min_t(u64, min_size, key.offset); 688 size_class = btrfs_calc_block_group_size_class(min_size); 689 } 690 if (size_class != BTRFS_BG_SZ_NONE) { 691 spin_lock(&block_group->lock); 692 block_group->size_class = size_class; 693 spin_unlock(&block_group->lock); 694 } 695 out: 696 return ret; 697 } 698 699 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 700 { 701 struct btrfs_block_group *block_group = caching_ctl->block_group; 702 struct btrfs_fs_info *fs_info = block_group->fs_info; 703 struct btrfs_root *extent_root; 704 struct btrfs_path *path; 705 struct extent_buffer *leaf; 706 struct btrfs_key key; 707 u64 total_found = 0; 708 u64 last = 0; 709 u32 nritems; 710 int ret; 711 bool wakeup = true; 712 713 path = btrfs_alloc_path(); 714 if (!path) 715 return -ENOMEM; 716 717 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 718 extent_root = btrfs_extent_root(fs_info, last); 719 720 #ifdef CONFIG_BTRFS_DEBUG 721 /* 722 * If we're fragmenting we don't want to make anybody think we can 723 * allocate from this block group until we've had a chance to fragment 724 * the free space. 725 */ 726 if (btrfs_should_fragment_free_space(block_group)) 727 wakeup = false; 728 #endif 729 /* 730 * We don't want to deadlock with somebody trying to allocate a new 731 * extent for the extent root while also trying to search the extent 732 * root to add free space. So we skip locking and search the commit 733 * root, since its read-only 734 */ 735 path->skip_locking = 1; 736 path->search_commit_root = 1; 737 path->reada = READA_FORWARD; 738 739 key.objectid = last; 740 key.type = BTRFS_EXTENT_ITEM_KEY; 741 key.offset = 0; 742 743 next: 744 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 745 if (ret < 0) 746 goto out; 747 748 leaf = path->nodes[0]; 749 nritems = btrfs_header_nritems(leaf); 750 751 while (1) { 752 if (btrfs_fs_closing(fs_info) > 1) { 753 last = (u64)-1; 754 break; 755 } 756 757 if (path->slots[0] < nritems) { 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 } else { 760 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 761 if (ret) 762 break; 763 764 if (need_resched() || 765 rwsem_is_contended(&fs_info->commit_root_sem)) { 766 btrfs_release_path(path); 767 up_read(&fs_info->commit_root_sem); 768 mutex_unlock(&caching_ctl->mutex); 769 cond_resched(); 770 mutex_lock(&caching_ctl->mutex); 771 down_read(&fs_info->commit_root_sem); 772 goto next; 773 } 774 775 ret = btrfs_next_leaf(extent_root, path); 776 if (ret < 0) 777 goto out; 778 if (ret) 779 break; 780 leaf = path->nodes[0]; 781 nritems = btrfs_header_nritems(leaf); 782 continue; 783 } 784 785 if (key.objectid < last) { 786 key.objectid = last; 787 key.type = BTRFS_EXTENT_ITEM_KEY; 788 key.offset = 0; 789 btrfs_release_path(path); 790 goto next; 791 } 792 793 if (key.objectid < block_group->start) { 794 path->slots[0]++; 795 continue; 796 } 797 798 if (key.objectid >= block_group->start + block_group->length) 799 break; 800 801 if (key.type == BTRFS_EXTENT_ITEM_KEY || 802 key.type == BTRFS_METADATA_ITEM_KEY) { 803 u64 space_added; 804 805 ret = btrfs_add_new_free_space(block_group, last, 806 key.objectid, &space_added); 807 if (ret) 808 goto out; 809 total_found += space_added; 810 if (key.type == BTRFS_METADATA_ITEM_KEY) 811 last = key.objectid + 812 fs_info->nodesize; 813 else 814 last = key.objectid + key.offset; 815 816 if (total_found > CACHING_CTL_WAKE_UP) { 817 total_found = 0; 818 if (wakeup) { 819 atomic_inc(&caching_ctl->progress); 820 wake_up(&caching_ctl->wait); 821 } 822 } 823 } 824 path->slots[0]++; 825 } 826 827 ret = btrfs_add_new_free_space(block_group, last, 828 block_group->start + block_group->length, 829 NULL); 830 out: 831 btrfs_free_path(path); 832 return ret; 833 } 834 835 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 836 { 837 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 838 bg->start + bg->length - 1, EXTENT_UPTODATE); 839 } 840 841 static noinline void caching_thread(struct btrfs_work *work) 842 { 843 struct btrfs_block_group *block_group; 844 struct btrfs_fs_info *fs_info; 845 struct btrfs_caching_control *caching_ctl; 846 int ret; 847 848 caching_ctl = container_of(work, struct btrfs_caching_control, work); 849 block_group = caching_ctl->block_group; 850 fs_info = block_group->fs_info; 851 852 mutex_lock(&caching_ctl->mutex); 853 down_read(&fs_info->commit_root_sem); 854 855 load_block_group_size_class(caching_ctl, block_group); 856 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 857 ret = load_free_space_cache(block_group); 858 if (ret == 1) { 859 ret = 0; 860 goto done; 861 } 862 863 /* 864 * We failed to load the space cache, set ourselves to 865 * CACHE_STARTED and carry on. 866 */ 867 spin_lock(&block_group->lock); 868 block_group->cached = BTRFS_CACHE_STARTED; 869 spin_unlock(&block_group->lock); 870 wake_up(&caching_ctl->wait); 871 } 872 873 /* 874 * If we are in the transaction that populated the free space tree we 875 * can't actually cache from the free space tree as our commit root and 876 * real root are the same, so we could change the contents of the blocks 877 * while caching. Instead do the slow caching in this case, and after 878 * the transaction has committed we will be safe. 879 */ 880 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 881 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 882 ret = load_free_space_tree(caching_ctl); 883 else 884 ret = load_extent_tree_free(caching_ctl); 885 done: 886 spin_lock(&block_group->lock); 887 block_group->caching_ctl = NULL; 888 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 889 spin_unlock(&block_group->lock); 890 891 #ifdef CONFIG_BTRFS_DEBUG 892 if (btrfs_should_fragment_free_space(block_group)) { 893 u64 bytes_used; 894 895 spin_lock(&block_group->space_info->lock); 896 spin_lock(&block_group->lock); 897 bytes_used = block_group->length - block_group->used; 898 block_group->space_info->bytes_used += bytes_used >> 1; 899 spin_unlock(&block_group->lock); 900 spin_unlock(&block_group->space_info->lock); 901 fragment_free_space(block_group); 902 } 903 #endif 904 905 up_read(&fs_info->commit_root_sem); 906 btrfs_free_excluded_extents(block_group); 907 mutex_unlock(&caching_ctl->mutex); 908 909 wake_up(&caching_ctl->wait); 910 911 btrfs_put_caching_control(caching_ctl); 912 btrfs_put_block_group(block_group); 913 } 914 915 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 916 { 917 struct btrfs_fs_info *fs_info = cache->fs_info; 918 struct btrfs_caching_control *caching_ctl = NULL; 919 int ret = 0; 920 921 /* Allocator for zoned filesystems does not use the cache at all */ 922 if (btrfs_is_zoned(fs_info)) 923 return 0; 924 925 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 926 if (!caching_ctl) 927 return -ENOMEM; 928 929 INIT_LIST_HEAD(&caching_ctl->list); 930 mutex_init(&caching_ctl->mutex); 931 init_waitqueue_head(&caching_ctl->wait); 932 caching_ctl->block_group = cache; 933 refcount_set(&caching_ctl->count, 2); 934 atomic_set(&caching_ctl->progress, 0); 935 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 936 937 spin_lock(&cache->lock); 938 if (cache->cached != BTRFS_CACHE_NO) { 939 kfree(caching_ctl); 940 941 caching_ctl = cache->caching_ctl; 942 if (caching_ctl) 943 refcount_inc(&caching_ctl->count); 944 spin_unlock(&cache->lock); 945 goto out; 946 } 947 WARN_ON(cache->caching_ctl); 948 cache->caching_ctl = caching_ctl; 949 cache->cached = BTRFS_CACHE_STARTED; 950 spin_unlock(&cache->lock); 951 952 write_lock(&fs_info->block_group_cache_lock); 953 refcount_inc(&caching_ctl->count); 954 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 955 write_unlock(&fs_info->block_group_cache_lock); 956 957 btrfs_get_block_group(cache); 958 959 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 960 out: 961 if (wait && caching_ctl) 962 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 963 if (caching_ctl) 964 btrfs_put_caching_control(caching_ctl); 965 966 return ret; 967 } 968 969 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 970 { 971 u64 extra_flags = chunk_to_extended(flags) & 972 BTRFS_EXTENDED_PROFILE_MASK; 973 974 write_seqlock(&fs_info->profiles_lock); 975 if (flags & BTRFS_BLOCK_GROUP_DATA) 976 fs_info->avail_data_alloc_bits &= ~extra_flags; 977 if (flags & BTRFS_BLOCK_GROUP_METADATA) 978 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 979 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 980 fs_info->avail_system_alloc_bits &= ~extra_flags; 981 write_sequnlock(&fs_info->profiles_lock); 982 } 983 984 /* 985 * Clear incompat bits for the following feature(s): 986 * 987 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 988 * in the whole filesystem 989 * 990 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 991 */ 992 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 993 { 994 bool found_raid56 = false; 995 bool found_raid1c34 = false; 996 997 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 998 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 999 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1000 struct list_head *head = &fs_info->space_info; 1001 struct btrfs_space_info *sinfo; 1002 1003 list_for_each_entry_rcu(sinfo, head, list) { 1004 down_read(&sinfo->groups_sem); 1005 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1006 found_raid56 = true; 1007 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1008 found_raid56 = true; 1009 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1010 found_raid1c34 = true; 1011 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1012 found_raid1c34 = true; 1013 up_read(&sinfo->groups_sem); 1014 } 1015 if (!found_raid56) 1016 btrfs_clear_fs_incompat(fs_info, RAID56); 1017 if (!found_raid1c34) 1018 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1019 } 1020 } 1021 1022 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1023 { 1024 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1025 return fs_info->block_group_root; 1026 return btrfs_extent_root(fs_info, 0); 1027 } 1028 1029 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1030 struct btrfs_path *path, 1031 struct btrfs_block_group *block_group) 1032 { 1033 struct btrfs_fs_info *fs_info = trans->fs_info; 1034 struct btrfs_root *root; 1035 struct btrfs_key key; 1036 int ret; 1037 1038 root = btrfs_block_group_root(fs_info); 1039 key.objectid = block_group->start; 1040 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1041 key.offset = block_group->length; 1042 1043 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1044 if (ret > 0) 1045 ret = -ENOENT; 1046 if (ret < 0) 1047 return ret; 1048 1049 ret = btrfs_del_item(trans, root, path); 1050 return ret; 1051 } 1052 1053 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1054 struct btrfs_chunk_map *map) 1055 { 1056 struct btrfs_fs_info *fs_info = trans->fs_info; 1057 struct btrfs_path *path; 1058 struct btrfs_block_group *block_group; 1059 struct btrfs_free_cluster *cluster; 1060 struct inode *inode; 1061 struct kobject *kobj = NULL; 1062 int ret; 1063 int index; 1064 int factor; 1065 struct btrfs_caching_control *caching_ctl = NULL; 1066 bool remove_map; 1067 bool remove_rsv = false; 1068 1069 block_group = btrfs_lookup_block_group(fs_info, map->start); 1070 if (!block_group) 1071 return -ENOENT; 1072 1073 BUG_ON(!block_group->ro); 1074 1075 trace_btrfs_remove_block_group(block_group); 1076 /* 1077 * Free the reserved super bytes from this block group before 1078 * remove it. 1079 */ 1080 btrfs_free_excluded_extents(block_group); 1081 btrfs_free_ref_tree_range(fs_info, block_group->start, 1082 block_group->length); 1083 1084 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1085 factor = btrfs_bg_type_to_factor(block_group->flags); 1086 1087 /* make sure this block group isn't part of an allocation cluster */ 1088 cluster = &fs_info->data_alloc_cluster; 1089 spin_lock(&cluster->refill_lock); 1090 btrfs_return_cluster_to_free_space(block_group, cluster); 1091 spin_unlock(&cluster->refill_lock); 1092 1093 /* 1094 * make sure this block group isn't part of a metadata 1095 * allocation cluster 1096 */ 1097 cluster = &fs_info->meta_alloc_cluster; 1098 spin_lock(&cluster->refill_lock); 1099 btrfs_return_cluster_to_free_space(block_group, cluster); 1100 spin_unlock(&cluster->refill_lock); 1101 1102 btrfs_clear_treelog_bg(block_group); 1103 btrfs_clear_data_reloc_bg(block_group); 1104 1105 path = btrfs_alloc_path(); 1106 if (!path) { 1107 ret = -ENOMEM; 1108 goto out; 1109 } 1110 1111 /* 1112 * get the inode first so any iput calls done for the io_list 1113 * aren't the final iput (no unlinks allowed now) 1114 */ 1115 inode = lookup_free_space_inode(block_group, path); 1116 1117 mutex_lock(&trans->transaction->cache_write_mutex); 1118 /* 1119 * Make sure our free space cache IO is done before removing the 1120 * free space inode 1121 */ 1122 spin_lock(&trans->transaction->dirty_bgs_lock); 1123 if (!list_empty(&block_group->io_list)) { 1124 list_del_init(&block_group->io_list); 1125 1126 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1127 1128 spin_unlock(&trans->transaction->dirty_bgs_lock); 1129 btrfs_wait_cache_io(trans, block_group, path); 1130 btrfs_put_block_group(block_group); 1131 spin_lock(&trans->transaction->dirty_bgs_lock); 1132 } 1133 1134 if (!list_empty(&block_group->dirty_list)) { 1135 list_del_init(&block_group->dirty_list); 1136 remove_rsv = true; 1137 btrfs_put_block_group(block_group); 1138 } 1139 spin_unlock(&trans->transaction->dirty_bgs_lock); 1140 mutex_unlock(&trans->transaction->cache_write_mutex); 1141 1142 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1143 if (ret) 1144 goto out; 1145 1146 write_lock(&fs_info->block_group_cache_lock); 1147 rb_erase_cached(&block_group->cache_node, 1148 &fs_info->block_group_cache_tree); 1149 RB_CLEAR_NODE(&block_group->cache_node); 1150 1151 /* Once for the block groups rbtree */ 1152 btrfs_put_block_group(block_group); 1153 1154 write_unlock(&fs_info->block_group_cache_lock); 1155 1156 down_write(&block_group->space_info->groups_sem); 1157 /* 1158 * we must use list_del_init so people can check to see if they 1159 * are still on the list after taking the semaphore 1160 */ 1161 list_del_init(&block_group->list); 1162 if (list_empty(&block_group->space_info->block_groups[index])) { 1163 kobj = block_group->space_info->block_group_kobjs[index]; 1164 block_group->space_info->block_group_kobjs[index] = NULL; 1165 clear_avail_alloc_bits(fs_info, block_group->flags); 1166 } 1167 up_write(&block_group->space_info->groups_sem); 1168 clear_incompat_bg_bits(fs_info, block_group->flags); 1169 if (kobj) { 1170 kobject_del(kobj); 1171 kobject_put(kobj); 1172 } 1173 1174 if (block_group->cached == BTRFS_CACHE_STARTED) 1175 btrfs_wait_block_group_cache_done(block_group); 1176 1177 write_lock(&fs_info->block_group_cache_lock); 1178 caching_ctl = btrfs_get_caching_control(block_group); 1179 if (!caching_ctl) { 1180 struct btrfs_caching_control *ctl; 1181 1182 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1183 if (ctl->block_group == block_group) { 1184 caching_ctl = ctl; 1185 refcount_inc(&caching_ctl->count); 1186 break; 1187 } 1188 } 1189 } 1190 if (caching_ctl) 1191 list_del_init(&caching_ctl->list); 1192 write_unlock(&fs_info->block_group_cache_lock); 1193 1194 if (caching_ctl) { 1195 /* Once for the caching bgs list and once for us. */ 1196 btrfs_put_caching_control(caching_ctl); 1197 btrfs_put_caching_control(caching_ctl); 1198 } 1199 1200 spin_lock(&trans->transaction->dirty_bgs_lock); 1201 WARN_ON(!list_empty(&block_group->dirty_list)); 1202 WARN_ON(!list_empty(&block_group->io_list)); 1203 spin_unlock(&trans->transaction->dirty_bgs_lock); 1204 1205 btrfs_remove_free_space_cache(block_group); 1206 1207 spin_lock(&block_group->space_info->lock); 1208 list_del_init(&block_group->ro_list); 1209 1210 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1211 WARN_ON(block_group->space_info->total_bytes 1212 < block_group->length); 1213 WARN_ON(block_group->space_info->bytes_readonly 1214 < block_group->length - block_group->zone_unusable); 1215 WARN_ON(block_group->space_info->bytes_zone_unusable 1216 < block_group->zone_unusable); 1217 WARN_ON(block_group->space_info->disk_total 1218 < block_group->length * factor); 1219 } 1220 block_group->space_info->total_bytes -= block_group->length; 1221 block_group->space_info->bytes_readonly -= 1222 (block_group->length - block_group->zone_unusable); 1223 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info, 1224 -block_group->zone_unusable); 1225 block_group->space_info->disk_total -= block_group->length * factor; 1226 1227 spin_unlock(&block_group->space_info->lock); 1228 1229 /* 1230 * Remove the free space for the block group from the free space tree 1231 * and the block group's item from the extent tree before marking the 1232 * block group as removed. This is to prevent races with tasks that 1233 * freeze and unfreeze a block group, this task and another task 1234 * allocating a new block group - the unfreeze task ends up removing 1235 * the block group's extent map before the task calling this function 1236 * deletes the block group item from the extent tree, allowing for 1237 * another task to attempt to create another block group with the same 1238 * item key (and failing with -EEXIST and a transaction abort). 1239 */ 1240 ret = remove_block_group_free_space(trans, block_group); 1241 if (ret) 1242 goto out; 1243 1244 ret = remove_block_group_item(trans, path, block_group); 1245 if (ret < 0) 1246 goto out; 1247 1248 spin_lock(&block_group->lock); 1249 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1250 1251 /* 1252 * At this point trimming or scrub can't start on this block group, 1253 * because we removed the block group from the rbtree 1254 * fs_info->block_group_cache_tree so no one can't find it anymore and 1255 * even if someone already got this block group before we removed it 1256 * from the rbtree, they have already incremented block_group->frozen - 1257 * if they didn't, for the trimming case they won't find any free space 1258 * entries because we already removed them all when we called 1259 * btrfs_remove_free_space_cache(). 1260 * 1261 * And we must not remove the chunk map from the fs_info->mapping_tree 1262 * to prevent the same logical address range and physical device space 1263 * ranges from being reused for a new block group. This is needed to 1264 * avoid races with trimming and scrub. 1265 * 1266 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1267 * completely transactionless, so while it is trimming a range the 1268 * currently running transaction might finish and a new one start, 1269 * allowing for new block groups to be created that can reuse the same 1270 * physical device locations unless we take this special care. 1271 * 1272 * There may also be an implicit trim operation if the file system 1273 * is mounted with -odiscard. The same protections must remain 1274 * in place until the extents have been discarded completely when 1275 * the transaction commit has completed. 1276 */ 1277 remove_map = (atomic_read(&block_group->frozen) == 0); 1278 spin_unlock(&block_group->lock); 1279 1280 if (remove_map) 1281 btrfs_remove_chunk_map(fs_info, map); 1282 1283 out: 1284 /* Once for the lookup reference */ 1285 btrfs_put_block_group(block_group); 1286 if (remove_rsv) 1287 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1288 btrfs_free_path(path); 1289 return ret; 1290 } 1291 1292 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1293 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1294 { 1295 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1296 struct btrfs_chunk_map *map; 1297 unsigned int num_items; 1298 1299 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1300 ASSERT(map != NULL); 1301 ASSERT(map->start == chunk_offset); 1302 1303 /* 1304 * We need to reserve 3 + N units from the metadata space info in order 1305 * to remove a block group (done at btrfs_remove_chunk() and at 1306 * btrfs_remove_block_group()), which are used for: 1307 * 1308 * 1 unit for adding the free space inode's orphan (located in the tree 1309 * of tree roots). 1310 * 1 unit for deleting the block group item (located in the extent 1311 * tree). 1312 * 1 unit for deleting the free space item (located in tree of tree 1313 * roots). 1314 * N units for deleting N device extent items corresponding to each 1315 * stripe (located in the device tree). 1316 * 1317 * In order to remove a block group we also need to reserve units in the 1318 * system space info in order to update the chunk tree (update one or 1319 * more device items and remove one chunk item), but this is done at 1320 * btrfs_remove_chunk() through a call to check_system_chunk(). 1321 */ 1322 num_items = 3 + map->num_stripes; 1323 btrfs_free_chunk_map(map); 1324 1325 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1326 } 1327 1328 /* 1329 * Mark block group @cache read-only, so later write won't happen to block 1330 * group @cache. 1331 * 1332 * If @force is not set, this function will only mark the block group readonly 1333 * if we have enough free space (1M) in other metadata/system block groups. 1334 * If @force is not set, this function will mark the block group readonly 1335 * without checking free space. 1336 * 1337 * NOTE: This function doesn't care if other block groups can contain all the 1338 * data in this block group. That check should be done by relocation routine, 1339 * not this function. 1340 */ 1341 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1342 { 1343 struct btrfs_space_info *sinfo = cache->space_info; 1344 u64 num_bytes; 1345 int ret = -ENOSPC; 1346 1347 spin_lock(&sinfo->lock); 1348 spin_lock(&cache->lock); 1349 1350 if (cache->swap_extents) { 1351 ret = -ETXTBSY; 1352 goto out; 1353 } 1354 1355 if (cache->ro) { 1356 cache->ro++; 1357 ret = 0; 1358 goto out; 1359 } 1360 1361 num_bytes = cache->length - cache->reserved - cache->pinned - 1362 cache->bytes_super - cache->zone_unusable - cache->used; 1363 1364 /* 1365 * Data never overcommits, even in mixed mode, so do just the straight 1366 * check of left over space in how much we have allocated. 1367 */ 1368 if (force) { 1369 ret = 0; 1370 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1371 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1372 1373 /* 1374 * Here we make sure if we mark this bg RO, we still have enough 1375 * free space as buffer. 1376 */ 1377 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1378 ret = 0; 1379 } else { 1380 /* 1381 * We overcommit metadata, so we need to do the 1382 * btrfs_can_overcommit check here, and we need to pass in 1383 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1384 * leeway to allow us to mark this block group as read only. 1385 */ 1386 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1387 BTRFS_RESERVE_NO_FLUSH)) 1388 ret = 0; 1389 } 1390 1391 if (!ret) { 1392 sinfo->bytes_readonly += num_bytes; 1393 if (btrfs_is_zoned(cache->fs_info)) { 1394 /* Migrate zone_unusable bytes to readonly */ 1395 sinfo->bytes_readonly += cache->zone_unusable; 1396 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable); 1397 cache->zone_unusable = 0; 1398 } 1399 cache->ro++; 1400 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1401 } 1402 out: 1403 spin_unlock(&cache->lock); 1404 spin_unlock(&sinfo->lock); 1405 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1406 btrfs_info(cache->fs_info, 1407 "unable to make block group %llu ro", cache->start); 1408 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1409 } 1410 return ret; 1411 } 1412 1413 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1414 const struct btrfs_block_group *bg) 1415 { 1416 struct btrfs_fs_info *fs_info = trans->fs_info; 1417 struct btrfs_transaction *prev_trans = NULL; 1418 const u64 start = bg->start; 1419 const u64 end = start + bg->length - 1; 1420 int ret; 1421 1422 spin_lock(&fs_info->trans_lock); 1423 if (trans->transaction->list.prev != &fs_info->trans_list) { 1424 prev_trans = list_last_entry(&trans->transaction->list, 1425 struct btrfs_transaction, list); 1426 refcount_inc(&prev_trans->use_count); 1427 } 1428 spin_unlock(&fs_info->trans_lock); 1429 1430 /* 1431 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1432 * btrfs_finish_extent_commit(). If we are at transaction N, another 1433 * task might be running finish_extent_commit() for the previous 1434 * transaction N - 1, and have seen a range belonging to the block 1435 * group in pinned_extents before we were able to clear the whole block 1436 * group range from pinned_extents. This means that task can lookup for 1437 * the block group after we unpinned it from pinned_extents and removed 1438 * it, leading to an error at unpin_extent_range(). 1439 */ 1440 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1441 if (prev_trans) { 1442 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1443 EXTENT_DIRTY); 1444 if (ret) 1445 goto out; 1446 } 1447 1448 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1449 EXTENT_DIRTY); 1450 out: 1451 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1452 if (prev_trans) 1453 btrfs_put_transaction(prev_trans); 1454 1455 return ret == 0; 1456 } 1457 1458 /* 1459 * Link the block_group to a list via bg_list. 1460 * 1461 * @bg: The block_group to link to the list. 1462 * @list: The list to link it to. 1463 * 1464 * Use this rather than list_add_tail() directly to ensure proper respect 1465 * to locking and refcounting. 1466 * 1467 * Returns: true if the bg was linked with a refcount bump and false otherwise. 1468 */ 1469 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list) 1470 { 1471 struct btrfs_fs_info *fs_info = bg->fs_info; 1472 bool added = false; 1473 1474 spin_lock(&fs_info->unused_bgs_lock); 1475 if (list_empty(&bg->bg_list)) { 1476 btrfs_get_block_group(bg); 1477 list_add_tail(&bg->bg_list, list); 1478 added = true; 1479 } 1480 spin_unlock(&fs_info->unused_bgs_lock); 1481 return added; 1482 } 1483 1484 /* 1485 * Process the unused_bgs list and remove any that don't have any allocated 1486 * space inside of them. 1487 */ 1488 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1489 { 1490 LIST_HEAD(retry_list); 1491 struct btrfs_block_group *block_group; 1492 struct btrfs_space_info *space_info; 1493 struct btrfs_trans_handle *trans; 1494 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1495 int ret = 0; 1496 1497 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1498 return; 1499 1500 if (btrfs_fs_closing(fs_info)) 1501 return; 1502 1503 /* 1504 * Long running balances can keep us blocked here for eternity, so 1505 * simply skip deletion if we're unable to get the mutex. 1506 */ 1507 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1508 return; 1509 1510 spin_lock(&fs_info->unused_bgs_lock); 1511 while (!list_empty(&fs_info->unused_bgs)) { 1512 u64 used; 1513 int trimming; 1514 1515 block_group = list_first_entry(&fs_info->unused_bgs, 1516 struct btrfs_block_group, 1517 bg_list); 1518 list_del_init(&block_group->bg_list); 1519 1520 space_info = block_group->space_info; 1521 1522 if (ret || btrfs_mixed_space_info(space_info)) { 1523 btrfs_put_block_group(block_group); 1524 continue; 1525 } 1526 spin_unlock(&fs_info->unused_bgs_lock); 1527 1528 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1529 1530 /* Don't want to race with allocators so take the groups_sem */ 1531 down_write(&space_info->groups_sem); 1532 1533 /* 1534 * Async discard moves the final block group discard to be prior 1535 * to the unused_bgs code path. Therefore, if it's not fully 1536 * trimmed, punt it back to the async discard lists. 1537 */ 1538 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1539 !btrfs_is_free_space_trimmed(block_group)) { 1540 trace_btrfs_skip_unused_block_group(block_group); 1541 up_write(&space_info->groups_sem); 1542 /* Requeue if we failed because of async discard */ 1543 btrfs_discard_queue_work(&fs_info->discard_ctl, 1544 block_group); 1545 goto next; 1546 } 1547 1548 spin_lock(&space_info->lock); 1549 spin_lock(&block_group->lock); 1550 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1551 list_is_singular(&block_group->list)) { 1552 /* 1553 * We want to bail if we made new allocations or have 1554 * outstanding allocations in this block group. We do 1555 * the ro check in case balance is currently acting on 1556 * this block group. 1557 * 1558 * Also bail out if this is the only block group for its 1559 * type, because otherwise we would lose profile 1560 * information from fs_info->avail_*_alloc_bits and the 1561 * next block group of this type would be created with a 1562 * "single" profile (even if we're in a raid fs) because 1563 * fs_info->avail_*_alloc_bits would be 0. 1564 */ 1565 trace_btrfs_skip_unused_block_group(block_group); 1566 spin_unlock(&block_group->lock); 1567 spin_unlock(&space_info->lock); 1568 up_write(&space_info->groups_sem); 1569 goto next; 1570 } 1571 1572 /* 1573 * The block group may be unused but there may be space reserved 1574 * accounting with the existence of that block group, that is, 1575 * space_info->bytes_may_use was incremented by a task but no 1576 * space was yet allocated from the block group by the task. 1577 * That space may or may not be allocated, as we are generally 1578 * pessimistic about space reservation for metadata as well as 1579 * for data when using compression (as we reserve space based on 1580 * the worst case, when data can't be compressed, and before 1581 * actually attempting compression, before starting writeback). 1582 * 1583 * So check if the total space of the space_info minus the size 1584 * of this block group is less than the used space of the 1585 * space_info - if that's the case, then it means we have tasks 1586 * that might be relying on the block group in order to allocate 1587 * extents, and add back the block group to the unused list when 1588 * we finish, so that we retry later in case no tasks ended up 1589 * needing to allocate extents from the block group. 1590 */ 1591 used = btrfs_space_info_used(space_info, true); 1592 if (space_info->total_bytes - block_group->length < used && 1593 block_group->zone_unusable < block_group->length) { 1594 /* 1595 * Add a reference for the list, compensate for the ref 1596 * drop under the "next" label for the 1597 * fs_info->unused_bgs list. 1598 */ 1599 btrfs_link_bg_list(block_group, &retry_list); 1600 1601 trace_btrfs_skip_unused_block_group(block_group); 1602 spin_unlock(&block_group->lock); 1603 spin_unlock(&space_info->lock); 1604 up_write(&space_info->groups_sem); 1605 goto next; 1606 } 1607 1608 spin_unlock(&block_group->lock); 1609 spin_unlock(&space_info->lock); 1610 1611 /* We don't want to force the issue, only flip if it's ok. */ 1612 ret = inc_block_group_ro(block_group, 0); 1613 up_write(&space_info->groups_sem); 1614 if (ret < 0) { 1615 ret = 0; 1616 goto next; 1617 } 1618 1619 ret = btrfs_zone_finish(block_group); 1620 if (ret < 0) { 1621 btrfs_dec_block_group_ro(block_group); 1622 if (ret == -EAGAIN) 1623 ret = 0; 1624 goto next; 1625 } 1626 1627 /* 1628 * Want to do this before we do anything else so we can recover 1629 * properly if we fail to join the transaction. 1630 */ 1631 trans = btrfs_start_trans_remove_block_group(fs_info, 1632 block_group->start); 1633 if (IS_ERR(trans)) { 1634 btrfs_dec_block_group_ro(block_group); 1635 ret = PTR_ERR(trans); 1636 goto next; 1637 } 1638 1639 /* 1640 * We could have pending pinned extents for this block group, 1641 * just delete them, we don't care about them anymore. 1642 */ 1643 if (!clean_pinned_extents(trans, block_group)) { 1644 btrfs_dec_block_group_ro(block_group); 1645 goto end_trans; 1646 } 1647 1648 /* 1649 * At this point, the block_group is read only and should fail 1650 * new allocations. However, btrfs_finish_extent_commit() can 1651 * cause this block_group to be placed back on the discard 1652 * lists because now the block_group isn't fully discarded. 1653 * Bail here and try again later after discarding everything. 1654 */ 1655 spin_lock(&fs_info->discard_ctl.lock); 1656 if (!list_empty(&block_group->discard_list)) { 1657 spin_unlock(&fs_info->discard_ctl.lock); 1658 btrfs_dec_block_group_ro(block_group); 1659 btrfs_discard_queue_work(&fs_info->discard_ctl, 1660 block_group); 1661 goto end_trans; 1662 } 1663 spin_unlock(&fs_info->discard_ctl.lock); 1664 1665 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1666 spin_lock(&space_info->lock); 1667 spin_lock(&block_group->lock); 1668 1669 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned); 1670 space_info->bytes_readonly += block_group->pinned; 1671 block_group->pinned = 0; 1672 1673 spin_unlock(&block_group->lock); 1674 spin_unlock(&space_info->lock); 1675 1676 /* 1677 * The normal path here is an unused block group is passed here, 1678 * then trimming is handled in the transaction commit path. 1679 * Async discard interposes before this to do the trimming 1680 * before coming down the unused block group path as trimming 1681 * will no longer be done later in the transaction commit path. 1682 */ 1683 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1684 goto flip_async; 1685 1686 /* 1687 * DISCARD can flip during remount. On zoned filesystems, we 1688 * need to reset sequential-required zones. 1689 */ 1690 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1691 btrfs_is_zoned(fs_info); 1692 1693 /* Implicit trim during transaction commit. */ 1694 if (trimming) 1695 btrfs_freeze_block_group(block_group); 1696 1697 /* 1698 * Btrfs_remove_chunk will abort the transaction if things go 1699 * horribly wrong. 1700 */ 1701 ret = btrfs_remove_chunk(trans, block_group->start); 1702 1703 if (ret) { 1704 if (trimming) 1705 btrfs_unfreeze_block_group(block_group); 1706 goto end_trans; 1707 } 1708 1709 /* 1710 * If we're not mounted with -odiscard, we can just forget 1711 * about this block group. Otherwise we'll need to wait 1712 * until transaction commit to do the actual discard. 1713 */ 1714 if (trimming) { 1715 spin_lock(&fs_info->unused_bgs_lock); 1716 /* 1717 * A concurrent scrub might have added us to the list 1718 * fs_info->unused_bgs, so use a list_move operation 1719 * to add the block group to the deleted_bgs list. 1720 */ 1721 list_move(&block_group->bg_list, 1722 &trans->transaction->deleted_bgs); 1723 spin_unlock(&fs_info->unused_bgs_lock); 1724 btrfs_get_block_group(block_group); 1725 } 1726 end_trans: 1727 btrfs_end_transaction(trans); 1728 next: 1729 btrfs_put_block_group(block_group); 1730 spin_lock(&fs_info->unused_bgs_lock); 1731 } 1732 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1733 spin_unlock(&fs_info->unused_bgs_lock); 1734 mutex_unlock(&fs_info->reclaim_bgs_lock); 1735 return; 1736 1737 flip_async: 1738 btrfs_end_transaction(trans); 1739 spin_lock(&fs_info->unused_bgs_lock); 1740 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1741 spin_unlock(&fs_info->unused_bgs_lock); 1742 mutex_unlock(&fs_info->reclaim_bgs_lock); 1743 btrfs_put_block_group(block_group); 1744 btrfs_discard_punt_unused_bgs_list(fs_info); 1745 } 1746 1747 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1748 { 1749 struct btrfs_fs_info *fs_info = bg->fs_info; 1750 1751 spin_lock(&fs_info->unused_bgs_lock); 1752 if (list_empty(&bg->bg_list)) { 1753 btrfs_get_block_group(bg); 1754 trace_btrfs_add_unused_block_group(bg); 1755 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1756 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1757 /* Pull out the block group from the reclaim_bgs list. */ 1758 trace_btrfs_add_unused_block_group(bg); 1759 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1760 } 1761 spin_unlock(&fs_info->unused_bgs_lock); 1762 } 1763 1764 /* 1765 * We want block groups with a low number of used bytes to be in the beginning 1766 * of the list, so they will get reclaimed first. 1767 */ 1768 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1769 const struct list_head *b) 1770 { 1771 const struct btrfs_block_group *bg1, *bg2; 1772 1773 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1774 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1775 1776 return bg1->used > bg2->used; 1777 } 1778 1779 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1780 { 1781 if (btrfs_is_zoned(fs_info)) 1782 return btrfs_zoned_should_reclaim(fs_info); 1783 return true; 1784 } 1785 1786 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1787 { 1788 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1789 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1790 const u64 new_val = bg->used; 1791 const u64 old_val = new_val + bytes_freed; 1792 1793 if (thresh_bytes == 0) 1794 return false; 1795 1796 /* 1797 * If we were below the threshold before don't reclaim, we are likely a 1798 * brand new block group and we don't want to relocate new block groups. 1799 */ 1800 if (old_val < thresh_bytes) 1801 return false; 1802 if (new_val >= thresh_bytes) 1803 return false; 1804 return true; 1805 } 1806 1807 void btrfs_reclaim_bgs_work(struct work_struct *work) 1808 { 1809 struct btrfs_fs_info *fs_info = 1810 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1811 struct btrfs_block_group *bg; 1812 struct btrfs_space_info *space_info; 1813 LIST_HEAD(retry_list); 1814 1815 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1816 return; 1817 1818 if (btrfs_fs_closing(fs_info)) 1819 return; 1820 1821 if (!btrfs_should_reclaim(fs_info)) 1822 return; 1823 1824 sb_start_write(fs_info->sb); 1825 1826 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1827 sb_end_write(fs_info->sb); 1828 return; 1829 } 1830 1831 /* 1832 * Long running balances can keep us blocked here for eternity, so 1833 * simply skip reclaim if we're unable to get the mutex. 1834 */ 1835 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1836 btrfs_exclop_finish(fs_info); 1837 sb_end_write(fs_info->sb); 1838 return; 1839 } 1840 1841 spin_lock(&fs_info->unused_bgs_lock); 1842 /* 1843 * Sort happens under lock because we can't simply splice it and sort. 1844 * The block groups might still be in use and reachable via bg_list, 1845 * and their presence in the reclaim_bgs list must be preserved. 1846 */ 1847 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1848 while (!list_empty(&fs_info->reclaim_bgs)) { 1849 u64 zone_unusable; 1850 u64 used; 1851 u64 reserved; 1852 int ret = 0; 1853 1854 bg = list_first_entry(&fs_info->reclaim_bgs, 1855 struct btrfs_block_group, 1856 bg_list); 1857 list_del_init(&bg->bg_list); 1858 1859 space_info = bg->space_info; 1860 spin_unlock(&fs_info->unused_bgs_lock); 1861 1862 /* Don't race with allocators so take the groups_sem */ 1863 down_write(&space_info->groups_sem); 1864 1865 spin_lock(&space_info->lock); 1866 spin_lock(&bg->lock); 1867 if (bg->reserved || bg->pinned || bg->ro) { 1868 /* 1869 * We want to bail if we made new allocations or have 1870 * outstanding allocations in this block group. We do 1871 * the ro check in case balance is currently acting on 1872 * this block group. 1873 */ 1874 spin_unlock(&bg->lock); 1875 spin_unlock(&space_info->lock); 1876 up_write(&space_info->groups_sem); 1877 goto next; 1878 } 1879 if (bg->used == 0) { 1880 /* 1881 * It is possible that we trigger relocation on a block 1882 * group as its extents are deleted and it first goes 1883 * below the threshold, then shortly after goes empty. 1884 * 1885 * In this case, relocating it does delete it, but has 1886 * some overhead in relocation specific metadata, looking 1887 * for the non-existent extents and running some extra 1888 * transactions, which we can avoid by using one of the 1889 * other mechanisms for dealing with empty block groups. 1890 */ 1891 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1892 btrfs_mark_bg_unused(bg); 1893 spin_unlock(&bg->lock); 1894 spin_unlock(&space_info->lock); 1895 up_write(&space_info->groups_sem); 1896 goto next; 1897 1898 } 1899 /* 1900 * The block group might no longer meet the reclaim condition by 1901 * the time we get around to reclaiming it, so to avoid 1902 * reclaiming overly full block_groups, skip reclaiming them. 1903 * 1904 * Since the decision making process also depends on the amount 1905 * being freed, pass in a fake giant value to skip that extra 1906 * check, which is more meaningful when adding to the list in 1907 * the first place. 1908 */ 1909 if (!should_reclaim_block_group(bg, bg->length)) { 1910 spin_unlock(&bg->lock); 1911 spin_unlock(&space_info->lock); 1912 up_write(&space_info->groups_sem); 1913 goto next; 1914 } 1915 1916 /* 1917 * Cache the zone_unusable value before turning the block group 1918 * to read only. As soon as the block group is read only it's 1919 * zone_unusable value gets moved to the block group's read-only 1920 * bytes and isn't available for calculations anymore. We also 1921 * cache it before unlocking the block group, to prevent races 1922 * (reports from KCSAN and such tools) with tasks updating it. 1923 */ 1924 zone_unusable = bg->zone_unusable; 1925 1926 spin_unlock(&bg->lock); 1927 spin_unlock(&space_info->lock); 1928 1929 /* 1930 * Get out fast, in case we're read-only or unmounting the 1931 * filesystem. It is OK to drop block groups from the list even 1932 * for the read-only case. As we did sb_start_write(), 1933 * "mount -o remount,ro" won't happen and read-only filesystem 1934 * means it is forced read-only due to a fatal error. So, it 1935 * never gets back to read-write to let us reclaim again. 1936 */ 1937 if (btrfs_need_cleaner_sleep(fs_info)) { 1938 up_write(&space_info->groups_sem); 1939 goto next; 1940 } 1941 1942 ret = inc_block_group_ro(bg, 0); 1943 up_write(&space_info->groups_sem); 1944 if (ret < 0) 1945 goto next; 1946 1947 /* 1948 * The amount of bytes reclaimed corresponds to the sum of the 1949 * "used" and "reserved" counters. We have set the block group 1950 * to RO above, which prevents reservations from happening but 1951 * we may have existing reservations for which allocation has 1952 * not yet been done - btrfs_update_block_group() was not yet 1953 * called, which is where we will transfer a reserved extent's 1954 * size from the "reserved" counter to the "used" counter - this 1955 * happens when running delayed references. When we relocate the 1956 * chunk below, relocation first flushes dellaloc, waits for 1957 * ordered extent completion (which is where we create delayed 1958 * references for data extents) and commits the current 1959 * transaction (which runs delayed references), and only after 1960 * it does the actual work to move extents out of the block 1961 * group. So the reported amount of reclaimed bytes is 1962 * effectively the sum of the 'used' and 'reserved' counters. 1963 */ 1964 spin_lock(&bg->lock); 1965 used = bg->used; 1966 reserved = bg->reserved; 1967 spin_unlock(&bg->lock); 1968 1969 btrfs_info(fs_info, 1970 "reclaiming chunk %llu with %llu%% used %llu%% reserved %llu%% unusable", 1971 bg->start, 1972 div64_u64(used * 100, bg->length), 1973 div64_u64(reserved * 100, bg->length), 1974 div64_u64(zone_unusable * 100, bg->length)); 1975 trace_btrfs_reclaim_block_group(bg); 1976 ret = btrfs_relocate_chunk(fs_info, bg->start); 1977 if (ret) { 1978 btrfs_dec_block_group_ro(bg); 1979 btrfs_err(fs_info, "error relocating chunk %llu", 1980 bg->start); 1981 used = 0; 1982 reserved = 0; 1983 spin_lock(&space_info->lock); 1984 space_info->reclaim_errors++; 1985 if (READ_ONCE(space_info->periodic_reclaim)) 1986 space_info->periodic_reclaim_ready = false; 1987 spin_unlock(&space_info->lock); 1988 } 1989 spin_lock(&space_info->lock); 1990 space_info->reclaim_count++; 1991 space_info->reclaim_bytes += used; 1992 space_info->reclaim_bytes += reserved; 1993 spin_unlock(&space_info->lock); 1994 1995 next: 1996 if (ret && !READ_ONCE(space_info->periodic_reclaim)) 1997 btrfs_link_bg_list(bg, &retry_list); 1998 btrfs_put_block_group(bg); 1999 2000 mutex_unlock(&fs_info->reclaim_bgs_lock); 2001 /* 2002 * Reclaiming all the block groups in the list can take really 2003 * long. Prioritize cleaning up unused block groups. 2004 */ 2005 btrfs_delete_unused_bgs(fs_info); 2006 /* 2007 * If we are interrupted by a balance, we can just bail out. The 2008 * cleaner thread restart again if necessary. 2009 */ 2010 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 2011 goto end; 2012 spin_lock(&fs_info->unused_bgs_lock); 2013 } 2014 spin_unlock(&fs_info->unused_bgs_lock); 2015 mutex_unlock(&fs_info->reclaim_bgs_lock); 2016 end: 2017 spin_lock(&fs_info->unused_bgs_lock); 2018 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 2019 spin_unlock(&fs_info->unused_bgs_lock); 2020 btrfs_exclop_finish(fs_info); 2021 sb_end_write(fs_info->sb); 2022 } 2023 2024 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 2025 { 2026 btrfs_reclaim_sweep(fs_info); 2027 spin_lock(&fs_info->unused_bgs_lock); 2028 if (!list_empty(&fs_info->reclaim_bgs)) 2029 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 2030 spin_unlock(&fs_info->unused_bgs_lock); 2031 } 2032 2033 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 2034 { 2035 struct btrfs_fs_info *fs_info = bg->fs_info; 2036 2037 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs)) 2038 trace_btrfs_add_reclaim_block_group(bg); 2039 } 2040 2041 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2042 const struct btrfs_path *path) 2043 { 2044 struct btrfs_chunk_map *map; 2045 struct btrfs_block_group_item bg; 2046 struct extent_buffer *leaf; 2047 int slot; 2048 u64 flags; 2049 int ret = 0; 2050 2051 slot = path->slots[0]; 2052 leaf = path->nodes[0]; 2053 2054 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2055 if (!map) { 2056 btrfs_err(fs_info, 2057 "logical %llu len %llu found bg but no related chunk", 2058 key->objectid, key->offset); 2059 return -ENOENT; 2060 } 2061 2062 if (map->start != key->objectid || map->chunk_len != key->offset) { 2063 btrfs_err(fs_info, 2064 "block group %llu len %llu mismatch with chunk %llu len %llu", 2065 key->objectid, key->offset, map->start, map->chunk_len); 2066 ret = -EUCLEAN; 2067 goto out_free_map; 2068 } 2069 2070 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2071 sizeof(bg)); 2072 flags = btrfs_stack_block_group_flags(&bg) & 2073 BTRFS_BLOCK_GROUP_TYPE_MASK; 2074 2075 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2076 btrfs_err(fs_info, 2077 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2078 key->objectid, key->offset, flags, 2079 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2080 ret = -EUCLEAN; 2081 } 2082 2083 out_free_map: 2084 btrfs_free_chunk_map(map); 2085 return ret; 2086 } 2087 2088 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2089 struct btrfs_path *path, 2090 const struct btrfs_key *key) 2091 { 2092 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2093 int ret; 2094 struct btrfs_key found_key; 2095 2096 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2097 if (found_key.objectid >= key->objectid && 2098 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2099 return read_bg_from_eb(fs_info, &found_key, path); 2100 } 2101 } 2102 return ret; 2103 } 2104 2105 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2106 { 2107 u64 extra_flags = chunk_to_extended(flags) & 2108 BTRFS_EXTENDED_PROFILE_MASK; 2109 2110 write_seqlock(&fs_info->profiles_lock); 2111 if (flags & BTRFS_BLOCK_GROUP_DATA) 2112 fs_info->avail_data_alloc_bits |= extra_flags; 2113 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2114 fs_info->avail_metadata_alloc_bits |= extra_flags; 2115 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2116 fs_info->avail_system_alloc_bits |= extra_flags; 2117 write_sequnlock(&fs_info->profiles_lock); 2118 } 2119 2120 /* 2121 * Map a physical disk address to a list of logical addresses. 2122 * 2123 * @fs_info: the filesystem 2124 * @chunk_start: logical address of block group 2125 * @physical: physical address to map to logical addresses 2126 * @logical: return array of logical addresses which map to @physical 2127 * @naddrs: length of @logical 2128 * @stripe_len: size of IO stripe for the given block group 2129 * 2130 * Maps a particular @physical disk address to a list of @logical addresses. 2131 * Used primarily to exclude those portions of a block group that contain super 2132 * block copies. 2133 */ 2134 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2135 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2136 { 2137 struct btrfs_chunk_map *map; 2138 u64 *buf; 2139 u64 bytenr; 2140 u64 data_stripe_length; 2141 u64 io_stripe_size; 2142 int i, nr = 0; 2143 int ret = 0; 2144 2145 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2146 if (IS_ERR(map)) 2147 return -EIO; 2148 2149 data_stripe_length = map->stripe_size; 2150 io_stripe_size = BTRFS_STRIPE_LEN; 2151 chunk_start = map->start; 2152 2153 /* For RAID5/6 adjust to a full IO stripe length */ 2154 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2155 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2156 2157 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2158 if (!buf) { 2159 ret = -ENOMEM; 2160 goto out; 2161 } 2162 2163 for (i = 0; i < map->num_stripes; i++) { 2164 bool already_inserted = false; 2165 u32 stripe_nr; 2166 u32 offset; 2167 int j; 2168 2169 if (!in_range(physical, map->stripes[i].physical, 2170 data_stripe_length)) 2171 continue; 2172 2173 stripe_nr = (physical - map->stripes[i].physical) >> 2174 BTRFS_STRIPE_LEN_SHIFT; 2175 offset = (physical - map->stripes[i].physical) & 2176 BTRFS_STRIPE_LEN_MASK; 2177 2178 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2179 BTRFS_BLOCK_GROUP_RAID10)) 2180 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2181 map->sub_stripes); 2182 /* 2183 * The remaining case would be for RAID56, multiply by 2184 * nr_data_stripes(). Alternatively, just use rmap_len below 2185 * instead of map->stripe_len 2186 */ 2187 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2188 2189 /* Ensure we don't add duplicate addresses */ 2190 for (j = 0; j < nr; j++) { 2191 if (buf[j] == bytenr) { 2192 already_inserted = true; 2193 break; 2194 } 2195 } 2196 2197 if (!already_inserted) 2198 buf[nr++] = bytenr; 2199 } 2200 2201 *logical = buf; 2202 *naddrs = nr; 2203 *stripe_len = io_stripe_size; 2204 out: 2205 btrfs_free_chunk_map(map); 2206 return ret; 2207 } 2208 2209 static int exclude_super_stripes(struct btrfs_block_group *cache) 2210 { 2211 struct btrfs_fs_info *fs_info = cache->fs_info; 2212 const bool zoned = btrfs_is_zoned(fs_info); 2213 u64 bytenr; 2214 u64 *logical; 2215 int stripe_len; 2216 int i, nr, ret; 2217 2218 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2219 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2220 cache->bytes_super += stripe_len; 2221 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2222 cache->start + stripe_len - 1, 2223 EXTENT_UPTODATE, NULL); 2224 if (ret) 2225 return ret; 2226 } 2227 2228 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2229 bytenr = btrfs_sb_offset(i); 2230 ret = btrfs_rmap_block(fs_info, cache->start, 2231 bytenr, &logical, &nr, &stripe_len); 2232 if (ret) 2233 return ret; 2234 2235 /* Shouldn't have super stripes in sequential zones */ 2236 if (zoned && nr) { 2237 kfree(logical); 2238 btrfs_err(fs_info, 2239 "zoned: block group %llu must not contain super block", 2240 cache->start); 2241 return -EUCLEAN; 2242 } 2243 2244 while (nr--) { 2245 u64 len = min_t(u64, stripe_len, 2246 cache->start + cache->length - logical[nr]); 2247 2248 cache->bytes_super += len; 2249 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2250 logical[nr] + len - 1, 2251 EXTENT_UPTODATE, NULL); 2252 if (ret) { 2253 kfree(logical); 2254 return ret; 2255 } 2256 } 2257 2258 kfree(logical); 2259 } 2260 return 0; 2261 } 2262 2263 static struct btrfs_block_group *btrfs_create_block_group_cache( 2264 struct btrfs_fs_info *fs_info, u64 start) 2265 { 2266 struct btrfs_block_group *cache; 2267 2268 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2269 if (!cache) 2270 return NULL; 2271 2272 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2273 GFP_NOFS); 2274 if (!cache->free_space_ctl) { 2275 kfree(cache); 2276 return NULL; 2277 } 2278 2279 cache->start = start; 2280 2281 cache->fs_info = fs_info; 2282 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2283 2284 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2285 2286 refcount_set(&cache->refs, 1); 2287 spin_lock_init(&cache->lock); 2288 init_rwsem(&cache->data_rwsem); 2289 INIT_LIST_HEAD(&cache->list); 2290 INIT_LIST_HEAD(&cache->cluster_list); 2291 INIT_LIST_HEAD(&cache->bg_list); 2292 INIT_LIST_HEAD(&cache->ro_list); 2293 INIT_LIST_HEAD(&cache->discard_list); 2294 INIT_LIST_HEAD(&cache->dirty_list); 2295 INIT_LIST_HEAD(&cache->io_list); 2296 INIT_LIST_HEAD(&cache->active_bg_list); 2297 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2298 atomic_set(&cache->frozen, 0); 2299 mutex_init(&cache->free_space_lock); 2300 2301 return cache; 2302 } 2303 2304 /* 2305 * Iterate all chunks and verify that each of them has the corresponding block 2306 * group 2307 */ 2308 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2309 { 2310 u64 start = 0; 2311 int ret = 0; 2312 2313 while (1) { 2314 struct btrfs_chunk_map *map; 2315 struct btrfs_block_group *bg; 2316 2317 /* 2318 * btrfs_find_chunk_map() will return the first chunk map 2319 * intersecting the range, so setting @length to 1 is enough to 2320 * get the first chunk. 2321 */ 2322 map = btrfs_find_chunk_map(fs_info, start, 1); 2323 if (!map) 2324 break; 2325 2326 bg = btrfs_lookup_block_group(fs_info, map->start); 2327 if (!bg) { 2328 btrfs_err(fs_info, 2329 "chunk start=%llu len=%llu doesn't have corresponding block group", 2330 map->start, map->chunk_len); 2331 ret = -EUCLEAN; 2332 btrfs_free_chunk_map(map); 2333 break; 2334 } 2335 if (bg->start != map->start || bg->length != map->chunk_len || 2336 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2337 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2338 btrfs_err(fs_info, 2339 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2340 map->start, map->chunk_len, 2341 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2342 bg->start, bg->length, 2343 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2344 ret = -EUCLEAN; 2345 btrfs_free_chunk_map(map); 2346 btrfs_put_block_group(bg); 2347 break; 2348 } 2349 start = map->start + map->chunk_len; 2350 btrfs_free_chunk_map(map); 2351 btrfs_put_block_group(bg); 2352 } 2353 return ret; 2354 } 2355 2356 static int read_one_block_group(struct btrfs_fs_info *info, 2357 struct btrfs_block_group_item *bgi, 2358 const struct btrfs_key *key, 2359 int need_clear) 2360 { 2361 struct btrfs_block_group *cache; 2362 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2363 int ret; 2364 2365 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2366 2367 cache = btrfs_create_block_group_cache(info, key->objectid); 2368 if (!cache) 2369 return -ENOMEM; 2370 2371 cache->length = key->offset; 2372 cache->used = btrfs_stack_block_group_used(bgi); 2373 cache->commit_used = cache->used; 2374 cache->flags = btrfs_stack_block_group_flags(bgi); 2375 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2376 2377 set_free_space_tree_thresholds(cache); 2378 2379 if (need_clear) { 2380 /* 2381 * When we mount with old space cache, we need to 2382 * set BTRFS_DC_CLEAR and set dirty flag. 2383 * 2384 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2385 * truncate the old free space cache inode and 2386 * setup a new one. 2387 * b) Setting 'dirty flag' makes sure that we flush 2388 * the new space cache info onto disk. 2389 */ 2390 if (btrfs_test_opt(info, SPACE_CACHE)) 2391 cache->disk_cache_state = BTRFS_DC_CLEAR; 2392 } 2393 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2394 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2395 btrfs_err(info, 2396 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2397 cache->start); 2398 ret = -EINVAL; 2399 goto error; 2400 } 2401 2402 ret = btrfs_load_block_group_zone_info(cache, false); 2403 if (ret) { 2404 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2405 cache->start); 2406 goto error; 2407 } 2408 2409 /* 2410 * We need to exclude the super stripes now so that the space info has 2411 * super bytes accounted for, otherwise we'll think we have more space 2412 * than we actually do. 2413 */ 2414 ret = exclude_super_stripes(cache); 2415 if (ret) { 2416 /* We may have excluded something, so call this just in case. */ 2417 btrfs_free_excluded_extents(cache); 2418 goto error; 2419 } 2420 2421 /* 2422 * For zoned filesystem, space after the allocation offset is the only 2423 * free space for a block group. So, we don't need any caching work. 2424 * btrfs_calc_zone_unusable() will set the amount of free space and 2425 * zone_unusable space. 2426 * 2427 * For regular filesystem, check for two cases, either we are full, and 2428 * therefore don't need to bother with the caching work since we won't 2429 * find any space, or we are empty, and we can just add all the space 2430 * in and be done with it. This saves us _a_lot_ of time, particularly 2431 * in the full case. 2432 */ 2433 if (btrfs_is_zoned(info)) { 2434 btrfs_calc_zone_unusable(cache); 2435 /* Should not have any excluded extents. Just in case, though. */ 2436 btrfs_free_excluded_extents(cache); 2437 } else if (cache->length == cache->used) { 2438 cache->cached = BTRFS_CACHE_FINISHED; 2439 btrfs_free_excluded_extents(cache); 2440 } else if (cache->used == 0) { 2441 cache->cached = BTRFS_CACHE_FINISHED; 2442 ret = btrfs_add_new_free_space(cache, cache->start, 2443 cache->start + cache->length, NULL); 2444 btrfs_free_excluded_extents(cache); 2445 if (ret) 2446 goto error; 2447 } 2448 2449 ret = btrfs_add_block_group_cache(cache); 2450 if (ret) { 2451 btrfs_remove_free_space_cache(cache); 2452 goto error; 2453 } 2454 trace_btrfs_add_block_group(info, cache, 0); 2455 btrfs_add_bg_to_space_info(info, cache); 2456 2457 set_avail_alloc_bits(info, cache->flags); 2458 if (btrfs_chunk_writeable(info, cache->start)) { 2459 if (cache->used == 0) { 2460 ASSERT(list_empty(&cache->bg_list)); 2461 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2462 btrfs_discard_queue_work(&info->discard_ctl, cache); 2463 else 2464 btrfs_mark_bg_unused(cache); 2465 } 2466 } else { 2467 inc_block_group_ro(cache, 1); 2468 } 2469 2470 return 0; 2471 error: 2472 btrfs_put_block_group(cache); 2473 return ret; 2474 } 2475 2476 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2477 { 2478 struct rb_node *node; 2479 int ret = 0; 2480 2481 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2482 struct btrfs_chunk_map *map; 2483 struct btrfs_block_group *bg; 2484 2485 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2486 bg = btrfs_create_block_group_cache(fs_info, map->start); 2487 if (!bg) { 2488 ret = -ENOMEM; 2489 break; 2490 } 2491 2492 /* Fill dummy cache as FULL */ 2493 bg->length = map->chunk_len; 2494 bg->flags = map->type; 2495 bg->cached = BTRFS_CACHE_FINISHED; 2496 bg->used = map->chunk_len; 2497 bg->flags = map->type; 2498 ret = btrfs_add_block_group_cache(bg); 2499 /* 2500 * We may have some valid block group cache added already, in 2501 * that case we skip to the next one. 2502 */ 2503 if (ret == -EEXIST) { 2504 ret = 0; 2505 btrfs_put_block_group(bg); 2506 continue; 2507 } 2508 2509 if (ret) { 2510 btrfs_remove_free_space_cache(bg); 2511 btrfs_put_block_group(bg); 2512 break; 2513 } 2514 2515 btrfs_add_bg_to_space_info(fs_info, bg); 2516 2517 set_avail_alloc_bits(fs_info, bg->flags); 2518 } 2519 if (!ret) 2520 btrfs_init_global_block_rsv(fs_info); 2521 return ret; 2522 } 2523 2524 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2525 { 2526 struct btrfs_root *root = btrfs_block_group_root(info); 2527 struct btrfs_path *path; 2528 int ret; 2529 struct btrfs_block_group *cache; 2530 struct btrfs_space_info *space_info; 2531 struct btrfs_key key; 2532 int need_clear = 0; 2533 u64 cache_gen; 2534 2535 /* 2536 * Either no extent root (with ibadroots rescue option) or we have 2537 * unsupported RO options. The fs can never be mounted read-write, so no 2538 * need to waste time searching block group items. 2539 * 2540 * This also allows new extent tree related changes to be RO compat, 2541 * no need for a full incompat flag. 2542 */ 2543 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2544 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2545 return fill_dummy_bgs(info); 2546 2547 key.objectid = 0; 2548 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2549 key.offset = 0; 2550 path = btrfs_alloc_path(); 2551 if (!path) 2552 return -ENOMEM; 2553 2554 cache_gen = btrfs_super_cache_generation(info->super_copy); 2555 if (btrfs_test_opt(info, SPACE_CACHE) && 2556 btrfs_super_generation(info->super_copy) != cache_gen) 2557 need_clear = 1; 2558 if (btrfs_test_opt(info, CLEAR_CACHE)) 2559 need_clear = 1; 2560 2561 while (1) { 2562 struct btrfs_block_group_item bgi; 2563 struct extent_buffer *leaf; 2564 int slot; 2565 2566 ret = find_first_block_group(info, path, &key); 2567 if (ret > 0) 2568 break; 2569 if (ret != 0) 2570 goto error; 2571 2572 leaf = path->nodes[0]; 2573 slot = path->slots[0]; 2574 2575 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2576 sizeof(bgi)); 2577 2578 btrfs_item_key_to_cpu(leaf, &key, slot); 2579 btrfs_release_path(path); 2580 ret = read_one_block_group(info, &bgi, &key, need_clear); 2581 if (ret < 0) 2582 goto error; 2583 key.objectid += key.offset; 2584 key.offset = 0; 2585 } 2586 btrfs_release_path(path); 2587 2588 list_for_each_entry(space_info, &info->space_info, list) { 2589 int i; 2590 2591 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2592 if (list_empty(&space_info->block_groups[i])) 2593 continue; 2594 cache = list_first_entry(&space_info->block_groups[i], 2595 struct btrfs_block_group, 2596 list); 2597 btrfs_sysfs_add_block_group_type(cache); 2598 } 2599 2600 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2601 (BTRFS_BLOCK_GROUP_RAID10 | 2602 BTRFS_BLOCK_GROUP_RAID1_MASK | 2603 BTRFS_BLOCK_GROUP_RAID56_MASK | 2604 BTRFS_BLOCK_GROUP_DUP))) 2605 continue; 2606 /* 2607 * Avoid allocating from un-mirrored block group if there are 2608 * mirrored block groups. 2609 */ 2610 list_for_each_entry(cache, 2611 &space_info->block_groups[BTRFS_RAID_RAID0], 2612 list) 2613 inc_block_group_ro(cache, 1); 2614 list_for_each_entry(cache, 2615 &space_info->block_groups[BTRFS_RAID_SINGLE], 2616 list) 2617 inc_block_group_ro(cache, 1); 2618 } 2619 2620 btrfs_init_global_block_rsv(info); 2621 ret = check_chunk_block_group_mappings(info); 2622 error: 2623 btrfs_free_path(path); 2624 /* 2625 * We've hit some error while reading the extent tree, and have 2626 * rescue=ibadroots mount option. 2627 * Try to fill the tree using dummy block groups so that the user can 2628 * continue to mount and grab their data. 2629 */ 2630 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2631 ret = fill_dummy_bgs(info); 2632 return ret; 2633 } 2634 2635 /* 2636 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2637 * allocation. 2638 * 2639 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2640 * phases. 2641 */ 2642 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2643 struct btrfs_block_group *block_group) 2644 { 2645 struct btrfs_fs_info *fs_info = trans->fs_info; 2646 struct btrfs_block_group_item bgi; 2647 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2648 struct btrfs_key key; 2649 u64 old_commit_used; 2650 int ret; 2651 2652 spin_lock(&block_group->lock); 2653 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2654 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2655 block_group->global_root_id); 2656 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2657 old_commit_used = block_group->commit_used; 2658 block_group->commit_used = block_group->used; 2659 key.objectid = block_group->start; 2660 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2661 key.offset = block_group->length; 2662 spin_unlock(&block_group->lock); 2663 2664 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2665 if (ret < 0) { 2666 spin_lock(&block_group->lock); 2667 block_group->commit_used = old_commit_used; 2668 spin_unlock(&block_group->lock); 2669 } 2670 2671 return ret; 2672 } 2673 2674 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2675 const struct btrfs_device *device, u64 chunk_offset, 2676 u64 start, u64 num_bytes) 2677 { 2678 struct btrfs_fs_info *fs_info = device->fs_info; 2679 struct btrfs_root *root = fs_info->dev_root; 2680 BTRFS_PATH_AUTO_FREE(path); 2681 struct btrfs_dev_extent *extent; 2682 struct extent_buffer *leaf; 2683 struct btrfs_key key; 2684 int ret; 2685 2686 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2687 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2688 path = btrfs_alloc_path(); 2689 if (!path) 2690 return -ENOMEM; 2691 2692 key.objectid = device->devid; 2693 key.type = BTRFS_DEV_EXTENT_KEY; 2694 key.offset = start; 2695 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2696 if (ret) 2697 return ret; 2698 2699 leaf = path->nodes[0]; 2700 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2701 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2702 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2703 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2704 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2705 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2706 2707 return ret; 2708 } 2709 2710 /* 2711 * This function belongs to phase 2. 2712 * 2713 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2714 * phases. 2715 */ 2716 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2717 u64 chunk_offset, u64 chunk_size) 2718 { 2719 struct btrfs_fs_info *fs_info = trans->fs_info; 2720 struct btrfs_device *device; 2721 struct btrfs_chunk_map *map; 2722 u64 dev_offset; 2723 int i; 2724 int ret = 0; 2725 2726 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2727 if (IS_ERR(map)) 2728 return PTR_ERR(map); 2729 2730 /* 2731 * Take the device list mutex to prevent races with the final phase of 2732 * a device replace operation that replaces the device object associated 2733 * with the map's stripes, because the device object's id can change 2734 * at any time during that final phase of the device replace operation 2735 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2736 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2737 * resulting in persisting a device extent item with such ID. 2738 */ 2739 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2740 for (i = 0; i < map->num_stripes; i++) { 2741 device = map->stripes[i].dev; 2742 dev_offset = map->stripes[i].physical; 2743 2744 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2745 map->stripe_size); 2746 if (ret) 2747 break; 2748 } 2749 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2750 2751 btrfs_free_chunk_map(map); 2752 return ret; 2753 } 2754 2755 /* 2756 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2757 * chunk allocation. 2758 * 2759 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2760 * phases. 2761 */ 2762 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2763 { 2764 struct btrfs_fs_info *fs_info = trans->fs_info; 2765 struct btrfs_block_group *block_group; 2766 int ret = 0; 2767 2768 while (!list_empty(&trans->new_bgs)) { 2769 int index; 2770 2771 block_group = list_first_entry(&trans->new_bgs, 2772 struct btrfs_block_group, 2773 bg_list); 2774 if (ret) 2775 goto next; 2776 2777 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2778 2779 ret = insert_block_group_item(trans, block_group); 2780 if (ret) 2781 btrfs_abort_transaction(trans, ret); 2782 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2783 &block_group->runtime_flags)) { 2784 mutex_lock(&fs_info->chunk_mutex); 2785 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2786 mutex_unlock(&fs_info->chunk_mutex); 2787 if (ret) 2788 btrfs_abort_transaction(trans, ret); 2789 } 2790 ret = insert_dev_extents(trans, block_group->start, 2791 block_group->length); 2792 if (ret) 2793 btrfs_abort_transaction(trans, ret); 2794 add_block_group_free_space(trans, block_group); 2795 2796 /* 2797 * If we restriped during balance, we may have added a new raid 2798 * type, so now add the sysfs entries when it is safe to do so. 2799 * We don't have to worry about locking here as it's handled in 2800 * btrfs_sysfs_add_block_group_type. 2801 */ 2802 if (block_group->space_info->block_group_kobjs[index] == NULL) 2803 btrfs_sysfs_add_block_group_type(block_group); 2804 2805 /* Already aborted the transaction if it failed. */ 2806 next: 2807 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2808 2809 spin_lock(&fs_info->unused_bgs_lock); 2810 list_del_init(&block_group->bg_list); 2811 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2812 btrfs_put_block_group(block_group); 2813 spin_unlock(&fs_info->unused_bgs_lock); 2814 2815 /* 2816 * If the block group is still unused, add it to the list of 2817 * unused block groups. The block group may have been created in 2818 * order to satisfy a space reservation, in which case the 2819 * extent allocation only happens later. But often we don't 2820 * actually need to allocate space that we previously reserved, 2821 * so the block group may become unused for a long time. For 2822 * example for metadata we generally reserve space for a worst 2823 * possible scenario, but then don't end up allocating all that 2824 * space or none at all (due to no need to COW, extent buffers 2825 * were already COWed in the current transaction and still 2826 * unwritten, tree heights lower than the maximum possible 2827 * height, etc). For data we generally reserve the axact amount 2828 * of space we are going to allocate later, the exception is 2829 * when using compression, as we must reserve space based on the 2830 * uncompressed data size, because the compression is only done 2831 * when writeback triggered and we don't know how much space we 2832 * are actually going to need, so we reserve the uncompressed 2833 * size because the data may be incompressible in the worst case. 2834 */ 2835 if (ret == 0) { 2836 bool used; 2837 2838 spin_lock(&block_group->lock); 2839 used = btrfs_is_block_group_used(block_group); 2840 spin_unlock(&block_group->lock); 2841 2842 if (!used) 2843 btrfs_mark_bg_unused(block_group); 2844 } 2845 } 2846 btrfs_trans_release_chunk_metadata(trans); 2847 } 2848 2849 /* 2850 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2851 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2852 */ 2853 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2854 { 2855 u64 div = SZ_1G; 2856 u64 index; 2857 2858 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2859 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2860 2861 /* If we have a smaller fs index based on 128MiB. */ 2862 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2863 div = SZ_128M; 2864 2865 offset = div64_u64(offset, div); 2866 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2867 return index; 2868 } 2869 2870 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2871 u64 type, 2872 u64 chunk_offset, u64 size) 2873 { 2874 struct btrfs_fs_info *fs_info = trans->fs_info; 2875 struct btrfs_block_group *cache; 2876 int ret; 2877 2878 btrfs_set_log_full_commit(trans); 2879 2880 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2881 if (!cache) 2882 return ERR_PTR(-ENOMEM); 2883 2884 /* 2885 * Mark it as new before adding it to the rbtree of block groups or any 2886 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2887 * before the new flag is set. 2888 */ 2889 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2890 2891 cache->length = size; 2892 set_free_space_tree_thresholds(cache); 2893 cache->flags = type; 2894 cache->cached = BTRFS_CACHE_FINISHED; 2895 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2896 2897 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2898 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2899 2900 ret = btrfs_load_block_group_zone_info(cache, true); 2901 if (ret) { 2902 btrfs_put_block_group(cache); 2903 return ERR_PTR(ret); 2904 } 2905 2906 ret = exclude_super_stripes(cache); 2907 if (ret) { 2908 /* We may have excluded something, so call this just in case */ 2909 btrfs_free_excluded_extents(cache); 2910 btrfs_put_block_group(cache); 2911 return ERR_PTR(ret); 2912 } 2913 2914 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2915 btrfs_free_excluded_extents(cache); 2916 if (ret) { 2917 btrfs_put_block_group(cache); 2918 return ERR_PTR(ret); 2919 } 2920 2921 /* 2922 * Ensure the corresponding space_info object is created and 2923 * assigned to our block group. We want our bg to be added to the rbtree 2924 * with its ->space_info set. 2925 */ 2926 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2927 ASSERT(cache->space_info); 2928 2929 ret = btrfs_add_block_group_cache(cache); 2930 if (ret) { 2931 btrfs_remove_free_space_cache(cache); 2932 btrfs_put_block_group(cache); 2933 return ERR_PTR(ret); 2934 } 2935 2936 /* 2937 * Now that our block group has its ->space_info set and is inserted in 2938 * the rbtree, update the space info's counters. 2939 */ 2940 trace_btrfs_add_block_group(fs_info, cache, 1); 2941 btrfs_add_bg_to_space_info(fs_info, cache); 2942 btrfs_update_global_block_rsv(fs_info); 2943 2944 #ifdef CONFIG_BTRFS_DEBUG 2945 if (btrfs_should_fragment_free_space(cache)) { 2946 cache->space_info->bytes_used += size >> 1; 2947 fragment_free_space(cache); 2948 } 2949 #endif 2950 2951 btrfs_link_bg_list(cache, &trans->new_bgs); 2952 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2953 2954 set_avail_alloc_bits(fs_info, type); 2955 return cache; 2956 } 2957 2958 /* 2959 * Mark one block group RO, can be called several times for the same block 2960 * group. 2961 * 2962 * @cache: the destination block group 2963 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2964 * ensure we still have some free space after marking this 2965 * block group RO. 2966 */ 2967 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2968 bool do_chunk_alloc) 2969 { 2970 struct btrfs_fs_info *fs_info = cache->fs_info; 2971 struct btrfs_trans_handle *trans; 2972 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2973 u64 alloc_flags; 2974 int ret; 2975 bool dirty_bg_running; 2976 2977 /* 2978 * This can only happen when we are doing read-only scrub on read-only 2979 * mount. 2980 * In that case we should not start a new transaction on read-only fs. 2981 * Thus here we skip all chunk allocations. 2982 */ 2983 if (sb_rdonly(fs_info->sb)) { 2984 mutex_lock(&fs_info->ro_block_group_mutex); 2985 ret = inc_block_group_ro(cache, 0); 2986 mutex_unlock(&fs_info->ro_block_group_mutex); 2987 return ret; 2988 } 2989 2990 do { 2991 trans = btrfs_join_transaction(root); 2992 if (IS_ERR(trans)) 2993 return PTR_ERR(trans); 2994 2995 dirty_bg_running = false; 2996 2997 /* 2998 * We're not allowed to set block groups readonly after the dirty 2999 * block group cache has started writing. If it already started, 3000 * back off and let this transaction commit. 3001 */ 3002 mutex_lock(&fs_info->ro_block_group_mutex); 3003 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 3004 u64 transid = trans->transid; 3005 3006 mutex_unlock(&fs_info->ro_block_group_mutex); 3007 btrfs_end_transaction(trans); 3008 3009 ret = btrfs_wait_for_commit(fs_info, transid); 3010 if (ret) 3011 return ret; 3012 dirty_bg_running = true; 3013 } 3014 } while (dirty_bg_running); 3015 3016 if (do_chunk_alloc) { 3017 /* 3018 * If we are changing raid levels, try to allocate a 3019 * corresponding block group with the new raid level. 3020 */ 3021 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3022 if (alloc_flags != cache->flags) { 3023 ret = btrfs_chunk_alloc(trans, alloc_flags, 3024 CHUNK_ALLOC_FORCE); 3025 /* 3026 * ENOSPC is allowed here, we may have enough space 3027 * already allocated at the new raid level to carry on 3028 */ 3029 if (ret == -ENOSPC) 3030 ret = 0; 3031 if (ret < 0) 3032 goto out; 3033 } 3034 } 3035 3036 ret = inc_block_group_ro(cache, 0); 3037 if (!ret) 3038 goto out; 3039 if (ret == -ETXTBSY) 3040 goto unlock_out; 3041 3042 /* 3043 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3044 * chunk allocation storm to exhaust the system chunk array. Otherwise 3045 * we still want to try our best to mark the block group read-only. 3046 */ 3047 if (!do_chunk_alloc && ret == -ENOSPC && 3048 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3049 goto unlock_out; 3050 3051 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 3052 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3053 if (ret < 0) 3054 goto out; 3055 /* 3056 * We have allocated a new chunk. We also need to activate that chunk to 3057 * grant metadata tickets for zoned filesystem. 3058 */ 3059 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 3060 if (ret < 0) 3061 goto out; 3062 3063 ret = inc_block_group_ro(cache, 0); 3064 if (ret == -ETXTBSY) 3065 goto unlock_out; 3066 out: 3067 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3068 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3069 mutex_lock(&fs_info->chunk_mutex); 3070 check_system_chunk(trans, alloc_flags); 3071 mutex_unlock(&fs_info->chunk_mutex); 3072 } 3073 unlock_out: 3074 mutex_unlock(&fs_info->ro_block_group_mutex); 3075 3076 btrfs_end_transaction(trans); 3077 return ret; 3078 } 3079 3080 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3081 { 3082 struct btrfs_space_info *sinfo = cache->space_info; 3083 u64 num_bytes; 3084 3085 BUG_ON(!cache->ro); 3086 3087 spin_lock(&sinfo->lock); 3088 spin_lock(&cache->lock); 3089 if (!--cache->ro) { 3090 if (btrfs_is_zoned(cache->fs_info)) { 3091 /* Migrate zone_unusable bytes back */ 3092 cache->zone_unusable = 3093 (cache->alloc_offset - cache->used - cache->pinned - 3094 cache->reserved) + 3095 (cache->length - cache->zone_capacity); 3096 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable); 3097 sinfo->bytes_readonly -= cache->zone_unusable; 3098 } 3099 num_bytes = cache->length - cache->reserved - 3100 cache->pinned - cache->bytes_super - 3101 cache->zone_unusable - cache->used; 3102 sinfo->bytes_readonly -= num_bytes; 3103 list_del_init(&cache->ro_list); 3104 } 3105 spin_unlock(&cache->lock); 3106 spin_unlock(&sinfo->lock); 3107 } 3108 3109 static int update_block_group_item(struct btrfs_trans_handle *trans, 3110 struct btrfs_path *path, 3111 struct btrfs_block_group *cache) 3112 { 3113 struct btrfs_fs_info *fs_info = trans->fs_info; 3114 int ret; 3115 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3116 unsigned long bi; 3117 struct extent_buffer *leaf; 3118 struct btrfs_block_group_item bgi; 3119 struct btrfs_key key; 3120 u64 old_commit_used; 3121 u64 used; 3122 3123 /* 3124 * Block group items update can be triggered out of commit transaction 3125 * critical section, thus we need a consistent view of used bytes. 3126 * We cannot use cache->used directly outside of the spin lock, as it 3127 * may be changed. 3128 */ 3129 spin_lock(&cache->lock); 3130 old_commit_used = cache->commit_used; 3131 used = cache->used; 3132 /* No change in used bytes, can safely skip it. */ 3133 if (cache->commit_used == used) { 3134 spin_unlock(&cache->lock); 3135 return 0; 3136 } 3137 cache->commit_used = used; 3138 spin_unlock(&cache->lock); 3139 3140 key.objectid = cache->start; 3141 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3142 key.offset = cache->length; 3143 3144 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3145 if (ret) { 3146 if (ret > 0) 3147 ret = -ENOENT; 3148 goto fail; 3149 } 3150 3151 leaf = path->nodes[0]; 3152 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3153 btrfs_set_stack_block_group_used(&bgi, used); 3154 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3155 cache->global_root_id); 3156 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3157 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3158 fail: 3159 btrfs_release_path(path); 3160 /* 3161 * We didn't update the block group item, need to revert commit_used 3162 * unless the block group item didn't exist yet - this is to prevent a 3163 * race with a concurrent insertion of the block group item, with 3164 * insert_block_group_item(), that happened just after we attempted to 3165 * update. In that case we would reset commit_used to 0 just after the 3166 * insertion set it to a value greater than 0 - if the block group later 3167 * becomes with 0 used bytes, we would incorrectly skip its update. 3168 */ 3169 if (ret < 0 && ret != -ENOENT) { 3170 spin_lock(&cache->lock); 3171 cache->commit_used = old_commit_used; 3172 spin_unlock(&cache->lock); 3173 } 3174 return ret; 3175 3176 } 3177 3178 static int cache_save_setup(struct btrfs_block_group *block_group, 3179 struct btrfs_trans_handle *trans, 3180 struct btrfs_path *path) 3181 { 3182 struct btrfs_fs_info *fs_info = block_group->fs_info; 3183 struct inode *inode = NULL; 3184 struct extent_changeset *data_reserved = NULL; 3185 u64 alloc_hint = 0; 3186 int dcs = BTRFS_DC_ERROR; 3187 u64 cache_size = 0; 3188 int retries = 0; 3189 int ret = 0; 3190 3191 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3192 return 0; 3193 3194 /* 3195 * If this block group is smaller than 100 megs don't bother caching the 3196 * block group. 3197 */ 3198 if (block_group->length < (100 * SZ_1M)) { 3199 spin_lock(&block_group->lock); 3200 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3201 spin_unlock(&block_group->lock); 3202 return 0; 3203 } 3204 3205 if (TRANS_ABORTED(trans)) 3206 return 0; 3207 again: 3208 inode = lookup_free_space_inode(block_group, path); 3209 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3210 ret = PTR_ERR(inode); 3211 btrfs_release_path(path); 3212 goto out; 3213 } 3214 3215 if (IS_ERR(inode)) { 3216 BUG_ON(retries); 3217 retries++; 3218 3219 if (block_group->ro) 3220 goto out_free; 3221 3222 ret = create_free_space_inode(trans, block_group, path); 3223 if (ret) 3224 goto out_free; 3225 goto again; 3226 } 3227 3228 /* 3229 * We want to set the generation to 0, that way if anything goes wrong 3230 * from here on out we know not to trust this cache when we load up next 3231 * time. 3232 */ 3233 BTRFS_I(inode)->generation = 0; 3234 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3235 if (ret) { 3236 /* 3237 * So theoretically we could recover from this, simply set the 3238 * super cache generation to 0 so we know to invalidate the 3239 * cache, but then we'd have to keep track of the block groups 3240 * that fail this way so we know we _have_ to reset this cache 3241 * before the next commit or risk reading stale cache. So to 3242 * limit our exposure to horrible edge cases lets just abort the 3243 * transaction, this only happens in really bad situations 3244 * anyway. 3245 */ 3246 btrfs_abort_transaction(trans, ret); 3247 goto out_put; 3248 } 3249 WARN_ON(ret); 3250 3251 /* We've already setup this transaction, go ahead and exit */ 3252 if (block_group->cache_generation == trans->transid && 3253 i_size_read(inode)) { 3254 dcs = BTRFS_DC_SETUP; 3255 goto out_put; 3256 } 3257 3258 if (i_size_read(inode) > 0) { 3259 ret = btrfs_check_trunc_cache_free_space(fs_info, 3260 &fs_info->global_block_rsv); 3261 if (ret) 3262 goto out_put; 3263 3264 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3265 if (ret) 3266 goto out_put; 3267 } 3268 3269 spin_lock(&block_group->lock); 3270 if (block_group->cached != BTRFS_CACHE_FINISHED || 3271 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3272 /* 3273 * don't bother trying to write stuff out _if_ 3274 * a) we're not cached, 3275 * b) we're with nospace_cache mount option, 3276 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3277 */ 3278 dcs = BTRFS_DC_WRITTEN; 3279 spin_unlock(&block_group->lock); 3280 goto out_put; 3281 } 3282 spin_unlock(&block_group->lock); 3283 3284 /* 3285 * We hit an ENOSPC when setting up the cache in this transaction, just 3286 * skip doing the setup, we've already cleared the cache so we're safe. 3287 */ 3288 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3289 ret = -ENOSPC; 3290 goto out_put; 3291 } 3292 3293 /* 3294 * Try to preallocate enough space based on how big the block group is. 3295 * Keep in mind this has to include any pinned space which could end up 3296 * taking up quite a bit since it's not folded into the other space 3297 * cache. 3298 */ 3299 cache_size = div_u64(block_group->length, SZ_256M); 3300 if (!cache_size) 3301 cache_size = 1; 3302 3303 cache_size *= 16; 3304 cache_size *= fs_info->sectorsize; 3305 3306 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3307 cache_size, false); 3308 if (ret) 3309 goto out_put; 3310 3311 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3312 cache_size, cache_size, 3313 &alloc_hint); 3314 /* 3315 * Our cache requires contiguous chunks so that we don't modify a bunch 3316 * of metadata or split extents when writing the cache out, which means 3317 * we can enospc if we are heavily fragmented in addition to just normal 3318 * out of space conditions. So if we hit this just skip setting up any 3319 * other block groups for this transaction, maybe we'll unpin enough 3320 * space the next time around. 3321 */ 3322 if (!ret) 3323 dcs = BTRFS_DC_SETUP; 3324 else if (ret == -ENOSPC) 3325 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3326 3327 out_put: 3328 iput(inode); 3329 out_free: 3330 btrfs_release_path(path); 3331 out: 3332 spin_lock(&block_group->lock); 3333 if (!ret && dcs == BTRFS_DC_SETUP) 3334 block_group->cache_generation = trans->transid; 3335 block_group->disk_cache_state = dcs; 3336 spin_unlock(&block_group->lock); 3337 3338 extent_changeset_free(data_reserved); 3339 return ret; 3340 } 3341 3342 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3343 { 3344 struct btrfs_fs_info *fs_info = trans->fs_info; 3345 struct btrfs_block_group *cache, *tmp; 3346 struct btrfs_transaction *cur_trans = trans->transaction; 3347 BTRFS_PATH_AUTO_FREE(path); 3348 3349 if (list_empty(&cur_trans->dirty_bgs) || 3350 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3351 return 0; 3352 3353 path = btrfs_alloc_path(); 3354 if (!path) 3355 return -ENOMEM; 3356 3357 /* Could add new block groups, use _safe just in case */ 3358 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3359 dirty_list) { 3360 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3361 cache_save_setup(cache, trans, path); 3362 } 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * Transaction commit does final block group cache writeback during a critical 3369 * section where nothing is allowed to change the FS. This is required in 3370 * order for the cache to actually match the block group, but can introduce a 3371 * lot of latency into the commit. 3372 * 3373 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3374 * There's a chance we'll have to redo some of it if the block group changes 3375 * again during the commit, but it greatly reduces the commit latency by 3376 * getting rid of the easy block groups while we're still allowing others to 3377 * join the commit. 3378 */ 3379 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3380 { 3381 struct btrfs_fs_info *fs_info = trans->fs_info; 3382 struct btrfs_block_group *cache; 3383 struct btrfs_transaction *cur_trans = trans->transaction; 3384 int ret = 0; 3385 int should_put; 3386 BTRFS_PATH_AUTO_FREE(path); 3387 LIST_HEAD(dirty); 3388 struct list_head *io = &cur_trans->io_bgs; 3389 int loops = 0; 3390 3391 spin_lock(&cur_trans->dirty_bgs_lock); 3392 if (list_empty(&cur_trans->dirty_bgs)) { 3393 spin_unlock(&cur_trans->dirty_bgs_lock); 3394 return 0; 3395 } 3396 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3397 spin_unlock(&cur_trans->dirty_bgs_lock); 3398 3399 again: 3400 /* Make sure all the block groups on our dirty list actually exist */ 3401 btrfs_create_pending_block_groups(trans); 3402 3403 if (!path) { 3404 path = btrfs_alloc_path(); 3405 if (!path) { 3406 ret = -ENOMEM; 3407 goto out; 3408 } 3409 } 3410 3411 /* 3412 * cache_write_mutex is here only to save us from balance or automatic 3413 * removal of empty block groups deleting this block group while we are 3414 * writing out the cache 3415 */ 3416 mutex_lock(&trans->transaction->cache_write_mutex); 3417 while (!list_empty(&dirty)) { 3418 bool drop_reserve = true; 3419 3420 cache = list_first_entry(&dirty, struct btrfs_block_group, 3421 dirty_list); 3422 /* 3423 * This can happen if something re-dirties a block group that 3424 * is already under IO. Just wait for it to finish and then do 3425 * it all again 3426 */ 3427 if (!list_empty(&cache->io_list)) { 3428 list_del_init(&cache->io_list); 3429 btrfs_wait_cache_io(trans, cache, path); 3430 btrfs_put_block_group(cache); 3431 } 3432 3433 3434 /* 3435 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3436 * it should update the cache_state. Don't delete until after 3437 * we wait. 3438 * 3439 * Since we're not running in the commit critical section 3440 * we need the dirty_bgs_lock to protect from update_block_group 3441 */ 3442 spin_lock(&cur_trans->dirty_bgs_lock); 3443 list_del_init(&cache->dirty_list); 3444 spin_unlock(&cur_trans->dirty_bgs_lock); 3445 3446 should_put = 1; 3447 3448 cache_save_setup(cache, trans, path); 3449 3450 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3451 cache->io_ctl.inode = NULL; 3452 ret = btrfs_write_out_cache(trans, cache, path); 3453 if (ret == 0 && cache->io_ctl.inode) { 3454 should_put = 0; 3455 3456 /* 3457 * The cache_write_mutex is protecting the 3458 * io_list, also refer to the definition of 3459 * btrfs_transaction::io_bgs for more details 3460 */ 3461 list_add_tail(&cache->io_list, io); 3462 } else { 3463 /* 3464 * If we failed to write the cache, the 3465 * generation will be bad and life goes on 3466 */ 3467 ret = 0; 3468 } 3469 } 3470 if (!ret) { 3471 ret = update_block_group_item(trans, path, cache); 3472 /* 3473 * Our block group might still be attached to the list 3474 * of new block groups in the transaction handle of some 3475 * other task (struct btrfs_trans_handle->new_bgs). This 3476 * means its block group item isn't yet in the extent 3477 * tree. If this happens ignore the error, as we will 3478 * try again later in the critical section of the 3479 * transaction commit. 3480 */ 3481 if (ret == -ENOENT) { 3482 ret = 0; 3483 spin_lock(&cur_trans->dirty_bgs_lock); 3484 if (list_empty(&cache->dirty_list)) { 3485 list_add_tail(&cache->dirty_list, 3486 &cur_trans->dirty_bgs); 3487 btrfs_get_block_group(cache); 3488 drop_reserve = false; 3489 } 3490 spin_unlock(&cur_trans->dirty_bgs_lock); 3491 } else if (ret) { 3492 btrfs_abort_transaction(trans, ret); 3493 } 3494 } 3495 3496 /* If it's not on the io list, we need to put the block group */ 3497 if (should_put) 3498 btrfs_put_block_group(cache); 3499 if (drop_reserve) 3500 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3501 /* 3502 * Avoid blocking other tasks for too long. It might even save 3503 * us from writing caches for block groups that are going to be 3504 * removed. 3505 */ 3506 mutex_unlock(&trans->transaction->cache_write_mutex); 3507 if (ret) 3508 goto out; 3509 mutex_lock(&trans->transaction->cache_write_mutex); 3510 } 3511 mutex_unlock(&trans->transaction->cache_write_mutex); 3512 3513 /* 3514 * Go through delayed refs for all the stuff we've just kicked off 3515 * and then loop back (just once) 3516 */ 3517 if (!ret) 3518 ret = btrfs_run_delayed_refs(trans, 0); 3519 if (!ret && loops == 0) { 3520 loops++; 3521 spin_lock(&cur_trans->dirty_bgs_lock); 3522 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3523 /* 3524 * dirty_bgs_lock protects us from concurrent block group 3525 * deletes too (not just cache_write_mutex). 3526 */ 3527 if (!list_empty(&dirty)) { 3528 spin_unlock(&cur_trans->dirty_bgs_lock); 3529 goto again; 3530 } 3531 spin_unlock(&cur_trans->dirty_bgs_lock); 3532 } 3533 out: 3534 if (ret < 0) { 3535 spin_lock(&cur_trans->dirty_bgs_lock); 3536 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3537 spin_unlock(&cur_trans->dirty_bgs_lock); 3538 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3539 } 3540 3541 return ret; 3542 } 3543 3544 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3545 { 3546 struct btrfs_fs_info *fs_info = trans->fs_info; 3547 struct btrfs_block_group *cache; 3548 struct btrfs_transaction *cur_trans = trans->transaction; 3549 int ret = 0; 3550 int should_put; 3551 BTRFS_PATH_AUTO_FREE(path); 3552 struct list_head *io = &cur_trans->io_bgs; 3553 3554 path = btrfs_alloc_path(); 3555 if (!path) 3556 return -ENOMEM; 3557 3558 /* 3559 * Even though we are in the critical section of the transaction commit, 3560 * we can still have concurrent tasks adding elements to this 3561 * transaction's list of dirty block groups. These tasks correspond to 3562 * endio free space workers started when writeback finishes for a 3563 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3564 * allocate new block groups as a result of COWing nodes of the root 3565 * tree when updating the free space inode. The writeback for the space 3566 * caches is triggered by an earlier call to 3567 * btrfs_start_dirty_block_groups() and iterations of the following 3568 * loop. 3569 * Also we want to do the cache_save_setup first and then run the 3570 * delayed refs to make sure we have the best chance at doing this all 3571 * in one shot. 3572 */ 3573 spin_lock(&cur_trans->dirty_bgs_lock); 3574 while (!list_empty(&cur_trans->dirty_bgs)) { 3575 cache = list_first_entry(&cur_trans->dirty_bgs, 3576 struct btrfs_block_group, 3577 dirty_list); 3578 3579 /* 3580 * This can happen if cache_save_setup re-dirties a block group 3581 * that is already under IO. Just wait for it to finish and 3582 * then do it all again 3583 */ 3584 if (!list_empty(&cache->io_list)) { 3585 spin_unlock(&cur_trans->dirty_bgs_lock); 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(trans, cache, path); 3588 btrfs_put_block_group(cache); 3589 spin_lock(&cur_trans->dirty_bgs_lock); 3590 } 3591 3592 /* 3593 * Don't remove from the dirty list until after we've waited on 3594 * any pending IO 3595 */ 3596 list_del_init(&cache->dirty_list); 3597 spin_unlock(&cur_trans->dirty_bgs_lock); 3598 should_put = 1; 3599 3600 cache_save_setup(cache, trans, path); 3601 3602 if (!ret) 3603 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3604 3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3606 cache->io_ctl.inode = NULL; 3607 ret = btrfs_write_out_cache(trans, cache, path); 3608 if (ret == 0 && cache->io_ctl.inode) { 3609 should_put = 0; 3610 list_add_tail(&cache->io_list, io); 3611 } else { 3612 /* 3613 * If we failed to write the cache, the 3614 * generation will be bad and life goes on 3615 */ 3616 ret = 0; 3617 } 3618 } 3619 if (!ret) { 3620 ret = update_block_group_item(trans, path, cache); 3621 /* 3622 * One of the free space endio workers might have 3623 * created a new block group while updating a free space 3624 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3625 * and hasn't released its transaction handle yet, in 3626 * which case the new block group is still attached to 3627 * its transaction handle and its creation has not 3628 * finished yet (no block group item in the extent tree 3629 * yet, etc). If this is the case, wait for all free 3630 * space endio workers to finish and retry. This is a 3631 * very rare case so no need for a more efficient and 3632 * complex approach. 3633 */ 3634 if (ret == -ENOENT) { 3635 wait_event(cur_trans->writer_wait, 3636 atomic_read(&cur_trans->num_writers) == 1); 3637 ret = update_block_group_item(trans, path, cache); 3638 } 3639 if (ret) 3640 btrfs_abort_transaction(trans, ret); 3641 } 3642 3643 /* If its not on the io list, we need to put the block group */ 3644 if (should_put) 3645 btrfs_put_block_group(cache); 3646 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3647 spin_lock(&cur_trans->dirty_bgs_lock); 3648 } 3649 spin_unlock(&cur_trans->dirty_bgs_lock); 3650 3651 /* 3652 * Refer to the definition of io_bgs member for details why it's safe 3653 * to use it without any locking 3654 */ 3655 while (!list_empty(io)) { 3656 cache = list_first_entry(io, struct btrfs_block_group, 3657 io_list); 3658 list_del_init(&cache->io_list); 3659 btrfs_wait_cache_io(trans, cache, path); 3660 btrfs_put_block_group(cache); 3661 } 3662 3663 return ret; 3664 } 3665 3666 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3667 u64 bytenr, u64 num_bytes, bool alloc) 3668 { 3669 struct btrfs_fs_info *info = trans->fs_info; 3670 struct btrfs_space_info *space_info; 3671 struct btrfs_block_group *cache; 3672 u64 old_val; 3673 bool reclaim = false; 3674 bool bg_already_dirty = true; 3675 int factor; 3676 3677 /* Block accounting for super block */ 3678 spin_lock(&info->delalloc_root_lock); 3679 old_val = btrfs_super_bytes_used(info->super_copy); 3680 if (alloc) 3681 old_val += num_bytes; 3682 else 3683 old_val -= num_bytes; 3684 btrfs_set_super_bytes_used(info->super_copy, old_val); 3685 spin_unlock(&info->delalloc_root_lock); 3686 3687 cache = btrfs_lookup_block_group(info, bytenr); 3688 if (!cache) 3689 return -ENOENT; 3690 3691 /* An extent can not span multiple block groups. */ 3692 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3693 3694 space_info = cache->space_info; 3695 factor = btrfs_bg_type_to_factor(cache->flags); 3696 3697 /* 3698 * If this block group has free space cache written out, we need to make 3699 * sure to load it if we are removing space. This is because we need 3700 * the unpinning stage to actually add the space back to the block group, 3701 * otherwise we will leak space. 3702 */ 3703 if (!alloc && !btrfs_block_group_done(cache)) 3704 btrfs_cache_block_group(cache, true); 3705 3706 spin_lock(&space_info->lock); 3707 spin_lock(&cache->lock); 3708 3709 if (btrfs_test_opt(info, SPACE_CACHE) && 3710 cache->disk_cache_state < BTRFS_DC_CLEAR) 3711 cache->disk_cache_state = BTRFS_DC_CLEAR; 3712 3713 old_val = cache->used; 3714 if (alloc) { 3715 old_val += num_bytes; 3716 cache->used = old_val; 3717 cache->reserved -= num_bytes; 3718 cache->reclaim_mark = 0; 3719 space_info->bytes_reserved -= num_bytes; 3720 space_info->bytes_used += num_bytes; 3721 space_info->disk_used += num_bytes * factor; 3722 if (READ_ONCE(space_info->periodic_reclaim)) 3723 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3724 spin_unlock(&cache->lock); 3725 spin_unlock(&space_info->lock); 3726 } else { 3727 old_val -= num_bytes; 3728 cache->used = old_val; 3729 cache->pinned += num_bytes; 3730 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 3731 space_info->bytes_used -= num_bytes; 3732 space_info->disk_used -= num_bytes * factor; 3733 if (READ_ONCE(space_info->periodic_reclaim)) 3734 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3735 else 3736 reclaim = should_reclaim_block_group(cache, num_bytes); 3737 3738 spin_unlock(&cache->lock); 3739 spin_unlock(&space_info->lock); 3740 3741 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3742 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3743 } 3744 3745 spin_lock(&trans->transaction->dirty_bgs_lock); 3746 if (list_empty(&cache->dirty_list)) { 3747 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3748 bg_already_dirty = false; 3749 btrfs_get_block_group(cache); 3750 } 3751 spin_unlock(&trans->transaction->dirty_bgs_lock); 3752 3753 /* 3754 * No longer have used bytes in this block group, queue it for deletion. 3755 * We do this after adding the block group to the dirty list to avoid 3756 * races between cleaner kthread and space cache writeout. 3757 */ 3758 if (!alloc && old_val == 0) { 3759 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3760 btrfs_mark_bg_unused(cache); 3761 } else if (!alloc && reclaim) { 3762 btrfs_mark_bg_to_reclaim(cache); 3763 } 3764 3765 btrfs_put_block_group(cache); 3766 3767 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3768 if (!bg_already_dirty) 3769 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3770 3771 return 0; 3772 } 3773 3774 /* 3775 * Update the block_group and space info counters. 3776 * 3777 * @cache: The cache we are manipulating 3778 * @ram_bytes: The number of bytes of file content, and will be same to 3779 * @num_bytes except for the compress path. 3780 * @num_bytes: The number of bytes in question 3781 * @delalloc: The blocks are allocated for the delalloc write 3782 * 3783 * This is called by the allocator when it reserves space. If this is a 3784 * reservation and the block group has become read only we cannot make the 3785 * reservation and return -EAGAIN, otherwise this function always succeeds. 3786 */ 3787 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3788 u64 ram_bytes, u64 num_bytes, int delalloc, 3789 bool force_wrong_size_class) 3790 { 3791 struct btrfs_space_info *space_info = cache->space_info; 3792 enum btrfs_block_group_size_class size_class; 3793 int ret = 0; 3794 3795 spin_lock(&space_info->lock); 3796 spin_lock(&cache->lock); 3797 if (cache->ro) { 3798 ret = -EAGAIN; 3799 goto out; 3800 } 3801 3802 if (btrfs_block_group_should_use_size_class(cache)) { 3803 size_class = btrfs_calc_block_group_size_class(num_bytes); 3804 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3805 if (ret) 3806 goto out; 3807 } 3808 cache->reserved += num_bytes; 3809 space_info->bytes_reserved += num_bytes; 3810 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3811 space_info->flags, num_bytes, 1); 3812 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes); 3813 if (delalloc) 3814 cache->delalloc_bytes += num_bytes; 3815 3816 /* 3817 * Compression can use less space than we reserved, so wake tickets if 3818 * that happens. 3819 */ 3820 if (num_bytes < ram_bytes) 3821 btrfs_try_granting_tickets(cache->fs_info, space_info); 3822 out: 3823 spin_unlock(&cache->lock); 3824 spin_unlock(&space_info->lock); 3825 return ret; 3826 } 3827 3828 /* 3829 * Update the block_group and space info counters. 3830 * 3831 * @cache: The cache we are manipulating 3832 * @num_bytes: The number of bytes in question 3833 * @delalloc: The blocks are allocated for the delalloc write 3834 * 3835 * This is called by somebody who is freeing space that was never actually used 3836 * on disk. For example if you reserve some space for a new leaf in transaction 3837 * A and before transaction A commits you free that leaf, you call this with 3838 * reserve set to 0 in order to clear the reservation. 3839 */ 3840 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3841 u64 num_bytes, int delalloc) 3842 { 3843 struct btrfs_space_info *space_info = cache->space_info; 3844 3845 spin_lock(&space_info->lock); 3846 spin_lock(&cache->lock); 3847 if (cache->ro) 3848 space_info->bytes_readonly += num_bytes; 3849 else if (btrfs_is_zoned(cache->fs_info)) 3850 space_info->bytes_zone_unusable += num_bytes; 3851 cache->reserved -= num_bytes; 3852 space_info->bytes_reserved -= num_bytes; 3853 space_info->max_extent_size = 0; 3854 3855 if (delalloc) 3856 cache->delalloc_bytes -= num_bytes; 3857 spin_unlock(&cache->lock); 3858 3859 btrfs_try_granting_tickets(cache->fs_info, space_info); 3860 spin_unlock(&space_info->lock); 3861 } 3862 3863 static void force_metadata_allocation(struct btrfs_fs_info *info) 3864 { 3865 struct list_head *head = &info->space_info; 3866 struct btrfs_space_info *found; 3867 3868 list_for_each_entry(found, head, list) { 3869 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3870 found->force_alloc = CHUNK_ALLOC_FORCE; 3871 } 3872 } 3873 3874 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3875 const struct btrfs_space_info *sinfo, int force) 3876 { 3877 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3878 u64 thresh; 3879 3880 if (force == CHUNK_ALLOC_FORCE) 3881 return 1; 3882 3883 /* 3884 * in limited mode, we want to have some free space up to 3885 * about 1% of the FS size. 3886 */ 3887 if (force == CHUNK_ALLOC_LIMITED) { 3888 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3889 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3890 3891 if (sinfo->total_bytes - bytes_used < thresh) 3892 return 1; 3893 } 3894 3895 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3896 return 0; 3897 return 1; 3898 } 3899 3900 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3901 { 3902 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3903 3904 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3905 } 3906 3907 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3908 { 3909 struct btrfs_block_group *bg; 3910 int ret; 3911 3912 /* 3913 * Check if we have enough space in the system space info because we 3914 * will need to update device items in the chunk btree and insert a new 3915 * chunk item in the chunk btree as well. This will allocate a new 3916 * system block group if needed. 3917 */ 3918 check_system_chunk(trans, flags); 3919 3920 bg = btrfs_create_chunk(trans, flags); 3921 if (IS_ERR(bg)) { 3922 ret = PTR_ERR(bg); 3923 goto out; 3924 } 3925 3926 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3927 /* 3928 * Normally we are not expected to fail with -ENOSPC here, since we have 3929 * previously reserved space in the system space_info and allocated one 3930 * new system chunk if necessary. However there are three exceptions: 3931 * 3932 * 1) We may have enough free space in the system space_info but all the 3933 * existing system block groups have a profile which can not be used 3934 * for extent allocation. 3935 * 3936 * This happens when mounting in degraded mode. For example we have a 3937 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3938 * using the other device in degraded mode. If we then allocate a chunk, 3939 * we may have enough free space in the existing system space_info, but 3940 * none of the block groups can be used for extent allocation since they 3941 * have a RAID1 profile, and because we are in degraded mode with a 3942 * single device, we are forced to allocate a new system chunk with a 3943 * SINGLE profile. Making check_system_chunk() iterate over all system 3944 * block groups and check if they have a usable profile and enough space 3945 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3946 * try again after forcing allocation of a new system chunk. Like this 3947 * we avoid paying the cost of that search in normal circumstances, when 3948 * we were not mounted in degraded mode; 3949 * 3950 * 2) We had enough free space info the system space_info, and one suitable 3951 * block group to allocate from when we called check_system_chunk() 3952 * above. However right after we called it, the only system block group 3953 * with enough free space got turned into RO mode by a running scrub, 3954 * and in this case we have to allocate a new one and retry. We only 3955 * need do this allocate and retry once, since we have a transaction 3956 * handle and scrub uses the commit root to search for block groups; 3957 * 3958 * 3) We had one system block group with enough free space when we called 3959 * check_system_chunk(), but after that, right before we tried to 3960 * allocate the last extent buffer we needed, a discard operation came 3961 * in and it temporarily removed the last free space entry from the 3962 * block group (discard removes a free space entry, discards it, and 3963 * then adds back the entry to the block group cache). 3964 */ 3965 if (ret == -ENOSPC) { 3966 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3967 struct btrfs_block_group *sys_bg; 3968 3969 sys_bg = btrfs_create_chunk(trans, sys_flags); 3970 if (IS_ERR(sys_bg)) { 3971 ret = PTR_ERR(sys_bg); 3972 btrfs_abort_transaction(trans, ret); 3973 goto out; 3974 } 3975 3976 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3977 if (ret) { 3978 btrfs_abort_transaction(trans, ret); 3979 goto out; 3980 } 3981 3982 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3983 if (ret) { 3984 btrfs_abort_transaction(trans, ret); 3985 goto out; 3986 } 3987 } else if (ret) { 3988 btrfs_abort_transaction(trans, ret); 3989 goto out; 3990 } 3991 out: 3992 btrfs_trans_release_chunk_metadata(trans); 3993 3994 if (ret) 3995 return ERR_PTR(ret); 3996 3997 btrfs_get_block_group(bg); 3998 return bg; 3999 } 4000 4001 /* 4002 * Chunk allocation is done in 2 phases: 4003 * 4004 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 4005 * the chunk, the chunk mapping, create its block group and add the items 4006 * that belong in the chunk btree to it - more specifically, we need to 4007 * update device items in the chunk btree and add a new chunk item to it. 4008 * 4009 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 4010 * group item to the extent btree and the device extent items to the devices 4011 * btree. 4012 * 4013 * This is done to prevent deadlocks. For example when COWing a node from the 4014 * extent btree we are holding a write lock on the node's parent and if we 4015 * trigger chunk allocation and attempted to insert the new block group item 4016 * in the extent btree right way, we could deadlock because the path for the 4017 * insertion can include that parent node. At first glance it seems impossible 4018 * to trigger chunk allocation after starting a transaction since tasks should 4019 * reserve enough transaction units (metadata space), however while that is true 4020 * most of the time, chunk allocation may still be triggered for several reasons: 4021 * 4022 * 1) When reserving metadata, we check if there is enough free space in the 4023 * metadata space_info and therefore don't trigger allocation of a new chunk. 4024 * However later when the task actually tries to COW an extent buffer from 4025 * the extent btree or from the device btree for example, it is forced to 4026 * allocate a new block group (chunk) because the only one that had enough 4027 * free space was just turned to RO mode by a running scrub for example (or 4028 * device replace, block group reclaim thread, etc), so we can not use it 4029 * for allocating an extent and end up being forced to allocate a new one; 4030 * 4031 * 2) Because we only check that the metadata space_info has enough free bytes, 4032 * we end up not allocating a new metadata chunk in that case. However if 4033 * the filesystem was mounted in degraded mode, none of the existing block 4034 * groups might be suitable for extent allocation due to their incompatible 4035 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4036 * use a RAID1 profile, in degraded mode using a single device). In this case 4037 * when the task attempts to COW some extent buffer of the extent btree for 4038 * example, it will trigger allocation of a new metadata block group with a 4039 * suitable profile (SINGLE profile in the example of the degraded mount of 4040 * the RAID1 filesystem); 4041 * 4042 * 3) The task has reserved enough transaction units / metadata space, but when 4043 * it attempts to COW an extent buffer from the extent or device btree for 4044 * example, it does not find any free extent in any metadata block group, 4045 * therefore forced to try to allocate a new metadata block group. 4046 * This is because some other task allocated all available extents in the 4047 * meanwhile - this typically happens with tasks that don't reserve space 4048 * properly, either intentionally or as a bug. One example where this is 4049 * done intentionally is fsync, as it does not reserve any transaction units 4050 * and ends up allocating a variable number of metadata extents for log 4051 * tree extent buffers; 4052 * 4053 * 4) The task has reserved enough transaction units / metadata space, but right 4054 * before it tries to allocate the last extent buffer it needs, a discard 4055 * operation comes in and, temporarily, removes the last free space entry from 4056 * the only metadata block group that had free space (discard starts by 4057 * removing a free space entry from a block group, then does the discard 4058 * operation and, once it's done, it adds back the free space entry to the 4059 * block group). 4060 * 4061 * We also need this 2 phases setup when adding a device to a filesystem with 4062 * a seed device - we must create new metadata and system chunks without adding 4063 * any of the block group items to the chunk, extent and device btrees. If we 4064 * did not do it this way, we would get ENOSPC when attempting to update those 4065 * btrees, since all the chunks from the seed device are read-only. 4066 * 4067 * Phase 1 does the updates and insertions to the chunk btree because if we had 4068 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4069 * parallel, we risk having too many system chunks allocated by many tasks if 4070 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4071 * extreme case this leads to exhaustion of the system chunk array in the 4072 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4073 * and with RAID filesystems (so we have more device items in the chunk btree). 4074 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4075 * the system chunk array due to concurrent allocations") provides more details. 4076 * 4077 * Allocation of system chunks does not happen through this function. A task that 4078 * needs to update the chunk btree (the only btree that uses system chunks), must 4079 * preallocate chunk space by calling either check_system_chunk() or 4080 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4081 * metadata chunk or when removing a chunk, while the later is used before doing 4082 * a modification to the chunk btree - use cases for the later are adding, 4083 * removing and resizing a device as well as relocation of a system chunk. 4084 * See the comment below for more details. 4085 * 4086 * The reservation of system space, done through check_system_chunk(), as well 4087 * as all the updates and insertions into the chunk btree must be done while 4088 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4089 * an extent buffer from the chunks btree we never trigger allocation of a new 4090 * system chunk, which would result in a deadlock (trying to lock twice an 4091 * extent buffer of the chunk btree, first time before triggering the chunk 4092 * allocation and the second time during chunk allocation while attempting to 4093 * update the chunks btree). The system chunk array is also updated while holding 4094 * that mutex. The same logic applies to removing chunks - we must reserve system 4095 * space, update the chunk btree and the system chunk array in the superblock 4096 * while holding fs_info->chunk_mutex. 4097 * 4098 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4099 * 4100 * If @force is CHUNK_ALLOC_FORCE: 4101 * - return 1 if it successfully allocates a chunk, 4102 * - return errors including -ENOSPC otherwise. 4103 * If @force is NOT CHUNK_ALLOC_FORCE: 4104 * - return 0 if it doesn't need to allocate a new chunk, 4105 * - return 1 if it successfully allocates a chunk, 4106 * - return errors including -ENOSPC otherwise. 4107 */ 4108 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4109 enum btrfs_chunk_alloc_enum force) 4110 { 4111 struct btrfs_fs_info *fs_info = trans->fs_info; 4112 struct btrfs_space_info *space_info; 4113 struct btrfs_block_group *ret_bg; 4114 bool wait_for_alloc = false; 4115 bool should_alloc = false; 4116 bool from_extent_allocation = false; 4117 int ret = 0; 4118 4119 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4120 from_extent_allocation = true; 4121 force = CHUNK_ALLOC_FORCE; 4122 } 4123 4124 /* Don't re-enter if we're already allocating a chunk */ 4125 if (trans->allocating_chunk) 4126 return -ENOSPC; 4127 /* 4128 * Allocation of system chunks can not happen through this path, as we 4129 * could end up in a deadlock if we are allocating a data or metadata 4130 * chunk and there is another task modifying the chunk btree. 4131 * 4132 * This is because while we are holding the chunk mutex, we will attempt 4133 * to add the new chunk item to the chunk btree or update an existing 4134 * device item in the chunk btree, while the other task that is modifying 4135 * the chunk btree is attempting to COW an extent buffer while holding a 4136 * lock on it and on its parent - if the COW operation triggers a system 4137 * chunk allocation, then we can deadlock because we are holding the 4138 * chunk mutex and we may need to access that extent buffer or its parent 4139 * in order to add the chunk item or update a device item. 4140 * 4141 * Tasks that want to modify the chunk tree should reserve system space 4142 * before updating the chunk btree, by calling either 4143 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4144 * It's possible that after a task reserves the space, it still ends up 4145 * here - this happens in the cases described above at do_chunk_alloc(). 4146 * The task will have to either retry or fail. 4147 */ 4148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4149 return -ENOSPC; 4150 4151 space_info = btrfs_find_space_info(fs_info, flags); 4152 ASSERT(space_info); 4153 4154 do { 4155 spin_lock(&space_info->lock); 4156 if (force < space_info->force_alloc) 4157 force = space_info->force_alloc; 4158 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4159 if (space_info->full) { 4160 /* No more free physical space */ 4161 if (should_alloc) 4162 ret = -ENOSPC; 4163 else 4164 ret = 0; 4165 spin_unlock(&space_info->lock); 4166 return ret; 4167 } else if (!should_alloc) { 4168 spin_unlock(&space_info->lock); 4169 return 0; 4170 } else if (space_info->chunk_alloc) { 4171 /* 4172 * Someone is already allocating, so we need to block 4173 * until this someone is finished and then loop to 4174 * recheck if we should continue with our allocation 4175 * attempt. 4176 */ 4177 wait_for_alloc = true; 4178 force = CHUNK_ALLOC_NO_FORCE; 4179 spin_unlock(&space_info->lock); 4180 mutex_lock(&fs_info->chunk_mutex); 4181 mutex_unlock(&fs_info->chunk_mutex); 4182 } else { 4183 /* Proceed with allocation */ 4184 space_info->chunk_alloc = 1; 4185 wait_for_alloc = false; 4186 spin_unlock(&space_info->lock); 4187 } 4188 4189 cond_resched(); 4190 } while (wait_for_alloc); 4191 4192 mutex_lock(&fs_info->chunk_mutex); 4193 trans->allocating_chunk = true; 4194 4195 /* 4196 * If we have mixed data/metadata chunks we want to make sure we keep 4197 * allocating mixed chunks instead of individual chunks. 4198 */ 4199 if (btrfs_mixed_space_info(space_info)) 4200 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4201 4202 /* 4203 * if we're doing a data chunk, go ahead and make sure that 4204 * we keep a reasonable number of metadata chunks allocated in the 4205 * FS as well. 4206 */ 4207 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4208 fs_info->data_chunk_allocations++; 4209 if (!(fs_info->data_chunk_allocations % 4210 fs_info->metadata_ratio)) 4211 force_metadata_allocation(fs_info); 4212 } 4213 4214 ret_bg = do_chunk_alloc(trans, flags); 4215 trans->allocating_chunk = false; 4216 4217 if (IS_ERR(ret_bg)) { 4218 ret = PTR_ERR(ret_bg); 4219 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4220 /* 4221 * New block group is likely to be used soon. Try to activate 4222 * it now. Failure is OK for now. 4223 */ 4224 btrfs_zone_activate(ret_bg); 4225 } 4226 4227 if (!ret) 4228 btrfs_put_block_group(ret_bg); 4229 4230 spin_lock(&space_info->lock); 4231 if (ret < 0) { 4232 if (ret == -ENOSPC) 4233 space_info->full = 1; 4234 else 4235 goto out; 4236 } else { 4237 ret = 1; 4238 space_info->max_extent_size = 0; 4239 } 4240 4241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4242 out: 4243 space_info->chunk_alloc = 0; 4244 spin_unlock(&space_info->lock); 4245 mutex_unlock(&fs_info->chunk_mutex); 4246 4247 return ret; 4248 } 4249 4250 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4251 { 4252 u64 num_dev; 4253 4254 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4255 if (!num_dev) 4256 num_dev = fs_info->fs_devices->rw_devices; 4257 4258 return num_dev; 4259 } 4260 4261 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4262 u64 bytes, 4263 u64 type) 4264 { 4265 struct btrfs_fs_info *fs_info = trans->fs_info; 4266 struct btrfs_space_info *info; 4267 u64 left; 4268 int ret = 0; 4269 4270 /* 4271 * Needed because we can end up allocating a system chunk and for an 4272 * atomic and race free space reservation in the chunk block reserve. 4273 */ 4274 lockdep_assert_held(&fs_info->chunk_mutex); 4275 4276 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4277 spin_lock(&info->lock); 4278 left = info->total_bytes - btrfs_space_info_used(info, true); 4279 spin_unlock(&info->lock); 4280 4281 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4282 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4283 left, bytes, type); 4284 btrfs_dump_space_info(fs_info, info, 0, 0); 4285 } 4286 4287 if (left < bytes) { 4288 u64 flags = btrfs_system_alloc_profile(fs_info); 4289 struct btrfs_block_group *bg; 4290 4291 /* 4292 * Ignore failure to create system chunk. We might end up not 4293 * needing it, as we might not need to COW all nodes/leafs from 4294 * the paths we visit in the chunk tree (they were already COWed 4295 * or created in the current transaction for example). 4296 */ 4297 bg = btrfs_create_chunk(trans, flags); 4298 if (IS_ERR(bg)) { 4299 ret = PTR_ERR(bg); 4300 } else { 4301 /* 4302 * We have a new chunk. We also need to activate it for 4303 * zoned filesystem. 4304 */ 4305 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4306 if (ret < 0) 4307 return; 4308 4309 /* 4310 * If we fail to add the chunk item here, we end up 4311 * trying again at phase 2 of chunk allocation, at 4312 * btrfs_create_pending_block_groups(). So ignore 4313 * any error here. An ENOSPC here could happen, due to 4314 * the cases described at do_chunk_alloc() - the system 4315 * block group we just created was just turned into RO 4316 * mode by a scrub for example, or a running discard 4317 * temporarily removed its free space entries, etc. 4318 */ 4319 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4320 } 4321 } 4322 4323 if (!ret) { 4324 ret = btrfs_block_rsv_add(fs_info, 4325 &fs_info->chunk_block_rsv, 4326 bytes, BTRFS_RESERVE_NO_FLUSH); 4327 if (!ret) 4328 trans->chunk_bytes_reserved += bytes; 4329 } 4330 } 4331 4332 /* 4333 * Reserve space in the system space for allocating or removing a chunk. 4334 * The caller must be holding fs_info->chunk_mutex. 4335 */ 4336 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4337 { 4338 struct btrfs_fs_info *fs_info = trans->fs_info; 4339 const u64 num_devs = get_profile_num_devs(fs_info, type); 4340 u64 bytes; 4341 4342 /* num_devs device items to update and 1 chunk item to add or remove. */ 4343 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4344 btrfs_calc_insert_metadata_size(fs_info, 1); 4345 4346 reserve_chunk_space(trans, bytes, type); 4347 } 4348 4349 /* 4350 * Reserve space in the system space, if needed, for doing a modification to the 4351 * chunk btree. 4352 * 4353 * @trans: A transaction handle. 4354 * @is_item_insertion: Indicate if the modification is for inserting a new item 4355 * in the chunk btree or if it's for the deletion or update 4356 * of an existing item. 4357 * 4358 * This is used in a context where we need to update the chunk btree outside 4359 * block group allocation and removal, to avoid a deadlock with a concurrent 4360 * task that is allocating a metadata or data block group and therefore needs to 4361 * update the chunk btree while holding the chunk mutex. After the update to the 4362 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4363 * 4364 */ 4365 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4366 bool is_item_insertion) 4367 { 4368 struct btrfs_fs_info *fs_info = trans->fs_info; 4369 u64 bytes; 4370 4371 if (is_item_insertion) 4372 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4373 else 4374 bytes = btrfs_calc_metadata_size(fs_info, 1); 4375 4376 mutex_lock(&fs_info->chunk_mutex); 4377 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4378 mutex_unlock(&fs_info->chunk_mutex); 4379 } 4380 4381 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4382 { 4383 struct btrfs_block_group *block_group; 4384 4385 block_group = btrfs_lookup_first_block_group(info, 0); 4386 while (block_group) { 4387 btrfs_wait_block_group_cache_done(block_group); 4388 spin_lock(&block_group->lock); 4389 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4390 &block_group->runtime_flags)) { 4391 struct btrfs_inode *inode = block_group->inode; 4392 4393 block_group->inode = NULL; 4394 spin_unlock(&block_group->lock); 4395 4396 ASSERT(block_group->io_ctl.inode == NULL); 4397 iput(&inode->vfs_inode); 4398 } else { 4399 spin_unlock(&block_group->lock); 4400 } 4401 block_group = btrfs_next_block_group(block_group); 4402 } 4403 } 4404 4405 /* 4406 * Must be called only after stopping all workers, since we could have block 4407 * group caching kthreads running, and therefore they could race with us if we 4408 * freed the block groups before stopping them. 4409 */ 4410 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4411 { 4412 struct btrfs_block_group *block_group; 4413 struct btrfs_space_info *space_info; 4414 struct btrfs_caching_control *caching_ctl; 4415 struct rb_node *n; 4416 4417 if (btrfs_is_zoned(info)) { 4418 if (info->active_meta_bg) { 4419 btrfs_put_block_group(info->active_meta_bg); 4420 info->active_meta_bg = NULL; 4421 } 4422 if (info->active_system_bg) { 4423 btrfs_put_block_group(info->active_system_bg); 4424 info->active_system_bg = NULL; 4425 } 4426 } 4427 4428 write_lock(&info->block_group_cache_lock); 4429 while (!list_empty(&info->caching_block_groups)) { 4430 caching_ctl = list_entry(info->caching_block_groups.next, 4431 struct btrfs_caching_control, list); 4432 list_del(&caching_ctl->list); 4433 btrfs_put_caching_control(caching_ctl); 4434 } 4435 write_unlock(&info->block_group_cache_lock); 4436 4437 spin_lock(&info->unused_bgs_lock); 4438 while (!list_empty(&info->unused_bgs)) { 4439 block_group = list_first_entry(&info->unused_bgs, 4440 struct btrfs_block_group, 4441 bg_list); 4442 list_del_init(&block_group->bg_list); 4443 btrfs_put_block_group(block_group); 4444 } 4445 4446 while (!list_empty(&info->reclaim_bgs)) { 4447 block_group = list_first_entry(&info->reclaim_bgs, 4448 struct btrfs_block_group, 4449 bg_list); 4450 list_del_init(&block_group->bg_list); 4451 btrfs_put_block_group(block_group); 4452 } 4453 spin_unlock(&info->unused_bgs_lock); 4454 4455 spin_lock(&info->zone_active_bgs_lock); 4456 while (!list_empty(&info->zone_active_bgs)) { 4457 block_group = list_first_entry(&info->zone_active_bgs, 4458 struct btrfs_block_group, 4459 active_bg_list); 4460 list_del_init(&block_group->active_bg_list); 4461 btrfs_put_block_group(block_group); 4462 } 4463 spin_unlock(&info->zone_active_bgs_lock); 4464 4465 write_lock(&info->block_group_cache_lock); 4466 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4467 block_group = rb_entry(n, struct btrfs_block_group, 4468 cache_node); 4469 rb_erase_cached(&block_group->cache_node, 4470 &info->block_group_cache_tree); 4471 RB_CLEAR_NODE(&block_group->cache_node); 4472 write_unlock(&info->block_group_cache_lock); 4473 4474 down_write(&block_group->space_info->groups_sem); 4475 list_del(&block_group->list); 4476 up_write(&block_group->space_info->groups_sem); 4477 4478 /* 4479 * We haven't cached this block group, which means we could 4480 * possibly have excluded extents on this block group. 4481 */ 4482 if (block_group->cached == BTRFS_CACHE_NO || 4483 block_group->cached == BTRFS_CACHE_ERROR) 4484 btrfs_free_excluded_extents(block_group); 4485 4486 btrfs_remove_free_space_cache(block_group); 4487 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4488 ASSERT(list_empty(&block_group->dirty_list)); 4489 ASSERT(list_empty(&block_group->io_list)); 4490 ASSERT(list_empty(&block_group->bg_list)); 4491 ASSERT(refcount_read(&block_group->refs) == 1); 4492 ASSERT(block_group->swap_extents == 0); 4493 btrfs_put_block_group(block_group); 4494 4495 write_lock(&info->block_group_cache_lock); 4496 } 4497 write_unlock(&info->block_group_cache_lock); 4498 4499 btrfs_release_global_block_rsv(info); 4500 4501 while (!list_empty(&info->space_info)) { 4502 space_info = list_entry(info->space_info.next, 4503 struct btrfs_space_info, 4504 list); 4505 4506 /* 4507 * Do not hide this behind enospc_debug, this is actually 4508 * important and indicates a real bug if this happens. 4509 */ 4510 if (WARN_ON(space_info->bytes_pinned > 0 || 4511 space_info->bytes_may_use > 0)) 4512 btrfs_dump_space_info(info, space_info, 0, 0); 4513 4514 /* 4515 * If there was a failure to cleanup a log tree, very likely due 4516 * to an IO failure on a writeback attempt of one or more of its 4517 * extent buffers, we could not do proper (and cheap) unaccounting 4518 * of their reserved space, so don't warn on bytes_reserved > 0 in 4519 * that case. 4520 */ 4521 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4522 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4523 if (WARN_ON(space_info->bytes_reserved > 0)) 4524 btrfs_dump_space_info(info, space_info, 0, 0); 4525 } 4526 4527 WARN_ON(space_info->reclaim_size > 0); 4528 list_del(&space_info->list); 4529 btrfs_sysfs_remove_space_info(space_info); 4530 } 4531 return 0; 4532 } 4533 4534 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4535 { 4536 atomic_inc(&cache->frozen); 4537 } 4538 4539 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4540 { 4541 struct btrfs_fs_info *fs_info = block_group->fs_info; 4542 bool cleanup; 4543 4544 spin_lock(&block_group->lock); 4545 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4546 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4547 spin_unlock(&block_group->lock); 4548 4549 if (cleanup) { 4550 struct btrfs_chunk_map *map; 4551 4552 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4553 /* Logic error, can't happen. */ 4554 ASSERT(map); 4555 4556 btrfs_remove_chunk_map(fs_info, map); 4557 4558 /* Once for our lookup reference. */ 4559 btrfs_free_chunk_map(map); 4560 4561 /* 4562 * We may have left one free space entry and other possible 4563 * tasks trimming this block group have left 1 entry each one. 4564 * Free them if any. 4565 */ 4566 btrfs_remove_free_space_cache(block_group); 4567 } 4568 } 4569 4570 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4571 { 4572 bool ret = true; 4573 4574 spin_lock(&bg->lock); 4575 if (bg->ro) 4576 ret = false; 4577 else 4578 bg->swap_extents++; 4579 spin_unlock(&bg->lock); 4580 4581 return ret; 4582 } 4583 4584 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4585 { 4586 spin_lock(&bg->lock); 4587 ASSERT(!bg->ro); 4588 ASSERT(bg->swap_extents >= amount); 4589 bg->swap_extents -= amount; 4590 spin_unlock(&bg->lock); 4591 } 4592 4593 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4594 { 4595 if (size <= SZ_128K) 4596 return BTRFS_BG_SZ_SMALL; 4597 if (size <= SZ_8M) 4598 return BTRFS_BG_SZ_MEDIUM; 4599 return BTRFS_BG_SZ_LARGE; 4600 } 4601 4602 /* 4603 * Handle a block group allocating an extent in a size class 4604 * 4605 * @bg: The block group we allocated in. 4606 * @size_class: The size class of the allocation. 4607 * @force_wrong_size_class: Whether we are desperate enough to allow 4608 * mismatched size classes. 4609 * 4610 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4611 * case of a race that leads to the wrong size class without 4612 * force_wrong_size_class set. 4613 * 4614 * find_free_extent will skip block groups with a mismatched size class until 4615 * it really needs to avoid ENOSPC. In that case it will set 4616 * force_wrong_size_class. However, if a block group is newly allocated and 4617 * doesn't yet have a size class, then it is possible for two allocations of 4618 * different sizes to race and both try to use it. The loser is caught here and 4619 * has to retry. 4620 */ 4621 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4622 enum btrfs_block_group_size_class size_class, 4623 bool force_wrong_size_class) 4624 { 4625 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4626 4627 /* The new allocation is in the right size class, do nothing */ 4628 if (bg->size_class == size_class) 4629 return 0; 4630 /* 4631 * The new allocation is in a mismatched size class. 4632 * This means one of two things: 4633 * 4634 * 1. Two tasks in find_free_extent for different size_classes raced 4635 * and hit the same empty block_group. Make the loser try again. 4636 * 2. A call to find_free_extent got desperate enough to set 4637 * 'force_wrong_slab'. Don't change the size_class, but allow the 4638 * allocation. 4639 */ 4640 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4641 if (force_wrong_size_class) 4642 return 0; 4643 return -EAGAIN; 4644 } 4645 /* 4646 * The happy new block group case: the new allocation is the first 4647 * one in the block_group so we set size_class. 4648 */ 4649 bg->size_class = size_class; 4650 4651 return 0; 4652 } 4653 4654 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4655 { 4656 if (btrfs_is_zoned(bg->fs_info)) 4657 return false; 4658 if (!btrfs_is_block_group_data_only(bg)) 4659 return false; 4660 return true; 4661 } 4662