1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 btrfs_free_chunk_map(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 static int btrfs_bg_start_cmp(const struct rb_node *new, 177 const struct rb_node *exist) 178 { 179 const struct btrfs_block_group *new_bg = 180 rb_entry(new, struct btrfs_block_group, cache_node); 181 const struct btrfs_block_group *exist_bg = 182 rb_entry(exist, struct btrfs_block_group, cache_node); 183 184 if (new_bg->start < exist_bg->start) 185 return -1; 186 if (new_bg->start > exist_bg->start) 187 return 1; 188 return 0; 189 } 190 191 /* 192 * This adds the block group to the fs_info rb tree for the block group cache 193 */ 194 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group) 195 { 196 struct btrfs_fs_info *fs_info = block_group->fs_info; 197 struct rb_node *exist; 198 int ret = 0; 199 200 ASSERT(block_group->length != 0); 201 202 write_lock(&fs_info->block_group_cache_lock); 203 204 exist = rb_find_add_cached(&block_group->cache_node, 205 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp); 206 if (exist) 207 ret = -EEXIST; 208 write_unlock(&fs_info->block_group_cache_lock); 209 210 return ret; 211 } 212 213 /* 214 * This will return the block group at or after bytenr if contains is 0, else 215 * it will return the block group that contains the bytenr 216 */ 217 static struct btrfs_block_group *block_group_cache_tree_search( 218 struct btrfs_fs_info *info, u64 bytenr, int contains) 219 { 220 struct btrfs_block_group *cache, *ret = NULL; 221 struct rb_node *n; 222 u64 end, start; 223 224 read_lock(&info->block_group_cache_lock); 225 n = info->block_group_cache_tree.rb_root.rb_node; 226 227 while (n) { 228 cache = rb_entry(n, struct btrfs_block_group, cache_node); 229 end = cache->start + cache->length - 1; 230 start = cache->start; 231 232 if (bytenr < start) { 233 if (!contains && (!ret || start < ret->start)) 234 ret = cache; 235 n = n->rb_left; 236 } else if (bytenr > start) { 237 if (contains && bytenr <= end) { 238 ret = cache; 239 break; 240 } 241 n = n->rb_right; 242 } else { 243 ret = cache; 244 break; 245 } 246 } 247 if (ret) 248 btrfs_get_block_group(ret); 249 read_unlock(&info->block_group_cache_lock); 250 251 return ret; 252 } 253 254 /* 255 * Return the block group that starts at or after bytenr 256 */ 257 struct btrfs_block_group *btrfs_lookup_first_block_group( 258 struct btrfs_fs_info *info, u64 bytenr) 259 { 260 return block_group_cache_tree_search(info, bytenr, 0); 261 } 262 263 /* 264 * Return the block group that contains the given bytenr 265 */ 266 struct btrfs_block_group *btrfs_lookup_block_group( 267 struct btrfs_fs_info *info, u64 bytenr) 268 { 269 return block_group_cache_tree_search(info, bytenr, 1); 270 } 271 272 struct btrfs_block_group *btrfs_next_block_group( 273 struct btrfs_block_group *cache) 274 { 275 struct btrfs_fs_info *fs_info = cache->fs_info; 276 struct rb_node *node; 277 278 read_lock(&fs_info->block_group_cache_lock); 279 280 /* If our block group was removed, we need a full search. */ 281 if (RB_EMPTY_NODE(&cache->cache_node)) { 282 const u64 next_bytenr = cache->start + cache->length; 283 284 read_unlock(&fs_info->block_group_cache_lock); 285 btrfs_put_block_group(cache); 286 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 287 } 288 node = rb_next(&cache->cache_node); 289 btrfs_put_block_group(cache); 290 if (node) { 291 cache = rb_entry(node, struct btrfs_block_group, cache_node); 292 btrfs_get_block_group(cache); 293 } else 294 cache = NULL; 295 read_unlock(&fs_info->block_group_cache_lock); 296 return cache; 297 } 298 299 /* 300 * Check if we can do a NOCOW write for a given extent. 301 * 302 * @fs_info: The filesystem information object. 303 * @bytenr: Logical start address of the extent. 304 * 305 * Check if we can do a NOCOW write for the given extent, and increments the 306 * number of NOCOW writers in the block group that contains the extent, as long 307 * as the block group exists and it's currently not in read-only mode. 308 * 309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 310 * is responsible for calling btrfs_dec_nocow_writers() later. 311 * 312 * Or NULL if we can not do a NOCOW write 313 */ 314 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 315 u64 bytenr) 316 { 317 struct btrfs_block_group *bg; 318 bool can_nocow = true; 319 320 bg = btrfs_lookup_block_group(fs_info, bytenr); 321 if (!bg) 322 return NULL; 323 324 spin_lock(&bg->lock); 325 if (bg->ro) 326 can_nocow = false; 327 else 328 atomic_inc(&bg->nocow_writers); 329 spin_unlock(&bg->lock); 330 331 if (!can_nocow) { 332 btrfs_put_block_group(bg); 333 return NULL; 334 } 335 336 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 337 return bg; 338 } 339 340 /* 341 * Decrement the number of NOCOW writers in a block group. 342 * 343 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 344 * and on the block group returned by that call. Typically this is called after 345 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 346 * relocation. 347 * 348 * After this call, the caller should not use the block group anymore. It it wants 349 * to use it, then it should get a reference on it before calling this function. 350 */ 351 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 352 { 353 if (atomic_dec_and_test(&bg->nocow_writers)) 354 wake_up_var(&bg->nocow_writers); 355 356 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 357 btrfs_put_block_group(bg); 358 } 359 360 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 361 { 362 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 363 } 364 365 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 366 const u64 start) 367 { 368 struct btrfs_block_group *bg; 369 370 bg = btrfs_lookup_block_group(fs_info, start); 371 ASSERT(bg); 372 if (atomic_dec_and_test(&bg->reservations)) 373 wake_up_var(&bg->reservations); 374 btrfs_put_block_group(bg); 375 } 376 377 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 378 { 379 struct btrfs_space_info *space_info = bg->space_info; 380 381 ASSERT(bg->ro); 382 383 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 384 return; 385 386 /* 387 * Our block group is read only but before we set it to read only, 388 * some task might have had allocated an extent from it already, but it 389 * has not yet created a respective ordered extent (and added it to a 390 * root's list of ordered extents). 391 * Therefore wait for any task currently allocating extents, since the 392 * block group's reservations counter is incremented while a read lock 393 * on the groups' semaphore is held and decremented after releasing 394 * the read access on that semaphore and creating the ordered extent. 395 */ 396 down_write(&space_info->groups_sem); 397 up_write(&space_info->groups_sem); 398 399 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 400 } 401 402 struct btrfs_caching_control *btrfs_get_caching_control( 403 struct btrfs_block_group *cache) 404 { 405 struct btrfs_caching_control *ctl; 406 407 spin_lock(&cache->lock); 408 if (!cache->caching_ctl) { 409 spin_unlock(&cache->lock); 410 return NULL; 411 } 412 413 ctl = cache->caching_ctl; 414 refcount_inc(&ctl->count); 415 spin_unlock(&cache->lock); 416 return ctl; 417 } 418 419 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 420 { 421 if (refcount_dec_and_test(&ctl->count)) 422 kfree(ctl); 423 } 424 425 /* 426 * When we wait for progress in the block group caching, its because our 427 * allocation attempt failed at least once. So, we must sleep and let some 428 * progress happen before we try again. 429 * 430 * This function will sleep at least once waiting for new free space to show 431 * up, and then it will check the block group free space numbers for our min 432 * num_bytes. Another option is to have it go ahead and look in the rbtree for 433 * a free extent of a given size, but this is a good start. 434 * 435 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 436 * any of the information in this block group. 437 */ 438 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 439 u64 num_bytes) 440 { 441 struct btrfs_caching_control *caching_ctl; 442 int progress; 443 444 caching_ctl = btrfs_get_caching_control(cache); 445 if (!caching_ctl) 446 return; 447 448 /* 449 * We've already failed to allocate from this block group, so even if 450 * there's enough space in the block group it isn't contiguous enough to 451 * allow for an allocation, so wait for at least the next wakeup tick, 452 * or for the thing to be done. 453 */ 454 progress = atomic_read(&caching_ctl->progress); 455 456 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 457 (progress != atomic_read(&caching_ctl->progress) && 458 (cache->free_space_ctl->free_space >= num_bytes))); 459 460 btrfs_put_caching_control(caching_ctl); 461 } 462 463 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 464 struct btrfs_caching_control *caching_ctl) 465 { 466 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 467 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 468 } 469 470 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 471 { 472 struct btrfs_caching_control *caching_ctl; 473 int ret; 474 475 caching_ctl = btrfs_get_caching_control(cache); 476 if (!caching_ctl) 477 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 478 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 479 btrfs_put_caching_control(caching_ctl); 480 return ret; 481 } 482 483 #ifdef CONFIG_BTRFS_DEBUG 484 static void fragment_free_space(struct btrfs_block_group *block_group) 485 { 486 struct btrfs_fs_info *fs_info = block_group->fs_info; 487 u64 start = block_group->start; 488 u64 len = block_group->length; 489 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 490 fs_info->nodesize : fs_info->sectorsize; 491 u64 step = chunk << 1; 492 493 while (len > chunk) { 494 btrfs_remove_free_space(block_group, start, chunk); 495 start += step; 496 if (len < step) 497 len = 0; 498 else 499 len -= step; 500 } 501 } 502 #endif 503 504 /* 505 * Add a free space range to the in memory free space cache of a block group. 506 * This checks if the range contains super block locations and any such 507 * locations are not added to the free space cache. 508 * 509 * @block_group: The target block group. 510 * @start: Start offset of the range. 511 * @end: End offset of the range (exclusive). 512 * @total_added_ret: Optional pointer to return the total amount of space 513 * added to the block group's free space cache. 514 * 515 * Returns 0 on success or < 0 on error. 516 */ 517 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 518 u64 end, u64 *total_added_ret) 519 { 520 struct btrfs_fs_info *info = block_group->fs_info; 521 u64 extent_start, extent_end, size; 522 int ret; 523 524 if (total_added_ret) 525 *total_added_ret = 0; 526 527 while (start < end) { 528 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start, 529 &extent_start, &extent_end, 530 EXTENT_DIRTY, NULL)) 531 break; 532 533 if (extent_start <= start) { 534 start = extent_end + 1; 535 } else if (extent_start > start && extent_start < end) { 536 size = extent_start - start; 537 ret = btrfs_add_free_space_async_trimmed(block_group, 538 start, size); 539 if (ret) 540 return ret; 541 if (total_added_ret) 542 *total_added_ret += size; 543 start = extent_end + 1; 544 } else { 545 break; 546 } 547 } 548 549 if (start < end) { 550 size = end - start; 551 ret = btrfs_add_free_space_async_trimmed(block_group, start, 552 size); 553 if (ret) 554 return ret; 555 if (total_added_ret) 556 *total_added_ret += size; 557 } 558 559 return 0; 560 } 561 562 /* 563 * Get an arbitrary extent item index / max_index through the block group 564 * 565 * @block_group the block group to sample from 566 * @index: the integral step through the block group to grab from 567 * @max_index: the granularity of the sampling 568 * @key: return value parameter for the item we find 569 * 570 * Pre-conditions on indices: 571 * 0 <= index <= max_index 572 * 0 < max_index 573 * 574 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 575 * error code on error. 576 */ 577 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 578 struct btrfs_block_group *block_group, 579 int index, int max_index, 580 struct btrfs_key *found_key) 581 { 582 struct btrfs_fs_info *fs_info = block_group->fs_info; 583 struct btrfs_root *extent_root; 584 u64 search_offset; 585 u64 search_end = block_group->start + block_group->length; 586 BTRFS_PATH_AUTO_FREE(path); 587 struct btrfs_key search_key; 588 int ret = 0; 589 590 ASSERT(index >= 0); 591 ASSERT(index <= max_index); 592 ASSERT(max_index > 0); 593 lockdep_assert_held(&caching_ctl->mutex); 594 lockdep_assert_held_read(&fs_info->commit_root_sem); 595 596 path = btrfs_alloc_path(); 597 if (!path) 598 return -ENOMEM; 599 600 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 601 BTRFS_SUPER_INFO_OFFSET)); 602 603 path->skip_locking = 1; 604 path->search_commit_root = 1; 605 path->reada = READA_FORWARD; 606 607 search_offset = index * div_u64(block_group->length, max_index); 608 search_key.objectid = block_group->start + search_offset; 609 search_key.type = BTRFS_EXTENT_ITEM_KEY; 610 search_key.offset = 0; 611 612 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 613 /* Success; sampled an extent item in the block group */ 614 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 615 found_key->objectid >= block_group->start && 616 found_key->objectid + found_key->offset <= search_end) 617 break; 618 619 /* We can't possibly find a valid extent item anymore */ 620 if (found_key->objectid >= search_end) { 621 ret = 1; 622 break; 623 } 624 } 625 626 lockdep_assert_held(&caching_ctl->mutex); 627 lockdep_assert_held_read(&fs_info->commit_root_sem); 628 return ret; 629 } 630 631 /* 632 * Best effort attempt to compute a block group's size class while caching it. 633 * 634 * @block_group: the block group we are caching 635 * 636 * We cannot infer the size class while adding free space extents, because that 637 * logic doesn't care about contiguous file extents (it doesn't differentiate 638 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 639 * file extent items. Reading all of them is quite wasteful, because usually 640 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 641 * them at even steps through the block group and pick the smallest size class 642 * we see. Since size class is best effort, and not guaranteed in general, 643 * inaccuracy is acceptable. 644 * 645 * To be more explicit about why this algorithm makes sense: 646 * 647 * If we are caching in a block group from disk, then there are three major cases 648 * to consider: 649 * 1. the block group is well behaved and all extents in it are the same size 650 * class. 651 * 2. the block group is mostly one size class with rare exceptions for last 652 * ditch allocations 653 * 3. the block group was populated before size classes and can have a totally 654 * arbitrary mix of size classes. 655 * 656 * In case 1, looking at any extent in the block group will yield the correct 657 * result. For the mixed cases, taking the minimum size class seems like a good 658 * approximation, since gaps from frees will be usable to the size class. For 659 * 2., a small handful of file extents is likely to yield the right answer. For 660 * 3, we can either read every file extent, or admit that this is best effort 661 * anyway and try to stay fast. 662 * 663 * Returns: 0 on success, negative error code on error. 664 */ 665 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 666 struct btrfs_block_group *block_group) 667 { 668 struct btrfs_fs_info *fs_info = block_group->fs_info; 669 struct btrfs_key key; 670 int i; 671 u64 min_size = block_group->length; 672 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 673 int ret; 674 675 if (!btrfs_block_group_should_use_size_class(block_group)) 676 return 0; 677 678 lockdep_assert_held(&caching_ctl->mutex); 679 lockdep_assert_held_read(&fs_info->commit_root_sem); 680 for (i = 0; i < 5; ++i) { 681 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 682 if (ret < 0) 683 goto out; 684 if (ret > 0) 685 continue; 686 min_size = min_t(u64, min_size, key.offset); 687 size_class = btrfs_calc_block_group_size_class(min_size); 688 } 689 if (size_class != BTRFS_BG_SZ_NONE) { 690 spin_lock(&block_group->lock); 691 block_group->size_class = size_class; 692 spin_unlock(&block_group->lock); 693 } 694 out: 695 return ret; 696 } 697 698 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 699 { 700 struct btrfs_block_group *block_group = caching_ctl->block_group; 701 struct btrfs_fs_info *fs_info = block_group->fs_info; 702 struct btrfs_root *extent_root; 703 BTRFS_PATH_AUTO_FREE(path); 704 struct extent_buffer *leaf; 705 struct btrfs_key key; 706 u64 total_found = 0; 707 u64 last = 0; 708 u32 nritems; 709 int ret; 710 bool wakeup = true; 711 712 path = btrfs_alloc_path(); 713 if (!path) 714 return -ENOMEM; 715 716 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 717 extent_root = btrfs_extent_root(fs_info, last); 718 719 #ifdef CONFIG_BTRFS_DEBUG 720 /* 721 * If we're fragmenting we don't want to make anybody think we can 722 * allocate from this block group until we've had a chance to fragment 723 * the free space. 724 */ 725 if (btrfs_should_fragment_free_space(block_group)) 726 wakeup = false; 727 #endif 728 /* 729 * We don't want to deadlock with somebody trying to allocate a new 730 * extent for the extent root while also trying to search the extent 731 * root to add free space. So we skip locking and search the commit 732 * root, since its read-only 733 */ 734 path->skip_locking = 1; 735 path->search_commit_root = 1; 736 path->reada = READA_FORWARD; 737 738 key.objectid = last; 739 key.type = BTRFS_EXTENT_ITEM_KEY; 740 key.offset = 0; 741 742 next: 743 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 744 if (ret < 0) 745 goto out; 746 747 leaf = path->nodes[0]; 748 nritems = btrfs_header_nritems(leaf); 749 750 while (1) { 751 if (btrfs_fs_closing(fs_info) > 1) { 752 last = (u64)-1; 753 break; 754 } 755 756 if (path->slots[0] < nritems) { 757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 758 } else { 759 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 760 if (ret) 761 break; 762 763 if (need_resched() || 764 rwsem_is_contended(&fs_info->commit_root_sem)) { 765 btrfs_release_path(path); 766 up_read(&fs_info->commit_root_sem); 767 mutex_unlock(&caching_ctl->mutex); 768 cond_resched(); 769 mutex_lock(&caching_ctl->mutex); 770 down_read(&fs_info->commit_root_sem); 771 goto next; 772 } 773 774 ret = btrfs_next_leaf(extent_root, path); 775 if (ret < 0) 776 goto out; 777 if (ret) 778 break; 779 leaf = path->nodes[0]; 780 nritems = btrfs_header_nritems(leaf); 781 continue; 782 } 783 784 if (key.objectid < last) { 785 key.objectid = last; 786 key.type = BTRFS_EXTENT_ITEM_KEY; 787 key.offset = 0; 788 btrfs_release_path(path); 789 goto next; 790 } 791 792 if (key.objectid < block_group->start) { 793 path->slots[0]++; 794 continue; 795 } 796 797 if (key.objectid >= block_group->start + block_group->length) 798 break; 799 800 if (key.type == BTRFS_EXTENT_ITEM_KEY || 801 key.type == BTRFS_METADATA_ITEM_KEY) { 802 u64 space_added; 803 804 ret = btrfs_add_new_free_space(block_group, last, 805 key.objectid, &space_added); 806 if (ret) 807 goto out; 808 total_found += space_added; 809 if (key.type == BTRFS_METADATA_ITEM_KEY) 810 last = key.objectid + 811 fs_info->nodesize; 812 else 813 last = key.objectid + key.offset; 814 815 if (total_found > CACHING_CTL_WAKE_UP) { 816 total_found = 0; 817 if (wakeup) { 818 atomic_inc(&caching_ctl->progress); 819 wake_up(&caching_ctl->wait); 820 } 821 } 822 } 823 path->slots[0]++; 824 } 825 826 ret = btrfs_add_new_free_space(block_group, last, 827 block_group->start + block_group->length, 828 NULL); 829 out: 830 return ret; 831 } 832 833 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 834 { 835 btrfs_clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 836 bg->start + bg->length - 1, EXTENT_DIRTY); 837 } 838 839 static noinline void caching_thread(struct btrfs_work *work) 840 { 841 struct btrfs_block_group *block_group; 842 struct btrfs_fs_info *fs_info; 843 struct btrfs_caching_control *caching_ctl; 844 int ret; 845 846 caching_ctl = container_of(work, struct btrfs_caching_control, work); 847 block_group = caching_ctl->block_group; 848 fs_info = block_group->fs_info; 849 850 mutex_lock(&caching_ctl->mutex); 851 down_read(&fs_info->commit_root_sem); 852 853 load_block_group_size_class(caching_ctl, block_group); 854 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 855 ret = load_free_space_cache(block_group); 856 if (ret == 1) { 857 ret = 0; 858 goto done; 859 } 860 861 /* 862 * We failed to load the space cache, set ourselves to 863 * CACHE_STARTED and carry on. 864 */ 865 spin_lock(&block_group->lock); 866 block_group->cached = BTRFS_CACHE_STARTED; 867 spin_unlock(&block_group->lock); 868 wake_up(&caching_ctl->wait); 869 } 870 871 /* 872 * If we are in the transaction that populated the free space tree we 873 * can't actually cache from the free space tree as our commit root and 874 * real root are the same, so we could change the contents of the blocks 875 * while caching. Instead do the slow caching in this case, and after 876 * the transaction has committed we will be safe. 877 */ 878 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 879 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 880 ret = load_free_space_tree(caching_ctl); 881 else 882 ret = load_extent_tree_free(caching_ctl); 883 done: 884 spin_lock(&block_group->lock); 885 block_group->caching_ctl = NULL; 886 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 887 spin_unlock(&block_group->lock); 888 889 #ifdef CONFIG_BTRFS_DEBUG 890 if (btrfs_should_fragment_free_space(block_group)) { 891 u64 bytes_used; 892 893 spin_lock(&block_group->space_info->lock); 894 spin_lock(&block_group->lock); 895 bytes_used = block_group->length - block_group->used; 896 block_group->space_info->bytes_used += bytes_used >> 1; 897 spin_unlock(&block_group->lock); 898 spin_unlock(&block_group->space_info->lock); 899 fragment_free_space(block_group); 900 } 901 #endif 902 903 up_read(&fs_info->commit_root_sem); 904 btrfs_free_excluded_extents(block_group); 905 mutex_unlock(&caching_ctl->mutex); 906 907 wake_up(&caching_ctl->wait); 908 909 btrfs_put_caching_control(caching_ctl); 910 btrfs_put_block_group(block_group); 911 } 912 913 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 914 { 915 struct btrfs_fs_info *fs_info = cache->fs_info; 916 struct btrfs_caching_control *caching_ctl = NULL; 917 int ret = 0; 918 919 /* Allocator for zoned filesystems does not use the cache at all */ 920 if (btrfs_is_zoned(fs_info)) 921 return 0; 922 923 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 924 if (!caching_ctl) 925 return -ENOMEM; 926 927 INIT_LIST_HEAD(&caching_ctl->list); 928 mutex_init(&caching_ctl->mutex); 929 init_waitqueue_head(&caching_ctl->wait); 930 caching_ctl->block_group = cache; 931 refcount_set(&caching_ctl->count, 2); 932 atomic_set(&caching_ctl->progress, 0); 933 btrfs_init_work(&caching_ctl->work, caching_thread, NULL); 934 935 spin_lock(&cache->lock); 936 if (cache->cached != BTRFS_CACHE_NO) { 937 kfree(caching_ctl); 938 939 caching_ctl = cache->caching_ctl; 940 if (caching_ctl) 941 refcount_inc(&caching_ctl->count); 942 spin_unlock(&cache->lock); 943 goto out; 944 } 945 WARN_ON(cache->caching_ctl); 946 cache->caching_ctl = caching_ctl; 947 cache->cached = BTRFS_CACHE_STARTED; 948 spin_unlock(&cache->lock); 949 950 write_lock(&fs_info->block_group_cache_lock); 951 refcount_inc(&caching_ctl->count); 952 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 953 write_unlock(&fs_info->block_group_cache_lock); 954 955 btrfs_get_block_group(cache); 956 957 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 958 out: 959 if (wait && caching_ctl) 960 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 961 if (caching_ctl) 962 btrfs_put_caching_control(caching_ctl); 963 964 return ret; 965 } 966 967 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 968 { 969 u64 extra_flags = chunk_to_extended(flags) & 970 BTRFS_EXTENDED_PROFILE_MASK; 971 972 write_seqlock(&fs_info->profiles_lock); 973 if (flags & BTRFS_BLOCK_GROUP_DATA) 974 fs_info->avail_data_alloc_bits &= ~extra_flags; 975 if (flags & BTRFS_BLOCK_GROUP_METADATA) 976 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 977 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 978 fs_info->avail_system_alloc_bits &= ~extra_flags; 979 write_sequnlock(&fs_info->profiles_lock); 980 } 981 982 /* 983 * Clear incompat bits for the following feature(s): 984 * 985 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 986 * in the whole filesystem 987 * 988 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 989 */ 990 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 991 { 992 bool found_raid56 = false; 993 bool found_raid1c34 = false; 994 995 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 996 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 997 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 998 struct list_head *head = &fs_info->space_info; 999 struct btrfs_space_info *sinfo; 1000 1001 list_for_each_entry_rcu(sinfo, head, list) { 1002 down_read(&sinfo->groups_sem); 1003 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1004 found_raid56 = true; 1005 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1006 found_raid56 = true; 1007 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1008 found_raid1c34 = true; 1009 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1010 found_raid1c34 = true; 1011 up_read(&sinfo->groups_sem); 1012 } 1013 if (!found_raid56) 1014 btrfs_clear_fs_incompat(fs_info, RAID56); 1015 if (!found_raid1c34) 1016 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1017 } 1018 } 1019 1020 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1021 { 1022 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1023 return fs_info->block_group_root; 1024 return btrfs_extent_root(fs_info, 0); 1025 } 1026 1027 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1028 struct btrfs_path *path, 1029 struct btrfs_block_group *block_group) 1030 { 1031 struct btrfs_fs_info *fs_info = trans->fs_info; 1032 struct btrfs_root *root; 1033 struct btrfs_key key; 1034 int ret; 1035 1036 root = btrfs_block_group_root(fs_info); 1037 key.objectid = block_group->start; 1038 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1039 key.offset = block_group->length; 1040 1041 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1042 if (ret > 0) 1043 ret = -ENOENT; 1044 if (ret < 0) 1045 return ret; 1046 1047 ret = btrfs_del_item(trans, root, path); 1048 return ret; 1049 } 1050 1051 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1052 struct btrfs_chunk_map *map) 1053 { 1054 struct btrfs_fs_info *fs_info = trans->fs_info; 1055 struct btrfs_path *path; 1056 struct btrfs_block_group *block_group; 1057 struct btrfs_free_cluster *cluster; 1058 struct inode *inode; 1059 struct kobject *kobj = NULL; 1060 int ret; 1061 int index; 1062 int factor; 1063 struct btrfs_caching_control *caching_ctl = NULL; 1064 bool remove_map; 1065 bool remove_rsv = false; 1066 1067 block_group = btrfs_lookup_block_group(fs_info, map->start); 1068 if (!block_group) 1069 return -ENOENT; 1070 1071 BUG_ON(!block_group->ro); 1072 1073 trace_btrfs_remove_block_group(block_group); 1074 /* 1075 * Free the reserved super bytes from this block group before 1076 * remove it. 1077 */ 1078 btrfs_free_excluded_extents(block_group); 1079 btrfs_free_ref_tree_range(fs_info, block_group->start, 1080 block_group->length); 1081 1082 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1083 factor = btrfs_bg_type_to_factor(block_group->flags); 1084 1085 /* make sure this block group isn't part of an allocation cluster */ 1086 cluster = &fs_info->data_alloc_cluster; 1087 spin_lock(&cluster->refill_lock); 1088 btrfs_return_cluster_to_free_space(block_group, cluster); 1089 spin_unlock(&cluster->refill_lock); 1090 1091 /* 1092 * make sure this block group isn't part of a metadata 1093 * allocation cluster 1094 */ 1095 cluster = &fs_info->meta_alloc_cluster; 1096 spin_lock(&cluster->refill_lock); 1097 btrfs_return_cluster_to_free_space(block_group, cluster); 1098 spin_unlock(&cluster->refill_lock); 1099 1100 btrfs_clear_treelog_bg(block_group); 1101 btrfs_clear_data_reloc_bg(block_group); 1102 1103 path = btrfs_alloc_path(); 1104 if (!path) { 1105 ret = -ENOMEM; 1106 goto out; 1107 } 1108 1109 /* 1110 * get the inode first so any iput calls done for the io_list 1111 * aren't the final iput (no unlinks allowed now) 1112 */ 1113 inode = lookup_free_space_inode(block_group, path); 1114 1115 mutex_lock(&trans->transaction->cache_write_mutex); 1116 /* 1117 * Make sure our free space cache IO is done before removing the 1118 * free space inode 1119 */ 1120 spin_lock(&trans->transaction->dirty_bgs_lock); 1121 if (!list_empty(&block_group->io_list)) { 1122 list_del_init(&block_group->io_list); 1123 1124 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1125 1126 spin_unlock(&trans->transaction->dirty_bgs_lock); 1127 btrfs_wait_cache_io(trans, block_group, path); 1128 btrfs_put_block_group(block_group); 1129 spin_lock(&trans->transaction->dirty_bgs_lock); 1130 } 1131 1132 if (!list_empty(&block_group->dirty_list)) { 1133 list_del_init(&block_group->dirty_list); 1134 remove_rsv = true; 1135 btrfs_put_block_group(block_group); 1136 } 1137 spin_unlock(&trans->transaction->dirty_bgs_lock); 1138 mutex_unlock(&trans->transaction->cache_write_mutex); 1139 1140 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1141 if (ret) 1142 goto out; 1143 1144 write_lock(&fs_info->block_group_cache_lock); 1145 rb_erase_cached(&block_group->cache_node, 1146 &fs_info->block_group_cache_tree); 1147 RB_CLEAR_NODE(&block_group->cache_node); 1148 1149 /* Once for the block groups rbtree */ 1150 btrfs_put_block_group(block_group); 1151 1152 write_unlock(&fs_info->block_group_cache_lock); 1153 1154 down_write(&block_group->space_info->groups_sem); 1155 /* 1156 * we must use list_del_init so people can check to see if they 1157 * are still on the list after taking the semaphore 1158 */ 1159 list_del_init(&block_group->list); 1160 if (list_empty(&block_group->space_info->block_groups[index])) { 1161 kobj = block_group->space_info->block_group_kobjs[index]; 1162 block_group->space_info->block_group_kobjs[index] = NULL; 1163 clear_avail_alloc_bits(fs_info, block_group->flags); 1164 } 1165 up_write(&block_group->space_info->groups_sem); 1166 clear_incompat_bg_bits(fs_info, block_group->flags); 1167 if (kobj) { 1168 kobject_del(kobj); 1169 kobject_put(kobj); 1170 } 1171 1172 if (block_group->cached == BTRFS_CACHE_STARTED) 1173 btrfs_wait_block_group_cache_done(block_group); 1174 1175 write_lock(&fs_info->block_group_cache_lock); 1176 caching_ctl = btrfs_get_caching_control(block_group); 1177 if (!caching_ctl) { 1178 struct btrfs_caching_control *ctl; 1179 1180 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1181 if (ctl->block_group == block_group) { 1182 caching_ctl = ctl; 1183 refcount_inc(&caching_ctl->count); 1184 break; 1185 } 1186 } 1187 } 1188 if (caching_ctl) 1189 list_del_init(&caching_ctl->list); 1190 write_unlock(&fs_info->block_group_cache_lock); 1191 1192 if (caching_ctl) { 1193 /* Once for the caching bgs list and once for us. */ 1194 btrfs_put_caching_control(caching_ctl); 1195 btrfs_put_caching_control(caching_ctl); 1196 } 1197 1198 spin_lock(&trans->transaction->dirty_bgs_lock); 1199 WARN_ON(!list_empty(&block_group->dirty_list)); 1200 WARN_ON(!list_empty(&block_group->io_list)); 1201 spin_unlock(&trans->transaction->dirty_bgs_lock); 1202 1203 btrfs_remove_free_space_cache(block_group); 1204 1205 spin_lock(&block_group->space_info->lock); 1206 list_del_init(&block_group->ro_list); 1207 1208 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1209 WARN_ON(block_group->space_info->total_bytes 1210 < block_group->length); 1211 WARN_ON(block_group->space_info->bytes_readonly 1212 < block_group->length - block_group->zone_unusable); 1213 WARN_ON(block_group->space_info->bytes_zone_unusable 1214 < block_group->zone_unusable); 1215 WARN_ON(block_group->space_info->disk_total 1216 < block_group->length * factor); 1217 } 1218 block_group->space_info->total_bytes -= block_group->length; 1219 block_group->space_info->bytes_readonly -= 1220 (block_group->length - block_group->zone_unusable); 1221 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info, 1222 -block_group->zone_unusable); 1223 block_group->space_info->disk_total -= block_group->length * factor; 1224 1225 spin_unlock(&block_group->space_info->lock); 1226 1227 /* 1228 * Remove the free space for the block group from the free space tree 1229 * and the block group's item from the extent tree before marking the 1230 * block group as removed. This is to prevent races with tasks that 1231 * freeze and unfreeze a block group, this task and another task 1232 * allocating a new block group - the unfreeze task ends up removing 1233 * the block group's extent map before the task calling this function 1234 * deletes the block group item from the extent tree, allowing for 1235 * another task to attempt to create another block group with the same 1236 * item key (and failing with -EEXIST and a transaction abort). 1237 */ 1238 ret = remove_block_group_free_space(trans, block_group); 1239 if (ret) 1240 goto out; 1241 1242 ret = remove_block_group_item(trans, path, block_group); 1243 if (ret < 0) 1244 goto out; 1245 1246 spin_lock(&block_group->lock); 1247 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1248 1249 /* 1250 * At this point trimming or scrub can't start on this block group, 1251 * because we removed the block group from the rbtree 1252 * fs_info->block_group_cache_tree so no one can't find it anymore and 1253 * even if someone already got this block group before we removed it 1254 * from the rbtree, they have already incremented block_group->frozen - 1255 * if they didn't, for the trimming case they won't find any free space 1256 * entries because we already removed them all when we called 1257 * btrfs_remove_free_space_cache(). 1258 * 1259 * And we must not remove the chunk map from the fs_info->mapping_tree 1260 * to prevent the same logical address range and physical device space 1261 * ranges from being reused for a new block group. This is needed to 1262 * avoid races with trimming and scrub. 1263 * 1264 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1265 * completely transactionless, so while it is trimming a range the 1266 * currently running transaction might finish and a new one start, 1267 * allowing for new block groups to be created that can reuse the same 1268 * physical device locations unless we take this special care. 1269 * 1270 * There may also be an implicit trim operation if the file system 1271 * is mounted with -odiscard. The same protections must remain 1272 * in place until the extents have been discarded completely when 1273 * the transaction commit has completed. 1274 */ 1275 remove_map = (atomic_read(&block_group->frozen) == 0); 1276 spin_unlock(&block_group->lock); 1277 1278 if (remove_map) 1279 btrfs_remove_chunk_map(fs_info, map); 1280 1281 out: 1282 /* Once for the lookup reference */ 1283 btrfs_put_block_group(block_group); 1284 if (remove_rsv) 1285 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 1286 btrfs_free_path(path); 1287 return ret; 1288 } 1289 1290 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1291 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1292 { 1293 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1294 struct btrfs_chunk_map *map; 1295 unsigned int num_items; 1296 1297 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 1298 ASSERT(map != NULL); 1299 ASSERT(map->start == chunk_offset); 1300 1301 /* 1302 * We need to reserve 3 + N units from the metadata space info in order 1303 * to remove a block group (done at btrfs_remove_chunk() and at 1304 * btrfs_remove_block_group()), which are used for: 1305 * 1306 * 1 unit for adding the free space inode's orphan (located in the tree 1307 * of tree roots). 1308 * 1 unit for deleting the block group item (located in the extent 1309 * tree). 1310 * 1 unit for deleting the free space item (located in tree of tree 1311 * roots). 1312 * N units for deleting N device extent items corresponding to each 1313 * stripe (located in the device tree). 1314 * 1315 * In order to remove a block group we also need to reserve units in the 1316 * system space info in order to update the chunk tree (update one or 1317 * more device items and remove one chunk item), but this is done at 1318 * btrfs_remove_chunk() through a call to check_system_chunk(). 1319 */ 1320 num_items = 3 + map->num_stripes; 1321 btrfs_free_chunk_map(map); 1322 1323 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1324 } 1325 1326 /* 1327 * Mark block group @cache read-only, so later write won't happen to block 1328 * group @cache. 1329 * 1330 * If @force is not set, this function will only mark the block group readonly 1331 * if we have enough free space (1M) in other metadata/system block groups. 1332 * If @force is not set, this function will mark the block group readonly 1333 * without checking free space. 1334 * 1335 * NOTE: This function doesn't care if other block groups can contain all the 1336 * data in this block group. That check should be done by relocation routine, 1337 * not this function. 1338 */ 1339 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1340 { 1341 struct btrfs_space_info *sinfo = cache->space_info; 1342 u64 num_bytes; 1343 int ret = -ENOSPC; 1344 1345 spin_lock(&sinfo->lock); 1346 spin_lock(&cache->lock); 1347 1348 if (cache->swap_extents) { 1349 ret = -ETXTBSY; 1350 goto out; 1351 } 1352 1353 if (cache->ro) { 1354 cache->ro++; 1355 ret = 0; 1356 goto out; 1357 } 1358 1359 num_bytes = cache->length - cache->reserved - cache->pinned - 1360 cache->bytes_super - cache->zone_unusable - cache->used; 1361 1362 /* 1363 * Data never overcommits, even in mixed mode, so do just the straight 1364 * check of left over space in how much we have allocated. 1365 */ 1366 if (force) { 1367 ret = 0; 1368 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1369 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1370 1371 /* 1372 * Here we make sure if we mark this bg RO, we still have enough 1373 * free space as buffer. 1374 */ 1375 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1376 ret = 0; 1377 } else { 1378 /* 1379 * We overcommit metadata, so we need to do the 1380 * btrfs_can_overcommit check here, and we need to pass in 1381 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1382 * leeway to allow us to mark this block group as read only. 1383 */ 1384 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1385 BTRFS_RESERVE_NO_FLUSH)) 1386 ret = 0; 1387 } 1388 1389 if (!ret) { 1390 sinfo->bytes_readonly += num_bytes; 1391 if (btrfs_is_zoned(cache->fs_info)) { 1392 /* Migrate zone_unusable bytes to readonly */ 1393 sinfo->bytes_readonly += cache->zone_unusable; 1394 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable); 1395 cache->zone_unusable = 0; 1396 } 1397 cache->ro++; 1398 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1399 } 1400 out: 1401 spin_unlock(&cache->lock); 1402 spin_unlock(&sinfo->lock); 1403 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1404 btrfs_info(cache->fs_info, 1405 "unable to make block group %llu ro", cache->start); 1406 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1407 } 1408 return ret; 1409 } 1410 1411 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1412 const struct btrfs_block_group *bg) 1413 { 1414 struct btrfs_fs_info *fs_info = trans->fs_info; 1415 struct btrfs_transaction *prev_trans = NULL; 1416 const u64 start = bg->start; 1417 const u64 end = start + bg->length - 1; 1418 int ret; 1419 1420 spin_lock(&fs_info->trans_lock); 1421 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) { 1422 prev_trans = list_prev_entry(trans->transaction, list); 1423 refcount_inc(&prev_trans->use_count); 1424 } 1425 spin_unlock(&fs_info->trans_lock); 1426 1427 /* 1428 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1429 * btrfs_finish_extent_commit(). If we are at transaction N, another 1430 * task might be running finish_extent_commit() for the previous 1431 * transaction N - 1, and have seen a range belonging to the block 1432 * group in pinned_extents before we were able to clear the whole block 1433 * group range from pinned_extents. This means that task can lookup for 1434 * the block group after we unpinned it from pinned_extents and removed 1435 * it, leading to an error at unpin_extent_range(). 1436 */ 1437 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1438 if (prev_trans) { 1439 ret = btrfs_clear_extent_bits(&prev_trans->pinned_extents, start, end, 1440 EXTENT_DIRTY); 1441 if (ret) 1442 goto out; 1443 } 1444 1445 ret = btrfs_clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1446 EXTENT_DIRTY); 1447 out: 1448 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1449 if (prev_trans) 1450 btrfs_put_transaction(prev_trans); 1451 1452 return ret == 0; 1453 } 1454 1455 /* 1456 * Link the block_group to a list via bg_list. 1457 * 1458 * @bg: The block_group to link to the list. 1459 * @list: The list to link it to. 1460 * 1461 * Use this rather than list_add_tail() directly to ensure proper respect 1462 * to locking and refcounting. 1463 * 1464 * Returns: true if the bg was linked with a refcount bump and false otherwise. 1465 */ 1466 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list) 1467 { 1468 struct btrfs_fs_info *fs_info = bg->fs_info; 1469 bool added = false; 1470 1471 spin_lock(&fs_info->unused_bgs_lock); 1472 if (list_empty(&bg->bg_list)) { 1473 btrfs_get_block_group(bg); 1474 list_add_tail(&bg->bg_list, list); 1475 added = true; 1476 } 1477 spin_unlock(&fs_info->unused_bgs_lock); 1478 return added; 1479 } 1480 1481 /* 1482 * Process the unused_bgs list and remove any that don't have any allocated 1483 * space inside of them. 1484 */ 1485 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1486 { 1487 LIST_HEAD(retry_list); 1488 struct btrfs_block_group *block_group; 1489 struct btrfs_space_info *space_info; 1490 struct btrfs_trans_handle *trans; 1491 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1492 int ret = 0; 1493 1494 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1495 return; 1496 1497 if (btrfs_fs_closing(fs_info)) 1498 return; 1499 1500 /* 1501 * Long running balances can keep us blocked here for eternity, so 1502 * simply skip deletion if we're unable to get the mutex. 1503 */ 1504 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1505 return; 1506 1507 spin_lock(&fs_info->unused_bgs_lock); 1508 while (!list_empty(&fs_info->unused_bgs)) { 1509 u64 used; 1510 int trimming; 1511 1512 block_group = list_first_entry(&fs_info->unused_bgs, 1513 struct btrfs_block_group, 1514 bg_list); 1515 list_del_init(&block_group->bg_list); 1516 1517 space_info = block_group->space_info; 1518 1519 if (ret || btrfs_mixed_space_info(space_info)) { 1520 btrfs_put_block_group(block_group); 1521 continue; 1522 } 1523 spin_unlock(&fs_info->unused_bgs_lock); 1524 1525 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1526 1527 /* Don't want to race with allocators so take the groups_sem */ 1528 down_write(&space_info->groups_sem); 1529 1530 /* 1531 * Async discard moves the final block group discard to be prior 1532 * to the unused_bgs code path. Therefore, if it's not fully 1533 * trimmed, punt it back to the async discard lists. 1534 */ 1535 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1536 !btrfs_is_free_space_trimmed(block_group)) { 1537 trace_btrfs_skip_unused_block_group(block_group); 1538 up_write(&space_info->groups_sem); 1539 /* Requeue if we failed because of async discard */ 1540 btrfs_discard_queue_work(&fs_info->discard_ctl, 1541 block_group); 1542 goto next; 1543 } 1544 1545 spin_lock(&space_info->lock); 1546 spin_lock(&block_group->lock); 1547 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1548 list_is_singular(&block_group->list)) { 1549 /* 1550 * We want to bail if we made new allocations or have 1551 * outstanding allocations in this block group. We do 1552 * the ro check in case balance is currently acting on 1553 * this block group. 1554 * 1555 * Also bail out if this is the only block group for its 1556 * type, because otherwise we would lose profile 1557 * information from fs_info->avail_*_alloc_bits and the 1558 * next block group of this type would be created with a 1559 * "single" profile (even if we're in a raid fs) because 1560 * fs_info->avail_*_alloc_bits would be 0. 1561 */ 1562 trace_btrfs_skip_unused_block_group(block_group); 1563 spin_unlock(&block_group->lock); 1564 spin_unlock(&space_info->lock); 1565 up_write(&space_info->groups_sem); 1566 goto next; 1567 } 1568 1569 /* 1570 * The block group may be unused but there may be space reserved 1571 * accounting with the existence of that block group, that is, 1572 * space_info->bytes_may_use was incremented by a task but no 1573 * space was yet allocated from the block group by the task. 1574 * That space may or may not be allocated, as we are generally 1575 * pessimistic about space reservation for metadata as well as 1576 * for data when using compression (as we reserve space based on 1577 * the worst case, when data can't be compressed, and before 1578 * actually attempting compression, before starting writeback). 1579 * 1580 * So check if the total space of the space_info minus the size 1581 * of this block group is less than the used space of the 1582 * space_info - if that's the case, then it means we have tasks 1583 * that might be relying on the block group in order to allocate 1584 * extents, and add back the block group to the unused list when 1585 * we finish, so that we retry later in case no tasks ended up 1586 * needing to allocate extents from the block group. 1587 */ 1588 used = btrfs_space_info_used(space_info, true); 1589 if (space_info->total_bytes - block_group->length < used && 1590 block_group->zone_unusable < block_group->length) { 1591 /* 1592 * Add a reference for the list, compensate for the ref 1593 * drop under the "next" label for the 1594 * fs_info->unused_bgs list. 1595 */ 1596 btrfs_link_bg_list(block_group, &retry_list); 1597 1598 trace_btrfs_skip_unused_block_group(block_group); 1599 spin_unlock(&block_group->lock); 1600 spin_unlock(&space_info->lock); 1601 up_write(&space_info->groups_sem); 1602 goto next; 1603 } 1604 1605 spin_unlock(&block_group->lock); 1606 spin_unlock(&space_info->lock); 1607 1608 /* We don't want to force the issue, only flip if it's ok. */ 1609 ret = inc_block_group_ro(block_group, 0); 1610 up_write(&space_info->groups_sem); 1611 if (ret < 0) { 1612 ret = 0; 1613 goto next; 1614 } 1615 1616 ret = btrfs_zone_finish(block_group); 1617 if (ret < 0) { 1618 btrfs_dec_block_group_ro(block_group); 1619 if (ret == -EAGAIN) 1620 ret = 0; 1621 goto next; 1622 } 1623 1624 /* 1625 * Want to do this before we do anything else so we can recover 1626 * properly if we fail to join the transaction. 1627 */ 1628 trans = btrfs_start_trans_remove_block_group(fs_info, 1629 block_group->start); 1630 if (IS_ERR(trans)) { 1631 btrfs_dec_block_group_ro(block_group); 1632 ret = PTR_ERR(trans); 1633 goto next; 1634 } 1635 1636 /* 1637 * We could have pending pinned extents for this block group, 1638 * just delete them, we don't care about them anymore. 1639 */ 1640 if (!clean_pinned_extents(trans, block_group)) { 1641 btrfs_dec_block_group_ro(block_group); 1642 goto end_trans; 1643 } 1644 1645 /* 1646 * At this point, the block_group is read only and should fail 1647 * new allocations. However, btrfs_finish_extent_commit() can 1648 * cause this block_group to be placed back on the discard 1649 * lists because now the block_group isn't fully discarded. 1650 * Bail here and try again later after discarding everything. 1651 */ 1652 spin_lock(&fs_info->discard_ctl.lock); 1653 if (!list_empty(&block_group->discard_list)) { 1654 spin_unlock(&fs_info->discard_ctl.lock); 1655 btrfs_dec_block_group_ro(block_group); 1656 btrfs_discard_queue_work(&fs_info->discard_ctl, 1657 block_group); 1658 goto end_trans; 1659 } 1660 spin_unlock(&fs_info->discard_ctl.lock); 1661 1662 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1663 spin_lock(&space_info->lock); 1664 spin_lock(&block_group->lock); 1665 1666 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned); 1667 space_info->bytes_readonly += block_group->pinned; 1668 block_group->pinned = 0; 1669 1670 spin_unlock(&block_group->lock); 1671 spin_unlock(&space_info->lock); 1672 1673 /* 1674 * The normal path here is an unused block group is passed here, 1675 * then trimming is handled in the transaction commit path. 1676 * Async discard interposes before this to do the trimming 1677 * before coming down the unused block group path as trimming 1678 * will no longer be done later in the transaction commit path. 1679 */ 1680 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1681 goto flip_async; 1682 1683 /* 1684 * DISCARD can flip during remount. On zoned filesystems, we 1685 * need to reset sequential-required zones. 1686 */ 1687 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1688 btrfs_is_zoned(fs_info); 1689 1690 /* Implicit trim during transaction commit. */ 1691 if (trimming) 1692 btrfs_freeze_block_group(block_group); 1693 1694 /* 1695 * Btrfs_remove_chunk will abort the transaction if things go 1696 * horribly wrong. 1697 */ 1698 ret = btrfs_remove_chunk(trans, block_group->start); 1699 1700 if (ret) { 1701 if (trimming) 1702 btrfs_unfreeze_block_group(block_group); 1703 goto end_trans; 1704 } 1705 1706 /* 1707 * If we're not mounted with -odiscard, we can just forget 1708 * about this block group. Otherwise we'll need to wait 1709 * until transaction commit to do the actual discard. 1710 */ 1711 if (trimming) { 1712 spin_lock(&fs_info->unused_bgs_lock); 1713 /* 1714 * A concurrent scrub might have added us to the list 1715 * fs_info->unused_bgs, so use a list_move operation 1716 * to add the block group to the deleted_bgs list. 1717 */ 1718 list_move(&block_group->bg_list, 1719 &trans->transaction->deleted_bgs); 1720 spin_unlock(&fs_info->unused_bgs_lock); 1721 btrfs_get_block_group(block_group); 1722 } 1723 end_trans: 1724 btrfs_end_transaction(trans); 1725 next: 1726 btrfs_put_block_group(block_group); 1727 spin_lock(&fs_info->unused_bgs_lock); 1728 } 1729 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1730 spin_unlock(&fs_info->unused_bgs_lock); 1731 mutex_unlock(&fs_info->reclaim_bgs_lock); 1732 return; 1733 1734 flip_async: 1735 btrfs_end_transaction(trans); 1736 spin_lock(&fs_info->unused_bgs_lock); 1737 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1738 spin_unlock(&fs_info->unused_bgs_lock); 1739 mutex_unlock(&fs_info->reclaim_bgs_lock); 1740 btrfs_put_block_group(block_group); 1741 btrfs_discard_punt_unused_bgs_list(fs_info); 1742 } 1743 1744 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1745 { 1746 struct btrfs_fs_info *fs_info = bg->fs_info; 1747 1748 spin_lock(&fs_info->unused_bgs_lock); 1749 if (list_empty(&bg->bg_list)) { 1750 btrfs_get_block_group(bg); 1751 trace_btrfs_add_unused_block_group(bg); 1752 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1753 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1754 /* Pull out the block group from the reclaim_bgs list. */ 1755 trace_btrfs_add_unused_block_group(bg); 1756 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1757 } 1758 spin_unlock(&fs_info->unused_bgs_lock); 1759 } 1760 1761 /* 1762 * We want block groups with a low number of used bytes to be in the beginning 1763 * of the list, so they will get reclaimed first. 1764 */ 1765 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1766 const struct list_head *b) 1767 { 1768 const struct btrfs_block_group *bg1, *bg2; 1769 1770 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1771 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1772 1773 return bg1->used > bg2->used; 1774 } 1775 1776 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info) 1777 { 1778 if (btrfs_is_zoned(fs_info)) 1779 return btrfs_zoned_should_reclaim(fs_info); 1780 return true; 1781 } 1782 1783 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed) 1784 { 1785 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info); 1786 u64 thresh_bytes = mult_perc(bg->length, thresh_pct); 1787 const u64 new_val = bg->used; 1788 const u64 old_val = new_val + bytes_freed; 1789 1790 if (thresh_bytes == 0) 1791 return false; 1792 1793 /* 1794 * If we were below the threshold before don't reclaim, we are likely a 1795 * brand new block group and we don't want to relocate new block groups. 1796 */ 1797 if (old_val < thresh_bytes) 1798 return false; 1799 if (new_val >= thresh_bytes) 1800 return false; 1801 return true; 1802 } 1803 1804 void btrfs_reclaim_bgs_work(struct work_struct *work) 1805 { 1806 struct btrfs_fs_info *fs_info = 1807 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1808 struct btrfs_block_group *bg; 1809 struct btrfs_space_info *space_info; 1810 LIST_HEAD(retry_list); 1811 1812 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1813 return; 1814 1815 if (btrfs_fs_closing(fs_info)) 1816 return; 1817 1818 if (!btrfs_should_reclaim(fs_info)) 1819 return; 1820 1821 sb_start_write(fs_info->sb); 1822 1823 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1824 sb_end_write(fs_info->sb); 1825 return; 1826 } 1827 1828 /* 1829 * Long running balances can keep us blocked here for eternity, so 1830 * simply skip reclaim if we're unable to get the mutex. 1831 */ 1832 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1833 btrfs_exclop_finish(fs_info); 1834 sb_end_write(fs_info->sb); 1835 return; 1836 } 1837 1838 spin_lock(&fs_info->unused_bgs_lock); 1839 /* 1840 * Sort happens under lock because we can't simply splice it and sort. 1841 * The block groups might still be in use and reachable via bg_list, 1842 * and their presence in the reclaim_bgs list must be preserved. 1843 */ 1844 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1845 while (!list_empty(&fs_info->reclaim_bgs)) { 1846 u64 zone_unusable; 1847 u64 used; 1848 u64 reserved; 1849 int ret = 0; 1850 1851 bg = list_first_entry(&fs_info->reclaim_bgs, 1852 struct btrfs_block_group, 1853 bg_list); 1854 list_del_init(&bg->bg_list); 1855 1856 space_info = bg->space_info; 1857 spin_unlock(&fs_info->unused_bgs_lock); 1858 1859 /* Don't race with allocators so take the groups_sem */ 1860 down_write(&space_info->groups_sem); 1861 1862 spin_lock(&space_info->lock); 1863 spin_lock(&bg->lock); 1864 if (bg->reserved || bg->pinned || bg->ro) { 1865 /* 1866 * We want to bail if we made new allocations or have 1867 * outstanding allocations in this block group. We do 1868 * the ro check in case balance is currently acting on 1869 * this block group. 1870 */ 1871 spin_unlock(&bg->lock); 1872 spin_unlock(&space_info->lock); 1873 up_write(&space_info->groups_sem); 1874 goto next; 1875 } 1876 if (bg->used == 0) { 1877 /* 1878 * It is possible that we trigger relocation on a block 1879 * group as its extents are deleted and it first goes 1880 * below the threshold, then shortly after goes empty. 1881 * 1882 * In this case, relocating it does delete it, but has 1883 * some overhead in relocation specific metadata, looking 1884 * for the non-existent extents and running some extra 1885 * transactions, which we can avoid by using one of the 1886 * other mechanisms for dealing with empty block groups. 1887 */ 1888 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1889 btrfs_mark_bg_unused(bg); 1890 spin_unlock(&bg->lock); 1891 spin_unlock(&space_info->lock); 1892 up_write(&space_info->groups_sem); 1893 goto next; 1894 1895 } 1896 /* 1897 * The block group might no longer meet the reclaim condition by 1898 * the time we get around to reclaiming it, so to avoid 1899 * reclaiming overly full block_groups, skip reclaiming them. 1900 * 1901 * Since the decision making process also depends on the amount 1902 * being freed, pass in a fake giant value to skip that extra 1903 * check, which is more meaningful when adding to the list in 1904 * the first place. 1905 */ 1906 if (!should_reclaim_block_group(bg, bg->length)) { 1907 spin_unlock(&bg->lock); 1908 spin_unlock(&space_info->lock); 1909 up_write(&space_info->groups_sem); 1910 goto next; 1911 } 1912 1913 /* 1914 * Cache the zone_unusable value before turning the block group 1915 * to read only. As soon as the block group is read only it's 1916 * zone_unusable value gets moved to the block group's read-only 1917 * bytes and isn't available for calculations anymore. We also 1918 * cache it before unlocking the block group, to prevent races 1919 * (reports from KCSAN and such tools) with tasks updating it. 1920 */ 1921 zone_unusable = bg->zone_unusable; 1922 1923 spin_unlock(&bg->lock); 1924 spin_unlock(&space_info->lock); 1925 1926 /* 1927 * Get out fast, in case we're read-only or unmounting the 1928 * filesystem. It is OK to drop block groups from the list even 1929 * for the read-only case. As we did sb_start_write(), 1930 * "mount -o remount,ro" won't happen and read-only filesystem 1931 * means it is forced read-only due to a fatal error. So, it 1932 * never gets back to read-write to let us reclaim again. 1933 */ 1934 if (btrfs_need_cleaner_sleep(fs_info)) { 1935 up_write(&space_info->groups_sem); 1936 goto next; 1937 } 1938 1939 ret = inc_block_group_ro(bg, 0); 1940 up_write(&space_info->groups_sem); 1941 if (ret < 0) 1942 goto next; 1943 1944 /* 1945 * The amount of bytes reclaimed corresponds to the sum of the 1946 * "used" and "reserved" counters. We have set the block group 1947 * to RO above, which prevents reservations from happening but 1948 * we may have existing reservations for which allocation has 1949 * not yet been done - btrfs_update_block_group() was not yet 1950 * called, which is where we will transfer a reserved extent's 1951 * size from the "reserved" counter to the "used" counter - this 1952 * happens when running delayed references. When we relocate the 1953 * chunk below, relocation first flushes dellaloc, waits for 1954 * ordered extent completion (which is where we create delayed 1955 * references for data extents) and commits the current 1956 * transaction (which runs delayed references), and only after 1957 * it does the actual work to move extents out of the block 1958 * group. So the reported amount of reclaimed bytes is 1959 * effectively the sum of the 'used' and 'reserved' counters. 1960 */ 1961 spin_lock(&bg->lock); 1962 used = bg->used; 1963 reserved = bg->reserved; 1964 spin_unlock(&bg->lock); 1965 1966 btrfs_info(fs_info, 1967 "reclaiming chunk %llu with %llu%% used %llu%% reserved %llu%% unusable", 1968 bg->start, 1969 div64_u64(used * 100, bg->length), 1970 div64_u64(reserved * 100, bg->length), 1971 div64_u64(zone_unusable * 100, bg->length)); 1972 trace_btrfs_reclaim_block_group(bg); 1973 ret = btrfs_relocate_chunk(fs_info, bg->start); 1974 if (ret) { 1975 btrfs_dec_block_group_ro(bg); 1976 btrfs_err(fs_info, "error relocating chunk %llu", 1977 bg->start); 1978 used = 0; 1979 reserved = 0; 1980 spin_lock(&space_info->lock); 1981 space_info->reclaim_errors++; 1982 if (READ_ONCE(space_info->periodic_reclaim)) 1983 space_info->periodic_reclaim_ready = false; 1984 spin_unlock(&space_info->lock); 1985 } 1986 spin_lock(&space_info->lock); 1987 space_info->reclaim_count++; 1988 space_info->reclaim_bytes += used; 1989 space_info->reclaim_bytes += reserved; 1990 spin_unlock(&space_info->lock); 1991 1992 next: 1993 if (ret && !READ_ONCE(space_info->periodic_reclaim)) 1994 btrfs_link_bg_list(bg, &retry_list); 1995 btrfs_put_block_group(bg); 1996 1997 mutex_unlock(&fs_info->reclaim_bgs_lock); 1998 /* 1999 * Reclaiming all the block groups in the list can take really 2000 * long. Prioritize cleaning up unused block groups. 2001 */ 2002 btrfs_delete_unused_bgs(fs_info); 2003 /* 2004 * If we are interrupted by a balance, we can just bail out. The 2005 * cleaner thread restart again if necessary. 2006 */ 2007 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 2008 goto end; 2009 spin_lock(&fs_info->unused_bgs_lock); 2010 } 2011 spin_unlock(&fs_info->unused_bgs_lock); 2012 mutex_unlock(&fs_info->reclaim_bgs_lock); 2013 end: 2014 spin_lock(&fs_info->unused_bgs_lock); 2015 list_splice_tail(&retry_list, &fs_info->reclaim_bgs); 2016 spin_unlock(&fs_info->unused_bgs_lock); 2017 btrfs_exclop_finish(fs_info); 2018 sb_end_write(fs_info->sb); 2019 } 2020 2021 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 2022 { 2023 btrfs_reclaim_sweep(fs_info); 2024 spin_lock(&fs_info->unused_bgs_lock); 2025 if (!list_empty(&fs_info->reclaim_bgs)) 2026 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 2027 spin_unlock(&fs_info->unused_bgs_lock); 2028 } 2029 2030 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 2031 { 2032 struct btrfs_fs_info *fs_info = bg->fs_info; 2033 2034 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs)) 2035 trace_btrfs_add_reclaim_block_group(bg); 2036 } 2037 2038 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key, 2039 const struct btrfs_path *path) 2040 { 2041 struct btrfs_chunk_map *map; 2042 struct btrfs_block_group_item bg; 2043 struct extent_buffer *leaf; 2044 int slot; 2045 u64 flags; 2046 int ret = 0; 2047 2048 slot = path->slots[0]; 2049 leaf = path->nodes[0]; 2050 2051 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset); 2052 if (!map) { 2053 btrfs_err(fs_info, 2054 "logical %llu len %llu found bg but no related chunk", 2055 key->objectid, key->offset); 2056 return -ENOENT; 2057 } 2058 2059 if (map->start != key->objectid || map->chunk_len != key->offset) { 2060 btrfs_err(fs_info, 2061 "block group %llu len %llu mismatch with chunk %llu len %llu", 2062 key->objectid, key->offset, map->start, map->chunk_len); 2063 ret = -EUCLEAN; 2064 goto out_free_map; 2065 } 2066 2067 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2068 sizeof(bg)); 2069 flags = btrfs_stack_block_group_flags(&bg) & 2070 BTRFS_BLOCK_GROUP_TYPE_MASK; 2071 2072 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2073 btrfs_err(fs_info, 2074 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2075 key->objectid, key->offset, flags, 2076 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type)); 2077 ret = -EUCLEAN; 2078 } 2079 2080 out_free_map: 2081 btrfs_free_chunk_map(map); 2082 return ret; 2083 } 2084 2085 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2086 struct btrfs_path *path, 2087 const struct btrfs_key *key) 2088 { 2089 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2090 int ret; 2091 struct btrfs_key found_key; 2092 2093 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2094 if (found_key.objectid >= key->objectid && 2095 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2096 return read_bg_from_eb(fs_info, &found_key, path); 2097 } 2098 } 2099 return ret; 2100 } 2101 2102 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2103 { 2104 u64 extra_flags = chunk_to_extended(flags) & 2105 BTRFS_EXTENDED_PROFILE_MASK; 2106 2107 write_seqlock(&fs_info->profiles_lock); 2108 if (flags & BTRFS_BLOCK_GROUP_DATA) 2109 fs_info->avail_data_alloc_bits |= extra_flags; 2110 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2111 fs_info->avail_metadata_alloc_bits |= extra_flags; 2112 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2113 fs_info->avail_system_alloc_bits |= extra_flags; 2114 write_sequnlock(&fs_info->profiles_lock); 2115 } 2116 2117 /* 2118 * Map a physical disk address to a list of logical addresses. 2119 * 2120 * @fs_info: the filesystem 2121 * @chunk_start: logical address of block group 2122 * @physical: physical address to map to logical addresses 2123 * @logical: return array of logical addresses which map to @physical 2124 * @naddrs: length of @logical 2125 * @stripe_len: size of IO stripe for the given block group 2126 * 2127 * Maps a particular @physical disk address to a list of @logical addresses. 2128 * Used primarily to exclude those portions of a block group that contain super 2129 * block copies. 2130 */ 2131 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2132 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2133 { 2134 struct btrfs_chunk_map *map; 2135 u64 *buf; 2136 u64 bytenr; 2137 u64 data_stripe_length; 2138 u64 io_stripe_size; 2139 int i, nr = 0; 2140 int ret = 0; 2141 2142 map = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2143 if (IS_ERR(map)) 2144 return -EIO; 2145 2146 data_stripe_length = map->stripe_size; 2147 io_stripe_size = BTRFS_STRIPE_LEN; 2148 chunk_start = map->start; 2149 2150 /* For RAID5/6 adjust to a full IO stripe length */ 2151 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2152 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2153 2154 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2155 if (!buf) { 2156 ret = -ENOMEM; 2157 goto out; 2158 } 2159 2160 for (i = 0; i < map->num_stripes; i++) { 2161 bool already_inserted = false; 2162 u32 stripe_nr; 2163 u32 offset; 2164 int j; 2165 2166 if (!in_range(physical, map->stripes[i].physical, 2167 data_stripe_length)) 2168 continue; 2169 2170 stripe_nr = (physical - map->stripes[i].physical) >> 2171 BTRFS_STRIPE_LEN_SHIFT; 2172 offset = (physical - map->stripes[i].physical) & 2173 BTRFS_STRIPE_LEN_MASK; 2174 2175 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2176 BTRFS_BLOCK_GROUP_RAID10)) 2177 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2178 map->sub_stripes); 2179 /* 2180 * The remaining case would be for RAID56, multiply by 2181 * nr_data_stripes(). Alternatively, just use rmap_len below 2182 * instead of map->stripe_len 2183 */ 2184 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2185 2186 /* Ensure we don't add duplicate addresses */ 2187 for (j = 0; j < nr; j++) { 2188 if (buf[j] == bytenr) { 2189 already_inserted = true; 2190 break; 2191 } 2192 } 2193 2194 if (!already_inserted) 2195 buf[nr++] = bytenr; 2196 } 2197 2198 *logical = buf; 2199 *naddrs = nr; 2200 *stripe_len = io_stripe_size; 2201 out: 2202 btrfs_free_chunk_map(map); 2203 return ret; 2204 } 2205 2206 static int exclude_super_stripes(struct btrfs_block_group *cache) 2207 { 2208 struct btrfs_fs_info *fs_info = cache->fs_info; 2209 const bool zoned = btrfs_is_zoned(fs_info); 2210 u64 bytenr; 2211 u64 *logical; 2212 int stripe_len; 2213 int i, nr, ret; 2214 2215 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2216 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2217 cache->bytes_super += stripe_len; 2218 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start, 2219 cache->start + stripe_len - 1, 2220 EXTENT_DIRTY, NULL); 2221 if (ret) 2222 return ret; 2223 } 2224 2225 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2226 bytenr = btrfs_sb_offset(i); 2227 ret = btrfs_rmap_block(fs_info, cache->start, 2228 bytenr, &logical, &nr, &stripe_len); 2229 if (ret) 2230 return ret; 2231 2232 /* Shouldn't have super stripes in sequential zones */ 2233 if (zoned && nr) { 2234 kfree(logical); 2235 btrfs_err(fs_info, 2236 "zoned: block group %llu must not contain super block", 2237 cache->start); 2238 return -EUCLEAN; 2239 } 2240 2241 while (nr--) { 2242 u64 len = min_t(u64, stripe_len, 2243 cache->start + cache->length - logical[nr]); 2244 2245 cache->bytes_super += len; 2246 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, 2247 logical[nr], logical[nr] + len - 1, 2248 EXTENT_DIRTY, NULL); 2249 if (ret) { 2250 kfree(logical); 2251 return ret; 2252 } 2253 } 2254 2255 kfree(logical); 2256 } 2257 return 0; 2258 } 2259 2260 static struct btrfs_block_group *btrfs_create_block_group_cache( 2261 struct btrfs_fs_info *fs_info, u64 start) 2262 { 2263 struct btrfs_block_group *cache; 2264 2265 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2266 if (!cache) 2267 return NULL; 2268 2269 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2270 GFP_NOFS); 2271 if (!cache->free_space_ctl) { 2272 kfree(cache); 2273 return NULL; 2274 } 2275 2276 cache->start = start; 2277 2278 cache->fs_info = fs_info; 2279 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2280 2281 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2282 2283 refcount_set(&cache->refs, 1); 2284 spin_lock_init(&cache->lock); 2285 init_rwsem(&cache->data_rwsem); 2286 INIT_LIST_HEAD(&cache->list); 2287 INIT_LIST_HEAD(&cache->cluster_list); 2288 INIT_LIST_HEAD(&cache->bg_list); 2289 INIT_LIST_HEAD(&cache->ro_list); 2290 INIT_LIST_HEAD(&cache->discard_list); 2291 INIT_LIST_HEAD(&cache->dirty_list); 2292 INIT_LIST_HEAD(&cache->io_list); 2293 INIT_LIST_HEAD(&cache->active_bg_list); 2294 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2295 atomic_set(&cache->frozen, 0); 2296 mutex_init(&cache->free_space_lock); 2297 2298 return cache; 2299 } 2300 2301 /* 2302 * Iterate all chunks and verify that each of them has the corresponding block 2303 * group 2304 */ 2305 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2306 { 2307 u64 start = 0; 2308 int ret = 0; 2309 2310 while (1) { 2311 struct btrfs_chunk_map *map; 2312 struct btrfs_block_group *bg; 2313 2314 /* 2315 * btrfs_find_chunk_map() will return the first chunk map 2316 * intersecting the range, so setting @length to 1 is enough to 2317 * get the first chunk. 2318 */ 2319 map = btrfs_find_chunk_map(fs_info, start, 1); 2320 if (!map) 2321 break; 2322 2323 bg = btrfs_lookup_block_group(fs_info, map->start); 2324 if (!bg) { 2325 btrfs_err(fs_info, 2326 "chunk start=%llu len=%llu doesn't have corresponding block group", 2327 map->start, map->chunk_len); 2328 ret = -EUCLEAN; 2329 btrfs_free_chunk_map(map); 2330 break; 2331 } 2332 if (bg->start != map->start || bg->length != map->chunk_len || 2333 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2334 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2335 btrfs_err(fs_info, 2336 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2337 map->start, map->chunk_len, 2338 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2339 bg->start, bg->length, 2340 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2341 ret = -EUCLEAN; 2342 btrfs_free_chunk_map(map); 2343 btrfs_put_block_group(bg); 2344 break; 2345 } 2346 start = map->start + map->chunk_len; 2347 btrfs_free_chunk_map(map); 2348 btrfs_put_block_group(bg); 2349 } 2350 return ret; 2351 } 2352 2353 static int read_one_block_group(struct btrfs_fs_info *info, 2354 struct btrfs_block_group_item *bgi, 2355 const struct btrfs_key *key, 2356 int need_clear) 2357 { 2358 struct btrfs_block_group *cache; 2359 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2360 int ret; 2361 2362 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2363 2364 cache = btrfs_create_block_group_cache(info, key->objectid); 2365 if (!cache) 2366 return -ENOMEM; 2367 2368 cache->length = key->offset; 2369 cache->used = btrfs_stack_block_group_used(bgi); 2370 cache->commit_used = cache->used; 2371 cache->flags = btrfs_stack_block_group_flags(bgi); 2372 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2373 cache->space_info = btrfs_find_space_info(info, cache->flags); 2374 2375 set_free_space_tree_thresholds(cache); 2376 2377 if (need_clear) { 2378 /* 2379 * When we mount with old space cache, we need to 2380 * set BTRFS_DC_CLEAR and set dirty flag. 2381 * 2382 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2383 * truncate the old free space cache inode and 2384 * setup a new one. 2385 * b) Setting 'dirty flag' makes sure that we flush 2386 * the new space cache info onto disk. 2387 */ 2388 if (btrfs_test_opt(info, SPACE_CACHE)) 2389 cache->disk_cache_state = BTRFS_DC_CLEAR; 2390 } 2391 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2392 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2393 btrfs_err(info, 2394 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2395 cache->start); 2396 ret = -EINVAL; 2397 goto error; 2398 } 2399 2400 ret = btrfs_load_block_group_zone_info(cache, false); 2401 if (ret) { 2402 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2403 cache->start); 2404 goto error; 2405 } 2406 2407 /* 2408 * We need to exclude the super stripes now so that the space info has 2409 * super bytes accounted for, otherwise we'll think we have more space 2410 * than we actually do. 2411 */ 2412 ret = exclude_super_stripes(cache); 2413 if (ret) { 2414 /* We may have excluded something, so call this just in case. */ 2415 btrfs_free_excluded_extents(cache); 2416 goto error; 2417 } 2418 2419 /* 2420 * For zoned filesystem, space after the allocation offset is the only 2421 * free space for a block group. So, we don't need any caching work. 2422 * btrfs_calc_zone_unusable() will set the amount of free space and 2423 * zone_unusable space. 2424 * 2425 * For regular filesystem, check for two cases, either we are full, and 2426 * therefore don't need to bother with the caching work since we won't 2427 * find any space, or we are empty, and we can just add all the space 2428 * in and be done with it. This saves us _a_lot_ of time, particularly 2429 * in the full case. 2430 */ 2431 if (btrfs_is_zoned(info)) { 2432 btrfs_calc_zone_unusable(cache); 2433 /* Should not have any excluded extents. Just in case, though. */ 2434 btrfs_free_excluded_extents(cache); 2435 } else if (cache->length == cache->used) { 2436 cache->cached = BTRFS_CACHE_FINISHED; 2437 btrfs_free_excluded_extents(cache); 2438 } else if (cache->used == 0) { 2439 cache->cached = BTRFS_CACHE_FINISHED; 2440 ret = btrfs_add_new_free_space(cache, cache->start, 2441 cache->start + cache->length, NULL); 2442 btrfs_free_excluded_extents(cache); 2443 if (ret) 2444 goto error; 2445 } 2446 2447 ret = btrfs_add_block_group_cache(cache); 2448 if (ret) { 2449 btrfs_remove_free_space_cache(cache); 2450 goto error; 2451 } 2452 2453 trace_btrfs_add_block_group(info, cache, 0); 2454 btrfs_add_bg_to_space_info(info, cache); 2455 2456 set_avail_alloc_bits(info, cache->flags); 2457 if (btrfs_chunk_writeable(info, cache->start)) { 2458 if (cache->used == 0) { 2459 ASSERT(list_empty(&cache->bg_list)); 2460 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2461 btrfs_discard_queue_work(&info->discard_ctl, cache); 2462 else 2463 btrfs_mark_bg_unused(cache); 2464 } 2465 } else { 2466 inc_block_group_ro(cache, 1); 2467 } 2468 2469 return 0; 2470 error: 2471 btrfs_put_block_group(cache); 2472 return ret; 2473 } 2474 2475 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2476 { 2477 struct rb_node *node; 2478 int ret = 0; 2479 2480 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 2481 struct btrfs_chunk_map *map; 2482 struct btrfs_block_group *bg; 2483 2484 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 2485 bg = btrfs_create_block_group_cache(fs_info, map->start); 2486 if (!bg) { 2487 ret = -ENOMEM; 2488 break; 2489 } 2490 2491 /* Fill dummy cache as FULL */ 2492 bg->length = map->chunk_len; 2493 bg->flags = map->type; 2494 bg->cached = BTRFS_CACHE_FINISHED; 2495 bg->used = map->chunk_len; 2496 bg->flags = map->type; 2497 bg->space_info = btrfs_find_space_info(fs_info, bg->flags); 2498 ret = btrfs_add_block_group_cache(bg); 2499 /* 2500 * We may have some valid block group cache added already, in 2501 * that case we skip to the next one. 2502 */ 2503 if (ret == -EEXIST) { 2504 ret = 0; 2505 btrfs_put_block_group(bg); 2506 continue; 2507 } 2508 2509 if (ret) { 2510 btrfs_remove_free_space_cache(bg); 2511 btrfs_put_block_group(bg); 2512 break; 2513 } 2514 2515 btrfs_add_bg_to_space_info(fs_info, bg); 2516 2517 set_avail_alloc_bits(fs_info, bg->flags); 2518 } 2519 if (!ret) 2520 btrfs_init_global_block_rsv(fs_info); 2521 return ret; 2522 } 2523 2524 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2525 { 2526 struct btrfs_root *root = btrfs_block_group_root(info); 2527 struct btrfs_path *path; 2528 int ret; 2529 struct btrfs_block_group *cache; 2530 struct btrfs_space_info *space_info; 2531 struct btrfs_key key; 2532 int need_clear = 0; 2533 u64 cache_gen; 2534 2535 /* 2536 * Either no extent root (with ibadroots rescue option) or we have 2537 * unsupported RO options. The fs can never be mounted read-write, so no 2538 * need to waste time searching block group items. 2539 * 2540 * This also allows new extent tree related changes to be RO compat, 2541 * no need for a full incompat flag. 2542 */ 2543 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2544 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2545 return fill_dummy_bgs(info); 2546 2547 key.objectid = 0; 2548 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2549 key.offset = 0; 2550 path = btrfs_alloc_path(); 2551 if (!path) 2552 return -ENOMEM; 2553 2554 cache_gen = btrfs_super_cache_generation(info->super_copy); 2555 if (btrfs_test_opt(info, SPACE_CACHE) && 2556 btrfs_super_generation(info->super_copy) != cache_gen) 2557 need_clear = 1; 2558 if (btrfs_test_opt(info, CLEAR_CACHE)) 2559 need_clear = 1; 2560 2561 while (1) { 2562 struct btrfs_block_group_item bgi; 2563 struct extent_buffer *leaf; 2564 int slot; 2565 2566 ret = find_first_block_group(info, path, &key); 2567 if (ret > 0) 2568 break; 2569 if (ret != 0) 2570 goto error; 2571 2572 leaf = path->nodes[0]; 2573 slot = path->slots[0]; 2574 2575 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2576 sizeof(bgi)); 2577 2578 btrfs_item_key_to_cpu(leaf, &key, slot); 2579 btrfs_release_path(path); 2580 ret = read_one_block_group(info, &bgi, &key, need_clear); 2581 if (ret < 0) 2582 goto error; 2583 key.objectid += key.offset; 2584 key.offset = 0; 2585 } 2586 btrfs_release_path(path); 2587 2588 list_for_each_entry(space_info, &info->space_info, list) { 2589 int i; 2590 2591 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2592 if (list_empty(&space_info->block_groups[i])) 2593 continue; 2594 cache = list_first_entry(&space_info->block_groups[i], 2595 struct btrfs_block_group, 2596 list); 2597 btrfs_sysfs_add_block_group_type(cache); 2598 } 2599 2600 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2601 (BTRFS_BLOCK_GROUP_RAID10 | 2602 BTRFS_BLOCK_GROUP_RAID1_MASK | 2603 BTRFS_BLOCK_GROUP_RAID56_MASK | 2604 BTRFS_BLOCK_GROUP_DUP))) 2605 continue; 2606 /* 2607 * Avoid allocating from un-mirrored block group if there are 2608 * mirrored block groups. 2609 */ 2610 list_for_each_entry(cache, 2611 &space_info->block_groups[BTRFS_RAID_RAID0], 2612 list) 2613 inc_block_group_ro(cache, 1); 2614 list_for_each_entry(cache, 2615 &space_info->block_groups[BTRFS_RAID_SINGLE], 2616 list) 2617 inc_block_group_ro(cache, 1); 2618 } 2619 2620 btrfs_init_global_block_rsv(info); 2621 ret = check_chunk_block_group_mappings(info); 2622 error: 2623 btrfs_free_path(path); 2624 /* 2625 * We've hit some error while reading the extent tree, and have 2626 * rescue=ibadroots mount option. 2627 * Try to fill the tree using dummy block groups so that the user can 2628 * continue to mount and grab their data. 2629 */ 2630 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2631 ret = fill_dummy_bgs(info); 2632 return ret; 2633 } 2634 2635 /* 2636 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2637 * allocation. 2638 * 2639 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2640 * phases. 2641 */ 2642 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2643 struct btrfs_block_group *block_group) 2644 { 2645 struct btrfs_fs_info *fs_info = trans->fs_info; 2646 struct btrfs_block_group_item bgi; 2647 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2648 struct btrfs_key key; 2649 u64 old_commit_used; 2650 int ret; 2651 2652 spin_lock(&block_group->lock); 2653 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2654 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2655 block_group->global_root_id); 2656 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2657 old_commit_used = block_group->commit_used; 2658 block_group->commit_used = block_group->used; 2659 key.objectid = block_group->start; 2660 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2661 key.offset = block_group->length; 2662 spin_unlock(&block_group->lock); 2663 2664 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2665 if (ret < 0) { 2666 spin_lock(&block_group->lock); 2667 block_group->commit_used = old_commit_used; 2668 spin_unlock(&block_group->lock); 2669 } 2670 2671 return ret; 2672 } 2673 2674 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2675 const struct btrfs_device *device, u64 chunk_offset, 2676 u64 start, u64 num_bytes) 2677 { 2678 struct btrfs_fs_info *fs_info = device->fs_info; 2679 struct btrfs_root *root = fs_info->dev_root; 2680 BTRFS_PATH_AUTO_FREE(path); 2681 struct btrfs_dev_extent *extent; 2682 struct extent_buffer *leaf; 2683 struct btrfs_key key; 2684 int ret; 2685 2686 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2687 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2688 path = btrfs_alloc_path(); 2689 if (!path) 2690 return -ENOMEM; 2691 2692 key.objectid = device->devid; 2693 key.type = BTRFS_DEV_EXTENT_KEY; 2694 key.offset = start; 2695 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2696 if (ret) 2697 return ret; 2698 2699 leaf = path->nodes[0]; 2700 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2701 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2702 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2703 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2704 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2705 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2706 2707 return ret; 2708 } 2709 2710 /* 2711 * This function belongs to phase 2. 2712 * 2713 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2714 * phases. 2715 */ 2716 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2717 u64 chunk_offset, u64 chunk_size) 2718 { 2719 struct btrfs_fs_info *fs_info = trans->fs_info; 2720 struct btrfs_device *device; 2721 struct btrfs_chunk_map *map; 2722 u64 dev_offset; 2723 int i; 2724 int ret = 0; 2725 2726 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2727 if (IS_ERR(map)) 2728 return PTR_ERR(map); 2729 2730 /* 2731 * Take the device list mutex to prevent races with the final phase of 2732 * a device replace operation that replaces the device object associated 2733 * with the map's stripes, because the device object's id can change 2734 * at any time during that final phase of the device replace operation 2735 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2736 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2737 * resulting in persisting a device extent item with such ID. 2738 */ 2739 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2740 for (i = 0; i < map->num_stripes; i++) { 2741 device = map->stripes[i].dev; 2742 dev_offset = map->stripes[i].physical; 2743 2744 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2745 map->stripe_size); 2746 if (ret) 2747 break; 2748 } 2749 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2750 2751 btrfs_free_chunk_map(map); 2752 return ret; 2753 } 2754 2755 /* 2756 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2757 * chunk allocation. 2758 * 2759 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2760 * phases. 2761 */ 2762 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2763 { 2764 struct btrfs_fs_info *fs_info = trans->fs_info; 2765 struct btrfs_block_group *block_group; 2766 int ret = 0; 2767 2768 while (!list_empty(&trans->new_bgs)) { 2769 int index; 2770 2771 block_group = list_first_entry(&trans->new_bgs, 2772 struct btrfs_block_group, 2773 bg_list); 2774 if (ret) 2775 goto next; 2776 2777 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2778 2779 ret = insert_block_group_item(trans, block_group); 2780 if (ret) 2781 btrfs_abort_transaction(trans, ret); 2782 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2783 &block_group->runtime_flags)) { 2784 mutex_lock(&fs_info->chunk_mutex); 2785 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2786 mutex_unlock(&fs_info->chunk_mutex); 2787 if (ret) 2788 btrfs_abort_transaction(trans, ret); 2789 } 2790 ret = insert_dev_extents(trans, block_group->start, 2791 block_group->length); 2792 if (ret) 2793 btrfs_abort_transaction(trans, ret); 2794 add_block_group_free_space(trans, block_group); 2795 2796 /* 2797 * If we restriped during balance, we may have added a new raid 2798 * type, so now add the sysfs entries when it is safe to do so. 2799 * We don't have to worry about locking here as it's handled in 2800 * btrfs_sysfs_add_block_group_type. 2801 */ 2802 if (block_group->space_info->block_group_kobjs[index] == NULL) 2803 btrfs_sysfs_add_block_group_type(block_group); 2804 2805 /* Already aborted the transaction if it failed. */ 2806 next: 2807 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2808 2809 spin_lock(&fs_info->unused_bgs_lock); 2810 list_del_init(&block_group->bg_list); 2811 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2812 btrfs_put_block_group(block_group); 2813 spin_unlock(&fs_info->unused_bgs_lock); 2814 2815 /* 2816 * If the block group is still unused, add it to the list of 2817 * unused block groups. The block group may have been created in 2818 * order to satisfy a space reservation, in which case the 2819 * extent allocation only happens later. But often we don't 2820 * actually need to allocate space that we previously reserved, 2821 * so the block group may become unused for a long time. For 2822 * example for metadata we generally reserve space for a worst 2823 * possible scenario, but then don't end up allocating all that 2824 * space or none at all (due to no need to COW, extent buffers 2825 * were already COWed in the current transaction and still 2826 * unwritten, tree heights lower than the maximum possible 2827 * height, etc). For data we generally reserve the axact amount 2828 * of space we are going to allocate later, the exception is 2829 * when using compression, as we must reserve space based on the 2830 * uncompressed data size, because the compression is only done 2831 * when writeback triggered and we don't know how much space we 2832 * are actually going to need, so we reserve the uncompressed 2833 * size because the data may be incompressible in the worst case. 2834 */ 2835 if (ret == 0) { 2836 bool used; 2837 2838 spin_lock(&block_group->lock); 2839 used = btrfs_is_block_group_used(block_group); 2840 spin_unlock(&block_group->lock); 2841 2842 if (!used) 2843 btrfs_mark_bg_unused(block_group); 2844 } 2845 } 2846 btrfs_trans_release_chunk_metadata(trans); 2847 } 2848 2849 /* 2850 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2851 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2852 */ 2853 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset) 2854 { 2855 u64 div = SZ_1G; 2856 u64 index; 2857 2858 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2859 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2860 2861 /* If we have a smaller fs index based on 128MiB. */ 2862 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2863 div = SZ_128M; 2864 2865 offset = div64_u64(offset, div); 2866 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2867 return index; 2868 } 2869 2870 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2871 struct btrfs_space_info *space_info, 2872 u64 type, u64 chunk_offset, u64 size) 2873 { 2874 struct btrfs_fs_info *fs_info = trans->fs_info; 2875 struct btrfs_block_group *cache; 2876 int ret; 2877 2878 btrfs_set_log_full_commit(trans); 2879 2880 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2881 if (!cache) 2882 return ERR_PTR(-ENOMEM); 2883 2884 /* 2885 * Mark it as new before adding it to the rbtree of block groups or any 2886 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2887 * before the new flag is set. 2888 */ 2889 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2890 2891 cache->length = size; 2892 set_free_space_tree_thresholds(cache); 2893 cache->flags = type; 2894 cache->cached = BTRFS_CACHE_FINISHED; 2895 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2896 2897 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2898 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2899 2900 ret = btrfs_load_block_group_zone_info(cache, true); 2901 if (ret) { 2902 btrfs_put_block_group(cache); 2903 return ERR_PTR(ret); 2904 } 2905 2906 ret = exclude_super_stripes(cache); 2907 if (ret) { 2908 /* We may have excluded something, so call this just in case */ 2909 btrfs_free_excluded_extents(cache); 2910 btrfs_put_block_group(cache); 2911 return ERR_PTR(ret); 2912 } 2913 2914 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2915 btrfs_free_excluded_extents(cache); 2916 if (ret) { 2917 btrfs_put_block_group(cache); 2918 return ERR_PTR(ret); 2919 } 2920 2921 /* 2922 * Ensure the corresponding space_info object is created and 2923 * assigned to our block group. We want our bg to be added to the rbtree 2924 * with its ->space_info set. 2925 */ 2926 cache->space_info = space_info; 2927 ASSERT(cache->space_info); 2928 2929 ret = btrfs_add_block_group_cache(cache); 2930 if (ret) { 2931 btrfs_remove_free_space_cache(cache); 2932 btrfs_put_block_group(cache); 2933 return ERR_PTR(ret); 2934 } 2935 2936 /* 2937 * Now that our block group has its ->space_info set and is inserted in 2938 * the rbtree, update the space info's counters. 2939 */ 2940 trace_btrfs_add_block_group(fs_info, cache, 1); 2941 btrfs_add_bg_to_space_info(fs_info, cache); 2942 btrfs_update_global_block_rsv(fs_info); 2943 2944 #ifdef CONFIG_BTRFS_DEBUG 2945 if (btrfs_should_fragment_free_space(cache)) { 2946 cache->space_info->bytes_used += size >> 1; 2947 fragment_free_space(cache); 2948 } 2949 #endif 2950 2951 btrfs_link_bg_list(cache, &trans->new_bgs); 2952 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info); 2953 2954 set_avail_alloc_bits(fs_info, type); 2955 return cache; 2956 } 2957 2958 /* 2959 * Mark one block group RO, can be called several times for the same block 2960 * group. 2961 * 2962 * @cache: the destination block group 2963 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2964 * ensure we still have some free space after marking this 2965 * block group RO. 2966 */ 2967 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2968 bool do_chunk_alloc) 2969 { 2970 struct btrfs_fs_info *fs_info = cache->fs_info; 2971 struct btrfs_space_info *space_info = cache->space_info; 2972 struct btrfs_trans_handle *trans; 2973 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2974 u64 alloc_flags; 2975 int ret; 2976 bool dirty_bg_running; 2977 2978 /* 2979 * This can only happen when we are doing read-only scrub on read-only 2980 * mount. 2981 * In that case we should not start a new transaction on read-only fs. 2982 * Thus here we skip all chunk allocations. 2983 */ 2984 if (sb_rdonly(fs_info->sb)) { 2985 mutex_lock(&fs_info->ro_block_group_mutex); 2986 ret = inc_block_group_ro(cache, 0); 2987 mutex_unlock(&fs_info->ro_block_group_mutex); 2988 return ret; 2989 } 2990 2991 do { 2992 trans = btrfs_join_transaction(root); 2993 if (IS_ERR(trans)) 2994 return PTR_ERR(trans); 2995 2996 dirty_bg_running = false; 2997 2998 /* 2999 * We're not allowed to set block groups readonly after the dirty 3000 * block group cache has started writing. If it already started, 3001 * back off and let this transaction commit. 3002 */ 3003 mutex_lock(&fs_info->ro_block_group_mutex); 3004 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 3005 u64 transid = trans->transid; 3006 3007 mutex_unlock(&fs_info->ro_block_group_mutex); 3008 btrfs_end_transaction(trans); 3009 3010 ret = btrfs_wait_for_commit(fs_info, transid); 3011 if (ret) 3012 return ret; 3013 dirty_bg_running = true; 3014 } 3015 } while (dirty_bg_running); 3016 3017 if (do_chunk_alloc) { 3018 /* 3019 * If we are changing raid levels, try to allocate a 3020 * corresponding block group with the new raid level. 3021 */ 3022 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3023 if (alloc_flags != cache->flags) { 3024 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, 3025 CHUNK_ALLOC_FORCE); 3026 /* 3027 * ENOSPC is allowed here, we may have enough space 3028 * already allocated at the new raid level to carry on 3029 */ 3030 if (ret == -ENOSPC) 3031 ret = 0; 3032 if (ret < 0) 3033 goto out; 3034 } 3035 } 3036 3037 ret = inc_block_group_ro(cache, 0); 3038 if (!ret) 3039 goto out; 3040 if (ret == -ETXTBSY) 3041 goto unlock_out; 3042 3043 /* 3044 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system 3045 * chunk allocation storm to exhaust the system chunk array. Otherwise 3046 * we still want to try our best to mark the block group read-only. 3047 */ 3048 if (!do_chunk_alloc && ret == -ENOSPC && 3049 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 3050 goto unlock_out; 3051 3052 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags); 3053 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3054 if (ret < 0) 3055 goto out; 3056 /* 3057 * We have allocated a new chunk. We also need to activate that chunk to 3058 * grant metadata tickets for zoned filesystem. 3059 */ 3060 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 3061 if (ret < 0) 3062 goto out; 3063 3064 ret = inc_block_group_ro(cache, 0); 3065 if (ret == -ETXTBSY) 3066 goto unlock_out; 3067 out: 3068 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 3069 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 3070 mutex_lock(&fs_info->chunk_mutex); 3071 check_system_chunk(trans, alloc_flags); 3072 mutex_unlock(&fs_info->chunk_mutex); 3073 } 3074 unlock_out: 3075 mutex_unlock(&fs_info->ro_block_group_mutex); 3076 3077 btrfs_end_transaction(trans); 3078 return ret; 3079 } 3080 3081 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 3082 { 3083 struct btrfs_space_info *sinfo = cache->space_info; 3084 u64 num_bytes; 3085 3086 BUG_ON(!cache->ro); 3087 3088 spin_lock(&sinfo->lock); 3089 spin_lock(&cache->lock); 3090 if (!--cache->ro) { 3091 if (btrfs_is_zoned(cache->fs_info)) { 3092 /* Migrate zone_unusable bytes back */ 3093 cache->zone_unusable = 3094 (cache->alloc_offset - cache->used - cache->pinned - 3095 cache->reserved) + 3096 (cache->length - cache->zone_capacity); 3097 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable); 3098 sinfo->bytes_readonly -= cache->zone_unusable; 3099 } 3100 num_bytes = cache->length - cache->reserved - 3101 cache->pinned - cache->bytes_super - 3102 cache->zone_unusable - cache->used; 3103 sinfo->bytes_readonly -= num_bytes; 3104 list_del_init(&cache->ro_list); 3105 } 3106 spin_unlock(&cache->lock); 3107 spin_unlock(&sinfo->lock); 3108 } 3109 3110 static int update_block_group_item(struct btrfs_trans_handle *trans, 3111 struct btrfs_path *path, 3112 struct btrfs_block_group *cache) 3113 { 3114 struct btrfs_fs_info *fs_info = trans->fs_info; 3115 int ret; 3116 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3117 unsigned long bi; 3118 struct extent_buffer *leaf; 3119 struct btrfs_block_group_item bgi; 3120 struct btrfs_key key; 3121 u64 old_commit_used; 3122 u64 used; 3123 3124 /* 3125 * Block group items update can be triggered out of commit transaction 3126 * critical section, thus we need a consistent view of used bytes. 3127 * We cannot use cache->used directly outside of the spin lock, as it 3128 * may be changed. 3129 */ 3130 spin_lock(&cache->lock); 3131 old_commit_used = cache->commit_used; 3132 used = cache->used; 3133 /* No change in used bytes, can safely skip it. */ 3134 if (cache->commit_used == used) { 3135 spin_unlock(&cache->lock); 3136 return 0; 3137 } 3138 cache->commit_used = used; 3139 spin_unlock(&cache->lock); 3140 3141 key.objectid = cache->start; 3142 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3143 key.offset = cache->length; 3144 3145 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3146 if (ret) { 3147 if (ret > 0) 3148 ret = -ENOENT; 3149 goto fail; 3150 } 3151 3152 leaf = path->nodes[0]; 3153 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3154 btrfs_set_stack_block_group_used(&bgi, used); 3155 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3156 cache->global_root_id); 3157 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3158 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3159 fail: 3160 btrfs_release_path(path); 3161 /* 3162 * We didn't update the block group item, need to revert commit_used 3163 * unless the block group item didn't exist yet - this is to prevent a 3164 * race with a concurrent insertion of the block group item, with 3165 * insert_block_group_item(), that happened just after we attempted to 3166 * update. In that case we would reset commit_used to 0 just after the 3167 * insertion set it to a value greater than 0 - if the block group later 3168 * becomes with 0 used bytes, we would incorrectly skip its update. 3169 */ 3170 if (ret < 0 && ret != -ENOENT) { 3171 spin_lock(&cache->lock); 3172 cache->commit_used = old_commit_used; 3173 spin_unlock(&cache->lock); 3174 } 3175 return ret; 3176 3177 } 3178 3179 static int cache_save_setup(struct btrfs_block_group *block_group, 3180 struct btrfs_trans_handle *trans, 3181 struct btrfs_path *path) 3182 { 3183 struct btrfs_fs_info *fs_info = block_group->fs_info; 3184 struct inode *inode = NULL; 3185 struct extent_changeset *data_reserved = NULL; 3186 u64 alloc_hint = 0; 3187 int dcs = BTRFS_DC_ERROR; 3188 u64 cache_size = 0; 3189 int retries = 0; 3190 int ret = 0; 3191 3192 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3193 return 0; 3194 3195 /* 3196 * If this block group is smaller than 100 megs don't bother caching the 3197 * block group. 3198 */ 3199 if (block_group->length < (100 * SZ_1M)) { 3200 spin_lock(&block_group->lock); 3201 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3202 spin_unlock(&block_group->lock); 3203 return 0; 3204 } 3205 3206 if (TRANS_ABORTED(trans)) 3207 return 0; 3208 again: 3209 inode = lookup_free_space_inode(block_group, path); 3210 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3211 ret = PTR_ERR(inode); 3212 btrfs_release_path(path); 3213 goto out; 3214 } 3215 3216 if (IS_ERR(inode)) { 3217 BUG_ON(retries); 3218 retries++; 3219 3220 if (block_group->ro) 3221 goto out_free; 3222 3223 ret = create_free_space_inode(trans, block_group, path); 3224 if (ret) 3225 goto out_free; 3226 goto again; 3227 } 3228 3229 /* 3230 * We want to set the generation to 0, that way if anything goes wrong 3231 * from here on out we know not to trust this cache when we load up next 3232 * time. 3233 */ 3234 BTRFS_I(inode)->generation = 0; 3235 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3236 if (ret) { 3237 /* 3238 * So theoretically we could recover from this, simply set the 3239 * super cache generation to 0 so we know to invalidate the 3240 * cache, but then we'd have to keep track of the block groups 3241 * that fail this way so we know we _have_ to reset this cache 3242 * before the next commit or risk reading stale cache. So to 3243 * limit our exposure to horrible edge cases lets just abort the 3244 * transaction, this only happens in really bad situations 3245 * anyway. 3246 */ 3247 btrfs_abort_transaction(trans, ret); 3248 goto out_put; 3249 } 3250 WARN_ON(ret); 3251 3252 /* We've already setup this transaction, go ahead and exit */ 3253 if (block_group->cache_generation == trans->transid && 3254 i_size_read(inode)) { 3255 dcs = BTRFS_DC_SETUP; 3256 goto out_put; 3257 } 3258 3259 if (i_size_read(inode) > 0) { 3260 ret = btrfs_check_trunc_cache_free_space(fs_info, 3261 &fs_info->global_block_rsv); 3262 if (ret) 3263 goto out_put; 3264 3265 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3266 if (ret) 3267 goto out_put; 3268 } 3269 3270 spin_lock(&block_group->lock); 3271 if (block_group->cached != BTRFS_CACHE_FINISHED || 3272 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3273 /* 3274 * don't bother trying to write stuff out _if_ 3275 * a) we're not cached, 3276 * b) we're with nospace_cache mount option, 3277 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3278 */ 3279 dcs = BTRFS_DC_WRITTEN; 3280 spin_unlock(&block_group->lock); 3281 goto out_put; 3282 } 3283 spin_unlock(&block_group->lock); 3284 3285 /* 3286 * We hit an ENOSPC when setting up the cache in this transaction, just 3287 * skip doing the setup, we've already cleared the cache so we're safe. 3288 */ 3289 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3290 ret = -ENOSPC; 3291 goto out_put; 3292 } 3293 3294 /* 3295 * Try to preallocate enough space based on how big the block group is. 3296 * Keep in mind this has to include any pinned space which could end up 3297 * taking up quite a bit since it's not folded into the other space 3298 * cache. 3299 */ 3300 cache_size = div_u64(block_group->length, SZ_256M); 3301 if (!cache_size) 3302 cache_size = 1; 3303 3304 cache_size *= 16; 3305 cache_size *= fs_info->sectorsize; 3306 3307 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3308 cache_size, false); 3309 if (ret) 3310 goto out_put; 3311 3312 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3313 cache_size, cache_size, 3314 &alloc_hint); 3315 /* 3316 * Our cache requires contiguous chunks so that we don't modify a bunch 3317 * of metadata or split extents when writing the cache out, which means 3318 * we can enospc if we are heavily fragmented in addition to just normal 3319 * out of space conditions. So if we hit this just skip setting up any 3320 * other block groups for this transaction, maybe we'll unpin enough 3321 * space the next time around. 3322 */ 3323 if (!ret) 3324 dcs = BTRFS_DC_SETUP; 3325 else if (ret == -ENOSPC) 3326 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3327 3328 out_put: 3329 iput(inode); 3330 out_free: 3331 btrfs_release_path(path); 3332 out: 3333 spin_lock(&block_group->lock); 3334 if (!ret && dcs == BTRFS_DC_SETUP) 3335 block_group->cache_generation = trans->transid; 3336 block_group->disk_cache_state = dcs; 3337 spin_unlock(&block_group->lock); 3338 3339 extent_changeset_free(data_reserved); 3340 return ret; 3341 } 3342 3343 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3344 { 3345 struct btrfs_fs_info *fs_info = trans->fs_info; 3346 struct btrfs_block_group *cache, *tmp; 3347 struct btrfs_transaction *cur_trans = trans->transaction; 3348 BTRFS_PATH_AUTO_FREE(path); 3349 3350 if (list_empty(&cur_trans->dirty_bgs) || 3351 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3352 return 0; 3353 3354 path = btrfs_alloc_path(); 3355 if (!path) 3356 return -ENOMEM; 3357 3358 /* Could add new block groups, use _safe just in case */ 3359 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3360 dirty_list) { 3361 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3362 cache_save_setup(cache, trans, path); 3363 } 3364 3365 return 0; 3366 } 3367 3368 /* 3369 * Transaction commit does final block group cache writeback during a critical 3370 * section where nothing is allowed to change the FS. This is required in 3371 * order for the cache to actually match the block group, but can introduce a 3372 * lot of latency into the commit. 3373 * 3374 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3375 * There's a chance we'll have to redo some of it if the block group changes 3376 * again during the commit, but it greatly reduces the commit latency by 3377 * getting rid of the easy block groups while we're still allowing others to 3378 * join the commit. 3379 */ 3380 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3381 { 3382 struct btrfs_fs_info *fs_info = trans->fs_info; 3383 struct btrfs_block_group *cache; 3384 struct btrfs_transaction *cur_trans = trans->transaction; 3385 int ret = 0; 3386 int should_put; 3387 BTRFS_PATH_AUTO_FREE(path); 3388 LIST_HEAD(dirty); 3389 struct list_head *io = &cur_trans->io_bgs; 3390 int loops = 0; 3391 3392 spin_lock(&cur_trans->dirty_bgs_lock); 3393 if (list_empty(&cur_trans->dirty_bgs)) { 3394 spin_unlock(&cur_trans->dirty_bgs_lock); 3395 return 0; 3396 } 3397 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3398 spin_unlock(&cur_trans->dirty_bgs_lock); 3399 3400 again: 3401 /* Make sure all the block groups on our dirty list actually exist */ 3402 btrfs_create_pending_block_groups(trans); 3403 3404 if (!path) { 3405 path = btrfs_alloc_path(); 3406 if (!path) { 3407 ret = -ENOMEM; 3408 goto out; 3409 } 3410 } 3411 3412 /* 3413 * cache_write_mutex is here only to save us from balance or automatic 3414 * removal of empty block groups deleting this block group while we are 3415 * writing out the cache 3416 */ 3417 mutex_lock(&trans->transaction->cache_write_mutex); 3418 while (!list_empty(&dirty)) { 3419 bool drop_reserve = true; 3420 3421 cache = list_first_entry(&dirty, struct btrfs_block_group, 3422 dirty_list); 3423 /* 3424 * This can happen if something re-dirties a block group that 3425 * is already under IO. Just wait for it to finish and then do 3426 * it all again 3427 */ 3428 if (!list_empty(&cache->io_list)) { 3429 list_del_init(&cache->io_list); 3430 btrfs_wait_cache_io(trans, cache, path); 3431 btrfs_put_block_group(cache); 3432 } 3433 3434 3435 /* 3436 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3437 * it should update the cache_state. Don't delete until after 3438 * we wait. 3439 * 3440 * Since we're not running in the commit critical section 3441 * we need the dirty_bgs_lock to protect from update_block_group 3442 */ 3443 spin_lock(&cur_trans->dirty_bgs_lock); 3444 list_del_init(&cache->dirty_list); 3445 spin_unlock(&cur_trans->dirty_bgs_lock); 3446 3447 should_put = 1; 3448 3449 cache_save_setup(cache, trans, path); 3450 3451 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3452 cache->io_ctl.inode = NULL; 3453 ret = btrfs_write_out_cache(trans, cache, path); 3454 if (ret == 0 && cache->io_ctl.inode) { 3455 should_put = 0; 3456 3457 /* 3458 * The cache_write_mutex is protecting the 3459 * io_list, also refer to the definition of 3460 * btrfs_transaction::io_bgs for more details 3461 */ 3462 list_add_tail(&cache->io_list, io); 3463 } else { 3464 /* 3465 * If we failed to write the cache, the 3466 * generation will be bad and life goes on 3467 */ 3468 ret = 0; 3469 } 3470 } 3471 if (!ret) { 3472 ret = update_block_group_item(trans, path, cache); 3473 /* 3474 * Our block group might still be attached to the list 3475 * of new block groups in the transaction handle of some 3476 * other task (struct btrfs_trans_handle->new_bgs). This 3477 * means its block group item isn't yet in the extent 3478 * tree. If this happens ignore the error, as we will 3479 * try again later in the critical section of the 3480 * transaction commit. 3481 */ 3482 if (ret == -ENOENT) { 3483 ret = 0; 3484 spin_lock(&cur_trans->dirty_bgs_lock); 3485 if (list_empty(&cache->dirty_list)) { 3486 list_add_tail(&cache->dirty_list, 3487 &cur_trans->dirty_bgs); 3488 btrfs_get_block_group(cache); 3489 drop_reserve = false; 3490 } 3491 spin_unlock(&cur_trans->dirty_bgs_lock); 3492 } else if (ret) { 3493 btrfs_abort_transaction(trans, ret); 3494 } 3495 } 3496 3497 /* If it's not on the io list, we need to put the block group */ 3498 if (should_put) 3499 btrfs_put_block_group(cache); 3500 if (drop_reserve) 3501 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3502 /* 3503 * Avoid blocking other tasks for too long. It might even save 3504 * us from writing caches for block groups that are going to be 3505 * removed. 3506 */ 3507 mutex_unlock(&trans->transaction->cache_write_mutex); 3508 if (ret) 3509 goto out; 3510 mutex_lock(&trans->transaction->cache_write_mutex); 3511 } 3512 mutex_unlock(&trans->transaction->cache_write_mutex); 3513 3514 /* 3515 * Go through delayed refs for all the stuff we've just kicked off 3516 * and then loop back (just once) 3517 */ 3518 if (!ret) 3519 ret = btrfs_run_delayed_refs(trans, 0); 3520 if (!ret && loops == 0) { 3521 loops++; 3522 spin_lock(&cur_trans->dirty_bgs_lock); 3523 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3524 /* 3525 * dirty_bgs_lock protects us from concurrent block group 3526 * deletes too (not just cache_write_mutex). 3527 */ 3528 if (!list_empty(&dirty)) { 3529 spin_unlock(&cur_trans->dirty_bgs_lock); 3530 goto again; 3531 } 3532 spin_unlock(&cur_trans->dirty_bgs_lock); 3533 } 3534 out: 3535 if (ret < 0) { 3536 spin_lock(&cur_trans->dirty_bgs_lock); 3537 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3538 spin_unlock(&cur_trans->dirty_bgs_lock); 3539 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3540 } 3541 3542 return ret; 3543 } 3544 3545 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3546 { 3547 struct btrfs_fs_info *fs_info = trans->fs_info; 3548 struct btrfs_block_group *cache; 3549 struct btrfs_transaction *cur_trans = trans->transaction; 3550 int ret = 0; 3551 int should_put; 3552 BTRFS_PATH_AUTO_FREE(path); 3553 struct list_head *io = &cur_trans->io_bgs; 3554 3555 path = btrfs_alloc_path(); 3556 if (!path) 3557 return -ENOMEM; 3558 3559 /* 3560 * Even though we are in the critical section of the transaction commit, 3561 * we can still have concurrent tasks adding elements to this 3562 * transaction's list of dirty block groups. These tasks correspond to 3563 * endio free space workers started when writeback finishes for a 3564 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3565 * allocate new block groups as a result of COWing nodes of the root 3566 * tree when updating the free space inode. The writeback for the space 3567 * caches is triggered by an earlier call to 3568 * btrfs_start_dirty_block_groups() and iterations of the following 3569 * loop. 3570 * Also we want to do the cache_save_setup first and then run the 3571 * delayed refs to make sure we have the best chance at doing this all 3572 * in one shot. 3573 */ 3574 spin_lock(&cur_trans->dirty_bgs_lock); 3575 while (!list_empty(&cur_trans->dirty_bgs)) { 3576 cache = list_first_entry(&cur_trans->dirty_bgs, 3577 struct btrfs_block_group, 3578 dirty_list); 3579 3580 /* 3581 * This can happen if cache_save_setup re-dirties a block group 3582 * that is already under IO. Just wait for it to finish and 3583 * then do it all again 3584 */ 3585 if (!list_empty(&cache->io_list)) { 3586 spin_unlock(&cur_trans->dirty_bgs_lock); 3587 list_del_init(&cache->io_list); 3588 btrfs_wait_cache_io(trans, cache, path); 3589 btrfs_put_block_group(cache); 3590 spin_lock(&cur_trans->dirty_bgs_lock); 3591 } 3592 3593 /* 3594 * Don't remove from the dirty list until after we've waited on 3595 * any pending IO 3596 */ 3597 list_del_init(&cache->dirty_list); 3598 spin_unlock(&cur_trans->dirty_bgs_lock); 3599 should_put = 1; 3600 3601 cache_save_setup(cache, trans, path); 3602 3603 if (!ret) 3604 ret = btrfs_run_delayed_refs(trans, U64_MAX); 3605 3606 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3607 cache->io_ctl.inode = NULL; 3608 ret = btrfs_write_out_cache(trans, cache, path); 3609 if (ret == 0 && cache->io_ctl.inode) { 3610 should_put = 0; 3611 list_add_tail(&cache->io_list, io); 3612 } else { 3613 /* 3614 * If we failed to write the cache, the 3615 * generation will be bad and life goes on 3616 */ 3617 ret = 0; 3618 } 3619 } 3620 if (!ret) { 3621 ret = update_block_group_item(trans, path, cache); 3622 /* 3623 * One of the free space endio workers might have 3624 * created a new block group while updating a free space 3625 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3626 * and hasn't released its transaction handle yet, in 3627 * which case the new block group is still attached to 3628 * its transaction handle and its creation has not 3629 * finished yet (no block group item in the extent tree 3630 * yet, etc). If this is the case, wait for all free 3631 * space endio workers to finish and retry. This is a 3632 * very rare case so no need for a more efficient and 3633 * complex approach. 3634 */ 3635 if (ret == -ENOENT) { 3636 wait_event(cur_trans->writer_wait, 3637 atomic_read(&cur_trans->num_writers) == 1); 3638 ret = update_block_group_item(trans, path, cache); 3639 } 3640 if (ret) 3641 btrfs_abort_transaction(trans, ret); 3642 } 3643 3644 /* If its not on the io list, we need to put the block group */ 3645 if (should_put) 3646 btrfs_put_block_group(cache); 3647 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 3648 spin_lock(&cur_trans->dirty_bgs_lock); 3649 } 3650 spin_unlock(&cur_trans->dirty_bgs_lock); 3651 3652 /* 3653 * Refer to the definition of io_bgs member for details why it's safe 3654 * to use it without any locking 3655 */ 3656 while (!list_empty(io)) { 3657 cache = list_first_entry(io, struct btrfs_block_group, 3658 io_list); 3659 list_del_init(&cache->io_list); 3660 btrfs_wait_cache_io(trans, cache, path); 3661 btrfs_put_block_group(cache); 3662 } 3663 3664 return ret; 3665 } 3666 3667 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3668 u64 bytenr, u64 num_bytes, bool alloc) 3669 { 3670 struct btrfs_fs_info *info = trans->fs_info; 3671 struct btrfs_space_info *space_info; 3672 struct btrfs_block_group *cache; 3673 u64 old_val; 3674 bool reclaim = false; 3675 bool bg_already_dirty = true; 3676 int factor; 3677 3678 /* Block accounting for super block */ 3679 spin_lock(&info->delalloc_root_lock); 3680 old_val = btrfs_super_bytes_used(info->super_copy); 3681 if (alloc) 3682 old_val += num_bytes; 3683 else 3684 old_val -= num_bytes; 3685 btrfs_set_super_bytes_used(info->super_copy, old_val); 3686 spin_unlock(&info->delalloc_root_lock); 3687 3688 cache = btrfs_lookup_block_group(info, bytenr); 3689 if (!cache) 3690 return -ENOENT; 3691 3692 /* An extent can not span multiple block groups. */ 3693 ASSERT(bytenr + num_bytes <= cache->start + cache->length); 3694 3695 space_info = cache->space_info; 3696 factor = btrfs_bg_type_to_factor(cache->flags); 3697 3698 /* 3699 * If this block group has free space cache written out, we need to make 3700 * sure to load it if we are removing space. This is because we need 3701 * the unpinning stage to actually add the space back to the block group, 3702 * otherwise we will leak space. 3703 */ 3704 if (!alloc && !btrfs_block_group_done(cache)) 3705 btrfs_cache_block_group(cache, true); 3706 3707 spin_lock(&space_info->lock); 3708 spin_lock(&cache->lock); 3709 3710 if (btrfs_test_opt(info, SPACE_CACHE) && 3711 cache->disk_cache_state < BTRFS_DC_CLEAR) 3712 cache->disk_cache_state = BTRFS_DC_CLEAR; 3713 3714 old_val = cache->used; 3715 if (alloc) { 3716 old_val += num_bytes; 3717 cache->used = old_val; 3718 cache->reserved -= num_bytes; 3719 cache->reclaim_mark = 0; 3720 space_info->bytes_reserved -= num_bytes; 3721 space_info->bytes_used += num_bytes; 3722 space_info->disk_used += num_bytes * factor; 3723 if (READ_ONCE(space_info->periodic_reclaim)) 3724 btrfs_space_info_update_reclaimable(space_info, -num_bytes); 3725 spin_unlock(&cache->lock); 3726 spin_unlock(&space_info->lock); 3727 } else { 3728 old_val -= num_bytes; 3729 cache->used = old_val; 3730 cache->pinned += num_bytes; 3731 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 3732 space_info->bytes_used -= num_bytes; 3733 space_info->disk_used -= num_bytes * factor; 3734 if (READ_ONCE(space_info->periodic_reclaim)) 3735 btrfs_space_info_update_reclaimable(space_info, num_bytes); 3736 else 3737 reclaim = should_reclaim_block_group(cache, num_bytes); 3738 3739 spin_unlock(&cache->lock); 3740 spin_unlock(&space_info->lock); 3741 3742 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 3743 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 3744 } 3745 3746 spin_lock(&trans->transaction->dirty_bgs_lock); 3747 if (list_empty(&cache->dirty_list)) { 3748 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs); 3749 bg_already_dirty = false; 3750 btrfs_get_block_group(cache); 3751 } 3752 spin_unlock(&trans->transaction->dirty_bgs_lock); 3753 3754 /* 3755 * No longer have used bytes in this block group, queue it for deletion. 3756 * We do this after adding the block group to the dirty list to avoid 3757 * races between cleaner kthread and space cache writeout. 3758 */ 3759 if (!alloc && old_val == 0) { 3760 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3761 btrfs_mark_bg_unused(cache); 3762 } else if (!alloc && reclaim) { 3763 btrfs_mark_bg_to_reclaim(cache); 3764 } 3765 3766 btrfs_put_block_group(cache); 3767 3768 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3769 if (!bg_already_dirty) 3770 btrfs_inc_delayed_refs_rsv_bg_updates(info); 3771 3772 return 0; 3773 } 3774 3775 /* 3776 * Update the block_group and space info counters. 3777 * 3778 * @cache: The cache we are manipulating 3779 * @ram_bytes: The number of bytes of file content, and will be same to 3780 * @num_bytes except for the compress path. 3781 * @num_bytes: The number of bytes in question 3782 * @delalloc: The blocks are allocated for the delalloc write 3783 * 3784 * This is called by the allocator when it reserves space. If this is a 3785 * reservation and the block group has become read only we cannot make the 3786 * reservation and return -EAGAIN, otherwise this function always succeeds. 3787 */ 3788 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3789 u64 ram_bytes, u64 num_bytes, int delalloc, 3790 bool force_wrong_size_class) 3791 { 3792 struct btrfs_space_info *space_info = cache->space_info; 3793 enum btrfs_block_group_size_class size_class; 3794 int ret = 0; 3795 3796 spin_lock(&space_info->lock); 3797 spin_lock(&cache->lock); 3798 if (cache->ro) { 3799 ret = -EAGAIN; 3800 goto out; 3801 } 3802 3803 if (btrfs_block_group_should_use_size_class(cache)) { 3804 size_class = btrfs_calc_block_group_size_class(num_bytes); 3805 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3806 if (ret) 3807 goto out; 3808 } 3809 cache->reserved += num_bytes; 3810 space_info->bytes_reserved += num_bytes; 3811 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3812 space_info->flags, num_bytes, 1); 3813 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes); 3814 if (delalloc) 3815 cache->delalloc_bytes += num_bytes; 3816 3817 /* 3818 * Compression can use less space than we reserved, so wake tickets if 3819 * that happens. 3820 */ 3821 if (num_bytes < ram_bytes) 3822 btrfs_try_granting_tickets(cache->fs_info, space_info); 3823 out: 3824 spin_unlock(&cache->lock); 3825 spin_unlock(&space_info->lock); 3826 return ret; 3827 } 3828 3829 /* 3830 * Update the block_group and space info counters. 3831 * 3832 * @cache: The cache we are manipulating. 3833 * @num_bytes: The number of bytes in question. 3834 * @is_delalloc: Whether the blocks are allocated for a delalloc write. 3835 * 3836 * This is called by somebody who is freeing space that was never actually used 3837 * on disk. For example if you reserve some space for a new leaf in transaction 3838 * A and before transaction A commits you free that leaf, you call this with 3839 * reserve set to 0 in order to clear the reservation. 3840 */ 3841 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, 3842 bool is_delalloc) 3843 { 3844 struct btrfs_space_info *space_info = cache->space_info; 3845 3846 spin_lock(&space_info->lock); 3847 spin_lock(&cache->lock); 3848 if (cache->ro) 3849 space_info->bytes_readonly += num_bytes; 3850 else if (btrfs_is_zoned(cache->fs_info)) 3851 space_info->bytes_zone_unusable += num_bytes; 3852 cache->reserved -= num_bytes; 3853 space_info->bytes_reserved -= num_bytes; 3854 space_info->max_extent_size = 0; 3855 3856 if (is_delalloc) 3857 cache->delalloc_bytes -= num_bytes; 3858 spin_unlock(&cache->lock); 3859 3860 btrfs_try_granting_tickets(cache->fs_info, space_info); 3861 spin_unlock(&space_info->lock); 3862 } 3863 3864 static void force_metadata_allocation(struct btrfs_fs_info *info) 3865 { 3866 struct list_head *head = &info->space_info; 3867 struct btrfs_space_info *found; 3868 3869 list_for_each_entry(found, head, list) { 3870 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3871 found->force_alloc = CHUNK_ALLOC_FORCE; 3872 } 3873 } 3874 3875 static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info, 3876 const struct btrfs_space_info *sinfo, int force) 3877 { 3878 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3879 u64 thresh; 3880 3881 if (force == CHUNK_ALLOC_FORCE) 3882 return true; 3883 3884 /* 3885 * in limited mode, we want to have some free space up to 3886 * about 1% of the FS size. 3887 */ 3888 if (force == CHUNK_ALLOC_LIMITED) { 3889 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3890 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3891 3892 if (sinfo->total_bytes - bytes_used < thresh) 3893 return true; 3894 } 3895 3896 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3897 return false; 3898 return true; 3899 } 3900 3901 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3902 { 3903 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3904 struct btrfs_space_info *space_info; 3905 3906 space_info = btrfs_find_space_info(trans->fs_info, type); 3907 if (!space_info) { 3908 DEBUG_WARN(); 3909 return -EINVAL; 3910 } 3911 3912 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 3913 } 3914 3915 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, 3916 struct btrfs_space_info *space_info, 3917 u64 flags) 3918 { 3919 struct btrfs_block_group *bg; 3920 int ret; 3921 3922 /* 3923 * Check if we have enough space in the system space info because we 3924 * will need to update device items in the chunk btree and insert a new 3925 * chunk item in the chunk btree as well. This will allocate a new 3926 * system block group if needed. 3927 */ 3928 check_system_chunk(trans, flags); 3929 3930 bg = btrfs_create_chunk(trans, space_info, flags); 3931 if (IS_ERR(bg)) { 3932 ret = PTR_ERR(bg); 3933 goto out; 3934 } 3935 3936 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3937 /* 3938 * Normally we are not expected to fail with -ENOSPC here, since we have 3939 * previously reserved space in the system space_info and allocated one 3940 * new system chunk if necessary. However there are three exceptions: 3941 * 3942 * 1) We may have enough free space in the system space_info but all the 3943 * existing system block groups have a profile which can not be used 3944 * for extent allocation. 3945 * 3946 * This happens when mounting in degraded mode. For example we have a 3947 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3948 * using the other device in degraded mode. If we then allocate a chunk, 3949 * we may have enough free space in the existing system space_info, but 3950 * none of the block groups can be used for extent allocation since they 3951 * have a RAID1 profile, and because we are in degraded mode with a 3952 * single device, we are forced to allocate a new system chunk with a 3953 * SINGLE profile. Making check_system_chunk() iterate over all system 3954 * block groups and check if they have a usable profile and enough space 3955 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3956 * try again after forcing allocation of a new system chunk. Like this 3957 * we avoid paying the cost of that search in normal circumstances, when 3958 * we were not mounted in degraded mode; 3959 * 3960 * 2) We had enough free space info the system space_info, and one suitable 3961 * block group to allocate from when we called check_system_chunk() 3962 * above. However right after we called it, the only system block group 3963 * with enough free space got turned into RO mode by a running scrub, 3964 * and in this case we have to allocate a new one and retry. We only 3965 * need do this allocate and retry once, since we have a transaction 3966 * handle and scrub uses the commit root to search for block groups; 3967 * 3968 * 3) We had one system block group with enough free space when we called 3969 * check_system_chunk(), but after that, right before we tried to 3970 * allocate the last extent buffer we needed, a discard operation came 3971 * in and it temporarily removed the last free space entry from the 3972 * block group (discard removes a free space entry, discards it, and 3973 * then adds back the entry to the block group cache). 3974 */ 3975 if (ret == -ENOSPC) { 3976 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3977 struct btrfs_block_group *sys_bg; 3978 struct btrfs_space_info *sys_space_info; 3979 3980 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags); 3981 if (!sys_space_info) { 3982 ret = -EINVAL; 3983 btrfs_abort_transaction(trans, ret); 3984 goto out; 3985 } 3986 3987 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags); 3988 if (IS_ERR(sys_bg)) { 3989 ret = PTR_ERR(sys_bg); 3990 btrfs_abort_transaction(trans, ret); 3991 goto out; 3992 } 3993 3994 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3995 if (ret) { 3996 btrfs_abort_transaction(trans, ret); 3997 goto out; 3998 } 3999 4000 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 4001 if (ret) { 4002 btrfs_abort_transaction(trans, ret); 4003 goto out; 4004 } 4005 } else if (ret) { 4006 btrfs_abort_transaction(trans, ret); 4007 goto out; 4008 } 4009 out: 4010 btrfs_trans_release_chunk_metadata(trans); 4011 4012 if (ret) 4013 return ERR_PTR(ret); 4014 4015 btrfs_get_block_group(bg); 4016 return bg; 4017 } 4018 4019 /* 4020 * Chunk allocation is done in 2 phases: 4021 * 4022 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 4023 * the chunk, the chunk mapping, create its block group and add the items 4024 * that belong in the chunk btree to it - more specifically, we need to 4025 * update device items in the chunk btree and add a new chunk item to it. 4026 * 4027 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 4028 * group item to the extent btree and the device extent items to the devices 4029 * btree. 4030 * 4031 * This is done to prevent deadlocks. For example when COWing a node from the 4032 * extent btree we are holding a write lock on the node's parent and if we 4033 * trigger chunk allocation and attempted to insert the new block group item 4034 * in the extent btree right way, we could deadlock because the path for the 4035 * insertion can include that parent node. At first glance it seems impossible 4036 * to trigger chunk allocation after starting a transaction since tasks should 4037 * reserve enough transaction units (metadata space), however while that is true 4038 * most of the time, chunk allocation may still be triggered for several reasons: 4039 * 4040 * 1) When reserving metadata, we check if there is enough free space in the 4041 * metadata space_info and therefore don't trigger allocation of a new chunk. 4042 * However later when the task actually tries to COW an extent buffer from 4043 * the extent btree or from the device btree for example, it is forced to 4044 * allocate a new block group (chunk) because the only one that had enough 4045 * free space was just turned to RO mode by a running scrub for example (or 4046 * device replace, block group reclaim thread, etc), so we can not use it 4047 * for allocating an extent and end up being forced to allocate a new one; 4048 * 4049 * 2) Because we only check that the metadata space_info has enough free bytes, 4050 * we end up not allocating a new metadata chunk in that case. However if 4051 * the filesystem was mounted in degraded mode, none of the existing block 4052 * groups might be suitable for extent allocation due to their incompatible 4053 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 4054 * use a RAID1 profile, in degraded mode using a single device). In this case 4055 * when the task attempts to COW some extent buffer of the extent btree for 4056 * example, it will trigger allocation of a new metadata block group with a 4057 * suitable profile (SINGLE profile in the example of the degraded mount of 4058 * the RAID1 filesystem); 4059 * 4060 * 3) The task has reserved enough transaction units / metadata space, but when 4061 * it attempts to COW an extent buffer from the extent or device btree for 4062 * example, it does not find any free extent in any metadata block group, 4063 * therefore forced to try to allocate a new metadata block group. 4064 * This is because some other task allocated all available extents in the 4065 * meanwhile - this typically happens with tasks that don't reserve space 4066 * properly, either intentionally or as a bug. One example where this is 4067 * done intentionally is fsync, as it does not reserve any transaction units 4068 * and ends up allocating a variable number of metadata extents for log 4069 * tree extent buffers; 4070 * 4071 * 4) The task has reserved enough transaction units / metadata space, but right 4072 * before it tries to allocate the last extent buffer it needs, a discard 4073 * operation comes in and, temporarily, removes the last free space entry from 4074 * the only metadata block group that had free space (discard starts by 4075 * removing a free space entry from a block group, then does the discard 4076 * operation and, once it's done, it adds back the free space entry to the 4077 * block group). 4078 * 4079 * We also need this 2 phases setup when adding a device to a filesystem with 4080 * a seed device - we must create new metadata and system chunks without adding 4081 * any of the block group items to the chunk, extent and device btrees. If we 4082 * did not do it this way, we would get ENOSPC when attempting to update those 4083 * btrees, since all the chunks from the seed device are read-only. 4084 * 4085 * Phase 1 does the updates and insertions to the chunk btree because if we had 4086 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 4087 * parallel, we risk having too many system chunks allocated by many tasks if 4088 * many tasks reach phase 1 without the previous ones completing phase 2. In the 4089 * extreme case this leads to exhaustion of the system chunk array in the 4090 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 4091 * and with RAID filesystems (so we have more device items in the chunk btree). 4092 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4093 * the system chunk array due to concurrent allocations") provides more details. 4094 * 4095 * Allocation of system chunks does not happen through this function. A task that 4096 * needs to update the chunk btree (the only btree that uses system chunks), must 4097 * preallocate chunk space by calling either check_system_chunk() or 4098 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4099 * metadata chunk or when removing a chunk, while the later is used before doing 4100 * a modification to the chunk btree - use cases for the later are adding, 4101 * removing and resizing a device as well as relocation of a system chunk. 4102 * See the comment below for more details. 4103 * 4104 * The reservation of system space, done through check_system_chunk(), as well 4105 * as all the updates and insertions into the chunk btree must be done while 4106 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4107 * an extent buffer from the chunks btree we never trigger allocation of a new 4108 * system chunk, which would result in a deadlock (trying to lock twice an 4109 * extent buffer of the chunk btree, first time before triggering the chunk 4110 * allocation and the second time during chunk allocation while attempting to 4111 * update the chunks btree). The system chunk array is also updated while holding 4112 * that mutex. The same logic applies to removing chunks - we must reserve system 4113 * space, update the chunk btree and the system chunk array in the superblock 4114 * while holding fs_info->chunk_mutex. 4115 * 4116 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4117 * 4118 * @space_info: specify which space_info the new chunk should belong to. 4119 * 4120 * If @force is CHUNK_ALLOC_FORCE: 4121 * - return 1 if it successfully allocates a chunk, 4122 * - return errors including -ENOSPC otherwise. 4123 * If @force is NOT CHUNK_ALLOC_FORCE: 4124 * - return 0 if it doesn't need to allocate a new chunk, 4125 * - return 1 if it successfully allocates a chunk, 4126 * - return errors including -ENOSPC otherwise. 4127 */ 4128 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, 4129 struct btrfs_space_info *space_info, u64 flags, 4130 enum btrfs_chunk_alloc_enum force) 4131 { 4132 struct btrfs_fs_info *fs_info = trans->fs_info; 4133 struct btrfs_block_group *ret_bg; 4134 bool wait_for_alloc = false; 4135 bool should_alloc = false; 4136 bool from_extent_allocation = false; 4137 int ret = 0; 4138 4139 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4140 from_extent_allocation = true; 4141 force = CHUNK_ALLOC_FORCE; 4142 } 4143 4144 /* Don't re-enter if we're already allocating a chunk */ 4145 if (trans->allocating_chunk) 4146 return -ENOSPC; 4147 /* 4148 * Allocation of system chunks can not happen through this path, as we 4149 * could end up in a deadlock if we are allocating a data or metadata 4150 * chunk and there is another task modifying the chunk btree. 4151 * 4152 * This is because while we are holding the chunk mutex, we will attempt 4153 * to add the new chunk item to the chunk btree or update an existing 4154 * device item in the chunk btree, while the other task that is modifying 4155 * the chunk btree is attempting to COW an extent buffer while holding a 4156 * lock on it and on its parent - if the COW operation triggers a system 4157 * chunk allocation, then we can deadlock because we are holding the 4158 * chunk mutex and we may need to access that extent buffer or its parent 4159 * in order to add the chunk item or update a device item. 4160 * 4161 * Tasks that want to modify the chunk tree should reserve system space 4162 * before updating the chunk btree, by calling either 4163 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4164 * It's possible that after a task reserves the space, it still ends up 4165 * here - this happens in the cases described above at do_chunk_alloc(). 4166 * The task will have to either retry or fail. 4167 */ 4168 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4169 return -ENOSPC; 4170 4171 do { 4172 spin_lock(&space_info->lock); 4173 if (force < space_info->force_alloc) 4174 force = space_info->force_alloc; 4175 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4176 if (space_info->full) { 4177 /* No more free physical space */ 4178 if (should_alloc) 4179 ret = -ENOSPC; 4180 else 4181 ret = 0; 4182 spin_unlock(&space_info->lock); 4183 return ret; 4184 } else if (!should_alloc) { 4185 spin_unlock(&space_info->lock); 4186 return 0; 4187 } else if (space_info->chunk_alloc) { 4188 /* 4189 * Someone is already allocating, so we need to block 4190 * until this someone is finished and then loop to 4191 * recheck if we should continue with our allocation 4192 * attempt. 4193 */ 4194 wait_for_alloc = true; 4195 force = CHUNK_ALLOC_NO_FORCE; 4196 spin_unlock(&space_info->lock); 4197 mutex_lock(&fs_info->chunk_mutex); 4198 mutex_unlock(&fs_info->chunk_mutex); 4199 } else { 4200 /* Proceed with allocation */ 4201 space_info->chunk_alloc = 1; 4202 wait_for_alloc = false; 4203 spin_unlock(&space_info->lock); 4204 } 4205 4206 cond_resched(); 4207 } while (wait_for_alloc); 4208 4209 mutex_lock(&fs_info->chunk_mutex); 4210 trans->allocating_chunk = true; 4211 4212 /* 4213 * If we have mixed data/metadata chunks we want to make sure we keep 4214 * allocating mixed chunks instead of individual chunks. 4215 */ 4216 if (btrfs_mixed_space_info(space_info)) 4217 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4218 4219 /* 4220 * if we're doing a data chunk, go ahead and make sure that 4221 * we keep a reasonable number of metadata chunks allocated in the 4222 * FS as well. 4223 */ 4224 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4225 fs_info->data_chunk_allocations++; 4226 if (!(fs_info->data_chunk_allocations % 4227 fs_info->metadata_ratio)) 4228 force_metadata_allocation(fs_info); 4229 } 4230 4231 ret_bg = do_chunk_alloc(trans, space_info, flags); 4232 trans->allocating_chunk = false; 4233 4234 if (IS_ERR(ret_bg)) { 4235 ret = PTR_ERR(ret_bg); 4236 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4237 /* 4238 * New block group is likely to be used soon. Try to activate 4239 * it now. Failure is OK for now. 4240 */ 4241 btrfs_zone_activate(ret_bg); 4242 } 4243 4244 if (!ret) 4245 btrfs_put_block_group(ret_bg); 4246 4247 spin_lock(&space_info->lock); 4248 if (ret < 0) { 4249 if (ret == -ENOSPC) 4250 space_info->full = 1; 4251 else 4252 goto out; 4253 } else { 4254 ret = 1; 4255 space_info->max_extent_size = 0; 4256 } 4257 4258 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4259 out: 4260 space_info->chunk_alloc = 0; 4261 spin_unlock(&space_info->lock); 4262 mutex_unlock(&fs_info->chunk_mutex); 4263 4264 return ret; 4265 } 4266 4267 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type) 4268 { 4269 u64 num_dev; 4270 4271 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4272 if (!num_dev) 4273 num_dev = fs_info->fs_devices->rw_devices; 4274 4275 return num_dev; 4276 } 4277 4278 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4279 u64 bytes, 4280 u64 type) 4281 { 4282 struct btrfs_fs_info *fs_info = trans->fs_info; 4283 struct btrfs_space_info *info; 4284 u64 left; 4285 int ret = 0; 4286 4287 /* 4288 * Needed because we can end up allocating a system chunk and for an 4289 * atomic and race free space reservation in the chunk block reserve. 4290 */ 4291 lockdep_assert_held(&fs_info->chunk_mutex); 4292 4293 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4294 spin_lock(&info->lock); 4295 left = info->total_bytes - btrfs_space_info_used(info, true); 4296 spin_unlock(&info->lock); 4297 4298 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4299 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4300 left, bytes, type); 4301 btrfs_dump_space_info(fs_info, info, 0, 0); 4302 } 4303 4304 if (left < bytes) { 4305 u64 flags = btrfs_system_alloc_profile(fs_info); 4306 struct btrfs_block_group *bg; 4307 struct btrfs_space_info *space_info; 4308 4309 space_info = btrfs_find_space_info(fs_info, flags); 4310 ASSERT(space_info); 4311 4312 /* 4313 * Ignore failure to create system chunk. We might end up not 4314 * needing it, as we might not need to COW all nodes/leafs from 4315 * the paths we visit in the chunk tree (they were already COWed 4316 * or created in the current transaction for example). 4317 */ 4318 bg = btrfs_create_chunk(trans, space_info, flags); 4319 if (IS_ERR(bg)) { 4320 ret = PTR_ERR(bg); 4321 } else { 4322 /* 4323 * We have a new chunk. We also need to activate it for 4324 * zoned filesystem. 4325 */ 4326 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4327 if (ret < 0) 4328 return; 4329 4330 /* 4331 * If we fail to add the chunk item here, we end up 4332 * trying again at phase 2 of chunk allocation, at 4333 * btrfs_create_pending_block_groups(). So ignore 4334 * any error here. An ENOSPC here could happen, due to 4335 * the cases described at do_chunk_alloc() - the system 4336 * block group we just created was just turned into RO 4337 * mode by a scrub for example, or a running discard 4338 * temporarily removed its free space entries, etc. 4339 */ 4340 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4341 } 4342 } 4343 4344 if (!ret) { 4345 ret = btrfs_block_rsv_add(fs_info, 4346 &fs_info->chunk_block_rsv, 4347 bytes, BTRFS_RESERVE_NO_FLUSH); 4348 if (!ret) 4349 trans->chunk_bytes_reserved += bytes; 4350 } 4351 } 4352 4353 /* 4354 * Reserve space in the system space for allocating or removing a chunk. 4355 * The caller must be holding fs_info->chunk_mutex. 4356 */ 4357 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4358 { 4359 struct btrfs_fs_info *fs_info = trans->fs_info; 4360 const u64 num_devs = get_profile_num_devs(fs_info, type); 4361 u64 bytes; 4362 4363 /* num_devs device items to update and 1 chunk item to add or remove. */ 4364 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4365 btrfs_calc_insert_metadata_size(fs_info, 1); 4366 4367 reserve_chunk_space(trans, bytes, type); 4368 } 4369 4370 /* 4371 * Reserve space in the system space, if needed, for doing a modification to the 4372 * chunk btree. 4373 * 4374 * @trans: A transaction handle. 4375 * @is_item_insertion: Indicate if the modification is for inserting a new item 4376 * in the chunk btree or if it's for the deletion or update 4377 * of an existing item. 4378 * 4379 * This is used in a context where we need to update the chunk btree outside 4380 * block group allocation and removal, to avoid a deadlock with a concurrent 4381 * task that is allocating a metadata or data block group and therefore needs to 4382 * update the chunk btree while holding the chunk mutex. After the update to the 4383 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4384 * 4385 */ 4386 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4387 bool is_item_insertion) 4388 { 4389 struct btrfs_fs_info *fs_info = trans->fs_info; 4390 u64 bytes; 4391 4392 if (is_item_insertion) 4393 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4394 else 4395 bytes = btrfs_calc_metadata_size(fs_info, 1); 4396 4397 mutex_lock(&fs_info->chunk_mutex); 4398 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4399 mutex_unlock(&fs_info->chunk_mutex); 4400 } 4401 4402 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4403 { 4404 struct btrfs_block_group *block_group; 4405 4406 block_group = btrfs_lookup_first_block_group(info, 0); 4407 while (block_group) { 4408 btrfs_wait_block_group_cache_done(block_group); 4409 spin_lock(&block_group->lock); 4410 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4411 &block_group->runtime_flags)) { 4412 struct btrfs_inode *inode = block_group->inode; 4413 4414 block_group->inode = NULL; 4415 spin_unlock(&block_group->lock); 4416 4417 ASSERT(block_group->io_ctl.inode == NULL); 4418 iput(&inode->vfs_inode); 4419 } else { 4420 spin_unlock(&block_group->lock); 4421 } 4422 block_group = btrfs_next_block_group(block_group); 4423 } 4424 } 4425 4426 static void check_removing_space_info(struct btrfs_space_info *space_info) 4427 { 4428 struct btrfs_fs_info *info = space_info->fs_info; 4429 4430 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) { 4431 /* This is a top space_info, proceed with its children first. */ 4432 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 4433 if (space_info->sub_group[i]) { 4434 check_removing_space_info(space_info->sub_group[i]); 4435 kfree(space_info->sub_group[i]); 4436 space_info->sub_group[i] = NULL; 4437 } 4438 } 4439 } 4440 4441 /* 4442 * Do not hide this behind enospc_debug, this is actually important and 4443 * indicates a real bug if this happens. 4444 */ 4445 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0)) 4446 btrfs_dump_space_info(info, space_info, 0, 0); 4447 4448 /* 4449 * If there was a failure to cleanup a log tree, very likely due to an 4450 * IO failure on a writeback attempt of one or more of its extent 4451 * buffers, we could not do proper (and cheap) unaccounting of their 4452 * reserved space, so don't warn on bytes_reserved > 0 in that case. 4453 */ 4454 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4455 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4456 if (WARN_ON(space_info->bytes_reserved > 0)) 4457 btrfs_dump_space_info(info, space_info, 0, 0); 4458 } 4459 4460 WARN_ON(space_info->reclaim_size > 0); 4461 } 4462 4463 /* 4464 * Must be called only after stopping all workers, since we could have block 4465 * group caching kthreads running, and therefore they could race with us if we 4466 * freed the block groups before stopping them. 4467 */ 4468 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4469 { 4470 struct btrfs_block_group *block_group; 4471 struct btrfs_space_info *space_info; 4472 struct btrfs_caching_control *caching_ctl; 4473 struct rb_node *n; 4474 4475 if (btrfs_is_zoned(info)) { 4476 if (info->active_meta_bg) { 4477 btrfs_put_block_group(info->active_meta_bg); 4478 info->active_meta_bg = NULL; 4479 } 4480 if (info->active_system_bg) { 4481 btrfs_put_block_group(info->active_system_bg); 4482 info->active_system_bg = NULL; 4483 } 4484 } 4485 4486 write_lock(&info->block_group_cache_lock); 4487 while (!list_empty(&info->caching_block_groups)) { 4488 caching_ctl = list_first_entry(&info->caching_block_groups, 4489 struct btrfs_caching_control, list); 4490 list_del(&caching_ctl->list); 4491 btrfs_put_caching_control(caching_ctl); 4492 } 4493 write_unlock(&info->block_group_cache_lock); 4494 4495 spin_lock(&info->unused_bgs_lock); 4496 while (!list_empty(&info->unused_bgs)) { 4497 block_group = list_first_entry(&info->unused_bgs, 4498 struct btrfs_block_group, 4499 bg_list); 4500 list_del_init(&block_group->bg_list); 4501 btrfs_put_block_group(block_group); 4502 } 4503 4504 while (!list_empty(&info->reclaim_bgs)) { 4505 block_group = list_first_entry(&info->reclaim_bgs, 4506 struct btrfs_block_group, 4507 bg_list); 4508 list_del_init(&block_group->bg_list); 4509 btrfs_put_block_group(block_group); 4510 } 4511 spin_unlock(&info->unused_bgs_lock); 4512 4513 spin_lock(&info->zone_active_bgs_lock); 4514 while (!list_empty(&info->zone_active_bgs)) { 4515 block_group = list_first_entry(&info->zone_active_bgs, 4516 struct btrfs_block_group, 4517 active_bg_list); 4518 list_del_init(&block_group->active_bg_list); 4519 btrfs_put_block_group(block_group); 4520 } 4521 spin_unlock(&info->zone_active_bgs_lock); 4522 4523 write_lock(&info->block_group_cache_lock); 4524 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4525 block_group = rb_entry(n, struct btrfs_block_group, 4526 cache_node); 4527 rb_erase_cached(&block_group->cache_node, 4528 &info->block_group_cache_tree); 4529 RB_CLEAR_NODE(&block_group->cache_node); 4530 write_unlock(&info->block_group_cache_lock); 4531 4532 down_write(&block_group->space_info->groups_sem); 4533 list_del(&block_group->list); 4534 up_write(&block_group->space_info->groups_sem); 4535 4536 /* 4537 * We haven't cached this block group, which means we could 4538 * possibly have excluded extents on this block group. 4539 */ 4540 if (block_group->cached == BTRFS_CACHE_NO || 4541 block_group->cached == BTRFS_CACHE_ERROR) 4542 btrfs_free_excluded_extents(block_group); 4543 4544 btrfs_remove_free_space_cache(block_group); 4545 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4546 ASSERT(list_empty(&block_group->dirty_list)); 4547 ASSERT(list_empty(&block_group->io_list)); 4548 ASSERT(list_empty(&block_group->bg_list)); 4549 ASSERT(refcount_read(&block_group->refs) == 1); 4550 ASSERT(block_group->swap_extents == 0); 4551 btrfs_put_block_group(block_group); 4552 4553 write_lock(&info->block_group_cache_lock); 4554 } 4555 write_unlock(&info->block_group_cache_lock); 4556 4557 btrfs_release_global_block_rsv(info); 4558 4559 while (!list_empty(&info->space_info)) { 4560 space_info = list_first_entry(&info->space_info, 4561 struct btrfs_space_info, list); 4562 4563 check_removing_space_info(space_info); 4564 list_del(&space_info->list); 4565 btrfs_sysfs_remove_space_info(space_info); 4566 } 4567 return 0; 4568 } 4569 4570 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4571 { 4572 atomic_inc(&cache->frozen); 4573 } 4574 4575 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4576 { 4577 struct btrfs_fs_info *fs_info = block_group->fs_info; 4578 bool cleanup; 4579 4580 spin_lock(&block_group->lock); 4581 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4582 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4583 spin_unlock(&block_group->lock); 4584 4585 if (cleanup) { 4586 struct btrfs_chunk_map *map; 4587 4588 map = btrfs_find_chunk_map(fs_info, block_group->start, 1); 4589 /* Logic error, can't happen. */ 4590 ASSERT(map); 4591 4592 btrfs_remove_chunk_map(fs_info, map); 4593 4594 /* Once for our lookup reference. */ 4595 btrfs_free_chunk_map(map); 4596 4597 /* 4598 * We may have left one free space entry and other possible 4599 * tasks trimming this block group have left 1 entry each one. 4600 * Free them if any. 4601 */ 4602 btrfs_remove_free_space_cache(block_group); 4603 } 4604 } 4605 4606 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4607 { 4608 bool ret = true; 4609 4610 spin_lock(&bg->lock); 4611 if (bg->ro) 4612 ret = false; 4613 else 4614 bg->swap_extents++; 4615 spin_unlock(&bg->lock); 4616 4617 return ret; 4618 } 4619 4620 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4621 { 4622 spin_lock(&bg->lock); 4623 ASSERT(!bg->ro); 4624 ASSERT(bg->swap_extents >= amount); 4625 bg->swap_extents -= amount; 4626 spin_unlock(&bg->lock); 4627 } 4628 4629 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4630 { 4631 if (size <= SZ_128K) 4632 return BTRFS_BG_SZ_SMALL; 4633 if (size <= SZ_8M) 4634 return BTRFS_BG_SZ_MEDIUM; 4635 return BTRFS_BG_SZ_LARGE; 4636 } 4637 4638 /* 4639 * Handle a block group allocating an extent in a size class 4640 * 4641 * @bg: The block group we allocated in. 4642 * @size_class: The size class of the allocation. 4643 * @force_wrong_size_class: Whether we are desperate enough to allow 4644 * mismatched size classes. 4645 * 4646 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4647 * case of a race that leads to the wrong size class without 4648 * force_wrong_size_class set. 4649 * 4650 * find_free_extent will skip block groups with a mismatched size class until 4651 * it really needs to avoid ENOSPC. In that case it will set 4652 * force_wrong_size_class. However, if a block group is newly allocated and 4653 * doesn't yet have a size class, then it is possible for two allocations of 4654 * different sizes to race and both try to use it. The loser is caught here and 4655 * has to retry. 4656 */ 4657 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4658 enum btrfs_block_group_size_class size_class, 4659 bool force_wrong_size_class) 4660 { 4661 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4662 4663 /* The new allocation is in the right size class, do nothing */ 4664 if (bg->size_class == size_class) 4665 return 0; 4666 /* 4667 * The new allocation is in a mismatched size class. 4668 * This means one of two things: 4669 * 4670 * 1. Two tasks in find_free_extent for different size_classes raced 4671 * and hit the same empty block_group. Make the loser try again. 4672 * 2. A call to find_free_extent got desperate enough to set 4673 * 'force_wrong_slab'. Don't change the size_class, but allow the 4674 * allocation. 4675 */ 4676 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4677 if (force_wrong_size_class) 4678 return 0; 4679 return -EAGAIN; 4680 } 4681 /* 4682 * The happy new block group case: the new allocation is the first 4683 * one in the block_group so we set size_class. 4684 */ 4685 bg->size_class = size_class; 4686 4687 return 0; 4688 } 4689 4690 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg) 4691 { 4692 if (btrfs_is_zoned(bg->fs_info)) 4693 return false; 4694 if (!btrfs_is_block_group_data_only(bg)) 4695 return false; 4696 return true; 4697 } 4698