1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 	WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 			&btrfs_clone_bioset);
84 	if (IS_ERR(bio))
85 		return ERR_CAST(bio);
86 
87 	bbio = btrfs_bio(bio);
88 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89 	bbio->inode = orig_bbio->inode;
90 	bbio->file_offset = orig_bbio->file_offset;
91 	orig_bbio->file_offset += map_length;
92 	if (bbio_has_ordered_extent(bbio)) {
93 		refcount_inc(&orig_bbio->ordered->refs);
94 		bbio->ordered = orig_bbio->ordered;
95 	}
96 	atomic_inc(&orig_bbio->pending_ios);
97 	return bbio;
98 }
99 
100 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
101 {
102 	bbio->bio.bi_status = status;
103 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
104 		struct btrfs_bio *orig_bbio = bbio->private;
105 
106 		/* Free bio that was never submitted to the underlying device. */
107 		if (bbio_has_ordered_extent(bbio))
108 			btrfs_put_ordered_extent(bbio->ordered);
109 		bio_put(&bbio->bio);
110 
111 		bbio = orig_bbio;
112 	}
113 
114 	/*
115 	 * At this point, bbio always points to the original btrfs_bio. Save
116 	 * the first error in it.
117 	 */
118 	if (status != BLK_STS_OK)
119 		cmpxchg(&bbio->status, BLK_STS_OK, status);
120 
121 	if (atomic_dec_and_test(&bbio->pending_ios)) {
122 		/* Load split bio's error which might be set above. */
123 		if (status == BLK_STS_OK)
124 			bbio->bio.bi_status = READ_ONCE(bbio->status);
125 
126 		if (bbio_has_ordered_extent(bbio)) {
127 			struct btrfs_ordered_extent *ordered = bbio->ordered;
128 
129 			bbio->end_io(bbio);
130 			btrfs_put_ordered_extent(ordered);
131 		} else {
132 			bbio->end_io(bbio);
133 		}
134 	}
135 }
136 
137 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
138 {
139 	if (cur_mirror == fbio->num_copies)
140 		return cur_mirror + 1 - fbio->num_copies;
141 	return cur_mirror + 1;
142 }
143 
144 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
145 {
146 	if (cur_mirror == 1)
147 		return fbio->num_copies;
148 	return cur_mirror - 1;
149 }
150 
151 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
152 {
153 	if (atomic_dec_and_test(&fbio->repair_count)) {
154 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
155 		mempool_free(fbio, &btrfs_failed_bio_pool);
156 	}
157 }
158 
159 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
160 				 struct btrfs_device *dev)
161 {
162 	struct btrfs_failed_bio *fbio = repair_bbio->private;
163 	struct btrfs_inode *inode = repair_bbio->inode;
164 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
165 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
166 	int mirror = repair_bbio->mirror_num;
167 
168 	/*
169 	 * We can only trigger this for data bio, which doesn't support larger
170 	 * folios yet.
171 	 */
172 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
173 
174 	if (repair_bbio->bio.bi_status ||
175 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
176 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
177 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
178 
179 		mirror = next_repair_mirror(fbio, mirror);
180 		if (mirror == fbio->bbio->mirror_num) {
181 			btrfs_debug(fs_info, "no mirror left");
182 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
183 			goto done;
184 		}
185 
186 		btrfs_submit_bbio(repair_bbio, mirror);
187 		return;
188 	}
189 
190 	do {
191 		mirror = prev_repair_mirror(fbio, mirror);
192 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
193 				  repair_bbio->file_offset, fs_info->sectorsize,
194 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
195 				  bvec_phys(bv), mirror);
196 	} while (mirror != fbio->bbio->mirror_num);
197 
198 done:
199 	btrfs_repair_done(fbio);
200 	bio_put(&repair_bbio->bio);
201 }
202 
203 /*
204  * Try to kick off a repair read to the next available mirror for a bad sector.
205  *
206  * This primarily tries to recover good data to serve the actual read request,
207  * but also tries to write the good data back to the bad mirror(s) when a
208  * read succeeded to restore the redundancy.
209  */
210 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
211 						  u32 bio_offset,
212 						  struct bio_vec *bv,
213 						  struct btrfs_failed_bio *fbio)
214 {
215 	struct btrfs_inode *inode = failed_bbio->inode;
216 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
217 	const u32 sectorsize = fs_info->sectorsize;
218 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
219 	struct btrfs_bio *repair_bbio;
220 	struct bio *repair_bio;
221 	int num_copies;
222 	int mirror;
223 
224 	btrfs_debug(fs_info, "repair read error: read error at %llu",
225 		    failed_bbio->file_offset + bio_offset);
226 
227 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
228 	if (num_copies == 1) {
229 		btrfs_debug(fs_info, "no copy to repair from");
230 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
231 		return fbio;
232 	}
233 
234 	if (!fbio) {
235 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
236 		fbio->bbio = failed_bbio;
237 		fbio->num_copies = num_copies;
238 		atomic_set(&fbio->repair_count, 1);
239 	}
240 
241 	atomic_inc(&fbio->repair_count);
242 
243 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
244 				      &btrfs_repair_bioset);
245 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
246 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
247 
248 	repair_bbio = btrfs_bio(repair_bio);
249 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
250 	repair_bbio->inode = failed_bbio->inode;
251 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
252 
253 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
254 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
255 	btrfs_submit_bbio(repair_bbio, mirror);
256 	return fbio;
257 }
258 
259 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
260 {
261 	struct btrfs_inode *inode = bbio->inode;
262 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
263 	u32 sectorsize = fs_info->sectorsize;
264 	struct bvec_iter *iter = &bbio->saved_iter;
265 	blk_status_t status = bbio->bio.bi_status;
266 	struct btrfs_failed_bio *fbio = NULL;
267 	u32 offset = 0;
268 
269 	/* Read-repair requires the inode field to be set by the submitter. */
270 	ASSERT(inode);
271 
272 	/*
273 	 * Hand off repair bios to the repair code as there is no upper level
274 	 * submitter for them.
275 	 */
276 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
277 		btrfs_end_repair_bio(bbio, dev);
278 		return;
279 	}
280 
281 	/* Clear the I/O error. A failed repair will reset it. */
282 	bbio->bio.bi_status = BLK_STS_OK;
283 
284 	while (iter->bi_size) {
285 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
286 
287 		bv.bv_len = min(bv.bv_len, sectorsize);
288 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
289 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
290 
291 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
292 		offset += sectorsize;
293 	}
294 
295 	if (bbio->csum != bbio->csum_inline)
296 		kfree(bbio->csum);
297 
298 	if (fbio)
299 		btrfs_repair_done(fbio);
300 	else
301 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
302 }
303 
304 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
305 {
306 	if (!dev || !dev->bdev)
307 		return;
308 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
309 		return;
310 
311 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
312 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
313 	else if (!(bio->bi_opf & REQ_RAHEAD))
314 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
315 	if (bio->bi_opf & REQ_PREFLUSH)
316 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
317 }
318 
319 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
320 						struct bio *bio)
321 {
322 	if (bio->bi_opf & REQ_META)
323 		return fs_info->endio_meta_workers;
324 	return fs_info->endio_workers;
325 }
326 
327 static void btrfs_end_bio_work(struct work_struct *work)
328 {
329 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
330 
331 	/* Metadata reads are checked and repaired by the submitter. */
332 	if (is_data_bbio(bbio))
333 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
334 	else
335 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
336 }
337 
338 static void btrfs_simple_end_io(struct bio *bio)
339 {
340 	struct btrfs_bio *bbio = btrfs_bio(bio);
341 	struct btrfs_device *dev = bio->bi_private;
342 	struct btrfs_fs_info *fs_info = bbio->fs_info;
343 
344 	btrfs_bio_counter_dec(fs_info);
345 
346 	if (bio->bi_status)
347 		btrfs_log_dev_io_error(bio, dev);
348 
349 	if (bio_op(bio) == REQ_OP_READ) {
350 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
351 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
352 	} else {
353 		if (bio_is_zone_append(bio) && !bio->bi_status)
354 			btrfs_record_physical_zoned(bbio);
355 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
356 	}
357 }
358 
359 static void btrfs_raid56_end_io(struct bio *bio)
360 {
361 	struct btrfs_io_context *bioc = bio->bi_private;
362 	struct btrfs_bio *bbio = btrfs_bio(bio);
363 
364 	btrfs_bio_counter_dec(bioc->fs_info);
365 	bbio->mirror_num = bioc->mirror_num;
366 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
367 		btrfs_check_read_bio(bbio, NULL);
368 	else
369 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
370 
371 	btrfs_put_bioc(bioc);
372 }
373 
374 static void btrfs_orig_write_end_io(struct bio *bio)
375 {
376 	struct btrfs_io_stripe *stripe = bio->bi_private;
377 	struct btrfs_io_context *bioc = stripe->bioc;
378 	struct btrfs_bio *bbio = btrfs_bio(bio);
379 
380 	btrfs_bio_counter_dec(bioc->fs_info);
381 
382 	if (bio->bi_status) {
383 		atomic_inc(&bioc->error);
384 		btrfs_log_dev_io_error(bio, stripe->dev);
385 	}
386 
387 	/*
388 	 * Only send an error to the higher layers if it is beyond the tolerance
389 	 * threshold.
390 	 */
391 	if (atomic_read(&bioc->error) > bioc->max_errors)
392 		bio->bi_status = BLK_STS_IOERR;
393 	else
394 		bio->bi_status = BLK_STS_OK;
395 
396 	if (bio_is_zone_append(bio) && !bio->bi_status)
397 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
398 
399 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
400 	btrfs_put_bioc(bioc);
401 }
402 
403 static void btrfs_clone_write_end_io(struct bio *bio)
404 {
405 	struct btrfs_io_stripe *stripe = bio->bi_private;
406 
407 	if (bio->bi_status) {
408 		atomic_inc(&stripe->bioc->error);
409 		btrfs_log_dev_io_error(bio, stripe->dev);
410 	} else if (bio_is_zone_append(bio)) {
411 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
412 	}
413 
414 	/* Pass on control to the original bio this one was cloned from */
415 	bio_endio(stripe->bioc->orig_bio);
416 	bio_put(bio);
417 }
418 
419 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
420 {
421 	if (!dev || !dev->bdev ||
422 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
423 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
424 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
425 		bio_io_error(bio);
426 		return;
427 	}
428 
429 	bio_set_dev(bio, dev->bdev);
430 
431 	/*
432 	 * For zone append writing, bi_sector must point the beginning of the
433 	 * zone
434 	 */
435 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
436 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
437 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
438 
439 		ASSERT(btrfs_dev_is_sequential(dev, physical));
440 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
441 	}
442 	btrfs_debug_in_rcu(dev->fs_info,
443 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
444 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
445 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
446 		dev->devid, bio->bi_iter.bi_size);
447 
448 	/*
449 	 * Track reads if tracking is enabled; ignore I/O operations before the
450 	 * filesystem is fully initialized.
451 	 */
452 	if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
453 		percpu_counter_add(&dev->fs_info->stats_read_blocks,
454 				   bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
455 
456 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
457 		blkcg_punt_bio_submit(bio);
458 	else
459 		submit_bio(bio);
460 }
461 
462 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
463 {
464 	struct bio *orig_bio = bioc->orig_bio, *bio;
465 
466 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
467 
468 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
469 	if (dev_nr == bioc->num_stripes - 1) {
470 		bio = orig_bio;
471 		bio->bi_end_io = btrfs_orig_write_end_io;
472 	} else {
473 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
474 		bio_inc_remaining(orig_bio);
475 		bio->bi_end_io = btrfs_clone_write_end_io;
476 	}
477 
478 	bio->bi_private = &bioc->stripes[dev_nr];
479 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
480 	bioc->stripes[dev_nr].bioc = bioc;
481 	bioc->size = bio->bi_iter.bi_size;
482 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
483 }
484 
485 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
486 			     struct btrfs_io_stripe *smap, int mirror_num)
487 {
488 	if (!bioc) {
489 		/* Single mirror read/write fast path. */
490 		btrfs_bio(bio)->mirror_num = mirror_num;
491 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
492 		if (bio_op(bio) != REQ_OP_READ)
493 			btrfs_bio(bio)->orig_physical = smap->physical;
494 		bio->bi_private = smap->dev;
495 		bio->bi_end_io = btrfs_simple_end_io;
496 		btrfs_submit_dev_bio(smap->dev, bio);
497 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
498 		/* Parity RAID write or read recovery. */
499 		bio->bi_private = bioc;
500 		bio->bi_end_io = btrfs_raid56_end_io;
501 		if (bio_op(bio) == REQ_OP_READ)
502 			raid56_parity_recover(bio, bioc, mirror_num);
503 		else
504 			raid56_parity_write(bio, bioc);
505 	} else {
506 		/* Write to multiple mirrors. */
507 		int total_devs = bioc->num_stripes;
508 
509 		bioc->orig_bio = bio;
510 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
511 			btrfs_submit_mirrored_bio(bioc, dev_nr);
512 	}
513 }
514 
515 static int btrfs_bio_csum(struct btrfs_bio *bbio)
516 {
517 	if (bbio->bio.bi_opf & REQ_META)
518 		return btree_csum_one_bio(bbio);
519 	return btrfs_csum_one_bio(bbio);
520 }
521 
522 /*
523  * Async submit bios are used to offload expensive checksumming onto the worker
524  * threads.
525  */
526 struct async_submit_bio {
527 	struct btrfs_bio *bbio;
528 	struct btrfs_io_context *bioc;
529 	struct btrfs_io_stripe smap;
530 	int mirror_num;
531 	struct btrfs_work work;
532 };
533 
534 /*
535  * In order to insert checksums into the metadata in large chunks, we wait
536  * until bio submission time.   All the pages in the bio are checksummed and
537  * sums are attached onto the ordered extent record.
538  *
539  * At IO completion time the csums attached on the ordered extent record are
540  * inserted into the btree.
541  */
542 static void run_one_async_start(struct btrfs_work *work)
543 {
544 	struct async_submit_bio *async =
545 		container_of(work, struct async_submit_bio, work);
546 	int ret;
547 
548 	ret = btrfs_bio_csum(async->bbio);
549 	if (ret)
550 		async->bbio->bio.bi_status = errno_to_blk_status(ret);
551 }
552 
553 /*
554  * In order to insert checksums into the metadata in large chunks, we wait
555  * until bio submission time.   All the pages in the bio are checksummed and
556  * sums are attached onto the ordered extent record.
557  *
558  * At IO completion time the csums attached on the ordered extent record are
559  * inserted into the tree.
560  *
561  * If called with @do_free == true, then it will free the work struct.
562  */
563 static void run_one_async_done(struct btrfs_work *work, bool do_free)
564 {
565 	struct async_submit_bio *async =
566 		container_of(work, struct async_submit_bio, work);
567 	struct bio *bio = &async->bbio->bio;
568 
569 	if (do_free) {
570 		kfree(container_of(work, struct async_submit_bio, work));
571 		return;
572 	}
573 
574 	/* If an error occurred we just want to clean up the bio and move on. */
575 	if (bio->bi_status) {
576 		btrfs_bio_end_io(async->bbio, bio->bi_status);
577 		return;
578 	}
579 
580 	/*
581 	 * All of the bios that pass through here are from async helpers.
582 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
583 	 * context.  This changes nothing when cgroups aren't in use.
584 	 */
585 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
586 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
587 }
588 
589 static bool should_async_write(struct btrfs_bio *bbio)
590 {
591 	bool auto_csum_mode = true;
592 
593 #ifdef CONFIG_BTRFS_EXPERIMENTAL
594 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
595 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
596 
597 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
598 		return false;
599 
600 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
601 #endif
602 
603 	/* Submit synchronously if the checksum implementation is fast. */
604 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
605 		return false;
606 
607 	/*
608 	 * Try to defer the submission to a workqueue to parallelize the
609 	 * checksum calculation unless the I/O is issued synchronously.
610 	 */
611 	if (op_is_sync(bbio->bio.bi_opf))
612 		return false;
613 
614 	/* Zoned devices require I/O to be submitted in order. */
615 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
616 		return false;
617 
618 	return true;
619 }
620 
621 /*
622  * Submit bio to an async queue.
623  *
624  * Return true if the work has been successfully submitted, else false.
625  */
626 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
627 				struct btrfs_io_context *bioc,
628 				struct btrfs_io_stripe *smap, int mirror_num)
629 {
630 	struct btrfs_fs_info *fs_info = bbio->fs_info;
631 	struct async_submit_bio *async;
632 
633 	async = kmalloc(sizeof(*async), GFP_NOFS);
634 	if (!async)
635 		return false;
636 
637 	async->bbio = bbio;
638 	async->bioc = bioc;
639 	async->smap = *smap;
640 	async->mirror_num = mirror_num;
641 
642 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
643 	btrfs_queue_work(fs_info->workers, &async->work);
644 	return true;
645 }
646 
647 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
648 {
649 	unsigned int nr_segs;
650 	int sector_offset;
651 
652 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
653 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
654 					&nr_segs, map_length);
655 	if (sector_offset) {
656 		/*
657 		 * bio_split_rw_at() could split at a size smaller than our
658 		 * sectorsize and thus cause unaligned I/Os.  Fix that by
659 		 * always rounding down to the nearest boundary.
660 		 */
661 		return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
662 	}
663 	return map_length;
664 }
665 
666 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
667 {
668 	struct btrfs_inode *inode = bbio->inode;
669 	struct btrfs_fs_info *fs_info = bbio->fs_info;
670 	struct bio *bio = &bbio->bio;
671 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
672 	u64 length = bio->bi_iter.bi_size;
673 	u64 map_length = length;
674 	bool use_append = btrfs_use_zone_append(bbio);
675 	struct btrfs_io_context *bioc = NULL;
676 	struct btrfs_io_stripe smap;
677 	blk_status_t status;
678 	int ret;
679 
680 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
681 		smap.rst_search_commit_root = true;
682 	else
683 		smap.rst_search_commit_root = false;
684 
685 	btrfs_bio_counter_inc_blocked(fs_info);
686 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
687 			      &bioc, &smap, &mirror_num);
688 	if (ret) {
689 		status = errno_to_blk_status(ret);
690 		btrfs_bio_counter_dec(fs_info);
691 		goto end_bbio;
692 	}
693 
694 	map_length = min(map_length, length);
695 	if (use_append)
696 		map_length = btrfs_append_map_length(bbio, map_length);
697 
698 	if (map_length < length) {
699 		struct btrfs_bio *split;
700 
701 		split = btrfs_split_bio(fs_info, bbio, map_length);
702 		if (IS_ERR(split)) {
703 			status = errno_to_blk_status(PTR_ERR(split));
704 			btrfs_bio_counter_dec(fs_info);
705 			goto end_bbio;
706 		}
707 		bbio = split;
708 		bio = &bbio->bio;
709 	}
710 
711 	/*
712 	 * Save the iter for the end_io handler and preload the checksums for
713 	 * data reads.
714 	 */
715 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
716 		bbio->saved_iter = bio->bi_iter;
717 		ret = btrfs_lookup_bio_sums(bbio);
718 		status = errno_to_blk_status(ret);
719 		if (status)
720 			goto fail;
721 	}
722 
723 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
724 		if (use_append) {
725 			bio->bi_opf &= ~REQ_OP_WRITE;
726 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
727 		}
728 
729 		if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
730 			/*
731 			 * No locking for the list update, as we only add to
732 			 * the list in the I/O submission path, and list
733 			 * iteration only happens in the completion path, which
734 			 * can't happen until after the last submission.
735 			 */
736 			btrfs_get_bioc(bioc);
737 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
738 		}
739 
740 		/*
741 		 * Csum items for reloc roots have already been cloned at this
742 		 * point, so they are handled as part of the no-checksum case.
743 		 */
744 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
745 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
746 		    !btrfs_is_data_reloc_root(inode->root)) {
747 			if (should_async_write(bbio) &&
748 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
749 				goto done;
750 
751 			ret = btrfs_bio_csum(bbio);
752 			status = errno_to_blk_status(ret);
753 			if (status)
754 				goto fail;
755 		} else if (use_append ||
756 			   (btrfs_is_zoned(fs_info) && inode &&
757 			    inode->flags & BTRFS_INODE_NODATASUM)) {
758 			ret = btrfs_alloc_dummy_sum(bbio);
759 			status = errno_to_blk_status(ret);
760 			if (status)
761 				goto fail;
762 		}
763 	}
764 
765 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
766 done:
767 	return map_length == length;
768 
769 fail:
770 	btrfs_bio_counter_dec(fs_info);
771 	/*
772 	 * We have split the original bbio, now we have to end both the current
773 	 * @bbio and remaining one, as the remaining one will never be submitted.
774 	 */
775 	if (map_length < length) {
776 		struct btrfs_bio *remaining = bbio->private;
777 
778 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
779 		ASSERT(remaining);
780 
781 		btrfs_bio_end_io(remaining, status);
782 	}
783 end_bbio:
784 	btrfs_bio_end_io(bbio, status);
785 	/* Do not submit another chunk */
786 	return true;
787 }
788 
789 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
790 {
791 	/* If bbio->inode is not populated, its file_offset must be 0. */
792 	ASSERT(bbio->inode || bbio->file_offset == 0);
793 
794 	while (!btrfs_submit_chunk(bbio, mirror_num))
795 		;
796 }
797 
798 /*
799  * Submit a repair write.
800  *
801  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
802  * RAID setup.  Here we only want to write the one bad copy, so we do the
803  * mapping ourselves and submit the bio directly.
804  *
805  * The I/O is issued synchronously to block the repair read completion from
806  * freeing the bio.
807  */
808 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
809 			    u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
810 {
811 	struct btrfs_io_stripe smap = { 0 };
812 	struct bio_vec bvec;
813 	struct bio bio;
814 	int ret = 0;
815 
816 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
817 	BUG_ON(!mirror_num);
818 
819 	if (btrfs_repair_one_zone(fs_info, logical))
820 		return 0;
821 
822 	/*
823 	 * Avoid races with device replace and make sure our bioc has devices
824 	 * associated to its stripes that don't go away while we are doing the
825 	 * read repair operation.
826 	 */
827 	btrfs_bio_counter_inc_blocked(fs_info);
828 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
829 	if (ret < 0)
830 		goto out_counter_dec;
831 
832 	if (!smap.dev->bdev ||
833 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
834 		ret = -EIO;
835 		goto out_counter_dec;
836 	}
837 
838 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
839 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
840 	__bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
841 	ret = submit_bio_wait(&bio);
842 	if (ret) {
843 		/* try to remap that extent elsewhere? */
844 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
845 		goto out_bio_uninit;
846 	}
847 
848 	btrfs_info_rl_in_rcu(fs_info,
849 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
850 			     ino, start, btrfs_dev_name(smap.dev),
851 			     smap.physical >> SECTOR_SHIFT);
852 	ret = 0;
853 
854 out_bio_uninit:
855 	bio_uninit(&bio);
856 out_counter_dec:
857 	btrfs_bio_counter_dec(fs_info);
858 	return ret;
859 }
860 
861 /*
862  * Submit a btrfs_bio based repair write.
863  *
864  * If @dev_replace is true, the write would be submitted to dev-replace target.
865  */
866 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
867 {
868 	struct btrfs_fs_info *fs_info = bbio->fs_info;
869 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
870 	u64 length = bbio->bio.bi_iter.bi_size;
871 	struct btrfs_io_stripe smap = { 0 };
872 	int ret;
873 
874 	ASSERT(fs_info);
875 	ASSERT(mirror_num > 0);
876 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
877 	ASSERT(!bbio->inode);
878 
879 	btrfs_bio_counter_inc_blocked(fs_info);
880 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
881 	if (ret < 0)
882 		goto fail;
883 
884 	if (dev_replace) {
885 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
886 		smap.dev = fs_info->dev_replace.tgtdev;
887 	}
888 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
889 	return;
890 
891 fail:
892 	btrfs_bio_counter_dec(fs_info);
893 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
894 }
895 
896 int __init btrfs_bioset_init(void)
897 {
898 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
899 			offsetof(struct btrfs_bio, bio),
900 			BIOSET_NEED_BVECS))
901 		return -ENOMEM;
902 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
903 			offsetof(struct btrfs_bio, bio), 0))
904 		goto out;
905 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
906 			offsetof(struct btrfs_bio, bio),
907 			BIOSET_NEED_BVECS))
908 		goto out;
909 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
910 				      sizeof(struct btrfs_failed_bio)))
911 		goto out;
912 	return 0;
913 
914 out:
915 	btrfs_bioset_exit();
916 	return -ENOMEM;
917 }
918 
919 void __cold btrfs_bioset_exit(void)
920 {
921 	mempool_exit(&btrfs_failed_bio_pool);
922 	bioset_exit(&btrfs_repair_bioset);
923 	bioset_exit(&btrfs_clone_bioset);
924 	bioset_exit(&btrfs_bioset);
925 }
926