1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 4 * Author: Alex Williamson <alex.williamson@redhat.com> 5 * 6 * Derived from original vfio: 7 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 8 * Author: Tom Lyon, pugs@cisco.com 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/aperture.h> 14 #include <linux/device.h> 15 #include <linux/eventfd.h> 16 #include <linux/file.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/pci.h> 23 #include <linux/pfn_t.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/uaccess.h> 28 #include <linux/vgaarb.h> 29 #include <linux/nospec.h> 30 #include <linux/sched/mm.h> 31 #include <linux/iommufd.h> 32 #if IS_ENABLED(CONFIG_EEH) 33 #include <asm/eeh.h> 34 #endif 35 36 #include "vfio_pci_priv.h" 37 38 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" 39 #define DRIVER_DESC "core driver for VFIO based PCI devices" 40 41 static bool nointxmask; 42 static bool disable_vga; 43 static bool disable_idle_d3; 44 45 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ 46 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); 47 static LIST_HEAD(vfio_pci_sriov_pfs); 48 49 struct vfio_pci_dummy_resource { 50 struct resource resource; 51 int index; 52 struct list_head res_next; 53 }; 54 55 struct vfio_pci_vf_token { 56 struct mutex lock; 57 uuid_t uuid; 58 int users; 59 }; 60 61 static inline bool vfio_vga_disabled(void) 62 { 63 #ifdef CONFIG_VFIO_PCI_VGA 64 return disable_vga; 65 #else 66 return true; 67 #endif 68 } 69 70 /* 71 * Our VGA arbiter participation is limited since we don't know anything 72 * about the device itself. However, if the device is the only VGA device 73 * downstream of a bridge and VFIO VGA support is disabled, then we can 74 * safely return legacy VGA IO and memory as not decoded since the user 75 * has no way to get to it and routing can be disabled externally at the 76 * bridge. 77 */ 78 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) 79 { 80 struct pci_dev *tmp = NULL; 81 unsigned char max_busnr; 82 unsigned int decodes; 83 84 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) 85 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 86 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 87 88 max_busnr = pci_bus_max_busnr(pdev->bus); 89 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 90 91 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { 92 if (tmp == pdev || 93 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || 94 pci_is_root_bus(tmp->bus)) 95 continue; 96 97 if (tmp->bus->number >= pdev->bus->number && 98 tmp->bus->number <= max_busnr) { 99 pci_dev_put(tmp); 100 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 101 break; 102 } 103 } 104 105 return decodes; 106 } 107 108 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) 109 { 110 struct resource *res; 111 int i; 112 struct vfio_pci_dummy_resource *dummy_res; 113 114 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 115 int bar = i + PCI_STD_RESOURCES; 116 117 res = &vdev->pdev->resource[bar]; 118 119 if (vdev->pdev->non_mappable_bars) 120 goto no_mmap; 121 122 if (!(res->flags & IORESOURCE_MEM)) 123 goto no_mmap; 124 125 /* 126 * The PCI core shouldn't set up a resource with a 127 * type but zero size. But there may be bugs that 128 * cause us to do that. 129 */ 130 if (!resource_size(res)) 131 goto no_mmap; 132 133 if (resource_size(res) >= PAGE_SIZE) { 134 vdev->bar_mmap_supported[bar] = true; 135 continue; 136 } 137 138 if (!(res->start & ~PAGE_MASK)) { 139 /* 140 * Add a dummy resource to reserve the remainder 141 * of the exclusive page in case that hot-add 142 * device's bar is assigned into it. 143 */ 144 dummy_res = 145 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT); 146 if (dummy_res == NULL) 147 goto no_mmap; 148 149 dummy_res->resource.name = "vfio sub-page reserved"; 150 dummy_res->resource.start = res->end + 1; 151 dummy_res->resource.end = res->start + PAGE_SIZE - 1; 152 dummy_res->resource.flags = res->flags; 153 if (request_resource(res->parent, 154 &dummy_res->resource)) { 155 kfree(dummy_res); 156 goto no_mmap; 157 } 158 dummy_res->index = bar; 159 list_add(&dummy_res->res_next, 160 &vdev->dummy_resources_list); 161 vdev->bar_mmap_supported[bar] = true; 162 continue; 163 } 164 /* 165 * Here we don't handle the case when the BAR is not page 166 * aligned because we can't expect the BAR will be 167 * assigned into the same location in a page in guest 168 * when we passthrough the BAR. And it's hard to access 169 * this BAR in userspace because we have no way to get 170 * the BAR's location in a page. 171 */ 172 no_mmap: 173 vdev->bar_mmap_supported[bar] = false; 174 } 175 } 176 177 struct vfio_pci_group_info; 178 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); 179 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 180 struct vfio_pci_group_info *groups, 181 struct iommufd_ctx *iommufd_ctx); 182 183 /* 184 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND 185 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. 186 * If a device implements the former but not the latter we would typically 187 * expect broken_intx_masking be set and require an exclusive interrupt. 188 * However since we do have control of the device's ability to assert INTx, 189 * we can instead pretend that the device does not implement INTx, virtualizing 190 * the pin register to report zero and maintaining DisINTx set on the host. 191 */ 192 static bool vfio_pci_nointx(struct pci_dev *pdev) 193 { 194 switch (pdev->vendor) { 195 case PCI_VENDOR_ID_INTEL: 196 switch (pdev->device) { 197 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ 198 case 0x1572: 199 case 0x1574: 200 case 0x1580 ... 0x1581: 201 case 0x1583 ... 0x158b: 202 case 0x37d0 ... 0x37d2: 203 /* X550 */ 204 case 0x1563: 205 return true; 206 default: 207 return false; 208 } 209 } 210 211 return false; 212 } 213 214 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) 215 { 216 struct pci_dev *pdev = vdev->pdev; 217 u16 pmcsr; 218 219 if (!pdev->pm_cap) 220 return; 221 222 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 223 224 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 225 } 226 227 /* 228 * pci_set_power_state() wrapper handling devices which perform a soft reset on 229 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, 230 * restore when returned to D0. Saved separately from pci_saved_state for use 231 * by PM capability emulation and separately from pci_dev internal saved state 232 * to avoid it being overwritten and consumed around other resets. 233 */ 234 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) 235 { 236 struct pci_dev *pdev = vdev->pdev; 237 bool needs_restore = false, needs_save = false; 238 int ret; 239 240 /* Prevent changing power state for PFs with VFs enabled */ 241 if (pci_num_vf(pdev) && state > PCI_D0) 242 return -EBUSY; 243 244 if (vdev->needs_pm_restore) { 245 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { 246 pci_save_state(pdev); 247 needs_save = true; 248 } 249 250 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) 251 needs_restore = true; 252 } 253 254 ret = pci_set_power_state(pdev, state); 255 256 if (!ret) { 257 /* D3 might be unsupported via quirk, skip unless in D3 */ 258 if (needs_save && pdev->current_state >= PCI_D3hot) { 259 /* 260 * The current PCI state will be saved locally in 261 * 'pm_save' during the D3hot transition. When the 262 * device state is changed to D0 again with the current 263 * function, then pci_store_saved_state() will restore 264 * the state and will free the memory pointed by 265 * 'pm_save'. There are few cases where the PCI power 266 * state can be changed to D0 without the involvement 267 * of the driver. For these cases, free the earlier 268 * allocated memory first before overwriting 'pm_save' 269 * to prevent the memory leak. 270 */ 271 kfree(vdev->pm_save); 272 vdev->pm_save = pci_store_saved_state(pdev); 273 } else if (needs_restore) { 274 pci_load_and_free_saved_state(pdev, &vdev->pm_save); 275 pci_restore_state(pdev); 276 } 277 } 278 279 return ret; 280 } 281 282 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, 283 struct eventfd_ctx *efdctx) 284 { 285 /* 286 * The vdev power related flags are protected with 'memory_lock' 287 * semaphore. 288 */ 289 vfio_pci_zap_and_down_write_memory_lock(vdev); 290 if (vdev->pm_runtime_engaged) { 291 up_write(&vdev->memory_lock); 292 return -EINVAL; 293 } 294 295 vdev->pm_runtime_engaged = true; 296 vdev->pm_wake_eventfd_ctx = efdctx; 297 pm_runtime_put_noidle(&vdev->pdev->dev); 298 up_write(&vdev->memory_lock); 299 300 return 0; 301 } 302 303 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, 304 void __user *arg, size_t argsz) 305 { 306 struct vfio_pci_core_device *vdev = 307 container_of(device, struct vfio_pci_core_device, vdev); 308 int ret; 309 310 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 311 if (ret != 1) 312 return ret; 313 314 /* 315 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count 316 * will be decremented. The pm_runtime_put() will be invoked again 317 * while returning from the ioctl and then the device can go into 318 * runtime suspended state. 319 */ 320 return vfio_pci_runtime_pm_entry(vdev, NULL); 321 } 322 323 static int vfio_pci_core_pm_entry_with_wakeup( 324 struct vfio_device *device, u32 flags, 325 struct vfio_device_low_power_entry_with_wakeup __user *arg, 326 size_t argsz) 327 { 328 struct vfio_pci_core_device *vdev = 329 container_of(device, struct vfio_pci_core_device, vdev); 330 struct vfio_device_low_power_entry_with_wakeup entry; 331 struct eventfd_ctx *efdctx; 332 int ret; 333 334 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 335 sizeof(entry)); 336 if (ret != 1) 337 return ret; 338 339 if (copy_from_user(&entry, arg, sizeof(entry))) 340 return -EFAULT; 341 342 if (entry.wakeup_eventfd < 0) 343 return -EINVAL; 344 345 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); 346 if (IS_ERR(efdctx)) 347 return PTR_ERR(efdctx); 348 349 ret = vfio_pci_runtime_pm_entry(vdev, efdctx); 350 if (ret) 351 eventfd_ctx_put(efdctx); 352 353 return ret; 354 } 355 356 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 357 { 358 if (vdev->pm_runtime_engaged) { 359 vdev->pm_runtime_engaged = false; 360 pm_runtime_get_noresume(&vdev->pdev->dev); 361 362 if (vdev->pm_wake_eventfd_ctx) { 363 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); 364 vdev->pm_wake_eventfd_ctx = NULL; 365 } 366 } 367 } 368 369 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 370 { 371 /* 372 * The vdev power related flags are protected with 'memory_lock' 373 * semaphore. 374 */ 375 down_write(&vdev->memory_lock); 376 __vfio_pci_runtime_pm_exit(vdev); 377 up_write(&vdev->memory_lock); 378 } 379 380 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, 381 void __user *arg, size_t argsz) 382 { 383 struct vfio_pci_core_device *vdev = 384 container_of(device, struct vfio_pci_core_device, vdev); 385 int ret; 386 387 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 388 if (ret != 1) 389 return ret; 390 391 /* 392 * The device is always in the active state here due to pm wrappers 393 * around ioctls. If the device had entered a low power state and 394 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has 395 * already signaled the eventfd and exited low power mode itself. 396 * pm_runtime_engaged protects the redundant call here. 397 */ 398 vfio_pci_runtime_pm_exit(vdev); 399 return 0; 400 } 401 402 #ifdef CONFIG_PM 403 static int vfio_pci_core_runtime_suspend(struct device *dev) 404 { 405 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 406 407 down_write(&vdev->memory_lock); 408 /* 409 * The user can move the device into D3hot state before invoking 410 * power management IOCTL. Move the device into D0 state here and then 411 * the pci-driver core runtime PM suspend function will move the device 412 * into the low power state. Also, for the devices which have 413 * NoSoftRst-, it will help in restoring the original state 414 * (saved locally in 'vdev->pm_save'). 415 */ 416 vfio_pci_set_power_state(vdev, PCI_D0); 417 up_write(&vdev->memory_lock); 418 419 /* 420 * If INTx is enabled, then mask INTx before going into the runtime 421 * suspended state and unmask the same in the runtime resume. 422 * If INTx has already been masked by the user, then 423 * vfio_pci_intx_mask() will return false and in that case, INTx 424 * should not be unmasked in the runtime resume. 425 */ 426 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && 427 vfio_pci_intx_mask(vdev)); 428 429 return 0; 430 } 431 432 static int vfio_pci_core_runtime_resume(struct device *dev) 433 { 434 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 435 436 /* 437 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit 438 * low power mode. 439 */ 440 down_write(&vdev->memory_lock); 441 if (vdev->pm_wake_eventfd_ctx) { 442 eventfd_signal(vdev->pm_wake_eventfd_ctx); 443 __vfio_pci_runtime_pm_exit(vdev); 444 } 445 up_write(&vdev->memory_lock); 446 447 if (vdev->pm_intx_masked) 448 vfio_pci_intx_unmask(vdev); 449 450 return 0; 451 } 452 #endif /* CONFIG_PM */ 453 454 /* 455 * The pci-driver core runtime PM routines always save the device state 456 * before going into suspended state. If the device is going into low power 457 * state with only with runtime PM ops, then no explicit handling is needed 458 * for the devices which have NoSoftRst-. 459 */ 460 static const struct dev_pm_ops vfio_pci_core_pm_ops = { 461 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, 462 vfio_pci_core_runtime_resume, 463 NULL) 464 }; 465 466 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) 467 { 468 struct pci_dev *pdev = vdev->pdev; 469 int ret; 470 u16 cmd; 471 u8 msix_pos; 472 473 if (!disable_idle_d3) { 474 ret = pm_runtime_resume_and_get(&pdev->dev); 475 if (ret < 0) 476 return ret; 477 } 478 479 /* Don't allow our initial saved state to include busmaster */ 480 pci_clear_master(pdev); 481 482 ret = pci_enable_device(pdev); 483 if (ret) 484 goto out_power; 485 486 /* If reset fails because of the device lock, fail this path entirely */ 487 ret = pci_try_reset_function(pdev); 488 if (ret == -EAGAIN) 489 goto out_disable_device; 490 491 vdev->reset_works = !ret; 492 pci_save_state(pdev); 493 vdev->pci_saved_state = pci_store_saved_state(pdev); 494 if (!vdev->pci_saved_state) 495 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); 496 497 if (likely(!nointxmask)) { 498 if (vfio_pci_nointx(pdev)) { 499 pci_info(pdev, "Masking broken INTx support\n"); 500 vdev->nointx = true; 501 pci_intx(pdev, 0); 502 } else 503 vdev->pci_2_3 = pci_intx_mask_supported(pdev); 504 } 505 506 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 507 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { 508 cmd &= ~PCI_COMMAND_INTX_DISABLE; 509 pci_write_config_word(pdev, PCI_COMMAND, cmd); 510 } 511 512 ret = vfio_pci_zdev_open_device(vdev); 513 if (ret) 514 goto out_free_state; 515 516 ret = vfio_config_init(vdev); 517 if (ret) 518 goto out_free_zdev; 519 520 msix_pos = pdev->msix_cap; 521 if (msix_pos) { 522 u16 flags; 523 u32 table; 524 525 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); 526 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); 527 528 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; 529 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; 530 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; 531 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev); 532 } else { 533 vdev->msix_bar = 0xFF; 534 vdev->has_dyn_msix = false; 535 } 536 537 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) 538 vdev->has_vga = true; 539 540 541 return 0; 542 543 out_free_zdev: 544 vfio_pci_zdev_close_device(vdev); 545 out_free_state: 546 kfree(vdev->pci_saved_state); 547 vdev->pci_saved_state = NULL; 548 out_disable_device: 549 pci_disable_device(pdev); 550 out_power: 551 if (!disable_idle_d3) 552 pm_runtime_put(&pdev->dev); 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(vfio_pci_core_enable); 556 557 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) 558 { 559 struct pci_dev *pdev = vdev->pdev; 560 struct vfio_pci_dummy_resource *dummy_res, *tmp; 561 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; 562 int i, bar; 563 564 /* For needs_reset */ 565 lockdep_assert_held(&vdev->vdev.dev_set->lock); 566 567 /* 568 * This function can be invoked while the power state is non-D0. 569 * This non-D0 power state can be with or without runtime PM. 570 * vfio_pci_runtime_pm_exit() will internally increment the usage 571 * count corresponding to pm_runtime_put() called during low power 572 * feature entry and then pm_runtime_resume() will wake up the device, 573 * if the device has already gone into the suspended state. Otherwise, 574 * the vfio_pci_set_power_state() will change the device power state 575 * to D0. 576 */ 577 vfio_pci_runtime_pm_exit(vdev); 578 pm_runtime_resume(&pdev->dev); 579 580 /* 581 * This function calls __pci_reset_function_locked() which internally 582 * can use pci_pm_reset() for the function reset. pci_pm_reset() will 583 * fail if the power state is non-D0. Also, for the devices which 584 * have NoSoftRst-, the reset function can cause the PCI config space 585 * reset without restoring the original state (saved locally in 586 * 'vdev->pm_save'). 587 */ 588 vfio_pci_set_power_state(vdev, PCI_D0); 589 590 /* Stop the device from further DMA */ 591 pci_clear_master(pdev); 592 593 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | 594 VFIO_IRQ_SET_ACTION_TRIGGER, 595 vdev->irq_type, 0, 0, NULL); 596 597 /* Device closed, don't need mutex here */ 598 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, 599 &vdev->ioeventfds_list, next) { 600 vfio_virqfd_disable(&ioeventfd->virqfd); 601 list_del(&ioeventfd->next); 602 kfree(ioeventfd); 603 } 604 vdev->ioeventfds_nr = 0; 605 606 vdev->virq_disabled = false; 607 608 for (i = 0; i < vdev->num_regions; i++) 609 vdev->region[i].ops->release(vdev, &vdev->region[i]); 610 611 vdev->num_regions = 0; 612 kfree(vdev->region); 613 vdev->region = NULL; /* don't krealloc a freed pointer */ 614 615 vfio_config_free(vdev); 616 617 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 618 bar = i + PCI_STD_RESOURCES; 619 if (!vdev->barmap[bar]) 620 continue; 621 pci_iounmap(pdev, vdev->barmap[bar]); 622 pci_release_selected_regions(pdev, 1 << bar); 623 vdev->barmap[bar] = NULL; 624 } 625 626 list_for_each_entry_safe(dummy_res, tmp, 627 &vdev->dummy_resources_list, res_next) { 628 list_del(&dummy_res->res_next); 629 release_resource(&dummy_res->resource); 630 kfree(dummy_res); 631 } 632 633 vdev->needs_reset = true; 634 635 vfio_pci_zdev_close_device(vdev); 636 637 /* 638 * If we have saved state, restore it. If we can reset the device, 639 * even better. Resetting with current state seems better than 640 * nothing, but saving and restoring current state without reset 641 * is just busy work. 642 */ 643 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { 644 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); 645 646 if (!vdev->reset_works) 647 goto out; 648 649 pci_save_state(pdev); 650 } 651 652 /* 653 * Disable INTx and MSI, presumably to avoid spurious interrupts 654 * during reset. Stolen from pci_reset_function() 655 */ 656 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 657 658 /* 659 * Try to get the locks ourselves to prevent a deadlock. The 660 * success of this is dependent on being able to lock the device, 661 * which is not always possible. 662 * We can not use the "try" reset interface here, which will 663 * overwrite the previously restored configuration information. 664 */ 665 if (vdev->reset_works && pci_dev_trylock(pdev)) { 666 if (!__pci_reset_function_locked(pdev)) 667 vdev->needs_reset = false; 668 pci_dev_unlock(pdev); 669 } 670 671 pci_restore_state(pdev); 672 out: 673 pci_disable_device(pdev); 674 675 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); 676 677 /* Put the pm-runtime usage counter acquired during enable */ 678 if (!disable_idle_d3) 679 pm_runtime_put(&pdev->dev); 680 } 681 EXPORT_SYMBOL_GPL(vfio_pci_core_disable); 682 683 void vfio_pci_core_close_device(struct vfio_device *core_vdev) 684 { 685 struct vfio_pci_core_device *vdev = 686 container_of(core_vdev, struct vfio_pci_core_device, vdev); 687 688 if (vdev->sriov_pf_core_dev) { 689 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 690 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); 691 vdev->sriov_pf_core_dev->vf_token->users--; 692 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 693 } 694 #if IS_ENABLED(CONFIG_EEH) 695 eeh_dev_release(vdev->pdev); 696 #endif 697 vfio_pci_core_disable(vdev); 698 699 mutex_lock(&vdev->igate); 700 if (vdev->err_trigger) { 701 eventfd_ctx_put(vdev->err_trigger); 702 vdev->err_trigger = NULL; 703 } 704 if (vdev->req_trigger) { 705 eventfd_ctx_put(vdev->req_trigger); 706 vdev->req_trigger = NULL; 707 } 708 mutex_unlock(&vdev->igate); 709 } 710 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); 711 712 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) 713 { 714 vfio_pci_probe_mmaps(vdev); 715 #if IS_ENABLED(CONFIG_EEH) 716 eeh_dev_open(vdev->pdev); 717 #endif 718 719 if (vdev->sriov_pf_core_dev) { 720 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 721 vdev->sriov_pf_core_dev->vf_token->users++; 722 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 723 } 724 } 725 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); 726 727 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) 728 { 729 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { 730 return vdev->vconfig[PCI_INTERRUPT_PIN] ? 1 : 0; 731 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { 732 u8 pos; 733 u16 flags; 734 735 pos = vdev->pdev->msi_cap; 736 if (pos) { 737 pci_read_config_word(vdev->pdev, 738 pos + PCI_MSI_FLAGS, &flags); 739 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); 740 } 741 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { 742 u8 pos; 743 u16 flags; 744 745 pos = vdev->pdev->msix_cap; 746 if (pos) { 747 pci_read_config_word(vdev->pdev, 748 pos + PCI_MSIX_FLAGS, &flags); 749 750 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; 751 } 752 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { 753 if (pci_is_pcie(vdev->pdev)) 754 return 1; 755 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { 756 return 1; 757 } 758 759 return 0; 760 } 761 762 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) 763 { 764 (*(int *)data)++; 765 return 0; 766 } 767 768 struct vfio_pci_fill_info { 769 struct vfio_device *vdev; 770 struct vfio_pci_dependent_device *devices; 771 int nr_devices; 772 u32 count; 773 u32 flags; 774 }; 775 776 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) 777 { 778 struct vfio_pci_dependent_device *info; 779 struct vfio_pci_fill_info *fill = data; 780 781 /* The topology changed since we counted devices */ 782 if (fill->count >= fill->nr_devices) 783 return -EAGAIN; 784 785 info = &fill->devices[fill->count++]; 786 info->segment = pci_domain_nr(pdev->bus); 787 info->bus = pdev->bus->number; 788 info->devfn = pdev->devfn; 789 790 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) { 791 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev); 792 struct vfio_device_set *dev_set = fill->vdev->dev_set; 793 struct vfio_device *vdev; 794 795 /* 796 * hot-reset requires all affected devices be represented in 797 * the dev_set. 798 */ 799 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev); 800 if (!vdev) { 801 info->devid = VFIO_PCI_DEVID_NOT_OWNED; 802 } else { 803 int id = vfio_iommufd_get_dev_id(vdev, iommufd); 804 805 if (id > 0) 806 info->devid = id; 807 else if (id == -ENOENT) 808 info->devid = VFIO_PCI_DEVID_OWNED; 809 else 810 info->devid = VFIO_PCI_DEVID_NOT_OWNED; 811 } 812 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */ 813 if (info->devid == VFIO_PCI_DEVID_NOT_OWNED) 814 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 815 } else { 816 struct iommu_group *iommu_group; 817 818 iommu_group = iommu_group_get(&pdev->dev); 819 if (!iommu_group) 820 return -EPERM; /* Cannot reset non-isolated devices */ 821 822 info->group_id = iommu_group_id(iommu_group); 823 iommu_group_put(iommu_group); 824 } 825 826 return 0; 827 } 828 829 struct vfio_pci_group_info { 830 int count; 831 struct file **files; 832 }; 833 834 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) 835 { 836 for (; pdev; pdev = pdev->bus->self) 837 if (pdev->bus == slot->bus) 838 return (pdev->slot == slot); 839 return false; 840 } 841 842 struct vfio_pci_walk_info { 843 int (*fn)(struct pci_dev *pdev, void *data); 844 void *data; 845 struct pci_dev *pdev; 846 bool slot; 847 int ret; 848 }; 849 850 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) 851 { 852 struct vfio_pci_walk_info *walk = data; 853 854 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) 855 walk->ret = walk->fn(pdev, walk->data); 856 857 return walk->ret; 858 } 859 860 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, 861 int (*fn)(struct pci_dev *, 862 void *data), void *data, 863 bool slot) 864 { 865 struct vfio_pci_walk_info walk = { 866 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, 867 }; 868 869 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); 870 871 return walk.ret; 872 } 873 874 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, 875 struct vfio_info_cap *caps) 876 { 877 struct vfio_info_cap_header header = { 878 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, 879 .version = 1 880 }; 881 882 return vfio_info_add_capability(caps, &header, sizeof(header)); 883 } 884 885 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, 886 unsigned int type, unsigned int subtype, 887 const struct vfio_pci_regops *ops, 888 size_t size, u32 flags, void *data) 889 { 890 struct vfio_pci_region *region; 891 892 region = krealloc(vdev->region, 893 (vdev->num_regions + 1) * sizeof(*region), 894 GFP_KERNEL_ACCOUNT); 895 if (!region) 896 return -ENOMEM; 897 898 vdev->region = region; 899 vdev->region[vdev->num_regions].type = type; 900 vdev->region[vdev->num_regions].subtype = subtype; 901 vdev->region[vdev->num_regions].ops = ops; 902 vdev->region[vdev->num_regions].size = size; 903 vdev->region[vdev->num_regions].flags = flags; 904 vdev->region[vdev->num_regions].data = data; 905 906 vdev->num_regions++; 907 908 return 0; 909 } 910 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); 911 912 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev, 913 struct vfio_info_cap *caps) 914 { 915 struct vfio_device_info_cap_pci_atomic_comp cap = { 916 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP, 917 .header.version = 1 918 }; 919 struct pci_dev *pdev = pci_physfn(vdev->pdev); 920 u32 devcap2; 921 922 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2); 923 924 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) && 925 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32)) 926 cap.flags |= VFIO_PCI_ATOMIC_COMP32; 927 928 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) && 929 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64)) 930 cap.flags |= VFIO_PCI_ATOMIC_COMP64; 931 932 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) && 933 !pci_enable_atomic_ops_to_root(pdev, 934 PCI_EXP_DEVCAP2_ATOMIC_COMP128)) 935 cap.flags |= VFIO_PCI_ATOMIC_COMP128; 936 937 if (!cap.flags) 938 return -ENODEV; 939 940 return vfio_info_add_capability(caps, &cap.header, sizeof(cap)); 941 } 942 943 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, 944 struct vfio_device_info __user *arg) 945 { 946 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); 947 struct vfio_device_info info = {}; 948 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 949 int ret; 950 951 if (copy_from_user(&info, arg, minsz)) 952 return -EFAULT; 953 954 if (info.argsz < minsz) 955 return -EINVAL; 956 957 minsz = min_t(size_t, info.argsz, sizeof(info)); 958 959 info.flags = VFIO_DEVICE_FLAGS_PCI; 960 961 if (vdev->reset_works) 962 info.flags |= VFIO_DEVICE_FLAGS_RESET; 963 964 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; 965 info.num_irqs = VFIO_PCI_NUM_IRQS; 966 967 ret = vfio_pci_info_zdev_add_caps(vdev, &caps); 968 if (ret && ret != -ENODEV) { 969 pci_warn(vdev->pdev, 970 "Failed to setup zPCI info capabilities\n"); 971 return ret; 972 } 973 974 ret = vfio_pci_info_atomic_cap(vdev, &caps); 975 if (ret && ret != -ENODEV) { 976 pci_warn(vdev->pdev, 977 "Failed to setup AtomicOps info capability\n"); 978 return ret; 979 } 980 981 if (caps.size) { 982 info.flags |= VFIO_DEVICE_FLAGS_CAPS; 983 if (info.argsz < sizeof(info) + caps.size) { 984 info.argsz = sizeof(info) + caps.size; 985 } else { 986 vfio_info_cap_shift(&caps, sizeof(info)); 987 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 988 kfree(caps.buf); 989 return -EFAULT; 990 } 991 info.cap_offset = sizeof(*arg); 992 } 993 994 kfree(caps.buf); 995 } 996 997 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 998 } 999 1000 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, 1001 struct vfio_region_info __user *arg) 1002 { 1003 unsigned long minsz = offsetofend(struct vfio_region_info, offset); 1004 struct pci_dev *pdev = vdev->pdev; 1005 struct vfio_region_info info; 1006 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 1007 int i, ret; 1008 1009 if (copy_from_user(&info, arg, minsz)) 1010 return -EFAULT; 1011 1012 if (info.argsz < minsz) 1013 return -EINVAL; 1014 1015 switch (info.index) { 1016 case VFIO_PCI_CONFIG_REGION_INDEX: 1017 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1018 info.size = pdev->cfg_size; 1019 info.flags = VFIO_REGION_INFO_FLAG_READ | 1020 VFIO_REGION_INFO_FLAG_WRITE; 1021 break; 1022 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1023 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1024 info.size = pci_resource_len(pdev, info.index); 1025 if (!info.size) { 1026 info.flags = 0; 1027 break; 1028 } 1029 1030 info.flags = VFIO_REGION_INFO_FLAG_READ | 1031 VFIO_REGION_INFO_FLAG_WRITE; 1032 if (vdev->bar_mmap_supported[info.index]) { 1033 info.flags |= VFIO_REGION_INFO_FLAG_MMAP; 1034 if (info.index == vdev->msix_bar) { 1035 ret = msix_mmappable_cap(vdev, &caps); 1036 if (ret) 1037 return ret; 1038 } 1039 } 1040 1041 break; 1042 case VFIO_PCI_ROM_REGION_INDEX: { 1043 void __iomem *io; 1044 size_t size; 1045 u16 cmd; 1046 1047 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1048 info.flags = 0; 1049 info.size = 0; 1050 1051 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { 1052 /* 1053 * Check ROM content is valid. Need to enable memory 1054 * decode for ROM access in pci_map_rom(). 1055 */ 1056 cmd = vfio_pci_memory_lock_and_enable(vdev); 1057 io = pci_map_rom(pdev, &size); 1058 if (io) { 1059 info.flags = VFIO_REGION_INFO_FLAG_READ; 1060 /* Report the BAR size, not the ROM size. */ 1061 info.size = pci_resource_len(pdev, PCI_ROM_RESOURCE); 1062 pci_unmap_rom(pdev, io); 1063 } 1064 vfio_pci_memory_unlock_and_restore(vdev, cmd); 1065 } else if (pdev->rom && pdev->romlen) { 1066 info.flags = VFIO_REGION_INFO_FLAG_READ; 1067 /* Report BAR size as power of two. */ 1068 info.size = roundup_pow_of_two(pdev->romlen); 1069 } 1070 1071 break; 1072 } 1073 case VFIO_PCI_VGA_REGION_INDEX: 1074 if (!vdev->has_vga) 1075 return -EINVAL; 1076 1077 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1078 info.size = 0xc0000; 1079 info.flags = VFIO_REGION_INFO_FLAG_READ | 1080 VFIO_REGION_INFO_FLAG_WRITE; 1081 1082 break; 1083 default: { 1084 struct vfio_region_info_cap_type cap_type = { 1085 .header.id = VFIO_REGION_INFO_CAP_TYPE, 1086 .header.version = 1 1087 }; 1088 1089 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1090 return -EINVAL; 1091 info.index = array_index_nospec( 1092 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); 1093 1094 i = info.index - VFIO_PCI_NUM_REGIONS; 1095 1096 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1097 info.size = vdev->region[i].size; 1098 info.flags = vdev->region[i].flags; 1099 1100 cap_type.type = vdev->region[i].type; 1101 cap_type.subtype = vdev->region[i].subtype; 1102 1103 ret = vfio_info_add_capability(&caps, &cap_type.header, 1104 sizeof(cap_type)); 1105 if (ret) 1106 return ret; 1107 1108 if (vdev->region[i].ops->add_capability) { 1109 ret = vdev->region[i].ops->add_capability( 1110 vdev, &vdev->region[i], &caps); 1111 if (ret) 1112 return ret; 1113 } 1114 } 1115 } 1116 1117 if (caps.size) { 1118 info.flags |= VFIO_REGION_INFO_FLAG_CAPS; 1119 if (info.argsz < sizeof(info) + caps.size) { 1120 info.argsz = sizeof(info) + caps.size; 1121 info.cap_offset = 0; 1122 } else { 1123 vfio_info_cap_shift(&caps, sizeof(info)); 1124 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1125 kfree(caps.buf); 1126 return -EFAULT; 1127 } 1128 info.cap_offset = sizeof(*arg); 1129 } 1130 1131 kfree(caps.buf); 1132 } 1133 1134 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1135 } 1136 1137 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, 1138 struct vfio_irq_info __user *arg) 1139 { 1140 unsigned long minsz = offsetofend(struct vfio_irq_info, count); 1141 struct vfio_irq_info info; 1142 1143 if (copy_from_user(&info, arg, minsz)) 1144 return -EFAULT; 1145 1146 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) 1147 return -EINVAL; 1148 1149 switch (info.index) { 1150 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: 1151 case VFIO_PCI_REQ_IRQ_INDEX: 1152 break; 1153 case VFIO_PCI_ERR_IRQ_INDEX: 1154 if (pci_is_pcie(vdev->pdev)) 1155 break; 1156 fallthrough; 1157 default: 1158 return -EINVAL; 1159 } 1160 1161 info.flags = VFIO_IRQ_INFO_EVENTFD; 1162 1163 info.count = vfio_pci_get_irq_count(vdev, info.index); 1164 1165 if (info.index == VFIO_PCI_INTX_IRQ_INDEX) 1166 info.flags |= 1167 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); 1168 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix) 1169 info.flags |= VFIO_IRQ_INFO_NORESIZE; 1170 1171 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1172 } 1173 1174 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, 1175 struct vfio_irq_set __user *arg) 1176 { 1177 unsigned long minsz = offsetofend(struct vfio_irq_set, count); 1178 struct vfio_irq_set hdr; 1179 u8 *data = NULL; 1180 int max, ret = 0; 1181 size_t data_size = 0; 1182 1183 if (copy_from_user(&hdr, arg, minsz)) 1184 return -EFAULT; 1185 1186 max = vfio_pci_get_irq_count(vdev, hdr.index); 1187 1188 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, 1189 &data_size); 1190 if (ret) 1191 return ret; 1192 1193 if (data_size) { 1194 data = memdup_user(&arg->data, data_size); 1195 if (IS_ERR(data)) 1196 return PTR_ERR(data); 1197 } 1198 1199 mutex_lock(&vdev->igate); 1200 1201 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, 1202 hdr.count, data); 1203 1204 mutex_unlock(&vdev->igate); 1205 kfree(data); 1206 1207 return ret; 1208 } 1209 1210 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, 1211 void __user *arg) 1212 { 1213 int ret; 1214 1215 if (!vdev->reset_works) 1216 return -EINVAL; 1217 1218 vfio_pci_zap_and_down_write_memory_lock(vdev); 1219 1220 /* 1221 * This function can be invoked while the power state is non-D0. If 1222 * pci_try_reset_function() has been called while the power state is 1223 * non-D0, then pci_try_reset_function() will internally set the power 1224 * state to D0 without vfio driver involvement. For the devices which 1225 * have NoSoftRst-, the reset function can cause the PCI config space 1226 * reset without restoring the original state (saved locally in 1227 * 'vdev->pm_save'). 1228 */ 1229 vfio_pci_set_power_state(vdev, PCI_D0); 1230 1231 ret = pci_try_reset_function(vdev->pdev); 1232 up_write(&vdev->memory_lock); 1233 1234 return ret; 1235 } 1236 1237 static int vfio_pci_ioctl_get_pci_hot_reset_info( 1238 struct vfio_pci_core_device *vdev, 1239 struct vfio_pci_hot_reset_info __user *arg) 1240 { 1241 unsigned long minsz = 1242 offsetofend(struct vfio_pci_hot_reset_info, count); 1243 struct vfio_pci_dependent_device *devices = NULL; 1244 struct vfio_pci_hot_reset_info hdr; 1245 struct vfio_pci_fill_info fill = {}; 1246 bool slot = false; 1247 int ret, count = 0; 1248 1249 if (copy_from_user(&hdr, arg, minsz)) 1250 return -EFAULT; 1251 1252 if (hdr.argsz < minsz) 1253 return -EINVAL; 1254 1255 hdr.flags = 0; 1256 1257 /* Can we do a slot or bus reset or neither? */ 1258 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1259 slot = true; 1260 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1261 return -ENODEV; 1262 1263 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1264 &count, slot); 1265 if (ret) 1266 return ret; 1267 1268 if (WARN_ON(!count)) /* Should always be at least one */ 1269 return -ERANGE; 1270 1271 if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) { 1272 hdr.count = count; 1273 ret = -ENOSPC; 1274 goto header; 1275 } 1276 1277 devices = kcalloc(count, sizeof(*devices), GFP_KERNEL); 1278 if (!devices) 1279 return -ENOMEM; 1280 1281 fill.devices = devices; 1282 fill.nr_devices = count; 1283 fill.vdev = &vdev->vdev; 1284 1285 if (vfio_device_cdev_opened(&vdev->vdev)) 1286 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID | 1287 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 1288 1289 mutex_lock(&vdev->vdev.dev_set->lock); 1290 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, 1291 &fill, slot); 1292 mutex_unlock(&vdev->vdev.dev_set->lock); 1293 if (ret) 1294 goto out; 1295 1296 if (copy_to_user(arg->devices, devices, 1297 sizeof(*devices) * fill.count)) { 1298 ret = -EFAULT; 1299 goto out; 1300 } 1301 1302 hdr.count = fill.count; 1303 hdr.flags = fill.flags; 1304 1305 header: 1306 if (copy_to_user(arg, &hdr, minsz)) 1307 ret = -EFAULT; 1308 out: 1309 kfree(devices); 1310 return ret; 1311 } 1312 1313 static int 1314 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev, 1315 u32 array_count, bool slot, 1316 struct vfio_pci_hot_reset __user *arg) 1317 { 1318 int32_t *group_fds; 1319 struct file **files; 1320 struct vfio_pci_group_info info; 1321 int file_idx, count = 0, ret = 0; 1322 1323 /* 1324 * We can't let userspace give us an arbitrarily large buffer to copy, 1325 * so verify how many we think there could be. Note groups can have 1326 * multiple devices so one group per device is the max. 1327 */ 1328 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1329 &count, slot); 1330 if (ret) 1331 return ret; 1332 1333 if (array_count > count) 1334 return -EINVAL; 1335 1336 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL); 1337 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL); 1338 if (!group_fds || !files) { 1339 kfree(group_fds); 1340 kfree(files); 1341 return -ENOMEM; 1342 } 1343 1344 if (copy_from_user(group_fds, arg->group_fds, 1345 array_count * sizeof(*group_fds))) { 1346 kfree(group_fds); 1347 kfree(files); 1348 return -EFAULT; 1349 } 1350 1351 /* 1352 * Get the group file for each fd to ensure the group is held across 1353 * the reset 1354 */ 1355 for (file_idx = 0; file_idx < array_count; file_idx++) { 1356 struct file *file = fget(group_fds[file_idx]); 1357 1358 if (!file) { 1359 ret = -EBADF; 1360 break; 1361 } 1362 1363 /* Ensure the FD is a vfio group FD.*/ 1364 if (!vfio_file_is_group(file)) { 1365 fput(file); 1366 ret = -EINVAL; 1367 break; 1368 } 1369 1370 files[file_idx] = file; 1371 } 1372 1373 kfree(group_fds); 1374 1375 /* release reference to groups on error */ 1376 if (ret) 1377 goto hot_reset_release; 1378 1379 info.count = array_count; 1380 info.files = files; 1381 1382 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL); 1383 1384 hot_reset_release: 1385 for (file_idx--; file_idx >= 0; file_idx--) 1386 fput(files[file_idx]); 1387 1388 kfree(files); 1389 return ret; 1390 } 1391 1392 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, 1393 struct vfio_pci_hot_reset __user *arg) 1394 { 1395 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); 1396 struct vfio_pci_hot_reset hdr; 1397 bool slot = false; 1398 1399 if (copy_from_user(&hdr, arg, minsz)) 1400 return -EFAULT; 1401 1402 if (hdr.argsz < minsz || hdr.flags) 1403 return -EINVAL; 1404 1405 /* zero-length array is only for cdev opened devices */ 1406 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev)) 1407 return -EINVAL; 1408 1409 /* Can we do a slot or bus reset or neither? */ 1410 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1411 slot = true; 1412 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1413 return -ENODEV; 1414 1415 if (hdr.count) 1416 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg); 1417 1418 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL, 1419 vfio_iommufd_device_ictx(&vdev->vdev)); 1420 } 1421 1422 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, 1423 struct vfio_device_ioeventfd __user *arg) 1424 { 1425 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); 1426 struct vfio_device_ioeventfd ioeventfd; 1427 int count; 1428 1429 if (copy_from_user(&ioeventfd, arg, minsz)) 1430 return -EFAULT; 1431 1432 if (ioeventfd.argsz < minsz) 1433 return -EINVAL; 1434 1435 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) 1436 return -EINVAL; 1437 1438 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; 1439 1440 if (hweight8(count) != 1 || ioeventfd.fd < -1) 1441 return -EINVAL; 1442 1443 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, 1444 ioeventfd.fd); 1445 } 1446 1447 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, 1448 unsigned long arg) 1449 { 1450 struct vfio_pci_core_device *vdev = 1451 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1452 void __user *uarg = (void __user *)arg; 1453 1454 switch (cmd) { 1455 case VFIO_DEVICE_GET_INFO: 1456 return vfio_pci_ioctl_get_info(vdev, uarg); 1457 case VFIO_DEVICE_GET_IRQ_INFO: 1458 return vfio_pci_ioctl_get_irq_info(vdev, uarg); 1459 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: 1460 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); 1461 case VFIO_DEVICE_GET_REGION_INFO: 1462 return vfio_pci_ioctl_get_region_info(vdev, uarg); 1463 case VFIO_DEVICE_IOEVENTFD: 1464 return vfio_pci_ioctl_ioeventfd(vdev, uarg); 1465 case VFIO_DEVICE_PCI_HOT_RESET: 1466 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); 1467 case VFIO_DEVICE_RESET: 1468 return vfio_pci_ioctl_reset(vdev, uarg); 1469 case VFIO_DEVICE_SET_IRQS: 1470 return vfio_pci_ioctl_set_irqs(vdev, uarg); 1471 default: 1472 return -ENOTTY; 1473 } 1474 } 1475 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); 1476 1477 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, 1478 uuid_t __user *arg, size_t argsz) 1479 { 1480 struct vfio_pci_core_device *vdev = 1481 container_of(device, struct vfio_pci_core_device, vdev); 1482 uuid_t uuid; 1483 int ret; 1484 1485 if (!vdev->vf_token) 1486 return -ENOTTY; 1487 /* 1488 * We do not support GET of the VF Token UUID as this could 1489 * expose the token of the previous device user. 1490 */ 1491 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 1492 sizeof(uuid)); 1493 if (ret != 1) 1494 return ret; 1495 1496 if (copy_from_user(&uuid, arg, sizeof(uuid))) 1497 return -EFAULT; 1498 1499 mutex_lock(&vdev->vf_token->lock); 1500 uuid_copy(&vdev->vf_token->uuid, &uuid); 1501 mutex_unlock(&vdev->vf_token->lock); 1502 return 0; 1503 } 1504 1505 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, 1506 void __user *arg, size_t argsz) 1507 { 1508 switch (flags & VFIO_DEVICE_FEATURE_MASK) { 1509 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: 1510 return vfio_pci_core_pm_entry(device, flags, arg, argsz); 1511 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: 1512 return vfio_pci_core_pm_entry_with_wakeup(device, flags, 1513 arg, argsz); 1514 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: 1515 return vfio_pci_core_pm_exit(device, flags, arg, argsz); 1516 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: 1517 return vfio_pci_core_feature_token(device, flags, arg, argsz); 1518 default: 1519 return -ENOTTY; 1520 } 1521 } 1522 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); 1523 1524 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1525 size_t count, loff_t *ppos, bool iswrite) 1526 { 1527 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); 1528 int ret; 1529 1530 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1531 return -EINVAL; 1532 1533 ret = pm_runtime_resume_and_get(&vdev->pdev->dev); 1534 if (ret) { 1535 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", 1536 ret); 1537 return -EIO; 1538 } 1539 1540 switch (index) { 1541 case VFIO_PCI_CONFIG_REGION_INDEX: 1542 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); 1543 break; 1544 1545 case VFIO_PCI_ROM_REGION_INDEX: 1546 if (iswrite) 1547 ret = -EINVAL; 1548 else 1549 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); 1550 break; 1551 1552 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1553 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); 1554 break; 1555 1556 case VFIO_PCI_VGA_REGION_INDEX: 1557 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); 1558 break; 1559 1560 default: 1561 index -= VFIO_PCI_NUM_REGIONS; 1562 ret = vdev->region[index].ops->rw(vdev, buf, 1563 count, ppos, iswrite); 1564 break; 1565 } 1566 1567 pm_runtime_put(&vdev->pdev->dev); 1568 return ret; 1569 } 1570 1571 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, 1572 size_t count, loff_t *ppos) 1573 { 1574 struct vfio_pci_core_device *vdev = 1575 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1576 1577 if (!count) 1578 return 0; 1579 1580 return vfio_pci_rw(vdev, buf, count, ppos, false); 1581 } 1582 EXPORT_SYMBOL_GPL(vfio_pci_core_read); 1583 1584 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, 1585 size_t count, loff_t *ppos) 1586 { 1587 struct vfio_pci_core_device *vdev = 1588 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1589 1590 if (!count) 1591 return 0; 1592 1593 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); 1594 } 1595 EXPORT_SYMBOL_GPL(vfio_pci_core_write); 1596 1597 static void vfio_pci_zap_bars(struct vfio_pci_core_device *vdev) 1598 { 1599 struct vfio_device *core_vdev = &vdev->vdev; 1600 loff_t start = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_BAR0_REGION_INDEX); 1601 loff_t end = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_ROM_REGION_INDEX); 1602 loff_t len = end - start; 1603 1604 unmap_mapping_range(core_vdev->inode->i_mapping, start, len, true); 1605 } 1606 1607 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) 1608 { 1609 down_write(&vdev->memory_lock); 1610 vfio_pci_zap_bars(vdev); 1611 } 1612 1613 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) 1614 { 1615 u16 cmd; 1616 1617 down_write(&vdev->memory_lock); 1618 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); 1619 if (!(cmd & PCI_COMMAND_MEMORY)) 1620 pci_write_config_word(vdev->pdev, PCI_COMMAND, 1621 cmd | PCI_COMMAND_MEMORY); 1622 1623 return cmd; 1624 } 1625 1626 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) 1627 { 1628 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); 1629 up_write(&vdev->memory_lock); 1630 } 1631 1632 static unsigned long vma_to_pfn(struct vm_area_struct *vma) 1633 { 1634 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1635 int index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1636 u64 pgoff; 1637 1638 pgoff = vma->vm_pgoff & 1639 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1640 1641 return (pci_resource_start(vdev->pdev, index) >> PAGE_SHIFT) + pgoff; 1642 } 1643 1644 static vm_fault_t vfio_pci_mmap_huge_fault(struct vm_fault *vmf, 1645 unsigned int order) 1646 { 1647 struct vm_area_struct *vma = vmf->vma; 1648 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1649 unsigned long addr = vmf->address & ~((PAGE_SIZE << order) - 1); 1650 unsigned long pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 1651 unsigned long pfn = vma_to_pfn(vma) + pgoff; 1652 vm_fault_t ret = VM_FAULT_SIGBUS; 1653 1654 if (order && (addr < vma->vm_start || 1655 addr + (PAGE_SIZE << order) > vma->vm_end || 1656 pfn & ((1 << order) - 1))) { 1657 ret = VM_FAULT_FALLBACK; 1658 goto out; 1659 } 1660 1661 down_read(&vdev->memory_lock); 1662 1663 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) 1664 goto out_unlock; 1665 1666 switch (order) { 1667 case 0: 1668 ret = vmf_insert_pfn(vma, vmf->address, pfn); 1669 break; 1670 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 1671 case PMD_ORDER: 1672 ret = vmf_insert_pfn_pmd(vmf, 1673 __pfn_to_pfn_t(pfn, PFN_DEV), false); 1674 break; 1675 #endif 1676 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 1677 case PUD_ORDER: 1678 ret = vmf_insert_pfn_pud(vmf, 1679 __pfn_to_pfn_t(pfn, PFN_DEV), false); 1680 break; 1681 #endif 1682 default: 1683 ret = VM_FAULT_FALLBACK; 1684 } 1685 1686 out_unlock: 1687 up_read(&vdev->memory_lock); 1688 out: 1689 dev_dbg_ratelimited(&vdev->pdev->dev, 1690 "%s(,order = %d) BAR %ld page offset 0x%lx: 0x%x\n", 1691 __func__, order, 1692 vma->vm_pgoff >> 1693 (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT), 1694 pgoff, (unsigned int)ret); 1695 1696 return ret; 1697 } 1698 1699 static vm_fault_t vfio_pci_mmap_page_fault(struct vm_fault *vmf) 1700 { 1701 return vfio_pci_mmap_huge_fault(vmf, 0); 1702 } 1703 1704 static const struct vm_operations_struct vfio_pci_mmap_ops = { 1705 .fault = vfio_pci_mmap_page_fault, 1706 #ifdef CONFIG_ARCH_SUPPORTS_HUGE_PFNMAP 1707 .huge_fault = vfio_pci_mmap_huge_fault, 1708 #endif 1709 }; 1710 1711 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) 1712 { 1713 struct vfio_pci_core_device *vdev = 1714 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1715 struct pci_dev *pdev = vdev->pdev; 1716 unsigned int index; 1717 u64 phys_len, req_len, pgoff, req_start; 1718 int ret; 1719 1720 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1721 1722 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1723 return -EINVAL; 1724 if (vma->vm_end < vma->vm_start) 1725 return -EINVAL; 1726 if ((vma->vm_flags & VM_SHARED) == 0) 1727 return -EINVAL; 1728 if (index >= VFIO_PCI_NUM_REGIONS) { 1729 int regnum = index - VFIO_PCI_NUM_REGIONS; 1730 struct vfio_pci_region *region = vdev->region + regnum; 1731 1732 if (region->ops && region->ops->mmap && 1733 (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) 1734 return region->ops->mmap(vdev, region, vma); 1735 return -EINVAL; 1736 } 1737 if (index >= VFIO_PCI_ROM_REGION_INDEX) 1738 return -EINVAL; 1739 if (!vdev->bar_mmap_supported[index]) 1740 return -EINVAL; 1741 1742 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); 1743 req_len = vma->vm_end - vma->vm_start; 1744 pgoff = vma->vm_pgoff & 1745 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1746 req_start = pgoff << PAGE_SHIFT; 1747 1748 if (req_start + req_len > phys_len) 1749 return -EINVAL; 1750 1751 /* 1752 * Even though we don't make use of the barmap for the mmap, 1753 * we need to request the region and the barmap tracks that. 1754 */ 1755 if (!vdev->barmap[index]) { 1756 ret = pci_request_selected_regions(pdev, 1757 1 << index, "vfio-pci"); 1758 if (ret) 1759 return ret; 1760 1761 vdev->barmap[index] = pci_iomap(pdev, index, 0); 1762 if (!vdev->barmap[index]) { 1763 pci_release_selected_regions(pdev, 1 << index); 1764 return -ENOMEM; 1765 } 1766 } 1767 1768 vma->vm_private_data = vdev; 1769 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1770 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 1771 1772 /* 1773 * Set vm_flags now, they should not be changed in the fault handler. 1774 * We want the same flags and page protection (decrypted above) as 1775 * io_remap_pfn_range() would set. 1776 * 1777 * VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64, 1778 * allowing KVM stage 2 device mapping attributes to use Normal-NC 1779 * rather than DEVICE_nGnRE, which allows guest mappings 1780 * supporting write-combining attributes (WC). ARM does not 1781 * architecturally guarantee this is safe, and indeed some MMIO 1782 * regions like the GICv2 VCPU interface can trigger uncontained 1783 * faults if Normal-NC is used. 1784 * 1785 * To safely use VFIO in KVM the platform must guarantee full 1786 * safety in the guest where no action taken against a MMIO 1787 * mapping can trigger an uncontained failure. The assumption is 1788 * that most VFIO PCI platforms support this for both mapping types, 1789 * at least in common flows, based on some expectations of how 1790 * PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in 1791 * the VMA flags. 1792 */ 1793 vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP | 1794 VM_DONTEXPAND | VM_DONTDUMP); 1795 vma->vm_ops = &vfio_pci_mmap_ops; 1796 1797 return 0; 1798 } 1799 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); 1800 1801 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) 1802 { 1803 struct vfio_pci_core_device *vdev = 1804 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1805 struct pci_dev *pdev = vdev->pdev; 1806 1807 mutex_lock(&vdev->igate); 1808 1809 if (vdev->req_trigger) { 1810 if (!(count % 10)) 1811 pci_notice_ratelimited(pdev, 1812 "Relaying device request to user (#%u)\n", 1813 count); 1814 eventfd_signal(vdev->req_trigger); 1815 } else if (count == 0) { 1816 pci_warn(pdev, 1817 "No device request channel registered, blocked until released by user\n"); 1818 } 1819 1820 mutex_unlock(&vdev->igate); 1821 } 1822 EXPORT_SYMBOL_GPL(vfio_pci_core_request); 1823 1824 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, 1825 bool vf_token, uuid_t *uuid) 1826 { 1827 /* 1828 * There's always some degree of trust or collaboration between SR-IOV 1829 * PF and VFs, even if just that the PF hosts the SR-IOV capability and 1830 * can disrupt VFs with a reset, but often the PF has more explicit 1831 * access to deny service to the VF or access data passed through the 1832 * VF. We therefore require an opt-in via a shared VF token (UUID) to 1833 * represent this trust. This both prevents that a VF driver might 1834 * assume the PF driver is a trusted, in-kernel driver, and also that 1835 * a PF driver might be replaced with a rogue driver, unknown to in-use 1836 * VF drivers. 1837 * 1838 * Therefore when presented with a VF, if the PF is a vfio device and 1839 * it is bound to the vfio-pci driver, the user needs to provide a VF 1840 * token to access the device, in the form of appending a vf_token to 1841 * the device name, for example: 1842 * 1843 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" 1844 * 1845 * When presented with a PF which has VFs in use, the user must also 1846 * provide the current VF token to prove collaboration with existing 1847 * VF users. If VFs are not in use, the VF token provided for the PF 1848 * device will act to set the VF token. 1849 * 1850 * If the VF token is provided but unused, an error is generated. 1851 */ 1852 if (vdev->pdev->is_virtfn) { 1853 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; 1854 bool match; 1855 1856 if (!pf_vdev) { 1857 if (!vf_token) 1858 return 0; /* PF is not vfio-pci, no VF token */ 1859 1860 pci_info_ratelimited(vdev->pdev, 1861 "VF token incorrectly provided, PF not bound to vfio-pci\n"); 1862 return -EINVAL; 1863 } 1864 1865 if (!vf_token) { 1866 pci_info_ratelimited(vdev->pdev, 1867 "VF token required to access device\n"); 1868 return -EACCES; 1869 } 1870 1871 mutex_lock(&pf_vdev->vf_token->lock); 1872 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); 1873 mutex_unlock(&pf_vdev->vf_token->lock); 1874 1875 if (!match) { 1876 pci_info_ratelimited(vdev->pdev, 1877 "Incorrect VF token provided for device\n"); 1878 return -EACCES; 1879 } 1880 } else if (vdev->vf_token) { 1881 mutex_lock(&vdev->vf_token->lock); 1882 if (vdev->vf_token->users) { 1883 if (!vf_token) { 1884 mutex_unlock(&vdev->vf_token->lock); 1885 pci_info_ratelimited(vdev->pdev, 1886 "VF token required to access device\n"); 1887 return -EACCES; 1888 } 1889 1890 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { 1891 mutex_unlock(&vdev->vf_token->lock); 1892 pci_info_ratelimited(vdev->pdev, 1893 "Incorrect VF token provided for device\n"); 1894 return -EACCES; 1895 } 1896 } else if (vf_token) { 1897 uuid_copy(&vdev->vf_token->uuid, uuid); 1898 } 1899 1900 mutex_unlock(&vdev->vf_token->lock); 1901 } else if (vf_token) { 1902 pci_info_ratelimited(vdev->pdev, 1903 "VF token incorrectly provided, not a PF or VF\n"); 1904 return -EINVAL; 1905 } 1906 1907 return 0; 1908 } 1909 1910 #define VF_TOKEN_ARG "vf_token=" 1911 1912 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) 1913 { 1914 struct vfio_pci_core_device *vdev = 1915 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1916 bool vf_token = false; 1917 uuid_t uuid; 1918 int ret; 1919 1920 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) 1921 return 0; /* No match */ 1922 1923 if (strlen(buf) > strlen(pci_name(vdev->pdev))) { 1924 buf += strlen(pci_name(vdev->pdev)); 1925 1926 if (*buf != ' ') 1927 return 0; /* No match: non-whitespace after name */ 1928 1929 while (*buf) { 1930 if (*buf == ' ') { 1931 buf++; 1932 continue; 1933 } 1934 1935 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, 1936 strlen(VF_TOKEN_ARG))) { 1937 buf += strlen(VF_TOKEN_ARG); 1938 1939 if (strlen(buf) < UUID_STRING_LEN) 1940 return -EINVAL; 1941 1942 ret = uuid_parse(buf, &uuid); 1943 if (ret) 1944 return ret; 1945 1946 vf_token = true; 1947 buf += UUID_STRING_LEN; 1948 } else { 1949 /* Unknown/duplicate option */ 1950 return -EINVAL; 1951 } 1952 } 1953 } 1954 1955 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); 1956 if (ret) 1957 return ret; 1958 1959 return 1; /* Match */ 1960 } 1961 EXPORT_SYMBOL_GPL(vfio_pci_core_match); 1962 1963 static int vfio_pci_bus_notifier(struct notifier_block *nb, 1964 unsigned long action, void *data) 1965 { 1966 struct vfio_pci_core_device *vdev = container_of(nb, 1967 struct vfio_pci_core_device, nb); 1968 struct device *dev = data; 1969 struct pci_dev *pdev = to_pci_dev(dev); 1970 struct pci_dev *physfn = pci_physfn(pdev); 1971 1972 if (action == BUS_NOTIFY_ADD_DEVICE && 1973 pdev->is_virtfn && physfn == vdev->pdev) { 1974 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", 1975 pci_name(pdev)); 1976 pdev->driver_override = kasprintf(GFP_KERNEL, "%s", 1977 vdev->vdev.ops->name); 1978 WARN_ON(!pdev->driver_override); 1979 } else if (action == BUS_NOTIFY_BOUND_DRIVER && 1980 pdev->is_virtfn && physfn == vdev->pdev) { 1981 struct pci_driver *drv = pci_dev_driver(pdev); 1982 1983 if (drv && drv != pci_dev_driver(vdev->pdev)) 1984 pci_warn(vdev->pdev, 1985 "VF %s bound to driver %s while PF bound to driver %s\n", 1986 pci_name(pdev), drv->name, 1987 pci_dev_driver(vdev->pdev)->name); 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) 1994 { 1995 struct pci_dev *pdev = vdev->pdev; 1996 struct vfio_pci_core_device *cur; 1997 struct pci_dev *physfn; 1998 int ret; 1999 2000 if (pdev->is_virtfn) { 2001 /* 2002 * If this VF was created by our vfio_pci_core_sriov_configure() 2003 * then we can find the PF vfio_pci_core_device now, and due to 2004 * the locking in pci_disable_sriov() it cannot change until 2005 * this VF device driver is removed. 2006 */ 2007 physfn = pci_physfn(vdev->pdev); 2008 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2009 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { 2010 if (cur->pdev == physfn) { 2011 vdev->sriov_pf_core_dev = cur; 2012 break; 2013 } 2014 } 2015 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2016 return 0; 2017 } 2018 2019 /* Not a SRIOV PF */ 2020 if (!pdev->is_physfn) 2021 return 0; 2022 2023 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); 2024 if (!vdev->vf_token) 2025 return -ENOMEM; 2026 2027 mutex_init(&vdev->vf_token->lock); 2028 uuid_gen(&vdev->vf_token->uuid); 2029 2030 vdev->nb.notifier_call = vfio_pci_bus_notifier; 2031 ret = bus_register_notifier(&pci_bus_type, &vdev->nb); 2032 if (ret) { 2033 kfree(vdev->vf_token); 2034 return ret; 2035 } 2036 return 0; 2037 } 2038 2039 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) 2040 { 2041 if (!vdev->vf_token) 2042 return; 2043 2044 bus_unregister_notifier(&pci_bus_type, &vdev->nb); 2045 WARN_ON(vdev->vf_token->users); 2046 mutex_destroy(&vdev->vf_token->lock); 2047 kfree(vdev->vf_token); 2048 } 2049 2050 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) 2051 { 2052 struct pci_dev *pdev = vdev->pdev; 2053 int ret; 2054 2055 if (!vfio_pci_is_vga(pdev)) 2056 return 0; 2057 2058 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); 2059 if (ret) 2060 return ret; 2061 2062 ret = vga_client_register(pdev, vfio_pci_set_decode); 2063 if (ret) 2064 return ret; 2065 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); 2066 return 0; 2067 } 2068 2069 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) 2070 { 2071 struct pci_dev *pdev = vdev->pdev; 2072 2073 if (!vfio_pci_is_vga(pdev)) 2074 return; 2075 vga_client_unregister(pdev); 2076 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 2077 VGA_RSRC_LEGACY_IO | 2078 VGA_RSRC_LEGACY_MEM); 2079 } 2080 2081 int vfio_pci_core_init_dev(struct vfio_device *core_vdev) 2082 { 2083 struct vfio_pci_core_device *vdev = 2084 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2085 2086 vdev->pdev = to_pci_dev(core_vdev->dev); 2087 vdev->irq_type = VFIO_PCI_NUM_IRQS; 2088 mutex_init(&vdev->igate); 2089 spin_lock_init(&vdev->irqlock); 2090 mutex_init(&vdev->ioeventfds_lock); 2091 INIT_LIST_HEAD(&vdev->dummy_resources_list); 2092 INIT_LIST_HEAD(&vdev->ioeventfds_list); 2093 INIT_LIST_HEAD(&vdev->sriov_pfs_item); 2094 init_rwsem(&vdev->memory_lock); 2095 xa_init(&vdev->ctx); 2096 2097 return 0; 2098 } 2099 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); 2100 2101 void vfio_pci_core_release_dev(struct vfio_device *core_vdev) 2102 { 2103 struct vfio_pci_core_device *vdev = 2104 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2105 2106 mutex_destroy(&vdev->igate); 2107 mutex_destroy(&vdev->ioeventfds_lock); 2108 kfree(vdev->region); 2109 kfree(vdev->pm_save); 2110 } 2111 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); 2112 2113 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) 2114 { 2115 struct pci_dev *pdev = vdev->pdev; 2116 struct device *dev = &pdev->dev; 2117 int ret; 2118 2119 /* Drivers must set the vfio_pci_core_device to their drvdata */ 2120 if (WARN_ON(vdev != dev_get_drvdata(dev))) 2121 return -EINVAL; 2122 2123 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2124 return -EINVAL; 2125 2126 if (vdev->vdev.mig_ops) { 2127 if (!(vdev->vdev.mig_ops->migration_get_state && 2128 vdev->vdev.mig_ops->migration_set_state && 2129 vdev->vdev.mig_ops->migration_get_data_size) || 2130 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) 2131 return -EINVAL; 2132 } 2133 2134 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && 2135 vdev->vdev.log_ops->log_stop && 2136 vdev->vdev.log_ops->log_read_and_clear)) 2137 return -EINVAL; 2138 2139 /* 2140 * Prevent binding to PFs with VFs enabled, the VFs might be in use 2141 * by the host or other users. We cannot capture the VFs if they 2142 * already exist, nor can we track VF users. Disabling SR-IOV here 2143 * would initiate removing the VFs, which would unbind the driver, 2144 * which is prone to blocking if that VF is also in use by vfio-pci. 2145 * Just reject these PFs and let the user sort it out. 2146 */ 2147 if (pci_num_vf(pdev)) { 2148 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); 2149 return -EBUSY; 2150 } 2151 2152 if (pci_is_root_bus(pdev->bus)) { 2153 ret = vfio_assign_device_set(&vdev->vdev, vdev); 2154 } else if (!pci_probe_reset_slot(pdev->slot)) { 2155 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); 2156 } else { 2157 /* 2158 * If there is no slot reset support for this device, the whole 2159 * bus needs to be grouped together to support bus-wide resets. 2160 */ 2161 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); 2162 } 2163 2164 if (ret) 2165 return ret; 2166 ret = vfio_pci_vf_init(vdev); 2167 if (ret) 2168 return ret; 2169 ret = vfio_pci_vga_init(vdev); 2170 if (ret) 2171 goto out_vf; 2172 2173 vfio_pci_probe_power_state(vdev); 2174 2175 /* 2176 * pci-core sets the device power state to an unknown value at 2177 * bootup and after being removed from a driver. The only 2178 * transition it allows from this unknown state is to D0, which 2179 * typically happens when a driver calls pci_enable_device(). 2180 * We're not ready to enable the device yet, but we do want to 2181 * be able to get to D3. Therefore first do a D0 transition 2182 * before enabling runtime PM. 2183 */ 2184 vfio_pci_set_power_state(vdev, PCI_D0); 2185 2186 dev->driver->pm = &vfio_pci_core_pm_ops; 2187 pm_runtime_allow(dev); 2188 if (!disable_idle_d3) 2189 pm_runtime_put(dev); 2190 2191 ret = vfio_register_group_dev(&vdev->vdev); 2192 if (ret) 2193 goto out_power; 2194 return 0; 2195 2196 out_power: 2197 if (!disable_idle_d3) 2198 pm_runtime_get_noresume(dev); 2199 2200 pm_runtime_forbid(dev); 2201 out_vf: 2202 vfio_pci_vf_uninit(vdev); 2203 return ret; 2204 } 2205 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); 2206 2207 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) 2208 { 2209 vfio_pci_core_sriov_configure(vdev, 0); 2210 2211 vfio_unregister_group_dev(&vdev->vdev); 2212 2213 vfio_pci_vf_uninit(vdev); 2214 vfio_pci_vga_uninit(vdev); 2215 2216 if (!disable_idle_d3) 2217 pm_runtime_get_noresume(&vdev->pdev->dev); 2218 2219 pm_runtime_forbid(&vdev->pdev->dev); 2220 } 2221 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); 2222 2223 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, 2224 pci_channel_state_t state) 2225 { 2226 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); 2227 2228 mutex_lock(&vdev->igate); 2229 2230 if (vdev->err_trigger) 2231 eventfd_signal(vdev->err_trigger); 2232 2233 mutex_unlock(&vdev->igate); 2234 2235 return PCI_ERS_RESULT_CAN_RECOVER; 2236 } 2237 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); 2238 2239 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, 2240 int nr_virtfn) 2241 { 2242 struct pci_dev *pdev = vdev->pdev; 2243 int ret = 0; 2244 2245 device_lock_assert(&pdev->dev); 2246 2247 if (nr_virtfn) { 2248 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2249 /* 2250 * The thread that adds the vdev to the list is the only thread 2251 * that gets to call pci_enable_sriov() and we will only allow 2252 * it to be called once without going through 2253 * pci_disable_sriov() 2254 */ 2255 if (!list_empty(&vdev->sriov_pfs_item)) { 2256 ret = -EINVAL; 2257 goto out_unlock; 2258 } 2259 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); 2260 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2261 2262 /* 2263 * The PF power state should always be higher than the VF power 2264 * state. The PF can be in low power state either with runtime 2265 * power management (when there is no user) or PCI_PM_CTRL 2266 * register write by the user. If PF is in the low power state, 2267 * then change the power state to D0 first before enabling 2268 * SR-IOV. Also, this function can be called at any time, and 2269 * userspace PCI_PM_CTRL write can race against this code path, 2270 * so protect the same with 'memory_lock'. 2271 */ 2272 ret = pm_runtime_resume_and_get(&pdev->dev); 2273 if (ret) 2274 goto out_del; 2275 2276 down_write(&vdev->memory_lock); 2277 vfio_pci_set_power_state(vdev, PCI_D0); 2278 ret = pci_enable_sriov(pdev, nr_virtfn); 2279 up_write(&vdev->memory_lock); 2280 if (ret) { 2281 pm_runtime_put(&pdev->dev); 2282 goto out_del; 2283 } 2284 return nr_virtfn; 2285 } 2286 2287 if (pci_num_vf(pdev)) { 2288 pci_disable_sriov(pdev); 2289 pm_runtime_put(&pdev->dev); 2290 } 2291 2292 out_del: 2293 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2294 list_del_init(&vdev->sriov_pfs_item); 2295 out_unlock: 2296 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); 2300 2301 const struct pci_error_handlers vfio_pci_core_err_handlers = { 2302 .error_detected = vfio_pci_core_aer_err_detected, 2303 }; 2304 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); 2305 2306 static bool vfio_dev_in_groups(struct vfio_device *vdev, 2307 struct vfio_pci_group_info *groups) 2308 { 2309 unsigned int i; 2310 2311 if (!groups) 2312 return false; 2313 2314 for (i = 0; i < groups->count; i++) 2315 if (vfio_file_has_dev(groups->files[i], vdev)) 2316 return true; 2317 return false; 2318 } 2319 2320 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) 2321 { 2322 struct vfio_device_set *dev_set = data; 2323 2324 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV; 2325 } 2326 2327 /* 2328 * vfio-core considers a group to be viable and will create a vfio_device even 2329 * if some devices are bound to drivers like pci-stub or pcieport. Here we 2330 * require all PCI devices to be inside our dev_set since that ensures they stay 2331 * put and that every driver controlling the device can co-ordinate with the 2332 * device reset. 2333 * 2334 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be 2335 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. 2336 */ 2337 static struct pci_dev * 2338 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) 2339 { 2340 struct pci_dev *pdev; 2341 2342 lockdep_assert_held(&dev_set->lock); 2343 2344 /* 2345 * By definition all PCI devices in the dev_set share the same PCI 2346 * reset, so any pci_dev will have the same outcomes for 2347 * pci_probe_reset_*() and pci_reset_bus(). 2348 */ 2349 pdev = list_first_entry(&dev_set->device_list, 2350 struct vfio_pci_core_device, 2351 vdev.dev_set_list)->pdev; 2352 2353 /* pci_reset_bus() is supported */ 2354 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) 2355 return NULL; 2356 2357 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, 2358 dev_set, 2359 !pci_probe_reset_slot(pdev->slot))) 2360 return NULL; 2361 return pdev; 2362 } 2363 2364 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) 2365 { 2366 struct vfio_pci_core_device *cur; 2367 int ret; 2368 2369 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2370 ret = pm_runtime_resume_and_get(&cur->pdev->dev); 2371 if (ret) 2372 goto unwind; 2373 } 2374 2375 return 0; 2376 2377 unwind: 2378 list_for_each_entry_continue_reverse(cur, &dev_set->device_list, 2379 vdev.dev_set_list) 2380 pm_runtime_put(&cur->pdev->dev); 2381 2382 return ret; 2383 } 2384 2385 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 2386 struct vfio_pci_group_info *groups, 2387 struct iommufd_ctx *iommufd_ctx) 2388 { 2389 struct vfio_pci_core_device *vdev; 2390 struct pci_dev *pdev; 2391 int ret; 2392 2393 mutex_lock(&dev_set->lock); 2394 2395 pdev = vfio_pci_dev_set_resettable(dev_set); 2396 if (!pdev) { 2397 ret = -EINVAL; 2398 goto err_unlock; 2399 } 2400 2401 /* 2402 * Some of the devices in the dev_set can be in the runtime suspended 2403 * state. Increment the usage count for all the devices in the dev_set 2404 * before reset and decrement the same after reset. 2405 */ 2406 ret = vfio_pci_dev_set_pm_runtime_get(dev_set); 2407 if (ret) 2408 goto err_unlock; 2409 2410 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list) { 2411 bool owned; 2412 2413 /* 2414 * Test whether all the affected devices can be reset by the 2415 * user. 2416 * 2417 * If called from a group opened device and the user provides 2418 * a set of groups, all the devices in the dev_set should be 2419 * contained by the set of groups provided by the user. 2420 * 2421 * If called from a cdev opened device and the user provides 2422 * a zero-length array, all the devices in the dev_set must 2423 * be bound to the same iommufd_ctx as the input iommufd_ctx. 2424 * If there is any device that has not been bound to any 2425 * iommufd_ctx yet, check if its iommu_group has any device 2426 * bound to the input iommufd_ctx. Such devices can be 2427 * considered owned by the input iommufd_ctx as the device 2428 * cannot be owned by another iommufd_ctx when its iommu_group 2429 * is owned. 2430 * 2431 * Otherwise, reset is not allowed. 2432 */ 2433 if (iommufd_ctx) { 2434 int devid = vfio_iommufd_get_dev_id(&vdev->vdev, 2435 iommufd_ctx); 2436 2437 owned = (devid > 0 || devid == -ENOENT); 2438 } else { 2439 owned = vfio_dev_in_groups(&vdev->vdev, groups); 2440 } 2441 2442 if (!owned) { 2443 ret = -EINVAL; 2444 break; 2445 } 2446 2447 /* 2448 * Take the memory write lock for each device and zap BAR 2449 * mappings to prevent the user accessing the device while in 2450 * reset. Locking multiple devices is prone to deadlock, 2451 * runaway and unwind if we hit contention. 2452 */ 2453 if (!down_write_trylock(&vdev->memory_lock)) { 2454 ret = -EBUSY; 2455 break; 2456 } 2457 2458 vfio_pci_zap_bars(vdev); 2459 } 2460 2461 if (!list_entry_is_head(vdev, 2462 &dev_set->device_list, vdev.dev_set_list)) { 2463 vdev = list_prev_entry(vdev, vdev.dev_set_list); 2464 goto err_undo; 2465 } 2466 2467 /* 2468 * The pci_reset_bus() will reset all the devices in the bus. 2469 * The power state can be non-D0 for some of the devices in the bus. 2470 * For these devices, the pci_reset_bus() will internally set 2471 * the power state to D0 without vfio driver involvement. 2472 * For the devices which have NoSoftRst-, the reset function can 2473 * cause the PCI config space reset without restoring the original 2474 * state (saved locally in 'vdev->pm_save'). 2475 */ 2476 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list) 2477 vfio_pci_set_power_state(vdev, PCI_D0); 2478 2479 ret = pci_reset_bus(pdev); 2480 2481 vdev = list_last_entry(&dev_set->device_list, 2482 struct vfio_pci_core_device, vdev.dev_set_list); 2483 2484 err_undo: 2485 list_for_each_entry_from_reverse(vdev, &dev_set->device_list, 2486 vdev.dev_set_list) 2487 up_write(&vdev->memory_lock); 2488 2489 list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list) 2490 pm_runtime_put(&vdev->pdev->dev); 2491 2492 err_unlock: 2493 mutex_unlock(&dev_set->lock); 2494 return ret; 2495 } 2496 2497 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) 2498 { 2499 struct vfio_pci_core_device *cur; 2500 bool needs_reset = false; 2501 2502 /* No other VFIO device in the set can be open. */ 2503 if (vfio_device_set_open_count(dev_set) > 1) 2504 return false; 2505 2506 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2507 needs_reset |= cur->needs_reset; 2508 return needs_reset; 2509 } 2510 2511 /* 2512 * If a bus or slot reset is available for the provided dev_set and: 2513 * - All of the devices affected by that bus or slot reset are unused 2514 * - At least one of the affected devices is marked dirty via 2515 * needs_reset (such as by lack of FLR support) 2516 * Then attempt to perform that bus or slot reset. 2517 */ 2518 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) 2519 { 2520 struct vfio_pci_core_device *cur; 2521 struct pci_dev *pdev; 2522 bool reset_done = false; 2523 2524 if (!vfio_pci_dev_set_needs_reset(dev_set)) 2525 return; 2526 2527 pdev = vfio_pci_dev_set_resettable(dev_set); 2528 if (!pdev) 2529 return; 2530 2531 /* 2532 * Some of the devices in the bus can be in the runtime suspended 2533 * state. Increment the usage count for all the devices in the dev_set 2534 * before reset and decrement the same after reset. 2535 */ 2536 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) 2537 return; 2538 2539 if (!pci_reset_bus(pdev)) 2540 reset_done = true; 2541 2542 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2543 if (reset_done) 2544 cur->needs_reset = false; 2545 2546 if (!disable_idle_d3) 2547 pm_runtime_put(&cur->pdev->dev); 2548 } 2549 } 2550 2551 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, 2552 bool is_disable_idle_d3) 2553 { 2554 nointxmask = is_nointxmask; 2555 disable_vga = is_disable_vga; 2556 disable_idle_d3 = is_disable_idle_d3; 2557 } 2558 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); 2559 2560 static void vfio_pci_core_cleanup(void) 2561 { 2562 vfio_pci_uninit_perm_bits(); 2563 } 2564 2565 static int __init vfio_pci_core_init(void) 2566 { 2567 /* Allocate shared config space permission data used by all devices */ 2568 return vfio_pci_init_perm_bits(); 2569 } 2570 2571 module_init(vfio_pci_core_init); 2572 module_exit(vfio_pci_core_cleanup); 2573 2574 MODULE_LICENSE("GPL v2"); 2575 MODULE_AUTHOR(DRIVER_AUTHOR); 2576 MODULE_DESCRIPTION(DRIVER_DESC); 2577