1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/usb/xhci-sideband.h> 24 25 #include "xhci.h" 26 #include "xhci-trace.h" 27 #include "xhci-debugfs.h" 28 #include "xhci-dbgcap.h" 29 30 #define DRIVER_AUTHOR "Sarah Sharp" 31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 32 33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 static unsigned long long quirks; 41 module_param(quirks, ullong, S_IRUGO); 42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 43 44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 45 { 46 struct xhci_segment *seg; 47 48 if (!td || !td->start_seg) 49 return false; 50 51 xhci_for_each_ring_seg(ring->first_seg, seg) { 52 if (seg == td->start_seg) 53 return true; 54 } 55 56 return false; 57 } 58 59 /* 60 * xhci_handshake - spin reading hc until handshake completes or fails 61 * @ptr: address of hc register to be read 62 * @mask: bits to look at in result of read 63 * @done: value of those bits when handshake succeeds 64 * @usec: timeout in microseconds 65 * 66 * Returns negative errno, or zero on success 67 * 68 * Success happens when the "mask" bits have the specified value (hardware 69 * handshake done). There are two failure modes: "usec" have passed (major 70 * hardware flakeout), or the register reads as all-ones (hardware removed). 71 */ 72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 73 { 74 u32 result; 75 int ret; 76 77 ret = readl_poll_timeout_atomic(ptr, result, 78 (result & mask) == done || 79 result == U32_MAX, 80 1, timeout_us); 81 if (result == U32_MAX) /* card removed */ 82 return -ENODEV; 83 84 return ret; 85 } 86 87 /* 88 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 89 * exit_state parameter, and bails out with an error immediately when xhc_state 90 * has exit_state flag set. 91 */ 92 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 93 u32 mask, u32 done, int usec, unsigned int exit_state) 94 { 95 u32 result; 96 int ret; 97 98 ret = readl_poll_timeout_atomic(ptr, result, 99 (result & mask) == done || 100 result == U32_MAX || 101 xhci->xhc_state & exit_state, 102 1, usec); 103 104 if (result == U32_MAX || xhci->xhc_state & exit_state) 105 return -ENODEV; 106 107 return ret; 108 } 109 110 /* 111 * Disable interrupts and begin the xHCI halting process. 112 */ 113 void xhci_quiesce(struct xhci_hcd *xhci) 114 { 115 u32 halted; 116 u32 cmd; 117 u32 mask; 118 119 mask = ~(XHCI_IRQS); 120 halted = readl(&xhci->op_regs->status) & STS_HALT; 121 if (!halted) 122 mask &= ~CMD_RUN; 123 124 cmd = readl(&xhci->op_regs->command); 125 cmd &= mask; 126 writel(cmd, &xhci->op_regs->command); 127 } 128 129 /* 130 * Force HC into halt state. 131 * 132 * Disable any IRQs and clear the run/stop bit. 133 * HC will complete any current and actively pipelined transactions, and 134 * should halt within 16 ms of the run/stop bit being cleared. 135 * Read HC Halted bit in the status register to see when the HC is finished. 136 */ 137 int xhci_halt(struct xhci_hcd *xhci) 138 { 139 int ret; 140 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 142 xhci_quiesce(xhci); 143 144 ret = xhci_handshake(&xhci->op_regs->status, 145 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 146 if (ret) { 147 xhci_warn(xhci, "Host halt failed, %d\n", ret); 148 return ret; 149 } 150 151 xhci->xhc_state |= XHCI_STATE_HALTED; 152 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 153 154 return ret; 155 } 156 157 /* 158 * Set the run bit and wait for the host to be running. 159 */ 160 int xhci_start(struct xhci_hcd *xhci) 161 { 162 u32 temp; 163 int ret; 164 165 temp = readl(&xhci->op_regs->command); 166 temp |= (CMD_RUN); 167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 168 temp); 169 writel(temp, &xhci->op_regs->command); 170 171 /* 172 * Wait for the HCHalted Status bit to be 0 to indicate the host is 173 * running. 174 */ 175 ret = xhci_handshake(&xhci->op_regs->status, 176 STS_HALT, 0, XHCI_MAX_HALT_USEC); 177 if (ret == -ETIMEDOUT) 178 xhci_err(xhci, "Host took too long to start, " 179 "waited %u microseconds.\n", 180 XHCI_MAX_HALT_USEC); 181 if (!ret) { 182 /* clear state flags. Including dying, halted or removing */ 183 xhci->xhc_state = 0; 184 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 185 } 186 187 return ret; 188 } 189 190 /* 191 * Reset a halted HC. 192 * 193 * This resets pipelines, timers, counters, state machines, etc. 194 * Transactions will be terminated immediately, and operational registers 195 * will be set to their defaults. 196 */ 197 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 198 { 199 u32 command; 200 u32 state; 201 int ret; 202 203 state = readl(&xhci->op_regs->status); 204 205 if (state == ~(u32)0) { 206 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 207 return -ENODEV; 208 } 209 210 if ((state & STS_HALT) == 0) { 211 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 212 return 0; 213 } 214 215 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 216 command = readl(&xhci->op_regs->command); 217 command |= CMD_RESET; 218 writel(command, &xhci->op_regs->command); 219 220 /* Existing Intel xHCI controllers require a delay of 1 mS, 221 * after setting the CMD_RESET bit, and before accessing any 222 * HC registers. This allows the HC to complete the 223 * reset operation and be ready for HC register access. 224 * Without this delay, the subsequent HC register access, 225 * may result in a system hang very rarely. 226 */ 227 if (xhci->quirks & XHCI_INTEL_HOST) 228 udelay(1000); 229 230 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 231 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 232 if (ret) 233 return ret; 234 235 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 236 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 237 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "Wait for controller to be ready for doorbell rings"); 240 /* 241 * xHCI cannot write to any doorbells or operational registers other 242 * than status until the "Controller Not Ready" flag is cleared. 243 */ 244 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 245 246 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb2_rhub.bus_state.suspended_ports = 0; 248 xhci->usb2_rhub.bus_state.resuming_ports = 0; 249 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 250 xhci->usb3_rhub.bus_state.suspended_ports = 0; 251 xhci->usb3_rhub.bus_state.resuming_ports = 0; 252 253 return ret; 254 } 255 256 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 257 { 258 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 259 struct iommu_domain *domain; 260 int err, i; 261 u64 val; 262 u32 intrs; 263 264 /* 265 * Some Renesas controllers get into a weird state if they are 266 * reset while programmed with 64bit addresses (they will preserve 267 * the top half of the address in internal, non visible 268 * registers). You end up with half the address coming from the 269 * kernel, and the other half coming from the firmware. Also, 270 * changing the programming leads to extra accesses even if the 271 * controller is supposed to be halted. The controller ends up with 272 * a fatal fault, and is then ripe for being properly reset. 273 * 274 * Special care is taken to only apply this if the device is behind 275 * an iommu. Doing anything when there is no iommu is definitely 276 * unsafe... 277 */ 278 domain = iommu_get_domain_for_dev(dev); 279 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 280 domain->type == IOMMU_DOMAIN_IDENTITY) 281 return; 282 283 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 284 285 /* Clear HSEIE so that faults do not get signaled */ 286 val = readl(&xhci->op_regs->command); 287 val &= ~CMD_HSEIE; 288 writel(val, &xhci->op_regs->command); 289 290 /* Clear HSE (aka FATAL) */ 291 val = readl(&xhci->op_regs->status); 292 val |= STS_FATAL; 293 writel(val, &xhci->op_regs->status); 294 295 /* Now zero the registers, and brace for impact */ 296 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 299 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 300 if (upper_32_bits(val)) 301 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 302 303 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 304 ARRAY_SIZE(xhci->run_regs->ir_set)); 305 306 for (i = 0; i < intrs; i++) { 307 struct xhci_intr_reg __iomem *ir; 308 309 ir = &xhci->run_regs->ir_set[i]; 310 val = xhci_read_64(xhci, &ir->erst_base); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_base); 313 val= xhci_read_64(xhci, &ir->erst_dequeue); 314 if (upper_32_bits(val)) 315 xhci_write_64(xhci, 0, &ir->erst_dequeue); 316 } 317 318 /* Wait for the fault to appear. It will be cleared on reset */ 319 err = xhci_handshake(&xhci->op_regs->status, 320 STS_FATAL, STS_FATAL, 321 XHCI_MAX_HALT_USEC); 322 if (!err) 323 xhci_info(xhci, "Fault detected\n"); 324 } 325 326 int xhci_enable_interrupter(struct xhci_interrupter *ir) 327 { 328 u32 iman; 329 330 if (!ir || !ir->ir_set) 331 return -EINVAL; 332 333 iman = readl(&ir->ir_set->iman); 334 iman |= IMAN_IE; 335 writel(iman, &ir->ir_set->iman); 336 337 /* Read operation to guarantee the write has been flushed from posted buffers */ 338 readl(&ir->ir_set->iman); 339 return 0; 340 } 341 342 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 343 { 344 u32 iman; 345 346 if (!ir || !ir->ir_set) 347 return -EINVAL; 348 349 iman = readl(&ir->ir_set->iman); 350 iman &= ~IMAN_IE; 351 writel(iman, &ir->ir_set->iman); 352 353 iman = readl(&ir->ir_set->iman); 354 if (iman & IMAN_IP) 355 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__); 356 357 return 0; 358 } 359 360 /* interrupt moderation interval imod_interval in nanoseconds */ 361 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 362 u32 imod_interval) 363 { 364 u32 imod; 365 366 if (!ir || !ir->ir_set) 367 return -EINVAL; 368 369 /* IMODI value in IMOD register is in 250ns increments */ 370 imod_interval = umin(imod_interval / 250, IMODI_MASK); 371 372 imod = readl(&ir->ir_set->imod); 373 imod &= ~IMODI_MASK; 374 imod |= imod_interval; 375 writel(imod, &ir->ir_set->imod); 376 377 return 0; 378 } 379 380 static void compliance_mode_recovery(struct timer_list *t) 381 { 382 struct xhci_hcd *xhci; 383 struct usb_hcd *hcd; 384 struct xhci_hub *rhub; 385 u32 temp; 386 int i; 387 388 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer); 389 rhub = &xhci->usb3_rhub; 390 hcd = rhub->hcd; 391 392 if (!hcd) 393 return; 394 395 for (i = 0; i < rhub->num_ports; i++) { 396 temp = readl(rhub->ports[i]->addr); 397 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 398 /* 399 * Compliance Mode Detected. Letting USB Core 400 * handle the Warm Reset 401 */ 402 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 403 "Compliance mode detected->port %d", 404 i + 1); 405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 406 "Attempting compliance mode recovery"); 407 408 if (hcd->state == HC_STATE_SUSPENDED) 409 usb_hcd_resume_root_hub(hcd); 410 411 usb_hcd_poll_rh_status(hcd); 412 } 413 } 414 415 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 416 mod_timer(&xhci->comp_mode_recovery_timer, 417 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 418 } 419 420 /* 421 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 422 * that causes ports behind that hardware to enter compliance mode sometimes. 423 * The quirk creates a timer that polls every 2 seconds the link state of 424 * each host controller's port and recovers it by issuing a Warm reset 425 * if Compliance mode is detected, otherwise the port will become "dead" (no 426 * device connections or disconnections will be detected anymore). Becasue no 427 * status event is generated when entering compliance mode (per xhci spec), 428 * this quirk is needed on systems that have the failing hardware installed. 429 */ 430 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 431 { 432 xhci->port_status_u0 = 0; 433 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 434 0); 435 xhci->comp_mode_recovery_timer.expires = jiffies + 436 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 437 438 add_timer(&xhci->comp_mode_recovery_timer); 439 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 440 "Compliance mode recovery timer initialized"); 441 } 442 443 /* 444 * This function identifies the systems that have installed the SN65LVPE502CP 445 * USB3.0 re-driver and that need the Compliance Mode Quirk. 446 * Systems: 447 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 448 */ 449 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 450 { 451 const char *dmi_product_name, *dmi_sys_vendor; 452 453 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 454 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 455 if (!dmi_product_name || !dmi_sys_vendor) 456 return false; 457 458 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 459 return false; 460 461 if (strstr(dmi_product_name, "Z420") || 462 strstr(dmi_product_name, "Z620") || 463 strstr(dmi_product_name, "Z820") || 464 strstr(dmi_product_name, "Z1 Workstation")) 465 return true; 466 467 return false; 468 } 469 470 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 471 { 472 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 473 } 474 475 static void xhci_hcd_page_size(struct xhci_hcd *xhci) 476 { 477 u32 page_size; 478 479 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK; 480 if (!is_power_of_2(page_size)) { 481 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size); 482 /* Fallback to 4K page size, since that's common */ 483 page_size = 1; 484 } 485 486 xhci->page_size = page_size << 12; 487 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", 488 xhci->page_size >> 10); 489 } 490 491 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci) 492 { 493 u32 config_reg; 494 u32 max_slots; 495 496 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1); 497 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots", 498 max_slots); 499 500 config_reg = readl(&xhci->op_regs->config_reg); 501 config_reg &= ~HCS_SLOTS_MASK; 502 config_reg |= max_slots; 503 504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x", 505 config_reg); 506 writel(config_reg, &xhci->op_regs->config_reg); 507 } 508 509 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 510 { 511 dma_addr_t deq_dma; 512 u64 crcr; 513 514 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); 515 deq_dma &= CMD_RING_PTR_MASK; 516 517 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 518 crcr &= ~CMD_RING_PTR_MASK; 519 crcr |= deq_dma; 520 521 crcr &= ~CMD_RING_CYCLE; 522 crcr |= xhci->cmd_ring->cycle_state; 523 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr); 525 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring); 526 } 527 528 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci) 529 { 530 u32 offset; 531 532 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK; 533 xhci->dba = (void __iomem *)xhci->cap_regs + offset; 534 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 535 "Doorbell array is located at offset 0x%x from cap regs base addr", offset); 536 } 537 538 /* 539 * Enable USB 3.0 device notifications for function remote wake, which is necessary 540 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend). 541 */ 542 static void xhci_set_dev_notifications(struct xhci_hcd *xhci) 543 { 544 u32 dev_notf; 545 546 dev_notf = readl(&xhci->op_regs->dev_notification); 547 dev_notf &= ~DEV_NOTE_MASK; 548 dev_notf |= DEV_NOTE_FWAKE; 549 writel(dev_notf, &xhci->op_regs->dev_notification); 550 } 551 552 /* 553 * Initialize memory for HCD and xHC (one-time init). 554 * 555 * Program the PAGESIZE register, initialize the device context array, create 556 * device contexts (?), set up a command ring segment (or two?), create event 557 * ring (one for now). 558 */ 559 static int xhci_init(struct usb_hcd *hcd) 560 { 561 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 562 int retval; 563 564 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__); 565 spin_lock_init(&xhci->lock); 566 567 INIT_LIST_HEAD(&xhci->cmd_list); 568 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 569 init_completion(&xhci->cmd_ring_stop_completion); 570 xhci_hcd_page_size(xhci); 571 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs)); 572 573 retval = xhci_mem_init(xhci, GFP_KERNEL); 574 if (retval) 575 return retval; 576 577 /* Set the Number of Device Slots Enabled to the maximum supported value */ 578 xhci_enable_max_dev_slots(xhci); 579 580 /* Set the address in the Command Ring Control register */ 581 xhci_set_cmd_ring_deq(xhci); 582 583 /* Set Device Context Base Address Array pointer */ 584 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr); 585 586 /* Set Doorbell array pointer */ 587 xhci_set_doorbell_ptr(xhci); 588 589 /* Set USB 3.0 device notifications for function remote wake */ 590 xhci_set_dev_notifications(xhci); 591 592 /* Initialize the Primary interrupter */ 593 xhci_add_interrupter(xhci, 0); 594 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__); 603 return 0; 604 } 605 606 /*-------------------------------------------------------------------------*/ 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 struct xhci_interrupter *ir = xhci->interrupters[0]; 611 unsigned long flags; 612 u32 temp; 613 614 /* 615 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 616 * Protect the short window before host is running with a lock 617 */ 618 spin_lock_irqsave(&xhci->lock, flags); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 621 temp = readl(&xhci->op_regs->command); 622 temp |= (CMD_EIE); 623 writel(temp, &xhci->op_regs->command); 624 625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 626 xhci_enable_interrupter(ir); 627 628 if (xhci_start(xhci)) { 629 xhci_halt(xhci); 630 spin_unlock_irqrestore(&xhci->lock, flags); 631 return -ENODEV; 632 } 633 634 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 635 636 if (xhci->quirks & XHCI_NEC_HOST) 637 xhci_ring_cmd_db(xhci); 638 639 spin_unlock_irqrestore(&xhci->lock, flags); 640 641 return 0; 642 } 643 644 /* 645 * Start the HC after it was halted. 646 * 647 * This function is called by the USB core when the HC driver is added. 648 * Its opposite is xhci_stop(). 649 * 650 * xhci_init() must be called once before this function can be called. 651 * Reset the HC, enable device slot contexts, program DCBAAP, and 652 * set command ring pointer and event ring pointer. 653 * 654 * Setup MSI-X vectors and enable interrupts. 655 */ 656 int xhci_run(struct usb_hcd *hcd) 657 { 658 u64 temp_64; 659 int ret; 660 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 661 struct xhci_interrupter *ir = xhci->interrupters[0]; 662 /* Start the xHCI host controller running only after the USB 2.0 roothub 663 * is setup. 664 */ 665 666 hcd->uses_new_polling = 1; 667 if (hcd->msi_enabled) 668 ir->ip_autoclear = true; 669 670 if (!usb_hcd_is_primary_hcd(hcd)) 671 return xhci_run_finished(xhci); 672 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 674 675 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 676 temp_64 &= ERST_PTR_MASK; 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 678 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 679 680 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 681 682 if (xhci->quirks & XHCI_NEC_HOST) { 683 struct xhci_command *command; 684 685 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 686 if (!command) 687 return -ENOMEM; 688 689 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 690 TRB_TYPE(TRB_NEC_GET_FW)); 691 if (ret) 692 xhci_free_command(xhci, command); 693 } 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "Finished %s for main hcd", __func__); 696 697 xhci_create_dbc_dev(xhci); 698 699 xhci_debugfs_init(xhci); 700 701 if (xhci_has_one_roothub(xhci)) 702 return xhci_run_finished(xhci); 703 704 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 705 706 return 0; 707 } 708 EXPORT_SYMBOL_GPL(xhci_run); 709 710 /* 711 * Stop xHCI driver. 712 * 713 * This function is called by the USB core when the HC driver is removed. 714 * Its opposite is xhci_run(). 715 * 716 * Disable device contexts, disable IRQs, and quiesce the HC. 717 * Reset the HC, finish any completed transactions, and cleanup memory. 718 */ 719 void xhci_stop(struct usb_hcd *hcd) 720 { 721 u32 temp; 722 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 723 struct xhci_interrupter *ir = xhci->interrupters[0]; 724 725 mutex_lock(&xhci->mutex); 726 727 /* Only halt host and free memory after both hcds are removed */ 728 if (!usb_hcd_is_primary_hcd(hcd)) { 729 mutex_unlock(&xhci->mutex); 730 return; 731 } 732 733 xhci_remove_dbc_dev(xhci); 734 735 spin_lock_irq(&xhci->lock); 736 xhci->xhc_state |= XHCI_STATE_HALTED; 737 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 738 xhci_halt(xhci); 739 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 740 spin_unlock_irq(&xhci->lock); 741 742 /* Deleting Compliance Mode Recovery Timer */ 743 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 744 (!(xhci_all_ports_seen_u0(xhci)))) { 745 timer_delete_sync(&xhci->comp_mode_recovery_timer); 746 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 747 "%s: compliance mode recovery timer deleted", 748 __func__); 749 } 750 751 if (xhci->quirks & XHCI_AMD_PLL_FIX) 752 usb_amd_dev_put(); 753 754 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 755 "// Disabling event ring interrupts"); 756 temp = readl(&xhci->op_regs->status); 757 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 758 xhci_disable_interrupter(xhci, ir); 759 760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 761 xhci_mem_cleanup(xhci); 762 xhci_debugfs_exit(xhci); 763 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 764 "xhci_stop completed - status = %x", 765 readl(&xhci->op_regs->status)); 766 mutex_unlock(&xhci->mutex); 767 } 768 EXPORT_SYMBOL_GPL(xhci_stop); 769 770 /* 771 * Shutdown HC (not bus-specific) 772 * 773 * This is called when the machine is rebooting or halting. We assume that the 774 * machine will be powered off, and the HC's internal state will be reset. 775 * Don't bother to free memory. 776 * 777 * This will only ever be called with the main usb_hcd (the USB3 roothub). 778 */ 779 void xhci_shutdown(struct usb_hcd *hcd) 780 { 781 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 782 783 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 784 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 785 786 /* Don't poll the roothubs after shutdown. */ 787 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 788 __func__, hcd->self.busnum); 789 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 790 timer_delete_sync(&hcd->rh_timer); 791 792 if (xhci->shared_hcd) { 793 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 794 timer_delete_sync(&xhci->shared_hcd->rh_timer); 795 } 796 797 spin_lock_irq(&xhci->lock); 798 xhci_halt(xhci); 799 800 /* 801 * Workaround for spurious wakeps at shutdown with HSW, and for boot 802 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 803 */ 804 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 805 xhci->quirks & XHCI_RESET_TO_DEFAULT) 806 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 807 808 spin_unlock_irq(&xhci->lock); 809 810 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 811 "xhci_shutdown completed - status = %x", 812 readl(&xhci->op_regs->status)); 813 } 814 EXPORT_SYMBOL_GPL(xhci_shutdown); 815 816 #ifdef CONFIG_PM 817 static void xhci_save_registers(struct xhci_hcd *xhci) 818 { 819 struct xhci_interrupter *ir; 820 unsigned int i; 821 822 xhci->s3.command = readl(&xhci->op_regs->command); 823 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 824 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 825 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 826 827 /* save both primary and all secondary interrupters */ 828 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 829 for (i = 0; i < xhci->max_interrupters; i++) { 830 ir = xhci->interrupters[i]; 831 if (!ir) 832 continue; 833 834 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 835 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 836 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 837 ir->s3_iman = readl(&ir->ir_set->iman); 838 ir->s3_imod = readl(&ir->ir_set->imod); 839 } 840 } 841 842 static void xhci_restore_registers(struct xhci_hcd *xhci) 843 { 844 struct xhci_interrupter *ir; 845 unsigned int i; 846 847 writel(xhci->s3.command, &xhci->op_regs->command); 848 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 849 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 850 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 851 852 /* FIXME should we lock to protect against freeing of interrupters */ 853 for (i = 0; i < xhci->max_interrupters; i++) { 854 ir = xhci->interrupters[i]; 855 if (!ir) 856 continue; 857 858 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 859 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 860 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 861 writel(ir->s3_iman, &ir->ir_set->iman); 862 writel(ir->s3_imod, &ir->ir_set->imod); 863 } 864 } 865 866 /* 867 * The whole command ring must be cleared to zero when we suspend the host. 868 * 869 * The host doesn't save the command ring pointer in the suspend well, so we 870 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 871 * aligned, because of the reserved bits in the command ring dequeue pointer 872 * register. Therefore, we can't just set the dequeue pointer back in the 873 * middle of the ring (TRBs are 16-byte aligned). 874 */ 875 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 876 { 877 struct xhci_ring *ring; 878 struct xhci_segment *seg; 879 880 ring = xhci->cmd_ring; 881 xhci_for_each_ring_seg(ring->first_seg, seg) { 882 /* erase all TRBs before the link */ 883 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 884 /* clear link cycle bit */ 885 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 886 } 887 888 xhci_initialize_ring_info(ring); 889 /* 890 * Reset the hardware dequeue pointer. 891 * Yes, this will need to be re-written after resume, but we're paranoid 892 * and want to make sure the hardware doesn't access bogus memory 893 * because, say, the BIOS or an SMI started the host without changing 894 * the command ring pointers. 895 */ 896 xhci_set_cmd_ring_deq(xhci); 897 } 898 899 /* 900 * Disable port wake bits if do_wakeup is not set. 901 * 902 * Also clear a possible internal port wake state left hanging for ports that 903 * detected termination but never successfully enumerated (trained to 0U). 904 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 905 * at enumeration clears this wake, force one here as well for unconnected ports 906 */ 907 908 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 909 struct xhci_hub *rhub, 910 bool do_wakeup) 911 { 912 unsigned long flags; 913 u32 t1, t2, portsc; 914 int i; 915 916 spin_lock_irqsave(&xhci->lock, flags); 917 918 for (i = 0; i < rhub->num_ports; i++) { 919 portsc = readl(rhub->ports[i]->addr); 920 t1 = xhci_port_state_to_neutral(portsc); 921 t2 = t1; 922 923 /* clear wake bits if do_wake is not set */ 924 if (!do_wakeup) 925 t2 &= ~PORT_WAKE_BITS; 926 927 /* Don't touch csc bit if connected or connect change is set */ 928 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 929 t2 |= PORT_CSC; 930 931 if (t1 != t2) { 932 writel(t2, rhub->ports[i]->addr); 933 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 934 rhub->hcd->self.busnum, i + 1, portsc, t2); 935 } 936 } 937 spin_unlock_irqrestore(&xhci->lock, flags); 938 } 939 940 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 941 { 942 struct xhci_port **ports; 943 int port_index; 944 u32 status; 945 u32 portsc; 946 947 status = readl(&xhci->op_regs->status); 948 if (status & STS_EINT) 949 return true; 950 /* 951 * Checking STS_EINT is not enough as there is a lag between a change 952 * bit being set and the Port Status Change Event that it generated 953 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 954 */ 955 956 port_index = xhci->usb2_rhub.num_ports; 957 ports = xhci->usb2_rhub.ports; 958 while (port_index--) { 959 portsc = readl(ports[port_index]->addr); 960 if (portsc & PORT_CHANGE_MASK || 961 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 962 return true; 963 } 964 port_index = xhci->usb3_rhub.num_ports; 965 ports = xhci->usb3_rhub.ports; 966 while (port_index--) { 967 portsc = readl(ports[port_index]->addr); 968 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 969 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 970 return true; 971 } 972 return false; 973 } 974 975 /* 976 * Stop HC (not bus-specific) 977 * 978 * This is called when the machine transition into S3/S4 mode. 979 * 980 */ 981 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 982 { 983 int rc = 0; 984 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 985 struct usb_hcd *hcd = xhci_to_hcd(xhci); 986 u32 command; 987 u32 res; 988 989 if (!hcd->state) 990 return 0; 991 992 if (hcd->state != HC_STATE_SUSPENDED || 993 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 994 return -EINVAL; 995 996 /* Clear root port wake on bits if wakeup not allowed. */ 997 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 998 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 999 1000 if (!HCD_HW_ACCESSIBLE(hcd)) 1001 return 0; 1002 1003 xhci_dbc_suspend(xhci); 1004 1005 /* Don't poll the roothubs on bus suspend. */ 1006 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1007 __func__, hcd->self.busnum); 1008 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1009 timer_delete_sync(&hcd->rh_timer); 1010 if (xhci->shared_hcd) { 1011 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1012 timer_delete_sync(&xhci->shared_hcd->rh_timer); 1013 } 1014 1015 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1016 usleep_range(1000, 1500); 1017 1018 spin_lock_irq(&xhci->lock); 1019 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1020 if (xhci->shared_hcd) 1021 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1022 /* step 1: stop endpoint */ 1023 /* skipped assuming that port suspend has done */ 1024 1025 /* step 2: clear Run/Stop bit */ 1026 command = readl(&xhci->op_regs->command); 1027 command &= ~CMD_RUN; 1028 writel(command, &xhci->op_regs->command); 1029 1030 /* Some chips from Fresco Logic need an extraordinary delay */ 1031 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1032 1033 if (xhci_handshake(&xhci->op_regs->status, 1034 STS_HALT, STS_HALT, delay)) { 1035 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1036 spin_unlock_irq(&xhci->lock); 1037 return -ETIMEDOUT; 1038 } 1039 xhci_clear_command_ring(xhci); 1040 1041 /* step 3: save registers */ 1042 xhci_save_registers(xhci); 1043 1044 /* step 4: set CSS flag */ 1045 command = readl(&xhci->op_regs->command); 1046 command |= CMD_CSS; 1047 writel(command, &xhci->op_regs->command); 1048 xhci->broken_suspend = 0; 1049 if (xhci_handshake(&xhci->op_regs->status, 1050 STS_SAVE, 0, 20 * 1000)) { 1051 /* 1052 * AMD SNPS xHC 3.0 occasionally does not clear the 1053 * SSS bit of USBSTS and when driver tries to poll 1054 * to see if the xHC clears BIT(8) which never happens 1055 * and driver assumes that controller is not responding 1056 * and times out. To workaround this, its good to check 1057 * if SRE and HCE bits are not set (as per xhci 1058 * Section 5.4.2) and bypass the timeout. 1059 */ 1060 res = readl(&xhci->op_regs->status); 1061 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1062 (((res & STS_SRE) == 0) && 1063 ((res & STS_HCE) == 0))) { 1064 xhci->broken_suspend = 1; 1065 } else { 1066 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1067 spin_unlock_irq(&xhci->lock); 1068 return -ETIMEDOUT; 1069 } 1070 } 1071 spin_unlock_irq(&xhci->lock); 1072 1073 /* 1074 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1075 * is about to be suspended. 1076 */ 1077 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1078 (!(xhci_all_ports_seen_u0(xhci)))) { 1079 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1080 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1081 "%s: compliance mode recovery timer deleted", 1082 __func__); 1083 } 1084 1085 return rc; 1086 } 1087 EXPORT_SYMBOL_GPL(xhci_suspend); 1088 1089 /* 1090 * start xHC (not bus-specific) 1091 * 1092 * This is called when the machine transition from S3/S4 mode. 1093 * 1094 */ 1095 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 1096 { 1097 u32 command, temp = 0; 1098 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1099 int retval = 0; 1100 bool comp_timer_running = false; 1101 bool pending_portevent = false; 1102 bool suspended_usb3_devs = false; 1103 1104 if (!hcd->state) 1105 return 0; 1106 1107 /* Wait a bit if either of the roothubs need to settle from the 1108 * transition into bus suspend. 1109 */ 1110 1111 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1112 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1113 msleep(100); 1114 1115 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1116 if (xhci->shared_hcd) 1117 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1118 1119 spin_lock_irq(&xhci->lock); 1120 1121 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1122 power_lost = true; 1123 1124 if (!power_lost) { 1125 /* 1126 * Some controllers might lose power during suspend, so wait 1127 * for controller not ready bit to clear, just as in xHC init. 1128 */ 1129 retval = xhci_handshake(&xhci->op_regs->status, 1130 STS_CNR, 0, 10 * 1000 * 1000); 1131 if (retval) { 1132 xhci_warn(xhci, "Controller not ready at resume %d\n", 1133 retval); 1134 spin_unlock_irq(&xhci->lock); 1135 return retval; 1136 } 1137 /* step 1: restore register */ 1138 xhci_restore_registers(xhci); 1139 /* step 2: initialize command ring buffer */ 1140 xhci_set_cmd_ring_deq(xhci); 1141 /* step 3: restore state and start state*/ 1142 /* step 3: set CRS flag */ 1143 command = readl(&xhci->op_regs->command); 1144 command |= CMD_CRS; 1145 writel(command, &xhci->op_regs->command); 1146 /* 1147 * Some controllers take up to 55+ ms to complete the controller 1148 * restore so setting the timeout to 100ms. Xhci specification 1149 * doesn't mention any timeout value. 1150 */ 1151 if (xhci_handshake(&xhci->op_regs->status, 1152 STS_RESTORE, 0, 100 * 1000)) { 1153 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1154 spin_unlock_irq(&xhci->lock); 1155 return -ETIMEDOUT; 1156 } 1157 } 1158 1159 temp = readl(&xhci->op_regs->status); 1160 1161 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1162 if ((temp & (STS_SRE | STS_HCE)) && 1163 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1164 if (!power_lost) 1165 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1166 power_lost = true; 1167 } 1168 1169 if (power_lost) { 1170 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1171 !(xhci_all_ports_seen_u0(xhci))) { 1172 timer_delete_sync(&xhci->comp_mode_recovery_timer); 1173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1174 "Compliance Mode Recovery Timer deleted!"); 1175 } 1176 1177 /* Let the USB core know _both_ roothubs lost power. */ 1178 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1179 if (xhci->shared_hcd) 1180 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1181 1182 xhci_dbg(xhci, "Stop HCD\n"); 1183 xhci_halt(xhci); 1184 xhci_zero_64b_regs(xhci); 1185 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1186 spin_unlock_irq(&xhci->lock); 1187 if (retval) 1188 return retval; 1189 1190 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1191 temp = readl(&xhci->op_regs->status); 1192 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1193 xhci_disable_interrupter(xhci, xhci->interrupters[0]); 1194 1195 xhci_dbg(xhci, "cleaning up memory\n"); 1196 xhci_mem_cleanup(xhci); 1197 xhci_debugfs_exit(xhci); 1198 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1199 readl(&xhci->op_regs->status)); 1200 1201 /* USB core calls the PCI reinit and start functions twice: 1202 * first with the primary HCD, and then with the secondary HCD. 1203 * If we don't do the same, the host will never be started. 1204 */ 1205 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1206 retval = xhci_init(hcd); 1207 if (retval) 1208 return retval; 1209 comp_timer_running = true; 1210 1211 xhci_dbg(xhci, "Start the primary HCD\n"); 1212 retval = xhci_run(hcd); 1213 if (!retval && xhci->shared_hcd) { 1214 xhci_dbg(xhci, "Start the secondary HCD\n"); 1215 retval = xhci_run(xhci->shared_hcd); 1216 } 1217 if (retval) 1218 return retval; 1219 /* 1220 * Resume roothubs unconditionally as PORTSC change bits are not 1221 * immediately visible after xHC reset 1222 */ 1223 hcd->state = HC_STATE_SUSPENDED; 1224 1225 if (xhci->shared_hcd) { 1226 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1227 usb_hcd_resume_root_hub(xhci->shared_hcd); 1228 } 1229 usb_hcd_resume_root_hub(hcd); 1230 1231 goto done; 1232 } 1233 1234 /* step 4: set Run/Stop bit */ 1235 command = readl(&xhci->op_regs->command); 1236 command |= CMD_RUN; 1237 writel(command, &xhci->op_regs->command); 1238 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1239 0, 250 * 1000); 1240 1241 /* step 5: walk topology and initialize portsc, 1242 * portpmsc and portli 1243 */ 1244 /* this is done in bus_resume */ 1245 1246 /* step 6: restart each of the previously 1247 * Running endpoints by ringing their doorbells 1248 */ 1249 1250 spin_unlock_irq(&xhci->lock); 1251 1252 xhci_dbc_resume(xhci); 1253 1254 if (retval == 0) { 1255 /* 1256 * Resume roothubs only if there are pending events. 1257 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1258 * the first wake signalling failed, give it that chance if 1259 * there are suspended USB 3 devices. 1260 */ 1261 if (xhci->usb3_rhub.bus_state.suspended_ports || 1262 xhci->usb3_rhub.bus_state.bus_suspended) 1263 suspended_usb3_devs = true; 1264 1265 pending_portevent = xhci_pending_portevent(xhci); 1266 1267 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1268 msleep(120); 1269 pending_portevent = xhci_pending_portevent(xhci); 1270 } 1271 1272 if (pending_portevent) { 1273 if (xhci->shared_hcd) 1274 usb_hcd_resume_root_hub(xhci->shared_hcd); 1275 usb_hcd_resume_root_hub(hcd); 1276 } 1277 } 1278 done: 1279 /* 1280 * If system is subject to the Quirk, Compliance Mode Timer needs to 1281 * be re-initialized Always after a system resume. Ports are subject 1282 * to suffer the Compliance Mode issue again. It doesn't matter if 1283 * ports have entered previously to U0 before system's suspension. 1284 */ 1285 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1286 compliance_mode_recovery_timer_init(xhci); 1287 1288 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1289 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1290 1291 /* Re-enable port polling. */ 1292 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1293 __func__, hcd->self.busnum); 1294 if (xhci->shared_hcd) { 1295 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1296 usb_hcd_poll_rh_status(xhci->shared_hcd); 1297 } 1298 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1299 usb_hcd_poll_rh_status(hcd); 1300 1301 return retval; 1302 } 1303 EXPORT_SYMBOL_GPL(xhci_resume); 1304 #endif /* CONFIG_PM */ 1305 1306 /*-------------------------------------------------------------------------*/ 1307 1308 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1309 { 1310 void *temp; 1311 int ret = 0; 1312 unsigned int buf_len; 1313 enum dma_data_direction dir; 1314 1315 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1316 buf_len = urb->transfer_buffer_length; 1317 1318 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1319 dev_to_node(hcd->self.sysdev)); 1320 if (!temp) 1321 return -ENOMEM; 1322 1323 if (usb_urb_dir_out(urb)) 1324 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1325 temp, buf_len, 0); 1326 1327 urb->transfer_buffer = temp; 1328 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1329 urb->transfer_buffer, 1330 urb->transfer_buffer_length, 1331 dir); 1332 1333 if (dma_mapping_error(hcd->self.sysdev, 1334 urb->transfer_dma)) { 1335 ret = -EAGAIN; 1336 kfree(temp); 1337 } else { 1338 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1339 } 1340 1341 return ret; 1342 } 1343 1344 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1345 struct urb *urb) 1346 { 1347 bool ret = false; 1348 unsigned int i; 1349 unsigned int len = 0; 1350 unsigned int trb_size; 1351 unsigned int max_pkt; 1352 struct scatterlist *sg; 1353 struct scatterlist *tail_sg; 1354 1355 tail_sg = urb->sg; 1356 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1357 1358 if (!urb->num_sgs) 1359 return ret; 1360 1361 if (urb->dev->speed >= USB_SPEED_SUPER) 1362 trb_size = TRB_CACHE_SIZE_SS; 1363 else 1364 trb_size = TRB_CACHE_SIZE_HS; 1365 1366 if (urb->transfer_buffer_length != 0 && 1367 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1368 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1369 len = len + sg->length; 1370 if (i > trb_size - 2) { 1371 len = len - tail_sg->length; 1372 if (len < max_pkt) { 1373 ret = true; 1374 break; 1375 } 1376 1377 tail_sg = sg_next(tail_sg); 1378 } 1379 } 1380 } 1381 return ret; 1382 } 1383 1384 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1385 { 1386 unsigned int len; 1387 unsigned int buf_len; 1388 enum dma_data_direction dir; 1389 1390 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1391 1392 buf_len = urb->transfer_buffer_length; 1393 1394 if (IS_ENABLED(CONFIG_HAS_DMA) && 1395 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1396 dma_unmap_single(hcd->self.sysdev, 1397 urb->transfer_dma, 1398 urb->transfer_buffer_length, 1399 dir); 1400 1401 if (usb_urb_dir_in(urb)) { 1402 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1403 urb->transfer_buffer, 1404 buf_len, 1405 0); 1406 if (len != buf_len) { 1407 xhci_dbg(hcd_to_xhci(hcd), 1408 "Copy from tmp buf to urb sg list failed\n"); 1409 urb->actual_length = len; 1410 } 1411 } 1412 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1413 kfree(urb->transfer_buffer); 1414 urb->transfer_buffer = NULL; 1415 } 1416 1417 /* 1418 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1419 * we'll copy the actual data into the TRB address register. This is limited to 1420 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1421 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1422 */ 1423 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1424 gfp_t mem_flags) 1425 { 1426 struct xhci_hcd *xhci; 1427 1428 xhci = hcd_to_xhci(hcd); 1429 1430 if (xhci_urb_suitable_for_idt(urb)) 1431 return 0; 1432 1433 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1434 if (xhci_urb_temp_buffer_required(hcd, urb)) 1435 return xhci_map_temp_buffer(hcd, urb); 1436 } 1437 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1438 } 1439 1440 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1441 { 1442 struct xhci_hcd *xhci; 1443 bool unmap_temp_buf = false; 1444 1445 xhci = hcd_to_xhci(hcd); 1446 1447 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1448 unmap_temp_buf = true; 1449 1450 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1451 xhci_unmap_temp_buf(hcd, urb); 1452 else 1453 usb_hcd_unmap_urb_for_dma(hcd, urb); 1454 } 1455 1456 /** 1457 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1458 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1459 * value to right shift 1 for the bitmask. 1460 * @desc: USB endpoint descriptor to determine index for 1461 * 1462 * Index = (epnum * 2) + direction - 1, 1463 * where direction = 0 for OUT, 1 for IN. 1464 * For control endpoints, the IN index is used (OUT index is unused), so 1465 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1466 */ 1467 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1468 { 1469 unsigned int index; 1470 if (usb_endpoint_xfer_control(desc)) 1471 index = (unsigned int) (usb_endpoint_num(desc)*2); 1472 else 1473 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1474 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1475 return index; 1476 } 1477 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1478 1479 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1480 * address from the XHCI endpoint index. 1481 */ 1482 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1483 { 1484 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1485 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1486 return direction | number; 1487 } 1488 1489 /* Find the flag for this endpoint (for use in the control context). Use the 1490 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1491 * bit 1, etc. 1492 */ 1493 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1494 { 1495 return 1 << (xhci_get_endpoint_index(desc) + 1); 1496 } 1497 1498 /* Compute the last valid endpoint context index. Basically, this is the 1499 * endpoint index plus one. For slot contexts with more than valid endpoint, 1500 * we find the most significant bit set in the added contexts flags. 1501 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1502 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1503 */ 1504 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1505 { 1506 return fls(added_ctxs) - 1; 1507 } 1508 1509 /* Returns 1 if the arguments are OK; 1510 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1511 */ 1512 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1513 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1514 const char *func) { 1515 struct xhci_hcd *xhci; 1516 struct xhci_virt_device *virt_dev; 1517 1518 if (!hcd || (check_ep && !ep) || !udev) { 1519 pr_debug("xHCI %s called with invalid args\n", func); 1520 return -EINVAL; 1521 } 1522 if (!udev->parent) { 1523 pr_debug("xHCI %s called for root hub\n", func); 1524 return 0; 1525 } 1526 1527 xhci = hcd_to_xhci(hcd); 1528 if (check_virt_dev) { 1529 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1530 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1531 func); 1532 return -EINVAL; 1533 } 1534 1535 virt_dev = xhci->devs[udev->slot_id]; 1536 if (virt_dev->udev != udev) { 1537 xhci_dbg(xhci, "xHCI %s called with udev and " 1538 "virt_dev does not match\n", func); 1539 return -EINVAL; 1540 } 1541 } 1542 1543 if (xhci->xhc_state & XHCI_STATE_HALTED) 1544 return -ENODEV; 1545 1546 return 1; 1547 } 1548 1549 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1550 struct usb_device *udev, struct xhci_command *command, 1551 bool ctx_change, bool must_succeed); 1552 1553 /* 1554 * Full speed devices may have a max packet size greater than 8 bytes, but the 1555 * USB core doesn't know that until it reads the first 8 bytes of the 1556 * descriptor. If the usb_device's max packet size changes after that point, 1557 * we need to issue an evaluate context command and wait on it. 1558 */ 1559 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1560 { 1561 struct xhci_input_control_ctx *ctrl_ctx; 1562 struct xhci_ep_ctx *ep_ctx; 1563 struct xhci_command *command; 1564 int max_packet_size; 1565 int hw_max_packet_size; 1566 int ret = 0; 1567 1568 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1569 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1570 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1571 1572 if (hw_max_packet_size == max_packet_size) 1573 return 0; 1574 1575 switch (max_packet_size) { 1576 case 8: case 16: case 32: case 64: case 9: 1577 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1578 "Max Packet Size for ep 0 changed."); 1579 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1580 "Max packet size in usb_device = %d", 1581 max_packet_size); 1582 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1583 "Max packet size in xHCI HW = %d", 1584 hw_max_packet_size); 1585 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1586 "Issuing evaluate context command."); 1587 1588 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1589 if (!command) 1590 return -ENOMEM; 1591 1592 command->in_ctx = vdev->in_ctx; 1593 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1594 if (!ctrl_ctx) { 1595 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1596 __func__); 1597 ret = -ENOMEM; 1598 break; 1599 } 1600 /* Set up the modified control endpoint 0 */ 1601 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1602 1603 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1604 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1605 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1606 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1607 1608 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1609 ctrl_ctx->drop_flags = 0; 1610 1611 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1612 true, false); 1613 /* Clean up the input context for later use by bandwidth functions */ 1614 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1615 break; 1616 default: 1617 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1618 max_packet_size); 1619 return -EINVAL; 1620 } 1621 1622 kfree(command->completion); 1623 kfree(command); 1624 1625 return ret; 1626 } 1627 1628 /* 1629 * non-error returns are a promise to giveback() the urb later 1630 * we drop ownership so next owner (or urb unlink) can get it 1631 */ 1632 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1633 { 1634 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1635 unsigned long flags; 1636 int ret = 0; 1637 unsigned int slot_id, ep_index; 1638 unsigned int *ep_state; 1639 struct urb_priv *urb_priv; 1640 int num_tds; 1641 1642 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1643 1644 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1645 num_tds = urb->number_of_packets; 1646 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1647 urb->transfer_buffer_length > 0 && 1648 urb->transfer_flags & URB_ZERO_PACKET && 1649 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1650 num_tds = 2; 1651 else 1652 num_tds = 1; 1653 1654 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1655 if (!urb_priv) 1656 return -ENOMEM; 1657 1658 urb_priv->num_tds = num_tds; 1659 urb_priv->num_tds_done = 0; 1660 urb->hcpriv = urb_priv; 1661 1662 trace_xhci_urb_enqueue(urb); 1663 1664 spin_lock_irqsave(&xhci->lock, flags); 1665 1666 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1667 true, true, __func__); 1668 if (ret <= 0) { 1669 ret = ret ? ret : -EINVAL; 1670 goto free_priv; 1671 } 1672 1673 slot_id = urb->dev->slot_id; 1674 1675 if (!HCD_HW_ACCESSIBLE(hcd)) { 1676 ret = -ESHUTDOWN; 1677 goto free_priv; 1678 } 1679 1680 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1681 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1682 ret = -ENODEV; 1683 goto free_priv; 1684 } 1685 1686 if (xhci->xhc_state & XHCI_STATE_DYING) { 1687 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1688 urb->ep->desc.bEndpointAddress, urb); 1689 ret = -ESHUTDOWN; 1690 goto free_priv; 1691 } 1692 1693 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1694 1695 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1696 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1697 *ep_state); 1698 ret = -EINVAL; 1699 goto free_priv; 1700 } 1701 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1702 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1703 ret = -EINVAL; 1704 goto free_priv; 1705 } 1706 1707 switch (usb_endpoint_type(&urb->ep->desc)) { 1708 1709 case USB_ENDPOINT_XFER_CONTROL: 1710 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1711 slot_id, ep_index); 1712 break; 1713 case USB_ENDPOINT_XFER_BULK: 1714 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1715 slot_id, ep_index); 1716 break; 1717 case USB_ENDPOINT_XFER_INT: 1718 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1719 slot_id, ep_index); 1720 break; 1721 case USB_ENDPOINT_XFER_ISOC: 1722 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1723 slot_id, ep_index); 1724 } 1725 1726 if (ret) { 1727 free_priv: 1728 xhci_urb_free_priv(urb_priv); 1729 urb->hcpriv = NULL; 1730 } 1731 spin_unlock_irqrestore(&xhci->lock, flags); 1732 return ret; 1733 } 1734 1735 /* 1736 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1737 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1738 * should pick up where it left off in the TD, unless a Set Transfer Ring 1739 * Dequeue Pointer is issued. 1740 * 1741 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1742 * the ring. Since the ring is a contiguous structure, they can't be physically 1743 * removed. Instead, there are two options: 1744 * 1745 * 1) If the HC is in the middle of processing the URB to be canceled, we 1746 * simply move the ring's dequeue pointer past those TRBs using the Set 1747 * Transfer Ring Dequeue Pointer command. This will be the common case, 1748 * when drivers timeout on the last submitted URB and attempt to cancel. 1749 * 1750 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1751 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1752 * HC will need to invalidate the any TRBs it has cached after the stop 1753 * endpoint command, as noted in the xHCI 0.95 errata. 1754 * 1755 * 3) The TD may have completed by the time the Stop Endpoint Command 1756 * completes, so software needs to handle that case too. 1757 * 1758 * This function should protect against the TD enqueueing code ringing the 1759 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1760 * It also needs to account for multiple cancellations on happening at the same 1761 * time for the same endpoint. 1762 * 1763 * Note that this function can be called in any context, or so says 1764 * usb_hcd_unlink_urb() 1765 */ 1766 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1767 { 1768 unsigned long flags; 1769 int ret, i; 1770 u32 temp; 1771 struct xhci_hcd *xhci; 1772 struct urb_priv *urb_priv; 1773 struct xhci_td *td; 1774 unsigned int ep_index; 1775 struct xhci_ring *ep_ring; 1776 struct xhci_virt_ep *ep; 1777 struct xhci_command *command; 1778 struct xhci_virt_device *vdev; 1779 1780 xhci = hcd_to_xhci(hcd); 1781 spin_lock_irqsave(&xhci->lock, flags); 1782 1783 trace_xhci_urb_dequeue(urb); 1784 1785 /* Make sure the URB hasn't completed or been unlinked already */ 1786 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1787 if (ret) 1788 goto done; 1789 1790 /* give back URB now if we can't queue it for cancel */ 1791 vdev = xhci->devs[urb->dev->slot_id]; 1792 urb_priv = urb->hcpriv; 1793 if (!vdev || !urb_priv) 1794 goto err_giveback; 1795 1796 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1797 ep = &vdev->eps[ep_index]; 1798 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1799 if (!ep || !ep_ring) 1800 goto err_giveback; 1801 1802 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1803 temp = readl(&xhci->op_regs->status); 1804 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1805 xhci_hc_died(xhci); 1806 goto done; 1807 } 1808 1809 /* 1810 * check ring is not re-allocated since URB was enqueued. If it is, then 1811 * make sure none of the ring related pointers in this URB private data 1812 * are touched, such as td_list, otherwise we overwrite freed data 1813 */ 1814 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1815 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1816 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1817 td = &urb_priv->td[i]; 1818 if (!list_empty(&td->cancelled_td_list)) 1819 list_del_init(&td->cancelled_td_list); 1820 } 1821 goto err_giveback; 1822 } 1823 1824 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1825 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1826 "HC halted, freeing TD manually."); 1827 for (i = urb_priv->num_tds_done; 1828 i < urb_priv->num_tds; 1829 i++) { 1830 td = &urb_priv->td[i]; 1831 if (!list_empty(&td->td_list)) 1832 list_del_init(&td->td_list); 1833 if (!list_empty(&td->cancelled_td_list)) 1834 list_del_init(&td->cancelled_td_list); 1835 } 1836 goto err_giveback; 1837 } 1838 1839 i = urb_priv->num_tds_done; 1840 if (i < urb_priv->num_tds) 1841 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1842 "Cancel URB %p, dev %s, ep 0x%x, " 1843 "starting at offset 0x%llx", 1844 urb, urb->dev->devpath, 1845 urb->ep->desc.bEndpointAddress, 1846 (unsigned long long) xhci_trb_virt_to_dma( 1847 urb_priv->td[i].start_seg, 1848 urb_priv->td[i].start_trb)); 1849 1850 for (; i < urb_priv->num_tds; i++) { 1851 td = &urb_priv->td[i]; 1852 /* TD can already be on cancelled list if ep halted on it */ 1853 if (list_empty(&td->cancelled_td_list)) { 1854 td->cancel_status = TD_DIRTY; 1855 list_add_tail(&td->cancelled_td_list, 1856 &ep->cancelled_td_list); 1857 } 1858 } 1859 1860 /* These completion handlers will sort out cancelled TDs for us */ 1861 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1862 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1863 urb->dev->slot_id, ep_index, ep->ep_state); 1864 goto done; 1865 } 1866 1867 /* In this case no commands are pending but the endpoint is stopped */ 1868 if (ep->ep_state & EP_CLEARING_TT) { 1869 /* and cancelled TDs can be given back right away */ 1870 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1871 urb->dev->slot_id, ep_index, ep->ep_state); 1872 xhci_process_cancelled_tds(ep); 1873 } else { 1874 /* Otherwise, queue a new Stop Endpoint command */ 1875 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1876 if (!command) { 1877 ret = -ENOMEM; 1878 goto done; 1879 } 1880 ep->stop_time = jiffies; 1881 ep->ep_state |= EP_STOP_CMD_PENDING; 1882 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1883 ep_index, 0); 1884 xhci_ring_cmd_db(xhci); 1885 } 1886 done: 1887 spin_unlock_irqrestore(&xhci->lock, flags); 1888 return ret; 1889 1890 err_giveback: 1891 if (urb_priv) 1892 xhci_urb_free_priv(urb_priv); 1893 usb_hcd_unlink_urb_from_ep(hcd, urb); 1894 spin_unlock_irqrestore(&xhci->lock, flags); 1895 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1896 return ret; 1897 } 1898 1899 /* Drop an endpoint from a new bandwidth configuration for this device. 1900 * Only one call to this function is allowed per endpoint before 1901 * check_bandwidth() or reset_bandwidth() must be called. 1902 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1903 * add the endpoint to the schedule with possibly new parameters denoted by a 1904 * different endpoint descriptor in usb_host_endpoint. 1905 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1906 * not allowed. 1907 * 1908 * The USB core will not allow URBs to be queued to an endpoint that is being 1909 * disabled, so there's no need for mutual exclusion to protect 1910 * the xhci->devs[slot_id] structure. 1911 */ 1912 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1913 struct usb_host_endpoint *ep) 1914 { 1915 struct xhci_hcd *xhci; 1916 struct xhci_container_ctx *in_ctx, *out_ctx; 1917 struct xhci_input_control_ctx *ctrl_ctx; 1918 unsigned int ep_index; 1919 struct xhci_ep_ctx *ep_ctx; 1920 u32 drop_flag; 1921 u32 new_add_flags, new_drop_flags; 1922 int ret; 1923 1924 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1925 if (ret <= 0) 1926 return ret; 1927 xhci = hcd_to_xhci(hcd); 1928 if (xhci->xhc_state & XHCI_STATE_DYING) 1929 return -ENODEV; 1930 1931 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1932 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1933 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1934 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1935 __func__, drop_flag); 1936 return 0; 1937 } 1938 1939 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1940 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1941 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1942 if (!ctrl_ctx) { 1943 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1944 __func__); 1945 return 0; 1946 } 1947 1948 ep_index = xhci_get_endpoint_index(&ep->desc); 1949 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1950 /* If the HC already knows the endpoint is disabled, 1951 * or the HCD has noted it is disabled, ignore this request 1952 */ 1953 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1954 le32_to_cpu(ctrl_ctx->drop_flags) & 1955 xhci_get_endpoint_flag(&ep->desc)) { 1956 /* Do not warn when called after a usb_device_reset */ 1957 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1958 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1959 __func__, ep); 1960 return 0; 1961 } 1962 1963 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1964 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1965 1966 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1967 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1968 1969 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1970 1971 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1972 1973 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1974 (unsigned int) ep->desc.bEndpointAddress, 1975 udev->slot_id, 1976 (unsigned int) new_drop_flags, 1977 (unsigned int) new_add_flags); 1978 return 0; 1979 } 1980 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1981 1982 /* Add an endpoint to a new possible bandwidth configuration for this device. 1983 * Only one call to this function is allowed per endpoint before 1984 * check_bandwidth() or reset_bandwidth() must be called. 1985 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1986 * add the endpoint to the schedule with possibly new parameters denoted by a 1987 * different endpoint descriptor in usb_host_endpoint. 1988 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1989 * not allowed. 1990 * 1991 * The USB core will not allow URBs to be queued to an endpoint until the 1992 * configuration or alt setting is installed in the device, so there's no need 1993 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1994 */ 1995 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1996 struct usb_host_endpoint *ep) 1997 { 1998 struct xhci_hcd *xhci; 1999 struct xhci_container_ctx *in_ctx; 2000 unsigned int ep_index; 2001 struct xhci_input_control_ctx *ctrl_ctx; 2002 struct xhci_ep_ctx *ep_ctx; 2003 u32 added_ctxs; 2004 u32 new_add_flags, new_drop_flags; 2005 struct xhci_virt_device *virt_dev; 2006 int ret = 0; 2007 2008 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2009 if (ret <= 0) { 2010 /* So we won't queue a reset ep command for a root hub */ 2011 ep->hcpriv = NULL; 2012 return ret; 2013 } 2014 xhci = hcd_to_xhci(hcd); 2015 if (xhci->xhc_state & XHCI_STATE_DYING) 2016 return -ENODEV; 2017 2018 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2019 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2020 /* FIXME when we have to issue an evaluate endpoint command to 2021 * deal with ep0 max packet size changing once we get the 2022 * descriptors 2023 */ 2024 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2025 __func__, added_ctxs); 2026 return 0; 2027 } 2028 2029 virt_dev = xhci->devs[udev->slot_id]; 2030 in_ctx = virt_dev->in_ctx; 2031 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2032 if (!ctrl_ctx) { 2033 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2034 __func__); 2035 return 0; 2036 } 2037 2038 ep_index = xhci_get_endpoint_index(&ep->desc); 2039 /* If this endpoint is already in use, and the upper layers are trying 2040 * to add it again without dropping it, reject the addition. 2041 */ 2042 if (virt_dev->eps[ep_index].ring && 2043 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2044 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2045 "without dropping it.\n", 2046 (unsigned int) ep->desc.bEndpointAddress); 2047 return -EINVAL; 2048 } 2049 2050 /* If the HCD has already noted the endpoint is enabled, 2051 * ignore this request. 2052 */ 2053 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2054 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2055 __func__, ep); 2056 return 0; 2057 } 2058 2059 /* 2060 * Configuration and alternate setting changes must be done in 2061 * process context, not interrupt context (or so documenation 2062 * for usb_set_interface() and usb_set_configuration() claim). 2063 */ 2064 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2065 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2066 __func__, ep->desc.bEndpointAddress); 2067 return -ENOMEM; 2068 } 2069 2070 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2071 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2072 2073 /* If xhci_endpoint_disable() was called for this endpoint, but the 2074 * xHC hasn't been notified yet through the check_bandwidth() call, 2075 * this re-adds a new state for the endpoint from the new endpoint 2076 * descriptors. We must drop and re-add this endpoint, so we leave the 2077 * drop flags alone. 2078 */ 2079 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2080 2081 /* Store the usb_device pointer for later use */ 2082 ep->hcpriv = udev; 2083 2084 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2085 trace_xhci_add_endpoint(ep_ctx); 2086 2087 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2088 (unsigned int) ep->desc.bEndpointAddress, 2089 udev->slot_id, 2090 (unsigned int) new_drop_flags, 2091 (unsigned int) new_add_flags); 2092 return 0; 2093 } 2094 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2095 2096 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2097 { 2098 struct xhci_input_control_ctx *ctrl_ctx; 2099 struct xhci_ep_ctx *ep_ctx; 2100 struct xhci_slot_ctx *slot_ctx; 2101 int i; 2102 2103 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2104 if (!ctrl_ctx) { 2105 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2106 __func__); 2107 return; 2108 } 2109 2110 /* When a device's add flag and drop flag are zero, any subsequent 2111 * configure endpoint command will leave that endpoint's state 2112 * untouched. Make sure we don't leave any old state in the input 2113 * endpoint contexts. 2114 */ 2115 ctrl_ctx->drop_flags = 0; 2116 ctrl_ctx->add_flags = 0; 2117 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2118 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2119 /* Endpoint 0 is always valid */ 2120 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2121 for (i = 1; i < 31; i++) { 2122 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2123 ep_ctx->ep_info = 0; 2124 ep_ctx->ep_info2 = 0; 2125 ep_ctx->deq = 0; 2126 ep_ctx->tx_info = 0; 2127 } 2128 } 2129 2130 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2131 struct usb_device *udev, u32 *cmd_status) 2132 { 2133 int ret; 2134 2135 switch (*cmd_status) { 2136 case COMP_COMMAND_ABORTED: 2137 case COMP_COMMAND_RING_STOPPED: 2138 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2139 ret = -ETIME; 2140 break; 2141 case COMP_RESOURCE_ERROR: 2142 dev_warn(&udev->dev, 2143 "Not enough host controller resources for new device state.\n"); 2144 ret = -ENOMEM; 2145 /* FIXME: can we allocate more resources for the HC? */ 2146 break; 2147 case COMP_BANDWIDTH_ERROR: 2148 case COMP_SECONDARY_BANDWIDTH_ERROR: 2149 dev_warn(&udev->dev, 2150 "Not enough bandwidth for new device state.\n"); 2151 ret = -ENOSPC; 2152 /* FIXME: can we go back to the old state? */ 2153 break; 2154 case COMP_TRB_ERROR: 2155 /* the HCD set up something wrong */ 2156 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2157 "add flag = 1, " 2158 "and endpoint is not disabled.\n"); 2159 ret = -EINVAL; 2160 break; 2161 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2162 dev_warn(&udev->dev, 2163 "ERROR: Incompatible device for endpoint configure command.\n"); 2164 ret = -ENODEV; 2165 break; 2166 case COMP_SUCCESS: 2167 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2168 "Successful Endpoint Configure command"); 2169 ret = 0; 2170 break; 2171 default: 2172 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2173 *cmd_status); 2174 ret = -EINVAL; 2175 break; 2176 } 2177 return ret; 2178 } 2179 2180 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2181 struct usb_device *udev, u32 *cmd_status) 2182 { 2183 int ret; 2184 2185 switch (*cmd_status) { 2186 case COMP_COMMAND_ABORTED: 2187 case COMP_COMMAND_RING_STOPPED: 2188 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2189 ret = -ETIME; 2190 break; 2191 case COMP_PARAMETER_ERROR: 2192 dev_warn(&udev->dev, 2193 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2194 ret = -EINVAL; 2195 break; 2196 case COMP_SLOT_NOT_ENABLED_ERROR: 2197 dev_warn(&udev->dev, 2198 "WARN: slot not enabled for evaluate context command.\n"); 2199 ret = -EINVAL; 2200 break; 2201 case COMP_CONTEXT_STATE_ERROR: 2202 dev_warn(&udev->dev, 2203 "WARN: invalid context state for evaluate context command.\n"); 2204 ret = -EINVAL; 2205 break; 2206 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2207 dev_warn(&udev->dev, 2208 "ERROR: Incompatible device for evaluate context command.\n"); 2209 ret = -ENODEV; 2210 break; 2211 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2212 /* Max Exit Latency too large error */ 2213 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2214 ret = -EINVAL; 2215 break; 2216 case COMP_SUCCESS: 2217 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2218 "Successful evaluate context command"); 2219 ret = 0; 2220 break; 2221 default: 2222 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2223 *cmd_status); 2224 ret = -EINVAL; 2225 break; 2226 } 2227 return ret; 2228 } 2229 2230 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2231 struct xhci_input_control_ctx *ctrl_ctx) 2232 { 2233 u32 valid_add_flags; 2234 u32 valid_drop_flags; 2235 2236 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2237 * (bit 1). The default control endpoint is added during the Address 2238 * Device command and is never removed until the slot is disabled. 2239 */ 2240 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2241 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2242 2243 /* Use hweight32 to count the number of ones in the add flags, or 2244 * number of endpoints added. Don't count endpoints that are changed 2245 * (both added and dropped). 2246 */ 2247 return hweight32(valid_add_flags) - 2248 hweight32(valid_add_flags & valid_drop_flags); 2249 } 2250 2251 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2252 struct xhci_input_control_ctx *ctrl_ctx) 2253 { 2254 u32 valid_add_flags; 2255 u32 valid_drop_flags; 2256 2257 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2258 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2259 2260 return hweight32(valid_drop_flags) - 2261 hweight32(valid_add_flags & valid_drop_flags); 2262 } 2263 2264 /* 2265 * We need to reserve the new number of endpoints before the configure endpoint 2266 * command completes. We can't subtract the dropped endpoints from the number 2267 * of active endpoints until the command completes because we can oversubscribe 2268 * the host in this case: 2269 * 2270 * - the first configure endpoint command drops more endpoints than it adds 2271 * - a second configure endpoint command that adds more endpoints is queued 2272 * - the first configure endpoint command fails, so the config is unchanged 2273 * - the second command may succeed, even though there isn't enough resources 2274 * 2275 * Must be called with xhci->lock held. 2276 */ 2277 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2278 struct xhci_input_control_ctx *ctrl_ctx) 2279 { 2280 u32 added_eps; 2281 2282 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2283 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2285 "Not enough ep ctxs: " 2286 "%u active, need to add %u, limit is %u.", 2287 xhci->num_active_eps, added_eps, 2288 xhci->limit_active_eps); 2289 return -ENOMEM; 2290 } 2291 xhci->num_active_eps += added_eps; 2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2293 "Adding %u ep ctxs, %u now active.", added_eps, 2294 xhci->num_active_eps); 2295 return 0; 2296 } 2297 2298 /* 2299 * The configure endpoint was failed by the xHC for some other reason, so we 2300 * need to revert the resources that failed configuration would have used. 2301 * 2302 * Must be called with xhci->lock held. 2303 */ 2304 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2305 struct xhci_input_control_ctx *ctrl_ctx) 2306 { 2307 u32 num_failed_eps; 2308 2309 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2310 xhci->num_active_eps -= num_failed_eps; 2311 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2312 "Removing %u failed ep ctxs, %u now active.", 2313 num_failed_eps, 2314 xhci->num_active_eps); 2315 } 2316 2317 /* 2318 * Now that the command has completed, clean up the active endpoint count by 2319 * subtracting out the endpoints that were dropped (but not changed). 2320 * 2321 * Must be called with xhci->lock held. 2322 */ 2323 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2324 struct xhci_input_control_ctx *ctrl_ctx) 2325 { 2326 u32 num_dropped_eps; 2327 2328 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2329 xhci->num_active_eps -= num_dropped_eps; 2330 if (num_dropped_eps) 2331 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2332 "Removing %u dropped ep ctxs, %u now active.", 2333 num_dropped_eps, 2334 xhci->num_active_eps); 2335 } 2336 2337 static unsigned int xhci_get_block_size(struct usb_device *udev) 2338 { 2339 switch (udev->speed) { 2340 case USB_SPEED_LOW: 2341 case USB_SPEED_FULL: 2342 return FS_BLOCK; 2343 case USB_SPEED_HIGH: 2344 return HS_BLOCK; 2345 case USB_SPEED_SUPER: 2346 case USB_SPEED_SUPER_PLUS: 2347 return SS_BLOCK; 2348 case USB_SPEED_UNKNOWN: 2349 default: 2350 /* Should never happen */ 2351 return 1; 2352 } 2353 } 2354 2355 static unsigned int 2356 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2357 { 2358 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2359 return LS_OVERHEAD; 2360 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2361 return FS_OVERHEAD; 2362 return HS_OVERHEAD; 2363 } 2364 2365 /* If we are changing a LS/FS device under a HS hub, 2366 * make sure (if we are activating a new TT) that the HS bus has enough 2367 * bandwidth for this new TT. 2368 */ 2369 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2370 struct xhci_virt_device *virt_dev, 2371 int old_active_eps) 2372 { 2373 struct xhci_interval_bw_table *bw_table; 2374 struct xhci_tt_bw_info *tt_info; 2375 2376 /* Find the bandwidth table for the root port this TT is attached to. */ 2377 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2378 tt_info = virt_dev->tt_info; 2379 /* If this TT already had active endpoints, the bandwidth for this TT 2380 * has already been added. Removing all periodic endpoints (and thus 2381 * making the TT enactive) will only decrease the bandwidth used. 2382 */ 2383 if (old_active_eps) 2384 return 0; 2385 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2386 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2387 return -ENOMEM; 2388 return 0; 2389 } 2390 /* Not sure why we would have no new active endpoints... 2391 * 2392 * Maybe because of an Evaluate Context change for a hub update or a 2393 * control endpoint 0 max packet size change? 2394 * FIXME: skip the bandwidth calculation in that case. 2395 */ 2396 return 0; 2397 } 2398 2399 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2400 struct xhci_virt_device *virt_dev) 2401 { 2402 unsigned int bw_reserved; 2403 2404 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2405 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2406 return -ENOMEM; 2407 2408 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2409 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2410 return -ENOMEM; 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * This algorithm is a very conservative estimate of the worst-case scheduling 2417 * scenario for any one interval. The hardware dynamically schedules the 2418 * packets, so we can't tell which microframe could be the limiting factor in 2419 * the bandwidth scheduling. This only takes into account periodic endpoints. 2420 * 2421 * Obviously, we can't solve an NP complete problem to find the minimum worst 2422 * case scenario. Instead, we come up with an estimate that is no less than 2423 * the worst case bandwidth used for any one microframe, but may be an 2424 * over-estimate. 2425 * 2426 * We walk the requirements for each endpoint by interval, starting with the 2427 * smallest interval, and place packets in the schedule where there is only one 2428 * possible way to schedule packets for that interval. In order to simplify 2429 * this algorithm, we record the largest max packet size for each interval, and 2430 * assume all packets will be that size. 2431 * 2432 * For interval 0, we obviously must schedule all packets for each interval. 2433 * The bandwidth for interval 0 is just the amount of data to be transmitted 2434 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2435 * the number of packets). 2436 * 2437 * For interval 1, we have two possible microframes to schedule those packets 2438 * in. For this algorithm, if we can schedule the same number of packets for 2439 * each possible scheduling opportunity (each microframe), we will do so. The 2440 * remaining number of packets will be saved to be transmitted in the gaps in 2441 * the next interval's scheduling sequence. 2442 * 2443 * As we move those remaining packets to be scheduled with interval 2 packets, 2444 * we have to double the number of remaining packets to transmit. This is 2445 * because the intervals are actually powers of 2, and we would be transmitting 2446 * the previous interval's packets twice in this interval. We also have to be 2447 * sure that when we look at the largest max packet size for this interval, we 2448 * also look at the largest max packet size for the remaining packets and take 2449 * the greater of the two. 2450 * 2451 * The algorithm continues to evenly distribute packets in each scheduling 2452 * opportunity, and push the remaining packets out, until we get to the last 2453 * interval. Then those packets and their associated overhead are just added 2454 * to the bandwidth used. 2455 */ 2456 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2457 struct xhci_virt_device *virt_dev, 2458 int old_active_eps) 2459 { 2460 unsigned int bw_reserved; 2461 unsigned int max_bandwidth; 2462 unsigned int bw_used; 2463 unsigned int block_size; 2464 struct xhci_interval_bw_table *bw_table; 2465 unsigned int packet_size = 0; 2466 unsigned int overhead = 0; 2467 unsigned int packets_transmitted = 0; 2468 unsigned int packets_remaining = 0; 2469 unsigned int i; 2470 2471 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2472 return xhci_check_ss_bw(xhci, virt_dev); 2473 2474 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2475 max_bandwidth = HS_BW_LIMIT; 2476 /* Convert percent of bus BW reserved to blocks reserved */ 2477 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2478 } else { 2479 max_bandwidth = FS_BW_LIMIT; 2480 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2481 } 2482 2483 bw_table = virt_dev->bw_table; 2484 /* We need to translate the max packet size and max ESIT payloads into 2485 * the units the hardware uses. 2486 */ 2487 block_size = xhci_get_block_size(virt_dev->udev); 2488 2489 /* If we are manipulating a LS/FS device under a HS hub, double check 2490 * that the HS bus has enough bandwidth if we are activing a new TT. 2491 */ 2492 if (virt_dev->tt_info) { 2493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2494 "Recalculating BW for rootport %u", 2495 virt_dev->rhub_port->hw_portnum + 1); 2496 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2497 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2498 "newly activated TT.\n"); 2499 return -ENOMEM; 2500 } 2501 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2502 "Recalculating BW for TT slot %u port %u", 2503 virt_dev->tt_info->slot_id, 2504 virt_dev->tt_info->ttport); 2505 } else { 2506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2507 "Recalculating BW for rootport %u", 2508 virt_dev->rhub_port->hw_portnum + 1); 2509 } 2510 2511 /* Add in how much bandwidth will be used for interval zero, or the 2512 * rounded max ESIT payload + number of packets * largest overhead. 2513 */ 2514 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2515 bw_table->interval_bw[0].num_packets * 2516 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2517 2518 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2519 unsigned int bw_added; 2520 unsigned int largest_mps; 2521 unsigned int interval_overhead; 2522 2523 /* 2524 * How many packets could we transmit in this interval? 2525 * If packets didn't fit in the previous interval, we will need 2526 * to transmit that many packets twice within this interval. 2527 */ 2528 packets_remaining = 2 * packets_remaining + 2529 bw_table->interval_bw[i].num_packets; 2530 2531 /* Find the largest max packet size of this or the previous 2532 * interval. 2533 */ 2534 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2535 largest_mps = 0; 2536 else { 2537 struct xhci_virt_ep *virt_ep; 2538 struct list_head *ep_entry; 2539 2540 ep_entry = bw_table->interval_bw[i].endpoints.next; 2541 virt_ep = list_entry(ep_entry, 2542 struct xhci_virt_ep, bw_endpoint_list); 2543 /* Convert to blocks, rounding up */ 2544 largest_mps = DIV_ROUND_UP( 2545 virt_ep->bw_info.max_packet_size, 2546 block_size); 2547 } 2548 if (largest_mps > packet_size) 2549 packet_size = largest_mps; 2550 2551 /* Use the larger overhead of this or the previous interval. */ 2552 interval_overhead = xhci_get_largest_overhead( 2553 &bw_table->interval_bw[i]); 2554 if (interval_overhead > overhead) 2555 overhead = interval_overhead; 2556 2557 /* How many packets can we evenly distribute across 2558 * (1 << (i + 1)) possible scheduling opportunities? 2559 */ 2560 packets_transmitted = packets_remaining >> (i + 1); 2561 2562 /* Add in the bandwidth used for those scheduled packets */ 2563 bw_added = packets_transmitted * (overhead + packet_size); 2564 2565 /* How many packets do we have remaining to transmit? */ 2566 packets_remaining = packets_remaining % (1 << (i + 1)); 2567 2568 /* What largest max packet size should those packets have? */ 2569 /* If we've transmitted all packets, don't carry over the 2570 * largest packet size. 2571 */ 2572 if (packets_remaining == 0) { 2573 packet_size = 0; 2574 overhead = 0; 2575 } else if (packets_transmitted > 0) { 2576 /* Otherwise if we do have remaining packets, and we've 2577 * scheduled some packets in this interval, take the 2578 * largest max packet size from endpoints with this 2579 * interval. 2580 */ 2581 packet_size = largest_mps; 2582 overhead = interval_overhead; 2583 } 2584 /* Otherwise carry over packet_size and overhead from the last 2585 * time we had a remainder. 2586 */ 2587 bw_used += bw_added; 2588 if (bw_used > max_bandwidth) { 2589 xhci_warn(xhci, "Not enough bandwidth. " 2590 "Proposed: %u, Max: %u\n", 2591 bw_used, max_bandwidth); 2592 return -ENOMEM; 2593 } 2594 } 2595 /* 2596 * Ok, we know we have some packets left over after even-handedly 2597 * scheduling interval 15. We don't know which microframes they will 2598 * fit into, so we over-schedule and say they will be scheduled every 2599 * microframe. 2600 */ 2601 if (packets_remaining > 0) 2602 bw_used += overhead + packet_size; 2603 2604 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2605 /* OK, we're manipulating a HS device attached to a 2606 * root port bandwidth domain. Include the number of active TTs 2607 * in the bandwidth used. 2608 */ 2609 bw_used += TT_HS_OVERHEAD * 2610 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2611 } 2612 2613 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2614 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2615 "Available: %u " "percent", 2616 bw_used, max_bandwidth, bw_reserved, 2617 (max_bandwidth - bw_used - bw_reserved) * 100 / 2618 max_bandwidth); 2619 2620 bw_used += bw_reserved; 2621 if (bw_used > max_bandwidth) { 2622 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2623 bw_used, max_bandwidth); 2624 return -ENOMEM; 2625 } 2626 2627 bw_table->bw_used = bw_used; 2628 return 0; 2629 } 2630 2631 static bool xhci_is_async_ep(unsigned int ep_type) 2632 { 2633 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2634 ep_type != ISOC_IN_EP && 2635 ep_type != INT_IN_EP); 2636 } 2637 2638 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2639 { 2640 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2641 } 2642 2643 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2644 { 2645 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2646 2647 if (ep_bw->ep_interval == 0) 2648 return SS_OVERHEAD_BURST + 2649 (ep_bw->mult * ep_bw->num_packets * 2650 (SS_OVERHEAD + mps)); 2651 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2652 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2653 1 << ep_bw->ep_interval); 2654 2655 } 2656 2657 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2658 struct xhci_bw_info *ep_bw, 2659 struct xhci_interval_bw_table *bw_table, 2660 struct usb_device *udev, 2661 struct xhci_virt_ep *virt_ep, 2662 struct xhci_tt_bw_info *tt_info) 2663 { 2664 struct xhci_interval_bw *interval_bw; 2665 int normalized_interval; 2666 2667 if (xhci_is_async_ep(ep_bw->type)) 2668 return; 2669 2670 if (udev->speed >= USB_SPEED_SUPER) { 2671 if (xhci_is_sync_in_ep(ep_bw->type)) 2672 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2673 xhci_get_ss_bw_consumed(ep_bw); 2674 else 2675 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2676 xhci_get_ss_bw_consumed(ep_bw); 2677 return; 2678 } 2679 2680 /* SuperSpeed endpoints never get added to intervals in the table, so 2681 * this check is only valid for HS/FS/LS devices. 2682 */ 2683 if (list_empty(&virt_ep->bw_endpoint_list)) 2684 return; 2685 /* For LS/FS devices, we need to translate the interval expressed in 2686 * microframes to frames. 2687 */ 2688 if (udev->speed == USB_SPEED_HIGH) 2689 normalized_interval = ep_bw->ep_interval; 2690 else 2691 normalized_interval = ep_bw->ep_interval - 3; 2692 2693 if (normalized_interval == 0) 2694 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2695 interval_bw = &bw_table->interval_bw[normalized_interval]; 2696 interval_bw->num_packets -= ep_bw->num_packets; 2697 switch (udev->speed) { 2698 case USB_SPEED_LOW: 2699 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2700 break; 2701 case USB_SPEED_FULL: 2702 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2703 break; 2704 case USB_SPEED_HIGH: 2705 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2706 break; 2707 default: 2708 /* Should never happen because only LS/FS/HS endpoints will get 2709 * added to the endpoint list. 2710 */ 2711 return; 2712 } 2713 if (tt_info) 2714 tt_info->active_eps -= 1; 2715 list_del_init(&virt_ep->bw_endpoint_list); 2716 } 2717 2718 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2719 struct xhci_bw_info *ep_bw, 2720 struct xhci_interval_bw_table *bw_table, 2721 struct usb_device *udev, 2722 struct xhci_virt_ep *virt_ep, 2723 struct xhci_tt_bw_info *tt_info) 2724 { 2725 struct xhci_interval_bw *interval_bw; 2726 struct xhci_virt_ep *smaller_ep; 2727 int normalized_interval; 2728 2729 if (xhci_is_async_ep(ep_bw->type)) 2730 return; 2731 2732 if (udev->speed == USB_SPEED_SUPER) { 2733 if (xhci_is_sync_in_ep(ep_bw->type)) 2734 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2735 xhci_get_ss_bw_consumed(ep_bw); 2736 else 2737 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2738 xhci_get_ss_bw_consumed(ep_bw); 2739 return; 2740 } 2741 2742 /* For LS/FS devices, we need to translate the interval expressed in 2743 * microframes to frames. 2744 */ 2745 if (udev->speed == USB_SPEED_HIGH) 2746 normalized_interval = ep_bw->ep_interval; 2747 else 2748 normalized_interval = ep_bw->ep_interval - 3; 2749 2750 if (normalized_interval == 0) 2751 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2752 interval_bw = &bw_table->interval_bw[normalized_interval]; 2753 interval_bw->num_packets += ep_bw->num_packets; 2754 switch (udev->speed) { 2755 case USB_SPEED_LOW: 2756 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2757 break; 2758 case USB_SPEED_FULL: 2759 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2760 break; 2761 case USB_SPEED_HIGH: 2762 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2763 break; 2764 default: 2765 /* Should never happen because only LS/FS/HS endpoints will get 2766 * added to the endpoint list. 2767 */ 2768 return; 2769 } 2770 2771 if (tt_info) 2772 tt_info->active_eps += 1; 2773 /* Insert the endpoint into the list, largest max packet size first. */ 2774 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2775 bw_endpoint_list) { 2776 if (ep_bw->max_packet_size >= 2777 smaller_ep->bw_info.max_packet_size) { 2778 /* Add the new ep before the smaller endpoint */ 2779 list_add_tail(&virt_ep->bw_endpoint_list, 2780 &smaller_ep->bw_endpoint_list); 2781 return; 2782 } 2783 } 2784 /* Add the new endpoint at the end of the list. */ 2785 list_add_tail(&virt_ep->bw_endpoint_list, 2786 &interval_bw->endpoints); 2787 } 2788 2789 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2790 struct xhci_virt_device *virt_dev, 2791 int old_active_eps) 2792 { 2793 struct xhci_root_port_bw_info *rh_bw_info; 2794 if (!virt_dev->tt_info) 2795 return; 2796 2797 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2798 if (old_active_eps == 0 && 2799 virt_dev->tt_info->active_eps != 0) { 2800 rh_bw_info->num_active_tts += 1; 2801 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2802 } else if (old_active_eps != 0 && 2803 virt_dev->tt_info->active_eps == 0) { 2804 rh_bw_info->num_active_tts -= 1; 2805 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2806 } 2807 } 2808 2809 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2810 struct xhci_virt_device *virt_dev, 2811 struct xhci_container_ctx *in_ctx) 2812 { 2813 struct xhci_bw_info ep_bw_info[31]; 2814 int i; 2815 struct xhci_input_control_ctx *ctrl_ctx; 2816 int old_active_eps = 0; 2817 2818 if (virt_dev->tt_info) 2819 old_active_eps = virt_dev->tt_info->active_eps; 2820 2821 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2822 if (!ctrl_ctx) { 2823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2824 __func__); 2825 return -ENOMEM; 2826 } 2827 2828 for (i = 0; i < 31; i++) { 2829 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2830 continue; 2831 2832 /* Make a copy of the BW info in case we need to revert this */ 2833 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2834 sizeof(ep_bw_info[i])); 2835 /* Drop the endpoint from the interval table if the endpoint is 2836 * being dropped or changed. 2837 */ 2838 if (EP_IS_DROPPED(ctrl_ctx, i)) 2839 xhci_drop_ep_from_interval_table(xhci, 2840 &virt_dev->eps[i].bw_info, 2841 virt_dev->bw_table, 2842 virt_dev->udev, 2843 &virt_dev->eps[i], 2844 virt_dev->tt_info); 2845 } 2846 /* Overwrite the information stored in the endpoints' bw_info */ 2847 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2848 for (i = 0; i < 31; i++) { 2849 /* Add any changed or added endpoints to the interval table */ 2850 if (EP_IS_ADDED(ctrl_ctx, i)) 2851 xhci_add_ep_to_interval_table(xhci, 2852 &virt_dev->eps[i].bw_info, 2853 virt_dev->bw_table, 2854 virt_dev->udev, 2855 &virt_dev->eps[i], 2856 virt_dev->tt_info); 2857 } 2858 2859 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2860 /* Ok, this fits in the bandwidth we have. 2861 * Update the number of active TTs. 2862 */ 2863 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2864 return 0; 2865 } 2866 2867 /* We don't have enough bandwidth for this, revert the stored info. */ 2868 for (i = 0; i < 31; i++) { 2869 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2870 continue; 2871 2872 /* Drop the new copies of any added or changed endpoints from 2873 * the interval table. 2874 */ 2875 if (EP_IS_ADDED(ctrl_ctx, i)) { 2876 xhci_drop_ep_from_interval_table(xhci, 2877 &virt_dev->eps[i].bw_info, 2878 virt_dev->bw_table, 2879 virt_dev->udev, 2880 &virt_dev->eps[i], 2881 virt_dev->tt_info); 2882 } 2883 /* Revert the endpoint back to its old information */ 2884 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2885 sizeof(ep_bw_info[i])); 2886 /* Add any changed or dropped endpoints back into the table */ 2887 if (EP_IS_DROPPED(ctrl_ctx, i)) 2888 xhci_add_ep_to_interval_table(xhci, 2889 &virt_dev->eps[i].bw_info, 2890 virt_dev->bw_table, 2891 virt_dev->udev, 2892 &virt_dev->eps[i], 2893 virt_dev->tt_info); 2894 } 2895 return -ENOMEM; 2896 } 2897 2898 /* 2899 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2900 * waits for the command completion before returning. This does not call 2901 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2902 * cases, along with transfer ring cleanup. 2903 * 2904 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2905 * their own transfer ring, such as offload situations. 2906 */ 2907 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2908 gfp_t gfp_flags) 2909 { 2910 struct xhci_command *command; 2911 unsigned long flags; 2912 int ret; 2913 2914 command = xhci_alloc_command(xhci, true, gfp_flags); 2915 if (!command) 2916 return -ENOMEM; 2917 2918 spin_lock_irqsave(&xhci->lock, flags); 2919 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2920 ep->ep_index, suspend); 2921 if (ret < 0) { 2922 spin_unlock_irqrestore(&xhci->lock, flags); 2923 goto out; 2924 } 2925 2926 xhci_ring_cmd_db(xhci); 2927 spin_unlock_irqrestore(&xhci->lock, flags); 2928 2929 wait_for_completion(command->completion); 2930 2931 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2932 if (command->status == COMP_COMMAND_ABORTED || 2933 command->status == COMP_COMMAND_RING_STOPPED) { 2934 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2935 ret = -ETIME; 2936 } 2937 out: 2938 xhci_free_command(xhci, command); 2939 2940 return ret; 2941 } 2942 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2943 2944 /* Issue a configure endpoint command or evaluate context command 2945 * and wait for it to finish. 2946 */ 2947 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2948 struct usb_device *udev, 2949 struct xhci_command *command, 2950 bool ctx_change, bool must_succeed) 2951 { 2952 int ret; 2953 unsigned long flags; 2954 struct xhci_input_control_ctx *ctrl_ctx; 2955 struct xhci_virt_device *virt_dev; 2956 struct xhci_slot_ctx *slot_ctx; 2957 2958 if (!command) 2959 return -EINVAL; 2960 2961 spin_lock_irqsave(&xhci->lock, flags); 2962 2963 if (xhci->xhc_state & XHCI_STATE_DYING) { 2964 spin_unlock_irqrestore(&xhci->lock, flags); 2965 return -ESHUTDOWN; 2966 } 2967 2968 virt_dev = xhci->devs[udev->slot_id]; 2969 2970 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2971 if (!ctrl_ctx) { 2972 spin_unlock_irqrestore(&xhci->lock, flags); 2973 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2974 __func__); 2975 return -ENOMEM; 2976 } 2977 2978 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2979 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2980 spin_unlock_irqrestore(&xhci->lock, flags); 2981 xhci_warn(xhci, "Not enough host resources, " 2982 "active endpoint contexts = %u\n", 2983 xhci->num_active_eps); 2984 return -ENOMEM; 2985 } 2986 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2987 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2988 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2989 xhci_free_host_resources(xhci, ctrl_ctx); 2990 spin_unlock_irqrestore(&xhci->lock, flags); 2991 xhci_warn(xhci, "Not enough bandwidth\n"); 2992 return -ENOMEM; 2993 } 2994 2995 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2996 2997 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2998 trace_xhci_configure_endpoint(slot_ctx); 2999 3000 if (!ctx_change) 3001 ret = xhci_queue_configure_endpoint(xhci, command, 3002 command->in_ctx->dma, 3003 udev->slot_id, must_succeed); 3004 else 3005 ret = xhci_queue_evaluate_context(xhci, command, 3006 command->in_ctx->dma, 3007 udev->slot_id, must_succeed); 3008 if (ret < 0) { 3009 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 3010 xhci_free_host_resources(xhci, ctrl_ctx); 3011 spin_unlock_irqrestore(&xhci->lock, flags); 3012 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3013 "FIXME allocate a new ring segment"); 3014 return -ENOMEM; 3015 } 3016 xhci_ring_cmd_db(xhci); 3017 spin_unlock_irqrestore(&xhci->lock, flags); 3018 3019 /* Wait for the configure endpoint command to complete */ 3020 wait_for_completion(command->completion); 3021 3022 if (!ctx_change) 3023 ret = xhci_configure_endpoint_result(xhci, udev, 3024 &command->status); 3025 else 3026 ret = xhci_evaluate_context_result(xhci, udev, 3027 &command->status); 3028 3029 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3030 spin_lock_irqsave(&xhci->lock, flags); 3031 /* If the command failed, remove the reserved resources. 3032 * Otherwise, clean up the estimate to include dropped eps. 3033 */ 3034 if (ret) 3035 xhci_free_host_resources(xhci, ctrl_ctx); 3036 else 3037 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3038 spin_unlock_irqrestore(&xhci->lock, flags); 3039 } 3040 return ret; 3041 } 3042 3043 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3044 struct xhci_virt_device *vdev, int i) 3045 { 3046 struct xhci_virt_ep *ep = &vdev->eps[i]; 3047 3048 if (ep->ep_state & EP_HAS_STREAMS) { 3049 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3050 xhci_get_endpoint_address(i)); 3051 xhci_free_stream_info(xhci, ep->stream_info); 3052 ep->stream_info = NULL; 3053 ep->ep_state &= ~EP_HAS_STREAMS; 3054 } 3055 } 3056 3057 /* Called after one or more calls to xhci_add_endpoint() or 3058 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3059 * to call xhci_reset_bandwidth(). 3060 * 3061 * Since we are in the middle of changing either configuration or 3062 * installing a new alt setting, the USB core won't allow URBs to be 3063 * enqueued for any endpoint on the old config or interface. Nothing 3064 * else should be touching the xhci->devs[slot_id] structure, so we 3065 * don't need to take the xhci->lock for manipulating that. 3066 */ 3067 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3068 { 3069 int i; 3070 int ret = 0; 3071 struct xhci_hcd *xhci; 3072 struct xhci_virt_device *virt_dev; 3073 struct xhci_input_control_ctx *ctrl_ctx; 3074 struct xhci_slot_ctx *slot_ctx; 3075 struct xhci_command *command; 3076 3077 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3078 if (ret <= 0) 3079 return ret; 3080 xhci = hcd_to_xhci(hcd); 3081 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3082 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3083 return -ENODEV; 3084 3085 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3086 virt_dev = xhci->devs[udev->slot_id]; 3087 3088 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3089 if (!command) 3090 return -ENOMEM; 3091 3092 command->in_ctx = virt_dev->in_ctx; 3093 3094 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3095 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3096 if (!ctrl_ctx) { 3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3098 __func__); 3099 ret = -ENOMEM; 3100 goto command_cleanup; 3101 } 3102 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3103 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3104 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3105 3106 /* Don't issue the command if there's no endpoints to update. */ 3107 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3108 ctrl_ctx->drop_flags == 0) { 3109 ret = 0; 3110 goto command_cleanup; 3111 } 3112 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3113 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3114 for (i = 31; i >= 1; i--) { 3115 __le32 le32 = cpu_to_le32(BIT(i)); 3116 3117 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3118 || (ctrl_ctx->add_flags & le32) || i == 1) { 3119 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3120 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3121 break; 3122 } 3123 } 3124 3125 ret = xhci_configure_endpoint(xhci, udev, command, 3126 false, false); 3127 if (ret) 3128 /* Callee should call reset_bandwidth() */ 3129 goto command_cleanup; 3130 3131 /* Free any rings that were dropped, but not changed. */ 3132 for (i = 1; i < 31; i++) { 3133 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3134 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3135 xhci_free_endpoint_ring(xhci, virt_dev, i); 3136 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3137 } 3138 } 3139 xhci_zero_in_ctx(xhci, virt_dev); 3140 /* 3141 * Install any rings for completely new endpoints or changed endpoints, 3142 * and free any old rings from changed endpoints. 3143 */ 3144 for (i = 1; i < 31; i++) { 3145 if (!virt_dev->eps[i].new_ring) 3146 continue; 3147 /* Only free the old ring if it exists. 3148 * It may not if this is the first add of an endpoint. 3149 */ 3150 if (virt_dev->eps[i].ring) { 3151 xhci_free_endpoint_ring(xhci, virt_dev, i); 3152 } 3153 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3154 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3155 virt_dev->eps[i].new_ring = NULL; 3156 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3157 } 3158 command_cleanup: 3159 kfree(command->completion); 3160 kfree(command); 3161 3162 return ret; 3163 } 3164 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3165 3166 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3167 { 3168 struct xhci_hcd *xhci; 3169 struct xhci_virt_device *virt_dev; 3170 int i, ret; 3171 3172 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3173 if (ret <= 0) 3174 return; 3175 xhci = hcd_to_xhci(hcd); 3176 3177 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3178 virt_dev = xhci->devs[udev->slot_id]; 3179 /* Free any rings allocated for added endpoints */ 3180 for (i = 0; i < 31; i++) { 3181 if (virt_dev->eps[i].new_ring) { 3182 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3183 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3184 virt_dev->eps[i].new_ring = NULL; 3185 } 3186 } 3187 xhci_zero_in_ctx(xhci, virt_dev); 3188 } 3189 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3190 3191 /* Get the available bandwidth of the ports under the xhci roothub */ 3192 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, 3193 u8 dev_speed) 3194 { 3195 struct xhci_command *cmd; 3196 unsigned long flags; 3197 int ret; 3198 3199 if (!ctx || !xhci) 3200 return -EINVAL; 3201 3202 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL); 3203 if (!cmd) 3204 return -ENOMEM; 3205 3206 cmd->in_ctx = ctx; 3207 3208 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */ 3209 spin_lock_irqsave(&xhci->lock, flags); 3210 3211 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0); 3212 if (ret) { 3213 spin_unlock_irqrestore(&xhci->lock, flags); 3214 goto err_out; 3215 } 3216 xhci_ring_cmd_db(xhci); 3217 spin_unlock_irqrestore(&xhci->lock, flags); 3218 3219 wait_for_completion(cmd->completion); 3220 err_out: 3221 kfree(cmd->completion); 3222 kfree(cmd); 3223 3224 return ret; 3225 } 3226 3227 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3228 struct xhci_container_ctx *in_ctx, 3229 struct xhci_container_ctx *out_ctx, 3230 struct xhci_input_control_ctx *ctrl_ctx, 3231 u32 add_flags, u32 drop_flags) 3232 { 3233 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3234 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3235 xhci_slot_copy(xhci, in_ctx, out_ctx); 3236 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3237 } 3238 3239 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3240 struct usb_host_endpoint *host_ep) 3241 { 3242 struct xhci_hcd *xhci; 3243 struct xhci_virt_device *vdev; 3244 struct xhci_virt_ep *ep; 3245 struct usb_device *udev; 3246 unsigned long flags; 3247 unsigned int ep_index; 3248 3249 xhci = hcd_to_xhci(hcd); 3250 rescan: 3251 spin_lock_irqsave(&xhci->lock, flags); 3252 3253 udev = (struct usb_device *)host_ep->hcpriv; 3254 if (!udev || !udev->slot_id) 3255 goto done; 3256 3257 vdev = xhci->devs[udev->slot_id]; 3258 if (!vdev) 3259 goto done; 3260 3261 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3262 ep = &vdev->eps[ep_index]; 3263 3264 /* wait for hub_tt_work to finish clearing hub TT */ 3265 if (ep->ep_state & EP_CLEARING_TT) { 3266 spin_unlock_irqrestore(&xhci->lock, flags); 3267 schedule_timeout_uninterruptible(1); 3268 goto rescan; 3269 } 3270 3271 if (ep->ep_state) 3272 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3273 ep->ep_state); 3274 done: 3275 host_ep->hcpriv = NULL; 3276 spin_unlock_irqrestore(&xhci->lock, flags); 3277 } 3278 3279 /* 3280 * Called after usb core issues a clear halt control message. 3281 * The host side of the halt should already be cleared by a reset endpoint 3282 * command issued when the STALL event was received. 3283 * 3284 * The reset endpoint command may only be issued to endpoints in the halted 3285 * state. For software that wishes to reset the data toggle or sequence number 3286 * of an endpoint that isn't in the halted state this function will issue a 3287 * configure endpoint command with the Drop and Add bits set for the target 3288 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3289 * 3290 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3291 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3292 */ 3293 3294 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3295 struct usb_host_endpoint *host_ep) 3296 { 3297 struct xhci_hcd *xhci; 3298 struct usb_device *udev; 3299 struct xhci_virt_device *vdev; 3300 struct xhci_virt_ep *ep; 3301 struct xhci_input_control_ctx *ctrl_ctx; 3302 struct xhci_command *stop_cmd, *cfg_cmd; 3303 unsigned int ep_index; 3304 unsigned long flags; 3305 u32 ep_flag; 3306 int err; 3307 3308 xhci = hcd_to_xhci(hcd); 3309 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3310 3311 /* 3312 * Usb core assumes a max packet value for ep0 on FS devices until the 3313 * real value is read from the descriptor. Core resets Ep0 if values 3314 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3315 */ 3316 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3317 3318 udev = container_of(host_ep, struct usb_device, ep0); 3319 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3320 return; 3321 3322 vdev = xhci->devs[udev->slot_id]; 3323 if (!vdev || vdev->udev != udev) 3324 return; 3325 3326 xhci_check_ep0_maxpacket(xhci, vdev); 3327 3328 /* Nothing else should be done here for ep0 during ep reset */ 3329 return; 3330 } 3331 3332 if (!host_ep->hcpriv) 3333 return; 3334 udev = (struct usb_device *) host_ep->hcpriv; 3335 vdev = xhci->devs[udev->slot_id]; 3336 3337 if (!udev->slot_id || !vdev) 3338 return; 3339 3340 ep = &vdev->eps[ep_index]; 3341 3342 /* Bail out if toggle is already being cleared by a endpoint reset */ 3343 spin_lock_irqsave(&xhci->lock, flags); 3344 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3345 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3346 spin_unlock_irqrestore(&xhci->lock, flags); 3347 return; 3348 } 3349 spin_unlock_irqrestore(&xhci->lock, flags); 3350 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3351 if (usb_endpoint_xfer_control(&host_ep->desc) || 3352 usb_endpoint_xfer_isoc(&host_ep->desc)) 3353 return; 3354 3355 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3356 3357 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3358 return; 3359 3360 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3361 if (!stop_cmd) 3362 return; 3363 3364 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3365 if (!cfg_cmd) 3366 goto cleanup; 3367 3368 spin_lock_irqsave(&xhci->lock, flags); 3369 3370 /* block queuing new trbs and ringing ep doorbell */ 3371 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3372 3373 /* 3374 * Make sure endpoint ring is empty before resetting the toggle/seq. 3375 * Driver is required to synchronously cancel all transfer request. 3376 * Stop the endpoint to force xHC to update the output context 3377 */ 3378 3379 if (!list_empty(&ep->ring->td_list)) { 3380 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3381 spin_unlock_irqrestore(&xhci->lock, flags); 3382 xhci_free_command(xhci, cfg_cmd); 3383 goto cleanup; 3384 } 3385 3386 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3387 ep_index, 0); 3388 if (err < 0) { 3389 spin_unlock_irqrestore(&xhci->lock, flags); 3390 xhci_free_command(xhci, cfg_cmd); 3391 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3392 __func__, err); 3393 goto cleanup; 3394 } 3395 3396 xhci_ring_cmd_db(xhci); 3397 spin_unlock_irqrestore(&xhci->lock, flags); 3398 3399 wait_for_completion(stop_cmd->completion); 3400 3401 spin_lock_irqsave(&xhci->lock, flags); 3402 3403 /* config ep command clears toggle if add and drop ep flags are set */ 3404 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3405 if (!ctrl_ctx) { 3406 spin_unlock_irqrestore(&xhci->lock, flags); 3407 xhci_free_command(xhci, cfg_cmd); 3408 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3409 __func__); 3410 goto cleanup; 3411 } 3412 3413 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3414 ctrl_ctx, ep_flag, ep_flag); 3415 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3416 3417 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3418 udev->slot_id, false); 3419 if (err < 0) { 3420 spin_unlock_irqrestore(&xhci->lock, flags); 3421 xhci_free_command(xhci, cfg_cmd); 3422 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3423 __func__, err); 3424 goto cleanup; 3425 } 3426 3427 xhci_ring_cmd_db(xhci); 3428 spin_unlock_irqrestore(&xhci->lock, flags); 3429 3430 wait_for_completion(cfg_cmd->completion); 3431 3432 xhci_free_command(xhci, cfg_cmd); 3433 cleanup: 3434 xhci_free_command(xhci, stop_cmd); 3435 spin_lock_irqsave(&xhci->lock, flags); 3436 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3437 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3438 spin_unlock_irqrestore(&xhci->lock, flags); 3439 } 3440 3441 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3442 struct usb_device *udev, struct usb_host_endpoint *ep, 3443 unsigned int slot_id) 3444 { 3445 int ret; 3446 unsigned int ep_index; 3447 unsigned int ep_state; 3448 3449 if (!ep) 3450 return -EINVAL; 3451 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3452 if (ret <= 0) 3453 return ret ? ret : -EINVAL; 3454 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3455 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3456 " descriptor for ep 0x%x does not support streams\n", 3457 ep->desc.bEndpointAddress); 3458 return -EINVAL; 3459 } 3460 3461 ep_index = xhci_get_endpoint_index(&ep->desc); 3462 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3463 if (ep_state & EP_HAS_STREAMS || 3464 ep_state & EP_GETTING_STREAMS) { 3465 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3466 "already has streams set up.\n", 3467 ep->desc.bEndpointAddress); 3468 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3469 "dynamic stream context array reallocation.\n"); 3470 return -EINVAL; 3471 } 3472 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3473 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3474 "endpoint 0x%x; URBs are pending.\n", 3475 ep->desc.bEndpointAddress); 3476 return -EINVAL; 3477 } 3478 return 0; 3479 } 3480 3481 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3482 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3483 { 3484 unsigned int max_streams; 3485 3486 /* The stream context array size must be a power of two */ 3487 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3488 /* 3489 * Find out how many primary stream array entries the host controller 3490 * supports. Later we may use secondary stream arrays (similar to 2nd 3491 * level page entries), but that's an optional feature for xHCI host 3492 * controllers. xHCs must support at least 4 stream IDs. 3493 */ 3494 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3495 if (*num_stream_ctxs > max_streams) { 3496 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3497 max_streams); 3498 *num_stream_ctxs = max_streams; 3499 *num_streams = max_streams; 3500 } 3501 } 3502 3503 /* Returns an error code if one of the endpoint already has streams. 3504 * This does not change any data structures, it only checks and gathers 3505 * information. 3506 */ 3507 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3508 struct usb_device *udev, 3509 struct usb_host_endpoint **eps, unsigned int num_eps, 3510 unsigned int *num_streams, u32 *changed_ep_bitmask) 3511 { 3512 unsigned int max_streams; 3513 unsigned int endpoint_flag; 3514 int i; 3515 int ret; 3516 3517 for (i = 0; i < num_eps; i++) { 3518 ret = xhci_check_streams_endpoint(xhci, udev, 3519 eps[i], udev->slot_id); 3520 if (ret < 0) 3521 return ret; 3522 3523 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3524 if (max_streams < (*num_streams - 1)) { 3525 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3526 eps[i]->desc.bEndpointAddress, 3527 max_streams); 3528 *num_streams = max_streams+1; 3529 } 3530 3531 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3532 if (*changed_ep_bitmask & endpoint_flag) 3533 return -EINVAL; 3534 *changed_ep_bitmask |= endpoint_flag; 3535 } 3536 return 0; 3537 } 3538 3539 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3540 struct usb_device *udev, 3541 struct usb_host_endpoint **eps, unsigned int num_eps) 3542 { 3543 u32 changed_ep_bitmask = 0; 3544 unsigned int slot_id; 3545 unsigned int ep_index; 3546 unsigned int ep_state; 3547 int i; 3548 3549 slot_id = udev->slot_id; 3550 if (!xhci->devs[slot_id]) 3551 return 0; 3552 3553 for (i = 0; i < num_eps; i++) { 3554 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3555 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3556 /* Are streams already being freed for the endpoint? */ 3557 if (ep_state & EP_GETTING_NO_STREAMS) { 3558 xhci_warn(xhci, "WARN Can't disable streams for " 3559 "endpoint 0x%x, " 3560 "streams are being disabled already\n", 3561 eps[i]->desc.bEndpointAddress); 3562 return 0; 3563 } 3564 /* Are there actually any streams to free? */ 3565 if (!(ep_state & EP_HAS_STREAMS) && 3566 !(ep_state & EP_GETTING_STREAMS)) { 3567 xhci_warn(xhci, "WARN Can't disable streams for " 3568 "endpoint 0x%x, " 3569 "streams are already disabled!\n", 3570 eps[i]->desc.bEndpointAddress); 3571 xhci_warn(xhci, "WARN xhci_free_streams() called " 3572 "with non-streams endpoint\n"); 3573 return 0; 3574 } 3575 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3576 } 3577 return changed_ep_bitmask; 3578 } 3579 3580 /* 3581 * The USB device drivers use this function (through the HCD interface in USB 3582 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3583 * coordinate mass storage command queueing across multiple endpoints (basically 3584 * a stream ID == a task ID). 3585 * 3586 * Setting up streams involves allocating the same size stream context array 3587 * for each endpoint and issuing a configure endpoint command for all endpoints. 3588 * 3589 * Don't allow the call to succeed if one endpoint only supports one stream 3590 * (which means it doesn't support streams at all). 3591 * 3592 * Drivers may get less stream IDs than they asked for, if the host controller 3593 * hardware or endpoints claim they can't support the number of requested 3594 * stream IDs. 3595 */ 3596 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3597 struct usb_host_endpoint **eps, unsigned int num_eps, 3598 unsigned int num_streams, gfp_t mem_flags) 3599 { 3600 int i, ret; 3601 struct xhci_hcd *xhci; 3602 struct xhci_virt_device *vdev; 3603 struct xhci_command *config_cmd; 3604 struct xhci_input_control_ctx *ctrl_ctx; 3605 unsigned int ep_index; 3606 unsigned int num_stream_ctxs; 3607 unsigned int max_packet; 3608 unsigned long flags; 3609 u32 changed_ep_bitmask = 0; 3610 3611 if (!eps) 3612 return -EINVAL; 3613 3614 /* Add one to the number of streams requested to account for 3615 * stream 0 that is reserved for xHCI usage. 3616 */ 3617 num_streams += 1; 3618 xhci = hcd_to_xhci(hcd); 3619 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3620 num_streams); 3621 3622 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3623 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3624 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3625 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3626 return -ENOSYS; 3627 } 3628 3629 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3630 if (!config_cmd) 3631 return -ENOMEM; 3632 3633 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3634 if (!ctrl_ctx) { 3635 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3636 __func__); 3637 xhci_free_command(xhci, config_cmd); 3638 return -ENOMEM; 3639 } 3640 3641 /* Check to make sure all endpoints are not already configured for 3642 * streams. While we're at it, find the maximum number of streams that 3643 * all the endpoints will support and check for duplicate endpoints. 3644 */ 3645 spin_lock_irqsave(&xhci->lock, flags); 3646 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3647 num_eps, &num_streams, &changed_ep_bitmask); 3648 if (ret < 0) { 3649 xhci_free_command(xhci, config_cmd); 3650 spin_unlock_irqrestore(&xhci->lock, flags); 3651 return ret; 3652 } 3653 if (num_streams <= 1) { 3654 xhci_warn(xhci, "WARN: endpoints can't handle " 3655 "more than one stream.\n"); 3656 xhci_free_command(xhci, config_cmd); 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 return -EINVAL; 3659 } 3660 vdev = xhci->devs[udev->slot_id]; 3661 /* Mark each endpoint as being in transition, so 3662 * xhci_urb_enqueue() will reject all URBs. 3663 */ 3664 for (i = 0; i < num_eps; i++) { 3665 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3666 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3667 } 3668 spin_unlock_irqrestore(&xhci->lock, flags); 3669 3670 /* Setup internal data structures and allocate HW data structures for 3671 * streams (but don't install the HW structures in the input context 3672 * until we're sure all memory allocation succeeded). 3673 */ 3674 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3675 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3676 num_stream_ctxs, num_streams); 3677 3678 for (i = 0; i < num_eps; i++) { 3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3680 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3681 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3682 num_stream_ctxs, 3683 num_streams, 3684 max_packet, mem_flags); 3685 if (!vdev->eps[ep_index].stream_info) 3686 goto cleanup; 3687 /* Set maxPstreams in endpoint context and update deq ptr to 3688 * point to stream context array. FIXME 3689 */ 3690 } 3691 3692 /* Set up the input context for a configure endpoint command. */ 3693 for (i = 0; i < num_eps; i++) { 3694 struct xhci_ep_ctx *ep_ctx; 3695 3696 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3697 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3698 3699 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3700 vdev->out_ctx, ep_index); 3701 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3702 vdev->eps[ep_index].stream_info); 3703 } 3704 /* Tell the HW to drop its old copy of the endpoint context info 3705 * and add the updated copy from the input context. 3706 */ 3707 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3708 vdev->out_ctx, ctrl_ctx, 3709 changed_ep_bitmask, changed_ep_bitmask); 3710 3711 /* Issue and wait for the configure endpoint command */ 3712 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3713 false, false); 3714 3715 /* xHC rejected the configure endpoint command for some reason, so we 3716 * leave the old ring intact and free our internal streams data 3717 * structure. 3718 */ 3719 if (ret < 0) 3720 goto cleanup; 3721 3722 spin_lock_irqsave(&xhci->lock, flags); 3723 for (i = 0; i < num_eps; i++) { 3724 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3725 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3726 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3727 udev->slot_id, ep_index); 3728 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3729 } 3730 xhci_free_command(xhci, config_cmd); 3731 spin_unlock_irqrestore(&xhci->lock, flags); 3732 3733 for (i = 0; i < num_eps; i++) { 3734 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3735 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3736 } 3737 /* Subtract 1 for stream 0, which drivers can't use */ 3738 return num_streams - 1; 3739 3740 cleanup: 3741 /* If it didn't work, free the streams! */ 3742 for (i = 0; i < num_eps; i++) { 3743 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3744 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3745 vdev->eps[ep_index].stream_info = NULL; 3746 /* FIXME Unset maxPstreams in endpoint context and 3747 * update deq ptr to point to normal string ring. 3748 */ 3749 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3750 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3751 xhci_endpoint_zero(xhci, vdev, eps[i]); 3752 } 3753 xhci_free_command(xhci, config_cmd); 3754 return -ENOMEM; 3755 } 3756 3757 /* Transition the endpoint from using streams to being a "normal" endpoint 3758 * without streams. 3759 * 3760 * Modify the endpoint context state, submit a configure endpoint command, 3761 * and free all endpoint rings for streams if that completes successfully. 3762 */ 3763 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3764 struct usb_host_endpoint **eps, unsigned int num_eps, 3765 gfp_t mem_flags) 3766 { 3767 int i, ret; 3768 struct xhci_hcd *xhci; 3769 struct xhci_virt_device *vdev; 3770 struct xhci_command *command; 3771 struct xhci_input_control_ctx *ctrl_ctx; 3772 unsigned int ep_index; 3773 unsigned long flags; 3774 u32 changed_ep_bitmask; 3775 3776 xhci = hcd_to_xhci(hcd); 3777 vdev = xhci->devs[udev->slot_id]; 3778 3779 /* Set up a configure endpoint command to remove the streams rings */ 3780 spin_lock_irqsave(&xhci->lock, flags); 3781 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3782 udev, eps, num_eps); 3783 if (changed_ep_bitmask == 0) { 3784 spin_unlock_irqrestore(&xhci->lock, flags); 3785 return -EINVAL; 3786 } 3787 3788 /* Use the xhci_command structure from the first endpoint. We may have 3789 * allocated too many, but the driver may call xhci_free_streams() for 3790 * each endpoint it grouped into one call to xhci_alloc_streams(). 3791 */ 3792 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3793 command = vdev->eps[ep_index].stream_info->free_streams_command; 3794 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3795 if (!ctrl_ctx) { 3796 spin_unlock_irqrestore(&xhci->lock, flags); 3797 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3798 __func__); 3799 return -EINVAL; 3800 } 3801 3802 for (i = 0; i < num_eps; i++) { 3803 struct xhci_ep_ctx *ep_ctx; 3804 3805 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3806 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3807 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3808 EP_GETTING_NO_STREAMS; 3809 3810 xhci_endpoint_copy(xhci, command->in_ctx, 3811 vdev->out_ctx, ep_index); 3812 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3813 &vdev->eps[ep_index]); 3814 } 3815 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3816 vdev->out_ctx, ctrl_ctx, 3817 changed_ep_bitmask, changed_ep_bitmask); 3818 spin_unlock_irqrestore(&xhci->lock, flags); 3819 3820 /* Issue and wait for the configure endpoint command, 3821 * which must succeed. 3822 */ 3823 ret = xhci_configure_endpoint(xhci, udev, command, 3824 false, true); 3825 3826 /* xHC rejected the configure endpoint command for some reason, so we 3827 * leave the streams rings intact. 3828 */ 3829 if (ret < 0) 3830 return ret; 3831 3832 spin_lock_irqsave(&xhci->lock, flags); 3833 for (i = 0; i < num_eps; i++) { 3834 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3835 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3836 vdev->eps[ep_index].stream_info = NULL; 3837 /* FIXME Unset maxPstreams in endpoint context and 3838 * update deq ptr to point to normal string ring. 3839 */ 3840 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3841 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3842 } 3843 spin_unlock_irqrestore(&xhci->lock, flags); 3844 3845 return 0; 3846 } 3847 3848 /* 3849 * Deletes endpoint resources for endpoints that were active before a Reset 3850 * Device command, or a Disable Slot command. The Reset Device command leaves 3851 * the control endpoint intact, whereas the Disable Slot command deletes it. 3852 * 3853 * Must be called with xhci->lock held. 3854 */ 3855 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3856 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3857 { 3858 int i; 3859 unsigned int num_dropped_eps = 0; 3860 unsigned int drop_flags = 0; 3861 3862 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3863 if (virt_dev->eps[i].ring) { 3864 drop_flags |= 1 << i; 3865 num_dropped_eps++; 3866 } 3867 } 3868 xhci->num_active_eps -= num_dropped_eps; 3869 if (num_dropped_eps) 3870 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3871 "Dropped %u ep ctxs, flags = 0x%x, " 3872 "%u now active.", 3873 num_dropped_eps, drop_flags, 3874 xhci->num_active_eps); 3875 } 3876 3877 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3878 3879 /* 3880 * This submits a Reset Device Command, which will set the device state to 0, 3881 * set the device address to 0, and disable all the endpoints except the default 3882 * control endpoint. The USB core should come back and call 3883 * xhci_address_device(), and then re-set up the configuration. If this is 3884 * called because of a usb_reset_and_verify_device(), then the old alternate 3885 * settings will be re-installed through the normal bandwidth allocation 3886 * functions. 3887 * 3888 * Wait for the Reset Device command to finish. Remove all structures 3889 * associated with the endpoints that were disabled. Clear the input device 3890 * structure? Reset the control endpoint 0 max packet size? 3891 * 3892 * If the virt_dev to be reset does not exist or does not match the udev, 3893 * it means the device is lost, possibly due to the xHC restore error and 3894 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3895 * re-allocate the device. 3896 */ 3897 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3898 struct usb_device *udev) 3899 { 3900 int ret, i; 3901 unsigned long flags; 3902 struct xhci_hcd *xhci; 3903 unsigned int slot_id; 3904 struct xhci_virt_device *virt_dev; 3905 struct xhci_command *reset_device_cmd; 3906 struct xhci_slot_ctx *slot_ctx; 3907 int old_active_eps = 0; 3908 3909 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3910 if (ret <= 0) 3911 return ret; 3912 xhci = hcd_to_xhci(hcd); 3913 slot_id = udev->slot_id; 3914 virt_dev = xhci->devs[slot_id]; 3915 if (!virt_dev) { 3916 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3917 "not exist. Re-allocate the device\n", slot_id); 3918 ret = xhci_alloc_dev(hcd, udev); 3919 if (ret == 1) 3920 return 0; 3921 else 3922 return -EINVAL; 3923 } 3924 3925 if (virt_dev->tt_info) 3926 old_active_eps = virt_dev->tt_info->active_eps; 3927 3928 if (virt_dev->udev != udev) { 3929 /* If the virt_dev and the udev does not match, this virt_dev 3930 * may belong to another udev. 3931 * Re-allocate the device. 3932 */ 3933 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3934 "not match the udev. Re-allocate the device\n", 3935 slot_id); 3936 ret = xhci_alloc_dev(hcd, udev); 3937 if (ret == 1) 3938 return 0; 3939 else 3940 return -EINVAL; 3941 } 3942 3943 /* If device is not setup, there is no point in resetting it */ 3944 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3945 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3946 SLOT_STATE_DISABLED) 3947 return 0; 3948 3949 if (xhci->quirks & XHCI_ETRON_HOST) { 3950 /* 3951 * Obtaining a new device slot to inform the xHCI host that 3952 * the USB device has been reset. 3953 */ 3954 ret = xhci_disable_slot(xhci, udev->slot_id); 3955 xhci_free_virt_device(xhci, udev->slot_id); 3956 if (!ret) { 3957 ret = xhci_alloc_dev(hcd, udev); 3958 if (ret == 1) 3959 ret = 0; 3960 else 3961 ret = -EINVAL; 3962 } 3963 return ret; 3964 } 3965 3966 trace_xhci_discover_or_reset_device(slot_ctx); 3967 3968 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3969 /* Allocate the command structure that holds the struct completion. 3970 * Assume we're in process context, since the normal device reset 3971 * process has to wait for the device anyway. Storage devices are 3972 * reset as part of error handling, so use GFP_NOIO instead of 3973 * GFP_KERNEL. 3974 */ 3975 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3976 if (!reset_device_cmd) { 3977 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3978 return -ENOMEM; 3979 } 3980 3981 /* Attempt to submit the Reset Device command to the command ring */ 3982 spin_lock_irqsave(&xhci->lock, flags); 3983 3984 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3985 if (ret) { 3986 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3987 spin_unlock_irqrestore(&xhci->lock, flags); 3988 goto command_cleanup; 3989 } 3990 xhci_ring_cmd_db(xhci); 3991 spin_unlock_irqrestore(&xhci->lock, flags); 3992 3993 /* Wait for the Reset Device command to finish */ 3994 wait_for_completion(reset_device_cmd->completion); 3995 3996 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3997 * unless we tried to reset a slot ID that wasn't enabled, 3998 * or the device wasn't in the addressed or configured state. 3999 */ 4000 ret = reset_device_cmd->status; 4001 switch (ret) { 4002 case COMP_COMMAND_ABORTED: 4003 case COMP_COMMAND_RING_STOPPED: 4004 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 4005 ret = -ETIME; 4006 goto command_cleanup; 4007 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 4008 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 4009 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 4010 slot_id, 4011 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 4012 xhci_dbg(xhci, "Not freeing device rings.\n"); 4013 /* Don't treat this as an error. May change my mind later. */ 4014 ret = 0; 4015 goto command_cleanup; 4016 case COMP_SUCCESS: 4017 xhci_dbg(xhci, "Successful reset device command.\n"); 4018 break; 4019 default: 4020 if (xhci_is_vendor_info_code(xhci, ret)) 4021 break; 4022 xhci_warn(xhci, "Unknown completion code %u for " 4023 "reset device command.\n", ret); 4024 ret = -EINVAL; 4025 goto command_cleanup; 4026 } 4027 4028 /* Free up host controller endpoint resources */ 4029 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4030 spin_lock_irqsave(&xhci->lock, flags); 4031 /* Don't delete the default control endpoint resources */ 4032 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 4033 spin_unlock_irqrestore(&xhci->lock, flags); 4034 } 4035 4036 /* Everything but endpoint 0 is disabled, so free the rings. */ 4037 for (i = 1; i < 31; i++) { 4038 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 4039 4040 if (ep->ep_state & EP_HAS_STREAMS) { 4041 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 4042 xhci_get_endpoint_address(i)); 4043 xhci_free_stream_info(xhci, ep->stream_info); 4044 ep->stream_info = NULL; 4045 ep->ep_state &= ~EP_HAS_STREAMS; 4046 } 4047 4048 if (ep->ring) { 4049 if (ep->sideband) 4050 xhci_sideband_notify_ep_ring_free(ep->sideband, i); 4051 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 4052 xhci_free_endpoint_ring(xhci, virt_dev, i); 4053 } 4054 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 4055 xhci_drop_ep_from_interval_table(xhci, 4056 &virt_dev->eps[i].bw_info, 4057 virt_dev->bw_table, 4058 udev, 4059 &virt_dev->eps[i], 4060 virt_dev->tt_info); 4061 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 4062 } 4063 /* If necessary, update the number of active TTs on this root port */ 4064 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 4065 virt_dev->flags = 0; 4066 ret = 0; 4067 4068 command_cleanup: 4069 xhci_free_command(xhci, reset_device_cmd); 4070 return ret; 4071 } 4072 4073 /* 4074 * At this point, the struct usb_device is about to go away, the device has 4075 * disconnected, and all traffic has been stopped and the endpoints have been 4076 * disabled. Free any HC data structures associated with that device. 4077 */ 4078 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4079 { 4080 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4081 struct xhci_virt_device *virt_dev; 4082 struct xhci_slot_ctx *slot_ctx; 4083 unsigned long flags; 4084 int i, ret; 4085 4086 /* 4087 * We called pm_runtime_get_noresume when the device was attached. 4088 * Decrement the counter here to allow controller to runtime suspend 4089 * if no devices remain. 4090 */ 4091 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4092 pm_runtime_put_noidle(hcd->self.controller); 4093 4094 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4095 /* If the host is halted due to driver unload, we still need to free the 4096 * device. 4097 */ 4098 if (ret <= 0 && ret != -ENODEV) 4099 return; 4100 4101 virt_dev = xhci->devs[udev->slot_id]; 4102 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4103 trace_xhci_free_dev(slot_ctx); 4104 4105 /* Stop any wayward timer functions (which may grab the lock) */ 4106 for (i = 0; i < 31; i++) 4107 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4108 virt_dev->udev = NULL; 4109 xhci_disable_slot(xhci, udev->slot_id); 4110 4111 spin_lock_irqsave(&xhci->lock, flags); 4112 xhci_free_virt_device(xhci, udev->slot_id); 4113 spin_unlock_irqrestore(&xhci->lock, flags); 4114 4115 } 4116 4117 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4118 { 4119 struct xhci_command *command; 4120 unsigned long flags; 4121 u32 state; 4122 int ret; 4123 4124 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4125 if (!command) 4126 return -ENOMEM; 4127 4128 xhci_debugfs_remove_slot(xhci, slot_id); 4129 4130 spin_lock_irqsave(&xhci->lock, flags); 4131 /* Don't disable the slot if the host controller is dead. */ 4132 state = readl(&xhci->op_regs->status); 4133 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4134 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4135 spin_unlock_irqrestore(&xhci->lock, flags); 4136 kfree(command); 4137 return -ENODEV; 4138 } 4139 4140 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4141 slot_id); 4142 if (ret) { 4143 spin_unlock_irqrestore(&xhci->lock, flags); 4144 kfree(command); 4145 return ret; 4146 } 4147 xhci_ring_cmd_db(xhci); 4148 spin_unlock_irqrestore(&xhci->lock, flags); 4149 4150 wait_for_completion(command->completion); 4151 4152 if (command->status != COMP_SUCCESS) 4153 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4154 slot_id, command->status); 4155 4156 xhci_free_command(xhci, command); 4157 4158 return 0; 4159 } 4160 4161 /* 4162 * Checks if we have enough host controller resources for the default control 4163 * endpoint. 4164 * 4165 * Must be called with xhci->lock held. 4166 */ 4167 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4168 { 4169 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4170 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4171 "Not enough ep ctxs: " 4172 "%u active, need to add 1, limit is %u.", 4173 xhci->num_active_eps, xhci->limit_active_eps); 4174 return -ENOMEM; 4175 } 4176 xhci->num_active_eps += 1; 4177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4178 "Adding 1 ep ctx, %u now active.", 4179 xhci->num_active_eps); 4180 return 0; 4181 } 4182 4183 4184 /* 4185 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4186 * timed out, or allocating memory failed. Returns 1 on success. 4187 */ 4188 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4189 { 4190 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4191 struct xhci_virt_device *vdev; 4192 struct xhci_slot_ctx *slot_ctx; 4193 unsigned long flags; 4194 int ret, slot_id; 4195 struct xhci_command *command; 4196 4197 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4198 if (!command) 4199 return 0; 4200 4201 spin_lock_irqsave(&xhci->lock, flags); 4202 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4203 if (ret) { 4204 spin_unlock_irqrestore(&xhci->lock, flags); 4205 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4206 xhci_free_command(xhci, command); 4207 return 0; 4208 } 4209 xhci_ring_cmd_db(xhci); 4210 spin_unlock_irqrestore(&xhci->lock, flags); 4211 4212 wait_for_completion(command->completion); 4213 slot_id = command->slot_id; 4214 4215 if (!slot_id || command->status != COMP_SUCCESS) { 4216 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4217 xhci_trb_comp_code_string(command->status)); 4218 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4219 HCS_MAX_SLOTS( 4220 readl(&xhci->cap_regs->hcs_params1))); 4221 xhci_free_command(xhci, command); 4222 return 0; 4223 } 4224 4225 xhci_free_command(xhci, command); 4226 4227 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4228 spin_lock_irqsave(&xhci->lock, flags); 4229 ret = xhci_reserve_host_control_ep_resources(xhci); 4230 if (ret) { 4231 spin_unlock_irqrestore(&xhci->lock, flags); 4232 xhci_warn(xhci, "Not enough host resources, " 4233 "active endpoint contexts = %u\n", 4234 xhci->num_active_eps); 4235 goto disable_slot; 4236 } 4237 spin_unlock_irqrestore(&xhci->lock, flags); 4238 } 4239 /* Use GFP_NOIO, since this function can be called from 4240 * xhci_discover_or_reset_device(), which may be called as part of 4241 * mass storage driver error handling. 4242 */ 4243 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4244 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4245 goto disable_slot; 4246 } 4247 vdev = xhci->devs[slot_id]; 4248 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4249 trace_xhci_alloc_dev(slot_ctx); 4250 4251 udev->slot_id = slot_id; 4252 4253 xhci_debugfs_create_slot(xhci, slot_id); 4254 4255 /* 4256 * If resetting upon resume, we can't put the controller into runtime 4257 * suspend if there is a device attached. 4258 */ 4259 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4260 pm_runtime_get_noresume(hcd->self.controller); 4261 4262 /* Is this a LS or FS device under a HS hub? */ 4263 /* Hub or peripherial? */ 4264 return 1; 4265 4266 disable_slot: 4267 xhci_disable_slot(xhci, udev->slot_id); 4268 xhci_free_virt_device(xhci, udev->slot_id); 4269 4270 return 0; 4271 } 4272 4273 /** 4274 * xhci_setup_device - issues an Address Device command to assign a unique 4275 * USB bus address. 4276 * @hcd: USB host controller data structure. 4277 * @udev: USB dev structure representing the connected device. 4278 * @setup: Enum specifying setup mode: address only or with context. 4279 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4280 * 4281 * Return: 0 if successful; otherwise, negative error code. 4282 */ 4283 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4284 enum xhci_setup_dev setup, unsigned int timeout_ms) 4285 { 4286 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4287 unsigned long flags; 4288 struct xhci_virt_device *virt_dev; 4289 int ret = 0; 4290 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4291 struct xhci_slot_ctx *slot_ctx; 4292 struct xhci_input_control_ctx *ctrl_ctx; 4293 u64 temp_64; 4294 struct xhci_command *command = NULL; 4295 4296 mutex_lock(&xhci->mutex); 4297 4298 if (xhci->xhc_state) { /* dying, removing or halted */ 4299 ret = -ESHUTDOWN; 4300 goto out; 4301 } 4302 4303 if (!udev->slot_id) { 4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4305 "Bad Slot ID %d", udev->slot_id); 4306 ret = -EINVAL; 4307 goto out; 4308 } 4309 4310 virt_dev = xhci->devs[udev->slot_id]; 4311 4312 if (WARN_ON(!virt_dev)) { 4313 /* 4314 * In plug/unplug torture test with an NEC controller, 4315 * a zero-dereference was observed once due to virt_dev = 0. 4316 * Print useful debug rather than crash if it is observed again! 4317 */ 4318 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4319 udev->slot_id); 4320 ret = -EINVAL; 4321 goto out; 4322 } 4323 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4324 trace_xhci_setup_device_slot(slot_ctx); 4325 4326 if (setup == SETUP_CONTEXT_ONLY) { 4327 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4328 SLOT_STATE_DEFAULT) { 4329 xhci_dbg(xhci, "Slot already in default state\n"); 4330 goto out; 4331 } 4332 } 4333 4334 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4335 if (!command) { 4336 ret = -ENOMEM; 4337 goto out; 4338 } 4339 4340 command->in_ctx = virt_dev->in_ctx; 4341 command->timeout_ms = timeout_ms; 4342 4343 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4344 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4345 if (!ctrl_ctx) { 4346 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4347 __func__); 4348 ret = -EINVAL; 4349 goto out; 4350 } 4351 /* 4352 * If this is the first Set Address since device plug-in or 4353 * virt_device realloaction after a resume with an xHCI power loss, 4354 * then set up the slot context. 4355 */ 4356 if (!slot_ctx->dev_info) 4357 xhci_setup_addressable_virt_dev(xhci, udev); 4358 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4359 else 4360 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4361 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4362 ctrl_ctx->drop_flags = 0; 4363 4364 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4365 le32_to_cpu(slot_ctx->dev_info) >> 27); 4366 4367 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4368 spin_lock_irqsave(&xhci->lock, flags); 4369 trace_xhci_setup_device(virt_dev); 4370 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4371 udev->slot_id, setup); 4372 if (ret) { 4373 spin_unlock_irqrestore(&xhci->lock, flags); 4374 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4375 "FIXME: allocate a command ring segment"); 4376 goto out; 4377 } 4378 xhci_ring_cmd_db(xhci); 4379 spin_unlock_irqrestore(&xhci->lock, flags); 4380 4381 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4382 wait_for_completion(command->completion); 4383 4384 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4385 * the SetAddress() "recovery interval" required by USB and aborting the 4386 * command on a timeout. 4387 */ 4388 switch (command->status) { 4389 case COMP_COMMAND_ABORTED: 4390 case COMP_COMMAND_RING_STOPPED: 4391 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4392 ret = -ETIME; 4393 break; 4394 case COMP_CONTEXT_STATE_ERROR: 4395 case COMP_SLOT_NOT_ENABLED_ERROR: 4396 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4397 act, udev->slot_id); 4398 ret = -EINVAL; 4399 break; 4400 case COMP_USB_TRANSACTION_ERROR: 4401 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4402 4403 mutex_unlock(&xhci->mutex); 4404 ret = xhci_disable_slot(xhci, udev->slot_id); 4405 xhci_free_virt_device(xhci, udev->slot_id); 4406 if (!ret) { 4407 if (xhci_alloc_dev(hcd, udev) == 1) 4408 xhci_setup_addressable_virt_dev(xhci, udev); 4409 } 4410 kfree(command->completion); 4411 kfree(command); 4412 return -EPROTO; 4413 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4414 dev_warn(&udev->dev, 4415 "ERROR: Incompatible device for setup %s command\n", act); 4416 ret = -ENODEV; 4417 break; 4418 case COMP_SUCCESS: 4419 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4420 "Successful setup %s command", act); 4421 break; 4422 default: 4423 xhci_err(xhci, 4424 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4425 act, command->status); 4426 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4427 ret = -EINVAL; 4428 break; 4429 } 4430 if (ret) 4431 goto out; 4432 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4433 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4434 "Op regs DCBAA ptr = %#016llx", temp_64); 4435 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4436 "Slot ID %d dcbaa entry @%p = %#016llx", 4437 udev->slot_id, 4438 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4439 (unsigned long long) 4440 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4441 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4442 "Output Context DMA address = %#08llx", 4443 (unsigned long long)virt_dev->out_ctx->dma); 4444 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4445 le32_to_cpu(slot_ctx->dev_info) >> 27); 4446 /* 4447 * USB core uses address 1 for the roothubs, so we add one to the 4448 * address given back to us by the HC. 4449 */ 4450 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4451 le32_to_cpu(slot_ctx->dev_info) >> 27); 4452 /* Zero the input context control for later use */ 4453 ctrl_ctx->add_flags = 0; 4454 ctrl_ctx->drop_flags = 0; 4455 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4456 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4457 4458 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4459 "Internal device address = %d", 4460 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4461 out: 4462 mutex_unlock(&xhci->mutex); 4463 if (command) { 4464 kfree(command->completion); 4465 kfree(command); 4466 } 4467 return ret; 4468 } 4469 4470 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4471 unsigned int timeout_ms) 4472 { 4473 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4474 } 4475 4476 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4477 { 4478 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4479 XHCI_CMD_DEFAULT_TIMEOUT); 4480 } 4481 4482 /* 4483 * Transfer the port index into real index in the HW port status 4484 * registers. Caculate offset between the port's PORTSC register 4485 * and port status base. Divide the number of per port register 4486 * to get the real index. The raw port number bases 1. 4487 */ 4488 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4489 { 4490 struct xhci_hub *rhub; 4491 4492 rhub = xhci_get_rhub(hcd); 4493 return rhub->ports[port1 - 1]->hw_portnum + 1; 4494 } 4495 4496 /* 4497 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4498 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4499 */ 4500 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4501 struct usb_device *udev, u16 max_exit_latency) 4502 { 4503 struct xhci_virt_device *virt_dev; 4504 struct xhci_command *command; 4505 struct xhci_input_control_ctx *ctrl_ctx; 4506 struct xhci_slot_ctx *slot_ctx; 4507 unsigned long flags; 4508 int ret; 4509 4510 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4511 if (!command) 4512 return -ENOMEM; 4513 4514 spin_lock_irqsave(&xhci->lock, flags); 4515 4516 virt_dev = xhci->devs[udev->slot_id]; 4517 4518 /* 4519 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4520 * xHC was re-initialized. Exit latency will be set later after 4521 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4522 */ 4523 4524 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4525 spin_unlock_irqrestore(&xhci->lock, flags); 4526 xhci_free_command(xhci, command); 4527 return 0; 4528 } 4529 4530 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4531 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4532 if (!ctrl_ctx) { 4533 spin_unlock_irqrestore(&xhci->lock, flags); 4534 xhci_free_command(xhci, command); 4535 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4536 __func__); 4537 return -ENOMEM; 4538 } 4539 4540 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4541 spin_unlock_irqrestore(&xhci->lock, flags); 4542 4543 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4544 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4545 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4546 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4547 slot_ctx->dev_state = 0; 4548 4549 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4550 "Set up evaluate context for LPM MEL change."); 4551 4552 /* Issue and wait for the evaluate context command. */ 4553 ret = xhci_configure_endpoint(xhci, udev, command, 4554 true, true); 4555 4556 if (!ret) { 4557 spin_lock_irqsave(&xhci->lock, flags); 4558 virt_dev->current_mel = max_exit_latency; 4559 spin_unlock_irqrestore(&xhci->lock, flags); 4560 } 4561 4562 xhci_free_command(xhci, command); 4563 4564 return ret; 4565 } 4566 4567 #ifdef CONFIG_PM 4568 4569 /* BESL to HIRD Encoding array for USB2 LPM */ 4570 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4571 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4572 4573 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4574 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4575 struct usb_device *udev) 4576 { 4577 int u2del, besl, besl_host; 4578 int besl_device = 0; 4579 u32 field; 4580 4581 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4582 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4583 4584 if (field & USB_BESL_SUPPORT) { 4585 for (besl_host = 0; besl_host < 16; besl_host++) { 4586 if (xhci_besl_encoding[besl_host] >= u2del) 4587 break; 4588 } 4589 /* Use baseline BESL value as default */ 4590 if (field & USB_BESL_BASELINE_VALID) 4591 besl_device = USB_GET_BESL_BASELINE(field); 4592 else if (field & USB_BESL_DEEP_VALID) 4593 besl_device = USB_GET_BESL_DEEP(field); 4594 } else { 4595 if (u2del <= 50) 4596 besl_host = 0; 4597 else 4598 besl_host = (u2del - 51) / 75 + 1; 4599 } 4600 4601 besl = besl_host + besl_device; 4602 if (besl > 15) 4603 besl = 15; 4604 4605 return besl; 4606 } 4607 4608 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4609 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4610 { 4611 u32 field; 4612 int l1; 4613 int besld = 0; 4614 int hirdm = 0; 4615 4616 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4617 4618 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4619 l1 = udev->l1_params.timeout / 256; 4620 4621 /* device has preferred BESLD */ 4622 if (field & USB_BESL_DEEP_VALID) { 4623 besld = USB_GET_BESL_DEEP(field); 4624 hirdm = 1; 4625 } 4626 4627 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4628 } 4629 4630 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4631 struct usb_device *udev, int enable) 4632 { 4633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4634 struct xhci_port **ports; 4635 __le32 __iomem *pm_addr, *hlpm_addr; 4636 u32 pm_val, hlpm_val, field; 4637 unsigned int port_num; 4638 unsigned long flags; 4639 int hird, exit_latency; 4640 int ret; 4641 4642 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4643 return -EPERM; 4644 4645 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4646 !udev->lpm_capable) 4647 return -EPERM; 4648 4649 if (!udev->parent || udev->parent->parent || 4650 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4651 return -EPERM; 4652 4653 if (udev->usb2_hw_lpm_capable != 1) 4654 return -EPERM; 4655 4656 spin_lock_irqsave(&xhci->lock, flags); 4657 4658 ports = xhci->usb2_rhub.ports; 4659 port_num = udev->portnum - 1; 4660 pm_addr = ports[port_num]->addr + PORTPMSC; 4661 pm_val = readl(pm_addr); 4662 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4663 4664 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4665 str_enable_disable(enable), port_num + 1); 4666 4667 if (enable) { 4668 /* Host supports BESL timeout instead of HIRD */ 4669 if (udev->usb2_hw_lpm_besl_capable) { 4670 /* if device doesn't have a preferred BESL value use a 4671 * default one which works with mixed HIRD and BESL 4672 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4673 */ 4674 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4675 if ((field & USB_BESL_SUPPORT) && 4676 (field & USB_BESL_BASELINE_VALID)) 4677 hird = USB_GET_BESL_BASELINE(field); 4678 else 4679 hird = udev->l1_params.besl; 4680 4681 exit_latency = xhci_besl_encoding[hird]; 4682 spin_unlock_irqrestore(&xhci->lock, flags); 4683 4684 ret = xhci_change_max_exit_latency(xhci, udev, 4685 exit_latency); 4686 if (ret < 0) 4687 return ret; 4688 spin_lock_irqsave(&xhci->lock, flags); 4689 4690 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4691 writel(hlpm_val, hlpm_addr); 4692 /* flush write */ 4693 readl(hlpm_addr); 4694 } else { 4695 hird = xhci_calculate_hird_besl(xhci, udev); 4696 } 4697 4698 pm_val &= ~PORT_HIRD_MASK; 4699 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4700 writel(pm_val, pm_addr); 4701 pm_val = readl(pm_addr); 4702 pm_val |= PORT_HLE; 4703 writel(pm_val, pm_addr); 4704 /* flush write */ 4705 readl(pm_addr); 4706 } else { 4707 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4708 writel(pm_val, pm_addr); 4709 /* flush write */ 4710 readl(pm_addr); 4711 if (udev->usb2_hw_lpm_besl_capable) { 4712 spin_unlock_irqrestore(&xhci->lock, flags); 4713 xhci_change_max_exit_latency(xhci, udev, 0); 4714 readl_poll_timeout(ports[port_num]->addr, pm_val, 4715 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4716 100, 10000); 4717 return 0; 4718 } 4719 } 4720 4721 spin_unlock_irqrestore(&xhci->lock, flags); 4722 return 0; 4723 } 4724 4725 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4726 { 4727 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4728 struct xhci_port *port; 4729 u32 capability; 4730 4731 /* Check if USB3 device at root port is tunneled over USB4 */ 4732 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4733 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4734 4735 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4736 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4737 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4738 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4739 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4740 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4741 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4742 return 0; 4743 } 4744 4745 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4746 return 0; 4747 4748 /* we only support lpm for non-hub device connected to root hub yet */ 4749 if (!udev->parent || udev->parent->parent || 4750 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4751 return 0; 4752 4753 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4754 capability = port->port_cap->protocol_caps; 4755 4756 if (capability & XHCI_HLC) { 4757 udev->usb2_hw_lpm_capable = 1; 4758 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4759 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4760 if (capability & XHCI_BLC) 4761 udev->usb2_hw_lpm_besl_capable = 1; 4762 } 4763 4764 return 0; 4765 } 4766 4767 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4768 4769 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4770 static unsigned long long xhci_service_interval_to_ns( 4771 struct usb_endpoint_descriptor *desc) 4772 { 4773 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4774 } 4775 4776 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4777 enum usb3_link_state state) 4778 { 4779 unsigned long long sel; 4780 unsigned long long pel; 4781 unsigned int max_sel_pel; 4782 char *state_name; 4783 4784 switch (state) { 4785 case USB3_LPM_U1: 4786 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4787 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4788 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4789 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4790 state_name = "U1"; 4791 break; 4792 case USB3_LPM_U2: 4793 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4794 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4795 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4796 state_name = "U2"; 4797 break; 4798 default: 4799 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4800 __func__); 4801 return USB3_LPM_DISABLED; 4802 } 4803 4804 if (sel <= max_sel_pel && pel <= max_sel_pel) 4805 return USB3_LPM_DEVICE_INITIATED; 4806 4807 if (sel > max_sel_pel) 4808 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4809 "due to long SEL %llu ms\n", 4810 state_name, sel); 4811 else 4812 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4813 "due to long PEL %llu ms\n", 4814 state_name, pel); 4815 return USB3_LPM_DISABLED; 4816 } 4817 4818 /* The U1 timeout should be the maximum of the following values: 4819 * - For control endpoints, U1 system exit latency (SEL) * 3 4820 * - For bulk endpoints, U1 SEL * 5 4821 * - For interrupt endpoints: 4822 * - Notification EPs, U1 SEL * 3 4823 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4824 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4825 */ 4826 static unsigned long long xhci_calculate_intel_u1_timeout( 4827 struct usb_device *udev, 4828 struct usb_endpoint_descriptor *desc) 4829 { 4830 unsigned long long timeout_ns; 4831 int ep_type; 4832 int intr_type; 4833 4834 ep_type = usb_endpoint_type(desc); 4835 switch (ep_type) { 4836 case USB_ENDPOINT_XFER_CONTROL: 4837 timeout_ns = udev->u1_params.sel * 3; 4838 break; 4839 case USB_ENDPOINT_XFER_BULK: 4840 timeout_ns = udev->u1_params.sel * 5; 4841 break; 4842 case USB_ENDPOINT_XFER_INT: 4843 intr_type = usb_endpoint_interrupt_type(desc); 4844 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4845 timeout_ns = udev->u1_params.sel * 3; 4846 break; 4847 } 4848 /* Otherwise the calculation is the same as isoc eps */ 4849 fallthrough; 4850 case USB_ENDPOINT_XFER_ISOC: 4851 timeout_ns = xhci_service_interval_to_ns(desc); 4852 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4853 if (timeout_ns < udev->u1_params.sel * 2) 4854 timeout_ns = udev->u1_params.sel * 2; 4855 break; 4856 default: 4857 return 0; 4858 } 4859 4860 return timeout_ns; 4861 } 4862 4863 /* Returns the hub-encoded U1 timeout value. */ 4864 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4865 struct usb_device *udev, 4866 struct usb_endpoint_descriptor *desc) 4867 { 4868 unsigned long long timeout_ns; 4869 4870 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4871 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4872 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4873 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4874 return USB3_LPM_DISABLED; 4875 } 4876 } 4877 4878 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4879 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4880 else 4881 timeout_ns = udev->u1_params.sel; 4882 4883 /* The U1 timeout is encoded in 1us intervals. 4884 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4885 */ 4886 if (timeout_ns == USB3_LPM_DISABLED) 4887 timeout_ns = 1; 4888 else 4889 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4890 4891 /* If the necessary timeout value is bigger than what we can set in the 4892 * USB 3.0 hub, we have to disable hub-initiated U1. 4893 */ 4894 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4895 return timeout_ns; 4896 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4897 timeout_ns); 4898 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4899 } 4900 4901 /* The U2 timeout should be the maximum of: 4902 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4903 * - largest bInterval of any active periodic endpoint (to avoid going 4904 * into lower power link states between intervals). 4905 * - the U2 Exit Latency of the device 4906 */ 4907 static unsigned long long xhci_calculate_intel_u2_timeout( 4908 struct usb_device *udev, 4909 struct usb_endpoint_descriptor *desc) 4910 { 4911 unsigned long long timeout_ns; 4912 unsigned long long u2_del_ns; 4913 4914 timeout_ns = 10 * 1000 * 1000; 4915 4916 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4917 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4918 timeout_ns = xhci_service_interval_to_ns(desc); 4919 4920 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4921 if (u2_del_ns > timeout_ns) 4922 timeout_ns = u2_del_ns; 4923 4924 return timeout_ns; 4925 } 4926 4927 /* Returns the hub-encoded U2 timeout value. */ 4928 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4929 struct usb_device *udev, 4930 struct usb_endpoint_descriptor *desc) 4931 { 4932 unsigned long long timeout_ns; 4933 4934 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4935 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4936 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4937 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4938 return USB3_LPM_DISABLED; 4939 } 4940 } 4941 4942 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4943 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4944 else 4945 timeout_ns = udev->u2_params.sel; 4946 4947 /* The U2 timeout is encoded in 256us intervals */ 4948 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4949 /* If the necessary timeout value is bigger than what we can set in the 4950 * USB 3.0 hub, we have to disable hub-initiated U2. 4951 */ 4952 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4953 return timeout_ns; 4954 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4955 timeout_ns * 256); 4956 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4957 } 4958 4959 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4960 struct usb_device *udev, 4961 struct usb_endpoint_descriptor *desc, 4962 enum usb3_link_state state, 4963 u16 *timeout) 4964 { 4965 if (state == USB3_LPM_U1) 4966 return xhci_calculate_u1_timeout(xhci, udev, desc); 4967 else if (state == USB3_LPM_U2) 4968 return xhci_calculate_u2_timeout(xhci, udev, desc); 4969 4970 return USB3_LPM_DISABLED; 4971 } 4972 4973 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4974 struct usb_device *udev, 4975 struct usb_endpoint_descriptor *desc, 4976 enum usb3_link_state state, 4977 u16 *timeout) 4978 { 4979 u16 alt_timeout; 4980 4981 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4982 desc, state, timeout); 4983 4984 /* If we found we can't enable hub-initiated LPM, and 4985 * the U1 or U2 exit latency was too high to allow 4986 * device-initiated LPM as well, then we will disable LPM 4987 * for this device, so stop searching any further. 4988 */ 4989 if (alt_timeout == USB3_LPM_DISABLED) { 4990 *timeout = alt_timeout; 4991 return -E2BIG; 4992 } 4993 if (alt_timeout > *timeout) 4994 *timeout = alt_timeout; 4995 return 0; 4996 } 4997 4998 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4999 struct usb_device *udev, 5000 struct usb_host_interface *alt, 5001 enum usb3_link_state state, 5002 u16 *timeout) 5003 { 5004 int j; 5005 5006 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 5007 if (xhci_update_timeout_for_endpoint(xhci, udev, 5008 &alt->endpoint[j].desc, state, timeout)) 5009 return -E2BIG; 5010 } 5011 return 0; 5012 } 5013 5014 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 5015 struct usb_device *udev, 5016 enum usb3_link_state state) 5017 { 5018 struct usb_device *parent = udev->parent; 5019 int tier = 1; /* roothub is tier1 */ 5020 5021 while (parent) { 5022 parent = parent->parent; 5023 tier++; 5024 } 5025 5026 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 5027 goto fail; 5028 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 5029 goto fail; 5030 5031 return 0; 5032 fail: 5033 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 5034 tier); 5035 return -E2BIG; 5036 } 5037 5038 /* Returns the U1 or U2 timeout that should be enabled. 5039 * If the tier check or timeout setting functions return with a non-zero exit 5040 * code, that means the timeout value has been finalized and we shouldn't look 5041 * at any more endpoints. 5042 */ 5043 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 5044 struct usb_device *udev, enum usb3_link_state state) 5045 { 5046 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5047 struct usb_host_config *config; 5048 char *state_name; 5049 int i; 5050 u16 timeout = USB3_LPM_DISABLED; 5051 5052 if (state == USB3_LPM_U1) 5053 state_name = "U1"; 5054 else if (state == USB3_LPM_U2) 5055 state_name = "U2"; 5056 else { 5057 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 5058 state); 5059 return timeout; 5060 } 5061 5062 /* Gather some information about the currently installed configuration 5063 * and alternate interface settings. 5064 */ 5065 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 5066 state, &timeout)) 5067 return timeout; 5068 5069 config = udev->actconfig; 5070 if (!config) 5071 return timeout; 5072 5073 for (i = 0; i < config->desc.bNumInterfaces; i++) { 5074 struct usb_driver *driver; 5075 struct usb_interface *intf = config->interface[i]; 5076 5077 if (!intf) 5078 continue; 5079 5080 /* Check if any currently bound drivers want hub-initiated LPM 5081 * disabled. 5082 */ 5083 if (intf->dev.driver) { 5084 driver = to_usb_driver(intf->dev.driver); 5085 if (driver && driver->disable_hub_initiated_lpm) { 5086 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5087 state_name, driver->name); 5088 timeout = xhci_get_timeout_no_hub_lpm(udev, 5089 state); 5090 if (timeout == USB3_LPM_DISABLED) 5091 return timeout; 5092 } 5093 } 5094 5095 /* Not sure how this could happen... */ 5096 if (!intf->cur_altsetting) 5097 continue; 5098 5099 if (xhci_update_timeout_for_interface(xhci, udev, 5100 intf->cur_altsetting, 5101 state, &timeout)) 5102 return timeout; 5103 } 5104 return timeout; 5105 } 5106 5107 static int calculate_max_exit_latency(struct usb_device *udev, 5108 enum usb3_link_state state_changed, 5109 u16 hub_encoded_timeout) 5110 { 5111 unsigned long long u1_mel_us = 0; 5112 unsigned long long u2_mel_us = 0; 5113 unsigned long long mel_us = 0; 5114 bool disabling_u1; 5115 bool disabling_u2; 5116 bool enabling_u1; 5117 bool enabling_u2; 5118 5119 disabling_u1 = (state_changed == USB3_LPM_U1 && 5120 hub_encoded_timeout == USB3_LPM_DISABLED); 5121 disabling_u2 = (state_changed == USB3_LPM_U2 && 5122 hub_encoded_timeout == USB3_LPM_DISABLED); 5123 5124 enabling_u1 = (state_changed == USB3_LPM_U1 && 5125 hub_encoded_timeout != USB3_LPM_DISABLED); 5126 enabling_u2 = (state_changed == USB3_LPM_U2 && 5127 hub_encoded_timeout != USB3_LPM_DISABLED); 5128 5129 /* If U1 was already enabled and we're not disabling it, 5130 * or we're going to enable U1, account for the U1 max exit latency. 5131 */ 5132 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5133 enabling_u1) 5134 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5135 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5136 enabling_u2) 5137 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5138 5139 mel_us = max(u1_mel_us, u2_mel_us); 5140 5141 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5142 if (mel_us > MAX_EXIT) { 5143 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5144 "is too big.\n", mel_us); 5145 return -E2BIG; 5146 } 5147 return mel_us; 5148 } 5149 5150 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5151 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5152 struct usb_device *udev, enum usb3_link_state state) 5153 { 5154 struct xhci_hcd *xhci; 5155 struct xhci_port *port; 5156 u16 hub_encoded_timeout; 5157 int mel; 5158 int ret; 5159 5160 xhci = hcd_to_xhci(hcd); 5161 /* The LPM timeout values are pretty host-controller specific, so don't 5162 * enable hub-initiated timeouts unless the vendor has provided 5163 * information about their timeout algorithm. 5164 */ 5165 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5166 !xhci->devs[udev->slot_id]) 5167 return USB3_LPM_DISABLED; 5168 5169 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5170 return USB3_LPM_DISABLED; 5171 5172 /* If connected to root port then check port can handle lpm */ 5173 if (udev->parent && !udev->parent->parent) { 5174 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5175 if (port->lpm_incapable) 5176 return USB3_LPM_DISABLED; 5177 } 5178 5179 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5180 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5181 if (mel < 0) { 5182 /* Max Exit Latency is too big, disable LPM. */ 5183 hub_encoded_timeout = USB3_LPM_DISABLED; 5184 mel = 0; 5185 } 5186 5187 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5188 if (ret) 5189 return ret; 5190 return hub_encoded_timeout; 5191 } 5192 5193 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5194 struct usb_device *udev, enum usb3_link_state state) 5195 { 5196 struct xhci_hcd *xhci; 5197 u16 mel; 5198 5199 xhci = hcd_to_xhci(hcd); 5200 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5201 !xhci->devs[udev->slot_id]) 5202 return 0; 5203 5204 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5205 return xhci_change_max_exit_latency(xhci, udev, mel); 5206 } 5207 #else /* CONFIG_PM */ 5208 5209 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5210 struct usb_device *udev, int enable) 5211 { 5212 return 0; 5213 } 5214 5215 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5216 { 5217 return 0; 5218 } 5219 5220 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5221 struct usb_device *udev, enum usb3_link_state state) 5222 { 5223 return USB3_LPM_DISABLED; 5224 } 5225 5226 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5227 struct usb_device *udev, enum usb3_link_state state) 5228 { 5229 return 0; 5230 } 5231 #endif /* CONFIG_PM */ 5232 5233 /*-------------------------------------------------------------------------*/ 5234 5235 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5236 * internal data structures for the device. 5237 */ 5238 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5239 struct usb_tt *tt, gfp_t mem_flags) 5240 { 5241 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5242 struct xhci_virt_device *vdev; 5243 struct xhci_command *config_cmd; 5244 struct xhci_input_control_ctx *ctrl_ctx; 5245 struct xhci_slot_ctx *slot_ctx; 5246 unsigned long flags; 5247 unsigned think_time; 5248 int ret; 5249 5250 /* Ignore root hubs */ 5251 if (!hdev->parent) 5252 return 0; 5253 5254 vdev = xhci->devs[hdev->slot_id]; 5255 if (!vdev) { 5256 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5257 return -EINVAL; 5258 } 5259 5260 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5261 if (!config_cmd) 5262 return -ENOMEM; 5263 5264 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5265 if (!ctrl_ctx) { 5266 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5267 __func__); 5268 xhci_free_command(xhci, config_cmd); 5269 return -ENOMEM; 5270 } 5271 5272 spin_lock_irqsave(&xhci->lock, flags); 5273 if (hdev->speed == USB_SPEED_HIGH && 5274 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5275 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5276 xhci_free_command(xhci, config_cmd); 5277 spin_unlock_irqrestore(&xhci->lock, flags); 5278 return -ENOMEM; 5279 } 5280 5281 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5282 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5283 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5284 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5285 /* 5286 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5287 * but it may be already set to 1 when setup an xHCI virtual 5288 * device, so clear it anyway. 5289 */ 5290 if (tt->multi) 5291 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5292 else if (hdev->speed == USB_SPEED_FULL) 5293 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5294 5295 if (xhci->hci_version > 0x95) { 5296 xhci_dbg(xhci, "xHCI version %x needs hub " 5297 "TT think time and number of ports\n", 5298 (unsigned int) xhci->hci_version); 5299 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5300 /* Set TT think time - convert from ns to FS bit times. 5301 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5302 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5303 * 5304 * xHCI 1.0: this field shall be 0 if the device is not a 5305 * High-spped hub. 5306 */ 5307 think_time = tt->think_time; 5308 if (think_time != 0) 5309 think_time = (think_time / 666) - 1; 5310 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5311 slot_ctx->tt_info |= 5312 cpu_to_le32(TT_THINK_TIME(think_time)); 5313 } else { 5314 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5315 "TT think time or number of ports\n", 5316 (unsigned int) xhci->hci_version); 5317 } 5318 slot_ctx->dev_state = 0; 5319 spin_unlock_irqrestore(&xhci->lock, flags); 5320 5321 xhci_dbg(xhci, "Set up %s for hub device.\n", 5322 (xhci->hci_version > 0x95) ? 5323 "configure endpoint" : "evaluate context"); 5324 5325 /* Issue and wait for the configure endpoint or 5326 * evaluate context command. 5327 */ 5328 if (xhci->hci_version > 0x95) 5329 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5330 false, false); 5331 else 5332 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5333 true, false); 5334 5335 xhci_free_command(xhci, config_cmd); 5336 return ret; 5337 } 5338 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5339 5340 static int xhci_get_frame(struct usb_hcd *hcd) 5341 { 5342 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5343 /* EHCI mods by the periodic size. Why? */ 5344 return readl(&xhci->run_regs->microframe_index) >> 3; 5345 } 5346 5347 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5348 { 5349 xhci->usb2_rhub.hcd = hcd; 5350 hcd->speed = HCD_USB2; 5351 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5352 /* 5353 * USB 2.0 roothub under xHCI has an integrated TT, 5354 * (rate matching hub) as opposed to having an OHCI/UHCI 5355 * companion controller. 5356 */ 5357 hcd->has_tt = 1; 5358 } 5359 5360 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5361 { 5362 unsigned int minor_rev; 5363 5364 /* 5365 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5366 * should return 0x31 for sbrn, or that the minor revision 5367 * is a two digit BCD containig minor and sub-minor numbers. 5368 * This was later clarified in xHCI 1.2. 5369 * 5370 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5371 * minor revision set to 0x1 instead of 0x10. 5372 */ 5373 if (xhci->usb3_rhub.min_rev == 0x1) 5374 minor_rev = 1; 5375 else 5376 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5377 5378 switch (minor_rev) { 5379 case 2: 5380 hcd->speed = HCD_USB32; 5381 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5382 hcd->self.root_hub->rx_lanes = 2; 5383 hcd->self.root_hub->tx_lanes = 2; 5384 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5385 break; 5386 case 1: 5387 hcd->speed = HCD_USB31; 5388 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5389 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5390 break; 5391 } 5392 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5393 minor_rev, minor_rev ? "Enhanced " : ""); 5394 5395 xhci->usb3_rhub.hcd = hcd; 5396 } 5397 5398 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5399 { 5400 struct xhci_hcd *xhci; 5401 /* 5402 * TODO: Check with DWC3 clients for sysdev according to 5403 * quirks 5404 */ 5405 struct device *dev = hcd->self.sysdev; 5406 int retval; 5407 5408 /* Accept arbitrarily long scatter-gather lists */ 5409 hcd->self.sg_tablesize = ~0; 5410 5411 /* support to build packet from discontinuous buffers */ 5412 hcd->self.no_sg_constraint = 1; 5413 5414 /* XHCI controllers don't stop the ep queue on short packets :| */ 5415 hcd->self.no_stop_on_short = 1; 5416 5417 xhci = hcd_to_xhci(hcd); 5418 5419 if (!usb_hcd_is_primary_hcd(hcd)) { 5420 xhci_hcd_init_usb3_data(xhci, hcd); 5421 return 0; 5422 } 5423 5424 mutex_init(&xhci->mutex); 5425 xhci->main_hcd = hcd; 5426 xhci->cap_regs = hcd->regs; 5427 xhci->op_regs = hcd->regs + 5428 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5429 xhci->run_regs = hcd->regs + 5430 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5431 /* Cache read-only capability registers */ 5432 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5433 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5434 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5435 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5436 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5437 if (xhci->hci_version > 0x100) 5438 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5439 5440 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5441 if ((!xhci->max_interrupters) || 5442 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5443 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5444 5445 xhci->quirks |= quirks; 5446 5447 if (get_quirks) 5448 get_quirks(dev, xhci); 5449 5450 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5451 * success event after a short transfer. This quirk will ignore such 5452 * spurious event. 5453 */ 5454 if (xhci->hci_version > 0x96) 5455 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5456 5457 if (xhci->hci_version == 0x95 && link_quirk) { 5458 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5459 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5460 } 5461 5462 /* Make sure the HC is halted. */ 5463 retval = xhci_halt(xhci); 5464 if (retval) 5465 return retval; 5466 5467 xhci_zero_64b_regs(xhci); 5468 5469 xhci_dbg(xhci, "Resetting HCD\n"); 5470 /* Reset the internal HC memory state and registers. */ 5471 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5472 if (retval) 5473 return retval; 5474 xhci_dbg(xhci, "Reset complete\n"); 5475 5476 /* 5477 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5478 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5479 * address memory pointers actually. So, this driver clears the AC64 5480 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5481 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5482 */ 5483 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5484 xhci->hcc_params &= ~BIT(0); 5485 5486 /* Set dma_mask and coherent_dma_mask to 64-bits, 5487 * if xHC supports 64-bit addressing */ 5488 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5489 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5490 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5491 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5492 } else { 5493 /* 5494 * This is to avoid error in cases where a 32-bit USB 5495 * controller is used on a 64-bit capable system. 5496 */ 5497 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5498 if (retval) 5499 return retval; 5500 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5501 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5502 } 5503 5504 xhci_dbg(xhci, "Calling HCD init\n"); 5505 /* Initialize HCD and host controller data structures. */ 5506 retval = xhci_init(hcd); 5507 if (retval) 5508 return retval; 5509 xhci_dbg(xhci, "Called HCD init\n"); 5510 5511 if (xhci_hcd_is_usb3(hcd)) 5512 xhci_hcd_init_usb3_data(xhci, hcd); 5513 else 5514 xhci_hcd_init_usb2_data(xhci, hcd); 5515 5516 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5517 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5518 5519 return 0; 5520 } 5521 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5522 5523 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5524 struct usb_host_endpoint *ep) 5525 { 5526 struct xhci_hcd *xhci; 5527 struct usb_device *udev; 5528 unsigned int slot_id; 5529 unsigned int ep_index; 5530 unsigned long flags; 5531 5532 xhci = hcd_to_xhci(hcd); 5533 5534 spin_lock_irqsave(&xhci->lock, flags); 5535 udev = (struct usb_device *)ep->hcpriv; 5536 slot_id = udev->slot_id; 5537 ep_index = xhci_get_endpoint_index(&ep->desc); 5538 5539 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5540 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5541 spin_unlock_irqrestore(&xhci->lock, flags); 5542 } 5543 5544 static const struct hc_driver xhci_hc_driver = { 5545 .description = "xhci-hcd", 5546 .product_desc = "xHCI Host Controller", 5547 .hcd_priv_size = sizeof(struct xhci_hcd), 5548 5549 /* 5550 * generic hardware linkage 5551 */ 5552 .irq = xhci_irq, 5553 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5554 HCD_BH, 5555 5556 /* 5557 * basic lifecycle operations 5558 */ 5559 .reset = NULL, /* set in xhci_init_driver() */ 5560 .start = xhci_run, 5561 .stop = xhci_stop, 5562 .shutdown = xhci_shutdown, 5563 5564 /* 5565 * managing i/o requests and associated device resources 5566 */ 5567 .map_urb_for_dma = xhci_map_urb_for_dma, 5568 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5569 .urb_enqueue = xhci_urb_enqueue, 5570 .urb_dequeue = xhci_urb_dequeue, 5571 .alloc_dev = xhci_alloc_dev, 5572 .free_dev = xhci_free_dev, 5573 .alloc_streams = xhci_alloc_streams, 5574 .free_streams = xhci_free_streams, 5575 .add_endpoint = xhci_add_endpoint, 5576 .drop_endpoint = xhci_drop_endpoint, 5577 .endpoint_disable = xhci_endpoint_disable, 5578 .endpoint_reset = xhci_endpoint_reset, 5579 .check_bandwidth = xhci_check_bandwidth, 5580 .reset_bandwidth = xhci_reset_bandwidth, 5581 .address_device = xhci_address_device, 5582 .enable_device = xhci_enable_device, 5583 .update_hub_device = xhci_update_hub_device, 5584 .reset_device = xhci_discover_or_reset_device, 5585 5586 /* 5587 * scheduling support 5588 */ 5589 .get_frame_number = xhci_get_frame, 5590 5591 /* 5592 * root hub support 5593 */ 5594 .hub_control = xhci_hub_control, 5595 .hub_status_data = xhci_hub_status_data, 5596 .bus_suspend = xhci_bus_suspend, 5597 .bus_resume = xhci_bus_resume, 5598 .get_resuming_ports = xhci_get_resuming_ports, 5599 5600 /* 5601 * call back when device connected and addressed 5602 */ 5603 .update_device = xhci_update_device, 5604 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5605 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5606 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5607 .find_raw_port_number = xhci_find_raw_port_number, 5608 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5609 }; 5610 5611 void xhci_init_driver(struct hc_driver *drv, 5612 const struct xhci_driver_overrides *over) 5613 { 5614 BUG_ON(!over); 5615 5616 /* Copy the generic table to drv then apply the overrides */ 5617 *drv = xhci_hc_driver; 5618 5619 if (over) { 5620 drv->hcd_priv_size += over->extra_priv_size; 5621 if (over->reset) 5622 drv->reset = over->reset; 5623 if (over->start) 5624 drv->start = over->start; 5625 if (over->add_endpoint) 5626 drv->add_endpoint = over->add_endpoint; 5627 if (over->drop_endpoint) 5628 drv->drop_endpoint = over->drop_endpoint; 5629 if (over->check_bandwidth) 5630 drv->check_bandwidth = over->check_bandwidth; 5631 if (over->reset_bandwidth) 5632 drv->reset_bandwidth = over->reset_bandwidth; 5633 if (over->update_hub_device) 5634 drv->update_hub_device = over->update_hub_device; 5635 if (over->hub_control) 5636 drv->hub_control = over->hub_control; 5637 } 5638 } 5639 EXPORT_SYMBOL_GPL(xhci_init_driver); 5640 5641 MODULE_DESCRIPTION(DRIVER_DESC); 5642 MODULE_AUTHOR(DRIVER_AUTHOR); 5643 MODULE_LICENSE("GPL"); 5644 5645 static int __init xhci_hcd_init(void) 5646 { 5647 /* 5648 * Check the compiler generated sizes of structures that must be laid 5649 * out in specific ways for hardware access. 5650 */ 5651 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5652 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5653 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5654 /* xhci_device_control has eight fields, and also 5655 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5656 */ 5657 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5658 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5659 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5660 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5661 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5662 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5663 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5664 5665 if (usb_disabled()) 5666 return -ENODEV; 5667 5668 xhci_debugfs_create_root(); 5669 xhci_dbc_init(); 5670 5671 return 0; 5672 } 5673 5674 /* 5675 * If an init function is provided, an exit function must also be provided 5676 * to allow module unload. 5677 */ 5678 static void __exit xhci_hcd_fini(void) 5679 { 5680 xhci_debugfs_remove_root(); 5681 xhci_dbc_exit(); 5682 } 5683 5684 module_init(xhci_hcd_init); 5685 module_exit(xhci_hcd_fini); 5686