1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. 208 * Toggle the cycle bit of passed link TRBs and optionally chain them. 209 */ 210 static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) 211 { 212 unsigned int link_trb_count = 0; 213 214 while (trb_is_link(ring->enqueue)) { 215 216 /* 217 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 218 * set, but other sections talk about dealing with the chain bit set. This was 219 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 220 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 221 * 222 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization 223 * and never changed here. On all others, modify it as requested by the caller. 224 */ 225 if (!xhci_link_chain_quirk(xhci, ring->type)) { 226 ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); 227 ring->enqueue->link.control |= cpu_to_le32(chain); 228 } 229 230 /* Give this link TRB to the hardware */ 231 wmb(); 232 ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 233 234 /* Toggle the cycle bit after the last ring segment. */ 235 if (link_trb_toggles_cycle(ring->enqueue)) 236 ring->cycle_state ^= 1; 237 238 ring->enq_seg = ring->enq_seg->next; 239 ring->enqueue = ring->enq_seg->trbs; 240 241 trace_xhci_inc_enq(ring); 242 243 if (link_trb_count++ > ring->num_segs) { 244 xhci_warn(xhci, "Link TRB loop at enqueue\n"); 245 break; 246 } 247 } 248 } 249 250 /* 251 * See Cycle bit rules. SW is the consumer for the event ring only. 252 * 253 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 254 * chain bit is set), then set the chain bit in all the following link TRBs. 255 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 256 * have their chain bit cleared (so that each Link TRB is a separate TD). 257 * 258 * @more_trbs_coming: Will you enqueue more TRBs before calling 259 * prepare_transfer()? 260 */ 261 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 bool more_trbs_coming) 263 { 264 u32 chain; 265 266 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 267 268 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 269 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 270 return; 271 } 272 273 ring->enqueue++; 274 275 /* 276 * If we are in the middle of a TD or the caller plans to enqueue more 277 * TDs as one transfer (eg. control), traverse any link TRBs right now. 278 * Otherwise, enqueue can stay on a link until the next prepare_ring(). 279 * This avoids enqueue entering deq_seg and simplifies ring expansion. 280 */ 281 if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) 282 inc_enq_past_link(xhci, ring, chain); 283 } 284 285 /* 286 * If the suspect DMA address is a TRB in this TD, this function returns that 287 * TRB's segment. Otherwise it returns 0. 288 */ 289 static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) 290 { 291 dma_addr_t start_dma; 292 dma_addr_t end_seg_dma; 293 dma_addr_t end_trb_dma; 294 struct xhci_segment *cur_seg; 295 296 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 297 cur_seg = td->start_seg; 298 299 do { 300 if (start_dma == 0) 301 return NULL; 302 /* We may get an event for a Link TRB in the middle of a TD */ 303 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 304 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 305 /* If the end TRB isn't in this segment, this is set to 0 */ 306 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 307 308 if (end_trb_dma > 0) { 309 /* The end TRB is in this segment, so suspect should be here */ 310 if (start_dma <= end_trb_dma) { 311 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 312 return cur_seg; 313 } else { 314 /* Case for one segment with 315 * a TD wrapped around to the top 316 */ 317 if ((suspect_dma >= start_dma && 318 suspect_dma <= end_seg_dma) || 319 (suspect_dma >= cur_seg->dma && 320 suspect_dma <= end_trb_dma)) 321 return cur_seg; 322 } 323 return NULL; 324 } 325 /* Might still be somewhere in this segment */ 326 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 327 return cur_seg; 328 329 cur_seg = cur_seg->next; 330 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 331 } while (cur_seg != td->start_seg); 332 333 return NULL; 334 } 335 336 /* 337 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 338 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 339 * Only for transfer and command rings where driver is the producer, not for 340 * event rings. 341 */ 342 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 343 { 344 struct xhci_segment *enq_seg = ring->enq_seg; 345 union xhci_trb *enq = ring->enqueue; 346 union xhci_trb *last_on_seg; 347 unsigned int free = 0; 348 int i = 0; 349 350 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 351 if (trb_is_link(enq)) { 352 enq_seg = enq_seg->next; 353 enq = enq_seg->trbs; 354 } 355 356 /* Empty ring, common case, don't walk the segments */ 357 if (enq == ring->dequeue) 358 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 359 360 do { 361 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 362 return free + (ring->dequeue - enq); 363 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 364 free += last_on_seg - enq; 365 enq_seg = enq_seg->next; 366 enq = enq_seg->trbs; 367 } while (i++ < ring->num_segs); 368 369 return free; 370 } 371 372 /* 373 * Check to see if there's room to enqueue num_trbs on the ring and make sure 374 * enqueue pointer will not advance into dequeue segment. See rules above. 375 * return number of new segments needed to ensure this. 376 */ 377 378 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 379 unsigned int num_trbs) 380 { 381 struct xhci_segment *seg; 382 int trbs_past_seg; 383 int enq_used; 384 int new_segs; 385 386 enq_used = ring->enqueue - ring->enq_seg->trbs; 387 388 /* how many trbs will be queued past the enqueue segment? */ 389 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 390 391 /* 392 * Consider expanding the ring already if num_trbs fills the current 393 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 394 * the next segment. Avoids confusing full ring with special empty ring 395 * case below 396 */ 397 if (trbs_past_seg < 0) 398 return 0; 399 400 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 401 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 402 return 0; 403 404 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 405 seg = ring->enq_seg; 406 407 while (new_segs > 0) { 408 seg = seg->next; 409 if (seg == ring->deq_seg) { 410 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 411 num_trbs, new_segs); 412 return new_segs; 413 } 414 new_segs--; 415 } 416 417 return 0; 418 } 419 420 /* Ring the host controller doorbell after placing a command on the ring */ 421 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 422 { 423 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 424 return; 425 426 xhci_dbg(xhci, "// Ding dong!\n"); 427 428 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 429 430 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 431 /* Flush PCI posted writes */ 432 readl(&xhci->dba->doorbell[0]); 433 } 434 435 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 436 { 437 return mod_delayed_work(system_wq, &xhci->cmd_timer, 438 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 439 } 440 441 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 442 { 443 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 444 cmd_list); 445 } 446 447 /* 448 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 449 * If there are other commands waiting then restart the ring and kick the timer. 450 * This must be called with command ring stopped and xhci->lock held. 451 */ 452 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 453 struct xhci_command *cur_cmd) 454 { 455 struct xhci_command *i_cmd; 456 457 /* Turn all aborted commands in list to no-ops, then restart */ 458 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 459 460 if (i_cmd->status != COMP_COMMAND_ABORTED) 461 continue; 462 463 i_cmd->status = COMP_COMMAND_RING_STOPPED; 464 465 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 466 i_cmd->command_trb); 467 468 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 469 470 /* 471 * caller waiting for completion is called when command 472 * completion event is received for these no-op commands 473 */ 474 } 475 476 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 477 478 /* ring command ring doorbell to restart the command ring */ 479 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 480 !(xhci->xhc_state & XHCI_STATE_DYING)) { 481 xhci->current_cmd = cur_cmd; 482 if (cur_cmd) 483 xhci_mod_cmd_timer(xhci); 484 xhci_ring_cmd_db(xhci); 485 } 486 } 487 488 /* Must be called with xhci->lock held, releases and acquires lock back */ 489 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 490 { 491 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 492 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 493 u64 crcr; 494 int ret; 495 496 xhci_dbg(xhci, "Abort command ring\n"); 497 498 reinit_completion(&xhci->cmd_ring_stop_completion); 499 500 /* 501 * The control bits like command stop, abort are located in lower 502 * dword of the command ring control register. 503 * Some controllers require all 64 bits to be written to abort the ring. 504 * Make sure the upper dword is valid, pointing to the next command, 505 * avoiding corrupting the command ring pointer in case the command ring 506 * is stopped by the time the upper dword is written. 507 */ 508 next_trb(&new_seg, &new_deq); 509 if (trb_is_link(new_deq)) 510 next_trb(&new_seg, &new_deq); 511 512 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 513 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 514 515 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 516 * completion of the Command Abort operation. If CRR is not negated in 5 517 * seconds then driver handles it as if host died (-ENODEV). 518 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 519 * and try to recover a -ETIMEDOUT with a host controller reset. 520 */ 521 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 522 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 523 XHCI_STATE_REMOVING); 524 if (ret < 0) { 525 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 526 xhci_halt(xhci); 527 xhci_hc_died(xhci); 528 return ret; 529 } 530 /* 531 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 532 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 533 * but the completion event in never sent. Wait 2 secs (arbitrary 534 * number) to handle those cases after negation of CMD_RING_RUNNING. 535 */ 536 spin_unlock_irqrestore(&xhci->lock, flags); 537 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 538 msecs_to_jiffies(2000)); 539 spin_lock_irqsave(&xhci->lock, flags); 540 if (!ret) { 541 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 542 xhci_cleanup_command_queue(xhci); 543 } else { 544 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 545 } 546 return 0; 547 } 548 549 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 550 unsigned int slot_id, 551 unsigned int ep_index, 552 unsigned int stream_id) 553 { 554 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 555 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 556 unsigned int ep_state = ep->ep_state; 557 558 /* Don't ring the doorbell for this endpoint if there are pending 559 * cancellations because we don't want to interrupt processing. 560 * We don't want to restart any stream rings if there's a set dequeue 561 * pointer command pending because the device can choose to start any 562 * stream once the endpoint is on the HW schedule. 563 */ 564 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 565 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 566 return; 567 568 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 569 570 writel(DB_VALUE(ep_index, stream_id), db_addr); 571 /* flush the write */ 572 readl(db_addr); 573 } 574 575 /* Ring the doorbell for any rings with pending URBs */ 576 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 577 unsigned int slot_id, 578 unsigned int ep_index) 579 { 580 unsigned int stream_id; 581 struct xhci_virt_ep *ep; 582 583 ep = &xhci->devs[slot_id]->eps[ep_index]; 584 585 /* A ring has pending URBs if its TD list is not empty */ 586 if (!(ep->ep_state & EP_HAS_STREAMS)) { 587 if (ep->ring && !(list_empty(&ep->ring->td_list))) 588 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 589 return; 590 } 591 592 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 593 stream_id++) { 594 struct xhci_stream_info *stream_info = ep->stream_info; 595 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 596 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 597 stream_id); 598 } 599 } 600 601 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 602 unsigned int slot_id, 603 unsigned int ep_index) 604 { 605 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 606 } 607 608 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 609 unsigned int slot_id, 610 unsigned int ep_index) 611 { 612 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 613 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 614 return NULL; 615 } 616 if (ep_index >= EP_CTX_PER_DEV) { 617 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 618 return NULL; 619 } 620 if (!xhci->devs[slot_id]) { 621 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 622 return NULL; 623 } 624 625 return &xhci->devs[slot_id]->eps[ep_index]; 626 } 627 628 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 629 struct xhci_virt_ep *ep, 630 unsigned int stream_id) 631 { 632 /* common case, no streams */ 633 if (!(ep->ep_state & EP_HAS_STREAMS)) 634 return ep->ring; 635 636 if (!ep->stream_info) 637 return NULL; 638 639 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 640 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 641 stream_id, ep->vdev->slot_id, ep->ep_index); 642 return NULL; 643 } 644 645 return ep->stream_info->stream_rings[stream_id]; 646 } 647 648 /* Get the right ring for the given slot_id, ep_index and stream_id. 649 * If the endpoint supports streams, boundary check the URB's stream ID. 650 * If the endpoint doesn't support streams, return the singular endpoint ring. 651 */ 652 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 653 unsigned int slot_id, unsigned int ep_index, 654 unsigned int stream_id) 655 { 656 struct xhci_virt_ep *ep; 657 658 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 659 if (!ep) 660 return NULL; 661 662 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 663 } 664 665 666 /* 667 * Get the hw dequeue pointer xHC stopped on, either directly from the 668 * endpoint context, or if streams are in use from the stream context. 669 * The returned hw_dequeue contains the lowest four bits with cycle state 670 * and possbile stream context type. 671 */ 672 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 673 unsigned int ep_index, unsigned int stream_id) 674 { 675 struct xhci_ep_ctx *ep_ctx; 676 struct xhci_stream_ctx *st_ctx; 677 struct xhci_virt_ep *ep; 678 679 ep = &vdev->eps[ep_index]; 680 681 if (ep->ep_state & EP_HAS_STREAMS) { 682 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 683 return le64_to_cpu(st_ctx->stream_ring); 684 } 685 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 686 return le64_to_cpu(ep_ctx->deq); 687 } 688 689 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 690 unsigned int slot_id, unsigned int ep_index, 691 unsigned int stream_id, struct xhci_td *td) 692 { 693 struct xhci_virt_device *dev = xhci->devs[slot_id]; 694 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 695 struct xhci_ring *ep_ring; 696 struct xhci_command *cmd; 697 struct xhci_segment *new_seg; 698 union xhci_trb *new_deq; 699 int new_cycle; 700 dma_addr_t addr; 701 u64 hw_dequeue; 702 bool hw_dequeue_found = false; 703 bool td_last_trb_found = false; 704 u32 trb_sct = 0; 705 int ret; 706 707 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 708 ep_index, stream_id); 709 if (!ep_ring) { 710 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 711 stream_id); 712 return -ENODEV; 713 } 714 715 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 716 new_seg = ep_ring->deq_seg; 717 new_deq = ep_ring->dequeue; 718 new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; 719 720 /* 721 * Walk the ring until both the next TRB and hw_dequeue are found (don't 722 * move hw_dequeue back if it went forward due to a HW bug). Cycle state 723 * is loaded from a known good TRB, track later toggles to maintain it. 724 */ 725 do { 726 if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) 727 == (dma_addr_t)(hw_dequeue & ~0xf)) { 728 hw_dequeue_found = true; 729 if (td_last_trb_found) 730 break; 731 } 732 if (new_deq == td->end_trb) 733 td_last_trb_found = true; 734 735 if (td_last_trb_found && trb_is_link(new_deq) && 736 link_trb_toggles_cycle(new_deq)) 737 new_cycle ^= 0x1; 738 739 next_trb(&new_seg, &new_deq); 740 741 /* Search wrapped around, bail out */ 742 if (new_deq == ep->ring->dequeue) { 743 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 744 return -EINVAL; 745 } 746 747 } while (!hw_dequeue_found || !td_last_trb_found); 748 749 /* Don't update the ring cycle state for the producer (us). */ 750 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 751 if (addr == 0) { 752 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 753 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 754 return -EINVAL; 755 } 756 757 if ((ep->ep_state & SET_DEQ_PENDING)) { 758 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 759 &addr); 760 return -EBUSY; 761 } 762 763 /* This function gets called from contexts where it cannot sleep */ 764 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 765 if (!cmd) { 766 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 767 return -ENOMEM; 768 } 769 770 if (stream_id) 771 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 772 ret = queue_command(xhci, cmd, 773 lower_32_bits(addr) | trb_sct | new_cycle, 774 upper_32_bits(addr), 775 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 776 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 777 if (ret < 0) { 778 xhci_free_command(xhci, cmd); 779 return ret; 780 } 781 ep->queued_deq_seg = new_seg; 782 ep->queued_deq_ptr = new_deq; 783 784 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 785 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 786 787 /* Stop the TD queueing code from ringing the doorbell until 788 * this command completes. The HC won't set the dequeue pointer 789 * if the ring is running, and ringing the doorbell starts the 790 * ring running. 791 */ 792 ep->ep_state |= SET_DEQ_PENDING; 793 xhci_ring_cmd_db(xhci); 794 return 0; 795 } 796 797 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 798 * (The last TRB actually points to the ring enqueue pointer, which is not part 799 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 800 */ 801 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 802 { 803 struct xhci_segment *seg = td->start_seg; 804 union xhci_trb *trb = td->start_trb; 805 806 while (1) { 807 trb_to_noop(trb, TRB_TR_NOOP); 808 809 /* flip cycle if asked to */ 810 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 811 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 812 813 if (trb == td->end_trb) 814 break; 815 816 next_trb(&seg, &trb); 817 } 818 } 819 820 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 821 struct xhci_td *cur_td, int status) 822 { 823 struct urb *urb = cur_td->urb; 824 struct urb_priv *urb_priv = urb->hcpriv; 825 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 826 827 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 828 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 829 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 830 if (xhci->quirks & XHCI_AMD_PLL_FIX) 831 usb_amd_quirk_pll_enable(); 832 } 833 } 834 xhci_urb_free_priv(urb_priv); 835 usb_hcd_unlink_urb_from_ep(hcd, urb); 836 trace_xhci_urb_giveback(urb); 837 usb_hcd_giveback_urb(hcd, urb, status); 838 } 839 840 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 841 struct xhci_ring *ring, struct xhci_td *td) 842 { 843 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 844 struct xhci_segment *seg = td->bounce_seg; 845 struct urb *urb = td->urb; 846 size_t len; 847 848 if (!ring || !seg || !urb) 849 return; 850 851 if (usb_urb_dir_out(urb)) { 852 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 853 DMA_TO_DEVICE); 854 return; 855 } 856 857 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 858 DMA_FROM_DEVICE); 859 /* for in transfers we need to copy the data from bounce to sg */ 860 if (urb->num_sgs) { 861 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 862 seg->bounce_len, seg->bounce_offs); 863 if (len != seg->bounce_len) 864 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 865 len, seg->bounce_len); 866 } else { 867 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 868 seg->bounce_len); 869 } 870 seg->bounce_len = 0; 871 seg->bounce_offs = 0; 872 } 873 874 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 875 struct xhci_ring *ep_ring, int status) 876 { 877 struct urb *urb = NULL; 878 879 /* Clean up the endpoint's TD list */ 880 urb = td->urb; 881 882 /* if a bounce buffer was used to align this td then unmap it */ 883 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 884 885 /* Do one last check of the actual transfer length. 886 * If the host controller said we transferred more data than the buffer 887 * length, urb->actual_length will be a very big number (since it's 888 * unsigned). Play it safe and say we didn't transfer anything. 889 */ 890 if (urb->actual_length > urb->transfer_buffer_length) { 891 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 892 urb->transfer_buffer_length, urb->actual_length); 893 urb->actual_length = 0; 894 status = 0; 895 } 896 /* TD might be removed from td_list if we are giving back a cancelled URB */ 897 if (!list_empty(&td->td_list)) 898 list_del_init(&td->td_list); 899 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 900 if (!list_empty(&td->cancelled_td_list)) 901 list_del_init(&td->cancelled_td_list); 902 903 inc_td_cnt(urb); 904 /* Giveback the urb when all the tds are completed */ 905 if (last_td_in_urb(td)) { 906 if ((urb->actual_length != urb->transfer_buffer_length && 907 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 908 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 909 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 910 urb, urb->actual_length, 911 urb->transfer_buffer_length, status); 912 913 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 914 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 915 status = 0; 916 xhci_giveback_urb_in_irq(xhci, td, status); 917 } 918 } 919 920 /* Give back previous TD and move on to the next TD. */ 921 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 922 u32 status) 923 { 924 ring->dequeue = td->end_trb; 925 ring->deq_seg = td->end_seg; 926 inc_deq(xhci, ring); 927 928 xhci_td_cleanup(xhci, td, ring, status); 929 } 930 931 /* Complete the cancelled URBs we unlinked from td_list. */ 932 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 933 { 934 struct xhci_ring *ring; 935 struct xhci_td *td, *tmp_td; 936 937 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 938 cancelled_td_list) { 939 940 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 941 942 if (td->cancel_status == TD_CLEARED) { 943 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 944 __func__, td->urb); 945 xhci_td_cleanup(ep->xhci, td, ring, td->status); 946 } else { 947 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 948 __func__, td->urb, td->cancel_status); 949 } 950 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 951 return; 952 } 953 } 954 955 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 956 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 957 { 958 struct xhci_command *command; 959 int ret = 0; 960 961 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 962 if (!command) { 963 ret = -ENOMEM; 964 goto done; 965 } 966 967 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 968 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 969 ep_index, slot_id); 970 971 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 972 done: 973 if (ret) 974 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 975 slot_id, ep_index, ret); 976 return ret; 977 } 978 979 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 980 struct xhci_virt_ep *ep, 981 struct xhci_td *td, 982 enum xhci_ep_reset_type reset_type) 983 { 984 unsigned int slot_id = ep->vdev->slot_id; 985 int err; 986 987 /* 988 * Avoid resetting endpoint if link is inactive. Can cause host hang. 989 * Device will be reset soon to recover the link so don't do anything 990 */ 991 if (ep->vdev->flags & VDEV_PORT_ERROR) 992 return -ENODEV; 993 994 /* add td to cancelled list and let reset ep handler take care of it */ 995 if (reset_type == EP_HARD_RESET) { 996 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 997 if (td && list_empty(&td->cancelled_td_list)) { 998 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 999 td->cancel_status = TD_HALTED; 1000 } 1001 } 1002 1003 if (ep->ep_state & EP_HALTED) { 1004 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 1005 ep->ep_index); 1006 return 0; 1007 } 1008 1009 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 1010 if (err) 1011 return err; 1012 1013 ep->ep_state |= EP_HALTED; 1014 1015 xhci_ring_cmd_db(xhci); 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * Fix up the ep ring first, so HW stops executing cancelled TDs. 1022 * We have the xHCI lock, so nothing can modify this list until we drop it. 1023 * We're also in the event handler, so we can't get re-interrupted if another 1024 * Stop Endpoint command completes. 1025 * 1026 * only call this when ring is not in a running state 1027 */ 1028 1029 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 1030 { 1031 struct xhci_hcd *xhci; 1032 struct xhci_td *td = NULL; 1033 struct xhci_td *tmp_td = NULL; 1034 struct xhci_td *cached_td = NULL; 1035 struct xhci_ring *ring; 1036 u64 hw_deq; 1037 unsigned int slot_id = ep->vdev->slot_id; 1038 int err; 1039 1040 /* 1041 * This is not going to work if the hardware is changing its dequeue 1042 * pointers as we look at them. Completion handler will call us later. 1043 */ 1044 if (ep->ep_state & SET_DEQ_PENDING) 1045 return 0; 1046 1047 xhci = ep->xhci; 1048 1049 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1050 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1051 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1052 (unsigned long long)xhci_trb_virt_to_dma( 1053 td->start_seg, td->start_trb), 1054 td->urb->stream_id, td->urb); 1055 list_del_init(&td->td_list); 1056 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1057 if (!ring) { 1058 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1059 td->urb, td->urb->stream_id); 1060 continue; 1061 } 1062 /* 1063 * If a ring stopped on the TD we need to cancel then we have to 1064 * move the xHC endpoint ring dequeue pointer past this TD. 1065 * Rings halted due to STALL may show hw_deq is past the stalled 1066 * TD, but still require a set TR Deq command to flush xHC cache. 1067 */ 1068 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1069 td->urb->stream_id); 1070 hw_deq &= ~0xf; 1071 1072 if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { 1073 switch (td->cancel_status) { 1074 case TD_CLEARED: /* TD is already no-op */ 1075 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1076 break; 1077 case TD_DIRTY: /* TD is cached, clear it */ 1078 case TD_HALTED: 1079 case TD_CLEARING_CACHE_DEFERRED: 1080 if (cached_td) { 1081 if (cached_td->urb->stream_id != td->urb->stream_id) { 1082 /* Multiple streams case, defer move dq */ 1083 xhci_dbg(xhci, 1084 "Move dq deferred: stream %u URB %p\n", 1085 td->urb->stream_id, td->urb); 1086 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1087 break; 1088 } 1089 1090 /* Should never happen, but clear the TD if it does */ 1091 xhci_warn(xhci, 1092 "Found multiple active URBs %p and %p in stream %u?\n", 1093 td->urb, cached_td->urb, 1094 td->urb->stream_id); 1095 td_to_noop(cached_td, false); 1096 cached_td->cancel_status = TD_CLEARED; 1097 } 1098 td_to_noop(td, false); 1099 td->cancel_status = TD_CLEARING_CACHE; 1100 cached_td = td; 1101 break; 1102 } 1103 } else { 1104 td_to_noop(td, false); 1105 td->cancel_status = TD_CLEARED; 1106 } 1107 } 1108 1109 /* If there's no need to move the dequeue pointer then we're done */ 1110 if (!cached_td) 1111 return 0; 1112 1113 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1114 cached_td->urb->stream_id, 1115 cached_td); 1116 if (err) { 1117 /* Failed to move past cached td, just set cached TDs to no-op */ 1118 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1119 /* 1120 * Deferred TDs need to have the deq pointer set after the above command 1121 * completes, so if that failed we just give up on all of them (and 1122 * complain loudly since this could cause issues due to caching). 1123 */ 1124 if (td->cancel_status != TD_CLEARING_CACHE && 1125 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1126 continue; 1127 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1128 td->urb); 1129 td_to_noop(td, false); 1130 td->cancel_status = TD_CLEARED; 1131 } 1132 } 1133 return 0; 1134 } 1135 1136 /* 1137 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1138 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1139 * stopped on. Those will be given back later when the commands complete. 1140 * 1141 * Call under xhci->lock on a stopped endpoint. 1142 */ 1143 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1144 { 1145 xhci_invalidate_cancelled_tds(ep); 1146 xhci_giveback_invalidated_tds(ep); 1147 } 1148 1149 /* 1150 * Returns the TD the endpoint ring halted on. 1151 * Only call for non-running rings without streams. 1152 */ 1153 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1154 { 1155 struct xhci_td *td; 1156 u64 hw_deq; 1157 1158 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1159 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1160 hw_deq &= ~0xf; 1161 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1162 if (trb_in_td(td, hw_deq)) 1163 return td; 1164 } 1165 return NULL; 1166 } 1167 1168 /* 1169 * When we get a command completion for a Stop Endpoint Command, we need to 1170 * unlink any cancelled TDs from the ring. There are two ways to do that: 1171 * 1172 * 1. If the HW was in the middle of processing the TD that needs to be 1173 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1174 * in the TD with a Set Dequeue Pointer Command. 1175 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1176 * bit cleared) so that the HW will skip over them. 1177 */ 1178 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1179 union xhci_trb *trb, u32 comp_code) 1180 { 1181 unsigned int ep_index; 1182 struct xhci_virt_ep *ep; 1183 struct xhci_ep_ctx *ep_ctx; 1184 struct xhci_td *td = NULL; 1185 enum xhci_ep_reset_type reset_type; 1186 struct xhci_command *command; 1187 int err; 1188 1189 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1190 if (!xhci->devs[slot_id]) 1191 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1192 slot_id); 1193 return; 1194 } 1195 1196 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1197 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1198 if (!ep) 1199 return; 1200 1201 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1202 1203 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1204 1205 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1206 /* 1207 * If stop endpoint command raced with a halting endpoint we need to 1208 * reset the host side endpoint first. 1209 * If the TD we halted on isn't cancelled the TD should be given back 1210 * with a proper error code, and the ring dequeue moved past the TD. 1211 * If streams case we can't find hw_deq, or the TD we halted on so do a 1212 * soft reset. 1213 * 1214 * Proper error code is unknown here, it would be -EPIPE if device side 1215 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1216 * We use -EPROTO, if device is stalled it should return a stall error on 1217 * next transfer, which then will return -EPIPE, and device side stall is 1218 * noted and cleared by class driver. 1219 */ 1220 switch (GET_EP_CTX_STATE(ep_ctx)) { 1221 case EP_STATE_HALTED: 1222 xhci_dbg(xhci, "Stop ep completion raced with stall\n"); 1223 /* 1224 * If the halt happened before Stop Endpoint failed, its transfer event 1225 * should have already been handled and Reset Endpoint should be pending. 1226 */ 1227 if (ep->ep_state & EP_HALTED) 1228 goto reset_done; 1229 1230 if (ep->ep_state & EP_HAS_STREAMS) { 1231 reset_type = EP_SOFT_RESET; 1232 } else { 1233 reset_type = EP_HARD_RESET; 1234 td = find_halted_td(ep); 1235 if (td) 1236 td->status = -EPROTO; 1237 } 1238 /* reset ep, reset handler cleans up cancelled tds */ 1239 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1240 xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); 1241 if (err) 1242 break; 1243 reset_done: 1244 /* Reset EP handler will clean up cancelled TDs */ 1245 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1246 return; 1247 case EP_STATE_STOPPED: 1248 /* 1249 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1250 * EP is a Context State Error, and EP stays Stopped. 1251 * 1252 * But maybe it failed on Halted, and somebody ran Reset 1253 * Endpoint later. EP state is now Stopped and EP_HALTED 1254 * still set because Reset EP handler will run after us. 1255 */ 1256 if (ep->ep_state & EP_HALTED) 1257 break; 1258 /* 1259 * On some HCs EP state remains Stopped for some tens of 1260 * us to a few ms or more after a doorbell ring, and any 1261 * new Stop Endpoint fails without aborting the restart. 1262 * This handler may run quickly enough to still see this 1263 * Stopped state, but it will soon change to Running. 1264 * 1265 * Assume this bug on unexpected Stop Endpoint failures. 1266 * Keep retrying until the EP starts and stops again. 1267 */ 1268 fallthrough; 1269 case EP_STATE_RUNNING: 1270 /* Race, HW handled stop ep cmd before ep was running */ 1271 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1272 GET_EP_CTX_STATE(ep_ctx)); 1273 /* 1274 * Don't retry forever if we guessed wrong or a defective HC never starts 1275 * the EP or says 'Running' but fails the command. We must give back TDs. 1276 */ 1277 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1278 break; 1279 1280 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1281 if (!command) { 1282 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1283 return; 1284 } 1285 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1286 xhci_ring_cmd_db(xhci); 1287 1288 return; 1289 default: 1290 break; 1291 } 1292 } 1293 1294 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1295 xhci_invalidate_cancelled_tds(ep); 1296 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1297 1298 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1299 xhci_giveback_invalidated_tds(ep); 1300 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1301 } 1302 1303 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1304 { 1305 struct xhci_td *cur_td; 1306 struct xhci_td *tmp; 1307 1308 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1309 list_del_init(&cur_td->td_list); 1310 1311 if (!list_empty(&cur_td->cancelled_td_list)) 1312 list_del_init(&cur_td->cancelled_td_list); 1313 1314 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1315 1316 inc_td_cnt(cur_td->urb); 1317 if (last_td_in_urb(cur_td)) 1318 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1319 } 1320 } 1321 1322 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1323 int slot_id, int ep_index) 1324 { 1325 struct xhci_td *cur_td; 1326 struct xhci_td *tmp; 1327 struct xhci_virt_ep *ep; 1328 struct xhci_ring *ring; 1329 1330 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1331 if (!ep) 1332 return; 1333 1334 if ((ep->ep_state & EP_HAS_STREAMS) || 1335 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1336 int stream_id; 1337 1338 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1339 stream_id++) { 1340 ring = ep->stream_info->stream_rings[stream_id]; 1341 if (!ring) 1342 continue; 1343 1344 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1345 "Killing URBs for slot ID %u, ep index %u, stream %u", 1346 slot_id, ep_index, stream_id); 1347 xhci_kill_ring_urbs(xhci, ring); 1348 } 1349 } else { 1350 ring = ep->ring; 1351 if (!ring) 1352 return; 1353 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1354 "Killing URBs for slot ID %u, ep index %u", 1355 slot_id, ep_index); 1356 xhci_kill_ring_urbs(xhci, ring); 1357 } 1358 1359 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1360 cancelled_td_list) { 1361 list_del_init(&cur_td->cancelled_td_list); 1362 inc_td_cnt(cur_td->urb); 1363 1364 if (last_td_in_urb(cur_td)) 1365 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1366 } 1367 } 1368 1369 /* 1370 * host controller died, register read returns 0xffffffff 1371 * Complete pending commands, mark them ABORTED. 1372 * URBs need to be given back as usb core might be waiting with device locks 1373 * held for the URBs to finish during device disconnect, blocking host remove. 1374 * 1375 * Call with xhci->lock held. 1376 * lock is relased and re-acquired while giving back urb. 1377 */ 1378 void xhci_hc_died(struct xhci_hcd *xhci) 1379 { 1380 int i, j; 1381 1382 if (xhci->xhc_state & XHCI_STATE_DYING) 1383 return; 1384 1385 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1386 xhci->xhc_state |= XHCI_STATE_DYING; 1387 1388 xhci_cleanup_command_queue(xhci); 1389 1390 /* return any pending urbs, remove may be waiting for them */ 1391 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1392 if (!xhci->devs[i]) 1393 continue; 1394 for (j = 0; j < 31; j++) 1395 xhci_kill_endpoint_urbs(xhci, i, j); 1396 } 1397 1398 /* inform usb core hc died if PCI remove isn't already handling it */ 1399 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1400 usb_hc_died(xhci_to_hcd(xhci)); 1401 } 1402 1403 /* 1404 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1405 * we need to clear the set deq pending flag in the endpoint ring state, so that 1406 * the TD queueing code can ring the doorbell again. We also need to ring the 1407 * endpoint doorbell to restart the ring, but only if there aren't more 1408 * cancellations pending. 1409 */ 1410 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1411 union xhci_trb *trb, u32 cmd_comp_code) 1412 { 1413 unsigned int ep_index; 1414 unsigned int stream_id; 1415 struct xhci_ring *ep_ring; 1416 struct xhci_virt_ep *ep; 1417 struct xhci_ep_ctx *ep_ctx; 1418 struct xhci_slot_ctx *slot_ctx; 1419 struct xhci_stream_ctx *stream_ctx; 1420 struct xhci_td *td, *tmp_td; 1421 1422 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1423 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1424 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1425 if (!ep) 1426 return; 1427 1428 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1429 if (!ep_ring) { 1430 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1431 stream_id); 1432 /* XXX: Harmless??? */ 1433 goto cleanup; 1434 } 1435 1436 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1437 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1438 trace_xhci_handle_cmd_set_deq(slot_ctx); 1439 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1440 1441 if (ep->ep_state & EP_HAS_STREAMS) { 1442 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1443 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1444 } 1445 1446 if (cmd_comp_code != COMP_SUCCESS) { 1447 unsigned int ep_state; 1448 unsigned int slot_state; 1449 1450 switch (cmd_comp_code) { 1451 case COMP_TRB_ERROR: 1452 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1453 break; 1454 case COMP_CONTEXT_STATE_ERROR: 1455 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1456 ep_state = GET_EP_CTX_STATE(ep_ctx); 1457 slot_state = le32_to_cpu(slot_ctx->dev_state); 1458 slot_state = GET_SLOT_STATE(slot_state); 1459 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1460 "Slot state = %u, EP state = %u", 1461 slot_state, ep_state); 1462 break; 1463 case COMP_SLOT_NOT_ENABLED_ERROR: 1464 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1465 slot_id); 1466 break; 1467 default: 1468 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1469 cmd_comp_code); 1470 break; 1471 } 1472 /* OK what do we do now? The endpoint state is hosed, and we 1473 * should never get to this point if the synchronization between 1474 * queueing, and endpoint state are correct. This might happen 1475 * if the device gets disconnected after we've finished 1476 * cancelling URBs, which might not be an error... 1477 */ 1478 } else { 1479 u64 deq; 1480 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1481 if (ep->ep_state & EP_HAS_STREAMS) { 1482 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1483 1484 /* 1485 * Cadence xHCI controllers store some endpoint state 1486 * information within Rsvd0 fields of Stream Endpoint 1487 * context. This field is not cleared during Set TR 1488 * Dequeue Pointer command which causes XDMA to skip 1489 * over transfer ring and leads to data loss on stream 1490 * pipe. 1491 * To fix this issue driver must clear Rsvd0 field. 1492 */ 1493 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1494 stream_ctx->reserved[0] = 0; 1495 stream_ctx->reserved[1] = 0; 1496 } 1497 } else { 1498 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1499 } 1500 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1501 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1502 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1503 ep->queued_deq_ptr) == deq) { 1504 /* Update the ring's dequeue segment and dequeue pointer 1505 * to reflect the new position. 1506 */ 1507 ep_ring->deq_seg = ep->queued_deq_seg; 1508 ep_ring->dequeue = ep->queued_deq_ptr; 1509 } else { 1510 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1511 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1512 ep->queued_deq_seg, ep->queued_deq_ptr); 1513 } 1514 } 1515 /* HW cached TDs cleared from cache, give them back */ 1516 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1517 cancelled_td_list) { 1518 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1519 if (td->cancel_status == TD_CLEARING_CACHE) { 1520 td->cancel_status = TD_CLEARED; 1521 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1522 __func__, td->urb); 1523 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1524 } else { 1525 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1526 __func__, td->urb, td->cancel_status); 1527 } 1528 } 1529 cleanup: 1530 ep->ep_state &= ~SET_DEQ_PENDING; 1531 ep->queued_deq_seg = NULL; 1532 ep->queued_deq_ptr = NULL; 1533 1534 /* Check for deferred or newly cancelled TDs */ 1535 if (!list_empty(&ep->cancelled_td_list)) { 1536 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1537 __func__); 1538 xhci_invalidate_cancelled_tds(ep); 1539 /* Try to restart the endpoint if all is done */ 1540 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1541 /* Start giving back any TDs invalidated above */ 1542 xhci_giveback_invalidated_tds(ep); 1543 } else { 1544 /* Restart any rings with pending URBs */ 1545 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1546 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1547 } 1548 } 1549 1550 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1551 union xhci_trb *trb, u32 cmd_comp_code) 1552 { 1553 struct xhci_virt_ep *ep; 1554 struct xhci_ep_ctx *ep_ctx; 1555 unsigned int ep_index; 1556 1557 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1558 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1559 if (!ep) 1560 return; 1561 1562 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1563 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1564 1565 /* This command will only fail if the endpoint wasn't halted, 1566 * but we don't care. 1567 */ 1568 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1569 "Ignoring reset ep completion code of %u", cmd_comp_code); 1570 1571 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1572 xhci_invalidate_cancelled_tds(ep); 1573 1574 /* Clear our internal halted state */ 1575 ep->ep_state &= ~EP_HALTED; 1576 1577 xhci_giveback_invalidated_tds(ep); 1578 1579 /* if this was a soft reset, then restart */ 1580 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1581 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1582 } 1583 1584 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1585 u32 cmd_comp_code) 1586 { 1587 if (cmd_comp_code == COMP_SUCCESS) 1588 command->slot_id = slot_id; 1589 else 1590 command->slot_id = 0; 1591 } 1592 1593 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1594 { 1595 struct xhci_virt_device *virt_dev; 1596 struct xhci_slot_ctx *slot_ctx; 1597 1598 virt_dev = xhci->devs[slot_id]; 1599 if (!virt_dev) 1600 return; 1601 1602 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1603 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1604 1605 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1606 /* Delete default control endpoint resources */ 1607 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1608 } 1609 1610 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1611 { 1612 struct xhci_virt_device *virt_dev; 1613 struct xhci_input_control_ctx *ctrl_ctx; 1614 struct xhci_ep_ctx *ep_ctx; 1615 unsigned int ep_index; 1616 u32 add_flags; 1617 1618 /* 1619 * Configure endpoint commands can come from the USB core configuration 1620 * or alt setting changes, or when streams were being configured. 1621 */ 1622 1623 virt_dev = xhci->devs[slot_id]; 1624 if (!virt_dev) 1625 return; 1626 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1627 if (!ctrl_ctx) { 1628 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1629 return; 1630 } 1631 1632 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1633 1634 /* Input ctx add_flags are the endpoint index plus one */ 1635 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1636 1637 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1638 trace_xhci_handle_cmd_config_ep(ep_ctx); 1639 1640 return; 1641 } 1642 1643 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1644 { 1645 struct xhci_virt_device *vdev; 1646 struct xhci_slot_ctx *slot_ctx; 1647 1648 vdev = xhci->devs[slot_id]; 1649 if (!vdev) 1650 return; 1651 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1652 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1653 } 1654 1655 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1656 { 1657 struct xhci_virt_device *vdev; 1658 struct xhci_slot_ctx *slot_ctx; 1659 1660 vdev = xhci->devs[slot_id]; 1661 if (!vdev) { 1662 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1663 slot_id); 1664 return; 1665 } 1666 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1667 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1668 1669 xhci_dbg(xhci, "Completed reset device command.\n"); 1670 } 1671 1672 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1673 struct xhci_event_cmd *event) 1674 { 1675 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1676 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1677 return; 1678 } 1679 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1680 "NEC firmware version %2x.%02x", 1681 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1682 NEC_FW_MINOR(le32_to_cpu(event->status))); 1683 } 1684 1685 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1686 { 1687 list_del(&cmd->cmd_list); 1688 1689 if (cmd->completion) { 1690 cmd->status = comp_code; 1691 cmd->comp_param = comp_param; 1692 complete(cmd->completion); 1693 } else { 1694 kfree(cmd); 1695 } 1696 } 1697 1698 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1699 { 1700 struct xhci_command *cur_cmd, *tmp_cmd; 1701 xhci->current_cmd = NULL; 1702 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1703 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1704 } 1705 1706 void xhci_handle_command_timeout(struct work_struct *work) 1707 { 1708 struct xhci_hcd *xhci; 1709 unsigned long flags; 1710 char str[XHCI_MSG_MAX]; 1711 u64 hw_ring_state; 1712 u32 cmd_field3; 1713 u32 usbsts; 1714 1715 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1716 1717 spin_lock_irqsave(&xhci->lock, flags); 1718 1719 /* 1720 * If timeout work is pending, or current_cmd is NULL, it means we 1721 * raced with command completion. Command is handled so just return. 1722 */ 1723 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1724 spin_unlock_irqrestore(&xhci->lock, flags); 1725 return; 1726 } 1727 1728 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1729 usbsts = readl(&xhci->op_regs->status); 1730 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1731 1732 /* Bail out and tear down xhci if a stop endpoint command failed */ 1733 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1734 struct xhci_virt_ep *ep; 1735 1736 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1737 1738 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1739 TRB_TO_EP_INDEX(cmd_field3)); 1740 if (ep) 1741 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1742 1743 xhci_halt(xhci); 1744 xhci_hc_died(xhci); 1745 goto time_out_completed; 1746 } 1747 1748 /* mark this command to be cancelled */ 1749 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1750 1751 /* Make sure command ring is running before aborting it */ 1752 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1753 if (hw_ring_state == ~(u64)0) { 1754 xhci_hc_died(xhci); 1755 goto time_out_completed; 1756 } 1757 1758 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1759 (hw_ring_state & CMD_RING_RUNNING)) { 1760 /* Prevent new doorbell, and start command abort */ 1761 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1762 xhci_dbg(xhci, "Command timeout\n"); 1763 xhci_abort_cmd_ring(xhci, flags); 1764 goto time_out_completed; 1765 } 1766 1767 /* host removed. Bail out */ 1768 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1769 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1770 xhci_cleanup_command_queue(xhci); 1771 1772 goto time_out_completed; 1773 } 1774 1775 /* command timeout on stopped ring, ring can't be aborted */ 1776 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1777 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1778 1779 time_out_completed: 1780 spin_unlock_irqrestore(&xhci->lock, flags); 1781 return; 1782 } 1783 1784 static void handle_cmd_completion(struct xhci_hcd *xhci, 1785 struct xhci_event_cmd *event) 1786 { 1787 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1788 u32 status = le32_to_cpu(event->status); 1789 u64 cmd_dma; 1790 dma_addr_t cmd_dequeue_dma; 1791 u32 cmd_comp_code; 1792 union xhci_trb *cmd_trb; 1793 struct xhci_command *cmd; 1794 u32 cmd_type; 1795 1796 if (slot_id >= MAX_HC_SLOTS) { 1797 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1798 return; 1799 } 1800 1801 cmd_dma = le64_to_cpu(event->cmd_trb); 1802 cmd_trb = xhci->cmd_ring->dequeue; 1803 1804 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1805 1806 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1807 1808 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1809 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1810 complete_all(&xhci->cmd_ring_stop_completion); 1811 return; 1812 } 1813 1814 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1815 cmd_trb); 1816 /* 1817 * Check whether the completion event is for our internal kept 1818 * command. 1819 */ 1820 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1821 xhci_warn(xhci, 1822 "ERROR mismatched command completion event\n"); 1823 return; 1824 } 1825 1826 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1827 1828 cancel_delayed_work(&xhci->cmd_timer); 1829 1830 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1831 xhci_err(xhci, 1832 "Command completion event does not match command\n"); 1833 return; 1834 } 1835 1836 /* 1837 * Host aborted the command ring, check if the current command was 1838 * supposed to be aborted, otherwise continue normally. 1839 * The command ring is stopped now, but the xHC will issue a Command 1840 * Ring Stopped event which will cause us to restart it. 1841 */ 1842 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1843 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1844 if (cmd->status == COMP_COMMAND_ABORTED) { 1845 if (xhci->current_cmd == cmd) 1846 xhci->current_cmd = NULL; 1847 goto event_handled; 1848 } 1849 } 1850 1851 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1852 switch (cmd_type) { 1853 case TRB_ENABLE_SLOT: 1854 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1855 break; 1856 case TRB_DISABLE_SLOT: 1857 xhci_handle_cmd_disable_slot(xhci, slot_id); 1858 break; 1859 case TRB_CONFIG_EP: 1860 if (!cmd->completion) 1861 xhci_handle_cmd_config_ep(xhci, slot_id); 1862 break; 1863 case TRB_EVAL_CONTEXT: 1864 break; 1865 case TRB_ADDR_DEV: 1866 xhci_handle_cmd_addr_dev(xhci, slot_id); 1867 break; 1868 case TRB_STOP_RING: 1869 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1870 le32_to_cpu(cmd_trb->generic.field[3]))); 1871 if (!cmd->completion) 1872 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1873 cmd_comp_code); 1874 break; 1875 case TRB_SET_DEQ: 1876 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1877 le32_to_cpu(cmd_trb->generic.field[3]))); 1878 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1879 break; 1880 case TRB_CMD_NOOP: 1881 /* Is this an aborted command turned to NO-OP? */ 1882 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1883 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1884 break; 1885 case TRB_RESET_EP: 1886 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1887 le32_to_cpu(cmd_trb->generic.field[3]))); 1888 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1889 break; 1890 case TRB_RESET_DEV: 1891 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1892 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1893 */ 1894 slot_id = TRB_TO_SLOT_ID( 1895 le32_to_cpu(cmd_trb->generic.field[3])); 1896 xhci_handle_cmd_reset_dev(xhci, slot_id); 1897 break; 1898 case TRB_NEC_GET_FW: 1899 xhci_handle_cmd_nec_get_fw(xhci, event); 1900 break; 1901 case TRB_GET_BW: 1902 break; 1903 default: 1904 /* Skip over unknown commands on the event ring */ 1905 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1906 break; 1907 } 1908 1909 /* restart timer if this wasn't the last command */ 1910 if (!list_is_singular(&xhci->cmd_list)) { 1911 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1912 struct xhci_command, cmd_list); 1913 xhci_mod_cmd_timer(xhci); 1914 } else if (xhci->current_cmd == cmd) { 1915 xhci->current_cmd = NULL; 1916 } 1917 1918 event_handled: 1919 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1920 1921 inc_deq(xhci, xhci->cmd_ring); 1922 } 1923 1924 static void handle_vendor_event(struct xhci_hcd *xhci, 1925 union xhci_trb *event, u32 trb_type) 1926 { 1927 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1928 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1929 handle_cmd_completion(xhci, &event->event_cmd); 1930 } 1931 1932 static void handle_device_notification(struct xhci_hcd *xhci, 1933 union xhci_trb *event) 1934 { 1935 u32 slot_id; 1936 struct usb_device *udev; 1937 1938 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1939 if (!xhci->devs[slot_id]) { 1940 xhci_warn(xhci, "Device Notification event for " 1941 "unused slot %u\n", slot_id); 1942 return; 1943 } 1944 1945 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1946 slot_id); 1947 udev = xhci->devs[slot_id]->udev; 1948 if (udev && udev->parent) 1949 usb_wakeup_notification(udev->parent, udev->portnum); 1950 } 1951 1952 /* 1953 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1954 * Controller. 1955 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1956 * If a connection to a USB 1 device is followed by another connection 1957 * to a USB 2 device. 1958 * 1959 * Reset the PHY after the USB device is disconnected if device speed 1960 * is less than HCD_USB3. 1961 * Retry the reset sequence max of 4 times checking the PLL lock status. 1962 * 1963 */ 1964 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1965 { 1966 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1967 u32 pll_lock_check; 1968 u32 retry_count = 4; 1969 1970 do { 1971 /* Assert PHY reset */ 1972 writel(0x6F, hcd->regs + 0x1048); 1973 udelay(10); 1974 /* De-assert the PHY reset */ 1975 writel(0x7F, hcd->regs + 0x1048); 1976 udelay(200); 1977 pll_lock_check = readl(hcd->regs + 0x1070); 1978 } while (!(pll_lock_check & 0x1) && --retry_count); 1979 } 1980 1981 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1982 { 1983 struct usb_hcd *hcd; 1984 u32 port_id; 1985 u32 portsc, cmd_reg; 1986 int max_ports; 1987 unsigned int hcd_portnum; 1988 struct xhci_bus_state *bus_state; 1989 bool bogus_port_status = false; 1990 struct xhci_port *port; 1991 1992 /* Port status change events always have a successful completion code */ 1993 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1994 xhci_warn(xhci, 1995 "WARN: xHC returned failed port status event\n"); 1996 1997 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1998 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1999 2000 if ((port_id <= 0) || (port_id > max_ports)) { 2001 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 2002 port_id); 2003 return; 2004 } 2005 2006 port = &xhci->hw_ports[port_id - 1]; 2007 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 2008 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 2009 port_id); 2010 bogus_port_status = true; 2011 goto cleanup; 2012 } 2013 2014 /* We might get interrupts after shared_hcd is removed */ 2015 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 2016 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 2017 bogus_port_status = true; 2018 goto cleanup; 2019 } 2020 2021 hcd = port->rhub->hcd; 2022 bus_state = &port->rhub->bus_state; 2023 hcd_portnum = port->hcd_portnum; 2024 portsc = readl(port->addr); 2025 2026 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 2027 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 2028 2029 trace_xhci_handle_port_status(port, portsc); 2030 2031 if (hcd->state == HC_STATE_SUSPENDED) { 2032 xhci_dbg(xhci, "resume root hub\n"); 2033 usb_hcd_resume_root_hub(hcd); 2034 } 2035 2036 if (hcd->speed >= HCD_USB3 && 2037 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2038 if (port->slot_id && xhci->devs[port->slot_id]) 2039 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2040 } 2041 2042 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2043 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2044 2045 cmd_reg = readl(&xhci->op_regs->command); 2046 if (!(cmd_reg & CMD_RUN)) { 2047 xhci_warn(xhci, "xHC is not running.\n"); 2048 goto cleanup; 2049 } 2050 2051 if (DEV_SUPERSPEED_ANY(portsc)) { 2052 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2053 /* Set a flag to say the port signaled remote wakeup, 2054 * so we can tell the difference between the end of 2055 * device and host initiated resume. 2056 */ 2057 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2058 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2059 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2060 xhci_set_link_state(xhci, port, XDEV_U0); 2061 /* Need to wait until the next link state change 2062 * indicates the device is actually in U0. 2063 */ 2064 bogus_port_status = true; 2065 goto cleanup; 2066 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2067 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2068 port->resume_timestamp = jiffies + 2069 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2070 set_bit(hcd_portnum, &bus_state->resuming_ports); 2071 /* Do the rest in GetPortStatus after resume time delay. 2072 * Avoid polling roothub status before that so that a 2073 * usb device auto-resume latency around ~40ms. 2074 */ 2075 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2076 mod_timer(&hcd->rh_timer, 2077 port->resume_timestamp); 2078 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2079 bogus_port_status = true; 2080 } 2081 } 2082 2083 if ((portsc & PORT_PLC) && 2084 DEV_SUPERSPEED_ANY(portsc) && 2085 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2086 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2087 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2088 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2089 complete(&port->u3exit_done); 2090 /* We've just brought the device into U0/1/2 through either the 2091 * Resume state after a device remote wakeup, or through the 2092 * U3Exit state after a host-initiated resume. If it's a device 2093 * initiated remote wake, don't pass up the link state change, 2094 * so the roothub behavior is consistent with external 2095 * USB 3.0 hub behavior. 2096 */ 2097 if (port->slot_id && xhci->devs[port->slot_id]) 2098 xhci_ring_device(xhci, port->slot_id); 2099 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2100 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2101 usb_wakeup_notification(hcd->self.root_hub, 2102 hcd_portnum + 1); 2103 bogus_port_status = true; 2104 goto cleanup; 2105 } 2106 } 2107 2108 /* 2109 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2110 * RExit to a disconnect state). If so, let the driver know it's 2111 * out of the RExit state. 2112 */ 2113 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2114 complete(&port->rexit_done); 2115 port->rexit_active = false; 2116 bogus_port_status = true; 2117 goto cleanup; 2118 } 2119 2120 if (hcd->speed < HCD_USB3) { 2121 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2122 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2123 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2124 xhci_cavium_reset_phy_quirk(xhci); 2125 } 2126 2127 cleanup: 2128 2129 /* Don't make the USB core poll the roothub if we got a bad port status 2130 * change event. Besides, at that point we can't tell which roothub 2131 * (USB 2.0 or USB 3.0) to kick. 2132 */ 2133 if (bogus_port_status) 2134 return; 2135 2136 /* 2137 * xHCI port-status-change events occur when the "or" of all the 2138 * status-change bits in the portsc register changes from 0 to 1. 2139 * New status changes won't cause an event if any other change 2140 * bits are still set. When an event occurs, switch over to 2141 * polling to avoid losing status changes. 2142 */ 2143 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2144 __func__, hcd->self.busnum); 2145 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2146 spin_unlock(&xhci->lock); 2147 /* Pass this up to the core */ 2148 usb_hcd_poll_rh_status(hcd); 2149 spin_lock(&xhci->lock); 2150 } 2151 2152 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2153 struct xhci_virt_ep *ep) 2154 { 2155 /* 2156 * As part of low/full-speed endpoint-halt processing 2157 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2158 */ 2159 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2160 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2161 !(ep->ep_state & EP_CLEARING_TT)) { 2162 ep->ep_state |= EP_CLEARING_TT; 2163 td->urb->ep->hcpriv = td->urb->dev; 2164 if (usb_hub_clear_tt_buffer(td->urb)) 2165 ep->ep_state &= ~EP_CLEARING_TT; 2166 } 2167 } 2168 2169 /* 2170 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2171 * error or stall, including default control pipe protocol stall. 2172 * The internal halt needs to be cleared with a reset endpoint command. 2173 * 2174 * External device side is also halted in functional stall cases. Class driver 2175 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2176 */ 2177 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2178 { 2179 /* Stall halts both internal and device side endpoint */ 2180 if (comp_code == COMP_STALL_ERROR) 2181 return true; 2182 2183 /* TRB completion codes that may require internal halt cleanup */ 2184 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2185 comp_code == COMP_BABBLE_DETECTED_ERROR || 2186 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2187 /* 2188 * The 0.95 spec says a babbling control endpoint is not halted. 2189 * The 0.96 spec says it is. Some HW claims to be 0.95 2190 * compliant, but it halts the control endpoint anyway. 2191 * Check endpoint context if endpoint is halted. 2192 */ 2193 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2194 return true; 2195 2196 return false; 2197 } 2198 2199 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2200 { 2201 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2202 /* Vendor defined "informational" completion code, 2203 * treat as not-an-error. 2204 */ 2205 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2206 trb_comp_code); 2207 xhci_dbg(xhci, "Treating code as success.\n"); 2208 return 1; 2209 } 2210 return 0; 2211 } 2212 2213 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2214 struct xhci_ring *ep_ring, struct xhci_td *td, 2215 u32 trb_comp_code) 2216 { 2217 struct xhci_ep_ctx *ep_ctx; 2218 2219 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2220 2221 switch (trb_comp_code) { 2222 case COMP_STOPPED_LENGTH_INVALID: 2223 case COMP_STOPPED_SHORT_PACKET: 2224 case COMP_STOPPED: 2225 /* 2226 * The "Stop Endpoint" completion will take care of any 2227 * stopped TDs. A stopped TD may be restarted, so don't update 2228 * the ring dequeue pointer or take this TD off any lists yet. 2229 */ 2230 return; 2231 case COMP_USB_TRANSACTION_ERROR: 2232 case COMP_BABBLE_DETECTED_ERROR: 2233 case COMP_SPLIT_TRANSACTION_ERROR: 2234 /* 2235 * If endpoint context state is not halted we might be 2236 * racing with a reset endpoint command issued by a unsuccessful 2237 * stop endpoint completion (context error). In that case the 2238 * td should be on the cancelled list, and EP_HALTED flag set. 2239 * 2240 * Or then it's not halted due to the 0.95 spec stating that a 2241 * babbling control endpoint should not halt. The 0.96 spec 2242 * again says it should. Some HW claims to be 0.95 compliant, 2243 * but it halts the control endpoint anyway. 2244 */ 2245 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2246 /* 2247 * If EP_HALTED is set and TD is on the cancelled list 2248 * the TD and dequeue pointer will be handled by reset 2249 * ep command completion 2250 */ 2251 if ((ep->ep_state & EP_HALTED) && 2252 !list_empty(&td->cancelled_td_list)) { 2253 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2254 (unsigned long long)xhci_trb_virt_to_dma( 2255 td->start_seg, td->start_trb)); 2256 return; 2257 } 2258 /* endpoint not halted, don't reset it */ 2259 break; 2260 } 2261 /* Almost same procedure as for STALL_ERROR below */ 2262 xhci_clear_hub_tt_buffer(xhci, td, ep); 2263 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2264 return; 2265 case COMP_STALL_ERROR: 2266 /* 2267 * xhci internal endpoint state will go to a "halt" state for 2268 * any stall, including default control pipe protocol stall. 2269 * To clear the host side halt we need to issue a reset endpoint 2270 * command, followed by a set dequeue command to move past the 2271 * TD. 2272 * Class drivers clear the device side halt from a functional 2273 * stall later. Hub TT buffer should only be cleared for FS/LS 2274 * devices behind HS hubs for functional stalls. 2275 */ 2276 if (ep->ep_index != 0) 2277 xhci_clear_hub_tt_buffer(xhci, td, ep); 2278 2279 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2280 2281 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2282 default: 2283 break; 2284 } 2285 2286 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2287 } 2288 2289 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2290 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2291 { 2292 u32 sum; 2293 union xhci_trb *trb = td->start_trb; 2294 struct xhci_segment *seg = td->start_seg; 2295 2296 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2297 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2298 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2299 } 2300 return sum; 2301 } 2302 2303 /* 2304 * Process control tds, update urb status and actual_length. 2305 */ 2306 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2307 struct xhci_ring *ep_ring, struct xhci_td *td, 2308 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2309 { 2310 struct xhci_ep_ctx *ep_ctx; 2311 u32 trb_comp_code; 2312 u32 remaining, requested; 2313 u32 trb_type; 2314 2315 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2316 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2317 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2318 requested = td->urb->transfer_buffer_length; 2319 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2320 2321 switch (trb_comp_code) { 2322 case COMP_SUCCESS: 2323 if (trb_type != TRB_STATUS) { 2324 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2325 (trb_type == TRB_DATA) ? "data" : "setup"); 2326 td->status = -ESHUTDOWN; 2327 break; 2328 } 2329 td->status = 0; 2330 break; 2331 case COMP_SHORT_PACKET: 2332 td->status = 0; 2333 break; 2334 case COMP_STOPPED_SHORT_PACKET: 2335 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2336 td->urb->actual_length = remaining; 2337 else 2338 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2339 goto finish_td; 2340 case COMP_STOPPED: 2341 switch (trb_type) { 2342 case TRB_SETUP: 2343 td->urb->actual_length = 0; 2344 goto finish_td; 2345 case TRB_DATA: 2346 case TRB_NORMAL: 2347 td->urb->actual_length = requested - remaining; 2348 goto finish_td; 2349 case TRB_STATUS: 2350 td->urb->actual_length = requested; 2351 goto finish_td; 2352 default: 2353 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2354 trb_type); 2355 goto finish_td; 2356 } 2357 case COMP_STOPPED_LENGTH_INVALID: 2358 goto finish_td; 2359 default: 2360 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2361 break; 2362 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2363 trb_comp_code, ep->ep_index); 2364 fallthrough; 2365 case COMP_STALL_ERROR: 2366 /* Did we transfer part of the data (middle) phase? */ 2367 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2368 td->urb->actual_length = requested - remaining; 2369 else if (!td->urb_length_set) 2370 td->urb->actual_length = 0; 2371 goto finish_td; 2372 } 2373 2374 /* stopped at setup stage, no data transferred */ 2375 if (trb_type == TRB_SETUP) 2376 goto finish_td; 2377 2378 /* 2379 * if on data stage then update the actual_length of the URB and flag it 2380 * as set, so it won't be overwritten in the event for the last TRB. 2381 */ 2382 if (trb_type == TRB_DATA || 2383 trb_type == TRB_NORMAL) { 2384 td->urb_length_set = true; 2385 td->urb->actual_length = requested - remaining; 2386 xhci_dbg(xhci, "Waiting for status stage event\n"); 2387 return; 2388 } 2389 2390 /* at status stage */ 2391 if (!td->urb_length_set) 2392 td->urb->actual_length = requested; 2393 2394 finish_td: 2395 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2396 } 2397 2398 /* 2399 * Process isochronous tds, update urb packet status and actual_length. 2400 */ 2401 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2402 struct xhci_ring *ep_ring, struct xhci_td *td, 2403 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2404 { 2405 struct urb_priv *urb_priv; 2406 int idx; 2407 struct usb_iso_packet_descriptor *frame; 2408 u32 trb_comp_code; 2409 bool sum_trbs_for_length = false; 2410 u32 remaining, requested, ep_trb_len; 2411 int short_framestatus; 2412 2413 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2414 urb_priv = td->urb->hcpriv; 2415 idx = urb_priv->num_tds_done; 2416 frame = &td->urb->iso_frame_desc[idx]; 2417 requested = frame->length; 2418 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2419 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2420 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2421 -EREMOTEIO : 0; 2422 2423 /* handle completion code */ 2424 switch (trb_comp_code) { 2425 case COMP_SUCCESS: 2426 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2427 if (td->error_mid_td) 2428 break; 2429 if (remaining) { 2430 frame->status = short_framestatus; 2431 sum_trbs_for_length = true; 2432 break; 2433 } 2434 frame->status = 0; 2435 break; 2436 case COMP_SHORT_PACKET: 2437 frame->status = short_framestatus; 2438 sum_trbs_for_length = true; 2439 break; 2440 case COMP_BANDWIDTH_OVERRUN_ERROR: 2441 frame->status = -ECOMM; 2442 break; 2443 case COMP_BABBLE_DETECTED_ERROR: 2444 sum_trbs_for_length = true; 2445 fallthrough; 2446 case COMP_ISOCH_BUFFER_OVERRUN: 2447 frame->status = -EOVERFLOW; 2448 if (ep_trb != td->end_trb) 2449 td->error_mid_td = true; 2450 break; 2451 case COMP_MISSED_SERVICE_ERROR: 2452 frame->status = -EXDEV; 2453 sum_trbs_for_length = true; 2454 if (ep_trb != td->end_trb) 2455 td->error_mid_td = true; 2456 break; 2457 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2458 case COMP_STALL_ERROR: 2459 frame->status = -EPROTO; 2460 break; 2461 case COMP_USB_TRANSACTION_ERROR: 2462 frame->status = -EPROTO; 2463 sum_trbs_for_length = true; 2464 if (ep_trb != td->end_trb) 2465 td->error_mid_td = true; 2466 break; 2467 case COMP_STOPPED: 2468 sum_trbs_for_length = true; 2469 break; 2470 case COMP_STOPPED_SHORT_PACKET: 2471 /* field normally containing residue now contains transferred */ 2472 frame->status = short_framestatus; 2473 requested = remaining; 2474 break; 2475 case COMP_STOPPED_LENGTH_INVALID: 2476 /* exclude stopped trb with invalid length from length sum */ 2477 sum_trbs_for_length = true; 2478 ep_trb_len = 0; 2479 remaining = 0; 2480 break; 2481 default: 2482 sum_trbs_for_length = true; 2483 frame->status = -1; 2484 break; 2485 } 2486 2487 if (td->urb_length_set) 2488 goto finish_td; 2489 2490 if (sum_trbs_for_length) 2491 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2492 ep_trb_len - remaining; 2493 else 2494 frame->actual_length = requested; 2495 2496 td->urb->actual_length += frame->actual_length; 2497 2498 finish_td: 2499 /* Don't give back TD yet if we encountered an error mid TD */ 2500 if (td->error_mid_td && ep_trb != td->end_trb) { 2501 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2502 td->urb_length_set = true; 2503 return; 2504 } 2505 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2506 } 2507 2508 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2509 struct xhci_virt_ep *ep, int status) 2510 { 2511 struct urb_priv *urb_priv; 2512 struct usb_iso_packet_descriptor *frame; 2513 int idx; 2514 2515 urb_priv = td->urb->hcpriv; 2516 idx = urb_priv->num_tds_done; 2517 frame = &td->urb->iso_frame_desc[idx]; 2518 2519 /* The transfer is partly done. */ 2520 frame->status = -EXDEV; 2521 2522 /* calc actual length */ 2523 frame->actual_length = 0; 2524 2525 xhci_dequeue_td(xhci, td, ep->ring, status); 2526 } 2527 2528 /* 2529 * Process bulk and interrupt tds, update urb status and actual_length. 2530 */ 2531 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2532 struct xhci_ring *ep_ring, struct xhci_td *td, 2533 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2534 { 2535 struct xhci_slot_ctx *slot_ctx; 2536 u32 trb_comp_code; 2537 u32 remaining, requested, ep_trb_len; 2538 2539 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2540 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2541 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2542 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2543 requested = td->urb->transfer_buffer_length; 2544 2545 switch (trb_comp_code) { 2546 case COMP_SUCCESS: 2547 ep->err_count = 0; 2548 /* handle success with untransferred data as short packet */ 2549 if (ep_trb != td->end_trb || remaining) { 2550 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2551 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2552 td->urb->ep->desc.bEndpointAddress, 2553 requested, remaining); 2554 } 2555 td->status = 0; 2556 break; 2557 case COMP_SHORT_PACKET: 2558 td->status = 0; 2559 break; 2560 case COMP_STOPPED_SHORT_PACKET: 2561 td->urb->actual_length = remaining; 2562 goto finish_td; 2563 case COMP_STOPPED_LENGTH_INVALID: 2564 /* stopped on ep trb with invalid length, exclude it */ 2565 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2566 goto finish_td; 2567 case COMP_USB_TRANSACTION_ERROR: 2568 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2569 (ep->err_count++ > MAX_SOFT_RETRY) || 2570 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2571 break; 2572 2573 td->status = 0; 2574 2575 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2576 return; 2577 default: 2578 /* do nothing */ 2579 break; 2580 } 2581 2582 if (ep_trb == td->end_trb) 2583 td->urb->actual_length = requested - remaining; 2584 else 2585 td->urb->actual_length = 2586 sum_trb_lengths(td, ep_trb) + 2587 ep_trb_len - remaining; 2588 finish_td: 2589 if (remaining > requested) { 2590 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2591 remaining); 2592 td->urb->actual_length = 0; 2593 } 2594 2595 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2596 } 2597 2598 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2599 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2600 u32 trb_comp_code) 2601 { 2602 switch (trb_comp_code) { 2603 case COMP_STALL_ERROR: 2604 case COMP_USB_TRANSACTION_ERROR: 2605 case COMP_INVALID_STREAM_TYPE_ERROR: 2606 case COMP_INVALID_STREAM_ID_ERROR: 2607 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2608 if (ep->err_count++ > MAX_SOFT_RETRY) 2609 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2610 else 2611 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2612 break; 2613 case COMP_RING_UNDERRUN: 2614 case COMP_RING_OVERRUN: 2615 case COMP_STOPPED_LENGTH_INVALID: 2616 break; 2617 default: 2618 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2619 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2620 return -ENODEV; 2621 } 2622 return 0; 2623 } 2624 2625 static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, 2626 struct xhci_ring *ring) 2627 { 2628 switch (ring->old_trb_comp_code) { 2629 case COMP_SHORT_PACKET: 2630 return xhci->quirks & XHCI_SPURIOUS_SUCCESS; 2631 case COMP_USB_TRANSACTION_ERROR: 2632 case COMP_BABBLE_DETECTED_ERROR: 2633 case COMP_ISOCH_BUFFER_OVERRUN: 2634 return xhci->quirks & XHCI_ETRON_HOST && 2635 ring->type == TYPE_ISOC; 2636 default: 2637 return false; 2638 } 2639 } 2640 2641 /* 2642 * If this function returns an error condition, it means it got a Transfer 2643 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2644 * At this point, the host controller is probably hosed and should be reset. 2645 */ 2646 static int handle_tx_event(struct xhci_hcd *xhci, 2647 struct xhci_interrupter *ir, 2648 struct xhci_transfer_event *event) 2649 { 2650 struct xhci_virt_ep *ep; 2651 struct xhci_ring *ep_ring; 2652 unsigned int slot_id; 2653 int ep_index; 2654 struct xhci_td *td = NULL; 2655 dma_addr_t ep_trb_dma; 2656 struct xhci_segment *ep_seg; 2657 union xhci_trb *ep_trb; 2658 int status = -EINPROGRESS; 2659 struct xhci_ep_ctx *ep_ctx; 2660 u32 trb_comp_code; 2661 bool ring_xrun_event = false; 2662 2663 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2664 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2665 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2666 ep_trb_dma = le64_to_cpu(event->buffer); 2667 2668 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2669 if (!ep) { 2670 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2671 goto err_out; 2672 } 2673 2674 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2675 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2676 2677 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2678 xhci_err(xhci, 2679 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2680 slot_id, ep_index); 2681 goto err_out; 2682 } 2683 2684 if (!ep_ring) 2685 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2686 2687 /* Look for common error cases */ 2688 switch (trb_comp_code) { 2689 /* Skip codes that require special handling depending on 2690 * transfer type 2691 */ 2692 case COMP_SUCCESS: 2693 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2694 trb_comp_code = COMP_SHORT_PACKET; 2695 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", 2696 slot_id, ep_index, ep_ring->old_trb_comp_code); 2697 } 2698 break; 2699 case COMP_SHORT_PACKET: 2700 break; 2701 /* Completion codes for endpoint stopped state */ 2702 case COMP_STOPPED: 2703 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2704 slot_id, ep_index); 2705 break; 2706 case COMP_STOPPED_LENGTH_INVALID: 2707 xhci_dbg(xhci, 2708 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2709 slot_id, ep_index); 2710 break; 2711 case COMP_STOPPED_SHORT_PACKET: 2712 xhci_dbg(xhci, 2713 "Stopped with short packet transfer detected for slot %u ep %u\n", 2714 slot_id, ep_index); 2715 break; 2716 /* Completion codes for endpoint halted state */ 2717 case COMP_STALL_ERROR: 2718 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2719 ep_index); 2720 status = -EPIPE; 2721 break; 2722 case COMP_SPLIT_TRANSACTION_ERROR: 2723 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2724 slot_id, ep_index); 2725 status = -EPROTO; 2726 break; 2727 case COMP_USB_TRANSACTION_ERROR: 2728 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2729 slot_id, ep_index); 2730 status = -EPROTO; 2731 break; 2732 case COMP_BABBLE_DETECTED_ERROR: 2733 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2734 slot_id, ep_index); 2735 status = -EOVERFLOW; 2736 break; 2737 /* Completion codes for endpoint error state */ 2738 case COMP_TRB_ERROR: 2739 xhci_warn(xhci, 2740 "WARN: TRB error for slot %u ep %u on endpoint\n", 2741 slot_id, ep_index); 2742 status = -EILSEQ; 2743 break; 2744 /* completion codes not indicating endpoint state change */ 2745 case COMP_DATA_BUFFER_ERROR: 2746 xhci_warn(xhci, 2747 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2748 slot_id, ep_index); 2749 status = -ENOSR; 2750 break; 2751 case COMP_BANDWIDTH_OVERRUN_ERROR: 2752 xhci_warn(xhci, 2753 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2754 slot_id, ep_index); 2755 break; 2756 case COMP_ISOCH_BUFFER_OVERRUN: 2757 xhci_warn(xhci, 2758 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2759 slot_id, ep_index); 2760 break; 2761 case COMP_RING_UNDERRUN: 2762 /* 2763 * When the Isoch ring is empty, the xHC will generate 2764 * a Ring Overrun Event for IN Isoch endpoint or Ring 2765 * Underrun Event for OUT Isoch endpoint. 2766 */ 2767 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2768 ring_xrun_event = true; 2769 break; 2770 case COMP_RING_OVERRUN: 2771 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2772 ring_xrun_event = true; 2773 break; 2774 case COMP_MISSED_SERVICE_ERROR: 2775 /* 2776 * When encounter missed service error, one or more isoc tds 2777 * may be missed by xHC. 2778 * Set skip flag of the ep_ring; Complete the missed tds as 2779 * short transfer when process the ep_ring next time. 2780 */ 2781 ep->skip = true; 2782 xhci_dbg(xhci, 2783 "Miss service interval error for slot %u ep %u, set skip flag%s\n", 2784 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); 2785 break; 2786 case COMP_NO_PING_RESPONSE_ERROR: 2787 ep->skip = true; 2788 xhci_dbg(xhci, 2789 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2790 slot_id, ep_index); 2791 return 0; 2792 2793 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2794 /* needs disable slot command to recover */ 2795 xhci_warn(xhci, 2796 "WARN: detect an incompatible device for slot %u ep %u", 2797 slot_id, ep_index); 2798 status = -EPROTO; 2799 break; 2800 default: 2801 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2802 status = 0; 2803 break; 2804 } 2805 xhci_warn(xhci, 2806 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2807 trb_comp_code, slot_id, ep_index); 2808 if (ep->skip) 2809 break; 2810 return 0; 2811 } 2812 2813 /* 2814 * xhci 4.10.2 states isoc endpoints should continue 2815 * processing the next TD if there was an error mid TD. 2816 * So host like NEC don't generate an event for the last 2817 * isoc TRB even if the IOC flag is set. 2818 * xhci 4.9.1 states that if there are errors in mult-TRB 2819 * TDs xHC should generate an error for that TRB, and if xHC 2820 * proceeds to the next TD it should genete an event for 2821 * any TRB with IOC flag on the way. Other host follow this. 2822 * 2823 * We wait for the final IOC event, but if we get an event 2824 * anywhere outside this TD, just give it back already. 2825 */ 2826 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2827 2828 if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { 2829 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2830 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2831 } 2832 2833 /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ 2834 if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) 2835 return 0; 2836 2837 if (list_empty(&ep_ring->td_list)) { 2838 /* 2839 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2840 * extra completion event if the device was suspended. Or, a event for the last TRB 2841 * of a short TD we already got a short event for. The short TD is already removed 2842 * from the TD list. 2843 */ 2844 if (trb_comp_code != COMP_STOPPED && 2845 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2846 !ring_xrun_event && 2847 !xhci_spurious_success_tx_event(xhci, ep_ring)) { 2848 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2849 slot_id, ep_index); 2850 } 2851 2852 ep->skip = false; 2853 goto check_endpoint_halted; 2854 } 2855 2856 do { 2857 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2858 td_list); 2859 2860 /* Is this a TRB in the currently executing TD? */ 2861 ep_seg = trb_in_td(td, ep_trb_dma); 2862 2863 if (!ep_seg) { 2864 2865 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2866 /* this event is unlikely to match any TD, don't skip them all */ 2867 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) 2868 return 0; 2869 2870 skip_isoc_td(xhci, td, ep, status); 2871 2872 if (!list_empty(&ep_ring->td_list)) { 2873 if (ring_xrun_event) { 2874 /* 2875 * If we are here, we are on xHCI 1.0 host with no 2876 * idea how many TDs were missed or where the xrun 2877 * occurred. New TDs may have been added after the 2878 * xrun, so skip only one TD to be safe. 2879 */ 2880 xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", 2881 slot_id, ep_index); 2882 return 0; 2883 } 2884 continue; 2885 } 2886 2887 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2888 slot_id, ep_index); 2889 ep->skip = false; 2890 td = NULL; 2891 goto check_endpoint_halted; 2892 } 2893 2894 /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ 2895 if (ring_xrun_event) 2896 return 0; 2897 2898 /* 2899 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2900 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2901 * pointer still at the previous TRB of the current TD. The previous TRB 2902 * maybe a Link TD or the last TRB of the previous TD. The command 2903 * completion handle will take care the rest. 2904 */ 2905 if (trb_comp_code == COMP_STOPPED || 2906 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2907 return 0; 2908 } 2909 2910 /* 2911 * Some hosts give a spurious success event after a short 2912 * transfer or error on last TRB. Ignore it. 2913 */ 2914 if (xhci_spurious_success_tx_event(xhci, ep_ring)) { 2915 xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", 2916 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); 2917 ep_ring->old_trb_comp_code = 0; 2918 return 0; 2919 } 2920 2921 /* HC is busted, give up! */ 2922 goto debug_finding_td; 2923 } 2924 2925 if (ep->skip) { 2926 xhci_dbg(xhci, 2927 "Found td. Clear skip flag for slot %u ep %u.\n", 2928 slot_id, ep_index); 2929 ep->skip = false; 2930 } 2931 2932 /* 2933 * If ep->skip is set, it means there are missed tds on the 2934 * endpoint ring need to take care of. 2935 * Process them as short transfer until reach the td pointed by 2936 * the event. 2937 */ 2938 } while (ep->skip); 2939 2940 ep_ring->old_trb_comp_code = trb_comp_code; 2941 2942 /* Get out if a TD was queued at enqueue after the xrun occurred */ 2943 if (ring_xrun_event) 2944 return 0; 2945 2946 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2947 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2948 2949 /* 2950 * No-op TRB could trigger interrupts in a case where a URB was killed 2951 * and a STALL_ERROR happens right after the endpoint ring stopped. 2952 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2953 * indefinitely. 2954 */ 2955 2956 if (trb_is_noop(ep_trb)) 2957 goto check_endpoint_halted; 2958 2959 td->status = status; 2960 2961 /* update the urb's actual_length and give back to the core */ 2962 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2963 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2964 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2965 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2966 else 2967 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2968 return 0; 2969 2970 check_endpoint_halted: 2971 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2972 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2973 2974 return 0; 2975 2976 debug_finding_td: 2977 xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", 2978 &ep_trb_dma, ep_index, trb_comp_code, 2979 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), 2980 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); 2981 2982 return -ESHUTDOWN; 2983 2984 err_out: 2985 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2986 (unsigned long long) xhci_trb_virt_to_dma( 2987 ir->event_ring->deq_seg, 2988 ir->event_ring->dequeue), 2989 lower_32_bits(le64_to_cpu(event->buffer)), 2990 upper_32_bits(le64_to_cpu(event->buffer)), 2991 le32_to_cpu(event->transfer_len), 2992 le32_to_cpu(event->flags)); 2993 return -ENODEV; 2994 } 2995 2996 /* 2997 * This function handles one OS-owned event on the event ring. It may drop 2998 * xhci->lock between event processing (e.g. to pass up port status changes). 2999 */ 3000 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3001 union xhci_trb *event) 3002 { 3003 u32 trb_type; 3004 3005 trace_xhci_handle_event(ir->event_ring, &event->generic, 3006 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3007 ir->event_ring->dequeue)); 3008 3009 /* 3010 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 3011 * speculative reads of the event's flags/data below. 3012 */ 3013 rmb(); 3014 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3015 /* FIXME: Handle more event types. */ 3016 3017 switch (trb_type) { 3018 case TRB_COMPLETION: 3019 handle_cmd_completion(xhci, &event->event_cmd); 3020 break; 3021 case TRB_PORT_STATUS: 3022 handle_port_status(xhci, event); 3023 break; 3024 case TRB_TRANSFER: 3025 handle_tx_event(xhci, ir, &event->trans_event); 3026 break; 3027 case TRB_DEV_NOTE: 3028 handle_device_notification(xhci, event); 3029 break; 3030 default: 3031 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3032 handle_vendor_event(xhci, event, trb_type); 3033 else 3034 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3035 } 3036 /* Any of the above functions may drop and re-acquire the lock, so check 3037 * to make sure a watchdog timer didn't mark the host as non-responsive. 3038 */ 3039 if (xhci->xhc_state & XHCI_STATE_DYING) { 3040 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3041 return -ENODEV; 3042 } 3043 3044 return 0; 3045 } 3046 3047 /* 3048 * Update Event Ring Dequeue Pointer: 3049 * - When all events have finished 3050 * - To avoid "Event Ring Full Error" condition 3051 */ 3052 void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3053 struct xhci_interrupter *ir, 3054 bool clear_ehb) 3055 { 3056 u64 temp_64; 3057 dma_addr_t deq; 3058 3059 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3060 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3061 ir->event_ring->dequeue); 3062 if (deq == 0) 3063 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3064 /* 3065 * Per 4.9.4, Software writes to the ERDP register shall always advance 3066 * the Event Ring Dequeue Pointer value. 3067 */ 3068 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3069 return; 3070 3071 /* Update HC event ring dequeue pointer */ 3072 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3073 temp_64 |= deq & ERST_PTR_MASK; 3074 3075 /* Clear the event handler busy flag (RW1C) */ 3076 if (clear_ehb) 3077 temp_64 |= ERST_EHB; 3078 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3079 } 3080 3081 /* Clear the interrupt pending bit for a specific interrupter. */ 3082 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3083 { 3084 if (!ir->ip_autoclear) { 3085 u32 iman; 3086 3087 iman = readl(&ir->ir_set->iman); 3088 iman |= IMAN_IP; 3089 writel(iman, &ir->ir_set->iman); 3090 3091 /* Read operation to guarantee the write has been flushed from posted buffers */ 3092 readl(&ir->ir_set->iman); 3093 } 3094 } 3095 3096 /* 3097 * Handle all OS-owned events on an interrupter event ring. It may drop 3098 * and reaquire xhci->lock between event processing. 3099 */ 3100 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3101 bool skip_events) 3102 { 3103 int event_loop = 0; 3104 int err = 0; 3105 u64 temp; 3106 3107 xhci_clear_interrupt_pending(ir); 3108 3109 /* Event ring hasn't been allocated yet. */ 3110 if (!ir->event_ring || !ir->event_ring->dequeue) { 3111 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3112 return -ENOMEM; 3113 } 3114 3115 if (xhci->xhc_state & XHCI_STATE_DYING || 3116 xhci->xhc_state & XHCI_STATE_HALTED) { 3117 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3118 3119 /* Clear the event handler busy flag (RW1C) */ 3120 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3121 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3122 return -ENODEV; 3123 } 3124 3125 /* Process all OS owned event TRBs on this event ring */ 3126 while (unhandled_event_trb(ir->event_ring)) { 3127 if (!skip_events) 3128 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3129 3130 /* 3131 * If half a segment of events have been handled in one go then 3132 * update ERDP, and force isoc trbs to interrupt more often 3133 */ 3134 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3135 xhci_update_erst_dequeue(xhci, ir, false); 3136 3137 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3138 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3139 3140 event_loop = 0; 3141 } 3142 3143 /* Update SW event ring dequeue pointer */ 3144 inc_deq(xhci, ir->event_ring); 3145 3146 if (err) 3147 break; 3148 } 3149 3150 xhci_update_erst_dequeue(xhci, ir, true); 3151 3152 return 0; 3153 } 3154 3155 /* 3156 * Move the event ring dequeue pointer to skip events kept in the secondary 3157 * event ring. This is used to ensure that pending events in the ring are 3158 * acknowledged, so the xHCI HCD can properly enter suspend/resume. The 3159 * secondary ring is typically maintained by an external component. 3160 */ 3161 void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, 3162 struct xhci_ring *ring, struct xhci_interrupter *ir) 3163 { 3164 union xhci_trb *current_trb; 3165 u64 erdp_reg; 3166 dma_addr_t deq; 3167 3168 /* disable irq, ack pending interrupt and ack all pending events */ 3169 xhci_disable_interrupter(xhci, ir); 3170 3171 /* last acked event trb is in erdp reg */ 3172 erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3173 deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); 3174 if (!deq) { 3175 xhci_err(xhci, "event ring handling not required\n"); 3176 return; 3177 } 3178 3179 current_trb = ir->event_ring->dequeue; 3180 /* read cycle state of the last acked trb to find out CCS */ 3181 ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; 3182 3183 xhci_handle_events(xhci, ir, true); 3184 } 3185 3186 /* 3187 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3188 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3189 * indicators of an event TRB error, but we check the status *first* to be safe. 3190 */ 3191 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3192 { 3193 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3194 irqreturn_t ret = IRQ_HANDLED; 3195 u32 status; 3196 3197 spin_lock(&xhci->lock); 3198 /* Check if the xHC generated the interrupt, or the irq is shared */ 3199 status = readl(&xhci->op_regs->status); 3200 if (status == ~(u32)0) { 3201 xhci_hc_died(xhci); 3202 goto out; 3203 } 3204 3205 if (!(status & STS_EINT)) { 3206 ret = IRQ_NONE; 3207 goto out; 3208 } 3209 3210 if (status & STS_HCE) { 3211 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3212 goto out; 3213 } 3214 3215 if (status & STS_FATAL) { 3216 xhci_warn(xhci, "WARNING: Host System Error\n"); 3217 xhci_halt(xhci); 3218 goto out; 3219 } 3220 3221 /* 3222 * Clear the op reg interrupt status first, 3223 * so we can receive interrupts from other MSI-X interrupters. 3224 * Write 1 to clear the interrupt status. 3225 */ 3226 status |= STS_EINT; 3227 writel(status, &xhci->op_regs->status); 3228 3229 /* This is the handler of the primary interrupter */ 3230 xhci_handle_events(xhci, xhci->interrupters[0], false); 3231 out: 3232 spin_unlock(&xhci->lock); 3233 3234 return ret; 3235 } 3236 3237 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3238 { 3239 return xhci_irq(hcd); 3240 } 3241 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3242 3243 /**** Endpoint Ring Operations ****/ 3244 3245 /* 3246 * Generic function for queueing a TRB on a ring. 3247 * The caller must have checked to make sure there's room on the ring. 3248 * 3249 * @more_trbs_coming: Will you enqueue more TRBs before calling 3250 * prepare_transfer()? 3251 */ 3252 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3253 bool more_trbs_coming, 3254 u32 field1, u32 field2, u32 field3, u32 field4) 3255 { 3256 struct xhci_generic_trb *trb; 3257 3258 trb = &ring->enqueue->generic; 3259 trb->field[0] = cpu_to_le32(field1); 3260 trb->field[1] = cpu_to_le32(field2); 3261 trb->field[2] = cpu_to_le32(field3); 3262 /* make sure TRB is fully written before giving it to the controller */ 3263 wmb(); 3264 trb->field[3] = cpu_to_le32(field4); 3265 3266 trace_xhci_queue_trb(ring, trb, 3267 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3268 3269 inc_enq(xhci, ring, more_trbs_coming); 3270 } 3271 3272 /* 3273 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3274 * expand ring if it start to be full. 3275 */ 3276 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3277 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3278 { 3279 unsigned int new_segs = 0; 3280 3281 /* Make sure the endpoint has been added to xHC schedule */ 3282 switch (ep_state) { 3283 case EP_STATE_DISABLED: 3284 /* 3285 * USB core changed config/interfaces without notifying us, 3286 * or hardware is reporting the wrong state. 3287 */ 3288 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3289 return -ENOENT; 3290 case EP_STATE_ERROR: 3291 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3292 /* FIXME event handling code for error needs to clear it */ 3293 /* XXX not sure if this should be -ENOENT or not */ 3294 return -EINVAL; 3295 case EP_STATE_HALTED: 3296 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3297 break; 3298 case EP_STATE_STOPPED: 3299 case EP_STATE_RUNNING: 3300 break; 3301 default: 3302 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3303 /* 3304 * FIXME issue Configure Endpoint command to try to get the HC 3305 * back into a known state. 3306 */ 3307 return -EINVAL; 3308 } 3309 3310 if (ep_ring != xhci->cmd_ring) { 3311 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3312 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3313 xhci_err(xhci, "Do not support expand command ring\n"); 3314 return -ENOMEM; 3315 } 3316 3317 if (new_segs) { 3318 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3319 "ERROR no room on ep ring, try ring expansion"); 3320 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3321 xhci_err(xhci, "Ring expansion failed\n"); 3322 return -ENOMEM; 3323 } 3324 } 3325 3326 /* Ensure that new TRBs won't overwrite a link */ 3327 if (trb_is_link(ep_ring->enqueue)) 3328 inc_enq_past_link(xhci, ep_ring, 0); 3329 3330 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3331 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3332 return -EINVAL; 3333 } 3334 3335 return 0; 3336 } 3337 3338 static int prepare_transfer(struct xhci_hcd *xhci, 3339 struct xhci_virt_device *xdev, 3340 unsigned int ep_index, 3341 unsigned int stream_id, 3342 unsigned int num_trbs, 3343 struct urb *urb, 3344 unsigned int td_index, 3345 gfp_t mem_flags) 3346 { 3347 int ret; 3348 struct urb_priv *urb_priv; 3349 struct xhci_td *td; 3350 struct xhci_ring *ep_ring; 3351 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3352 3353 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3354 stream_id); 3355 if (!ep_ring) { 3356 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3357 stream_id); 3358 return -EINVAL; 3359 } 3360 3361 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3362 num_trbs, mem_flags); 3363 if (ret) 3364 return ret; 3365 3366 urb_priv = urb->hcpriv; 3367 td = &urb_priv->td[td_index]; 3368 3369 INIT_LIST_HEAD(&td->td_list); 3370 INIT_LIST_HEAD(&td->cancelled_td_list); 3371 3372 if (td_index == 0) { 3373 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3374 if (unlikely(ret)) 3375 return ret; 3376 } 3377 3378 td->urb = urb; 3379 /* Add this TD to the tail of the endpoint ring's TD list */ 3380 list_add_tail(&td->td_list, &ep_ring->td_list); 3381 td->start_seg = ep_ring->enq_seg; 3382 td->start_trb = ep_ring->enqueue; 3383 3384 return 0; 3385 } 3386 3387 unsigned int count_trbs(u64 addr, u64 len) 3388 { 3389 unsigned int num_trbs; 3390 3391 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3392 TRB_MAX_BUFF_SIZE); 3393 if (num_trbs == 0) 3394 num_trbs++; 3395 3396 return num_trbs; 3397 } 3398 3399 static inline unsigned int count_trbs_needed(struct urb *urb) 3400 { 3401 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3402 } 3403 3404 static unsigned int count_sg_trbs_needed(struct urb *urb) 3405 { 3406 struct scatterlist *sg; 3407 unsigned int i, len, full_len, num_trbs = 0; 3408 3409 full_len = urb->transfer_buffer_length; 3410 3411 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3412 len = sg_dma_len(sg); 3413 num_trbs += count_trbs(sg_dma_address(sg), len); 3414 len = min_t(unsigned int, len, full_len); 3415 full_len -= len; 3416 if (full_len == 0) 3417 break; 3418 } 3419 3420 return num_trbs; 3421 } 3422 3423 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3424 { 3425 u64 addr, len; 3426 3427 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3428 len = urb->iso_frame_desc[i].length; 3429 3430 return count_trbs(addr, len); 3431 } 3432 3433 static void check_trb_math(struct urb *urb, int running_total) 3434 { 3435 if (unlikely(running_total != urb->transfer_buffer_length)) 3436 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3437 "queued %#x (%d), asked for %#x (%d)\n", 3438 __func__, 3439 urb->ep->desc.bEndpointAddress, 3440 running_total, running_total, 3441 urb->transfer_buffer_length, 3442 urb->transfer_buffer_length); 3443 } 3444 3445 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3446 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3447 struct xhci_generic_trb *start_trb) 3448 { 3449 /* 3450 * Pass all the TRBs to the hardware at once and make sure this write 3451 * isn't reordered. 3452 */ 3453 wmb(); 3454 if (start_cycle) 3455 start_trb->field[3] |= cpu_to_le32(start_cycle); 3456 else 3457 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3458 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3459 } 3460 3461 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3462 { 3463 int xhci_interval; 3464 int ep_interval; 3465 3466 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3467 ep_interval = urb->interval; 3468 3469 /* Convert to microframes */ 3470 if (urb->dev->speed == USB_SPEED_LOW || 3471 urb->dev->speed == USB_SPEED_FULL) 3472 ep_interval *= 8; 3473 3474 /* FIXME change this to a warning and a suggestion to use the new API 3475 * to set the polling interval (once the API is added). 3476 */ 3477 if (xhci_interval != ep_interval) { 3478 dev_dbg_ratelimited(&urb->dev->dev, 3479 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3480 ep_interval, str_plural(ep_interval), 3481 xhci_interval, str_plural(xhci_interval)); 3482 urb->interval = xhci_interval; 3483 /* Convert back to frames for LS/FS devices */ 3484 if (urb->dev->speed == USB_SPEED_LOW || 3485 urb->dev->speed == USB_SPEED_FULL) 3486 urb->interval /= 8; 3487 } 3488 } 3489 3490 /* 3491 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3492 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3493 * (comprised of sg list entries) can take several service intervals to 3494 * transmit. 3495 */ 3496 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3497 struct urb *urb, int slot_id, unsigned int ep_index) 3498 { 3499 struct xhci_ep_ctx *ep_ctx; 3500 3501 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3502 check_interval(urb, ep_ctx); 3503 3504 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3505 } 3506 3507 /* 3508 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3509 * packets remaining in the TD (*not* including this TRB). 3510 * 3511 * Total TD packet count = total_packet_count = 3512 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3513 * 3514 * Packets transferred up to and including this TRB = packets_transferred = 3515 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3516 * 3517 * TD size = total_packet_count - packets_transferred 3518 * 3519 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3520 * including this TRB, right shifted by 10 3521 * 3522 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3523 * This is taken care of in the TRB_TD_SIZE() macro 3524 * 3525 * The last TRB in a TD must have the TD size set to zero. 3526 */ 3527 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3528 int trb_buff_len, unsigned int td_total_len, 3529 struct urb *urb, bool more_trbs_coming) 3530 { 3531 u32 maxp, total_packet_count; 3532 3533 /* MTK xHCI 0.96 contains some features from 1.0 */ 3534 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3535 return ((td_total_len - transferred) >> 10); 3536 3537 /* One TRB with a zero-length data packet. */ 3538 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3539 trb_buff_len == td_total_len) 3540 return 0; 3541 3542 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3543 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3544 trb_buff_len = 0; 3545 3546 maxp = usb_endpoint_maxp(&urb->ep->desc); 3547 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3548 3549 /* Queueing functions don't count the current TRB into transferred */ 3550 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3551 } 3552 3553 3554 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3555 u32 *trb_buff_len, struct xhci_segment *seg) 3556 { 3557 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3558 unsigned int unalign; 3559 unsigned int max_pkt; 3560 u32 new_buff_len; 3561 size_t len; 3562 3563 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3564 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3565 3566 /* we got lucky, last normal TRB data on segment is packet aligned */ 3567 if (unalign == 0) 3568 return 0; 3569 3570 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3571 unalign, *trb_buff_len); 3572 3573 /* is the last nornal TRB alignable by splitting it */ 3574 if (*trb_buff_len > unalign) { 3575 *trb_buff_len -= unalign; 3576 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3577 return 0; 3578 } 3579 3580 /* 3581 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3582 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3583 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3584 */ 3585 new_buff_len = max_pkt - (enqd_len % max_pkt); 3586 3587 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3588 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3589 3590 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3591 if (usb_urb_dir_out(urb)) { 3592 if (urb->num_sgs) { 3593 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3594 seg->bounce_buf, new_buff_len, enqd_len); 3595 if (len != new_buff_len) 3596 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3597 len, new_buff_len); 3598 } else { 3599 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3600 } 3601 3602 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3603 max_pkt, DMA_TO_DEVICE); 3604 } else { 3605 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3606 max_pkt, DMA_FROM_DEVICE); 3607 } 3608 3609 if (dma_mapping_error(dev, seg->bounce_dma)) { 3610 /* try without aligning. Some host controllers survive */ 3611 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3612 return 0; 3613 } 3614 *trb_buff_len = new_buff_len; 3615 seg->bounce_len = new_buff_len; 3616 seg->bounce_offs = enqd_len; 3617 3618 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3619 3620 return 1; 3621 } 3622 3623 /* This is very similar to what ehci-q.c qtd_fill() does */ 3624 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3625 struct urb *urb, int slot_id, unsigned int ep_index) 3626 { 3627 struct xhci_ring *ring; 3628 struct urb_priv *urb_priv; 3629 struct xhci_td *td; 3630 struct xhci_generic_trb *start_trb; 3631 struct scatterlist *sg = NULL; 3632 bool more_trbs_coming = true; 3633 bool need_zero_pkt = false; 3634 bool first_trb = true; 3635 unsigned int num_trbs; 3636 unsigned int start_cycle, num_sgs = 0; 3637 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3638 int sent_len, ret; 3639 u32 field, length_field, remainder; 3640 u64 addr, send_addr; 3641 3642 ring = xhci_urb_to_transfer_ring(xhci, urb); 3643 if (!ring) 3644 return -EINVAL; 3645 3646 full_len = urb->transfer_buffer_length; 3647 /* If we have scatter/gather list, we use it. */ 3648 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3649 num_sgs = urb->num_mapped_sgs; 3650 sg = urb->sg; 3651 addr = (u64) sg_dma_address(sg); 3652 block_len = sg_dma_len(sg); 3653 num_trbs = count_sg_trbs_needed(urb); 3654 } else { 3655 num_trbs = count_trbs_needed(urb); 3656 addr = (u64) urb->transfer_dma; 3657 block_len = full_len; 3658 } 3659 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3660 ep_index, urb->stream_id, 3661 num_trbs, urb, 0, mem_flags); 3662 if (unlikely(ret < 0)) 3663 return ret; 3664 3665 urb_priv = urb->hcpriv; 3666 3667 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3668 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3669 need_zero_pkt = true; 3670 3671 td = &urb_priv->td[0]; 3672 3673 /* 3674 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3675 * until we've finished creating all the other TRBs. The ring's cycle 3676 * state may change as we enqueue the other TRBs, so save it too. 3677 */ 3678 start_trb = &ring->enqueue->generic; 3679 start_cycle = ring->cycle_state; 3680 send_addr = addr; 3681 3682 /* Queue the TRBs, even if they are zero-length */ 3683 for (enqd_len = 0; first_trb || enqd_len < full_len; 3684 enqd_len += trb_buff_len) { 3685 field = TRB_TYPE(TRB_NORMAL); 3686 3687 /* TRB buffer should not cross 64KB boundaries */ 3688 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3689 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3690 3691 if (enqd_len + trb_buff_len > full_len) 3692 trb_buff_len = full_len - enqd_len; 3693 3694 /* Don't change the cycle bit of the first TRB until later */ 3695 if (first_trb) { 3696 first_trb = false; 3697 if (start_cycle == 0) 3698 field |= TRB_CYCLE; 3699 } else 3700 field |= ring->cycle_state; 3701 3702 /* Chain all the TRBs together; clear the chain bit in the last 3703 * TRB to indicate it's the last TRB in the chain. 3704 */ 3705 if (enqd_len + trb_buff_len < full_len) { 3706 field |= TRB_CHAIN; 3707 if (trb_is_link(ring->enqueue + 1)) { 3708 if (xhci_align_td(xhci, urb, enqd_len, 3709 &trb_buff_len, 3710 ring->enq_seg)) { 3711 send_addr = ring->enq_seg->bounce_dma; 3712 /* assuming TD won't span 2 segs */ 3713 td->bounce_seg = ring->enq_seg; 3714 } 3715 } 3716 } 3717 if (enqd_len + trb_buff_len >= full_len) { 3718 field &= ~TRB_CHAIN; 3719 field |= TRB_IOC; 3720 more_trbs_coming = false; 3721 td->end_trb = ring->enqueue; 3722 td->end_seg = ring->enq_seg; 3723 if (xhci_urb_suitable_for_idt(urb)) { 3724 memcpy(&send_addr, urb->transfer_buffer, 3725 trb_buff_len); 3726 le64_to_cpus(&send_addr); 3727 field |= TRB_IDT; 3728 } 3729 } 3730 3731 /* Only set interrupt on short packet for IN endpoints */ 3732 if (usb_urb_dir_in(urb)) 3733 field |= TRB_ISP; 3734 3735 /* Set the TRB length, TD size, and interrupter fields. */ 3736 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3737 full_len, urb, more_trbs_coming); 3738 3739 length_field = TRB_LEN(trb_buff_len) | 3740 TRB_TD_SIZE(remainder) | 3741 TRB_INTR_TARGET(0); 3742 3743 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3744 lower_32_bits(send_addr), 3745 upper_32_bits(send_addr), 3746 length_field, 3747 field); 3748 addr += trb_buff_len; 3749 sent_len = trb_buff_len; 3750 3751 while (sg && sent_len >= block_len) { 3752 /* New sg entry */ 3753 --num_sgs; 3754 sent_len -= block_len; 3755 sg = sg_next(sg); 3756 if (num_sgs != 0 && sg) { 3757 block_len = sg_dma_len(sg); 3758 addr = (u64) sg_dma_address(sg); 3759 addr += sent_len; 3760 } 3761 } 3762 block_len -= sent_len; 3763 send_addr = addr; 3764 } 3765 3766 if (need_zero_pkt) { 3767 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3768 ep_index, urb->stream_id, 3769 1, urb, 1, mem_flags); 3770 urb_priv->td[1].end_trb = ring->enqueue; 3771 urb_priv->td[1].end_seg = ring->enq_seg; 3772 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3773 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3774 } 3775 3776 check_trb_math(urb, enqd_len); 3777 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3778 start_cycle, start_trb); 3779 return 0; 3780 } 3781 3782 /* Caller must have locked xhci->lock */ 3783 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3784 struct urb *urb, int slot_id, unsigned int ep_index) 3785 { 3786 struct xhci_ring *ep_ring; 3787 int num_trbs; 3788 int ret; 3789 struct usb_ctrlrequest *setup; 3790 struct xhci_generic_trb *start_trb; 3791 int start_cycle; 3792 u32 field; 3793 struct urb_priv *urb_priv; 3794 struct xhci_td *td; 3795 3796 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3797 if (!ep_ring) 3798 return -EINVAL; 3799 3800 /* 3801 * Need to copy setup packet into setup TRB, so we can't use the setup 3802 * DMA address. 3803 */ 3804 if (!urb->setup_packet) 3805 return -EINVAL; 3806 3807 if ((xhci->quirks & XHCI_ETRON_HOST) && 3808 urb->dev->speed >= USB_SPEED_SUPER) { 3809 /* 3810 * If next available TRB is the Link TRB in the ring segment then 3811 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3812 * TRB to be breaked by the Link TRB. 3813 */ 3814 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { 3815 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3816 queue_trb(xhci, ep_ring, false, 0, 0, 3817 TRB_INTR_TARGET(0), field); 3818 } 3819 } 3820 3821 /* 1 TRB for setup, 1 for status */ 3822 num_trbs = 2; 3823 /* 3824 * Don't need to check if we need additional event data and normal TRBs, 3825 * since data in control transfers will never get bigger than 16MB 3826 * XXX: can we get a buffer that crosses 64KB boundaries? 3827 */ 3828 if (urb->transfer_buffer_length > 0) 3829 num_trbs++; 3830 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3831 ep_index, urb->stream_id, 3832 num_trbs, urb, 0, mem_flags); 3833 if (ret < 0) 3834 return ret; 3835 3836 urb_priv = urb->hcpriv; 3837 td = &urb_priv->td[0]; 3838 3839 /* 3840 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3841 * until we've finished creating all the other TRBs. The ring's cycle 3842 * state may change as we enqueue the other TRBs, so save it too. 3843 */ 3844 start_trb = &ep_ring->enqueue->generic; 3845 start_cycle = ep_ring->cycle_state; 3846 3847 /* Queue setup TRB - see section 6.4.1.2.1 */ 3848 /* FIXME better way to translate setup_packet into two u32 fields? */ 3849 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3850 field = 0; 3851 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3852 if (start_cycle == 0) 3853 field |= 0x1; 3854 3855 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3856 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3857 if (urb->transfer_buffer_length > 0) { 3858 if (setup->bRequestType & USB_DIR_IN) 3859 field |= TRB_TX_TYPE(TRB_DATA_IN); 3860 else 3861 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3862 } 3863 } 3864 3865 queue_trb(xhci, ep_ring, true, 3866 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3867 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3868 TRB_LEN(8) | TRB_INTR_TARGET(0), 3869 /* Immediate data in pointer */ 3870 field); 3871 3872 /* If there's data, queue data TRBs */ 3873 /* Only set interrupt on short packet for IN endpoints */ 3874 if (usb_urb_dir_in(urb)) 3875 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3876 else 3877 field = TRB_TYPE(TRB_DATA); 3878 3879 if (urb->transfer_buffer_length > 0) { 3880 u32 length_field, remainder; 3881 u64 addr; 3882 3883 if (xhci_urb_suitable_for_idt(urb)) { 3884 memcpy(&addr, urb->transfer_buffer, 3885 urb->transfer_buffer_length); 3886 le64_to_cpus(&addr); 3887 field |= TRB_IDT; 3888 } else { 3889 addr = (u64) urb->transfer_dma; 3890 } 3891 3892 remainder = xhci_td_remainder(xhci, 0, 3893 urb->transfer_buffer_length, 3894 urb->transfer_buffer_length, 3895 urb, 1); 3896 length_field = TRB_LEN(urb->transfer_buffer_length) | 3897 TRB_TD_SIZE(remainder) | 3898 TRB_INTR_TARGET(0); 3899 if (setup->bRequestType & USB_DIR_IN) 3900 field |= TRB_DIR_IN; 3901 queue_trb(xhci, ep_ring, true, 3902 lower_32_bits(addr), 3903 upper_32_bits(addr), 3904 length_field, 3905 field | ep_ring->cycle_state); 3906 } 3907 3908 /* Save the DMA address of the last TRB in the TD */ 3909 td->end_trb = ep_ring->enqueue; 3910 td->end_seg = ep_ring->enq_seg; 3911 3912 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3913 /* If the device sent data, the status stage is an OUT transfer */ 3914 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3915 field = 0; 3916 else 3917 field = TRB_DIR_IN; 3918 queue_trb(xhci, ep_ring, false, 3919 0, 3920 0, 3921 TRB_INTR_TARGET(0), 3922 /* Event on completion */ 3923 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3924 3925 giveback_first_trb(xhci, slot_id, ep_index, 0, 3926 start_cycle, start_trb); 3927 return 0; 3928 } 3929 3930 /* 3931 * The transfer burst count field of the isochronous TRB defines the number of 3932 * bursts that are required to move all packets in this TD. Only SuperSpeed 3933 * devices can burst up to bMaxBurst number of packets per service interval. 3934 * This field is zero based, meaning a value of zero in the field means one 3935 * burst. Basically, for everything but SuperSpeed devices, this field will be 3936 * zero. Only xHCI 1.0 host controllers support this field. 3937 */ 3938 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3939 struct urb *urb, unsigned int total_packet_count) 3940 { 3941 unsigned int max_burst; 3942 3943 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3944 return 0; 3945 3946 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3947 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3948 } 3949 3950 /* 3951 * Returns the number of packets in the last "burst" of packets. This field is 3952 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3953 * the last burst packet count is equal to the total number of packets in the 3954 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3955 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3956 * contain 1 to (bMaxBurst + 1) packets. 3957 */ 3958 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3959 struct urb *urb, unsigned int total_packet_count) 3960 { 3961 unsigned int max_burst; 3962 unsigned int residue; 3963 3964 if (xhci->hci_version < 0x100) 3965 return 0; 3966 3967 if (urb->dev->speed >= USB_SPEED_SUPER) { 3968 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3969 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3970 residue = total_packet_count % (max_burst + 1); 3971 /* If residue is zero, the last burst contains (max_burst + 1) 3972 * number of packets, but the TLBPC field is zero-based. 3973 */ 3974 if (residue == 0) 3975 return max_burst; 3976 return residue - 1; 3977 } 3978 if (total_packet_count == 0) 3979 return 0; 3980 return total_packet_count - 1; 3981 } 3982 3983 /* 3984 * Calculates Frame ID field of the isochronous TRB identifies the 3985 * target frame that the Interval associated with this Isochronous 3986 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3987 * 3988 * Returns actual frame id on success, negative value on error. 3989 */ 3990 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3991 struct urb *urb, int index) 3992 { 3993 int start_frame, ist, ret = 0; 3994 int start_frame_id, end_frame_id, current_frame_id; 3995 3996 if (urb->dev->speed == USB_SPEED_LOW || 3997 urb->dev->speed == USB_SPEED_FULL) 3998 start_frame = urb->start_frame + index * urb->interval; 3999 else 4000 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4001 4002 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4003 * 4004 * If bit [3] of IST is cleared to '0', software can add a TRB no 4005 * later than IST[2:0] Microframes before that TRB is scheduled to 4006 * be executed. 4007 * If bit [3] of IST is set to '1', software can add a TRB no later 4008 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4009 */ 4010 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4011 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4012 ist <<= 3; 4013 4014 /* Software shall not schedule an Isoch TD with a Frame ID value that 4015 * is less than the Start Frame ID or greater than the End Frame ID, 4016 * where: 4017 * 4018 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4019 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4020 * 4021 * Both the End Frame ID and Start Frame ID values are calculated 4022 * in microframes. When software determines the valid Frame ID value; 4023 * The End Frame ID value should be rounded down to the nearest Frame 4024 * boundary, and the Start Frame ID value should be rounded up to the 4025 * nearest Frame boundary. 4026 */ 4027 current_frame_id = readl(&xhci->run_regs->microframe_index); 4028 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4029 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4030 4031 start_frame &= 0x7ff; 4032 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4033 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4034 4035 if (start_frame_id < end_frame_id) { 4036 if (start_frame > end_frame_id || 4037 start_frame < start_frame_id) 4038 ret = -EINVAL; 4039 } else if (start_frame_id > end_frame_id) { 4040 if ((start_frame > end_frame_id && 4041 start_frame < start_frame_id)) 4042 ret = -EINVAL; 4043 } else { 4044 ret = -EINVAL; 4045 } 4046 4047 if (index == 0) { 4048 if (ret == -EINVAL || start_frame == start_frame_id) { 4049 start_frame = start_frame_id + 1; 4050 if (urb->dev->speed == USB_SPEED_LOW || 4051 urb->dev->speed == USB_SPEED_FULL) 4052 urb->start_frame = start_frame; 4053 else 4054 urb->start_frame = start_frame << 3; 4055 ret = 0; 4056 } 4057 } 4058 4059 if (ret) { 4060 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4061 start_frame, current_frame_id, index, 4062 start_frame_id, end_frame_id); 4063 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4064 return ret; 4065 } 4066 4067 return start_frame; 4068 } 4069 4070 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4071 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4072 struct xhci_interrupter *ir) 4073 { 4074 if (xhci->hci_version < 0x100) 4075 return false; 4076 /* always generate an event interrupt for the last TD */ 4077 if (i == num_tds - 1) 4078 return false; 4079 /* 4080 * If AVOID_BEI is set the host handles full event rings poorly, 4081 * generate an event at least every 8th TD to clear the event ring 4082 */ 4083 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4084 return !!(i % ir->isoc_bei_interval); 4085 4086 return true; 4087 } 4088 4089 /* This is for isoc transfer */ 4090 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4091 struct urb *urb, int slot_id, unsigned int ep_index) 4092 { 4093 struct xhci_interrupter *ir; 4094 struct xhci_ring *ep_ring; 4095 struct urb_priv *urb_priv; 4096 struct xhci_td *td; 4097 int num_tds, trbs_per_td; 4098 struct xhci_generic_trb *start_trb; 4099 bool first_trb; 4100 int start_cycle; 4101 u32 field, length_field; 4102 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4103 u64 start_addr, addr; 4104 int i, j; 4105 bool more_trbs_coming; 4106 struct xhci_virt_ep *xep; 4107 int frame_id; 4108 4109 xep = &xhci->devs[slot_id]->eps[ep_index]; 4110 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4111 ir = xhci->interrupters[0]; 4112 4113 num_tds = urb->number_of_packets; 4114 if (num_tds < 1) { 4115 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4116 return -EINVAL; 4117 } 4118 start_addr = (u64) urb->transfer_dma; 4119 start_trb = &ep_ring->enqueue->generic; 4120 start_cycle = ep_ring->cycle_state; 4121 4122 urb_priv = urb->hcpriv; 4123 /* Queue the TRBs for each TD, even if they are zero-length */ 4124 for (i = 0; i < num_tds; i++) { 4125 unsigned int total_pkt_count, max_pkt; 4126 unsigned int burst_count, last_burst_pkt_count; 4127 u32 sia_frame_id; 4128 4129 first_trb = true; 4130 running_total = 0; 4131 addr = start_addr + urb->iso_frame_desc[i].offset; 4132 td_len = urb->iso_frame_desc[i].length; 4133 td_remain_len = td_len; 4134 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4135 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4136 4137 /* A zero-length transfer still involves at least one packet. */ 4138 if (total_pkt_count == 0) 4139 total_pkt_count++; 4140 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4141 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4142 urb, total_pkt_count); 4143 4144 trbs_per_td = count_isoc_trbs_needed(urb, i); 4145 4146 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4147 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4148 if (ret < 0) { 4149 if (i == 0) 4150 return ret; 4151 goto cleanup; 4152 } 4153 td = &urb_priv->td[i]; 4154 /* use SIA as default, if frame id is used overwrite it */ 4155 sia_frame_id = TRB_SIA; 4156 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4157 HCC_CFC(xhci->hcc_params)) { 4158 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4159 if (frame_id >= 0) 4160 sia_frame_id = TRB_FRAME_ID(frame_id); 4161 } 4162 /* 4163 * Set isoc specific data for the first TRB in a TD. 4164 * Prevent HW from getting the TRBs by keeping the cycle state 4165 * inverted in the first TDs isoc TRB. 4166 */ 4167 field = TRB_TYPE(TRB_ISOC) | 4168 TRB_TLBPC(last_burst_pkt_count) | 4169 sia_frame_id | 4170 (i ? ep_ring->cycle_state : !start_cycle); 4171 4172 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4173 if (!xep->use_extended_tbc) 4174 field |= TRB_TBC(burst_count); 4175 4176 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4177 for (j = 0; j < trbs_per_td; j++) { 4178 u32 remainder = 0; 4179 4180 /* only first TRB is isoc, overwrite otherwise */ 4181 if (!first_trb) 4182 field = TRB_TYPE(TRB_NORMAL) | 4183 ep_ring->cycle_state; 4184 4185 /* Only set interrupt on short packet for IN EPs */ 4186 if (usb_urb_dir_in(urb)) 4187 field |= TRB_ISP; 4188 4189 /* Set the chain bit for all except the last TRB */ 4190 if (j < trbs_per_td - 1) { 4191 more_trbs_coming = true; 4192 field |= TRB_CHAIN; 4193 } else { 4194 more_trbs_coming = false; 4195 td->end_trb = ep_ring->enqueue; 4196 td->end_seg = ep_ring->enq_seg; 4197 field |= TRB_IOC; 4198 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4199 field |= TRB_BEI; 4200 } 4201 /* Calculate TRB length */ 4202 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4203 if (trb_buff_len > td_remain_len) 4204 trb_buff_len = td_remain_len; 4205 4206 /* Set the TRB length, TD size, & interrupter fields. */ 4207 remainder = xhci_td_remainder(xhci, running_total, 4208 trb_buff_len, td_len, 4209 urb, more_trbs_coming); 4210 4211 length_field = TRB_LEN(trb_buff_len) | 4212 TRB_INTR_TARGET(0); 4213 4214 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4215 if (first_trb && xep->use_extended_tbc) 4216 length_field |= TRB_TD_SIZE_TBC(burst_count); 4217 else 4218 length_field |= TRB_TD_SIZE(remainder); 4219 first_trb = false; 4220 4221 queue_trb(xhci, ep_ring, more_trbs_coming, 4222 lower_32_bits(addr), 4223 upper_32_bits(addr), 4224 length_field, 4225 field); 4226 running_total += trb_buff_len; 4227 4228 addr += trb_buff_len; 4229 td_remain_len -= trb_buff_len; 4230 } 4231 4232 /* Check TD length */ 4233 if (running_total != td_len) { 4234 xhci_err(xhci, "ISOC TD length unmatch\n"); 4235 ret = -EINVAL; 4236 goto cleanup; 4237 } 4238 } 4239 4240 /* store the next frame id */ 4241 if (HCC_CFC(xhci->hcc_params)) 4242 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4243 4244 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4245 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4246 usb_amd_quirk_pll_disable(); 4247 } 4248 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4249 4250 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4251 start_cycle, start_trb); 4252 return 0; 4253 cleanup: 4254 /* Clean up a partially enqueued isoc transfer. */ 4255 4256 for (i--; i >= 0; i--) 4257 list_del_init(&urb_priv->td[i].td_list); 4258 4259 /* Use the first TD as a temporary variable to turn the TDs we've queued 4260 * into No-ops with a software-owned cycle bit. That way the hardware 4261 * won't accidentally start executing bogus TDs when we partially 4262 * overwrite them. td->start_trb and td->start_seg are already set. 4263 */ 4264 urb_priv->td[0].end_trb = ep_ring->enqueue; 4265 /* Every TRB except the first & last will have its cycle bit flipped. */ 4266 td_to_noop(&urb_priv->td[0], true); 4267 4268 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4269 ep_ring->enqueue = urb_priv->td[0].start_trb; 4270 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4271 ep_ring->cycle_state = start_cycle; 4272 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4273 return ret; 4274 } 4275 4276 /* 4277 * Check transfer ring to guarantee there is enough room for the urb. 4278 * Update ISO URB start_frame and interval. 4279 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4280 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4281 * Contiguous Frame ID is not supported by HC. 4282 */ 4283 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4284 struct urb *urb, int slot_id, unsigned int ep_index) 4285 { 4286 struct xhci_virt_device *xdev; 4287 struct xhci_ring *ep_ring; 4288 struct xhci_ep_ctx *ep_ctx; 4289 int start_frame; 4290 int num_tds, num_trbs, i; 4291 int ret; 4292 struct xhci_virt_ep *xep; 4293 int ist; 4294 4295 xdev = xhci->devs[slot_id]; 4296 xep = &xhci->devs[slot_id]->eps[ep_index]; 4297 ep_ring = xdev->eps[ep_index].ring; 4298 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4299 4300 num_trbs = 0; 4301 num_tds = urb->number_of_packets; 4302 for (i = 0; i < num_tds; i++) 4303 num_trbs += count_isoc_trbs_needed(urb, i); 4304 4305 /* Check the ring to guarantee there is enough room for the whole urb. 4306 * Do not insert any td of the urb to the ring if the check failed. 4307 */ 4308 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4309 num_trbs, mem_flags); 4310 if (ret) 4311 return ret; 4312 4313 /* 4314 * Check interval value. This should be done before we start to 4315 * calculate the start frame value. 4316 */ 4317 check_interval(urb, ep_ctx); 4318 4319 /* Calculate the start frame and put it in urb->start_frame. */ 4320 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4321 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4322 urb->start_frame = xep->next_frame_id; 4323 goto skip_start_over; 4324 } 4325 } 4326 4327 start_frame = readl(&xhci->run_regs->microframe_index); 4328 start_frame &= 0x3fff; 4329 /* 4330 * Round up to the next frame and consider the time before trb really 4331 * gets scheduled by hardare. 4332 */ 4333 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4334 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4335 ist <<= 3; 4336 start_frame += ist + XHCI_CFC_DELAY; 4337 start_frame = roundup(start_frame, 8); 4338 4339 /* 4340 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4341 * is greate than 8 microframes. 4342 */ 4343 if (urb->dev->speed == USB_SPEED_LOW || 4344 urb->dev->speed == USB_SPEED_FULL) { 4345 start_frame = roundup(start_frame, urb->interval << 3); 4346 urb->start_frame = start_frame >> 3; 4347 } else { 4348 start_frame = roundup(start_frame, urb->interval); 4349 urb->start_frame = start_frame; 4350 } 4351 4352 skip_start_over: 4353 4354 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4355 } 4356 4357 /**** Command Ring Operations ****/ 4358 4359 /* Generic function for queueing a command TRB on the command ring. 4360 * Check to make sure there's room on the command ring for one command TRB. 4361 * Also check that there's room reserved for commands that must not fail. 4362 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4363 * then only check for the number of reserved spots. 4364 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4365 * because the command event handler may want to resubmit a failed command. 4366 */ 4367 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4368 u32 field1, u32 field2, 4369 u32 field3, u32 field4, bool command_must_succeed) 4370 { 4371 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4372 int ret; 4373 4374 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4375 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4376 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4377 return -ESHUTDOWN; 4378 } 4379 4380 if (!command_must_succeed) 4381 reserved_trbs++; 4382 4383 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4384 reserved_trbs, GFP_ATOMIC); 4385 if (ret < 0) { 4386 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4387 if (command_must_succeed) 4388 xhci_err(xhci, "ERR: Reserved TRB counting for " 4389 "unfailable commands failed.\n"); 4390 return ret; 4391 } 4392 4393 cmd->command_trb = xhci->cmd_ring->enqueue; 4394 4395 /* if there are no other commands queued we start the timeout timer */ 4396 if (list_empty(&xhci->cmd_list)) { 4397 xhci->current_cmd = cmd; 4398 xhci_mod_cmd_timer(xhci); 4399 } 4400 4401 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4402 4403 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4404 field4 | xhci->cmd_ring->cycle_state); 4405 return 0; 4406 } 4407 4408 /* Queue a slot enable or disable request on the command ring */ 4409 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4410 u32 trb_type, u32 slot_id) 4411 { 4412 return queue_command(xhci, cmd, 0, 0, 0, 4413 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4414 } 4415 4416 /* Queue an address device command TRB */ 4417 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4418 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4419 { 4420 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4421 upper_32_bits(in_ctx_ptr), 0, 4422 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4423 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4424 } 4425 4426 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4427 u32 field1, u32 field2, u32 field3, u32 field4) 4428 { 4429 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4430 } 4431 4432 /* Queue a reset device command TRB */ 4433 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4434 u32 slot_id) 4435 { 4436 return queue_command(xhci, cmd, 0, 0, 0, 4437 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4438 false); 4439 } 4440 4441 /* Queue a configure endpoint command TRB */ 4442 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4443 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4444 u32 slot_id, bool command_must_succeed) 4445 { 4446 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4447 upper_32_bits(in_ctx_ptr), 0, 4448 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4449 command_must_succeed); 4450 } 4451 4452 /* Queue a get root hub port bandwidth command TRB */ 4453 int xhci_queue_get_port_bw(struct xhci_hcd *xhci, 4454 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4455 u8 dev_speed, bool command_must_succeed) 4456 { 4457 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4458 upper_32_bits(in_ctx_ptr), 0, 4459 TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), 4460 command_must_succeed); 4461 } 4462 4463 /* Queue an evaluate context command TRB */ 4464 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4465 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4466 { 4467 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4468 upper_32_bits(in_ctx_ptr), 0, 4469 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4470 command_must_succeed); 4471 } 4472 4473 /* 4474 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4475 * activity on an endpoint that is about to be suspended. 4476 */ 4477 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4478 int slot_id, unsigned int ep_index, int suspend) 4479 { 4480 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4481 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4482 u32 type = TRB_TYPE(TRB_STOP_RING); 4483 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4484 4485 return queue_command(xhci, cmd, 0, 0, 0, 4486 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4487 } 4488 4489 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4490 int slot_id, unsigned int ep_index, 4491 enum xhci_ep_reset_type reset_type) 4492 { 4493 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4494 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4495 u32 type = TRB_TYPE(TRB_RESET_EP); 4496 4497 if (reset_type == EP_SOFT_RESET) 4498 type |= TRB_TSP; 4499 4500 return queue_command(xhci, cmd, 0, 0, 0, 4501 trb_slot_id | trb_ep_index | type, false); 4502 } 4503