1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7 
8 #ifndef __DWC2_CORE_H__
9 #define __DWC2_CORE_H__
10 
11 #include <linux/acpi.h>
12 #include <linux/phy/phy.h>
13 #include <linux/regulator/consumer.h>
14 #include <linux/usb/gadget.h>
15 #include <linux/usb/otg.h>
16 #include <linux/usb/phy.h>
17 #include "hw.h"
18 
19 /*
20  * Suggested defines for tracers:
21  * - no_printk:    Disable tracing
22  * - pr_info:      Print this info to the console
23  * - trace_printk: Print this info to trace buffer (good for verbose logging)
24  */
25 
26 #define DWC2_TRACE_SCHEDULER		no_printk
27 #define DWC2_TRACE_SCHEDULER_VB		no_printk
28 
29 /* Detailed scheduler tracing, but won't overwhelm console */
30 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
31 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
32 			     dev_name(hsotg->dev), ##__VA_ARGS__)
33 
34 /* Verbose scheduler tracing */
35 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
36 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
37 				dev_name(hsotg->dev), ##__VA_ARGS__)
38 
39 /* Maximum number of Endpoints/HostChannels */
40 #define MAX_EPS_CHANNELS	16
41 
42 /* dwc2-hsotg declarations */
43 static const char * const dwc2_hsotg_supply_names[] = {
44 	"vusb_d",               /* digital USB supply, 1.2V */
45 	"vusb_a",               /* analog USB supply, 1.1V */
46 };
47 
48 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
49 
50 /*
51  * EP0_MPS_LIMIT
52  *
53  * Unfortunately there seems to be a limit of the amount of data that can
54  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
55  * packets (which practically means 1 packet and 63 bytes of data) when the
56  * MPS is set to 64.
57  *
58  * This means if we are wanting to move >127 bytes of data, we need to
59  * split the transactions up, but just doing one packet at a time does
60  * not work (this may be an implicit DATA0 PID on first packet of the
61  * transaction) and doing 2 packets is outside the controller's limits.
62  *
63  * If we try to lower the MPS size for EP0, then no transfers work properly
64  * for EP0, and the system will fail basic enumeration. As no cause for this
65  * has currently been found, we cannot support any large IN transfers for
66  * EP0.
67  */
68 #define EP0_MPS_LIMIT   64
69 
70 struct dwc2_hsotg;
71 struct dwc2_hsotg_req;
72 
73 /**
74  * struct dwc2_hsotg_ep - driver endpoint definition.
75  * @ep: The gadget layer representation of the endpoint.
76  * @name: The driver generated name for the endpoint.
77  * @queue: Queue of requests for this endpoint.
78  * @parent: Reference back to the parent device structure.
79  * @req: The current request that the endpoint is processing. This is
80  *       used to indicate an request has been loaded onto the endpoint
81  *       and has yet to be completed (maybe due to data move, or simply
82  *       awaiting an ack from the core all the data has been completed).
83  * @debugfs: File entry for debugfs file for this endpoint.
84  * @dir_in: Set to true if this endpoint is of the IN direction, which
85  *          means that it is sending data to the Host.
86  * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
87  * @index: The index for the endpoint registers.
88  * @mc: Multi Count - number of transactions per microframe
89  * @interval: Interval for periodic endpoints, in frames or microframes.
90  * @name: The name array passed to the USB core.
91  * @halted: Set if the endpoint has been halted.
92  * @periodic: Set if this is a periodic ep, such as Interrupt
93  * @isochronous: Set if this is a isochronous ep
94  * @send_zlp: Set if we need to send a zero-length packet.
95  * @wedged: Set if ep is wedged.
96  * @desc_list_dma: The DMA address of descriptor chain currently in use.
97  * @desc_list: Pointer to descriptor DMA chain head currently in use.
98  * @desc_count: Count of entries within the DMA descriptor chain of EP.
99  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
100  * @compl_desc: index of next descriptor to be completed by xFerComplete
101  * @total_data: The total number of data bytes done.
102  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
103  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
104  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
105  * @last_load: The offset of data for the last start of request.
106  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
107  * @target_frame: Targeted frame num to setup next ISOC transfer
108  * @frame_overrun: Indicates SOF number overrun in DSTS
109  *
110  * This is the driver's state for each registered endpoint, allowing it
111  * to keep track of transactions that need doing. Each endpoint has a
112  * lock to protect the state, to try and avoid using an overall lock
113  * for the host controller as much as possible.
114  *
115  * For periodic IN endpoints, we have fifo_size and fifo_load to try
116  * and keep track of the amount of data in the periodic FIFO for each
117  * of these as we don't have a status register that tells us how much
118  * is in each of them. (note, this may actually be useless information
119  * as in shared-fifo mode periodic in acts like a single-frame packet
120  * buffer than a fifo)
121  */
122 struct dwc2_hsotg_ep {
123 	struct usb_ep           ep;
124 	struct list_head        queue;
125 	struct dwc2_hsotg       *parent;
126 	struct dwc2_hsotg_req    *req;
127 	struct dentry           *debugfs;
128 
129 	unsigned long           total_data;
130 	unsigned int            size_loaded;
131 	unsigned int            last_load;
132 	unsigned int            fifo_load;
133 	unsigned short          fifo_size;
134 	unsigned short		fifo_index;
135 
136 	unsigned char           dir_in;
137 	unsigned char           map_dir;
138 	unsigned char           index;
139 	unsigned char           mc;
140 	u16                     interval;
141 
142 	unsigned int            halted:1;
143 	unsigned int            periodic:1;
144 	unsigned int            isochronous:1;
145 	unsigned int            send_zlp:1;
146 	unsigned int            wedged:1;
147 	unsigned int            target_frame;
148 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
149 	bool			frame_overrun;
150 
151 	dma_addr_t		desc_list_dma;
152 	struct dwc2_dma_desc	*desc_list;
153 	u8			desc_count;
154 
155 	unsigned int		next_desc;
156 	unsigned int		compl_desc;
157 
158 	char                    name[10];
159 };
160 
161 /**
162  * struct dwc2_hsotg_req - data transfer request
163  * @req: The USB gadget request
164  * @queue: The list of requests for the endpoint this is queued for.
165  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
166  */
167 struct dwc2_hsotg_req {
168 	struct usb_request      req;
169 	struct list_head        queue;
170 	void *saved_req_buf;
171 };
172 
173 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
174 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
175 #define call_gadget(_hs, _entry) \
176 do { \
177 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
178 		(_hs)->driver && (_hs)->driver->_entry) { \
179 		spin_unlock(&_hs->lock); \
180 		(_hs)->driver->_entry(&(_hs)->gadget); \
181 		spin_lock(&_hs->lock); \
182 	} \
183 } while (0)
184 #else
185 #define call_gadget(_hs, _entry)	do {} while (0)
186 #endif
187 
188 struct dwc2_hsotg;
189 struct dwc2_host_chan;
190 
191 /* Device States */
192 enum dwc2_lx_state {
193 	DWC2_L0,	/* On state */
194 	DWC2_L1,	/* LPM sleep state */
195 	DWC2_L2,	/* USB suspend state */
196 	DWC2_L3,	/* Off state */
197 };
198 
199 /* Gadget ep0 states */
200 enum dwc2_ep0_state {
201 	DWC2_EP0_SETUP,
202 	DWC2_EP0_DATA_IN,
203 	DWC2_EP0_DATA_OUT,
204 	DWC2_EP0_STATUS_IN,
205 	DWC2_EP0_STATUS_OUT,
206 };
207 
208 /**
209  * struct dwc2_core_params - Parameters for configuring the core
210  *
211  * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
212  *                      used to setup the:
213  *                       - HNP and SRP capable
214  *                       - SRP Only capable
215  *                       - No HNP/SRP capable (always available)
216  *                       Defaults to best available option
217  *                       - OTG revision number the device is compliant with, in binary-coded
218  *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
219  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
220  *                      the data FIFOs. The driver will automatically detect the
221  *                      value for this parameter if none is specified.
222  *                       0 - Slave (always available)
223  *                       1 - DMA (default, if available)
224  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
225  *                      address DMA mode or descriptor DMA mode for accessing
226  *                      the data FIFOs. The driver will automatically detect the
227  *                      value for this if none is specified.
228  *                       0 - Address DMA
229  *                       1 - Descriptor DMA (default, if available)
230  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
231  *                      address DMA mode or descriptor DMA mode for accessing
232  *                      the data FIFOs in Full Speed mode only. The driver
233  *                      will automatically detect the value for this if none is
234  *                      specified.
235  *                       0 - Address DMA
236  *                       1 - Descriptor DMA in FS (default, if available)
237  * @speed:              Specifies the maximum speed of operation in host and
238  *                      device mode. The actual speed depends on the speed of
239  *                      the attached device and the value of phy_type.
240  *                       0 - High Speed
241  *                           (default when phy_type is UTMI+ or ULPI)
242  *                       1 - Full Speed
243  *                           (default when phy_type is Full Speed)
244  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
245  *                       1 - Allow dynamic FIFO sizing (default, if available)
246  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
247  *                      are enabled for non-periodic IN endpoints in device
248  *                      mode.
249  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
250  *                      dynamic FIFO sizing is enabled
251  *                       16 to 32768
252  *                      Actual maximum value is autodetected and also
253  *                      the default.
254  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
255  *                      in host mode when dynamic FIFO sizing is enabled
256  *                       16 to 32768
257  *                      Actual maximum value is autodetected and also
258  *                      the default.
259  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
260  *                      host mode when dynamic FIFO sizing is enabled
261  *                       16 to 32768
262  *                      Actual maximum value is autodetected and also
263  *                      the default.
264  * @max_transfer_size:  The maximum transfer size supported, in bytes
265  *                       2047 to 65,535
266  *                      Actual maximum value is autodetected and also
267  *                      the default.
268  * @max_packet_count:   The maximum number of packets in a transfer
269  *                       15 to 511
270  *                      Actual maximum value is autodetected and also
271  *                      the default.
272  * @host_channels:      The number of host channel registers to use
273  *                       1 to 16
274  *                      Actual maximum value is autodetected and also
275  *                      the default.
276  * @phy_type:           Specifies the type of PHY interface to use. By default,
277  *                      the driver will automatically detect the phy_type.
278  *                       0 - Full Speed Phy
279  *                       1 - UTMI+ Phy
280  *                       2 - ULPI Phy
281  *                      Defaults to best available option (2, 1, then 0)
282  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
283  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
284  *                      ULPI phy_type, this parameter indicates the data width
285  *                      between the MAC and the ULPI Wrapper.) Also, this
286  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
287  *                      parameter was set to "8 and 16 bits", meaning that the
288  *                      core has been configured to work at either data path
289  *                      width.
290  *                       8 or 16 (default 16 if available)
291  * @eusb2_disc:         Specifies whether eUSB2 PHY disconnect support flow
292  *                      applicable or no. Applicable in device mode of HSOTG
293  *                      and HS IOT cores v5.00 or higher.
294  *                       0 - eUSB2 PHY disconnect support flow not applicable
295  *                       1 - eUSB2 PHY disconnect support flow applicable
296  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
297  *                      data rate. This parameter is only applicable if phy_type
298  *                      is ULPI.
299  *                       0 - single data rate ULPI interface with 8 bit wide
300  *                           data bus (default)
301  *                       1 - double data rate ULPI interface with 4 bit wide
302  *                           data bus
303  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
304  *                      external supply to drive the VBus
305  *                       0 - Internal supply (default)
306  *                       1 - External supply
307  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
308  *                      speed PHY. This parameter is only applicable if phy_type
309  *                      is FS.
310  *                       0 - No (default)
311  *                       1 - Yes
312  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
313  *                       0 - Disable (default)
314  *                       1 - Enable
315  * @acg_enable:		For enabling Active Clock Gating in the controller
316  *                       0 - No
317  *                       1 - Yes
318  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
319  *                       0 - No (default)
320  *                       1 - Yes
321  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
322  *                      when attached to a Full Speed or Low Speed device in
323  *                      host mode.
324  *                       0 - Don't support low power mode (default)
325  *                       1 - Support low power mode
326  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
327  *                      when connected to a Low Speed device in host
328  *                      mode. This parameter is applicable only if
329  *                      host_support_fs_ls_low_power is enabled.
330  *                       0 - 48 MHz
331  *                           (default when phy_type is UTMI+ or ULPI)
332  *                       1 - 6 MHz
333  *                           (default when phy_type is Full Speed)
334  * @oc_disable:		Flag to disable overcurrent condition.
335  *			0 - Allow overcurrent condition to get detected
336  *			1 - Disable overcurrent condtion to get detected
337  * @ts_dline:           Enable Term Select Dline pulsing
338  *                       0 - No (default)
339  *                       1 - Yes
340  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
341  *                       0 - No (default for core < 2.92a)
342  *                       1 - Yes (default for core >= 2.92a)
343  * @ahbcfg:             This field allows the default value of the GAHBCFG
344  *                      register to be overridden
345  *                       -1         - GAHBCFG value will be set to 0x06
346  *                                    (INCR, default)
347  *                       all others - GAHBCFG value will be overridden with
348  *                                    this value
349  *                      Not all bits can be controlled like this, the
350  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
351  *                      by the driver and are ignored in this
352  *                      configuration value.
353  * @uframe_sched:       True to enable the microframe scheduler
354  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
355  *                      Disable CONIDSTSCHNG controller interrupt in such
356  *                      case.
357  *                      0 - No (default)
358  *                      1 - Yes
359  * @power_down:         Specifies whether the controller support power_down.
360  *			If power_down is enabled, the controller will enter
361  *			power_down in both peripheral and host mode when
362  *			needed.
363  *			0 - No (default)
364  *			1 - Partial power down
365  *			2 - Hibernation
366  * @no_clock_gating:	Specifies whether to avoid clock gating feature.
367  *			0 - No (use clock gating)
368  *			1 - Yes (avoid it)
369  * @lpm:		Enable LPM support.
370  *			0 - No
371  *			1 - Yes
372  * @lpm_clock_gating:		Enable core PHY clock gating.
373  *			0 - No
374  *			1 - Yes
375  * @besl:		Enable LPM Errata support.
376  *			0 - No
377  *			1 - Yes
378  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
379  *			0 - No
380  *			1 - Yes
381  * @hird_threshold:	Value of BESL or HIRD Threshold.
382  * @ref_clk_per:        Indicates in terms of pico seconds the period
383  *                      of ref_clk.
384  *			62500 - 16MHz
385  *                      58823 - 17MHz
386  *                      52083 - 19.2MHz
387  *			50000 - 20MHz
388  *			41666 - 24MHz
389  *			33333 - 30MHz (default)
390  *			25000 - 40MHz
391  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
392  *                      the controller should generate an interrupt if the
393  *                      device had been in L1 state until that period.
394  *                      This is used by SW to initiate Remote WakeUp in the
395  *                      controller so as to sync to the uF number from the host.
396  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
397  *			register.
398  *			0 - Deactivate the transceiver (default)
399  *			1 - Activate the transceiver
400  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
401  *			detection using GGPIO register.
402  *			0 - Deactivate the external level detection (default)
403  *			1 - Activate the external level detection
404  * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
405  *			detection.
406  *			0 - Deactivate the overcurrent detection
407  *			1 - Activate the overcurrent detection (default)
408  * @g_dma:              Enables gadget dma usage (default: autodetect).
409  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
410  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
411  *			DWORDS from 16-32768 (default: 2048 if
412  *			possible, otherwise autodetect).
413  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
414  *			DWORDS from 16-32768 (default: 1024 if
415  *			possible, otherwise autodetect).
416  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
417  *			mode. Each value corresponds to one EP
418  *			starting from EP1 (max 15 values). Sizes are
419  *			in DWORDS with possible values from
420  *			16-32768 (default: 256, 256, 256, 256, 768,
421  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
422  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
423  *                      while full&low speed device connect. And change speed
424  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
425  *			0 - No (default)
426  *			1 - Yes
427  * @service_interval:   Enable service interval based scheduling.
428  *                      0 - No
429  *                      1 - Yes
430  *
431  * The following parameters may be specified when starting the module. These
432  * parameters define how the DWC_otg controller should be configured. A
433  * value of -1 (or any other out of range value) for any parameter means
434  * to read the value from hardware (if possible) or use the builtin
435  * default described above.
436  */
437 struct dwc2_core_params {
438 	struct usb_otg_caps otg_caps;
439 	u8 phy_type;
440 #define DWC2_PHY_TYPE_PARAM_FS		0
441 #define DWC2_PHY_TYPE_PARAM_UTMI	1
442 #define DWC2_PHY_TYPE_PARAM_ULPI	2
443 
444 	u8 speed;
445 #define DWC2_SPEED_PARAM_HIGH	0
446 #define DWC2_SPEED_PARAM_FULL	1
447 #define DWC2_SPEED_PARAM_LOW	2
448 
449 	u8 phy_utmi_width;
450 	bool eusb2_disc;
451 	bool phy_ulpi_ddr;
452 	bool phy_ulpi_ext_vbus;
453 	bool enable_dynamic_fifo;
454 	bool en_multiple_tx_fifo;
455 	bool i2c_enable;
456 	bool acg_enable;
457 	bool ulpi_fs_ls;
458 	bool ts_dline;
459 	bool reload_ctl;
460 	bool uframe_sched;
461 	bool external_id_pin_ctl;
462 
463 	int power_down;
464 #define DWC2_POWER_DOWN_PARAM_NONE		0
465 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
466 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
467 	bool no_clock_gating;
468 
469 	bool lpm;
470 	bool lpm_clock_gating;
471 	bool besl;
472 	bool hird_threshold_en;
473 	bool service_interval;
474 	u8 hird_threshold;
475 	bool activate_stm_fs_transceiver;
476 	bool activate_stm_id_vb_detection;
477 	bool activate_ingenic_overcurrent_detection;
478 	bool ipg_isoc_en;
479 	u16 max_packet_count;
480 	u32 max_transfer_size;
481 	u32 ahbcfg;
482 
483 	/* GREFCLK parameters */
484 	u32 ref_clk_per;
485 	u16 sof_cnt_wkup_alert;
486 
487 	/* Host parameters */
488 	bool host_dma;
489 	bool dma_desc_enable;
490 	bool dma_desc_fs_enable;
491 	bool host_support_fs_ls_low_power;
492 	bool host_ls_low_power_phy_clk;
493 	bool oc_disable;
494 
495 	u8 host_channels;
496 	u16 host_rx_fifo_size;
497 	u16 host_nperio_tx_fifo_size;
498 	u16 host_perio_tx_fifo_size;
499 
500 	/* Gadget parameters */
501 	bool g_dma;
502 	bool g_dma_desc;
503 	u32 g_rx_fifo_size;
504 	u32 g_np_tx_fifo_size;
505 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
506 
507 	bool change_speed_quirk;
508 };
509 
510 /**
511  * struct dwc2_hw_params - Autodetected parameters.
512  *
513  * These parameters are the various parameters read from hardware
514  * registers during initialization. They typically contain the best
515  * supported or maximum value that can be configured in the
516  * corresponding dwc2_core_params value.
517  *
518  * The values that are not in dwc2_core_params are documented below.
519  *
520  * @op_mode:             Mode of Operation
521  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
522  *                       1 - SRP-Capable OTG (Host & Device)
523  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
524  *                       3 - SRP-Capable Device
525  *                       4 - Non-OTG Device
526  *                       5 - SRP-Capable Host
527  *                       6 - Non-OTG Host
528  * @arch:                Architecture
529  *                       0 - Slave only
530  *                       1 - External DMA
531  *                       2 - Internal DMA
532  * @ipg_isoc_en:        This feature indicates that the controller supports
533  *                      the worst-case scenario of Rx followed by Rx
534  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
535  *                      specification for any token following ISOC OUT token.
536  *                       0 - Don't support
537  *                       1 - Support
538  * @power_optimized:    Are power optimizations enabled?
539  * @num_dev_ep:         Number of device endpoints available
540  * @num_dev_in_eps:     Number of device IN endpoints available
541  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
542  *                       available
543  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
544  *                      Depth
545  *                       0 to 30
546  * @host_perio_tx_q_depth:
547  *                      Host Mode Periodic Request Queue Depth
548  *                       2, 4 or 8
549  * @nperio_tx_q_depth:
550  *                      Non-Periodic Request Queue Depth
551  *                       2, 4 or 8
552  * @hs_phy_type:         High-speed PHY interface type
553  *                       0 - High-speed interface not supported
554  *                       1 - UTMI+
555  *                       2 - ULPI
556  *                       3 - UTMI+ and ULPI
557  * @fs_phy_type:         Full-speed PHY interface type
558  *                       0 - Full speed interface not supported
559  *                       1 - Dedicated full speed interface
560  *                       2 - FS pins shared with UTMI+ pins
561  *                       3 - FS pins shared with ULPI pins
562  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
563  * @hibernation:	Is hibernation enabled?
564  * @utmi_phy_data_width: UTMI+ PHY data width
565  *                       0 - 8 bits
566  *                       1 - 16 bits
567  *                       2 - 8 or 16 bits
568  * @snpsid:             Value from SNPSID register
569  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
570  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
571  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
572  *                      address DMA mode or descriptor DMA mode for accessing
573  *                      the data FIFOs. The driver will automatically detect the
574  *                      value for this if none is specified.
575  *                       0 - Address DMA
576  *                       1 - Descriptor DMA (default, if available)
577  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
578  *                       1 - Allow dynamic FIFO sizing (default, if available)
579  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
580  *                      are enabled for non-periodic IN endpoints in device
581  *                      mode.
582  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
583  *                      in host mode when dynamic FIFO sizing is enabled
584  *                       16 to 32768
585  *                      Actual maximum value is autodetected and also
586  *                      the default.
587  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
588  *                      host mode when dynamic FIFO sizing is enabled
589  *                       16 to 32768
590  *                      Actual maximum value is autodetected and also
591  *                      the default.
592  * @max_transfer_size:  The maximum transfer size supported, in bytes
593  *                       2047 to 65,535
594  *                      Actual maximum value is autodetected and also
595  *                      the default.
596  * @max_packet_count:   The maximum number of packets in a transfer
597  *                       15 to 511
598  *                      Actual maximum value is autodetected and also
599  *                      the default.
600  * @host_channels:      The number of host channel registers to use
601  *                       1 to 16
602  *                      Actual maximum value is autodetected and also
603  *                      the default.
604  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
605  *			     in device mode when dynamic FIFO sizing is enabled
606  *			     16 to 32768
607  *			     Actual maximum value is autodetected and also
608  *			     the default.
609  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
610  *                      speed PHY. This parameter is only applicable if phy_type
611  *                      is FS.
612  *                       0 - No (default)
613  *                       1 - Yes
614  * @acg_enable:		For enabling Active Clock Gating in the controller
615  *                       0 - Disable
616  *                       1 - Enable
617  * @lpm_mode:		For enabling Link Power Management in the controller
618  *                       0 - Disable
619  *                       1 - Enable
620  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
621  *			FIFO sizing is enabled 16 to 32768
622  *			Actual maximum value is autodetected and also
623  *			the default.
624  * @service_interval_mode: For enabling service interval based scheduling in the
625  *                         controller.
626  *                           0 - Disable
627  *                           1 - Enable
628  */
629 struct dwc2_hw_params {
630 	unsigned op_mode:3;
631 	unsigned arch:2;
632 	unsigned dma_desc_enable:1;
633 	unsigned enable_dynamic_fifo:1;
634 	unsigned en_multiple_tx_fifo:1;
635 	unsigned rx_fifo_size:16;
636 	unsigned host_nperio_tx_fifo_size:16;
637 	unsigned dev_nperio_tx_fifo_size:16;
638 	unsigned host_perio_tx_fifo_size:16;
639 	unsigned nperio_tx_q_depth:3;
640 	unsigned host_perio_tx_q_depth:3;
641 	unsigned dev_token_q_depth:5;
642 	unsigned max_transfer_size:26;
643 	unsigned max_packet_count:11;
644 	unsigned host_channels:5;
645 	unsigned hs_phy_type:2;
646 	unsigned fs_phy_type:2;
647 	unsigned i2c_enable:1;
648 	unsigned acg_enable:1;
649 	unsigned num_dev_ep:4;
650 	unsigned num_dev_in_eps : 4;
651 	unsigned num_dev_perio_in_ep:4;
652 	unsigned total_fifo_size:16;
653 	unsigned power_optimized:1;
654 	unsigned hibernation:1;
655 	unsigned utmi_phy_data_width:2;
656 	unsigned lpm_mode:1;
657 	unsigned ipg_isoc_en:1;
658 	unsigned service_interval_mode:1;
659 	u32 snpsid;
660 	u32 dev_ep_dirs;
661 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
662 };
663 
664 /* Size of control and EP0 buffers */
665 #define DWC2_CTRL_BUFF_SIZE 8
666 
667 /**
668  * struct dwc2_gregs_backup - Holds global registers state before
669  * entering partial power down
670  * @gintsts:		Backup of GINTSTS register
671  * @gotgctl:		Backup of GOTGCTL register
672  * @gintmsk:		Backup of GINTMSK register
673  * @gahbcfg:		Backup of GAHBCFG register
674  * @gusbcfg:		Backup of GUSBCFG register
675  * @grxfsiz:		Backup of GRXFSIZ register
676  * @gnptxfsiz:		Backup of GNPTXFSIZ register
677  * @gi2cctl:		Backup of GI2CCTL register
678  * @glpmcfg:		Backup of GLPMCFG register
679  * @gdfifocfg:		Backup of GDFIFOCFG register
680  * @pcgcctl:		Backup of PCGCCTL register
681  * @pcgcctl1:		Backup of PCGCCTL1 register
682  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
683  * @gpwrdn:		Backup of GPWRDN register
684  * @valid:		True if registers values backuped.
685  */
686 struct dwc2_gregs_backup {
687 	u32 gintsts;
688 	u32 gotgctl;
689 	u32 gintmsk;
690 	u32 gahbcfg;
691 	u32 gusbcfg;
692 	u32 grxfsiz;
693 	u32 gnptxfsiz;
694 	u32 gi2cctl;
695 	u32 glpmcfg;
696 	u32 pcgcctl;
697 	u32 pcgcctl1;
698 	u32 gdfifocfg;
699 	u32 gpwrdn;
700 	bool valid;
701 };
702 
703 /**
704  * struct dwc2_dregs_backup - Holds device registers state before
705  * entering partial power down
706  * @dcfg:		Backup of DCFG register
707  * @dctl:		Backup of DCTL register
708  * @daintmsk:		Backup of DAINTMSK register
709  * @diepmsk:		Backup of DIEPMSK register
710  * @doepmsk:		Backup of DOEPMSK register
711  * @diepctl:		Backup of DIEPCTL register
712  * @dieptsiz:		Backup of DIEPTSIZ register
713  * @diepdma:		Backup of DIEPDMA register
714  * @doepctl:		Backup of DOEPCTL register
715  * @doeptsiz:		Backup of DOEPTSIZ register
716  * @doepdma:		Backup of DOEPDMA register
717  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
718  * @valid:      True if registers values backuped.
719  */
720 struct dwc2_dregs_backup {
721 	u32 dcfg;
722 	u32 dctl;
723 	u32 daintmsk;
724 	u32 diepmsk;
725 	u32 doepmsk;
726 	u32 diepctl[MAX_EPS_CHANNELS];
727 	u32 dieptsiz[MAX_EPS_CHANNELS];
728 	u32 diepdma[MAX_EPS_CHANNELS];
729 	u32 doepctl[MAX_EPS_CHANNELS];
730 	u32 doeptsiz[MAX_EPS_CHANNELS];
731 	u32 doepdma[MAX_EPS_CHANNELS];
732 	u32 dtxfsiz[MAX_EPS_CHANNELS];
733 	bool valid;
734 };
735 
736 /**
737  * struct dwc2_hregs_backup - Holds host registers state before
738  * entering partial power down
739  * @hcfg:		Backup of HCFG register
740  * @hflbaddr:		Backup of HFLBADDR register
741  * @haintmsk:		Backup of HAINTMSK register
742  * @hcchar:		Backup of HCCHAR register
743  * @hcsplt:		Backup of HCSPLT register
744  * @hcintmsk:		Backup of HCINTMSK register
745  * @hctsiz:		Backup of HCTSIZ register
746  * @hdma:		Backup of HCDMA register
747  * @hcdmab:		Backup of HCDMAB register
748  * @hprt0:		Backup of HPTR0 register
749  * @hfir:		Backup of HFIR register
750  * @hptxfsiz:		Backup of HPTXFSIZ register
751  * @valid:      True if registers values backuped.
752  */
753 struct dwc2_hregs_backup {
754 	u32 hcfg;
755 	u32 hflbaddr;
756 	u32 haintmsk;
757 	u32 hcchar[MAX_EPS_CHANNELS];
758 	u32 hcsplt[MAX_EPS_CHANNELS];
759 	u32 hcintmsk[MAX_EPS_CHANNELS];
760 	u32 hctsiz[MAX_EPS_CHANNELS];
761 	u32 hcidma[MAX_EPS_CHANNELS];
762 	u32 hcidmab[MAX_EPS_CHANNELS];
763 	u32 hprt0;
764 	u32 hfir;
765 	u32 hptxfsiz;
766 	bool valid;
767 };
768 
769 /*
770  * Constants related to high speed periodic scheduling
771  *
772  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
773  * reservation point of view it's assumed that the schedule goes right back to
774  * the beginning after the end of the schedule.
775  *
776  * What does that mean for scheduling things with a long interval?  It means
777  * we'll reserve time for them in every possible microframe that they could
778  * ever be scheduled in.  ...but we'll still only actually schedule them as
779  * often as they were requested.
780  *
781  * We keep our schedule in a "bitmap" structure.  This simplifies having
782  * to keep track of and merge intervals: we just let the bitmap code do most
783  * of the heavy lifting.  In a way scheduling is much like memory allocation.
784  *
785  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
786  * supposed to schedule for periodic transfers).  That's according to spec.
787  *
788  * Note that though we only schedule 80% of each microframe, the bitmap that we
789  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
790  * space for each uFrame).
791  *
792  * Requirements:
793  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
794  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
795  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
796  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
797  */
798 #define DWC2_US_PER_UFRAME		125
799 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
800 
801 #define DWC2_HS_SCHEDULE_UFRAMES	8
802 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
803 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
804 
805 /*
806  * Constants related to low speed scheduling
807  *
808  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
809  * so we make up a unit called a "slice" that's worth 25us.  There are 40
810  * slices in a full frame and we can schedule 36 of those (90%) for periodic
811  * transfers.
812  *
813  * Our low speed schedule can be as short as 1 frame or could be longer.  When
814  * we only schedule 1 frame it means that we'll need to reserve a time every
815  * frame even for things that only transfer very rarely, so something that runs
816  * every 2048 frames will get time reserved in every frame.  Our low speed
817  * schedule can be longer and we'll be able to handle more overlap, but that
818  * will come at increased memory cost and increased time to schedule.
819  *
820  * Note: one other advantage of a short low speed schedule is that if we mess
821  * up and miss scheduling we can jump in and use any of the slots that we
822  * happened to reserve.
823  *
824  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
825  * the schedule.  There will be one schedule per TT.
826  *
827  * Requirements:
828  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
829  */
830 #define DWC2_US_PER_SLICE	25
831 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
832 
833 #define DWC2_ROUND_US_TO_SLICE(us) \
834 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
835 				 DWC2_US_PER_SLICE)
836 
837 #define DWC2_LS_PERIODIC_US_PER_FRAME \
838 				900
839 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
840 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
841 				 DWC2_US_PER_SLICE)
842 
843 #define DWC2_LS_SCHEDULE_FRAMES	1
844 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
845 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
846 
847 /**
848  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
849  * and periodic schedules
850  *
851  * These are common for both host and peripheral modes:
852  *
853  * @dev:                The struct device pointer
854  * @regs:		Pointer to controller regs
855  * @hw_params:          Parameters that were autodetected from the
856  *                      hardware registers
857  * @params:	Parameters that define how the core should be configured
858  * @op_state:           The operational State, during transitions (a_host=>
859  *                      a_peripheral and b_device=>b_host) this may not match
860  *                      the core, but allows the software to determine
861  *                      transitions
862  * @dr_mode:            Requested mode of operation, one of following:
863  *                      - USB_DR_MODE_PERIPHERAL
864  *                      - USB_DR_MODE_HOST
865  *                      - USB_DR_MODE_OTG
866  * @role_sw:		usb_role_switch handle
867  * @role_sw_default_mode: default operation mode of controller while usb role
868  *			is USB_ROLE_NONE
869  * @hcd_enabled:	Host mode sub-driver initialization indicator.
870  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
871  * @ll_hw_enabled:	Status of low-level hardware resources.
872  * @hibernated:		True if core is hibernated
873  * @in_ppd:		True if core is partial power down mode.
874  * @bus_suspended:	True if bus is suspended
875  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
876  *			remote wakeup.
877  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
878  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
879  *			suspend if we need USB to wake us up.
880  * @frame_number:       Frame number read from the core. For both device
881  *			and host modes. The value ranges are from 0
882  *			to HFNUM_MAX_FRNUM.
883  * @phy:                The otg phy transceiver structure for phy control.
884  * @uphy:               The otg phy transceiver structure for old USB phy
885  *                      control.
886  * @plat:               The platform specific configuration data. This can be
887  *                      removed once all SoCs support usb transceiver.
888  * @supplies:           Definition of USB power supplies
889  * @vbus_supply:        Regulator supplying vbus.
890  * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
891  *			supply ID and VBUS detection hardware.
892  * @lock:		Spinlock that protects all the driver data structures
893  * @priv:		Stores a pointer to the struct usb_hcd
894  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
895  *                      transfer are in process of being queued
896  * @srp_success:        Stores status of SRP request in the case of a FS PHY
897  *                      with an I2C interface
898  * @wq_otg:             Workqueue object used for handling of some interrupts
899  * @wf_otg:             Work object for handling Connector ID Status Change
900  *                      interrupt
901  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
902  * @lx_state:           Lx state of connected device
903  * @gr_backup: Backup of global registers during suspend
904  * @dr_backup: Backup of device registers during suspend
905  * @hr_backup: Backup of host registers during suspend
906  * @needs_byte_swap:		Specifies whether the opposite endianness.
907  *
908  * These are for host mode:
909  *
910  * @flags:              Flags for handling root port state changes
911  * @flags.d32:          Contain all root port flags
912  * @flags.b:            Separate root port flags from each other
913  * @flags.b.port_connect_status_change: True if root port connect status
914  *                      changed
915  * @flags.b.port_connect_status: True if device connected to root port
916  * @flags.b.port_reset_change: True if root port reset status changed
917  * @flags.b.port_enable_change: True if root port enable status changed
918  * @flags.b.port_suspend_change: True if root port suspend status changed
919  * @flags.b.port_over_current_change: True if root port over current state
920  *                       changed.
921  * @flags.b.port_l1_change: True if root port l1 status changed
922  * @flags.b.reserved:   Reserved bits of root port register
923  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
924  *                      Transfers associated with these QHs are not currently
925  *                      assigned to a host channel.
926  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
927  *                      Transfers associated with these QHs are currently
928  *                      assigned to a host channel.
929  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
930  *                      non-periodic schedule
931  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
932  *                      Transfers associated with these QHs are not currently
933  *                      assigned to a host channel.
934  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
935  *                      list of QHs for periodic transfers that are _not_
936  *                      scheduled for the next frame. Each QH in the list has an
937  *                      interval counter that determines when it needs to be
938  *                      scheduled for execution. This scheduling mechanism
939  *                      allows only a simple calculation for periodic bandwidth
940  *                      used (i.e. must assume that all periodic transfers may
941  *                      need to execute in the same frame). However, it greatly
942  *                      simplifies scheduling and should be sufficient for the
943  *                      vast majority of OTG hosts, which need to connect to a
944  *                      small number of peripherals at one time. Items move from
945  *                      this list to periodic_sched_ready when the QH interval
946  *                      counter is 0 at SOF.
947  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
948  *                      the next frame, but have not yet been assigned to host
949  *                      channels. Items move from this list to
950  *                      periodic_sched_assigned as host channels become
951  *                      available during the current frame.
952  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
953  *                      frame that are assigned to host channels. Items move
954  *                      from this list to periodic_sched_queued as the
955  *                      transactions for the QH are queued to the DWC_otg
956  *                      controller.
957  * @periodic_sched_queued: List of periodic QHs that have been queued for
958  *                      execution. Items move from this list to either
959  *                      periodic_sched_inactive or periodic_sched_ready when the
960  *                      channel associated with the transfer is released. If the
961  *                      interval for the QH is 1, the item moves to
962  *                      periodic_sched_ready because it must be rescheduled for
963  *                      the next frame. Otherwise, the item moves to
964  *                      periodic_sched_inactive.
965  * @split_order:        List keeping track of channels doing splits, in order.
966  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
967  *                      This value is in microseconds per (micro)frame. The
968  *                      assumption is that all periodic transfers may occur in
969  *                      the same (micro)frame.
970  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
971  *                      host is in high speed mode; low speed schedules are
972  *                      stored elsewhere since we need one per TT.
973  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
974  *                      SOF enable/disable.
975  * @free_hc_list:       Free host channels in the controller. This is a list of
976  *                      struct dwc2_host_chan items.
977  * @periodic_channels:  Number of host channels assigned to periodic transfers.
978  *                      Currently assuming that there is a dedicated host
979  *                      channel for each periodic transaction and at least one
980  *                      host channel is available for non-periodic transactions.
981  * @non_periodic_channels: Number of host channels assigned to non-periodic
982  *                      transfers
983  * @available_host_channels: Number of host channels available for the
984  *			     microframe scheduler to use
985  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
986  *                      Allows accessing a host channel descriptor given the
987  *                      host channel number. This is useful in interrupt
988  *                      handlers.
989  * @status_buf:         Buffer used for data received during the status phase of
990  *                      a control transfer.
991  * @status_buf_dma:     DMA address for status_buf
992  * @start_work:         Delayed work for handling host A-cable connection
993  * @reset_work:         Delayed work for handling a port reset
994  * @phy_reset_work:     Work structure for doing a PHY reset
995  * @otg_port:           OTG port number
996  * @frame_list:         Frame list
997  * @frame_list_dma:     Frame list DMA address
998  * @frame_list_sz:      Frame list size
999  * @desc_gen_cache:     Kmem cache for generic descriptors
1000  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1001  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1002  *
1003  * These are for peripheral mode:
1004  *
1005  * @driver:             USB gadget driver
1006  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1007  * @num_of_eps:         Number of available EPs (excluding EP0)
1008  * @debug_root:         Root directrory for debugfs.
1009  * @ep0_reply:          Request used for ep0 reply.
1010  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1011  * @ctrl_buff:          Buffer for EP0 control requests.
1012  * @ctrl_req:           Request for EP0 control packets.
1013  * @ep0_state:          EP0 control transfers state
1014  * @delayed_status:		true when gadget driver asks for delayed status
1015  * @test_mode:          USB test mode requested by the host
1016  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1017  *                      remote-wakeup signalling
1018  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1019  * @setup_desc:		EP0 setup stage desc chain pointer
1020  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1021  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1022  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1023  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1024  * @irq:		Interrupt request line number
1025  * @clk:		Pointer to otg clock
1026  * @utmi_clk:		Pointer to utmi_clk clock
1027  * @reset:		Pointer to dwc2 reset controller
1028  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1029  * @regset:		A pointer to a struct debugfs_regset32, which contains
1030  *			a pointer to an array of register definitions, the
1031  *			array size and the base address where the register bank
1032  *			is to be found.
1033  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1034  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1035  *			defined, for missed SOFs tracking. Array holds that
1036  *			frame numbers, which not equal to last_frame_num +1
1037  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1038  *			    defined, for missed SOFs tracking.
1039  *			    If current_frame_number != last_frame_num+1
1040  *			    then last_frame_num added to this array
1041  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1042  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1043  *				0 - if missed SOFs frame numbers not dumbed
1044  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1045  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1046  *			then that fifo is used
1047  * @gadget:		Represents a usb gadget device
1048  * @connected:		Used in slave mode. True if device connected with host
1049  * @eps_in:		The IN endpoints being supplied to the gadget framework
1050  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1051  * @new_connection:	Used in host mode. True if there are new connected
1052  *			device
1053  * @enabled:		Indicates the enabling state of controller
1054  *
1055  */
1056 struct dwc2_hsotg {
1057 	struct device *dev;
1058 	void __iomem *regs;
1059 	/** Params detected from hardware */
1060 	struct dwc2_hw_params hw_params;
1061 	/** Params to actually use */
1062 	struct dwc2_core_params params;
1063 	enum usb_otg_state op_state;
1064 	enum usb_dr_mode dr_mode;
1065 	struct usb_role_switch *role_sw;
1066 	enum usb_dr_mode role_sw_default_mode;
1067 	unsigned int hcd_enabled:1;
1068 	unsigned int gadget_enabled:1;
1069 	unsigned int ll_hw_enabled:1;
1070 	unsigned int hibernated:1;
1071 	unsigned int in_ppd:1;
1072 	bool bus_suspended;
1073 	unsigned int reset_phy_on_wake:1;
1074 	unsigned int need_phy_for_wake:1;
1075 	unsigned int phy_off_for_suspend:1;
1076 	u16 frame_number;
1077 
1078 	struct phy *phy;
1079 	struct usb_phy *uphy;
1080 	struct dwc2_hsotg_plat *plat;
1081 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1082 	struct regulator *vbus_supply;
1083 	struct regulator *usb33d;
1084 
1085 	spinlock_t lock;
1086 	void *priv;
1087 	int     irq;
1088 	struct clk *clk;
1089 	struct clk *utmi_clk;
1090 	struct reset_control *reset;
1091 	struct reset_control *reset_ecc;
1092 
1093 	unsigned int queuing_high_bandwidth:1;
1094 	unsigned int srp_success:1;
1095 
1096 	struct workqueue_struct *wq_otg;
1097 	struct work_struct wf_otg;
1098 	struct timer_list wkp_timer;
1099 	enum dwc2_lx_state lx_state;
1100 	struct dwc2_gregs_backup gr_backup;
1101 	struct dwc2_dregs_backup dr_backup;
1102 	struct dwc2_hregs_backup hr_backup;
1103 
1104 	struct dentry *debug_root;
1105 	struct debugfs_regset32 *regset;
1106 	bool needs_byte_swap;
1107 
1108 	/* DWC OTG HW Release versions */
1109 #define DWC2_CORE_REV_4_30a	0x4f54430a
1110 #define DWC2_CORE_REV_2_71a	0x4f54271a
1111 #define DWC2_CORE_REV_2_72a     0x4f54272a
1112 #define DWC2_CORE_REV_2_80a	0x4f54280a
1113 #define DWC2_CORE_REV_2_90a	0x4f54290a
1114 #define DWC2_CORE_REV_2_91a	0x4f54291a
1115 #define DWC2_CORE_REV_2_92a	0x4f54292a
1116 #define DWC2_CORE_REV_2_94a	0x4f54294a
1117 #define DWC2_CORE_REV_3_00a	0x4f54300a
1118 #define DWC2_CORE_REV_3_10a	0x4f54310a
1119 #define DWC2_CORE_REV_4_00a	0x4f54400a
1120 #define DWC2_CORE_REV_4_20a	0x4f54420a
1121 #define DWC2_CORE_REV_5_00a	0x4f54500a
1122 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1123 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1124 #define DWC2_HS_IOT_REV_5_00a	0x5532500a
1125 #define DWC2_CORE_REV_MASK	0x0000ffff
1126 
1127 	/* DWC OTG HW Core ID */
1128 #define DWC2_OTG_ID		0x4f540000
1129 #define DWC2_FS_IOT_ID		0x55310000
1130 #define DWC2_HS_IOT_ID		0x55320000
1131 
1132 #define DWC2_RESTORE_DCTL BIT(0)
1133 #define DWC2_RESTORE_DCFG BIT(1)
1134 
1135 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1136 	union dwc2_hcd_internal_flags {
1137 		u32 d32;
1138 		struct {
1139 			unsigned port_connect_status_change:1;
1140 			unsigned port_connect_status:1;
1141 			unsigned port_reset_change:1;
1142 			unsigned port_enable_change:1;
1143 			unsigned port_suspend_change:1;
1144 			unsigned port_over_current_change:1;
1145 			unsigned port_l1_change:1;
1146 			unsigned reserved:25;
1147 		} b;
1148 	} flags;
1149 
1150 	struct list_head non_periodic_sched_inactive;
1151 	struct list_head non_periodic_sched_waiting;
1152 	struct list_head non_periodic_sched_active;
1153 	struct list_head *non_periodic_qh_ptr;
1154 	struct list_head periodic_sched_inactive;
1155 	struct list_head periodic_sched_ready;
1156 	struct list_head periodic_sched_assigned;
1157 	struct list_head periodic_sched_queued;
1158 	struct list_head split_order;
1159 	u16 periodic_usecs;
1160 	DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
1161 	u16 periodic_qh_count;
1162 	bool new_connection;
1163 
1164 	u16 last_frame_num;
1165 
1166 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1167 #define FRAME_NUM_ARRAY_SIZE 1000
1168 	u16 *frame_num_array;
1169 	u16 *last_frame_num_array;
1170 	int frame_num_idx;
1171 	int dumped_frame_num_array;
1172 #endif
1173 
1174 	struct list_head free_hc_list;
1175 	int periodic_channels;
1176 	int non_periodic_channels;
1177 	int available_host_channels;
1178 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1179 	u8 *status_buf;
1180 	dma_addr_t status_buf_dma;
1181 #define DWC2_HCD_STATUS_BUF_SIZE 64
1182 
1183 	struct delayed_work start_work;
1184 	struct delayed_work reset_work;
1185 	struct work_struct phy_reset_work;
1186 	u8 otg_port;
1187 	u32 *frame_list;
1188 	dma_addr_t frame_list_dma;
1189 	u32 frame_list_sz;
1190 	struct kmem_cache *desc_gen_cache;
1191 	struct kmem_cache *desc_hsisoc_cache;
1192 	struct kmem_cache *unaligned_cache;
1193 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1194 
1195 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1196 
1197 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1198 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1199 	/* Gadget structures */
1200 	struct usb_gadget_driver *driver;
1201 	int fifo_mem;
1202 	unsigned int dedicated_fifos:1;
1203 	unsigned char num_of_eps;
1204 	u32 fifo_map;
1205 
1206 	struct usb_request *ep0_reply;
1207 	struct usb_request *ctrl_req;
1208 	void *ep0_buff;
1209 	void *ctrl_buff;
1210 	enum dwc2_ep0_state ep0_state;
1211 	unsigned delayed_status : 1;
1212 	u8 test_mode;
1213 
1214 	dma_addr_t setup_desc_dma[2];
1215 	struct dwc2_dma_desc *setup_desc[2];
1216 	dma_addr_t ctrl_in_desc_dma;
1217 	struct dwc2_dma_desc *ctrl_in_desc;
1218 	dma_addr_t ctrl_out_desc_dma;
1219 	struct dwc2_dma_desc *ctrl_out_desc;
1220 
1221 	struct usb_gadget gadget;
1222 	unsigned int enabled:1;
1223 	unsigned int connected:1;
1224 	unsigned int remote_wakeup_allowed:1;
1225 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1226 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1227 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1228 };
1229 
1230 /* Normal architectures just use readl/write */
1231 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1232 {
1233 	u32 val;
1234 
1235 	val = readl(hsotg->regs + offset);
1236 	if (hsotg->needs_byte_swap)
1237 		return swab32(val);
1238 	else
1239 		return val;
1240 }
1241 
1242 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1243 {
1244 	if (hsotg->needs_byte_swap)
1245 		writel(swab32(value), hsotg->regs + offset);
1246 	else
1247 		writel(value, hsotg->regs + offset);
1248 
1249 #ifdef DWC2_LOG_WRITES
1250 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1251 #endif
1252 }
1253 
1254 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1255 				  void *buffer, unsigned int count)
1256 {
1257 	if (count) {
1258 		u32 *buf = buffer;
1259 
1260 		do {
1261 			u32 x = dwc2_readl(hsotg, offset);
1262 			*buf++ = x;
1263 		} while (--count);
1264 	}
1265 }
1266 
1267 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1268 				   const void *buffer, unsigned int count)
1269 {
1270 	if (count) {
1271 		const u32 *buf = buffer;
1272 
1273 		do {
1274 			dwc2_writel(hsotg, *buf++, offset);
1275 		} while (--count);
1276 	}
1277 }
1278 
1279 /* Reasons for halting a host channel */
1280 enum dwc2_halt_status {
1281 	DWC2_HC_XFER_NO_HALT_STATUS,
1282 	DWC2_HC_XFER_COMPLETE,
1283 	DWC2_HC_XFER_URB_COMPLETE,
1284 	DWC2_HC_XFER_ACK,
1285 	DWC2_HC_XFER_NAK,
1286 	DWC2_HC_XFER_NYET,
1287 	DWC2_HC_XFER_STALL,
1288 	DWC2_HC_XFER_XACT_ERR,
1289 	DWC2_HC_XFER_FRAME_OVERRUN,
1290 	DWC2_HC_XFER_BABBLE_ERR,
1291 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1292 	DWC2_HC_XFER_AHB_ERR,
1293 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1294 	DWC2_HC_XFER_URB_DEQUEUE,
1295 };
1296 
1297 /* Core version information */
1298 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1299 {
1300 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1301 }
1302 
1303 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1304 {
1305 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1306 }
1307 
1308 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1309 {
1310 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1311 }
1312 
1313 /*
1314  * The following functions support initialization of the core driver component
1315  * and the DWC_otg controller
1316  */
1317 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1318 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1319 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1320 				 bool restore);
1321 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1322 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1323 		int reset, int is_host);
1324 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1325 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1326 
1327 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1328 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1329 
1330 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1331 
1332 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1333 
1334 /*
1335  * Common core Functions.
1336  * The following functions support managing the DWC_otg controller in either
1337  * device or host mode.
1338  */
1339 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1340 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1341 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1342 
1343 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1344 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1345 
1346 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1347 			     int is_host);
1348 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1349 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1350 
1351 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1352 void dwc2_wakeup_from_lpm_l1(struct dwc2_hsotg *hsotg, bool remotewakeup);
1353 
1354 /* This function should be called on every hardware interrupt. */
1355 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1356 
1357 /* The device ID match table */
1358 extern const struct of_device_id dwc2_of_match_table[];
1359 extern const struct acpi_device_id dwc2_acpi_match[];
1360 extern const struct pci_device_id dwc2_pci_ids[];
1361 
1362 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1363 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1364 
1365 /* Common polling functions */
1366 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1367 			    u32 timeout);
1368 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1369 			      u32 timeout);
1370 /* Parameters */
1371 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1372 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1373 
1374 /*
1375  * The following functions check the controller's OTG operation mode
1376  * capability (GHWCFG2.OTG_MODE).
1377  *
1378  * These functions can be used before the internal hsotg->hw_params
1379  * are read in and cached so they always read directly from the
1380  * GHWCFG2 register.
1381  */
1382 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1383 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1384 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1385 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1386 
1387 /*
1388  * Returns the mode of operation, host or device
1389  */
1390 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1391 {
1392 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1393 }
1394 
1395 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1396 {
1397 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1398 }
1399 
1400 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1401 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1402 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1403 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1404 
1405 /*
1406  * Dump core registers and SPRAM
1407  */
1408 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1409 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1410 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1411 
1412 /* Gadget defines */
1413 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1414 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1415 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1416 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1417 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1418 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1419 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1420 				       bool reset);
1421 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1422 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1423 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1424 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1425 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1426 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1427 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1428 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, unsigned int flags);
1429 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1430 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1431 				 int rem_wakeup, int reset);
1432 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1433 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1434 					bool restore);
1435 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1436 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1437 				   int rem_wakeup);
1438 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1439 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1440 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1441 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1442 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1443 int dwc2_gadget_backup_critical_registers(struct dwc2_hsotg *hsotg);
1444 int dwc2_gadget_restore_critical_registers(struct dwc2_hsotg *hsotg,
1445 					   unsigned int flags);
1446 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1447 { hsotg->fifo_map = 0; }
1448 #else
1449 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1450 { return 0; }
1451 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1452 { return 0; }
1453 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1454 { return 0; }
1455 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1456 { return 0; }
1457 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1458 						     bool reset) {}
1459 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1460 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1461 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1462 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1463 					   int testmode)
1464 { return 0; }
1465 #define dwc2_is_device_connected(hsotg) (0)
1466 #define dwc2_is_device_enabled(hsotg) (0)
1467 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1468 { return 0; }
1469 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1470 						unsigned int flags)
1471 { return 0; }
1472 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1473 { return 0; }
1474 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1475 					       int rem_wakeup, int reset)
1476 { return 0; }
1477 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1478 { return 0; }
1479 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1480 						      bool restore)
1481 { return 0; }
1482 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1483 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1484 						 int rem_wakeup) {}
1485 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1486 { return 0; }
1487 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1488 { return 0; }
1489 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1490 { return 0; }
1491 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1492 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1493 static inline int dwc2_gadget_backup_critical_registers(struct dwc2_hsotg *hsotg)
1494 { return 0; }
1495 static inline int dwc2_gadget_restore_critical_registers(struct dwc2_hsotg *hsotg,
1496 							 unsigned int flags)
1497 { return 0; }
1498 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1499 #endif
1500 
1501 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1502 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1503 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1504 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1505 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1506 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1507 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1508 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1509 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1510 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1511 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1512 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1513 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1514 			       int rem_wakeup, int reset);
1515 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1516 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1517 				      int rem_wakeup, bool restore);
1518 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1519 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1520 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1521 int dwc2_host_backup_critical_registers(struct dwc2_hsotg *hsotg);
1522 int dwc2_host_restore_critical_registers(struct dwc2_hsotg *hsotg);
1523 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1524 { schedule_work(&hsotg->phy_reset_work); }
1525 #else
1526 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1527 { return 0; }
1528 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1529 						   int us)
1530 { return 0; }
1531 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1532 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1533 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1534 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1535 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1536 { return 0; }
1537 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1538 { return 0; }
1539 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1540 { return 0; }
1541 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1542 { return 0; }
1543 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1544 { return 0; }
1545 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1546 { return 0; }
1547 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1548 { return 0; }
1549 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1550 					     int rem_wakeup, int reset)
1551 { return 0; }
1552 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1553 { return 0; }
1554 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1555 						    int rem_wakeup, bool restore)
1556 { return 0; }
1557 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1558 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1559 					       int rem_wakeup) {}
1560 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1561 { return false; }
1562 static inline int dwc2_host_backup_critical_registers(struct dwc2_hsotg *hsotg)
1563 { return 0; }
1564 static inline int dwc2_host_restore_critical_registers(struct dwc2_hsotg *hsotg)
1565 { return 0; }
1566 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1567 
1568 #endif
1569 
1570 #endif /* __DWC2_CORE_H__ */
1571