1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10 
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/pci.h>
20 #include <linux/irq.h>
21 #include <linux/dmi.h>
22 
23 #include "core.h"
24 #include "gadget-export.h"
25 #include "drd.h"
26 #include "cdnsp-gadget.h"
27 #include "cdnsp-trace.h"
28 
29 unsigned int cdnsp_port_speed(unsigned int port_status)
30 {
31 	/*Detect gadget speed based on PORTSC register*/
32 	if (DEV_SUPERSPEEDPLUS(port_status) ||
33 	    DEV_SSP_GEN1x2(port_status) || DEV_SSP_GEN2x2(port_status))
34 		return USB_SPEED_SUPER_PLUS;
35 	else if (DEV_SUPERSPEED(port_status))
36 		return USB_SPEED_SUPER;
37 	else if (DEV_HIGHSPEED(port_status))
38 		return USB_SPEED_HIGH;
39 	else if (DEV_FULLSPEED(port_status))
40 		return USB_SPEED_FULL;
41 
42 	/* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
43 	return USB_SPEED_UNKNOWN;
44 }
45 
46 /*
47  * Given a port state, this function returns a value that would result in the
48  * port being in the same state, if the value was written to the port status
49  * control register.
50  * Save Read Only (RO) bits and save read/write bits where
51  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
52  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
53  */
54 u32 cdnsp_port_state_to_neutral(u32 state)
55 {
56 	/* Save read-only status and port state. */
57 	return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
58 }
59 
60 /**
61  * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
62  *                           with capability ID id.
63  * @base: PCI MMIO registers base address.
64  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
65  *         beginning of list)
66  * @id: Extended capability ID to search for.
67  *
68  * Returns the offset of the next matching extended capability structure.
69  * Some capabilities can occur several times,
70  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
71  */
72 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
73 {
74 	u32 offset = start;
75 	u32 next;
76 	u32 val;
77 
78 	if (!start || start == HCC_PARAMS_OFFSET) {
79 		val = readl(base + HCC_PARAMS_OFFSET);
80 		if (val == ~0)
81 			return 0;
82 
83 		offset = HCC_EXT_CAPS(val) << 2;
84 		if (!offset)
85 			return 0;
86 	}
87 
88 	do {
89 		val = readl(base + offset);
90 		if (val == ~0)
91 			return 0;
92 
93 		if (EXT_CAPS_ID(val) == id && offset != start)
94 			return offset;
95 
96 		next = EXT_CAPS_NEXT(val);
97 		offset += next << 2;
98 	} while (next);
99 
100 	return 0;
101 }
102 
103 void cdnsp_set_link_state(struct cdnsp_device *pdev,
104 			  __le32 __iomem *port_regs,
105 			  u32 link_state)
106 {
107 	int port_num = 0xFF;
108 	u32 temp;
109 
110 	temp = readl(port_regs);
111 	temp = cdnsp_port_state_to_neutral(temp);
112 	temp |= PORT_WKCONN_E | PORT_WKDISC_E;
113 	writel(temp, port_regs);
114 
115 	temp &= ~PORT_PLS_MASK;
116 	temp |= PORT_LINK_STROBE | link_state;
117 
118 	if (pdev->active_port)
119 		port_num = pdev->active_port->port_num;
120 
121 	trace_cdnsp_handle_port_status(port_num, readl(port_regs));
122 	writel(temp, port_regs);
123 	trace_cdnsp_link_state_changed(port_num, readl(port_regs));
124 }
125 
126 static void cdnsp_disable_port(struct cdnsp_device *pdev,
127 			       __le32 __iomem *port_regs)
128 {
129 	u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
130 
131 	writel(temp | PORT_PED, port_regs);
132 }
133 
134 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
135 					__le32 __iomem *port_regs)
136 {
137 	u32 portsc = readl(port_regs);
138 
139 	writel(cdnsp_port_state_to_neutral(portsc) |
140 	       (portsc & PORT_CHANGE_BITS), port_regs);
141 }
142 
143 static void cdnsp_set_apb_timeout_value(struct cdnsp_device *pdev)
144 {
145 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
146 	__le32 __iomem *reg;
147 	void __iomem *base;
148 	u32 offset = 0;
149 	u32 val;
150 
151 	if (!cdns->override_apb_timeout)
152 		return;
153 
154 	base = &pdev->cap_regs->hc_capbase;
155 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
156 	reg = base + offset + REG_CHICKEN_BITS_3_OFFSET;
157 
158 	val  = le32_to_cpu(readl(reg));
159 	val = CHICKEN_APB_TIMEOUT_SET(val, cdns->override_apb_timeout);
160 	writel(cpu_to_le32(val), reg);
161 }
162 
163 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
164 {
165 	__le32 __iomem *reg;
166 	void __iomem *base;
167 	u32 offset = 0;
168 
169 	base = &pdev->cap_regs->hc_capbase;
170 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
171 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
172 
173 	bit = readl(reg) | bit;
174 	writel(bit, reg);
175 }
176 
177 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
178 {
179 	__le32 __iomem *reg;
180 	void __iomem *base;
181 	u32 offset = 0;
182 
183 	base = &pdev->cap_regs->hc_capbase;
184 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
185 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
186 
187 	bit = readl(reg) & ~bit;
188 	writel(bit, reg);
189 }
190 
191 /*
192  * Disable interrupts and begin the controller halting process.
193  */
194 static void cdnsp_quiesce(struct cdnsp_device *pdev)
195 {
196 	u32 halted;
197 	u32 mask;
198 	u32 cmd;
199 
200 	mask = ~(u32)(CDNSP_IRQS);
201 
202 	halted = readl(&pdev->op_regs->status) & STS_HALT;
203 	if (!halted)
204 		mask &= ~(CMD_R_S | CMD_DEVEN);
205 
206 	cmd = readl(&pdev->op_regs->command);
207 	cmd &= mask;
208 	writel(cmd, &pdev->op_regs->command);
209 }
210 
211 /*
212  * Force controller into halt state.
213  *
214  * Disable any IRQs and clear the run/stop bit.
215  * Controller will complete any current and actively pipelined transactions, and
216  * should halt within 16 ms of the run/stop bit being cleared.
217  * Read controller Halted bit in the status register to see when the
218  * controller is finished.
219  */
220 int cdnsp_halt(struct cdnsp_device *pdev)
221 {
222 	int ret;
223 	u32 val;
224 
225 	cdnsp_quiesce(pdev);
226 
227 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
228 					val & STS_HALT, 1,
229 					CDNSP_MAX_HALT_USEC);
230 	if (ret) {
231 		dev_err(pdev->dev, "ERROR: Device halt failed\n");
232 		return ret;
233 	}
234 
235 	pdev->cdnsp_state |= CDNSP_STATE_HALTED;
236 
237 	return 0;
238 }
239 
240 /*
241  * device controller died, register read returns 0xffffffff, or command never
242  * ends.
243  */
244 void cdnsp_died(struct cdnsp_device *pdev)
245 {
246 	dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
247 	pdev->cdnsp_state |= CDNSP_STATE_DYING;
248 	cdnsp_halt(pdev);
249 }
250 
251 /*
252  * Set the run bit and wait for the device to be running.
253  */
254 static int cdnsp_start(struct cdnsp_device *pdev)
255 {
256 	u32 temp;
257 	int ret;
258 
259 	temp = readl(&pdev->op_regs->command);
260 	temp |= (CMD_R_S | CMD_DEVEN);
261 	writel(temp, &pdev->op_regs->command);
262 
263 	pdev->cdnsp_state = 0;
264 
265 	/*
266 	 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
267 	 * running.
268 	 */
269 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
270 					!(temp & STS_HALT), 1,
271 					CDNSP_MAX_HALT_USEC);
272 	if (ret) {
273 		pdev->cdnsp_state = CDNSP_STATE_DYING;
274 		dev_err(pdev->dev, "ERROR: Controller run failed\n");
275 	}
276 
277 	return ret;
278 }
279 
280 /*
281  * Reset a halted controller.
282  *
283  * This resets pipelines, timers, counters, state machines, etc.
284  * Transactions will be terminated immediately, and operational registers
285  * will be set to their defaults.
286  */
287 int cdnsp_reset(struct cdnsp_device *pdev)
288 {
289 	u32 command;
290 	u32 temp;
291 	int ret;
292 
293 	temp = readl(&pdev->op_regs->status);
294 
295 	if (temp == ~(u32)0) {
296 		dev_err(pdev->dev, "Device not accessible, reset failed.\n");
297 		return -ENODEV;
298 	}
299 
300 	if ((temp & STS_HALT) == 0) {
301 		dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
302 		return -EINVAL;
303 	}
304 
305 	command = readl(&pdev->op_regs->command);
306 	command |= CMD_RESET;
307 	writel(command, &pdev->op_regs->command);
308 
309 	ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
310 					!(temp & CMD_RESET), 1,
311 					10 * 1000);
312 	if (ret) {
313 		dev_err(pdev->dev, "ERROR: Controller reset failed\n");
314 		return ret;
315 	}
316 
317 	/*
318 	 * CDNSP cannot write any doorbells or operational registers other
319 	 * than status until the "Controller Not Ready" flag is cleared.
320 	 */
321 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
322 					!(temp & STS_CNR), 1,
323 					10 * 1000);
324 
325 	if (ret) {
326 		dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
327 		return ret;
328 	}
329 
330 	dev_dbg(pdev->dev, "Controller ready to work");
331 
332 	return ret;
333 }
334 
335 /*
336  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
337  * descriptor.Use the return value to right shift 1 for the bitmask.
338  *
339  * Index = (epnum * 2) + direction - 1,
340  * where direction = 0 for OUT, 1 for IN.
341  * For control endpoints, the IN index is used (OUT index is unused), so
342  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
343  */
344 static unsigned int
345 	cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
346 {
347 	unsigned int index = (unsigned int)usb_endpoint_num(desc);
348 
349 	if (usb_endpoint_xfer_control(desc))
350 		return index * 2;
351 
352 	return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
353 }
354 
355 /*
356  * Find the flag for this endpoint (for use in the control context). Use the
357  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
358  * bit 1, etc.
359  */
360 static unsigned int
361 	cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
362 {
363 	return 1 << (cdnsp_get_endpoint_index(desc) + 1);
364 }
365 
366 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
367 {
368 	struct cdnsp_device *pdev = pep->pdev;
369 	struct usb_request *request;
370 	int ret;
371 
372 	if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
373 		trace_cdnsp_request_enqueue_busy(preq);
374 		return -EBUSY;
375 	}
376 
377 	request = &preq->request;
378 	request->actual = 0;
379 	request->status = -EINPROGRESS;
380 	preq->direction = pep->direction;
381 	preq->epnum = pep->number;
382 	preq->td.drbl = 0;
383 
384 	ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
385 	if (ret) {
386 		trace_cdnsp_request_enqueue_error(preq);
387 		return ret;
388 	}
389 
390 	list_add_tail(&preq->list, &pep->pending_list);
391 
392 	trace_cdnsp_request_enqueue(preq);
393 
394 	switch (usb_endpoint_type(pep->endpoint.desc)) {
395 	case USB_ENDPOINT_XFER_CONTROL:
396 		ret = cdnsp_queue_ctrl_tx(pdev, preq);
397 		break;
398 	case USB_ENDPOINT_XFER_BULK:
399 	case USB_ENDPOINT_XFER_INT:
400 		ret = cdnsp_queue_bulk_tx(pdev, preq);
401 		break;
402 	case USB_ENDPOINT_XFER_ISOC:
403 		ret = cdnsp_queue_isoc_tx(pdev, preq);
404 	}
405 
406 	if (ret)
407 		goto unmap;
408 
409 	return 0;
410 
411 unmap:
412 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
413 					pep->direction);
414 	list_del(&preq->list);
415 	trace_cdnsp_request_enqueue_error(preq);
416 
417 	return ret;
418 }
419 
420 /*
421  * Remove the request's TD from the endpoint ring. This may cause the
422  * controller to stop USB transfers, potentially stopping in the middle of a
423  * TRB buffer. The controller should pick up where it left off in the TD,
424  * unless a Set Transfer Ring Dequeue Pointer is issued.
425  *
426  * The TRBs that make up the buffers for the canceled request will be "removed"
427  * from the ring. Since the ring is a contiguous structure, they can't be
428  * physically removed. Instead, there are two options:
429  *
430  *  1) If the controller is in the middle of processing the request to be
431  *     canceled, we simply move the ring's dequeue pointer past those TRBs
432  *     using the Set Transfer Ring Dequeue Pointer command. This will be
433  *     the common case, when drivers timeout on the last submitted request
434  *     and attempt to cancel.
435  *
436  *  2) If the controller is in the middle of a different TD, we turn the TRBs
437  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
438  *     The controller will need to invalidate the any TRBs it has cached after
439  *     the stop endpoint command.
440  *
441  *  3) The TD may have completed by the time the Stop Endpoint Command
442  *     completes, so software needs to handle that case too.
443  *
444  */
445 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
446 {
447 	struct cdnsp_device *pdev = pep->pdev;
448 	int ret_stop = 0;
449 	int ret_rem;
450 
451 	trace_cdnsp_request_dequeue(preq);
452 
453 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
454 		ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
455 
456 	ret_rem = cdnsp_remove_request(pdev, preq, pep);
457 
458 	return ret_rem ? ret_rem : ret_stop;
459 }
460 
461 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
462 {
463 	struct cdnsp_input_control_ctx *ctrl_ctx;
464 	struct cdnsp_slot_ctx *slot_ctx;
465 	struct cdnsp_ep_ctx *ep_ctx;
466 	int i;
467 
468 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
469 
470 	/*
471 	 * When a device's add flag and drop flag are zero, any subsequent
472 	 * configure endpoint command will leave that endpoint's state
473 	 * untouched. Make sure we don't leave any old state in the input
474 	 * endpoint contexts.
475 	 */
476 	ctrl_ctx->drop_flags = 0;
477 	ctrl_ctx->add_flags = 0;
478 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
479 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
480 
481 	/* Endpoint 0 is always valid */
482 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
483 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
484 		ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
485 		ep_ctx->ep_info = 0;
486 		ep_ctx->ep_info2 = 0;
487 		ep_ctx->deq = 0;
488 		ep_ctx->tx_info = 0;
489 	}
490 }
491 
492 /* Issue a configure endpoint command and wait for it to finish. */
493 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
494 {
495 	int ret;
496 
497 	cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
498 	cdnsp_ring_cmd_db(pdev);
499 	ret = cdnsp_wait_for_cmd_compl(pdev);
500 	if (ret) {
501 		dev_err(pdev->dev,
502 			"ERR: unexpected command completion code 0x%x.\n", ret);
503 		return -EINVAL;
504 	}
505 
506 	return ret;
507 }
508 
509 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
510 				       struct cdnsp_ep *pep)
511 {
512 	struct cdnsp_segment *segment;
513 	union cdnsp_trb *event;
514 	u32 cycle_state;
515 	u32  data;
516 
517 	event = pdev->event_ring->dequeue;
518 	segment = pdev->event_ring->deq_seg;
519 	cycle_state = pdev->event_ring->cycle_state;
520 
521 	while (1) {
522 		data = le32_to_cpu(event->trans_event.flags);
523 
524 		/* Check the owner of the TRB. */
525 		if ((data & TRB_CYCLE) != cycle_state)
526 			break;
527 
528 		if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
529 		    TRB_TO_EP_ID(data) == (pep->idx + 1)) {
530 			data |= TRB_EVENT_INVALIDATE;
531 			event->trans_event.flags = cpu_to_le32(data);
532 		}
533 
534 		if (cdnsp_last_trb_on_seg(segment, event)) {
535 			cycle_state ^= 1;
536 			segment = pdev->event_ring->deq_seg->next;
537 			event = segment->trbs;
538 		} else {
539 			event++;
540 		}
541 	}
542 }
543 
544 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
545 {
546 	struct cdnsp_segment *event_deq_seg;
547 	union cdnsp_trb *cmd_trb;
548 	dma_addr_t cmd_deq_dma;
549 	union cdnsp_trb *event;
550 	u32 cycle_state;
551 	u32 retry = 10;
552 	int ret, val;
553 	u64 cmd_dma;
554 	u32  flags;
555 
556 	cmd_trb = pdev->cmd.command_trb;
557 	pdev->cmd.status = 0;
558 
559 	trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
560 
561 	ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
562 					!CMD_RING_BUSY(val), 1,
563 					CDNSP_CMD_TIMEOUT);
564 	if (ret) {
565 		dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
566 		trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
567 		pdev->cdnsp_state = CDNSP_STATE_DYING;
568 		return -ETIMEDOUT;
569 	}
570 
571 	event = pdev->event_ring->dequeue;
572 	event_deq_seg = pdev->event_ring->deq_seg;
573 	cycle_state = pdev->event_ring->cycle_state;
574 
575 	cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
576 	if (!cmd_deq_dma)
577 		return -EINVAL;
578 
579 	while (1) {
580 		flags = le32_to_cpu(event->event_cmd.flags);
581 
582 		/* Check the owner of the TRB. */
583 		if ((flags & TRB_CYCLE) != cycle_state) {
584 			/*
585 			 * Give some extra time to get chance controller
586 			 * to finish command before returning error code.
587 			 * Checking CMD_RING_BUSY is not sufficient because
588 			 * this bit is cleared to '0' when the Command
589 			 * Descriptor has been executed by controller
590 			 * and not when command completion event has
591 			 * be added to event ring.
592 			 */
593 			if (retry--) {
594 				udelay(20);
595 				continue;
596 			}
597 
598 			return -EINVAL;
599 		}
600 
601 		cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
602 
603 		/*
604 		 * Check whether the completion event is for last queued
605 		 * command.
606 		 */
607 		if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
608 		    cmd_dma != (u64)cmd_deq_dma) {
609 			if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
610 				event++;
611 				continue;
612 			}
613 
614 			if (cdnsp_last_trb_on_ring(pdev->event_ring,
615 						   event_deq_seg, event))
616 				cycle_state ^= 1;
617 
618 			event_deq_seg = event_deq_seg->next;
619 			event = event_deq_seg->trbs;
620 			continue;
621 		}
622 
623 		trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
624 
625 		pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
626 		if (pdev->cmd.status == COMP_SUCCESS)
627 			return 0;
628 
629 		return -pdev->cmd.status;
630 	}
631 }
632 
633 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
634 			struct cdnsp_ep *pep,
635 			int value)
636 {
637 	int ret;
638 
639 	trace_cdnsp_ep_halt(value ? "Set" : "Clear");
640 
641 	ret = cdnsp_cmd_stop_ep(pdev, pep);
642 	if (ret)
643 		return ret;
644 
645 	if (value) {
646 		if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
647 			cdnsp_queue_halt_endpoint(pdev, pep->idx);
648 			cdnsp_ring_cmd_db(pdev);
649 			ret = cdnsp_wait_for_cmd_compl(pdev);
650 		}
651 
652 		pep->ep_state |= EP_HALTED;
653 	} else {
654 		cdnsp_queue_reset_ep(pdev, pep->idx);
655 		cdnsp_ring_cmd_db(pdev);
656 		ret = cdnsp_wait_for_cmd_compl(pdev);
657 		trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
658 
659 		if (ret)
660 			return ret;
661 
662 		pep->ep_state &= ~EP_HALTED;
663 
664 		if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
665 			cdnsp_ring_doorbell_for_active_rings(pdev, pep);
666 
667 		pep->ep_state &= ~EP_WEDGE;
668 	}
669 
670 	return 0;
671 }
672 
673 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
674 					  struct cdnsp_ep *pep)
675 {
676 	struct cdnsp_input_control_ctx *ctrl_ctx;
677 	struct cdnsp_slot_ctx *slot_ctx;
678 	int ret = 0;
679 	u32 ep_sts;
680 	int i;
681 
682 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
683 
684 	/* Don't issue the command if there's no endpoints to update. */
685 	if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
686 		return 0;
687 
688 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
689 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
690 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
691 
692 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
693 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
694 	for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
695 		__le32 le32 = cpu_to_le32(BIT(i));
696 
697 		if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
698 		    (ctrl_ctx->add_flags & le32) || i == 1) {
699 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
700 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
701 			break;
702 		}
703 	}
704 
705 	ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
706 
707 	if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
708 	     ep_sts == EP_STATE_DISABLED) ||
709 	    (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
710 		ret = cdnsp_configure_endpoint(pdev);
711 
712 	trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
713 	trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
714 
715 	cdnsp_zero_in_ctx(pdev);
716 
717 	return ret;
718 }
719 
720 /*
721  * This submits a Reset Device Command, which will set the device state to 0,
722  * set the device address to 0, and disable all the endpoints except the default
723  * control endpoint. The USB core should come back and call
724  * cdnsp_setup_device(), and then re-set up the configuration.
725  */
726 int cdnsp_reset_device(struct cdnsp_device *pdev)
727 {
728 	struct cdnsp_slot_ctx *slot_ctx;
729 	int slot_state;
730 	int ret, i;
731 
732 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
733 	slot_ctx->dev_info = 0;
734 	pdev->device_address = 0;
735 
736 	/* If device is not setup, there is no point in resetting it. */
737 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
738 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
739 	trace_cdnsp_reset_device(slot_ctx);
740 
741 	if (slot_state <= SLOT_STATE_DEFAULT &&
742 	    pdev->eps[0].ep_state & EP_HALTED) {
743 		cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
744 	}
745 
746 	/*
747 	 * During Reset Device command controller shall transition the
748 	 * endpoint ep0 to the Running State.
749 	 */
750 	pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
751 	pdev->eps[0].ep_state |= EP_ENABLED;
752 
753 	if (slot_state <= SLOT_STATE_DEFAULT)
754 		return 0;
755 
756 	cdnsp_queue_reset_device(pdev);
757 	cdnsp_ring_cmd_db(pdev);
758 	ret = cdnsp_wait_for_cmd_compl(pdev);
759 
760 	/*
761 	 * After Reset Device command all not default endpoints
762 	 * are in Disabled state.
763 	 */
764 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
765 		pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
766 
767 	trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
768 
769 	if (ret)
770 		dev_err(pdev->dev, "Reset device failed with error code %d",
771 			ret);
772 
773 	return ret;
774 }
775 
776 /*
777  * Sets the MaxPStreams field and the Linear Stream Array field.
778  * Sets the dequeue pointer to the stream context array.
779  */
780 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
781 					     struct cdnsp_ep_ctx *ep_ctx,
782 					     struct cdnsp_stream_info *stream_info)
783 {
784 	u32 max_primary_streams;
785 
786 	/* MaxPStreams is the number of stream context array entries, not the
787 	 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
788 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
789 	 */
790 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
791 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793 				       | EP_HAS_LSA);
794 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796 
797 /*
798  * The drivers use this function to prepare a bulk endpoints to use streams.
799  *
800  * Don't allow the call to succeed if endpoint only supports one stream
801  * (which means it doesn't support streams at all).
802  */
803 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
804 {
805 	unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
806 	unsigned int num_stream_ctxs;
807 	int ret;
808 
809 	if (num_streams ==  0)
810 		return 0;
811 
812 	if (num_streams > STREAM_NUM_STREAMS)
813 		return -EINVAL;
814 
815 	/*
816 	 * Add two to the number of streams requested to account for
817 	 * stream 0 that is reserved for controller usage and one additional
818 	 * for TASK SET FULL response.
819 	 */
820 	num_streams += 2;
821 
822 	/* The stream context array size must be a power of two */
823 	num_stream_ctxs = roundup_pow_of_two(num_streams);
824 
825 	trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
826 
827 	ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
828 	if (ret)
829 		return ret;
830 
831 	cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
832 
833 	pep->ep_state |= EP_HAS_STREAMS;
834 	pep->stream_info.td_count = 0;
835 	pep->stream_info.first_prime_det = 0;
836 
837 	/* Subtract 1 for stream 0, which drivers can't use. */
838 	return num_streams - 1;
839 }
840 
841 int cdnsp_disable_slot(struct cdnsp_device *pdev)
842 {
843 	int ret;
844 
845 	cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
846 	cdnsp_ring_cmd_db(pdev);
847 	ret = cdnsp_wait_for_cmd_compl(pdev);
848 
849 	pdev->slot_id = 0;
850 	pdev->active_port = NULL;
851 
852 	trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
853 
854 	memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
855 	memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
856 
857 	return ret;
858 }
859 
860 int cdnsp_enable_slot(struct cdnsp_device *pdev)
861 {
862 	struct cdnsp_slot_ctx *slot_ctx;
863 	int slot_state;
864 	int ret;
865 
866 	/* If device is not setup, there is no point in resetting it */
867 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
868 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
869 
870 	if (slot_state != SLOT_STATE_DISABLED)
871 		return 0;
872 
873 	cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
874 	cdnsp_ring_cmd_db(pdev);
875 	ret = cdnsp_wait_for_cmd_compl(pdev);
876 	if (ret)
877 		goto show_trace;
878 
879 	pdev->slot_id = 1;
880 
881 show_trace:
882 	trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
883 
884 	return ret;
885 }
886 
887 /*
888  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
889  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
890  */
891 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
892 {
893 	struct cdnsp_input_control_ctx *ctrl_ctx;
894 	struct cdnsp_slot_ctx *slot_ctx;
895 	int dev_state = 0;
896 	int ret;
897 
898 	if (!pdev->slot_id) {
899 		trace_cdnsp_slot_id("incorrect");
900 		return -EINVAL;
901 	}
902 
903 	if (!pdev->active_port->port_num)
904 		return -EINVAL;
905 
906 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
907 	dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
908 
909 	if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
910 		trace_cdnsp_slot_already_in_default(slot_ctx);
911 		return 0;
912 	}
913 
914 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
915 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
916 
917 	if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
918 		ret = cdnsp_setup_addressable_priv_dev(pdev);
919 		if (ret)
920 			return ret;
921 	}
922 
923 	cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
924 
925 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
926 	ctrl_ctx->drop_flags = 0;
927 
928 	trace_cdnsp_setup_device_slot(slot_ctx);
929 
930 	cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
931 	cdnsp_ring_cmd_db(pdev);
932 	ret = cdnsp_wait_for_cmd_compl(pdev);
933 
934 	trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
935 
936 	/* Zero the input context control for later use. */
937 	ctrl_ctx->add_flags = 0;
938 	ctrl_ctx->drop_flags = 0;
939 
940 	return ret;
941 }
942 
943 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
944 				 struct usb_request *req,
945 				 int enable)
946 {
947 	if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
948 		return;
949 
950 	trace_cdnsp_lpm(enable);
951 
952 	if (enable)
953 		writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
954 		       &pdev->active_port->regs->portpmsc);
955 	else
956 		writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
957 }
958 
959 static int cdnsp_get_frame(struct cdnsp_device *pdev)
960 {
961 	return readl(&pdev->run_regs->microframe_index) >> 3;
962 }
963 
964 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
965 				  const struct usb_endpoint_descriptor *desc)
966 {
967 	struct cdnsp_input_control_ctx *ctrl_ctx;
968 	struct cdnsp_device *pdev;
969 	struct cdnsp_ep *pep;
970 	unsigned long flags;
971 	u32 added_ctxs;
972 	int ret;
973 
974 	if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
975 	    !desc->wMaxPacketSize)
976 		return -EINVAL;
977 
978 	pep = to_cdnsp_ep(ep);
979 	pdev = pep->pdev;
980 	pep->ep_state &= ~EP_UNCONFIGURED;
981 
982 	if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
983 			  "%s is already enabled\n", pep->name))
984 		return 0;
985 
986 	spin_lock_irqsave(&pdev->lock, flags);
987 
988 	added_ctxs = cdnsp_get_endpoint_flag(desc);
989 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
990 		dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
991 		ret = -EINVAL;
992 		goto unlock;
993 	}
994 
995 	pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
996 
997 	if (pdev->gadget.speed == USB_SPEED_FULL) {
998 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
999 			pep->interval = desc->bInterval << 3;
1000 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
1001 			pep->interval = BIT(desc->bInterval - 1) << 3;
1002 	}
1003 
1004 	if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
1005 		if (pep->interval > BIT(12)) {
1006 			dev_err(pdev->dev, "bInterval %d not supported\n",
1007 				desc->bInterval);
1008 			ret = -EINVAL;
1009 			goto unlock;
1010 		}
1011 		cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1012 	}
1013 
1014 	ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
1015 	if (ret)
1016 		goto unlock;
1017 
1018 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1019 	ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
1020 	ctrl_ctx->drop_flags = 0;
1021 
1022 	ret = cdnsp_update_eps_configuration(pdev, pep);
1023 	if (ret) {
1024 		cdnsp_free_endpoint_rings(pdev, pep);
1025 		goto unlock;
1026 	}
1027 
1028 	pep->ep_state |= EP_ENABLED;
1029 	pep->ep_state &= ~EP_STOPPED;
1030 
1031 unlock:
1032 	trace_cdnsp_ep_enable_end(pep, 0);
1033 	spin_unlock_irqrestore(&pdev->lock, flags);
1034 
1035 	return ret;
1036 }
1037 
1038 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1039 {
1040 	struct cdnsp_input_control_ctx *ctrl_ctx;
1041 	struct cdnsp_request *preq;
1042 	struct cdnsp_device *pdev;
1043 	struct cdnsp_ep *pep;
1044 	unsigned long flags;
1045 	u32 drop_flag;
1046 	int ret = 0;
1047 
1048 	if (!ep)
1049 		return -EINVAL;
1050 
1051 	pep = to_cdnsp_ep(ep);
1052 	pdev = pep->pdev;
1053 
1054 	spin_lock_irqsave(&pdev->lock, flags);
1055 
1056 	if (!(pep->ep_state & EP_ENABLED)) {
1057 		dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1058 		ret = -EINVAL;
1059 		goto finish;
1060 	}
1061 
1062 	pep->ep_state |= EP_DIS_IN_RROGRESS;
1063 
1064 	/* Endpoint was unconfigured by Reset Device command. */
1065 	if (!(pep->ep_state & EP_UNCONFIGURED))
1066 		cdnsp_cmd_stop_ep(pdev, pep);
1067 
1068 	/* Remove all queued USB requests. */
1069 	while (!list_empty(&pep->pending_list)) {
1070 		preq = next_request(&pep->pending_list);
1071 		cdnsp_ep_dequeue(pep, preq);
1072 	}
1073 
1074 	cdnsp_invalidate_ep_events(pdev, pep);
1075 
1076 	pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1077 	drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1078 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1079 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1080 	ctrl_ctx->add_flags = 0;
1081 
1082 	cdnsp_endpoint_zero(pdev, pep);
1083 
1084 	if (!(pep->ep_state & EP_UNCONFIGURED))
1085 		ret = cdnsp_update_eps_configuration(pdev, pep);
1086 
1087 	cdnsp_free_endpoint_rings(pdev, pep);
1088 
1089 	pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1090 	pep->ep_state |= EP_STOPPED;
1091 
1092 finish:
1093 	trace_cdnsp_ep_disable_end(pep, 0);
1094 	spin_unlock_irqrestore(&pdev->lock, flags);
1095 
1096 	return ret;
1097 }
1098 
1099 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1100 							 gfp_t gfp_flags)
1101 {
1102 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1103 	struct cdnsp_request *preq;
1104 
1105 	preq = kzalloc(sizeof(*preq), gfp_flags);
1106 	if (!preq)
1107 		return NULL;
1108 
1109 	preq->epnum = pep->number;
1110 	preq->pep = pep;
1111 
1112 	trace_cdnsp_alloc_request(preq);
1113 
1114 	return &preq->request;
1115 }
1116 
1117 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1118 					 struct usb_request *request)
1119 {
1120 	struct cdnsp_request *preq = to_cdnsp_request(request);
1121 
1122 	trace_cdnsp_free_request(preq);
1123 	kfree(preq);
1124 }
1125 
1126 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1127 				 struct usb_request *request,
1128 				 gfp_t gfp_flags)
1129 {
1130 	struct cdnsp_request *preq;
1131 	struct cdnsp_device *pdev;
1132 	struct cdnsp_ep *pep;
1133 	unsigned long flags;
1134 	int ret;
1135 
1136 	if (!request || !ep)
1137 		return -EINVAL;
1138 
1139 	pep = to_cdnsp_ep(ep);
1140 	pdev = pep->pdev;
1141 
1142 	if (!(pep->ep_state & EP_ENABLED)) {
1143 		dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1144 			pep->name);
1145 		return -EINVAL;
1146 	}
1147 
1148 	preq = to_cdnsp_request(request);
1149 	spin_lock_irqsave(&pdev->lock, flags);
1150 	ret = cdnsp_ep_enqueue(pep, preq);
1151 	spin_unlock_irqrestore(&pdev->lock, flags);
1152 
1153 	return ret;
1154 }
1155 
1156 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1157 				   struct usb_request *request)
1158 {
1159 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1160 	struct cdnsp_device *pdev = pep->pdev;
1161 	unsigned long flags;
1162 	int ret;
1163 
1164 	if (request->status != -EINPROGRESS)
1165 		return 0;
1166 
1167 	if (!pep->endpoint.desc) {
1168 		dev_err(pdev->dev,
1169 			"%s: can't dequeue to disabled endpoint\n",
1170 			pep->name);
1171 		return -ESHUTDOWN;
1172 	}
1173 
1174 	/* Requests has been dequeued during disabling endpoint. */
1175 	if (!(pep->ep_state & EP_ENABLED))
1176 		return 0;
1177 
1178 	spin_lock_irqsave(&pdev->lock, flags);
1179 	ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1180 	spin_unlock_irqrestore(&pdev->lock, flags);
1181 
1182 	return ret;
1183 }
1184 
1185 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1186 {
1187 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1188 	struct cdnsp_device *pdev = pep->pdev;
1189 	struct cdnsp_request *preq;
1190 	unsigned long flags;
1191 	int ret;
1192 
1193 	spin_lock_irqsave(&pdev->lock, flags);
1194 
1195 	preq = next_request(&pep->pending_list);
1196 	if (value) {
1197 		if (preq) {
1198 			trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1199 			ret = -EAGAIN;
1200 			goto done;
1201 		}
1202 	}
1203 
1204 	ret = cdnsp_halt_endpoint(pdev, pep, value);
1205 
1206 done:
1207 	spin_unlock_irqrestore(&pdev->lock, flags);
1208 	return ret;
1209 }
1210 
1211 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1212 {
1213 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1214 	struct cdnsp_device *pdev = pep->pdev;
1215 	unsigned long flags;
1216 	int ret;
1217 
1218 	spin_lock_irqsave(&pdev->lock, flags);
1219 	pep->ep_state |= EP_WEDGE;
1220 	ret = cdnsp_halt_endpoint(pdev, pep, 1);
1221 	spin_unlock_irqrestore(&pdev->lock, flags);
1222 
1223 	return ret;
1224 }
1225 
1226 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1227 	.enable		= cdnsp_gadget_ep_enable,
1228 	.disable	= cdnsp_gadget_ep_disable,
1229 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1230 	.free_request	= cdnsp_gadget_ep_free_request,
1231 	.queue		= cdnsp_gadget_ep_queue,
1232 	.dequeue	= cdnsp_gadget_ep_dequeue,
1233 	.set_halt	= cdnsp_gadget_ep_set_halt,
1234 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1235 };
1236 
1237 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1238 	.enable		= cdnsp_gadget_ep_enable,
1239 	.disable	= cdnsp_gadget_ep_disable,
1240 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1241 	.free_request	= cdnsp_gadget_ep_free_request,
1242 	.queue		= cdnsp_gadget_ep_queue,
1243 	.dequeue	= cdnsp_gadget_ep_dequeue,
1244 	.set_halt	= cdnsp_gadget_ep_set_halt,
1245 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1246 };
1247 
1248 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1249 			   struct cdnsp_request *preq,
1250 			   int status)
1251 {
1252 	struct cdnsp_device *pdev = pep->pdev;
1253 
1254 	list_del(&preq->list);
1255 
1256 	if (preq->request.status == -EINPROGRESS)
1257 		preq->request.status = status;
1258 
1259 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1260 					preq->direction);
1261 
1262 	trace_cdnsp_request_giveback(preq);
1263 
1264 	if (preq != &pdev->ep0_preq) {
1265 		spin_unlock(&pdev->lock);
1266 		usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1267 		spin_lock(&pdev->lock);
1268 	}
1269 }
1270 
1271 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1272 	.bLength =		USB_DT_ENDPOINT_SIZE,
1273 	.bDescriptorType =	USB_DT_ENDPOINT,
1274 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
1275 };
1276 
1277 static int cdnsp_run(struct cdnsp_device *pdev,
1278 		     enum usb_device_speed speed)
1279 {
1280 	u32 fs_speed = 0;
1281 	u32 temp;
1282 	int ret;
1283 
1284 	temp = readl(&pdev->ir_set->irq_control);
1285 	temp &= ~IMOD_INTERVAL_MASK;
1286 	temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1287 	writel(temp, &pdev->ir_set->irq_control);
1288 
1289 	temp = readl(&pdev->port3x_regs->mode_addr);
1290 
1291 	switch (speed) {
1292 	case USB_SPEED_SUPER_PLUS:
1293 		temp |= CFG_3XPORT_SSP_SUPPORT;
1294 		break;
1295 	case USB_SPEED_SUPER:
1296 		temp &= ~CFG_3XPORT_SSP_SUPPORT;
1297 		break;
1298 	case USB_SPEED_HIGH:
1299 		break;
1300 	case USB_SPEED_FULL:
1301 		fs_speed = PORT_REG6_FORCE_FS;
1302 		break;
1303 	default:
1304 		dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1305 			speed);
1306 		fallthrough;
1307 	case USB_SPEED_UNKNOWN:
1308 		/* Default to superspeed. */
1309 		speed = USB_SPEED_SUPER;
1310 		break;
1311 	}
1312 
1313 	if (speed >= USB_SPEED_SUPER) {
1314 		writel(temp, &pdev->port3x_regs->mode_addr);
1315 		cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1316 				     XDEV_RXDETECT);
1317 	} else {
1318 		cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1319 	}
1320 
1321 	cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1322 			     XDEV_RXDETECT);
1323 
1324 	cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1325 
1326 	writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1327 
1328 	ret = cdnsp_start(pdev);
1329 	if (ret) {
1330 		ret = -ENODEV;
1331 		goto err;
1332 	}
1333 
1334 	temp = readl(&pdev->op_regs->command);
1335 	temp |= (CMD_INTE);
1336 	writel(temp, &pdev->op_regs->command);
1337 
1338 	temp = readl(&pdev->ir_set->irq_pending);
1339 	writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1340 
1341 	trace_cdnsp_init("Controller ready to work");
1342 	return 0;
1343 err:
1344 	cdnsp_halt(pdev);
1345 	return ret;
1346 }
1347 
1348 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1349 				  struct usb_gadget_driver *driver)
1350 {
1351 	enum usb_device_speed max_speed = driver->max_speed;
1352 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1353 	unsigned long flags;
1354 	int ret;
1355 
1356 	spin_lock_irqsave(&pdev->lock, flags);
1357 	pdev->gadget_driver = driver;
1358 
1359 	/* limit speed if necessary */
1360 	max_speed = min(driver->max_speed, g->max_speed);
1361 	ret = cdnsp_run(pdev, max_speed);
1362 
1363 	spin_unlock_irqrestore(&pdev->lock, flags);
1364 
1365 	return ret;
1366 }
1367 
1368 /*
1369  * Update Event Ring Dequeue Pointer:
1370  * - When all events have finished
1371  * - To avoid "Event Ring Full Error" condition
1372  */
1373 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1374 			       union cdnsp_trb *event_ring_deq,
1375 			       u8 clear_ehb)
1376 {
1377 	u64 temp_64;
1378 	dma_addr_t deq;
1379 
1380 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1381 
1382 	/* If necessary, update the HW's version of the event ring deq ptr. */
1383 	if (event_ring_deq != pdev->event_ring->dequeue) {
1384 		deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1385 					    pdev->event_ring->dequeue);
1386 		temp_64 &= ERST_PTR_MASK;
1387 		temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1388 	}
1389 
1390 	/* Clear the event handler busy flag (RW1C). */
1391 	if (clear_ehb)
1392 		temp_64 |= ERST_EHB;
1393 	else
1394 		temp_64 &= ~ERST_EHB;
1395 
1396 	cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1397 }
1398 
1399 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1400 {
1401 	struct cdnsp_segment *seg;
1402 	u64 val_64;
1403 	int i;
1404 
1405 	cdnsp_initialize_ring_info(pdev->cmd_ring);
1406 
1407 	seg = pdev->cmd_ring->first_seg;
1408 	for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1409 		memset(seg->trbs, 0,
1410 		       sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1411 		seg = seg->next;
1412 	}
1413 
1414 	/* Set the address in the Command Ring Control register. */
1415 	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1416 	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1417 		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1418 		 pdev->cmd_ring->cycle_state;
1419 	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1420 }
1421 
1422 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1423 {
1424 	struct cdnsp_segment *event_deq_seg;
1425 	union cdnsp_trb *event_ring_deq;
1426 	union cdnsp_trb *event;
1427 	u32 cycle_bit;
1428 
1429 	event_ring_deq = pdev->event_ring->dequeue;
1430 	event_deq_seg = pdev->event_ring->deq_seg;
1431 	event = pdev->event_ring->dequeue;
1432 
1433 	/* Update ring dequeue pointer. */
1434 	while (1) {
1435 		cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1436 
1437 		/* Does the controller or driver own the TRB? */
1438 		if (cycle_bit != pdev->event_ring->cycle_state)
1439 			break;
1440 
1441 		cdnsp_inc_deq(pdev, pdev->event_ring);
1442 
1443 		if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1444 			event++;
1445 			continue;
1446 		}
1447 
1448 		if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1449 					   event))
1450 			cycle_bit ^= 1;
1451 
1452 		event_deq_seg = event_deq_seg->next;
1453 		event = event_deq_seg->trbs;
1454 	}
1455 
1456 	cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1457 }
1458 
1459 static void cdnsp_stop(struct cdnsp_device *pdev)
1460 {
1461 	u32 temp;
1462 
1463 	/* Remove internally queued request for ep0. */
1464 	if (!list_empty(&pdev->eps[0].pending_list)) {
1465 		struct cdnsp_request *req;
1466 
1467 		req = next_request(&pdev->eps[0].pending_list);
1468 		if (req == &pdev->ep0_preq)
1469 			cdnsp_ep_dequeue(&pdev->eps[0], req);
1470 	}
1471 
1472 	cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1473 	cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1474 	cdnsp_disable_slot(pdev);
1475 	cdnsp_halt(pdev);
1476 
1477 	temp = readl(&pdev->op_regs->status);
1478 	writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1479 	temp = readl(&pdev->ir_set->irq_pending);
1480 	writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1481 
1482 	cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1483 	cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1484 
1485 	/* Clear interrupt line */
1486 	temp = readl(&pdev->ir_set->irq_pending);
1487 	temp |= IMAN_IP;
1488 	writel(temp, &pdev->ir_set->irq_pending);
1489 
1490 	cdnsp_consume_all_events(pdev);
1491 	cdnsp_clear_cmd_ring(pdev);
1492 
1493 	trace_cdnsp_exit("Controller stopped.");
1494 }
1495 
1496 /*
1497  * Stop controller.
1498  * This function is called by the gadget core when the driver is removed.
1499  * Disable slot, disable IRQs, and quiesce the controller.
1500  */
1501 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1502 {
1503 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1504 	unsigned long flags;
1505 
1506 	spin_lock_irqsave(&pdev->lock, flags);
1507 	cdnsp_stop(pdev);
1508 	pdev->gadget_driver = NULL;
1509 	spin_unlock_irqrestore(&pdev->lock, flags);
1510 
1511 	return 0;
1512 }
1513 
1514 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1515 {
1516 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1517 
1518 	return cdnsp_get_frame(pdev);
1519 }
1520 
1521 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1522 {
1523 	struct cdnsp_port_regs __iomem *port_regs;
1524 	u32 portpm, portsc;
1525 
1526 	port_regs = pdev->active_port->regs;
1527 	portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1528 
1529 	/* Remote wakeup feature is not enabled by host. */
1530 	if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1531 		portpm = readl(&port_regs->portpmsc);
1532 
1533 		if (!(portpm & PORT_RWE))
1534 			return;
1535 	}
1536 
1537 	if (portsc == XDEV_U3 && !pdev->may_wakeup)
1538 		return;
1539 
1540 	cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1541 
1542 	pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1543 }
1544 
1545 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1546 {
1547 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1548 	unsigned long flags;
1549 
1550 	spin_lock_irqsave(&pdev->lock, flags);
1551 	__cdnsp_gadget_wakeup(pdev);
1552 	spin_unlock_irqrestore(&pdev->lock, flags);
1553 
1554 	return 0;
1555 }
1556 
1557 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1558 					int is_selfpowered)
1559 {
1560 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1561 	unsigned long flags;
1562 
1563 	spin_lock_irqsave(&pdev->lock, flags);
1564 	g->is_selfpowered = !!is_selfpowered;
1565 	spin_unlock_irqrestore(&pdev->lock, flags);
1566 
1567 	return 0;
1568 }
1569 
1570 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1571 {
1572 	struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1573 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
1574 	unsigned long flags;
1575 
1576 	trace_cdnsp_pullup(is_on);
1577 
1578 	/*
1579 	 * Disable events handling while controller is being
1580 	 * enabled/disabled.
1581 	 */
1582 	disable_irq(cdns->dev_irq);
1583 	spin_lock_irqsave(&pdev->lock, flags);
1584 
1585 	if (!is_on) {
1586 		cdnsp_reset_device(pdev);
1587 		cdns_clear_vbus(cdns);
1588 	} else {
1589 		cdns_set_vbus(cdns);
1590 	}
1591 
1592 	spin_unlock_irqrestore(&pdev->lock, flags);
1593 	enable_irq(cdns->dev_irq);
1594 
1595 	return 0;
1596 }
1597 
1598 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1599 	.get_frame		= cdnsp_gadget_get_frame,
1600 	.wakeup			= cdnsp_gadget_wakeup,
1601 	.set_selfpowered	= cdnsp_gadget_set_selfpowered,
1602 	.pullup			= cdnsp_gadget_pullup,
1603 	.udc_start		= cdnsp_gadget_udc_start,
1604 	.udc_stop		= cdnsp_gadget_udc_stop,
1605 };
1606 
1607 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1608 				   struct cdnsp_ep *pep)
1609 {
1610 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1611 	int endpoints;
1612 
1613 	reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1614 
1615 	if (!pep->direction) {
1616 		pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1617 		pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1618 		pep->buffering = (pep->buffering + 1) / 2;
1619 		pep->buffering_period = (pep->buffering_period + 1) / 2;
1620 		return;
1621 	}
1622 
1623 	endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1624 
1625 	/* Set to XBUF_TX_TAG_MASK_0 register. */
1626 	reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1627 	/* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1628 	reg += pep->number * sizeof(u32) * 2;
1629 
1630 	pep->buffering = (readl(reg) + 1) / 2;
1631 	pep->buffering_period = pep->buffering;
1632 }
1633 
1634 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1635 {
1636 	int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1637 	struct cdnsp_ep *pep;
1638 	int i;
1639 
1640 	INIT_LIST_HEAD(&pdev->gadget.ep_list);
1641 
1642 	if (max_streams < STREAM_LOG_STREAMS) {
1643 		dev_err(pdev->dev, "Stream size %d not supported\n",
1644 			max_streams);
1645 		return -EINVAL;
1646 	}
1647 
1648 	max_streams = STREAM_LOG_STREAMS;
1649 
1650 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1651 		bool direction = !(i & 1); /* Start from OUT endpoint. */
1652 		u8 epnum = ((i + 1) >> 1);
1653 
1654 		if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1655 			continue;
1656 
1657 		pep = &pdev->eps[i];
1658 		pep->pdev = pdev;
1659 		pep->number = epnum;
1660 		pep->direction = direction; /* 0 for OUT, 1 for IN. */
1661 
1662 		/*
1663 		 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1664 		 * pdev->eps[0]
1665 		 */
1666 		if (epnum == 0) {
1667 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1668 				 epnum, "BiDir");
1669 
1670 			pep->idx = 0;
1671 			usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1672 			pep->endpoint.maxburst = 1;
1673 			pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1674 			pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1675 			pep->endpoint.comp_desc = NULL;
1676 			pep->endpoint.caps.type_control = true;
1677 			pep->endpoint.caps.dir_in = true;
1678 			pep->endpoint.caps.dir_out = true;
1679 
1680 			pdev->ep0_preq.epnum = pep->number;
1681 			pdev->ep0_preq.pep = pep;
1682 			pdev->gadget.ep0 = &pep->endpoint;
1683 		} else {
1684 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1685 				 epnum, (pep->direction) ? "in" : "out");
1686 
1687 			pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1688 			usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1689 
1690 			pep->endpoint.max_streams = max_streams;
1691 			pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1692 			list_add_tail(&pep->endpoint.ep_list,
1693 				      &pdev->gadget.ep_list);
1694 
1695 			pep->endpoint.caps.type_iso = true;
1696 			pep->endpoint.caps.type_bulk = true;
1697 			pep->endpoint.caps.type_int = true;
1698 
1699 			pep->endpoint.caps.dir_in = direction;
1700 			pep->endpoint.caps.dir_out = !direction;
1701 		}
1702 
1703 		pep->endpoint.name = pep->name;
1704 		pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1705 		pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1706 		cdnsp_get_ep_buffering(pdev, pep);
1707 
1708 		dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1709 			"CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1710 			"SupDir IN: %s, OUT: %s\n",
1711 			pep->name, 1024,
1712 			str_yes_no(pep->endpoint.caps.type_control),
1713 			str_yes_no(pep->endpoint.caps.type_int),
1714 			str_yes_no(pep->endpoint.caps.type_bulk),
1715 			str_yes_no(pep->endpoint.caps.type_iso),
1716 			str_yes_no(pep->endpoint.caps.dir_in),
1717 			str_yes_no(pep->endpoint.caps.dir_out));
1718 
1719 		INIT_LIST_HEAD(&pep->pending_list);
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1726 {
1727 	struct cdnsp_ep *pep;
1728 	int i;
1729 
1730 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1731 		pep = &pdev->eps[i];
1732 		if (pep->number != 0 && pep->out_ctx)
1733 			list_del(&pep->endpoint.ep_list);
1734 	}
1735 }
1736 
1737 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1738 {
1739 	pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1740 
1741 	if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1742 		spin_unlock(&pdev->lock);
1743 		pdev->gadget_driver->disconnect(&pdev->gadget);
1744 		spin_lock(&pdev->lock);
1745 	}
1746 
1747 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1748 	usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1749 
1750 	pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1751 }
1752 
1753 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1754 {
1755 	if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1756 		spin_unlock(&pdev->lock);
1757 		pdev->gadget_driver->suspend(&pdev->gadget);
1758 		spin_lock(&pdev->lock);
1759 	}
1760 }
1761 
1762 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1763 {
1764 	if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1765 		spin_unlock(&pdev->lock);
1766 		pdev->gadget_driver->resume(&pdev->gadget);
1767 		spin_lock(&pdev->lock);
1768 	}
1769 }
1770 
1771 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1772 {
1773 	struct cdnsp_port_regs __iomem *port_regs;
1774 
1775 	cdnsp_reset_device(pdev);
1776 
1777 	port_regs = pdev->active_port->regs;
1778 	pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1779 
1780 	spin_unlock(&pdev->lock);
1781 	usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1782 	spin_lock(&pdev->lock);
1783 
1784 	switch (pdev->gadget.speed) {
1785 	case USB_SPEED_SUPER_PLUS:
1786 	case USB_SPEED_SUPER:
1787 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1788 		pdev->gadget.ep0->maxpacket = 512;
1789 		break;
1790 	case USB_SPEED_HIGH:
1791 	case USB_SPEED_FULL:
1792 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1793 		pdev->gadget.ep0->maxpacket = 64;
1794 		break;
1795 	default:
1796 		/* Low speed is not supported. */
1797 		dev_err(pdev->dev, "Unknown device speed\n");
1798 		break;
1799 	}
1800 
1801 	cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1802 	cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1803 	usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1804 }
1805 
1806 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1807 {
1808 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1809 
1810 	reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1811 	pdev->rev_cap  = reg;
1812 
1813 	pdev->rtl_revision = readl(&pdev->rev_cap->rtl_revision);
1814 
1815 	dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1816 		 readl(&pdev->rev_cap->ctrl_revision),
1817 		 readl(&pdev->rev_cap->rtl_revision),
1818 		 readl(&pdev->rev_cap->ep_supported),
1819 		 readl(&pdev->rev_cap->rx_buff_size),
1820 		 readl(&pdev->rev_cap->tx_buff_size));
1821 }
1822 
1823 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1824 {
1825 	int ret;
1826 	u32 reg;
1827 
1828 	pdev->cap_regs = pdev->regs;
1829 	pdev->op_regs = pdev->regs +
1830 		HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1831 	pdev->run_regs = pdev->regs +
1832 		(readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1833 
1834 	/* Cache read-only capability registers */
1835 	pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1836 	pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1837 	pdev->hci_version = HC_VERSION(pdev->hcc_params);
1838 	pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1839 
1840 	/*
1841 	 * Override the APB timeout value to give the controller more time for
1842 	 * enabling UTMI clock and synchronizing APB and UTMI clock domains.
1843 	 * This fix is platform specific and is required to fixes issue with
1844 	 * reading incorrect value from PORTSC register after resuming
1845 	 * from L1 state.
1846 	 */
1847 	cdnsp_set_apb_timeout_value(pdev);
1848 
1849 	cdnsp_get_rev_cap(pdev);
1850 
1851 	/* Make sure the Device Controller is halted. */
1852 	ret = cdnsp_halt(pdev);
1853 	if (ret)
1854 		return ret;
1855 
1856 	/* Reset the internal controller memory state and registers. */
1857 	ret = cdnsp_reset(pdev);
1858 	if (ret)
1859 		return ret;
1860 
1861 	/*
1862 	 * Set dma_mask and coherent_dma_mask to 64-bits,
1863 	 * if controller supports 64-bit addressing.
1864 	 */
1865 	if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1866 	    !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1867 		dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1868 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1869 	} else {
1870 		/*
1871 		 * This is to avoid error in cases where a 32-bit USB
1872 		 * controller is used on a 64-bit capable system.
1873 		 */
1874 		ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1875 		if (ret)
1876 			return ret;
1877 
1878 		dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1879 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1880 	}
1881 
1882 	spin_lock_init(&pdev->lock);
1883 
1884 	ret = cdnsp_mem_init(pdev);
1885 	if (ret)
1886 		return ret;
1887 
1888 	/*
1889 	 * Software workaround for U1: after transition
1890 	 * to U1 the controller starts gating clock, and in some cases,
1891 	 * it causes that controller stack.
1892 	 */
1893 	reg = readl(&pdev->port3x_regs->mode_2);
1894 	reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1895 	writel(reg, &pdev->port3x_regs->mode_2);
1896 
1897 	return 0;
1898 }
1899 
1900 static int __cdnsp_gadget_init(struct cdns *cdns)
1901 {
1902 	struct cdnsp_device *pdev;
1903 	u32 max_speed;
1904 	int ret = -ENOMEM;
1905 
1906 	cdns_drd_gadget_on(cdns);
1907 
1908 	pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1909 	if (!pdev)
1910 		return -ENOMEM;
1911 
1912 	pm_runtime_get_sync(cdns->dev);
1913 
1914 	cdns->gadget_dev = pdev;
1915 	pdev->dev = cdns->dev;
1916 	pdev->regs = cdns->dev_regs;
1917 	max_speed = usb_get_maximum_speed(cdns->dev);
1918 
1919 	switch (max_speed) {
1920 	case USB_SPEED_FULL:
1921 	case USB_SPEED_HIGH:
1922 	case USB_SPEED_SUPER:
1923 	case USB_SPEED_SUPER_PLUS:
1924 		break;
1925 	default:
1926 		dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1927 		fallthrough;
1928 	case USB_SPEED_UNKNOWN:
1929 		/* Default to SSP */
1930 		max_speed = USB_SPEED_SUPER_PLUS;
1931 		break;
1932 	}
1933 
1934 	pdev->gadget.ops = &cdnsp_gadget_ops;
1935 	pdev->gadget.name = "cdnsp-gadget";
1936 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1937 	pdev->gadget.sg_supported = 1;
1938 	pdev->gadget.max_speed = max_speed;
1939 	pdev->gadget.lpm_capable = 1;
1940 
1941 	pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1942 	if (!pdev->setup_buf)
1943 		goto free_pdev;
1944 
1945 	/*
1946 	 * Controller supports not aligned buffer but it should improve
1947 	 * performance.
1948 	 */
1949 	pdev->gadget.quirk_ep_out_aligned_size = true;
1950 
1951 	ret = cdnsp_gen_setup(pdev);
1952 	if (ret) {
1953 		dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1954 		goto free_setup;
1955 	}
1956 
1957 	ret = cdnsp_gadget_init_endpoints(pdev);
1958 	if (ret) {
1959 		dev_err(pdev->dev, "failed to initialize endpoints\n");
1960 		goto halt_pdev;
1961 	}
1962 
1963 	ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1964 	if (ret) {
1965 		dev_err(pdev->dev, "failed to register udc\n");
1966 		goto free_endpoints;
1967 	}
1968 
1969 	ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1970 					cdnsp_irq_handler,
1971 					cdnsp_thread_irq_handler, IRQF_SHARED,
1972 					dev_name(pdev->dev), pdev);
1973 	if (ret)
1974 		goto del_gadget;
1975 
1976 	return 0;
1977 
1978 del_gadget:
1979 	usb_del_gadget_udc(&pdev->gadget);
1980 free_endpoints:
1981 	cdnsp_gadget_free_endpoints(pdev);
1982 halt_pdev:
1983 	cdnsp_halt(pdev);
1984 	cdnsp_reset(pdev);
1985 	cdnsp_mem_cleanup(pdev);
1986 free_setup:
1987 	kfree(pdev->setup_buf);
1988 free_pdev:
1989 	kfree(pdev);
1990 
1991 	return ret;
1992 }
1993 
1994 static void cdnsp_gadget_exit(struct cdns *cdns)
1995 {
1996 	struct cdnsp_device *pdev = cdns->gadget_dev;
1997 
1998 	devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1999 	pm_runtime_mark_last_busy(cdns->dev);
2000 	pm_runtime_put_autosuspend(cdns->dev);
2001 	usb_del_gadget_udc(&pdev->gadget);
2002 	cdnsp_gadget_free_endpoints(pdev);
2003 	cdnsp_mem_cleanup(pdev);
2004 	kfree(pdev);
2005 	cdns->gadget_dev = NULL;
2006 	cdns_drd_gadget_off(cdns);
2007 }
2008 
2009 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
2010 {
2011 	struct cdnsp_device *pdev = cdns->gadget_dev;
2012 	unsigned long flags;
2013 
2014 	if (pdev->link_state == XDEV_U3)
2015 		return 0;
2016 
2017 	spin_lock_irqsave(&pdev->lock, flags);
2018 	cdnsp_disconnect_gadget(pdev);
2019 	cdnsp_stop(pdev);
2020 	spin_unlock_irqrestore(&pdev->lock, flags);
2021 
2022 	return 0;
2023 }
2024 
2025 static int cdnsp_gadget_resume(struct cdns *cdns, bool lost_power)
2026 {
2027 	struct cdnsp_device *pdev = cdns->gadget_dev;
2028 	enum usb_device_speed max_speed;
2029 	unsigned long flags;
2030 	int ret;
2031 
2032 	if (!pdev->gadget_driver)
2033 		return 0;
2034 
2035 	spin_lock_irqsave(&pdev->lock, flags);
2036 	max_speed = pdev->gadget_driver->max_speed;
2037 
2038 	/* Limit speed if necessary. */
2039 	max_speed = min(max_speed, pdev->gadget.max_speed);
2040 
2041 	ret = cdnsp_run(pdev, max_speed);
2042 
2043 	if (pdev->link_state == XDEV_U3)
2044 		__cdnsp_gadget_wakeup(pdev);
2045 
2046 	spin_unlock_irqrestore(&pdev->lock, flags);
2047 
2048 	return ret;
2049 }
2050 
2051 /**
2052  * cdnsp_gadget_init - initialize device structure
2053  * @cdns: cdnsp instance
2054  *
2055  * This function initializes the gadget.
2056  */
2057 int cdnsp_gadget_init(struct cdns *cdns)
2058 {
2059 	struct cdns_role_driver *rdrv;
2060 
2061 	rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2062 	if (!rdrv)
2063 		return -ENOMEM;
2064 
2065 	rdrv->start	= __cdnsp_gadget_init;
2066 	rdrv->stop	= cdnsp_gadget_exit;
2067 	rdrv->suspend	= cdnsp_gadget_suspend;
2068 	rdrv->resume	= cdnsp_gadget_resume;
2069 	rdrv->state	= CDNS_ROLE_STATE_INACTIVE;
2070 	rdrv->name	= "gadget";
2071 	cdns->roles[USB_ROLE_DEVICE] = rdrv;
2072 
2073 	return 0;
2074 }
2075