1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cadence CDNSP DRD Driver. 4 * 5 * Copyright (C) 2020 Cadence. 6 * 7 * Author: Pawel Laszczak <pawell@cadence.com> 8 * 9 */ 10 11 #include <linux/moduleparam.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/module.h> 14 #include <linux/iopoll.h> 15 #include <linux/delay.h> 16 #include <linux/log2.h> 17 #include <linux/slab.h> 18 #include <linux/string_choices.h> 19 #include <linux/pci.h> 20 #include <linux/irq.h> 21 #include <linux/dmi.h> 22 23 #include "core.h" 24 #include "gadget-export.h" 25 #include "drd.h" 26 #include "cdnsp-gadget.h" 27 #include "cdnsp-trace.h" 28 29 unsigned int cdnsp_port_speed(unsigned int port_status) 30 { 31 /*Detect gadget speed based on PORTSC register*/ 32 if (DEV_SUPERSPEEDPLUS(port_status) || 33 DEV_SSP_GEN1x2(port_status) || DEV_SSP_GEN2x2(port_status)) 34 return USB_SPEED_SUPER_PLUS; 35 else if (DEV_SUPERSPEED(port_status)) 36 return USB_SPEED_SUPER; 37 else if (DEV_HIGHSPEED(port_status)) 38 return USB_SPEED_HIGH; 39 else if (DEV_FULLSPEED(port_status)) 40 return USB_SPEED_FULL; 41 42 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/ 43 return USB_SPEED_UNKNOWN; 44 } 45 46 /* 47 * Given a port state, this function returns a value that would result in the 48 * port being in the same state, if the value was written to the port status 49 * control register. 50 * Save Read Only (RO) bits and save read/write bits where 51 * writing a 0 clears the bit and writing a 1 sets the bit (RWS). 52 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. 53 */ 54 u32 cdnsp_port_state_to_neutral(u32 state) 55 { 56 /* Save read-only status and port state. */ 57 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS); 58 } 59 60 /** 61 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities 62 * with capability ID id. 63 * @base: PCI MMIO registers base address. 64 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at 65 * beginning of list) 66 * @id: Extended capability ID to search for. 67 * 68 * Returns the offset of the next matching extended capability structure. 69 * Some capabilities can occur several times, 70 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all. 71 */ 72 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id) 73 { 74 u32 offset = start; 75 u32 next; 76 u32 val; 77 78 if (!start || start == HCC_PARAMS_OFFSET) { 79 val = readl(base + HCC_PARAMS_OFFSET); 80 if (val == ~0) 81 return 0; 82 83 offset = HCC_EXT_CAPS(val) << 2; 84 if (!offset) 85 return 0; 86 } 87 88 do { 89 val = readl(base + offset); 90 if (val == ~0) 91 return 0; 92 93 if (EXT_CAPS_ID(val) == id && offset != start) 94 return offset; 95 96 next = EXT_CAPS_NEXT(val); 97 offset += next << 2; 98 } while (next); 99 100 return 0; 101 } 102 103 void cdnsp_set_link_state(struct cdnsp_device *pdev, 104 __le32 __iomem *port_regs, 105 u32 link_state) 106 { 107 int port_num = 0xFF; 108 u32 temp; 109 110 temp = readl(port_regs); 111 temp = cdnsp_port_state_to_neutral(temp); 112 temp |= PORT_WKCONN_E | PORT_WKDISC_E; 113 writel(temp, port_regs); 114 115 temp &= ~PORT_PLS_MASK; 116 temp |= PORT_LINK_STROBE | link_state; 117 118 if (pdev->active_port) 119 port_num = pdev->active_port->port_num; 120 121 trace_cdnsp_handle_port_status(port_num, readl(port_regs)); 122 writel(temp, port_regs); 123 trace_cdnsp_link_state_changed(port_num, readl(port_regs)); 124 } 125 126 static void cdnsp_disable_port(struct cdnsp_device *pdev, 127 __le32 __iomem *port_regs) 128 { 129 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs)); 130 131 writel(temp | PORT_PED, port_regs); 132 } 133 134 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev, 135 __le32 __iomem *port_regs) 136 { 137 u32 portsc = readl(port_regs); 138 139 writel(cdnsp_port_state_to_neutral(portsc) | 140 (portsc & PORT_CHANGE_BITS), port_regs); 141 } 142 143 static void cdnsp_set_apb_timeout_value(struct cdnsp_device *pdev) 144 { 145 struct cdns *cdns = dev_get_drvdata(pdev->dev); 146 __le32 __iomem *reg; 147 void __iomem *base; 148 u32 offset = 0; 149 u32 val; 150 151 if (!cdns->override_apb_timeout) 152 return; 153 154 base = &pdev->cap_regs->hc_capbase; 155 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 156 reg = base + offset + REG_CHICKEN_BITS_3_OFFSET; 157 158 val = le32_to_cpu(readl(reg)); 159 val = CHICKEN_APB_TIMEOUT_SET(val, cdns->override_apb_timeout); 160 writel(cpu_to_le32(val), reg); 161 } 162 163 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 164 { 165 __le32 __iomem *reg; 166 void __iomem *base; 167 u32 offset = 0; 168 169 base = &pdev->cap_regs->hc_capbase; 170 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 171 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 172 173 bit = readl(reg) | bit; 174 writel(bit, reg); 175 } 176 177 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 178 { 179 __le32 __iomem *reg; 180 void __iomem *base; 181 u32 offset = 0; 182 183 base = &pdev->cap_regs->hc_capbase; 184 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 185 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 186 187 bit = readl(reg) & ~bit; 188 writel(bit, reg); 189 } 190 191 /* 192 * Disable interrupts and begin the controller halting process. 193 */ 194 static void cdnsp_quiesce(struct cdnsp_device *pdev) 195 { 196 u32 halted; 197 u32 mask; 198 u32 cmd; 199 200 mask = ~(u32)(CDNSP_IRQS); 201 202 halted = readl(&pdev->op_regs->status) & STS_HALT; 203 if (!halted) 204 mask &= ~(CMD_R_S | CMD_DEVEN); 205 206 cmd = readl(&pdev->op_regs->command); 207 cmd &= mask; 208 writel(cmd, &pdev->op_regs->command); 209 } 210 211 /* 212 * Force controller into halt state. 213 * 214 * Disable any IRQs and clear the run/stop bit. 215 * Controller will complete any current and actively pipelined transactions, and 216 * should halt within 16 ms of the run/stop bit being cleared. 217 * Read controller Halted bit in the status register to see when the 218 * controller is finished. 219 */ 220 int cdnsp_halt(struct cdnsp_device *pdev) 221 { 222 int ret; 223 u32 val; 224 225 cdnsp_quiesce(pdev); 226 227 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val, 228 val & STS_HALT, 1, 229 CDNSP_MAX_HALT_USEC); 230 if (ret) { 231 dev_err(pdev->dev, "ERROR: Device halt failed\n"); 232 return ret; 233 } 234 235 pdev->cdnsp_state |= CDNSP_STATE_HALTED; 236 237 return 0; 238 } 239 240 /* 241 * device controller died, register read returns 0xffffffff, or command never 242 * ends. 243 */ 244 void cdnsp_died(struct cdnsp_device *pdev) 245 { 246 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n"); 247 pdev->cdnsp_state |= CDNSP_STATE_DYING; 248 cdnsp_halt(pdev); 249 } 250 251 /* 252 * Set the run bit and wait for the device to be running. 253 */ 254 static int cdnsp_start(struct cdnsp_device *pdev) 255 { 256 u32 temp; 257 int ret; 258 259 temp = readl(&pdev->op_regs->command); 260 temp |= (CMD_R_S | CMD_DEVEN); 261 writel(temp, &pdev->op_regs->command); 262 263 pdev->cdnsp_state = 0; 264 265 /* 266 * Wait for the STS_HALT Status bit to be 0 to indicate the device is 267 * running. 268 */ 269 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 270 !(temp & STS_HALT), 1, 271 CDNSP_MAX_HALT_USEC); 272 if (ret) { 273 pdev->cdnsp_state = CDNSP_STATE_DYING; 274 dev_err(pdev->dev, "ERROR: Controller run failed\n"); 275 } 276 277 return ret; 278 } 279 280 /* 281 * Reset a halted controller. 282 * 283 * This resets pipelines, timers, counters, state machines, etc. 284 * Transactions will be terminated immediately, and operational registers 285 * will be set to their defaults. 286 */ 287 int cdnsp_reset(struct cdnsp_device *pdev) 288 { 289 u32 command; 290 u32 temp; 291 int ret; 292 293 temp = readl(&pdev->op_regs->status); 294 295 if (temp == ~(u32)0) { 296 dev_err(pdev->dev, "Device not accessible, reset failed.\n"); 297 return -ENODEV; 298 } 299 300 if ((temp & STS_HALT) == 0) { 301 dev_err(pdev->dev, "Controller not halted, aborting reset.\n"); 302 return -EINVAL; 303 } 304 305 command = readl(&pdev->op_regs->command); 306 command |= CMD_RESET; 307 writel(command, &pdev->op_regs->command); 308 309 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp, 310 !(temp & CMD_RESET), 1, 311 10 * 1000); 312 if (ret) { 313 dev_err(pdev->dev, "ERROR: Controller reset failed\n"); 314 return ret; 315 } 316 317 /* 318 * CDNSP cannot write any doorbells or operational registers other 319 * than status until the "Controller Not Ready" flag is cleared. 320 */ 321 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 322 !(temp & STS_CNR), 1, 323 10 * 1000); 324 325 if (ret) { 326 dev_err(pdev->dev, "ERROR: Controller not ready to work\n"); 327 return ret; 328 } 329 330 dev_dbg(pdev->dev, "Controller ready to work"); 331 332 return ret; 333 } 334 335 /* 336 * cdnsp_get_endpoint_index - Find the index for an endpoint given its 337 * descriptor.Use the return value to right shift 1 for the bitmask. 338 * 339 * Index = (epnum * 2) + direction - 1, 340 * where direction = 0 for OUT, 1 for IN. 341 * For control endpoints, the IN index is used (OUT index is unused), so 342 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 343 */ 344 static unsigned int 345 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc) 346 { 347 unsigned int index = (unsigned int)usb_endpoint_num(desc); 348 349 if (usb_endpoint_xfer_control(desc)) 350 return index * 2; 351 352 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 353 } 354 355 /* 356 * Find the flag for this endpoint (for use in the control context). Use the 357 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 358 * bit 1, etc. 359 */ 360 static unsigned int 361 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc) 362 { 363 return 1 << (cdnsp_get_endpoint_index(desc) + 1); 364 } 365 366 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 367 { 368 struct cdnsp_device *pdev = pep->pdev; 369 struct usb_request *request; 370 int ret; 371 372 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) { 373 trace_cdnsp_request_enqueue_busy(preq); 374 return -EBUSY; 375 } 376 377 request = &preq->request; 378 request->actual = 0; 379 request->status = -EINPROGRESS; 380 preq->direction = pep->direction; 381 preq->epnum = pep->number; 382 preq->td.drbl = 0; 383 384 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction); 385 if (ret) { 386 trace_cdnsp_request_enqueue_error(preq); 387 return ret; 388 } 389 390 list_add_tail(&preq->list, &pep->pending_list); 391 392 trace_cdnsp_request_enqueue(preq); 393 394 switch (usb_endpoint_type(pep->endpoint.desc)) { 395 case USB_ENDPOINT_XFER_CONTROL: 396 ret = cdnsp_queue_ctrl_tx(pdev, preq); 397 break; 398 case USB_ENDPOINT_XFER_BULK: 399 case USB_ENDPOINT_XFER_INT: 400 ret = cdnsp_queue_bulk_tx(pdev, preq); 401 break; 402 case USB_ENDPOINT_XFER_ISOC: 403 ret = cdnsp_queue_isoc_tx(pdev, preq); 404 } 405 406 if (ret) 407 goto unmap; 408 409 return 0; 410 411 unmap: 412 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 413 pep->direction); 414 list_del(&preq->list); 415 trace_cdnsp_request_enqueue_error(preq); 416 417 return ret; 418 } 419 420 /* 421 * Remove the request's TD from the endpoint ring. This may cause the 422 * controller to stop USB transfers, potentially stopping in the middle of a 423 * TRB buffer. The controller should pick up where it left off in the TD, 424 * unless a Set Transfer Ring Dequeue Pointer is issued. 425 * 426 * The TRBs that make up the buffers for the canceled request will be "removed" 427 * from the ring. Since the ring is a contiguous structure, they can't be 428 * physically removed. Instead, there are two options: 429 * 430 * 1) If the controller is in the middle of processing the request to be 431 * canceled, we simply move the ring's dequeue pointer past those TRBs 432 * using the Set Transfer Ring Dequeue Pointer command. This will be 433 * the common case, when drivers timeout on the last submitted request 434 * and attempt to cancel. 435 * 436 * 2) If the controller is in the middle of a different TD, we turn the TRBs 437 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained. 438 * The controller will need to invalidate the any TRBs it has cached after 439 * the stop endpoint command. 440 * 441 * 3) The TD may have completed by the time the Stop Endpoint Command 442 * completes, so software needs to handle that case too. 443 * 444 */ 445 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 446 { 447 struct cdnsp_device *pdev = pep->pdev; 448 int ret_stop = 0; 449 int ret_rem; 450 451 trace_cdnsp_request_dequeue(preq); 452 453 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) 454 ret_stop = cdnsp_cmd_stop_ep(pdev, pep); 455 456 ret_rem = cdnsp_remove_request(pdev, preq, pep); 457 458 return ret_rem ? ret_rem : ret_stop; 459 } 460 461 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev) 462 { 463 struct cdnsp_input_control_ctx *ctrl_ctx; 464 struct cdnsp_slot_ctx *slot_ctx; 465 struct cdnsp_ep_ctx *ep_ctx; 466 int i; 467 468 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 469 470 /* 471 * When a device's add flag and drop flag are zero, any subsequent 472 * configure endpoint command will leave that endpoint's state 473 * untouched. Make sure we don't leave any old state in the input 474 * endpoint contexts. 475 */ 476 ctrl_ctx->drop_flags = 0; 477 ctrl_ctx->add_flags = 0; 478 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 479 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 480 481 /* Endpoint 0 is always valid */ 482 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 483 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) { 484 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i); 485 ep_ctx->ep_info = 0; 486 ep_ctx->ep_info2 = 0; 487 ep_ctx->deq = 0; 488 ep_ctx->tx_info = 0; 489 } 490 } 491 492 /* Issue a configure endpoint command and wait for it to finish. */ 493 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev) 494 { 495 int ret; 496 497 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma); 498 cdnsp_ring_cmd_db(pdev); 499 ret = cdnsp_wait_for_cmd_compl(pdev); 500 if (ret) { 501 dev_err(pdev->dev, 502 "ERR: unexpected command completion code 0x%x.\n", ret); 503 return -EINVAL; 504 } 505 506 return ret; 507 } 508 509 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev, 510 struct cdnsp_ep *pep) 511 { 512 struct cdnsp_segment *segment; 513 union cdnsp_trb *event; 514 u32 cycle_state; 515 u32 data; 516 517 event = pdev->event_ring->dequeue; 518 segment = pdev->event_ring->deq_seg; 519 cycle_state = pdev->event_ring->cycle_state; 520 521 while (1) { 522 data = le32_to_cpu(event->trans_event.flags); 523 524 /* Check the owner of the TRB. */ 525 if ((data & TRB_CYCLE) != cycle_state) 526 break; 527 528 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER && 529 TRB_TO_EP_ID(data) == (pep->idx + 1)) { 530 data |= TRB_EVENT_INVALIDATE; 531 event->trans_event.flags = cpu_to_le32(data); 532 } 533 534 if (cdnsp_last_trb_on_seg(segment, event)) { 535 cycle_state ^= 1; 536 segment = pdev->event_ring->deq_seg->next; 537 event = segment->trbs; 538 } else { 539 event++; 540 } 541 } 542 } 543 544 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev) 545 { 546 struct cdnsp_segment *event_deq_seg; 547 union cdnsp_trb *cmd_trb; 548 dma_addr_t cmd_deq_dma; 549 union cdnsp_trb *event; 550 u32 cycle_state; 551 u32 retry = 10; 552 int ret, val; 553 u64 cmd_dma; 554 u32 flags; 555 556 cmd_trb = pdev->cmd.command_trb; 557 pdev->cmd.status = 0; 558 559 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic); 560 561 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val, 562 !CMD_RING_BUSY(val), 1, 563 CDNSP_CMD_TIMEOUT); 564 if (ret) { 565 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n"); 566 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic); 567 pdev->cdnsp_state = CDNSP_STATE_DYING; 568 return -ETIMEDOUT; 569 } 570 571 event = pdev->event_ring->dequeue; 572 event_deq_seg = pdev->event_ring->deq_seg; 573 cycle_state = pdev->event_ring->cycle_state; 574 575 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb); 576 if (!cmd_deq_dma) 577 return -EINVAL; 578 579 while (1) { 580 flags = le32_to_cpu(event->event_cmd.flags); 581 582 /* Check the owner of the TRB. */ 583 if ((flags & TRB_CYCLE) != cycle_state) { 584 /* 585 * Give some extra time to get chance controller 586 * to finish command before returning error code. 587 * Checking CMD_RING_BUSY is not sufficient because 588 * this bit is cleared to '0' when the Command 589 * Descriptor has been executed by controller 590 * and not when command completion event has 591 * be added to event ring. 592 */ 593 if (retry--) { 594 udelay(20); 595 continue; 596 } 597 598 return -EINVAL; 599 } 600 601 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb); 602 603 /* 604 * Check whether the completion event is for last queued 605 * command. 606 */ 607 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION || 608 cmd_dma != (u64)cmd_deq_dma) { 609 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 610 event++; 611 continue; 612 } 613 614 if (cdnsp_last_trb_on_ring(pdev->event_ring, 615 event_deq_seg, event)) 616 cycle_state ^= 1; 617 618 event_deq_seg = event_deq_seg->next; 619 event = event_deq_seg->trbs; 620 continue; 621 } 622 623 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic); 624 625 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)); 626 if (pdev->cmd.status == COMP_SUCCESS) 627 return 0; 628 629 return -pdev->cmd.status; 630 } 631 } 632 633 int cdnsp_halt_endpoint(struct cdnsp_device *pdev, 634 struct cdnsp_ep *pep, 635 int value) 636 { 637 int ret; 638 639 trace_cdnsp_ep_halt(value ? "Set" : "Clear"); 640 641 ret = cdnsp_cmd_stop_ep(pdev, pep); 642 if (ret) 643 return ret; 644 645 if (value) { 646 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) { 647 cdnsp_queue_halt_endpoint(pdev, pep->idx); 648 cdnsp_ring_cmd_db(pdev); 649 ret = cdnsp_wait_for_cmd_compl(pdev); 650 } 651 652 pep->ep_state |= EP_HALTED; 653 } else { 654 cdnsp_queue_reset_ep(pdev, pep->idx); 655 cdnsp_ring_cmd_db(pdev); 656 ret = cdnsp_wait_for_cmd_compl(pdev); 657 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx); 658 659 if (ret) 660 return ret; 661 662 pep->ep_state &= ~EP_HALTED; 663 664 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE)) 665 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 666 667 pep->ep_state &= ~EP_WEDGE; 668 } 669 670 return 0; 671 } 672 673 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev, 674 struct cdnsp_ep *pep) 675 { 676 struct cdnsp_input_control_ctx *ctrl_ctx; 677 struct cdnsp_slot_ctx *slot_ctx; 678 int ret = 0; 679 u32 ep_sts; 680 int i; 681 682 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 683 684 /* Don't issue the command if there's no endpoints to update. */ 685 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0) 686 return 0; 687 688 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 689 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 690 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 691 692 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 693 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 694 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) { 695 __le32 le32 = cpu_to_le32(BIT(i)); 696 697 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) || 698 (ctrl_ctx->add_flags & le32) || i == 1) { 699 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 700 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 701 break; 702 } 703 } 704 705 ep_sts = GET_EP_CTX_STATE(pep->out_ctx); 706 707 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) && 708 ep_sts == EP_STATE_DISABLED) || 709 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags)) 710 ret = cdnsp_configure_endpoint(pdev); 711 712 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx)); 713 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx); 714 715 cdnsp_zero_in_ctx(pdev); 716 717 return ret; 718 } 719 720 /* 721 * This submits a Reset Device Command, which will set the device state to 0, 722 * set the device address to 0, and disable all the endpoints except the default 723 * control endpoint. The USB core should come back and call 724 * cdnsp_setup_device(), and then re-set up the configuration. 725 */ 726 int cdnsp_reset_device(struct cdnsp_device *pdev) 727 { 728 struct cdnsp_slot_ctx *slot_ctx; 729 int slot_state; 730 int ret, i; 731 732 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 733 slot_ctx->dev_info = 0; 734 pdev->device_address = 0; 735 736 /* If device is not setup, there is no point in resetting it. */ 737 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 738 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 739 trace_cdnsp_reset_device(slot_ctx); 740 741 if (slot_state <= SLOT_STATE_DEFAULT && 742 pdev->eps[0].ep_state & EP_HALTED) { 743 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); 744 } 745 746 /* 747 * During Reset Device command controller shall transition the 748 * endpoint ep0 to the Running State. 749 */ 750 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED); 751 pdev->eps[0].ep_state |= EP_ENABLED; 752 753 if (slot_state <= SLOT_STATE_DEFAULT) 754 return 0; 755 756 cdnsp_queue_reset_device(pdev); 757 cdnsp_ring_cmd_db(pdev); 758 ret = cdnsp_wait_for_cmd_compl(pdev); 759 760 /* 761 * After Reset Device command all not default endpoints 762 * are in Disabled state. 763 */ 764 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) 765 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED; 766 767 trace_cdnsp_handle_cmd_reset_dev(slot_ctx); 768 769 if (ret) 770 dev_err(pdev->dev, "Reset device failed with error code %d", 771 ret); 772 773 return ret; 774 } 775 776 /* 777 * Sets the MaxPStreams field and the Linear Stream Array field. 778 * Sets the dequeue pointer to the stream context array. 779 */ 780 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev, 781 struct cdnsp_ep_ctx *ep_ctx, 782 struct cdnsp_stream_info *stream_info) 783 { 784 u32 max_primary_streams; 785 786 /* MaxPStreams is the number of stream context array entries, not the 787 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 788 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 789 */ 790 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 793 | EP_HAS_LSA); 794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 795 } 796 797 /* 798 * The drivers use this function to prepare a bulk endpoints to use streams. 799 * 800 * Don't allow the call to succeed if endpoint only supports one stream 801 * (which means it doesn't support streams at all). 802 */ 803 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 804 { 805 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc); 806 unsigned int num_stream_ctxs; 807 int ret; 808 809 if (num_streams == 0) 810 return 0; 811 812 if (num_streams > STREAM_NUM_STREAMS) 813 return -EINVAL; 814 815 /* 816 * Add two to the number of streams requested to account for 817 * stream 0 that is reserved for controller usage and one additional 818 * for TASK SET FULL response. 819 */ 820 num_streams += 2; 821 822 /* The stream context array size must be a power of two */ 823 num_stream_ctxs = roundup_pow_of_two(num_streams); 824 825 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams); 826 827 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams); 828 if (ret) 829 return ret; 830 831 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info); 832 833 pep->ep_state |= EP_HAS_STREAMS; 834 pep->stream_info.td_count = 0; 835 pep->stream_info.first_prime_det = 0; 836 837 /* Subtract 1 for stream 0, which drivers can't use. */ 838 return num_streams - 1; 839 } 840 841 int cdnsp_disable_slot(struct cdnsp_device *pdev) 842 { 843 int ret; 844 845 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT); 846 cdnsp_ring_cmd_db(pdev); 847 ret = cdnsp_wait_for_cmd_compl(pdev); 848 849 pdev->slot_id = 0; 850 pdev->active_port = NULL; 851 852 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 853 854 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE); 855 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE); 856 857 return ret; 858 } 859 860 int cdnsp_enable_slot(struct cdnsp_device *pdev) 861 { 862 struct cdnsp_slot_ctx *slot_ctx; 863 int slot_state; 864 int ret; 865 866 /* If device is not setup, there is no point in resetting it */ 867 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 868 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 869 870 if (slot_state != SLOT_STATE_DISABLED) 871 return 0; 872 873 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT); 874 cdnsp_ring_cmd_db(pdev); 875 ret = cdnsp_wait_for_cmd_compl(pdev); 876 if (ret) 877 goto show_trace; 878 879 pdev->slot_id = 1; 880 881 show_trace: 882 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 883 884 return ret; 885 } 886 887 /* 888 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY 889 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS. 890 */ 891 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup) 892 { 893 struct cdnsp_input_control_ctx *ctrl_ctx; 894 struct cdnsp_slot_ctx *slot_ctx; 895 int dev_state = 0; 896 int ret; 897 898 if (!pdev->slot_id) { 899 trace_cdnsp_slot_id("incorrect"); 900 return -EINVAL; 901 } 902 903 if (!pdev->active_port->port_num) 904 return -EINVAL; 905 906 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 907 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 908 909 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) { 910 trace_cdnsp_slot_already_in_default(slot_ctx); 911 return 0; 912 } 913 914 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 915 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 916 917 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) { 918 ret = cdnsp_setup_addressable_priv_dev(pdev); 919 if (ret) 920 return ret; 921 } 922 923 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev); 924 925 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 926 ctrl_ctx->drop_flags = 0; 927 928 trace_cdnsp_setup_device_slot(slot_ctx); 929 930 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup); 931 cdnsp_ring_cmd_db(pdev); 932 ret = cdnsp_wait_for_cmd_compl(pdev); 933 934 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx)); 935 936 /* Zero the input context control for later use. */ 937 ctrl_ctx->add_flags = 0; 938 ctrl_ctx->drop_flags = 0; 939 940 return ret; 941 } 942 943 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev, 944 struct usb_request *req, 945 int enable) 946 { 947 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable) 948 return; 949 950 trace_cdnsp_lpm(enable); 951 952 if (enable) 953 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE, 954 &pdev->active_port->regs->portpmsc); 955 else 956 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc); 957 } 958 959 static int cdnsp_get_frame(struct cdnsp_device *pdev) 960 { 961 return readl(&pdev->run_regs->microframe_index) >> 3; 962 } 963 964 static int cdnsp_gadget_ep_enable(struct usb_ep *ep, 965 const struct usb_endpoint_descriptor *desc) 966 { 967 struct cdnsp_input_control_ctx *ctrl_ctx; 968 struct cdnsp_device *pdev; 969 struct cdnsp_ep *pep; 970 unsigned long flags; 971 u32 added_ctxs; 972 int ret; 973 974 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || 975 !desc->wMaxPacketSize) 976 return -EINVAL; 977 978 pep = to_cdnsp_ep(ep); 979 pdev = pep->pdev; 980 pep->ep_state &= ~EP_UNCONFIGURED; 981 982 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, 983 "%s is already enabled\n", pep->name)) 984 return 0; 985 986 spin_lock_irqsave(&pdev->lock, flags); 987 988 added_ctxs = cdnsp_get_endpoint_flag(desc); 989 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 990 dev_err(pdev->dev, "ERROR: Bad endpoint number\n"); 991 ret = -EINVAL; 992 goto unlock; 993 } 994 995 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; 996 997 if (pdev->gadget.speed == USB_SPEED_FULL) { 998 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT) 999 pep->interval = desc->bInterval << 3; 1000 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) 1001 pep->interval = BIT(desc->bInterval - 1) << 3; 1002 } 1003 1004 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) { 1005 if (pep->interval > BIT(12)) { 1006 dev_err(pdev->dev, "bInterval %d not supported\n", 1007 desc->bInterval); 1008 ret = -EINVAL; 1009 goto unlock; 1010 } 1011 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 1012 } 1013 1014 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC); 1015 if (ret) 1016 goto unlock; 1017 1018 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 1019 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs); 1020 ctrl_ctx->drop_flags = 0; 1021 1022 ret = cdnsp_update_eps_configuration(pdev, pep); 1023 if (ret) { 1024 cdnsp_free_endpoint_rings(pdev, pep); 1025 goto unlock; 1026 } 1027 1028 pep->ep_state |= EP_ENABLED; 1029 pep->ep_state &= ~EP_STOPPED; 1030 1031 unlock: 1032 trace_cdnsp_ep_enable_end(pep, 0); 1033 spin_unlock_irqrestore(&pdev->lock, flags); 1034 1035 return ret; 1036 } 1037 1038 static int cdnsp_gadget_ep_disable(struct usb_ep *ep) 1039 { 1040 struct cdnsp_input_control_ctx *ctrl_ctx; 1041 struct cdnsp_request *preq; 1042 struct cdnsp_device *pdev; 1043 struct cdnsp_ep *pep; 1044 unsigned long flags; 1045 u32 drop_flag; 1046 int ret = 0; 1047 1048 if (!ep) 1049 return -EINVAL; 1050 1051 pep = to_cdnsp_ep(ep); 1052 pdev = pep->pdev; 1053 1054 spin_lock_irqsave(&pdev->lock, flags); 1055 1056 if (!(pep->ep_state & EP_ENABLED)) { 1057 dev_err(pdev->dev, "%s is already disabled\n", pep->name); 1058 ret = -EINVAL; 1059 goto finish; 1060 } 1061 1062 pep->ep_state |= EP_DIS_IN_RROGRESS; 1063 1064 /* Endpoint was unconfigured by Reset Device command. */ 1065 if (!(pep->ep_state & EP_UNCONFIGURED)) 1066 cdnsp_cmd_stop_ep(pdev, pep); 1067 1068 /* Remove all queued USB requests. */ 1069 while (!list_empty(&pep->pending_list)) { 1070 preq = next_request(&pep->pending_list); 1071 cdnsp_ep_dequeue(pep, preq); 1072 } 1073 1074 cdnsp_invalidate_ep_events(pdev, pep); 1075 1076 pep->ep_state &= ~EP_DIS_IN_RROGRESS; 1077 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc); 1078 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 1079 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag); 1080 ctrl_ctx->add_flags = 0; 1081 1082 cdnsp_endpoint_zero(pdev, pep); 1083 1084 if (!(pep->ep_state & EP_UNCONFIGURED)) 1085 ret = cdnsp_update_eps_configuration(pdev, pep); 1086 1087 cdnsp_free_endpoint_rings(pdev, pep); 1088 1089 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED); 1090 pep->ep_state |= EP_STOPPED; 1091 1092 finish: 1093 trace_cdnsp_ep_disable_end(pep, 0); 1094 spin_unlock_irqrestore(&pdev->lock, flags); 1095 1096 return ret; 1097 } 1098 1099 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep, 1100 gfp_t gfp_flags) 1101 { 1102 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1103 struct cdnsp_request *preq; 1104 1105 preq = kzalloc(sizeof(*preq), gfp_flags); 1106 if (!preq) 1107 return NULL; 1108 1109 preq->epnum = pep->number; 1110 preq->pep = pep; 1111 1112 trace_cdnsp_alloc_request(preq); 1113 1114 return &preq->request; 1115 } 1116 1117 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep, 1118 struct usb_request *request) 1119 { 1120 struct cdnsp_request *preq = to_cdnsp_request(request); 1121 1122 trace_cdnsp_free_request(preq); 1123 kfree(preq); 1124 } 1125 1126 static int cdnsp_gadget_ep_queue(struct usb_ep *ep, 1127 struct usb_request *request, 1128 gfp_t gfp_flags) 1129 { 1130 struct cdnsp_request *preq; 1131 struct cdnsp_device *pdev; 1132 struct cdnsp_ep *pep; 1133 unsigned long flags; 1134 int ret; 1135 1136 if (!request || !ep) 1137 return -EINVAL; 1138 1139 pep = to_cdnsp_ep(ep); 1140 pdev = pep->pdev; 1141 1142 if (!(pep->ep_state & EP_ENABLED)) { 1143 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", 1144 pep->name); 1145 return -EINVAL; 1146 } 1147 1148 preq = to_cdnsp_request(request); 1149 spin_lock_irqsave(&pdev->lock, flags); 1150 ret = cdnsp_ep_enqueue(pep, preq); 1151 spin_unlock_irqrestore(&pdev->lock, flags); 1152 1153 return ret; 1154 } 1155 1156 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep, 1157 struct usb_request *request) 1158 { 1159 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1160 struct cdnsp_device *pdev = pep->pdev; 1161 unsigned long flags; 1162 int ret; 1163 1164 if (request->status != -EINPROGRESS) 1165 return 0; 1166 1167 if (!pep->endpoint.desc) { 1168 dev_err(pdev->dev, 1169 "%s: can't dequeue to disabled endpoint\n", 1170 pep->name); 1171 return -ESHUTDOWN; 1172 } 1173 1174 /* Requests has been dequeued during disabling endpoint. */ 1175 if (!(pep->ep_state & EP_ENABLED)) 1176 return 0; 1177 1178 spin_lock_irqsave(&pdev->lock, flags); 1179 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request)); 1180 spin_unlock_irqrestore(&pdev->lock, flags); 1181 1182 return ret; 1183 } 1184 1185 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value) 1186 { 1187 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1188 struct cdnsp_device *pdev = pep->pdev; 1189 struct cdnsp_request *preq; 1190 unsigned long flags; 1191 int ret; 1192 1193 spin_lock_irqsave(&pdev->lock, flags); 1194 1195 preq = next_request(&pep->pending_list); 1196 if (value) { 1197 if (preq) { 1198 trace_cdnsp_ep_busy_try_halt_again(pep, 0); 1199 ret = -EAGAIN; 1200 goto done; 1201 } 1202 } 1203 1204 ret = cdnsp_halt_endpoint(pdev, pep, value); 1205 1206 done: 1207 spin_unlock_irqrestore(&pdev->lock, flags); 1208 return ret; 1209 } 1210 1211 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep) 1212 { 1213 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1214 struct cdnsp_device *pdev = pep->pdev; 1215 unsigned long flags; 1216 int ret; 1217 1218 spin_lock_irqsave(&pdev->lock, flags); 1219 pep->ep_state |= EP_WEDGE; 1220 ret = cdnsp_halt_endpoint(pdev, pep, 1); 1221 spin_unlock_irqrestore(&pdev->lock, flags); 1222 1223 return ret; 1224 } 1225 1226 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = { 1227 .enable = cdnsp_gadget_ep_enable, 1228 .disable = cdnsp_gadget_ep_disable, 1229 .alloc_request = cdnsp_gadget_ep_alloc_request, 1230 .free_request = cdnsp_gadget_ep_free_request, 1231 .queue = cdnsp_gadget_ep_queue, 1232 .dequeue = cdnsp_gadget_ep_dequeue, 1233 .set_halt = cdnsp_gadget_ep_set_halt, 1234 .set_wedge = cdnsp_gadget_ep_set_wedge, 1235 }; 1236 1237 static const struct usb_ep_ops cdnsp_gadget_ep_ops = { 1238 .enable = cdnsp_gadget_ep_enable, 1239 .disable = cdnsp_gadget_ep_disable, 1240 .alloc_request = cdnsp_gadget_ep_alloc_request, 1241 .free_request = cdnsp_gadget_ep_free_request, 1242 .queue = cdnsp_gadget_ep_queue, 1243 .dequeue = cdnsp_gadget_ep_dequeue, 1244 .set_halt = cdnsp_gadget_ep_set_halt, 1245 .set_wedge = cdnsp_gadget_ep_set_wedge, 1246 }; 1247 1248 void cdnsp_gadget_giveback(struct cdnsp_ep *pep, 1249 struct cdnsp_request *preq, 1250 int status) 1251 { 1252 struct cdnsp_device *pdev = pep->pdev; 1253 1254 list_del(&preq->list); 1255 1256 if (preq->request.status == -EINPROGRESS) 1257 preq->request.status = status; 1258 1259 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 1260 preq->direction); 1261 1262 trace_cdnsp_request_giveback(preq); 1263 1264 if (preq != &pdev->ep0_preq) { 1265 spin_unlock(&pdev->lock); 1266 usb_gadget_giveback_request(&pep->endpoint, &preq->request); 1267 spin_lock(&pdev->lock); 1268 } 1269 } 1270 1271 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = { 1272 .bLength = USB_DT_ENDPOINT_SIZE, 1273 .bDescriptorType = USB_DT_ENDPOINT, 1274 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 1275 }; 1276 1277 static int cdnsp_run(struct cdnsp_device *pdev, 1278 enum usb_device_speed speed) 1279 { 1280 u32 fs_speed = 0; 1281 u32 temp; 1282 int ret; 1283 1284 temp = readl(&pdev->ir_set->irq_control); 1285 temp &= ~IMOD_INTERVAL_MASK; 1286 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK); 1287 writel(temp, &pdev->ir_set->irq_control); 1288 1289 temp = readl(&pdev->port3x_regs->mode_addr); 1290 1291 switch (speed) { 1292 case USB_SPEED_SUPER_PLUS: 1293 temp |= CFG_3XPORT_SSP_SUPPORT; 1294 break; 1295 case USB_SPEED_SUPER: 1296 temp &= ~CFG_3XPORT_SSP_SUPPORT; 1297 break; 1298 case USB_SPEED_HIGH: 1299 break; 1300 case USB_SPEED_FULL: 1301 fs_speed = PORT_REG6_FORCE_FS; 1302 break; 1303 default: 1304 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", 1305 speed); 1306 fallthrough; 1307 case USB_SPEED_UNKNOWN: 1308 /* Default to superspeed. */ 1309 speed = USB_SPEED_SUPER; 1310 break; 1311 } 1312 1313 if (speed >= USB_SPEED_SUPER) { 1314 writel(temp, &pdev->port3x_regs->mode_addr); 1315 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc, 1316 XDEV_RXDETECT); 1317 } else { 1318 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1319 } 1320 1321 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc, 1322 XDEV_RXDETECT); 1323 1324 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1325 1326 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6); 1327 1328 ret = cdnsp_start(pdev); 1329 if (ret) { 1330 ret = -ENODEV; 1331 goto err; 1332 } 1333 1334 temp = readl(&pdev->op_regs->command); 1335 temp |= (CMD_INTE); 1336 writel(temp, &pdev->op_regs->command); 1337 1338 temp = readl(&pdev->ir_set->irq_pending); 1339 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending); 1340 1341 trace_cdnsp_init("Controller ready to work"); 1342 return 0; 1343 err: 1344 cdnsp_halt(pdev); 1345 return ret; 1346 } 1347 1348 static int cdnsp_gadget_udc_start(struct usb_gadget *g, 1349 struct usb_gadget_driver *driver) 1350 { 1351 enum usb_device_speed max_speed = driver->max_speed; 1352 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1353 unsigned long flags; 1354 int ret; 1355 1356 spin_lock_irqsave(&pdev->lock, flags); 1357 pdev->gadget_driver = driver; 1358 1359 /* limit speed if necessary */ 1360 max_speed = min(driver->max_speed, g->max_speed); 1361 ret = cdnsp_run(pdev, max_speed); 1362 1363 spin_unlock_irqrestore(&pdev->lock, flags); 1364 1365 return ret; 1366 } 1367 1368 /* 1369 * Update Event Ring Dequeue Pointer: 1370 * - When all events have finished 1371 * - To avoid "Event Ring Full Error" condition 1372 */ 1373 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev, 1374 union cdnsp_trb *event_ring_deq, 1375 u8 clear_ehb) 1376 { 1377 u64 temp_64; 1378 dma_addr_t deq; 1379 1380 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); 1381 1382 /* If necessary, update the HW's version of the event ring deq ptr. */ 1383 if (event_ring_deq != pdev->event_ring->dequeue) { 1384 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, 1385 pdev->event_ring->dequeue); 1386 temp_64 &= ERST_PTR_MASK; 1387 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK); 1388 } 1389 1390 /* Clear the event handler busy flag (RW1C). */ 1391 if (clear_ehb) 1392 temp_64 |= ERST_EHB; 1393 else 1394 temp_64 &= ~ERST_EHB; 1395 1396 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue); 1397 } 1398 1399 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev) 1400 { 1401 struct cdnsp_segment *seg; 1402 u64 val_64; 1403 int i; 1404 1405 cdnsp_initialize_ring_info(pdev->cmd_ring); 1406 1407 seg = pdev->cmd_ring->first_seg; 1408 for (i = 0; i < pdev->cmd_ring->num_segs; i++) { 1409 memset(seg->trbs, 0, 1410 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1)); 1411 seg = seg->next; 1412 } 1413 1414 /* Set the address in the Command Ring Control register. */ 1415 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); 1416 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | 1417 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | 1418 pdev->cmd_ring->cycle_state; 1419 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); 1420 } 1421 1422 static void cdnsp_consume_all_events(struct cdnsp_device *pdev) 1423 { 1424 struct cdnsp_segment *event_deq_seg; 1425 union cdnsp_trb *event_ring_deq; 1426 union cdnsp_trb *event; 1427 u32 cycle_bit; 1428 1429 event_ring_deq = pdev->event_ring->dequeue; 1430 event_deq_seg = pdev->event_ring->deq_seg; 1431 event = pdev->event_ring->dequeue; 1432 1433 /* Update ring dequeue pointer. */ 1434 while (1) { 1435 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE); 1436 1437 /* Does the controller or driver own the TRB? */ 1438 if (cycle_bit != pdev->event_ring->cycle_state) 1439 break; 1440 1441 cdnsp_inc_deq(pdev, pdev->event_ring); 1442 1443 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 1444 event++; 1445 continue; 1446 } 1447 1448 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, 1449 event)) 1450 cycle_bit ^= 1; 1451 1452 event_deq_seg = event_deq_seg->next; 1453 event = event_deq_seg->trbs; 1454 } 1455 1456 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); 1457 } 1458 1459 static void cdnsp_stop(struct cdnsp_device *pdev) 1460 { 1461 u32 temp; 1462 1463 /* Remove internally queued request for ep0. */ 1464 if (!list_empty(&pdev->eps[0].pending_list)) { 1465 struct cdnsp_request *req; 1466 1467 req = next_request(&pdev->eps[0].pending_list); 1468 if (req == &pdev->ep0_preq) 1469 cdnsp_ep_dequeue(&pdev->eps[0], req); 1470 } 1471 1472 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc); 1473 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1474 cdnsp_disable_slot(pdev); 1475 cdnsp_halt(pdev); 1476 1477 temp = readl(&pdev->op_regs->status); 1478 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status); 1479 temp = readl(&pdev->ir_set->irq_pending); 1480 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending); 1481 1482 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc); 1483 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc); 1484 1485 /* Clear interrupt line */ 1486 temp = readl(&pdev->ir_set->irq_pending); 1487 temp |= IMAN_IP; 1488 writel(temp, &pdev->ir_set->irq_pending); 1489 1490 cdnsp_consume_all_events(pdev); 1491 cdnsp_clear_cmd_ring(pdev); 1492 1493 trace_cdnsp_exit("Controller stopped."); 1494 } 1495 1496 /* 1497 * Stop controller. 1498 * This function is called by the gadget core when the driver is removed. 1499 * Disable slot, disable IRQs, and quiesce the controller. 1500 */ 1501 static int cdnsp_gadget_udc_stop(struct usb_gadget *g) 1502 { 1503 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1504 unsigned long flags; 1505 1506 spin_lock_irqsave(&pdev->lock, flags); 1507 cdnsp_stop(pdev); 1508 pdev->gadget_driver = NULL; 1509 spin_unlock_irqrestore(&pdev->lock, flags); 1510 1511 return 0; 1512 } 1513 1514 static int cdnsp_gadget_get_frame(struct usb_gadget *g) 1515 { 1516 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1517 1518 return cdnsp_get_frame(pdev); 1519 } 1520 1521 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev) 1522 { 1523 struct cdnsp_port_regs __iomem *port_regs; 1524 u32 portpm, portsc; 1525 1526 port_regs = pdev->active_port->regs; 1527 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK; 1528 1529 /* Remote wakeup feature is not enabled by host. */ 1530 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) { 1531 portpm = readl(&port_regs->portpmsc); 1532 1533 if (!(portpm & PORT_RWE)) 1534 return; 1535 } 1536 1537 if (portsc == XDEV_U3 && !pdev->may_wakeup) 1538 return; 1539 1540 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); 1541 1542 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING; 1543 } 1544 1545 static int cdnsp_gadget_wakeup(struct usb_gadget *g) 1546 { 1547 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1548 unsigned long flags; 1549 1550 spin_lock_irqsave(&pdev->lock, flags); 1551 __cdnsp_gadget_wakeup(pdev); 1552 spin_unlock_irqrestore(&pdev->lock, flags); 1553 1554 return 0; 1555 } 1556 1557 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g, 1558 int is_selfpowered) 1559 { 1560 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1561 unsigned long flags; 1562 1563 spin_lock_irqsave(&pdev->lock, flags); 1564 g->is_selfpowered = !!is_selfpowered; 1565 spin_unlock_irqrestore(&pdev->lock, flags); 1566 1567 return 0; 1568 } 1569 1570 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on) 1571 { 1572 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget); 1573 struct cdns *cdns = dev_get_drvdata(pdev->dev); 1574 unsigned long flags; 1575 1576 trace_cdnsp_pullup(is_on); 1577 1578 /* 1579 * Disable events handling while controller is being 1580 * enabled/disabled. 1581 */ 1582 disable_irq(cdns->dev_irq); 1583 spin_lock_irqsave(&pdev->lock, flags); 1584 1585 if (!is_on) { 1586 cdnsp_reset_device(pdev); 1587 cdns_clear_vbus(cdns); 1588 } else { 1589 cdns_set_vbus(cdns); 1590 } 1591 1592 spin_unlock_irqrestore(&pdev->lock, flags); 1593 enable_irq(cdns->dev_irq); 1594 1595 return 0; 1596 } 1597 1598 static const struct usb_gadget_ops cdnsp_gadget_ops = { 1599 .get_frame = cdnsp_gadget_get_frame, 1600 .wakeup = cdnsp_gadget_wakeup, 1601 .set_selfpowered = cdnsp_gadget_set_selfpowered, 1602 .pullup = cdnsp_gadget_pullup, 1603 .udc_start = cdnsp_gadget_udc_start, 1604 .udc_stop = cdnsp_gadget_udc_stop, 1605 }; 1606 1607 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev, 1608 struct cdnsp_ep *pep) 1609 { 1610 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1611 int endpoints; 1612 1613 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID); 1614 1615 if (!pep->direction) { 1616 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET); 1617 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET); 1618 pep->buffering = (pep->buffering + 1) / 2; 1619 pep->buffering_period = (pep->buffering_period + 1) / 2; 1620 return; 1621 } 1622 1623 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2; 1624 1625 /* Set to XBUF_TX_TAG_MASK_0 register. */ 1626 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32); 1627 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */ 1628 reg += pep->number * sizeof(u32) * 2; 1629 1630 pep->buffering = (readl(reg) + 1) / 2; 1631 pep->buffering_period = pep->buffering; 1632 } 1633 1634 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev) 1635 { 1636 int max_streams = HCC_MAX_PSA(pdev->hcc_params); 1637 struct cdnsp_ep *pep; 1638 int i; 1639 1640 INIT_LIST_HEAD(&pdev->gadget.ep_list); 1641 1642 if (max_streams < STREAM_LOG_STREAMS) { 1643 dev_err(pdev->dev, "Stream size %d not supported\n", 1644 max_streams); 1645 return -EINVAL; 1646 } 1647 1648 max_streams = STREAM_LOG_STREAMS; 1649 1650 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1651 bool direction = !(i & 1); /* Start from OUT endpoint. */ 1652 u8 epnum = ((i + 1) >> 1); 1653 1654 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction)) 1655 continue; 1656 1657 pep = &pdev->eps[i]; 1658 pep->pdev = pdev; 1659 pep->number = epnum; 1660 pep->direction = direction; /* 0 for OUT, 1 for IN. */ 1661 1662 /* 1663 * Ep0 is bidirectional, so ep0in and ep0out are represented by 1664 * pdev->eps[0] 1665 */ 1666 if (epnum == 0) { 1667 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1668 epnum, "BiDir"); 1669 1670 pep->idx = 0; 1671 usb_ep_set_maxpacket_limit(&pep->endpoint, 512); 1672 pep->endpoint.maxburst = 1; 1673 pep->endpoint.ops = &cdnsp_gadget_ep0_ops; 1674 pep->endpoint.desc = &cdnsp_gadget_ep0_desc; 1675 pep->endpoint.comp_desc = NULL; 1676 pep->endpoint.caps.type_control = true; 1677 pep->endpoint.caps.dir_in = true; 1678 pep->endpoint.caps.dir_out = true; 1679 1680 pdev->ep0_preq.epnum = pep->number; 1681 pdev->ep0_preq.pep = pep; 1682 pdev->gadget.ep0 = &pep->endpoint; 1683 } else { 1684 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1685 epnum, (pep->direction) ? "in" : "out"); 1686 1687 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1; 1688 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); 1689 1690 pep->endpoint.max_streams = max_streams; 1691 pep->endpoint.ops = &cdnsp_gadget_ep_ops; 1692 list_add_tail(&pep->endpoint.ep_list, 1693 &pdev->gadget.ep_list); 1694 1695 pep->endpoint.caps.type_iso = true; 1696 pep->endpoint.caps.type_bulk = true; 1697 pep->endpoint.caps.type_int = true; 1698 1699 pep->endpoint.caps.dir_in = direction; 1700 pep->endpoint.caps.dir_out = !direction; 1701 } 1702 1703 pep->endpoint.name = pep->name; 1704 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx); 1705 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx); 1706 cdnsp_get_ep_buffering(pdev, pep); 1707 1708 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: " 1709 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, " 1710 "SupDir IN: %s, OUT: %s\n", 1711 pep->name, 1024, 1712 str_yes_no(pep->endpoint.caps.type_control), 1713 str_yes_no(pep->endpoint.caps.type_int), 1714 str_yes_no(pep->endpoint.caps.type_bulk), 1715 str_yes_no(pep->endpoint.caps.type_iso), 1716 str_yes_no(pep->endpoint.caps.dir_in), 1717 str_yes_no(pep->endpoint.caps.dir_out)); 1718 1719 INIT_LIST_HEAD(&pep->pending_list); 1720 } 1721 1722 return 0; 1723 } 1724 1725 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev) 1726 { 1727 struct cdnsp_ep *pep; 1728 int i; 1729 1730 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1731 pep = &pdev->eps[i]; 1732 if (pep->number != 0 && pep->out_ctx) 1733 list_del(&pep->endpoint.ep_list); 1734 } 1735 } 1736 1737 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev) 1738 { 1739 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING; 1740 1741 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) { 1742 spin_unlock(&pdev->lock); 1743 pdev->gadget_driver->disconnect(&pdev->gadget); 1744 spin_lock(&pdev->lock); 1745 } 1746 1747 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1748 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); 1749 1750 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING; 1751 } 1752 1753 void cdnsp_suspend_gadget(struct cdnsp_device *pdev) 1754 { 1755 if (pdev->gadget_driver && pdev->gadget_driver->suspend) { 1756 spin_unlock(&pdev->lock); 1757 pdev->gadget_driver->suspend(&pdev->gadget); 1758 spin_lock(&pdev->lock); 1759 } 1760 } 1761 1762 void cdnsp_resume_gadget(struct cdnsp_device *pdev) 1763 { 1764 if (pdev->gadget_driver && pdev->gadget_driver->resume) { 1765 spin_unlock(&pdev->lock); 1766 pdev->gadget_driver->resume(&pdev->gadget); 1767 spin_lock(&pdev->lock); 1768 } 1769 } 1770 1771 void cdnsp_irq_reset(struct cdnsp_device *pdev) 1772 { 1773 struct cdnsp_port_regs __iomem *port_regs; 1774 1775 cdnsp_reset_device(pdev); 1776 1777 port_regs = pdev->active_port->regs; 1778 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs)); 1779 1780 spin_unlock(&pdev->lock); 1781 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); 1782 spin_lock(&pdev->lock); 1783 1784 switch (pdev->gadget.speed) { 1785 case USB_SPEED_SUPER_PLUS: 1786 case USB_SPEED_SUPER: 1787 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1788 pdev->gadget.ep0->maxpacket = 512; 1789 break; 1790 case USB_SPEED_HIGH: 1791 case USB_SPEED_FULL: 1792 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64); 1793 pdev->gadget.ep0->maxpacket = 64; 1794 break; 1795 default: 1796 /* Low speed is not supported. */ 1797 dev_err(pdev->dev, "Unknown device speed\n"); 1798 break; 1799 } 1800 1801 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 1802 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY); 1803 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); 1804 } 1805 1806 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev) 1807 { 1808 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1809 1810 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP); 1811 pdev->rev_cap = reg; 1812 1813 pdev->rtl_revision = readl(&pdev->rev_cap->rtl_revision); 1814 1815 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n", 1816 readl(&pdev->rev_cap->ctrl_revision), 1817 readl(&pdev->rev_cap->rtl_revision), 1818 readl(&pdev->rev_cap->ep_supported), 1819 readl(&pdev->rev_cap->rx_buff_size), 1820 readl(&pdev->rev_cap->tx_buff_size)); 1821 } 1822 1823 static int cdnsp_gen_setup(struct cdnsp_device *pdev) 1824 { 1825 int ret; 1826 u32 reg; 1827 1828 pdev->cap_regs = pdev->regs; 1829 pdev->op_regs = pdev->regs + 1830 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase)); 1831 pdev->run_regs = pdev->regs + 1832 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK); 1833 1834 /* Cache read-only capability registers */ 1835 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1); 1836 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase); 1837 pdev->hci_version = HC_VERSION(pdev->hcc_params); 1838 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params); 1839 1840 /* 1841 * Override the APB timeout value to give the controller more time for 1842 * enabling UTMI clock and synchronizing APB and UTMI clock domains. 1843 * This fix is platform specific and is required to fixes issue with 1844 * reading incorrect value from PORTSC register after resuming 1845 * from L1 state. 1846 */ 1847 cdnsp_set_apb_timeout_value(pdev); 1848 1849 cdnsp_get_rev_cap(pdev); 1850 1851 /* Make sure the Device Controller is halted. */ 1852 ret = cdnsp_halt(pdev); 1853 if (ret) 1854 return ret; 1855 1856 /* Reset the internal controller memory state and registers. */ 1857 ret = cdnsp_reset(pdev); 1858 if (ret) 1859 return ret; 1860 1861 /* 1862 * Set dma_mask and coherent_dma_mask to 64-bits, 1863 * if controller supports 64-bit addressing. 1864 */ 1865 if (HCC_64BIT_ADDR(pdev->hcc_params) && 1866 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) { 1867 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n"); 1868 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64)); 1869 } else { 1870 /* 1871 * This is to avoid error in cases where a 32-bit USB 1872 * controller is used on a 64-bit capable system. 1873 */ 1874 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32)); 1875 if (ret) 1876 return ret; 1877 1878 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n"); 1879 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32)); 1880 } 1881 1882 spin_lock_init(&pdev->lock); 1883 1884 ret = cdnsp_mem_init(pdev); 1885 if (ret) 1886 return ret; 1887 1888 /* 1889 * Software workaround for U1: after transition 1890 * to U1 the controller starts gating clock, and in some cases, 1891 * it causes that controller stack. 1892 */ 1893 reg = readl(&pdev->port3x_regs->mode_2); 1894 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN; 1895 writel(reg, &pdev->port3x_regs->mode_2); 1896 1897 return 0; 1898 } 1899 1900 static int __cdnsp_gadget_init(struct cdns *cdns) 1901 { 1902 struct cdnsp_device *pdev; 1903 u32 max_speed; 1904 int ret = -ENOMEM; 1905 1906 cdns_drd_gadget_on(cdns); 1907 1908 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 1909 if (!pdev) 1910 return -ENOMEM; 1911 1912 pm_runtime_get_sync(cdns->dev); 1913 1914 cdns->gadget_dev = pdev; 1915 pdev->dev = cdns->dev; 1916 pdev->regs = cdns->dev_regs; 1917 max_speed = usb_get_maximum_speed(cdns->dev); 1918 1919 switch (max_speed) { 1920 case USB_SPEED_FULL: 1921 case USB_SPEED_HIGH: 1922 case USB_SPEED_SUPER: 1923 case USB_SPEED_SUPER_PLUS: 1924 break; 1925 default: 1926 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed); 1927 fallthrough; 1928 case USB_SPEED_UNKNOWN: 1929 /* Default to SSP */ 1930 max_speed = USB_SPEED_SUPER_PLUS; 1931 break; 1932 } 1933 1934 pdev->gadget.ops = &cdnsp_gadget_ops; 1935 pdev->gadget.name = "cdnsp-gadget"; 1936 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1937 pdev->gadget.sg_supported = 1; 1938 pdev->gadget.max_speed = max_speed; 1939 pdev->gadget.lpm_capable = 1; 1940 1941 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL); 1942 if (!pdev->setup_buf) 1943 goto free_pdev; 1944 1945 /* 1946 * Controller supports not aligned buffer but it should improve 1947 * performance. 1948 */ 1949 pdev->gadget.quirk_ep_out_aligned_size = true; 1950 1951 ret = cdnsp_gen_setup(pdev); 1952 if (ret) { 1953 dev_err(pdev->dev, "Generic initialization failed %d\n", ret); 1954 goto free_setup; 1955 } 1956 1957 ret = cdnsp_gadget_init_endpoints(pdev); 1958 if (ret) { 1959 dev_err(pdev->dev, "failed to initialize endpoints\n"); 1960 goto halt_pdev; 1961 } 1962 1963 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget); 1964 if (ret) { 1965 dev_err(pdev->dev, "failed to register udc\n"); 1966 goto free_endpoints; 1967 } 1968 1969 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq, 1970 cdnsp_irq_handler, 1971 cdnsp_thread_irq_handler, IRQF_SHARED, 1972 dev_name(pdev->dev), pdev); 1973 if (ret) 1974 goto del_gadget; 1975 1976 return 0; 1977 1978 del_gadget: 1979 usb_del_gadget_udc(&pdev->gadget); 1980 free_endpoints: 1981 cdnsp_gadget_free_endpoints(pdev); 1982 halt_pdev: 1983 cdnsp_halt(pdev); 1984 cdnsp_reset(pdev); 1985 cdnsp_mem_cleanup(pdev); 1986 free_setup: 1987 kfree(pdev->setup_buf); 1988 free_pdev: 1989 kfree(pdev); 1990 1991 return ret; 1992 } 1993 1994 static void cdnsp_gadget_exit(struct cdns *cdns) 1995 { 1996 struct cdnsp_device *pdev = cdns->gadget_dev; 1997 1998 devm_free_irq(pdev->dev, cdns->dev_irq, pdev); 1999 pm_runtime_mark_last_busy(cdns->dev); 2000 pm_runtime_put_autosuspend(cdns->dev); 2001 usb_del_gadget_udc(&pdev->gadget); 2002 cdnsp_gadget_free_endpoints(pdev); 2003 cdnsp_mem_cleanup(pdev); 2004 kfree(pdev); 2005 cdns->gadget_dev = NULL; 2006 cdns_drd_gadget_off(cdns); 2007 } 2008 2009 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup) 2010 { 2011 struct cdnsp_device *pdev = cdns->gadget_dev; 2012 unsigned long flags; 2013 2014 if (pdev->link_state == XDEV_U3) 2015 return 0; 2016 2017 spin_lock_irqsave(&pdev->lock, flags); 2018 cdnsp_disconnect_gadget(pdev); 2019 cdnsp_stop(pdev); 2020 spin_unlock_irqrestore(&pdev->lock, flags); 2021 2022 return 0; 2023 } 2024 2025 static int cdnsp_gadget_resume(struct cdns *cdns, bool lost_power) 2026 { 2027 struct cdnsp_device *pdev = cdns->gadget_dev; 2028 enum usb_device_speed max_speed; 2029 unsigned long flags; 2030 int ret; 2031 2032 if (!pdev->gadget_driver) 2033 return 0; 2034 2035 spin_lock_irqsave(&pdev->lock, flags); 2036 max_speed = pdev->gadget_driver->max_speed; 2037 2038 /* Limit speed if necessary. */ 2039 max_speed = min(max_speed, pdev->gadget.max_speed); 2040 2041 ret = cdnsp_run(pdev, max_speed); 2042 2043 if (pdev->link_state == XDEV_U3) 2044 __cdnsp_gadget_wakeup(pdev); 2045 2046 spin_unlock_irqrestore(&pdev->lock, flags); 2047 2048 return ret; 2049 } 2050 2051 /** 2052 * cdnsp_gadget_init - initialize device structure 2053 * @cdns: cdnsp instance 2054 * 2055 * This function initializes the gadget. 2056 */ 2057 int cdnsp_gadget_init(struct cdns *cdns) 2058 { 2059 struct cdns_role_driver *rdrv; 2060 2061 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); 2062 if (!rdrv) 2063 return -ENOMEM; 2064 2065 rdrv->start = __cdnsp_gadget_init; 2066 rdrv->stop = cdnsp_gadget_exit; 2067 rdrv->suspend = cdnsp_gadget_suspend; 2068 rdrv->resume = cdnsp_gadget_resume; 2069 rdrv->state = CDNS_ROLE_STATE_INACTIVE; 2070 rdrv->name = "gadget"; 2071 cdns->roles[USB_ROLE_DEVICE] = rdrv; 2072 2073 return 0; 2074 } 2075