1 // SPDX-License-Identifier: GPL-2.0+ 2 /************************************************************************ 3 * Copyright 2003 Digi International (www.digi.com) 4 * 5 * Copyright (C) 2004 IBM Corporation. All rights reserved. 6 * 7 * Contact Information: 8 * Scott H Kilau <Scott_Kilau@digi.com> 9 * Ananda Venkatarman <mansarov@us.ibm.com> 10 * Modifications: 11 * 01/19/06: changed jsm_input routine to use the dynamically allocated 12 * tty_buffer changes. Contributors: Scott Kilau and Ananda V. 13 ***********************************************************************/ 14 #include <linux/tty.h> 15 #include <linux/tty_flip.h> 16 #include <linux/serial_reg.h> 17 #include <linux/delay.h> /* For udelay */ 18 #include <linux/pci.h> 19 #include <linux/slab.h> 20 21 #include "jsm.h" 22 23 static DECLARE_BITMAP(linemap, MAXLINES); 24 25 static void jsm_carrier(struct jsm_channel *ch); 26 27 static inline int jsm_get_mstat(struct jsm_channel *ch) 28 { 29 unsigned char mstat; 30 int result; 31 32 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n"); 33 34 mstat = (ch->ch_mostat | ch->ch_mistat); 35 36 result = 0; 37 38 if (mstat & UART_MCR_DTR) 39 result |= TIOCM_DTR; 40 if (mstat & UART_MCR_RTS) 41 result |= TIOCM_RTS; 42 if (mstat & UART_MSR_CTS) 43 result |= TIOCM_CTS; 44 if (mstat & UART_MSR_DSR) 45 result |= TIOCM_DSR; 46 if (mstat & UART_MSR_RI) 47 result |= TIOCM_RI; 48 if (mstat & UART_MSR_DCD) 49 result |= TIOCM_CD; 50 51 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n"); 52 return result; 53 } 54 55 static unsigned int jsm_tty_tx_empty(struct uart_port *port) 56 { 57 return TIOCSER_TEMT; 58 } 59 60 /* 61 * Return modem signals to ld. 62 */ 63 static unsigned int jsm_tty_get_mctrl(struct uart_port *port) 64 { 65 int result; 66 struct jsm_channel *channel = 67 container_of(port, struct jsm_channel, uart_port); 68 69 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n"); 70 71 result = jsm_get_mstat(channel); 72 73 if (result < 0) 74 return -ENXIO; 75 76 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n"); 77 78 return result; 79 } 80 81 /* 82 * jsm_set_modem_info() 83 * 84 * Set modem signals, called by ld. 85 */ 86 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl) 87 { 88 struct jsm_channel *channel = 89 container_of(port, struct jsm_channel, uart_port); 90 91 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n"); 92 93 if (mctrl & TIOCM_RTS) 94 channel->ch_mostat |= UART_MCR_RTS; 95 else 96 channel->ch_mostat &= ~UART_MCR_RTS; 97 98 if (mctrl & TIOCM_DTR) 99 channel->ch_mostat |= UART_MCR_DTR; 100 else 101 channel->ch_mostat &= ~UART_MCR_DTR; 102 103 channel->ch_bd->bd_ops->assert_modem_signals(channel); 104 105 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n"); 106 udelay(10); 107 } 108 109 /* 110 * jsm_tty_write() 111 * 112 * Take data from the user or kernel and send it out to the FEP. 113 * In here exists all the Transparent Print magic as well. 114 */ 115 static void jsm_tty_write(struct uart_port *port) 116 { 117 struct jsm_channel *channel; 118 119 channel = container_of(port, struct jsm_channel, uart_port); 120 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel); 121 } 122 123 static void jsm_tty_start_tx(struct uart_port *port) 124 { 125 struct jsm_channel *channel = 126 container_of(port, struct jsm_channel, uart_port); 127 128 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n"); 129 130 channel->ch_flags &= ~(CH_STOP); 131 jsm_tty_write(port); 132 133 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n"); 134 } 135 136 static void jsm_tty_stop_tx(struct uart_port *port) 137 { 138 struct jsm_channel *channel = 139 container_of(port, struct jsm_channel, uart_port); 140 141 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n"); 142 143 channel->ch_flags |= (CH_STOP); 144 145 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n"); 146 } 147 148 static void jsm_tty_send_xchar(struct uart_port *port, char ch) 149 { 150 unsigned long lock_flags; 151 struct jsm_channel *channel = 152 container_of(port, struct jsm_channel, uart_port); 153 struct ktermios *termios; 154 155 uart_port_lock_irqsave(port, &lock_flags); 156 termios = &port->state->port.tty->termios; 157 if (ch == termios->c_cc[VSTART]) 158 channel->ch_bd->bd_ops->send_start_character(channel); 159 160 if (ch == termios->c_cc[VSTOP]) 161 channel->ch_bd->bd_ops->send_stop_character(channel); 162 uart_port_unlock_irqrestore(port, lock_flags); 163 } 164 165 static void jsm_tty_stop_rx(struct uart_port *port) 166 { 167 struct jsm_channel *channel = 168 container_of(port, struct jsm_channel, uart_port); 169 170 channel->ch_bd->bd_ops->disable_receiver(channel); 171 } 172 173 static void jsm_tty_break(struct uart_port *port, int break_state) 174 { 175 unsigned long lock_flags; 176 struct jsm_channel *channel = 177 container_of(port, struct jsm_channel, uart_port); 178 179 uart_port_lock_irqsave(port, &lock_flags); 180 if (break_state == -1) 181 channel->ch_bd->bd_ops->send_break(channel); 182 else 183 channel->ch_bd->bd_ops->clear_break(channel); 184 185 uart_port_unlock_irqrestore(port, lock_flags); 186 } 187 188 static int jsm_tty_open(struct uart_port *port) 189 { 190 unsigned long lock_flags; 191 struct jsm_board *brd; 192 struct jsm_channel *channel = 193 container_of(port, struct jsm_channel, uart_port); 194 struct ktermios *termios; 195 196 /* Get board pointer from our array of majors we have allocated */ 197 brd = channel->ch_bd; 198 199 /* 200 * Allocate channel buffers for read/write/error. 201 * Set flag, so we don't get trounced on. 202 */ 203 channel->ch_flags |= (CH_OPENING); 204 205 /* Drop locks, as malloc with GFP_KERNEL can sleep */ 206 207 if (!channel->ch_rqueue) { 208 channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL); 209 if (!channel->ch_rqueue) { 210 jsm_dbg(INIT, &channel->ch_bd->pci_dev, 211 "unable to allocate read queue buf\n"); 212 return -ENOMEM; 213 } 214 } 215 if (!channel->ch_equeue) { 216 channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL); 217 if (!channel->ch_equeue) { 218 jsm_dbg(INIT, &channel->ch_bd->pci_dev, 219 "unable to allocate error queue buf\n"); 220 return -ENOMEM; 221 } 222 } 223 224 channel->ch_flags &= ~(CH_OPENING); 225 /* 226 * Initialize if neither terminal is open. 227 */ 228 jsm_dbg(OPEN, &channel->ch_bd->pci_dev, 229 "jsm_open: initializing channel in open...\n"); 230 231 /* 232 * Flush input queues. 233 */ 234 channel->ch_r_head = channel->ch_r_tail = 0; 235 channel->ch_e_head = channel->ch_e_tail = 0; 236 237 brd->bd_ops->flush_uart_write(channel); 238 brd->bd_ops->flush_uart_read(channel); 239 240 channel->ch_flags = 0; 241 channel->ch_cached_lsr = 0; 242 channel->ch_stops_sent = 0; 243 244 uart_port_lock_irqsave(port, &lock_flags); 245 termios = &port->state->port.tty->termios; 246 channel->ch_c_cflag = termios->c_cflag; 247 channel->ch_c_iflag = termios->c_iflag; 248 channel->ch_c_oflag = termios->c_oflag; 249 channel->ch_c_lflag = termios->c_lflag; 250 channel->ch_startc = termios->c_cc[VSTART]; 251 channel->ch_stopc = termios->c_cc[VSTOP]; 252 253 /* Tell UART to init itself */ 254 brd->bd_ops->uart_init(channel); 255 256 /* 257 * Run param in case we changed anything 258 */ 259 brd->bd_ops->param(channel); 260 261 jsm_carrier(channel); 262 263 channel->ch_open_count++; 264 uart_port_unlock_irqrestore(port, lock_flags); 265 266 jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n"); 267 return 0; 268 } 269 270 static void jsm_tty_close(struct uart_port *port) 271 { 272 struct jsm_board *bd; 273 struct jsm_channel *channel = 274 container_of(port, struct jsm_channel, uart_port); 275 276 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n"); 277 278 bd = channel->ch_bd; 279 280 channel->ch_flags &= ~(CH_STOPI); 281 282 channel->ch_open_count--; 283 284 /* 285 * If we have HUPCL set, lower DTR and RTS 286 */ 287 if (channel->ch_c_cflag & HUPCL) { 288 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, 289 "Close. HUPCL set, dropping DTR/RTS\n"); 290 291 /* Drop RTS/DTR */ 292 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS); 293 bd->bd_ops->assert_modem_signals(channel); 294 } 295 296 /* Turn off UART interrupts for this port */ 297 channel->ch_bd->bd_ops->uart_off(channel); 298 299 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n"); 300 } 301 302 static void jsm_tty_set_termios(struct uart_port *port, 303 struct ktermios *termios, 304 const struct ktermios *old_termios) 305 { 306 unsigned long lock_flags; 307 struct jsm_channel *channel = 308 container_of(port, struct jsm_channel, uart_port); 309 310 uart_port_lock_irqsave(port, &lock_flags); 311 channel->ch_c_cflag = termios->c_cflag; 312 channel->ch_c_iflag = termios->c_iflag; 313 channel->ch_c_oflag = termios->c_oflag; 314 channel->ch_c_lflag = termios->c_lflag; 315 channel->ch_startc = termios->c_cc[VSTART]; 316 channel->ch_stopc = termios->c_cc[VSTOP]; 317 318 channel->ch_bd->bd_ops->param(channel); 319 jsm_carrier(channel); 320 uart_port_unlock_irqrestore(port, lock_flags); 321 } 322 323 static const char *jsm_tty_type(struct uart_port *port) 324 { 325 return "jsm"; 326 } 327 328 static void jsm_tty_release_port(struct uart_port *port) 329 { 330 } 331 332 static int jsm_tty_request_port(struct uart_port *port) 333 { 334 return 0; 335 } 336 337 static void jsm_config_port(struct uart_port *port, int flags) 338 { 339 port->type = PORT_JSM; 340 } 341 342 static const struct uart_ops jsm_ops = { 343 .tx_empty = jsm_tty_tx_empty, 344 .set_mctrl = jsm_tty_set_mctrl, 345 .get_mctrl = jsm_tty_get_mctrl, 346 .stop_tx = jsm_tty_stop_tx, 347 .start_tx = jsm_tty_start_tx, 348 .send_xchar = jsm_tty_send_xchar, 349 .stop_rx = jsm_tty_stop_rx, 350 .break_ctl = jsm_tty_break, 351 .startup = jsm_tty_open, 352 .shutdown = jsm_tty_close, 353 .set_termios = jsm_tty_set_termios, 354 .type = jsm_tty_type, 355 .release_port = jsm_tty_release_port, 356 .request_port = jsm_tty_request_port, 357 .config_port = jsm_config_port, 358 }; 359 360 /* 361 * jsm_tty_init() 362 * 363 * Init the tty subsystem. Called once per board after board has been 364 * downloaded and init'ed. 365 */ 366 int jsm_tty_init(struct jsm_board *brd) 367 { 368 int i; 369 void __iomem *vaddr; 370 struct jsm_channel *ch; 371 372 if (!brd) 373 return -ENXIO; 374 375 jsm_dbg(INIT, &brd->pci_dev, "start\n"); 376 377 /* 378 * Initialize board structure elements. 379 */ 380 381 brd->nasync = brd->maxports; 382 383 /* 384 * Allocate channel memory that might not have been allocated 385 * when the driver was first loaded. 386 */ 387 for (i = 0; i < brd->nasync; i++) { 388 if (!brd->channels[i]) { 389 390 /* 391 * Okay to malloc with GFP_KERNEL, we are not at 392 * interrupt context, and there are no locks held. 393 */ 394 brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL); 395 if (!brd->channels[i]) { 396 jsm_dbg(CORE, &brd->pci_dev, 397 "%s:%d Unable to allocate memory for channel struct\n", 398 __FILE__, __LINE__); 399 } 400 } 401 } 402 403 ch = brd->channels[0]; 404 vaddr = brd->re_map_membase; 405 406 /* Set up channel variables */ 407 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) { 408 409 if (!brd->channels[i]) 410 continue; 411 412 spin_lock_init(&ch->ch_lock); 413 414 if (brd->bd_uart_offset == 0x200) 415 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i); 416 else 417 ch->ch_cls_uart = vaddr + (brd->bd_uart_offset * i); 418 419 ch->ch_bd = brd; 420 ch->ch_portnum = i; 421 422 /* .25 second delay */ 423 ch->ch_close_delay = 250; 424 425 init_waitqueue_head(&ch->ch_flags_wait); 426 } 427 428 jsm_dbg(INIT, &brd->pci_dev, "finish\n"); 429 return 0; 430 } 431 432 int jsm_uart_port_init(struct jsm_board *brd) 433 { 434 int i, rc; 435 unsigned int line; 436 437 if (!brd) 438 return -ENXIO; 439 440 jsm_dbg(INIT, &brd->pci_dev, "start\n"); 441 442 /* 443 * Initialize board structure elements. 444 */ 445 446 brd->nasync = brd->maxports; 447 448 /* Set up channel variables */ 449 for (i = 0; i < brd->nasync; i++) { 450 451 if (!brd->channels[i]) 452 continue; 453 454 brd->channels[i]->uart_port.dev = &brd->pci_dev->dev; 455 brd->channels[i]->uart_port.irq = brd->irq; 456 brd->channels[i]->uart_port.uartclk = 14745600; 457 brd->channels[i]->uart_port.type = PORT_JSM; 458 brd->channels[i]->uart_port.iotype = UPIO_MEM; 459 brd->channels[i]->uart_port.membase = brd->re_map_membase; 460 brd->channels[i]->uart_port.fifosize = 16; 461 brd->channels[i]->uart_port.ops = &jsm_ops; 462 line = find_first_zero_bit(linemap, MAXLINES); 463 if (line >= MAXLINES) { 464 printk(KERN_INFO "jsm: linemap is full, added device failed\n"); 465 continue; 466 } else 467 set_bit(line, linemap); 468 brd->channels[i]->uart_port.line = line; 469 rc = uart_add_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port); 470 if (rc) { 471 printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i); 472 return rc; 473 } else 474 printk(KERN_INFO "jsm: Port %d added\n", i); 475 } 476 477 jsm_dbg(INIT, &brd->pci_dev, "finish\n"); 478 return 0; 479 } 480 481 int jsm_remove_uart_port(struct jsm_board *brd) 482 { 483 int i; 484 struct jsm_channel *ch; 485 486 if (!brd) 487 return -ENXIO; 488 489 jsm_dbg(INIT, &brd->pci_dev, "start\n"); 490 491 /* 492 * Initialize board structure elements. 493 */ 494 495 brd->nasync = brd->maxports; 496 497 /* Set up channel variables */ 498 for (i = 0; i < brd->nasync; i++) { 499 500 if (!brd->channels[i]) 501 continue; 502 503 ch = brd->channels[i]; 504 505 clear_bit(ch->uart_port.line, linemap); 506 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port); 507 } 508 509 jsm_dbg(INIT, &brd->pci_dev, "finish\n"); 510 return 0; 511 } 512 513 void jsm_input(struct jsm_channel *ch) 514 { 515 struct jsm_board *bd; 516 struct tty_struct *tp; 517 struct tty_port *port; 518 u32 rmask; 519 u16 head; 520 u16 tail; 521 int data_len; 522 unsigned long lock_flags; 523 int len = 0; 524 int s = 0; 525 int i = 0; 526 527 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n"); 528 529 port = &ch->uart_port.state->port; 530 tp = port->tty; 531 532 bd = ch->ch_bd; 533 if (!bd) 534 return; 535 536 spin_lock_irqsave(&ch->ch_lock, lock_flags); 537 538 /* 539 *Figure the number of characters in the buffer. 540 *Exit immediately if none. 541 */ 542 543 rmask = RQUEUEMASK; 544 545 head = ch->ch_r_head & rmask; 546 tail = ch->ch_r_tail & rmask; 547 548 data_len = (head - tail) & rmask; 549 if (data_len == 0) { 550 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 551 return; 552 } 553 554 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n"); 555 556 /* 557 *If the device is not open, or CREAD is off, flush 558 *input data and return immediately. 559 */ 560 if (!tp || !C_CREAD(tp)) { 561 562 jsm_dbg(READ, &ch->ch_bd->pci_dev, 563 "input. dropping %d bytes on port %d...\n", 564 data_len, ch->ch_portnum); 565 ch->ch_r_head = tail; 566 567 /* Force queue flow control to be released, if needed */ 568 jsm_check_queue_flow_control(ch); 569 570 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 571 return; 572 } 573 574 /* 575 * If we are throttled, simply don't read any data. 576 */ 577 if (ch->ch_flags & CH_STOPI) { 578 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 579 jsm_dbg(READ, &ch->ch_bd->pci_dev, 580 "Port %d throttled, not reading any data. head: %x tail: %x\n", 581 ch->ch_portnum, head, tail); 582 return; 583 } 584 585 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n"); 586 587 len = tty_buffer_request_room(port, data_len); 588 589 /* 590 * len now contains the most amount of data we can copy, 591 * bounded either by the flip buffer size or the amount 592 * of data the card actually has pending... 593 */ 594 while (len) { 595 s = ((head >= tail) ? head : RQUEUESIZE) - tail; 596 s = min(s, len); 597 598 if (s <= 0) 599 break; 600 601 /* 602 * If conditions are such that ld needs to see all 603 * UART errors, we will have to walk each character 604 * and error byte and send them to the buffer one at 605 * a time. 606 */ 607 608 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) { 609 for (i = 0; i < s; i++) { 610 u8 chr = ch->ch_rqueue[tail + i]; 611 u8 error = ch->ch_equeue[tail + i]; 612 char flag = TTY_NORMAL; 613 614 /* 615 * Give the Linux ld the flags in the format it 616 * likes. 617 */ 618 if (error & UART_LSR_BI) 619 flag = TTY_BREAK; 620 else if (error & UART_LSR_PE) 621 flag = TTY_PARITY; 622 else if (error & UART_LSR_FE) 623 flag = TTY_FRAME; 624 625 tty_insert_flip_char(port, chr, flag); 626 } 627 } else { 628 tty_insert_flip_string(port, ch->ch_rqueue + tail, s); 629 } 630 tail += s; 631 len -= s; 632 /* Flip queue if needed */ 633 tail &= rmask; 634 } 635 636 ch->ch_r_tail = tail & rmask; 637 ch->ch_e_tail = tail & rmask; 638 jsm_check_queue_flow_control(ch); 639 spin_unlock_irqrestore(&ch->ch_lock, lock_flags); 640 641 /* Tell the tty layer its okay to "eat" the data now */ 642 tty_flip_buffer_push(port); 643 644 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n"); 645 } 646 647 static void jsm_carrier(struct jsm_channel *ch) 648 { 649 struct jsm_board *bd; 650 651 int virt_carrier = 0; 652 int phys_carrier = 0; 653 654 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n"); 655 656 bd = ch->ch_bd; 657 if (!bd) 658 return; 659 660 if (ch->ch_mistat & UART_MSR_DCD) { 661 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n", 662 ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD); 663 phys_carrier = 1; 664 } 665 666 if (ch->ch_c_cflag & CLOCAL) 667 virt_carrier = 1; 668 669 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n", 670 phys_carrier, virt_carrier); 671 672 /* 673 * Test for a VIRTUAL carrier transition to HIGH. 674 */ 675 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) { 676 677 /* 678 * When carrier rises, wake any threads waiting 679 * for carrier in the open routine. 680 */ 681 682 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n"); 683 684 if (waitqueue_active(&(ch->ch_flags_wait))) 685 wake_up_interruptible(&ch->ch_flags_wait); 686 } 687 688 /* 689 * Test for a PHYSICAL carrier transition to HIGH. 690 */ 691 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) { 692 693 /* 694 * When carrier rises, wake any threads waiting 695 * for carrier in the open routine. 696 */ 697 698 jsm_dbg(CARR, &ch->ch_bd->pci_dev, 699 "carrier: physical DCD rose\n"); 700 701 if (waitqueue_active(&(ch->ch_flags_wait))) 702 wake_up_interruptible(&ch->ch_flags_wait); 703 } 704 705 /* 706 * Test for a PHYSICAL transition to low, so long as we aren't 707 * currently ignoring physical transitions (which is what "virtual 708 * carrier" indicates). 709 * 710 * The transition of the virtual carrier to low really doesn't 711 * matter... it really only means "ignore carrier state", not 712 * "make pretend that carrier is there". 713 */ 714 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0) 715 && (phys_carrier == 0)) { 716 /* 717 * When carrier drops: 718 * 719 * Drop carrier on all open units. 720 * 721 * Flush queues, waking up any task waiting in the 722 * line discipline. 723 * 724 * Send a hangup to the control terminal. 725 * 726 * Enable all select calls. 727 */ 728 if (waitqueue_active(&(ch->ch_flags_wait))) 729 wake_up_interruptible(&ch->ch_flags_wait); 730 } 731 732 /* 733 * Make sure that our cached values reflect the current reality. 734 */ 735 if (virt_carrier == 1) 736 ch->ch_flags |= CH_FCAR; 737 else 738 ch->ch_flags &= ~CH_FCAR; 739 740 if (phys_carrier == 1) 741 ch->ch_flags |= CH_CD; 742 else 743 ch->ch_flags &= ~CH_CD; 744 } 745 746 747 void jsm_check_queue_flow_control(struct jsm_channel *ch) 748 { 749 struct board_ops *bd_ops = ch->ch_bd->bd_ops; 750 int qleft; 751 752 /* Store how much space we have left in the queue */ 753 qleft = ch->ch_r_tail - ch->ch_r_head - 1; 754 if (qleft < 0) 755 qleft += RQUEUEMASK + 1; 756 757 /* 758 * Check to see if we should enforce flow control on our queue because 759 * the ld (or user) isn't reading data out of our queue fast enuf. 760 * 761 * NOTE: This is done based on what the current flow control of the 762 * port is set for. 763 * 764 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt. 765 * This will cause the UART's FIFO to back up, and force 766 * the RTS signal to be dropped. 767 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to 768 * the other side, in hopes it will stop sending data to us. 769 * 3) NONE - Nothing we can do. We will simply drop any extra data 770 * that gets sent into us when the queue fills up. 771 */ 772 if (qleft < 256) { 773 /* HWFLOW */ 774 if (ch->ch_c_cflag & CRTSCTS) { 775 if (!(ch->ch_flags & CH_RECEIVER_OFF)) { 776 bd_ops->disable_receiver(ch); 777 ch->ch_flags |= (CH_RECEIVER_OFF); 778 jsm_dbg(READ, &ch->ch_bd->pci_dev, 779 "Internal queue hit hilevel mark (%d)! Turning off interrupts\n", 780 qleft); 781 } 782 } 783 /* SWFLOW */ 784 else if (ch->ch_c_iflag & IXOFF) { 785 if (ch->ch_stops_sent <= MAX_STOPS_SENT) { 786 bd_ops->send_stop_character(ch); 787 ch->ch_stops_sent++; 788 jsm_dbg(READ, &ch->ch_bd->pci_dev, 789 "Sending stop char! Times sent: %x\n", 790 ch->ch_stops_sent); 791 } 792 } 793 } 794 795 /* 796 * Check to see if we should unenforce flow control because 797 * ld (or user) finally read enuf data out of our queue. 798 * 799 * NOTE: This is done based on what the current flow control of the 800 * port is set for. 801 * 802 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt. 803 * This will cause the UART's FIFO to raise RTS back up, 804 * which will allow the other side to start sending data again. 805 * 2) SWFLOW (IXOFF) - Send a start character to 806 * the other side, so it will start sending data to us again. 807 * 3) NONE - Do nothing. Since we didn't do anything to turn off the 808 * other side, we don't need to do anything now. 809 */ 810 if (qleft > (RQUEUESIZE / 2)) { 811 /* HWFLOW */ 812 if (ch->ch_c_cflag & CRTSCTS) { 813 if (ch->ch_flags & CH_RECEIVER_OFF) { 814 bd_ops->enable_receiver(ch); 815 ch->ch_flags &= ~(CH_RECEIVER_OFF); 816 jsm_dbg(READ, &ch->ch_bd->pci_dev, 817 "Internal queue hit lowlevel mark (%d)! Turning on interrupts\n", 818 qleft); 819 } 820 } 821 /* SWFLOW */ 822 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) { 823 ch->ch_stops_sent = 0; 824 bd_ops->send_start_character(ch); 825 jsm_dbg(READ, &ch->ch_bd->pci_dev, 826 "Sending start char!\n"); 827 } 828 } 829 } 830