1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - bus logic (NHI independent) 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/errno.h> 11 #include <linux/delay.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/platform_data/x86/apple.h> 14 15 #include "tb.h" 16 #include "tb_regs.h" 17 #include "tunnel.h" 18 19 #define TB_TIMEOUT 100 /* ms */ 20 #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */ 21 22 /* 23 * How many time bandwidth allocation request from graphics driver is 24 * retried if the DP tunnel is still activating. 25 */ 26 #define TB_BW_ALLOC_RETRIES 3 27 28 /* 29 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver 30 * direction. This is 40G - 10% guard band bandwidth. 31 */ 32 #define TB_ASYM_MIN (40000 * 90 / 100) 33 34 /* 35 * Threshold bandwidth (in Mb/s) that is used to switch the links to 36 * asymmetric and back. This is selected as 45G which means when the 37 * request is higher than this, we switch the link to asymmetric, and 38 * when it is less than this we switch it back. The 45G is selected so 39 * that we still have 27G (of the total 72G) for bulk PCIe traffic when 40 * switching back to symmetric. 41 */ 42 #define TB_ASYM_THRESHOLD 45000 43 44 #define MAX_GROUPS 7 /* max Group_ID is 7 */ 45 46 static unsigned int asym_threshold = TB_ASYM_THRESHOLD; 47 module_param_named(asym_threshold, asym_threshold, uint, 0444); 48 MODULE_PARM_DESC(asym_threshold, 49 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: " 50 __MODULE_STRING(TB_ASYM_THRESHOLD) ")"); 51 52 /** 53 * struct tb_cm - Simple Thunderbolt connection manager 54 * @tunnel_list: List of active tunnels 55 * @dp_resources: List of available DP resources for DP tunneling 56 * @hotplug_active: tb_handle_hotplug will stop progressing plug 57 * events and exit if this is not set (it needs to 58 * acquire the lock one more time). Used to drain wq 59 * after cfg has been paused. 60 * @remove_work: Work used to remove any unplugged routers after 61 * runtime resume 62 * @groups: Bandwidth groups used in this domain. 63 */ 64 struct tb_cm { 65 struct list_head tunnel_list; 66 struct list_head dp_resources; 67 bool hotplug_active; 68 struct delayed_work remove_work; 69 struct tb_bandwidth_group groups[MAX_GROUPS]; 70 }; 71 72 static inline struct tb *tcm_to_tb(struct tb_cm *tcm) 73 { 74 return ((void *)tcm - sizeof(struct tb)); 75 } 76 77 struct tb_hotplug_event { 78 struct delayed_work work; 79 struct tb *tb; 80 u64 route; 81 u8 port; 82 bool unplug; 83 int retry; 84 }; 85 86 static void tb_scan_port(struct tb_port *port); 87 static void tb_handle_hotplug(struct work_struct *work); 88 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port, 89 const char *reason); 90 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port, 91 int retry, unsigned long delay); 92 93 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) 94 { 95 struct tb_hotplug_event *ev; 96 97 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 98 if (!ev) 99 return; 100 101 ev->tb = tb; 102 ev->route = route; 103 ev->port = port; 104 ev->unplug = unplug; 105 INIT_DELAYED_WORK(&ev->work, tb_handle_hotplug); 106 queue_delayed_work(tb->wq, &ev->work, 0); 107 } 108 109 /* enumeration & hot plug handling */ 110 111 static void tb_add_dp_resources(struct tb_switch *sw) 112 { 113 struct tb_cm *tcm = tb_priv(sw->tb); 114 struct tb_port *port; 115 116 tb_switch_for_each_port(sw, port) { 117 if (!tb_port_is_dpin(port)) 118 continue; 119 120 if (!tb_switch_query_dp_resource(sw, port)) 121 continue; 122 123 /* 124 * If DP IN on device router exist, position it at the 125 * beginning of the DP resources list, so that it is used 126 * before DP IN of the host router. This way external GPU(s) 127 * will be prioritized when pairing DP IN to a DP OUT. 128 */ 129 if (tb_route(sw)) 130 list_add(&port->list, &tcm->dp_resources); 131 else 132 list_add_tail(&port->list, &tcm->dp_resources); 133 134 tb_port_dbg(port, "DP IN resource available\n"); 135 } 136 } 137 138 static void tb_remove_dp_resources(struct tb_switch *sw) 139 { 140 struct tb_cm *tcm = tb_priv(sw->tb); 141 struct tb_port *port, *tmp; 142 143 /* Clear children resources first */ 144 tb_switch_for_each_port(sw, port) { 145 if (tb_port_has_remote(port)) 146 tb_remove_dp_resources(port->remote->sw); 147 } 148 149 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { 150 if (port->sw == sw) { 151 tb_port_dbg(port, "DP OUT resource unavailable\n"); 152 list_del_init(&port->list); 153 } 154 } 155 } 156 157 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) 158 { 159 struct tb_cm *tcm = tb_priv(tb); 160 struct tb_port *p; 161 162 list_for_each_entry(p, &tcm->dp_resources, list) { 163 if (p == port) 164 return; 165 } 166 167 tb_port_dbg(port, "DP %s resource available discovered\n", 168 tb_port_is_dpin(port) ? "IN" : "OUT"); 169 list_add_tail(&port->list, &tcm->dp_resources); 170 } 171 172 static void tb_discover_dp_resources(struct tb *tb) 173 { 174 struct tb_cm *tcm = tb_priv(tb); 175 struct tb_tunnel *tunnel; 176 177 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 178 if (tb_tunnel_is_dp(tunnel)) 179 tb_discover_dp_resource(tb, tunnel->dst_port); 180 } 181 } 182 183 /* Enables CL states up to host router */ 184 static int tb_enable_clx(struct tb_switch *sw) 185 { 186 struct tb_cm *tcm = tb_priv(sw->tb); 187 unsigned int clx = TB_CL0S | TB_CL1; 188 const struct tb_tunnel *tunnel; 189 int ret; 190 191 /* 192 * Currently only enable CLx for the first link. This is enough 193 * to allow the CPU to save energy at least on Intel hardware 194 * and makes it slightly simpler to implement. We may change 195 * this in the future to cover the whole topology if it turns 196 * out to be beneficial. 197 */ 198 while (sw && tb_switch_depth(sw) > 1) 199 sw = tb_switch_parent(sw); 200 201 if (!sw) 202 return 0; 203 204 if (tb_switch_depth(sw) != 1) 205 return 0; 206 207 /* 208 * If we are re-enabling then check if there is an active DMA 209 * tunnel and in that case bail out. 210 */ 211 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 212 if (tb_tunnel_is_dma(tunnel)) { 213 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw))) 214 return 0; 215 } 216 } 217 218 /* 219 * Initially try with CL2. If that's not supported by the 220 * topology try with CL0s and CL1 and then give up. 221 */ 222 ret = tb_switch_clx_enable(sw, clx | TB_CL2); 223 if (ret == -EOPNOTSUPP) 224 ret = tb_switch_clx_enable(sw, clx); 225 return ret == -EOPNOTSUPP ? 0 : ret; 226 } 227 228 /** 229 * tb_disable_clx() - Disable CL states up to host router 230 * @sw: Router to start 231 * 232 * Disables CL states from @sw up to the host router. Returns true if 233 * any CL state were disabled. This can be used to figure out whether 234 * the link was setup by us or the boot firmware so we don't 235 * accidentally enable them if they were not enabled during discovery. 236 */ 237 static bool tb_disable_clx(struct tb_switch *sw) 238 { 239 bool disabled = false; 240 241 do { 242 int ret; 243 244 ret = tb_switch_clx_disable(sw); 245 if (ret > 0) 246 disabled = true; 247 else if (ret < 0) 248 tb_sw_warn(sw, "failed to disable CL states\n"); 249 250 sw = tb_switch_parent(sw); 251 } while (sw); 252 253 return disabled; 254 } 255 256 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) 257 { 258 struct tb_switch *sw; 259 260 sw = tb_to_switch(dev); 261 if (!sw) 262 return 0; 263 264 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) { 265 enum tb_switch_tmu_mode mode; 266 int ret; 267 268 if (tb_switch_clx_is_enabled(sw, TB_CL1)) 269 mode = TB_SWITCH_TMU_MODE_HIFI_UNI; 270 else 271 mode = TB_SWITCH_TMU_MODE_HIFI_BI; 272 273 ret = tb_switch_tmu_configure(sw, mode); 274 if (ret) 275 return ret; 276 277 return tb_switch_tmu_enable(sw); 278 } 279 280 return 0; 281 } 282 283 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) 284 { 285 struct tb_switch *sw; 286 287 if (!tunnel) 288 return; 289 290 /* 291 * Once first DP tunnel is established we change the TMU 292 * accuracy of first depth child routers (and the host router) 293 * to the highest. This is needed for the DP tunneling to work 294 * but also allows CL0s. 295 * 296 * If both routers are v2 then we don't need to do anything as 297 * they are using enhanced TMU mode that allows all CLx. 298 */ 299 sw = tunnel->tb->root_switch; 300 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy); 301 } 302 303 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used) 304 { 305 struct tb_switch *sw = tb_to_switch(dev); 306 307 if (sw && tb_switch_tmu_is_enabled(sw) && 308 tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI)) 309 return 1; 310 311 return device_for_each_child(dev, NULL, 312 tb_switch_tmu_hifi_uni_required); 313 } 314 315 static bool tb_tmu_hifi_uni_required(struct tb *tb) 316 { 317 return device_for_each_child(&tb->dev, NULL, 318 tb_switch_tmu_hifi_uni_required) == 1; 319 } 320 321 static int tb_enable_tmu(struct tb_switch *sw) 322 { 323 int ret; 324 325 /* 326 * If both routers at the end of the link are v2 we simply 327 * enable the enhanched uni-directional mode. That covers all 328 * the CL states. For v1 and before we need to use the normal 329 * rate to allow CL1 (when supported). Otherwise we keep the TMU 330 * running at the highest accuracy. 331 */ 332 ret = tb_switch_tmu_configure(sw, 333 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); 334 if (ret == -EOPNOTSUPP) { 335 if (tb_switch_clx_is_enabled(sw, TB_CL1)) { 336 /* 337 * Figure out uni-directional HiFi TMU requirements 338 * currently in the domain. If there are no 339 * uni-directional HiFi requirements we can put the TMU 340 * into LowRes mode. 341 * 342 * Deliberately skip bi-directional HiFi links 343 * as these work independently of other links 344 * (and they do not allow any CL states anyway). 345 */ 346 if (tb_tmu_hifi_uni_required(sw->tb)) 347 ret = tb_switch_tmu_configure(sw, 348 TB_SWITCH_TMU_MODE_HIFI_UNI); 349 else 350 ret = tb_switch_tmu_configure(sw, 351 TB_SWITCH_TMU_MODE_LOWRES); 352 } else { 353 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 354 } 355 356 /* If not supported, fallback to bi-directional HiFi */ 357 if (ret == -EOPNOTSUPP) 358 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); 359 } 360 if (ret) 361 return ret; 362 363 /* If it is already enabled in correct mode, don't touch it */ 364 if (tb_switch_tmu_is_enabled(sw)) 365 return 0; 366 367 ret = tb_switch_tmu_disable(sw); 368 if (ret) 369 return ret; 370 371 ret = tb_switch_tmu_post_time(sw); 372 if (ret) 373 return ret; 374 375 return tb_switch_tmu_enable(sw); 376 } 377 378 static void tb_switch_discover_tunnels(struct tb_switch *sw, 379 struct list_head *list, 380 bool alloc_hopids) 381 { 382 struct tb *tb = sw->tb; 383 struct tb_port *port; 384 385 tb_switch_for_each_port(sw, port) { 386 struct tb_tunnel *tunnel = NULL; 387 388 switch (port->config.type) { 389 case TB_TYPE_DP_HDMI_IN: 390 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids); 391 tb_increase_tmu_accuracy(tunnel); 392 break; 393 394 case TB_TYPE_PCIE_DOWN: 395 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids); 396 break; 397 398 case TB_TYPE_USB3_DOWN: 399 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids); 400 break; 401 402 default: 403 break; 404 } 405 406 if (tunnel) 407 list_add_tail(&tunnel->list, list); 408 } 409 410 tb_switch_for_each_port(sw, port) { 411 if (tb_port_has_remote(port)) { 412 tb_switch_discover_tunnels(port->remote->sw, list, 413 alloc_hopids); 414 } 415 } 416 } 417 418 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 419 { 420 if (tb_switch_is_usb4(port->sw)) 421 return usb4_port_configure_xdomain(port, xd); 422 return tb_lc_configure_xdomain(port); 423 } 424 425 static void tb_port_unconfigure_xdomain(struct tb_port *port) 426 { 427 if (tb_switch_is_usb4(port->sw)) 428 usb4_port_unconfigure_xdomain(port); 429 else 430 tb_lc_unconfigure_xdomain(port); 431 } 432 433 static void tb_scan_xdomain(struct tb_port *port) 434 { 435 struct tb_switch *sw = port->sw; 436 struct tb *tb = sw->tb; 437 struct tb_xdomain *xd; 438 u64 route; 439 440 if (!tb_is_xdomain_enabled()) 441 return; 442 443 route = tb_downstream_route(port); 444 xd = tb_xdomain_find_by_route(tb, route); 445 if (xd) { 446 tb_xdomain_put(xd); 447 return; 448 } 449 450 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid, 451 NULL); 452 if (xd) { 453 tb_port_at(route, sw)->xdomain = xd; 454 tb_port_configure_xdomain(port, xd); 455 tb_xdomain_add(xd); 456 } 457 } 458 459 /** 460 * tb_find_unused_port() - return the first inactive port on @sw 461 * @sw: Switch to find the port on 462 * @type: Port type to look for 463 */ 464 static struct tb_port *tb_find_unused_port(struct tb_switch *sw, 465 enum tb_port_type type) 466 { 467 struct tb_port *port; 468 469 tb_switch_for_each_port(sw, port) { 470 if (tb_is_upstream_port(port)) 471 continue; 472 if (port->config.type != type) 473 continue; 474 if (!port->cap_adap) 475 continue; 476 if (tb_port_is_enabled(port)) 477 continue; 478 return port; 479 } 480 return NULL; 481 } 482 483 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, 484 const struct tb_port *port) 485 { 486 struct tb_port *down; 487 488 down = usb4_switch_map_usb3_down(sw, port); 489 if (down && !tb_usb3_port_is_enabled(down)) 490 return down; 491 return NULL; 492 } 493 494 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, 495 struct tb_port *src_port, 496 struct tb_port *dst_port) 497 { 498 struct tb_cm *tcm = tb_priv(tb); 499 struct tb_tunnel *tunnel; 500 501 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 502 if (tunnel->type == type && 503 ((src_port && src_port == tunnel->src_port) || 504 (dst_port && dst_port == tunnel->dst_port))) { 505 return tunnel; 506 } 507 } 508 509 return NULL; 510 } 511 512 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, 513 struct tb_port *src_port, 514 struct tb_port *dst_port) 515 { 516 struct tb_port *port, *usb3_down; 517 struct tb_switch *sw; 518 519 /* Pick the router that is deepest in the topology */ 520 if (tb_port_path_direction_downstream(src_port, dst_port)) 521 sw = dst_port->sw; 522 else 523 sw = src_port->sw; 524 525 /* Can't be the host router */ 526 if (sw == tb->root_switch) 527 return NULL; 528 529 /* Find the downstream USB4 port that leads to this router */ 530 port = tb_port_at(tb_route(sw), tb->root_switch); 531 /* Find the corresponding host router USB3 downstream port */ 532 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port); 533 if (!usb3_down) 534 return NULL; 535 536 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL); 537 } 538 539 /** 540 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link 541 * @tb: Domain structure 542 * @src_port: Source protocol adapter 543 * @dst_port: Destination protocol adapter 544 * @port: USB4 port the consumed bandwidth is calculated 545 * @consumed_up: Consumed upsream bandwidth (Mb/s) 546 * @consumed_down: Consumed downstream bandwidth (Mb/s) 547 * 548 * Calculates consumed USB3 and PCIe bandwidth at @port between path 549 * from @src_port to @dst_port. Does not take USB3 tunnel starting from 550 * @src_port and ending on @src_port into account because that bandwidth is 551 * already included in as part of the "first hop" USB3 tunnel. 552 */ 553 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb, 554 struct tb_port *src_port, 555 struct tb_port *dst_port, 556 struct tb_port *port, 557 int *consumed_up, 558 int *consumed_down) 559 { 560 int pci_consumed_up, pci_consumed_down; 561 struct tb_tunnel *tunnel; 562 563 *consumed_up = *consumed_down = 0; 564 565 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 566 if (tunnel && !tb_port_is_usb3_down(src_port) && 567 !tb_port_is_usb3_up(dst_port)) { 568 int ret; 569 570 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up, 571 consumed_down); 572 if (ret) 573 return ret; 574 } 575 576 /* 577 * If there is anything reserved for PCIe bulk traffic take it 578 * into account here too. 579 */ 580 if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) { 581 *consumed_up += pci_consumed_up; 582 *consumed_down += pci_consumed_down; 583 } 584 585 return 0; 586 } 587 588 /** 589 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link 590 * @tb: Domain structure 591 * @src_port: Source protocol adapter 592 * @dst_port: Destination protocol adapter 593 * @port: USB4 port the consumed bandwidth is calculated 594 * @consumed_up: Consumed upsream bandwidth (Mb/s) 595 * @consumed_down: Consumed downstream bandwidth (Mb/s) 596 * 597 * Calculates consumed DP bandwidth at @port between path from @src_port 598 * to @dst_port. Does not take tunnel starting from @src_port and ending 599 * from @src_port into account. 600 * 601 * If there is bandwidth reserved for any of the groups between 602 * @src_port and @dst_port (but not yet used) that is also taken into 603 * account in the returned consumed bandwidth. 604 */ 605 static int tb_consumed_dp_bandwidth(struct tb *tb, 606 struct tb_port *src_port, 607 struct tb_port *dst_port, 608 struct tb_port *port, 609 int *consumed_up, 610 int *consumed_down) 611 { 612 int group_reserved[MAX_GROUPS] = {}; 613 struct tb_cm *tcm = tb_priv(tb); 614 struct tb_tunnel *tunnel; 615 bool downstream; 616 int i, ret; 617 618 *consumed_up = *consumed_down = 0; 619 620 /* 621 * Find all DP tunnels that cross the port and reduce 622 * their consumed bandwidth from the available. 623 */ 624 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 625 const struct tb_bandwidth_group *group; 626 int dp_consumed_up, dp_consumed_down; 627 628 if (tb_tunnel_is_invalid(tunnel)) 629 continue; 630 631 if (!tb_tunnel_is_dp(tunnel)) 632 continue; 633 634 if (!tb_tunnel_port_on_path(tunnel, port)) 635 continue; 636 637 /* 638 * Calculate what is reserved for groups crossing the 639 * same ports only once (as that is reserved for all the 640 * tunnels in the group). 641 */ 642 group = tunnel->src_port->group; 643 if (group && group->reserved && !group_reserved[group->index]) 644 group_reserved[group->index] = group->reserved; 645 646 /* 647 * Ignore the DP tunnel between src_port and dst_port 648 * because it is the same tunnel and we may be 649 * re-calculating estimated bandwidth. 650 */ 651 if (tunnel->src_port == src_port && 652 tunnel->dst_port == dst_port) 653 continue; 654 655 ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up, 656 &dp_consumed_down); 657 if (ret) 658 return ret; 659 660 *consumed_up += dp_consumed_up; 661 *consumed_down += dp_consumed_down; 662 } 663 664 downstream = tb_port_path_direction_downstream(src_port, dst_port); 665 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) { 666 if (downstream) 667 *consumed_down += group_reserved[i]; 668 else 669 *consumed_up += group_reserved[i]; 670 } 671 672 return 0; 673 } 674 675 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port, 676 struct tb_port *port) 677 { 678 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 679 enum tb_link_width width; 680 681 if (tb_is_upstream_port(port)) 682 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX; 683 else 684 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX; 685 686 return tb_port_width_supported(port, width); 687 } 688 689 /** 690 * tb_maximum_bandwidth() - Maximum bandwidth over a single link 691 * @tb: Domain structure 692 * @src_port: Source protocol adapter 693 * @dst_port: Destination protocol adapter 694 * @port: USB4 port the total bandwidth is calculated 695 * @max_up: Maximum upstream bandwidth (Mb/s) 696 * @max_down: Maximum downstream bandwidth (Mb/s) 697 * @include_asym: Include bandwidth if the link is switched from 698 * symmetric to asymmetric 699 * 700 * Returns maximum possible bandwidth in @max_up and @max_down over a 701 * single link at @port. If @include_asym is set then includes the 702 * additional banwdith if the links are transitioned into asymmetric to 703 * direction from @src_port to @dst_port. 704 */ 705 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port, 706 struct tb_port *dst_port, struct tb_port *port, 707 int *max_up, int *max_down, bool include_asym) 708 { 709 bool downstream = tb_port_path_direction_downstream(src_port, dst_port); 710 int link_speed, link_width, up_bw, down_bw; 711 712 /* 713 * Can include asymmetric, only if it is actually supported by 714 * the lane adapter. 715 */ 716 if (!tb_asym_supported(src_port, dst_port, port)) 717 include_asym = false; 718 719 if (tb_is_upstream_port(port)) { 720 link_speed = port->sw->link_speed; 721 /* 722 * sw->link_width is from upstream perspective so we use 723 * the opposite for downstream of the host router. 724 */ 725 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { 726 up_bw = link_speed * 3 * 1000; 727 down_bw = link_speed * 1 * 1000; 728 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 729 up_bw = link_speed * 1 * 1000; 730 down_bw = link_speed * 3 * 1000; 731 } else if (include_asym) { 732 /* 733 * The link is symmetric at the moment but we 734 * can switch it to asymmetric as needed. Report 735 * this bandwidth as available (even though it 736 * is not yet enabled). 737 */ 738 if (downstream) { 739 up_bw = link_speed * 1 * 1000; 740 down_bw = link_speed * 3 * 1000; 741 } else { 742 up_bw = link_speed * 3 * 1000; 743 down_bw = link_speed * 1 * 1000; 744 } 745 } else { 746 up_bw = link_speed * port->sw->link_width * 1000; 747 down_bw = up_bw; 748 } 749 } else { 750 link_speed = tb_port_get_link_speed(port); 751 if (link_speed < 0) 752 return link_speed; 753 754 link_width = tb_port_get_link_width(port); 755 if (link_width < 0) 756 return link_width; 757 758 if (link_width == TB_LINK_WIDTH_ASYM_TX) { 759 up_bw = link_speed * 1 * 1000; 760 down_bw = link_speed * 3 * 1000; 761 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { 762 up_bw = link_speed * 3 * 1000; 763 down_bw = link_speed * 1 * 1000; 764 } else if (include_asym) { 765 /* 766 * The link is symmetric at the moment but we 767 * can switch it to asymmetric as needed. Report 768 * this bandwidth as available (even though it 769 * is not yet enabled). 770 */ 771 if (downstream) { 772 up_bw = link_speed * 1 * 1000; 773 down_bw = link_speed * 3 * 1000; 774 } else { 775 up_bw = link_speed * 3 * 1000; 776 down_bw = link_speed * 1 * 1000; 777 } 778 } else { 779 up_bw = link_speed * link_width * 1000; 780 down_bw = up_bw; 781 } 782 } 783 784 /* Leave 10% guard band */ 785 *max_up = up_bw - up_bw / 10; 786 *max_down = down_bw - down_bw / 10; 787 788 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down); 789 return 0; 790 } 791 792 /** 793 * tb_available_bandwidth() - Available bandwidth for tunneling 794 * @tb: Domain structure 795 * @src_port: Source protocol adapter 796 * @dst_port: Destination protocol adapter 797 * @available_up: Available bandwidth upstream (Mb/s) 798 * @available_down: Available bandwidth downstream (Mb/s) 799 * @include_asym: Include bandwidth if the link is switched from 800 * symmetric to asymmetric 801 * 802 * Calculates maximum available bandwidth for protocol tunneling between 803 * @src_port and @dst_port at the moment. This is minimum of maximum 804 * link bandwidth across all links reduced by currently consumed 805 * bandwidth on that link. 806 * 807 * If @include_asym is true then includes also bandwidth that can be 808 * added when the links are transitioned into asymmetric (but does not 809 * transition the links). 810 */ 811 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, 812 struct tb_port *dst_port, int *available_up, 813 int *available_down, bool include_asym) 814 { 815 struct tb_port *port; 816 int ret; 817 818 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ 819 *available_up = *available_down = 120000; 820 821 /* Find the minimum available bandwidth over all links */ 822 tb_for_each_port_on_path(src_port, dst_port, port) { 823 int max_up, max_down, consumed_up, consumed_down; 824 825 if (!tb_port_is_null(port)) 826 continue; 827 828 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port, 829 &max_up, &max_down, include_asym); 830 if (ret) 831 return ret; 832 833 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port, 834 port, &consumed_up, 835 &consumed_down); 836 if (ret) 837 return ret; 838 max_up -= consumed_up; 839 max_down -= consumed_down; 840 841 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port, 842 &consumed_up, &consumed_down); 843 if (ret) 844 return ret; 845 max_up -= consumed_up; 846 max_down -= consumed_down; 847 848 if (max_up < *available_up) 849 *available_up = max_up; 850 if (max_down < *available_down) 851 *available_down = max_down; 852 } 853 854 if (*available_up < 0) 855 *available_up = 0; 856 if (*available_down < 0) 857 *available_down = 0; 858 859 return 0; 860 } 861 862 static int tb_release_unused_usb3_bandwidth(struct tb *tb, 863 struct tb_port *src_port, 864 struct tb_port *dst_port) 865 { 866 struct tb_tunnel *tunnel; 867 868 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 869 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; 870 } 871 872 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, 873 struct tb_port *dst_port) 874 { 875 int ret, available_up, available_down; 876 struct tb_tunnel *tunnel; 877 878 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 879 if (!tunnel) 880 return; 881 882 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n"); 883 884 /* 885 * Calculate available bandwidth for the first hop USB3 tunnel. 886 * That determines the whole USB3 bandwidth for this branch. 887 */ 888 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port, 889 &available_up, &available_down, false); 890 if (ret) { 891 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n"); 892 return; 893 } 894 895 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up, 896 available_down); 897 898 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down); 899 } 900 901 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) 902 { 903 struct tb_switch *parent = tb_switch_parent(sw); 904 int ret, available_up, available_down; 905 struct tb_port *up, *down, *port; 906 struct tb_cm *tcm = tb_priv(tb); 907 struct tb_tunnel *tunnel; 908 909 if (!tb_acpi_may_tunnel_usb3()) { 910 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); 911 return 0; 912 } 913 914 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP); 915 if (!up) 916 return 0; 917 918 if (!sw->link_usb4) 919 return 0; 920 921 /* 922 * Look up available down port. Since we are chaining it should 923 * be found right above this switch. 924 */ 925 port = tb_switch_downstream_port(sw); 926 down = tb_find_usb3_down(parent, port); 927 if (!down) 928 return 0; 929 930 if (tb_route(parent)) { 931 struct tb_port *parent_up; 932 /* 933 * Check first that the parent switch has its upstream USB3 934 * port enabled. Otherwise the chain is not complete and 935 * there is no point setting up a new tunnel. 936 */ 937 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP); 938 if (!parent_up || !tb_port_is_enabled(parent_up)) 939 return 0; 940 941 /* Make all unused bandwidth available for the new tunnel */ 942 ret = tb_release_unused_usb3_bandwidth(tb, down, up); 943 if (ret) 944 return ret; 945 } 946 947 ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down, 948 false); 949 if (ret) 950 goto err_reclaim; 951 952 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", 953 available_up, available_down); 954 955 /* 956 * If the available bandwidth is less than 1.5 Gb/s notify 957 * userspace that the connected isochronous device may not work 958 * properly. 959 */ 960 if (available_up < 1500 || available_down < 1500) 961 tb_tunnel_event(tb, TB_TUNNEL_LOW_BANDWIDTH, TB_TUNNEL_USB3, 962 down, up); 963 964 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up, 965 available_down); 966 if (!tunnel) { 967 ret = -ENOMEM; 968 goto err_reclaim; 969 } 970 971 if (tb_tunnel_activate(tunnel)) { 972 tb_port_info(up, 973 "USB3 tunnel activation failed, aborting\n"); 974 ret = -EIO; 975 goto err_free; 976 } 977 978 list_add_tail(&tunnel->list, &tcm->tunnel_list); 979 if (tb_route(parent)) 980 tb_reclaim_usb3_bandwidth(tb, down, up); 981 982 return 0; 983 984 err_free: 985 tb_tunnel_put(tunnel); 986 err_reclaim: 987 if (tb_route(parent)) 988 tb_reclaim_usb3_bandwidth(tb, down, up); 989 990 return ret; 991 } 992 993 static int tb_create_usb3_tunnels(struct tb_switch *sw) 994 { 995 struct tb_port *port; 996 int ret; 997 998 if (!tb_acpi_may_tunnel_usb3()) 999 return 0; 1000 1001 if (tb_route(sw)) { 1002 ret = tb_tunnel_usb3(sw->tb, sw); 1003 if (ret) 1004 return ret; 1005 } 1006 1007 tb_switch_for_each_port(sw, port) { 1008 if (!tb_port_has_remote(port)) 1009 continue; 1010 ret = tb_create_usb3_tunnels(port->remote->sw); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 return 0; 1016 } 1017 1018 /** 1019 * tb_configure_asym() - Transition links to asymmetric if needed 1020 * @tb: Domain structure 1021 * @src_port: Source adapter to start the transition 1022 * @dst_port: Destination adapter 1023 * @requested_up: Additional bandwidth (Mb/s) required upstream 1024 * @requested_down: Additional bandwidth (Mb/s) required downstream 1025 * 1026 * Transition links between @src_port and @dst_port into asymmetric, with 1027 * three lanes in the direction from @src_port towards @dst_port and one lane 1028 * in the opposite direction, if the bandwidth requirements 1029 * (requested + currently consumed) on that link exceed @asym_threshold. 1030 * 1031 * Must be called with available >= requested over all links. 1032 */ 1033 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port, 1034 struct tb_port *dst_port, int requested_up, 1035 int requested_down) 1036 { 1037 bool clx = false, clx_disabled = false, downstream; 1038 struct tb_switch *sw; 1039 struct tb_port *up; 1040 int ret = 0; 1041 1042 if (!asym_threshold) 1043 return 0; 1044 1045 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1046 /* Pick up router deepest in the hierarchy */ 1047 if (downstream) 1048 sw = dst_port->sw; 1049 else 1050 sw = src_port->sw; 1051 1052 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1053 struct tb_port *down = tb_switch_downstream_port(up->sw); 1054 enum tb_link_width width_up, width_down; 1055 int consumed_up, consumed_down; 1056 1057 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1058 &consumed_up, &consumed_down); 1059 if (ret) 1060 break; 1061 1062 if (downstream) { 1063 /* 1064 * Downstream so make sure upstream is within the 36G 1065 * (40G - guard band 10%), and the requested is above 1066 * what the threshold is. 1067 */ 1068 if (consumed_up + requested_up >= TB_ASYM_MIN) { 1069 ret = -ENOBUFS; 1070 break; 1071 } 1072 /* Does consumed + requested exceed the threshold */ 1073 if (consumed_down + requested_down < asym_threshold) 1074 continue; 1075 1076 width_up = TB_LINK_WIDTH_ASYM_RX; 1077 width_down = TB_LINK_WIDTH_ASYM_TX; 1078 } else { 1079 /* Upstream, the opposite of above */ 1080 if (consumed_down + requested_down >= TB_ASYM_MIN) { 1081 ret = -ENOBUFS; 1082 break; 1083 } 1084 if (consumed_up + requested_up < asym_threshold) 1085 continue; 1086 1087 width_up = TB_LINK_WIDTH_ASYM_TX; 1088 width_down = TB_LINK_WIDTH_ASYM_RX; 1089 } 1090 1091 if (up->sw->link_width == width_up) 1092 continue; 1093 1094 if (!tb_port_width_supported(up, width_up) || 1095 !tb_port_width_supported(down, width_down)) 1096 continue; 1097 1098 /* 1099 * Disable CL states before doing any transitions. We 1100 * delayed it until now that we know there is a real 1101 * transition taking place. 1102 */ 1103 if (!clx_disabled) { 1104 clx = tb_disable_clx(sw); 1105 clx_disabled = true; 1106 } 1107 1108 tb_sw_dbg(up->sw, "configuring asymmetric link\n"); 1109 1110 /* 1111 * Here requested + consumed > threshold so we need to 1112 * transtion the link into asymmetric now. 1113 */ 1114 ret = tb_switch_set_link_width(up->sw, width_up); 1115 if (ret) { 1116 tb_sw_warn(up->sw, "failed to set link width\n"); 1117 break; 1118 } 1119 } 1120 1121 /* Re-enable CL states if they were previosly enabled */ 1122 if (clx) 1123 tb_enable_clx(sw); 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * tb_configure_sym() - Transition links to symmetric if possible 1130 * @tb: Domain structure 1131 * @src_port: Source adapter to start the transition 1132 * @dst_port: Destination adapter 1133 * @keep_asym: Keep asymmetric link if preferred 1134 * 1135 * Goes over each link from @src_port to @dst_port and tries to 1136 * transition the link to symmetric if the currently consumed bandwidth 1137 * allows and link asymmetric preference is ignored (if @keep_asym is %false). 1138 */ 1139 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port, 1140 struct tb_port *dst_port, bool keep_asym) 1141 { 1142 bool clx = false, clx_disabled = false, downstream; 1143 struct tb_switch *sw; 1144 struct tb_port *up; 1145 int ret = 0; 1146 1147 if (!asym_threshold) 1148 return 0; 1149 1150 downstream = tb_port_path_direction_downstream(src_port, dst_port); 1151 /* Pick up router deepest in the hierarchy */ 1152 if (downstream) 1153 sw = dst_port->sw; 1154 else 1155 sw = src_port->sw; 1156 1157 tb_for_each_upstream_port_on_path(src_port, dst_port, up) { 1158 int consumed_up, consumed_down; 1159 1160 /* Already symmetric */ 1161 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL) 1162 continue; 1163 /* Unplugged, no need to switch */ 1164 if (up->sw->is_unplugged) 1165 continue; 1166 1167 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, 1168 &consumed_up, &consumed_down); 1169 if (ret) 1170 break; 1171 1172 if (downstream) { 1173 /* 1174 * Downstream so we want the consumed_down < threshold. 1175 * Upstream traffic should be less than 36G (40G 1176 * guard band 10%) as the link was configured asymmetric 1177 * already. 1178 */ 1179 if (consumed_down >= asym_threshold) 1180 continue; 1181 } else { 1182 if (consumed_up >= asym_threshold) 1183 continue; 1184 } 1185 1186 if (up->sw->link_width == TB_LINK_WIDTH_DUAL) 1187 continue; 1188 1189 /* 1190 * Here consumed < threshold so we can transition the 1191 * link to symmetric. 1192 * 1193 * However, if the router prefers asymmetric link we 1194 * honor that (unless @keep_asym is %false). 1195 */ 1196 if (keep_asym && 1197 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) { 1198 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n"); 1199 continue; 1200 } 1201 1202 /* Disable CL states before doing any transitions */ 1203 if (!clx_disabled) { 1204 clx = tb_disable_clx(sw); 1205 clx_disabled = true; 1206 } 1207 1208 tb_sw_dbg(up->sw, "configuring symmetric link\n"); 1209 1210 ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL); 1211 if (ret) { 1212 tb_sw_warn(up->sw, "failed to set link width\n"); 1213 break; 1214 } 1215 } 1216 1217 /* Re-enable CL states if they were previosly enabled */ 1218 if (clx) 1219 tb_enable_clx(sw); 1220 1221 return ret; 1222 } 1223 1224 static void tb_configure_link(struct tb_port *down, struct tb_port *up, 1225 struct tb_switch *sw) 1226 { 1227 struct tb *tb = sw->tb; 1228 1229 /* Link the routers using both links if available */ 1230 down->remote = up; 1231 up->remote = down; 1232 if (down->dual_link_port && up->dual_link_port) { 1233 down->dual_link_port->remote = up->dual_link_port; 1234 up->dual_link_port->remote = down->dual_link_port; 1235 } 1236 1237 /* 1238 * Enable lane bonding if the link is currently two single lane 1239 * links. 1240 */ 1241 if (sw->link_width < TB_LINK_WIDTH_DUAL) 1242 tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL); 1243 1244 /* 1245 * Device router that comes up as symmetric link is 1246 * connected deeper in the hierarchy, we transition the links 1247 * above into symmetric if bandwidth allows. 1248 */ 1249 if (tb_switch_depth(sw) > 1 && 1250 tb_port_get_link_generation(up) >= 4 && 1251 up->sw->link_width == TB_LINK_WIDTH_DUAL) { 1252 struct tb_port *host_port; 1253 1254 host_port = tb_port_at(tb_route(sw), tb->root_switch); 1255 tb_configure_sym(tb, host_port, up, false); 1256 } 1257 1258 /* Set the link configured */ 1259 tb_switch_configure_link(sw); 1260 } 1261 1262 /* 1263 * tb_scan_switch() - scan for and initialize downstream switches 1264 */ 1265 static void tb_scan_switch(struct tb_switch *sw) 1266 { 1267 struct tb_port *port; 1268 1269 pm_runtime_get_sync(&sw->dev); 1270 1271 tb_switch_for_each_port(sw, port) 1272 tb_scan_port(port); 1273 1274 pm_runtime_mark_last_busy(&sw->dev); 1275 pm_runtime_put_autosuspend(&sw->dev); 1276 } 1277 1278 /* 1279 * tb_scan_port() - check for and initialize switches below port 1280 */ 1281 static void tb_scan_port(struct tb_port *port) 1282 { 1283 struct tb_cm *tcm = tb_priv(port->sw->tb); 1284 struct tb_port *upstream_port; 1285 bool discovery = false; 1286 struct tb_switch *sw; 1287 1288 if (tb_is_upstream_port(port)) 1289 return; 1290 1291 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && 1292 !tb_dp_port_is_enabled(port)) { 1293 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); 1294 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port, 1295 false); 1296 return; 1297 } 1298 1299 if (port->config.type != TB_TYPE_PORT) 1300 return; 1301 if (port->dual_link_port && port->link_nr) 1302 return; /* 1303 * Downstream switch is reachable through two ports. 1304 * Only scan on the primary port (link_nr == 0). 1305 */ 1306 1307 if (port->usb4) 1308 pm_runtime_get_sync(&port->usb4->dev); 1309 1310 if (tb_wait_for_port(port, false) <= 0) 1311 goto out_rpm_put; 1312 if (port->remote) { 1313 tb_port_dbg(port, "port already has a remote\n"); 1314 goto out_rpm_put; 1315 } 1316 1317 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev, 1318 tb_downstream_route(port)); 1319 if (IS_ERR(sw)) { 1320 /* 1321 * Make the downstream retimers available even if there 1322 * is no router connected. 1323 */ 1324 tb_retimer_scan(port, true); 1325 1326 /* 1327 * If there is an error accessing the connected switch 1328 * it may be connected to another domain. Also we allow 1329 * the other domain to be connected to a max depth switch. 1330 */ 1331 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL) 1332 tb_scan_xdomain(port); 1333 goto out_rpm_put; 1334 } 1335 1336 if (tb_switch_configure(sw)) { 1337 tb_switch_put(sw); 1338 goto out_rpm_put; 1339 } 1340 1341 /* 1342 * If there was previously another domain connected remove it 1343 * first. 1344 */ 1345 if (port->xdomain) { 1346 tb_xdomain_remove(port->xdomain); 1347 tb_port_unconfigure_xdomain(port); 1348 port->xdomain = NULL; 1349 } 1350 1351 /* 1352 * Do not send uevents until we have discovered all existing 1353 * tunnels and know which switches were authorized already by 1354 * the boot firmware. 1355 */ 1356 if (!tcm->hotplug_active) { 1357 dev_set_uevent_suppress(&sw->dev, true); 1358 discovery = true; 1359 } 1360 1361 /* 1362 * At the moment Thunderbolt 2 and beyond (devices with LC) we 1363 * can support runtime PM. 1364 */ 1365 sw->rpm = sw->generation > 1; 1366 1367 if (tb_switch_add(sw)) { 1368 tb_switch_put(sw); 1369 goto out_rpm_put; 1370 } 1371 1372 upstream_port = tb_upstream_port(sw); 1373 tb_configure_link(port, upstream_port, sw); 1374 1375 /* 1376 * Scan for downstream retimers. We only scan them after the 1377 * router has been enumerated to avoid issues with certain 1378 * Pluggable devices that expect the host to enumerate them 1379 * within certain timeout. 1380 */ 1381 tb_retimer_scan(port, true); 1382 1383 /* 1384 * CL0s and CL1 are enabled and supported together. 1385 * Silently ignore CLx enabling in case CLx is not supported. 1386 */ 1387 if (discovery) 1388 tb_sw_dbg(sw, "discovery, not touching CL states\n"); 1389 else if (tb_enable_clx(sw)) 1390 tb_sw_warn(sw, "failed to enable CL states\n"); 1391 1392 if (tb_enable_tmu(sw)) 1393 tb_sw_warn(sw, "failed to enable TMU\n"); 1394 1395 /* 1396 * Configuration valid needs to be set after the TMU has been 1397 * enabled for the upstream port of the router so we do it here. 1398 */ 1399 tb_switch_configuration_valid(sw); 1400 1401 /* Scan upstream retimers */ 1402 tb_retimer_scan(upstream_port, true); 1403 1404 /* 1405 * Create USB 3.x tunnels only when the switch is plugged to the 1406 * domain. This is because we scan the domain also during discovery 1407 * and want to discover existing USB 3.x tunnels before we create 1408 * any new. 1409 */ 1410 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw)) 1411 tb_sw_warn(sw, "USB3 tunnel creation failed\n"); 1412 1413 tb_add_dp_resources(sw); 1414 tb_scan_switch(sw); 1415 1416 out_rpm_put: 1417 if (port->usb4) { 1418 pm_runtime_mark_last_busy(&port->usb4->dev); 1419 pm_runtime_put_autosuspend(&port->usb4->dev); 1420 } 1421 } 1422 1423 static void 1424 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) 1425 { 1426 struct tb_tunnel *first_tunnel; 1427 struct tb *tb = group->tb; 1428 struct tb_port *in; 1429 int ret; 1430 1431 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", 1432 group->index); 1433 1434 first_tunnel = NULL; 1435 list_for_each_entry(in, &group->ports, group_list) { 1436 int estimated_bw, estimated_up, estimated_down; 1437 struct tb_tunnel *tunnel; 1438 struct tb_port *out; 1439 1440 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1441 continue; 1442 1443 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 1444 if (WARN_ON(!tunnel)) 1445 break; 1446 1447 if (!first_tunnel) { 1448 /* 1449 * Since USB3 bandwidth is shared by all DP 1450 * tunnels under the host router USB4 port, even 1451 * if they do not begin from the host router, we 1452 * can release USB3 bandwidth just once and not 1453 * for each tunnel separately. 1454 */ 1455 first_tunnel = tunnel; 1456 ret = tb_release_unused_usb3_bandwidth(tb, 1457 first_tunnel->src_port, first_tunnel->dst_port); 1458 if (ret) { 1459 tb_tunnel_warn(tunnel, 1460 "failed to release unused bandwidth\n"); 1461 break; 1462 } 1463 } 1464 1465 out = tunnel->dst_port; 1466 ret = tb_available_bandwidth(tb, in, out, &estimated_up, 1467 &estimated_down, true); 1468 if (ret) { 1469 tb_tunnel_warn(tunnel, 1470 "failed to re-calculate estimated bandwidth\n"); 1471 break; 1472 } 1473 1474 /* 1475 * Estimated bandwidth includes: 1476 * - already allocated bandwidth for the DP tunnel 1477 * - available bandwidth along the path 1478 * - bandwidth allocated for USB 3.x but not used. 1479 */ 1480 if (tb_tunnel_direction_downstream(tunnel)) 1481 estimated_bw = estimated_down; 1482 else 1483 estimated_bw = estimated_up; 1484 1485 /* 1486 * If there is reserved bandwidth for the group that is 1487 * not yet released we report that too. 1488 */ 1489 tb_tunnel_dbg(tunnel, 1490 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n", 1491 estimated_bw, group->reserved, 1492 estimated_bw + group->reserved); 1493 1494 if (usb4_dp_port_set_estimated_bandwidth(in, 1495 estimated_bw + group->reserved)) 1496 tb_tunnel_warn(tunnel, 1497 "failed to update estimated bandwidth\n"); 1498 } 1499 1500 if (first_tunnel) 1501 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port, 1502 first_tunnel->dst_port); 1503 1504 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); 1505 } 1506 1507 static void tb_recalc_estimated_bandwidth(struct tb *tb) 1508 { 1509 struct tb_cm *tcm = tb_priv(tb); 1510 int i; 1511 1512 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); 1513 1514 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1515 struct tb_bandwidth_group *group = &tcm->groups[i]; 1516 1517 if (!list_empty(&group->ports)) 1518 tb_recalc_estimated_bandwidth_for_group(group); 1519 } 1520 1521 tb_dbg(tb, "bandwidth re-calculation done\n"); 1522 } 1523 1524 static bool __release_group_bandwidth(struct tb_bandwidth_group *group) 1525 { 1526 if (group->reserved) { 1527 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index, 1528 group->reserved); 1529 group->reserved = 0; 1530 return true; 1531 } 1532 return false; 1533 } 1534 1535 static void __configure_group_sym(struct tb_bandwidth_group *group) 1536 { 1537 struct tb_tunnel *tunnel; 1538 struct tb_port *in; 1539 1540 if (list_empty(&group->ports)) 1541 return; 1542 1543 /* 1544 * All the tunnels in the group go through the same USB4 links 1545 * so we find the first one here and pass the IN and OUT 1546 * adapters to tb_configure_sym() which now transitions the 1547 * links back to symmetric if bandwidth requirement < asym_threshold. 1548 * 1549 * We do this here to avoid unnecessary transitions (for example 1550 * if the graphics released bandwidth for other tunnel in the 1551 * same group). 1552 */ 1553 in = list_first_entry(&group->ports, struct tb_port, group_list); 1554 tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL); 1555 if (tunnel) 1556 tb_configure_sym(group->tb, in, tunnel->dst_port, true); 1557 } 1558 1559 static void tb_bandwidth_group_release_work(struct work_struct *work) 1560 { 1561 struct tb_bandwidth_group *group = 1562 container_of(work, typeof(*group), release_work.work); 1563 struct tb *tb = group->tb; 1564 1565 mutex_lock(&tb->lock); 1566 if (__release_group_bandwidth(group)) 1567 tb_recalc_estimated_bandwidth(tb); 1568 __configure_group_sym(group); 1569 mutex_unlock(&tb->lock); 1570 } 1571 1572 static void tb_init_bandwidth_groups(struct tb_cm *tcm) 1573 { 1574 int i; 1575 1576 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1577 struct tb_bandwidth_group *group = &tcm->groups[i]; 1578 1579 group->tb = tcm_to_tb(tcm); 1580 group->index = i + 1; 1581 INIT_LIST_HEAD(&group->ports); 1582 INIT_DELAYED_WORK(&group->release_work, 1583 tb_bandwidth_group_release_work); 1584 } 1585 } 1586 1587 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, 1588 struct tb_port *in) 1589 { 1590 if (!group || WARN_ON(in->group)) 1591 return; 1592 1593 in->group = group; 1594 list_add_tail(&in->group_list, &group->ports); 1595 1596 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); 1597 } 1598 1599 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) 1600 { 1601 int i; 1602 1603 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1604 struct tb_bandwidth_group *group = &tcm->groups[i]; 1605 1606 if (list_empty(&group->ports)) 1607 return group; 1608 } 1609 1610 return NULL; 1611 } 1612 1613 static struct tb_bandwidth_group * 1614 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1615 struct tb_port *out) 1616 { 1617 struct tb_bandwidth_group *group; 1618 struct tb_tunnel *tunnel; 1619 1620 /* 1621 * Find all DP tunnels that go through all the same USB4 links 1622 * as this one. Because we always setup tunnels the same way we 1623 * can just check for the routers at both ends of the tunnels 1624 * and if they are the same we have a match. 1625 */ 1626 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1627 if (!tb_tunnel_is_dp(tunnel)) 1628 continue; 1629 1630 if (tunnel->src_port->sw == in->sw && 1631 tunnel->dst_port->sw == out->sw) { 1632 group = tunnel->src_port->group; 1633 if (group) { 1634 tb_bandwidth_group_attach_port(group, in); 1635 return group; 1636 } 1637 } 1638 } 1639 1640 /* Pick up next available group then */ 1641 group = tb_find_free_bandwidth_group(tcm); 1642 if (group) 1643 tb_bandwidth_group_attach_port(group, in); 1644 else 1645 tb_port_warn(in, "no available bandwidth groups\n"); 1646 1647 return group; 1648 } 1649 1650 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 1651 struct tb_port *out) 1652 { 1653 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 1654 int index, i; 1655 1656 index = usb4_dp_port_group_id(in); 1657 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1658 if (tcm->groups[i].index == index) { 1659 tb_bandwidth_group_attach_port(&tcm->groups[i], in); 1660 return; 1661 } 1662 } 1663 } 1664 1665 tb_attach_bandwidth_group(tcm, in, out); 1666 } 1667 1668 static void tb_detach_bandwidth_group(struct tb_port *in) 1669 { 1670 struct tb_bandwidth_group *group = in->group; 1671 1672 if (group) { 1673 in->group = NULL; 1674 list_del_init(&in->group_list); 1675 1676 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); 1677 1678 /* No more tunnels so release the reserved bandwidth if any */ 1679 if (list_empty(&group->ports)) { 1680 cancel_delayed_work(&group->release_work); 1681 __release_group_bandwidth(group); 1682 } 1683 } 1684 } 1685 1686 static void tb_discover_tunnels(struct tb *tb) 1687 { 1688 struct tb_cm *tcm = tb_priv(tb); 1689 struct tb_tunnel *tunnel; 1690 1691 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true); 1692 1693 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1694 if (tb_tunnel_is_pci(tunnel)) { 1695 struct tb_switch *parent = tunnel->dst_port->sw; 1696 1697 while (parent != tunnel->src_port->sw) { 1698 parent->boot = true; 1699 parent = tb_switch_parent(parent); 1700 } 1701 } else if (tb_tunnel_is_dp(tunnel)) { 1702 struct tb_port *in = tunnel->src_port; 1703 struct tb_port *out = tunnel->dst_port; 1704 1705 /* Keep the domain from powering down */ 1706 pm_runtime_get_sync(&in->sw->dev); 1707 pm_runtime_get_sync(&out->sw->dev); 1708 1709 tb_discover_bandwidth_group(tcm, in, out); 1710 } 1711 } 1712 } 1713 1714 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) 1715 { 1716 struct tb_port *src_port, *dst_port; 1717 struct tb *tb; 1718 1719 if (!tunnel) 1720 return; 1721 1722 tb_tunnel_deactivate(tunnel); 1723 list_del(&tunnel->list); 1724 1725 tb = tunnel->tb; 1726 src_port = tunnel->src_port; 1727 dst_port = tunnel->dst_port; 1728 1729 switch (tunnel->type) { 1730 case TB_TUNNEL_DP: 1731 tb_detach_bandwidth_group(src_port); 1732 /* 1733 * In case of DP tunnel make sure the DP IN resource is 1734 * deallocated properly. 1735 */ 1736 tb_switch_dealloc_dp_resource(src_port->sw, src_port); 1737 /* 1738 * If bandwidth on a link is < asym_threshold 1739 * transition the link to symmetric. 1740 */ 1741 tb_configure_sym(tb, src_port, dst_port, true); 1742 /* Now we can allow the domain to runtime suspend again */ 1743 pm_runtime_mark_last_busy(&dst_port->sw->dev); 1744 pm_runtime_put_autosuspend(&dst_port->sw->dev); 1745 pm_runtime_mark_last_busy(&src_port->sw->dev); 1746 pm_runtime_put_autosuspend(&src_port->sw->dev); 1747 fallthrough; 1748 1749 case TB_TUNNEL_USB3: 1750 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); 1751 break; 1752 1753 default: 1754 /* 1755 * PCIe and DMA tunnels do not consume guaranteed 1756 * bandwidth. 1757 */ 1758 break; 1759 } 1760 1761 tb_tunnel_put(tunnel); 1762 } 1763 1764 /* 1765 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away 1766 */ 1767 static void tb_free_invalid_tunnels(struct tb *tb) 1768 { 1769 struct tb_cm *tcm = tb_priv(tb); 1770 struct tb_tunnel *tunnel; 1771 struct tb_tunnel *n; 1772 1773 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 1774 if (tb_tunnel_is_invalid(tunnel)) 1775 tb_deactivate_and_free_tunnel(tunnel); 1776 } 1777 } 1778 1779 /* 1780 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches 1781 */ 1782 static void tb_free_unplugged_children(struct tb_switch *sw) 1783 { 1784 struct tb_port *port; 1785 1786 tb_switch_for_each_port(sw, port) { 1787 if (!tb_port_has_remote(port)) 1788 continue; 1789 1790 if (port->remote->sw->is_unplugged) { 1791 tb_retimer_remove_all(port); 1792 tb_remove_dp_resources(port->remote->sw); 1793 tb_switch_unconfigure_link(port->remote->sw); 1794 tb_switch_set_link_width(port->remote->sw, 1795 TB_LINK_WIDTH_SINGLE); 1796 tb_switch_remove(port->remote->sw); 1797 port->remote = NULL; 1798 if (port->dual_link_port) 1799 port->dual_link_port->remote = NULL; 1800 } else { 1801 tb_free_unplugged_children(port->remote->sw); 1802 } 1803 } 1804 } 1805 1806 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, 1807 const struct tb_port *port) 1808 { 1809 struct tb_port *down = NULL; 1810 1811 /* 1812 * To keep plugging devices consistently in the same PCIe 1813 * hierarchy, do mapping here for switch downstream PCIe ports. 1814 */ 1815 if (tb_switch_is_usb4(sw)) { 1816 down = usb4_switch_map_pcie_down(sw, port); 1817 } else if (!tb_route(sw)) { 1818 int phy_port = tb_phy_port_from_link(port->port); 1819 int index; 1820 1821 /* 1822 * Hard-coded Thunderbolt port to PCIe down port mapping 1823 * per controller. 1824 */ 1825 if (tb_switch_is_cactus_ridge(sw) || 1826 tb_switch_is_alpine_ridge(sw)) 1827 index = !phy_port ? 6 : 7; 1828 else if (tb_switch_is_falcon_ridge(sw)) 1829 index = !phy_port ? 6 : 8; 1830 else if (tb_switch_is_titan_ridge(sw)) 1831 index = !phy_port ? 8 : 9; 1832 else 1833 goto out; 1834 1835 /* Validate the hard-coding */ 1836 if (WARN_ON(index > sw->config.max_port_number)) 1837 goto out; 1838 1839 down = &sw->ports[index]; 1840 } 1841 1842 if (down) { 1843 if (WARN_ON(!tb_port_is_pcie_down(down))) 1844 goto out; 1845 if (tb_pci_port_is_enabled(down)) 1846 goto out; 1847 1848 return down; 1849 } 1850 1851 out: 1852 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN); 1853 } 1854 1855 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) 1856 { 1857 struct tb_port *host_port, *port; 1858 struct tb_cm *tcm = tb_priv(tb); 1859 1860 host_port = tb_route(in->sw) ? 1861 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL; 1862 1863 list_for_each_entry(port, &tcm->dp_resources, list) { 1864 if (!tb_port_is_dpout(port)) 1865 continue; 1866 1867 if (tb_port_is_enabled(port)) { 1868 tb_port_dbg(port, "DP OUT in use\n"); 1869 continue; 1870 } 1871 1872 /* Needs to be on different routers */ 1873 if (in->sw == port->sw) { 1874 tb_port_dbg(port, "skipping DP OUT on same router\n"); 1875 continue; 1876 } 1877 1878 tb_port_dbg(port, "DP OUT available\n"); 1879 1880 /* 1881 * Keep the DP tunnel under the topology starting from 1882 * the same host router downstream port. 1883 */ 1884 if (host_port && tb_route(port->sw)) { 1885 struct tb_port *p; 1886 1887 p = tb_port_at(tb_route(port->sw), tb->root_switch); 1888 if (p != host_port) 1889 continue; 1890 } 1891 1892 return port; 1893 } 1894 1895 return NULL; 1896 } 1897 1898 static void tb_dp_tunnel_active(struct tb_tunnel *tunnel, void *data) 1899 { 1900 struct tb_port *in = tunnel->src_port; 1901 struct tb_port *out = tunnel->dst_port; 1902 struct tb *tb = data; 1903 1904 mutex_lock(&tb->lock); 1905 if (tb_tunnel_is_active(tunnel)) { 1906 int consumed_up, consumed_down, ret; 1907 1908 tb_tunnel_dbg(tunnel, "DPRX capabilities read completed\n"); 1909 1910 /* If fail reading tunnel's consumed bandwidth, tear it down */ 1911 ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, 1912 &consumed_down); 1913 if (ret) { 1914 tb_tunnel_warn(tunnel, 1915 "failed to read consumed bandwidth, tearing down\n"); 1916 tb_deactivate_and_free_tunnel(tunnel); 1917 } else { 1918 tb_reclaim_usb3_bandwidth(tb, in, out); 1919 /* 1920 * Transition the links to asymmetric if the 1921 * consumption exceeds the threshold. 1922 */ 1923 tb_configure_asym(tb, in, out, consumed_up, 1924 consumed_down); 1925 /* 1926 * Update the domain with the new bandwidth 1927 * estimation. 1928 */ 1929 tb_recalc_estimated_bandwidth(tb); 1930 /* 1931 * In case of DP tunnel exists, change host 1932 * router's 1st children TMU mode to HiFi for 1933 * CL0s to work. 1934 */ 1935 tb_increase_tmu_accuracy(tunnel); 1936 } 1937 } else { 1938 struct tb_port *in = tunnel->src_port; 1939 1940 /* 1941 * This tunnel failed to establish. This means DPRX 1942 * negotiation most likely did not complete which 1943 * happens either because there is no graphics driver 1944 * loaded or not all DP cables where connected to the 1945 * discrete router. 1946 * 1947 * In both cases we remove the DP IN adapter from the 1948 * available resources as it is not usable. This will 1949 * also tear down the tunnel and try to re-use the 1950 * released DP OUT. 1951 * 1952 * It will be added back only if there is hotplug for 1953 * the DP IN again. 1954 */ 1955 tb_tunnel_warn(tunnel, "not active, tearing down\n"); 1956 tb_dp_resource_unavailable(tb, in, "DPRX negotiation failed"); 1957 } 1958 mutex_unlock(&tb->lock); 1959 1960 tb_domain_put(tb); 1961 } 1962 1963 static void tb_tunnel_one_dp(struct tb *tb, struct tb_port *in, 1964 struct tb_port *out) 1965 { 1966 int available_up, available_down, ret, link_nr; 1967 struct tb_cm *tcm = tb_priv(tb); 1968 struct tb_tunnel *tunnel; 1969 1970 /* 1971 * This is only applicable to links that are not bonded (so 1972 * when Thunderbolt 1 hardware is involved somewhere in the 1973 * topology). For these try to share the DP bandwidth between 1974 * the two lanes. 1975 */ 1976 link_nr = 1; 1977 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1978 if (tb_tunnel_is_dp(tunnel)) { 1979 link_nr = 0; 1980 break; 1981 } 1982 } 1983 1984 /* 1985 * DP stream needs the domain to be active so runtime resume 1986 * both ends of the tunnel. 1987 * 1988 * This should bring the routers in the middle active as well 1989 * and keeps the domain from runtime suspending while the DP 1990 * tunnel is active. 1991 */ 1992 pm_runtime_get_sync(&in->sw->dev); 1993 pm_runtime_get_sync(&out->sw->dev); 1994 1995 if (tb_switch_alloc_dp_resource(in->sw, in)) { 1996 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); 1997 goto err_rpm_put; 1998 } 1999 2000 if (!tb_attach_bandwidth_group(tcm, in, out)) 2001 goto err_dealloc_dp; 2002 2003 /* Make all unused USB3 bandwidth available for the new DP tunnel */ 2004 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 2005 if (ret) { 2006 tb_warn(tb, "failed to release unused bandwidth\n"); 2007 goto err_detach_group; 2008 } 2009 2010 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 2011 true); 2012 if (ret) { 2013 tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out); 2014 goto err_reclaim_usb; 2015 } 2016 2017 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", 2018 available_up, available_down); 2019 2020 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up, 2021 available_down, tb_dp_tunnel_active, 2022 tb_domain_get(tb)); 2023 if (!tunnel) { 2024 tb_port_dbg(out, "could not allocate DP tunnel\n"); 2025 goto err_reclaim_usb; 2026 } 2027 2028 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2029 2030 ret = tb_tunnel_activate(tunnel); 2031 if (ret && ret != -EINPROGRESS) { 2032 tb_port_info(out, "DP tunnel activation failed, aborting\n"); 2033 list_del(&tunnel->list); 2034 goto err_free; 2035 } 2036 2037 return; 2038 2039 err_free: 2040 tb_tunnel_put(tunnel); 2041 err_reclaim_usb: 2042 tb_reclaim_usb3_bandwidth(tb, in, out); 2043 tb_domain_put(tb); 2044 err_detach_group: 2045 tb_detach_bandwidth_group(in); 2046 err_dealloc_dp: 2047 tb_switch_dealloc_dp_resource(in->sw, in); 2048 err_rpm_put: 2049 pm_runtime_mark_last_busy(&out->sw->dev); 2050 pm_runtime_put_autosuspend(&out->sw->dev); 2051 pm_runtime_mark_last_busy(&in->sw->dev); 2052 pm_runtime_put_autosuspend(&in->sw->dev); 2053 } 2054 2055 static void tb_tunnel_dp(struct tb *tb) 2056 { 2057 struct tb_cm *tcm = tb_priv(tb); 2058 struct tb_port *port, *in, *out; 2059 2060 if (!tb_acpi_may_tunnel_dp()) { 2061 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); 2062 return; 2063 } 2064 2065 /* 2066 * Find pair of inactive DP IN and DP OUT adapters and then 2067 * establish a DP tunnel between them. 2068 */ 2069 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); 2070 2071 in = NULL; 2072 out = NULL; 2073 list_for_each_entry(port, &tcm->dp_resources, list) { 2074 if (!tb_port_is_dpin(port)) 2075 continue; 2076 2077 if (tb_port_is_enabled(port)) { 2078 tb_port_dbg(port, "DP IN in use\n"); 2079 continue; 2080 } 2081 2082 in = port; 2083 tb_port_dbg(in, "DP IN available\n"); 2084 2085 out = tb_find_dp_out(tb, port); 2086 if (out) 2087 tb_tunnel_one_dp(tb, in, out); 2088 else 2089 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n"); 2090 } 2091 2092 if (!in) 2093 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); 2094 } 2095 2096 static void tb_enter_redrive(struct tb_port *port) 2097 { 2098 struct tb_switch *sw = port->sw; 2099 2100 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2101 return; 2102 2103 /* 2104 * If we get hot-unplug for the DP IN port of the host router 2105 * and the DP resource is not available anymore it means there 2106 * is a monitor connected directly to the Type-C port and we are 2107 * in "redrive" mode. For this to work we cannot enter RTD3 so 2108 * we bump up the runtime PM reference count here. 2109 */ 2110 if (!tb_port_is_dpin(port)) 2111 return; 2112 if (tb_route(sw)) 2113 return; 2114 if (!tb_switch_query_dp_resource(sw, port)) { 2115 port->redrive = true; 2116 pm_runtime_get(&sw->dev); 2117 tb_port_dbg(port, "enter redrive mode, keeping powered\n"); 2118 } 2119 } 2120 2121 static void tb_exit_redrive(struct tb_port *port) 2122 { 2123 struct tb_switch *sw = port->sw; 2124 2125 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2126 return; 2127 2128 if (!tb_port_is_dpin(port)) 2129 return; 2130 if (tb_route(sw)) 2131 return; 2132 if (port->redrive && tb_switch_query_dp_resource(sw, port)) { 2133 port->redrive = false; 2134 pm_runtime_put(&sw->dev); 2135 tb_port_dbg(port, "exit redrive mode\n"); 2136 } 2137 } 2138 2139 static void tb_switch_enter_redrive(struct tb_switch *sw) 2140 { 2141 struct tb_port *port; 2142 2143 tb_switch_for_each_port(sw, port) 2144 tb_enter_redrive(port); 2145 } 2146 2147 /* 2148 * Called during system and runtime suspend to forcefully exit redrive 2149 * mode without querying whether the resource is available. 2150 */ 2151 static void tb_switch_exit_redrive(struct tb_switch *sw) 2152 { 2153 struct tb_port *port; 2154 2155 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) 2156 return; 2157 2158 tb_switch_for_each_port(sw, port) { 2159 if (!tb_port_is_dpin(port)) 2160 continue; 2161 2162 if (port->redrive) { 2163 port->redrive = false; 2164 pm_runtime_put(&sw->dev); 2165 tb_port_dbg(port, "exit redrive mode\n"); 2166 } 2167 } 2168 } 2169 2170 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port, 2171 const char *reason) 2172 { 2173 struct tb_port *in, *out; 2174 struct tb_tunnel *tunnel; 2175 2176 if (tb_port_is_dpin(port)) { 2177 tb_port_dbg(port, "DP IN resource unavailable: %s\n", reason); 2178 in = port; 2179 out = NULL; 2180 } else { 2181 tb_port_dbg(port, "DP OUT resource unavailable: %s\n", reason); 2182 in = NULL; 2183 out = port; 2184 } 2185 2186 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out); 2187 if (tunnel) 2188 tb_deactivate_and_free_tunnel(tunnel); 2189 else 2190 tb_enter_redrive(port); 2191 list_del_init(&port->list); 2192 2193 /* 2194 * See if there is another DP OUT port that can be used for 2195 * to create another tunnel. 2196 */ 2197 tb_recalc_estimated_bandwidth(tb); 2198 tb_tunnel_dp(tb); 2199 } 2200 2201 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) 2202 { 2203 struct tb_cm *tcm = tb_priv(tb); 2204 struct tb_port *p; 2205 2206 if (tb_port_is_enabled(port)) 2207 return; 2208 2209 list_for_each_entry(p, &tcm->dp_resources, list) { 2210 if (p == port) 2211 return; 2212 } 2213 2214 tb_port_dbg(port, "DP %s resource available after hotplug\n", 2215 tb_port_is_dpin(port) ? "IN" : "OUT"); 2216 list_add_tail(&port->list, &tcm->dp_resources); 2217 tb_exit_redrive(port); 2218 2219 /* Look for suitable DP IN <-> DP OUT pairs now */ 2220 tb_tunnel_dp(tb); 2221 } 2222 2223 static void tb_disconnect_and_release_dp(struct tb *tb) 2224 { 2225 struct tb_cm *tcm = tb_priv(tb); 2226 struct tb_tunnel *tunnel, *n; 2227 2228 /* 2229 * Tear down all DP tunnels and release their resources. They 2230 * will be re-established after resume based on plug events. 2231 */ 2232 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { 2233 if (tb_tunnel_is_dp(tunnel)) 2234 tb_deactivate_and_free_tunnel(tunnel); 2235 } 2236 2237 while (!list_empty(&tcm->dp_resources)) { 2238 struct tb_port *port; 2239 2240 port = list_first_entry(&tcm->dp_resources, 2241 struct tb_port, list); 2242 list_del_init(&port->list); 2243 } 2244 } 2245 2246 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) 2247 { 2248 struct tb_tunnel *tunnel; 2249 struct tb_port *up; 2250 2251 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2252 if (WARN_ON(!up)) 2253 return -ENODEV; 2254 2255 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up); 2256 if (WARN_ON(!tunnel)) 2257 return -ENODEV; 2258 2259 tb_switch_xhci_disconnect(sw); 2260 2261 tb_tunnel_deactivate(tunnel); 2262 list_del(&tunnel->list); 2263 tb_tunnel_put(tunnel); 2264 return 0; 2265 } 2266 2267 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) 2268 { 2269 struct tb_port *up, *down, *port; 2270 struct tb_cm *tcm = tb_priv(tb); 2271 struct tb_tunnel *tunnel; 2272 2273 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 2274 if (!up) 2275 return 0; 2276 2277 /* 2278 * Look up available down port. Since we are chaining it should 2279 * be found right above this switch. 2280 */ 2281 port = tb_switch_downstream_port(sw); 2282 down = tb_find_pcie_down(tb_switch_parent(sw), port); 2283 if (!down) 2284 return 0; 2285 2286 tunnel = tb_tunnel_alloc_pci(tb, up, down); 2287 if (!tunnel) 2288 return -ENOMEM; 2289 2290 if (tb_tunnel_activate(tunnel)) { 2291 tb_port_info(up, 2292 "PCIe tunnel activation failed, aborting\n"); 2293 tb_tunnel_put(tunnel); 2294 return -EIO; 2295 } 2296 2297 /* 2298 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it 2299 * here. 2300 */ 2301 if (tb_switch_pcie_l1_enable(sw)) 2302 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); 2303 2304 if (tb_switch_xhci_connect(sw)) 2305 tb_sw_warn(sw, "failed to connect xHCI\n"); 2306 2307 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2308 return 0; 2309 } 2310 2311 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2312 int transmit_path, int transmit_ring, 2313 int receive_path, int receive_ring) 2314 { 2315 struct tb_cm *tcm = tb_priv(tb); 2316 struct tb_port *nhi_port, *dst_port; 2317 struct tb_tunnel *tunnel; 2318 struct tb_switch *sw; 2319 int ret; 2320 2321 sw = tb_to_switch(xd->dev.parent); 2322 dst_port = tb_port_at(xd->route, sw); 2323 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2324 2325 mutex_lock(&tb->lock); 2326 2327 /* 2328 * When tunneling DMA paths the link should not enter CL states 2329 * so disable them now. 2330 */ 2331 tb_disable_clx(sw); 2332 2333 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path, 2334 transmit_ring, receive_path, receive_ring); 2335 if (!tunnel) { 2336 ret = -ENOMEM; 2337 goto err_clx; 2338 } 2339 2340 if (tb_tunnel_activate(tunnel)) { 2341 tb_port_info(nhi_port, 2342 "DMA tunnel activation failed, aborting\n"); 2343 ret = -EIO; 2344 goto err_free; 2345 } 2346 2347 list_add_tail(&tunnel->list, &tcm->tunnel_list); 2348 mutex_unlock(&tb->lock); 2349 return 0; 2350 2351 err_free: 2352 tb_tunnel_put(tunnel); 2353 err_clx: 2354 tb_enable_clx(sw); 2355 mutex_unlock(&tb->lock); 2356 2357 return ret; 2358 } 2359 2360 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2361 int transmit_path, int transmit_ring, 2362 int receive_path, int receive_ring) 2363 { 2364 struct tb_cm *tcm = tb_priv(tb); 2365 struct tb_port *nhi_port, *dst_port; 2366 struct tb_tunnel *tunnel, *n; 2367 struct tb_switch *sw; 2368 2369 sw = tb_to_switch(xd->dev.parent); 2370 dst_port = tb_port_at(xd->route, sw); 2371 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 2372 2373 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2374 if (!tb_tunnel_is_dma(tunnel)) 2375 continue; 2376 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) 2377 continue; 2378 2379 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, 2380 receive_path, receive_ring)) 2381 tb_deactivate_and_free_tunnel(tunnel); 2382 } 2383 2384 /* 2385 * Try to re-enable CL states now, it is OK if this fails 2386 * because we may still have another DMA tunnel active through 2387 * the same host router USB4 downstream port. 2388 */ 2389 tb_enable_clx(sw); 2390 } 2391 2392 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 2393 int transmit_path, int transmit_ring, 2394 int receive_path, int receive_ring) 2395 { 2396 if (!xd->is_unplugged) { 2397 mutex_lock(&tb->lock); 2398 __tb_disconnect_xdomain_paths(tb, xd, transmit_path, 2399 transmit_ring, receive_path, 2400 receive_ring); 2401 mutex_unlock(&tb->lock); 2402 } 2403 return 0; 2404 } 2405 2406 /* hotplug handling */ 2407 2408 /* 2409 * tb_handle_hotplug() - handle hotplug event 2410 * 2411 * Executes on tb->wq. 2412 */ 2413 static void tb_handle_hotplug(struct work_struct *work) 2414 { 2415 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work); 2416 struct tb *tb = ev->tb; 2417 struct tb_cm *tcm = tb_priv(tb); 2418 struct tb_switch *sw; 2419 struct tb_port *port; 2420 2421 /* Bring the domain back from sleep if it was suspended */ 2422 pm_runtime_get_sync(&tb->dev); 2423 2424 mutex_lock(&tb->lock); 2425 if (!tcm->hotplug_active) 2426 goto out; /* during init, suspend or shutdown */ 2427 2428 sw = tb_switch_find_by_route(tb, ev->route); 2429 if (!sw) { 2430 tb_warn(tb, 2431 "hotplug event from non existent switch %llx:%x (unplug: %d)\n", 2432 ev->route, ev->port, ev->unplug); 2433 goto out; 2434 } 2435 if (ev->port > sw->config.max_port_number) { 2436 tb_warn(tb, 2437 "hotplug event from non existent port %llx:%x (unplug: %d)\n", 2438 ev->route, ev->port, ev->unplug); 2439 goto put_sw; 2440 } 2441 port = &sw->ports[ev->port]; 2442 if (tb_is_upstream_port(port)) { 2443 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", 2444 ev->route, ev->port, ev->unplug); 2445 goto put_sw; 2446 } 2447 2448 pm_runtime_get_sync(&sw->dev); 2449 2450 if (ev->unplug) { 2451 tb_retimer_remove_all(port); 2452 2453 if (tb_port_has_remote(port)) { 2454 tb_port_dbg(port, "switch unplugged\n"); 2455 tb_sw_set_unplugged(port->remote->sw); 2456 tb_free_invalid_tunnels(tb); 2457 tb_remove_dp_resources(port->remote->sw); 2458 tb_switch_tmu_disable(port->remote->sw); 2459 tb_switch_unconfigure_link(port->remote->sw); 2460 tb_switch_set_link_width(port->remote->sw, 2461 TB_LINK_WIDTH_SINGLE); 2462 tb_switch_remove(port->remote->sw); 2463 port->remote = NULL; 2464 if (port->dual_link_port) 2465 port->dual_link_port->remote = NULL; 2466 /* Maybe we can create another DP tunnel */ 2467 tb_recalc_estimated_bandwidth(tb); 2468 tb_tunnel_dp(tb); 2469 } else if (port->xdomain) { 2470 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain); 2471 2472 tb_port_dbg(port, "xdomain unplugged\n"); 2473 /* 2474 * Service drivers are unbound during 2475 * tb_xdomain_remove() so setting XDomain as 2476 * unplugged here prevents deadlock if they call 2477 * tb_xdomain_disable_paths(). We will tear down 2478 * all the tunnels below. 2479 */ 2480 xd->is_unplugged = true; 2481 tb_xdomain_remove(xd); 2482 port->xdomain = NULL; 2483 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1); 2484 tb_xdomain_put(xd); 2485 tb_port_unconfigure_xdomain(port); 2486 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2487 tb_dp_resource_unavailable(tb, port, "adapter unplug"); 2488 } else if (!port->port) { 2489 tb_sw_dbg(sw, "xHCI disconnect request\n"); 2490 tb_switch_xhci_disconnect(sw); 2491 } else { 2492 tb_port_dbg(port, 2493 "got unplug event for disconnected port, ignoring\n"); 2494 } 2495 } else if (port->remote) { 2496 tb_port_dbg(port, "got plug event for connected port, ignoring\n"); 2497 } else if (!port->port && sw->authorized) { 2498 tb_sw_dbg(sw, "xHCI connect request\n"); 2499 tb_switch_xhci_connect(sw); 2500 } else { 2501 if (tb_port_is_null(port)) { 2502 tb_port_dbg(port, "hotplug: scanning\n"); 2503 tb_scan_port(port); 2504 if (!port->remote) 2505 tb_port_dbg(port, "hotplug: no switch found\n"); 2506 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 2507 tb_dp_resource_available(tb, port); 2508 } 2509 } 2510 2511 pm_runtime_mark_last_busy(&sw->dev); 2512 pm_runtime_put_autosuspend(&sw->dev); 2513 2514 put_sw: 2515 tb_switch_put(sw); 2516 out: 2517 mutex_unlock(&tb->lock); 2518 2519 pm_runtime_mark_last_busy(&tb->dev); 2520 pm_runtime_put_autosuspend(&tb->dev); 2521 2522 kfree(ev); 2523 } 2524 2525 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, 2526 int *requested_down) 2527 { 2528 int allocated_up, allocated_down, available_up, available_down, ret; 2529 int requested_up_corrected, requested_down_corrected, granularity; 2530 int max_up, max_down, max_up_rounded, max_down_rounded; 2531 struct tb_bandwidth_group *group; 2532 struct tb *tb = tunnel->tb; 2533 struct tb_port *in, *out; 2534 bool downstream; 2535 2536 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down); 2537 if (ret) 2538 return ret; 2539 2540 in = tunnel->src_port; 2541 out = tunnel->dst_port; 2542 2543 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n", 2544 allocated_up, allocated_down); 2545 2546 /* 2547 * If we get rounded up request from graphics side, say HBR2 x 4 2548 * that is 17500 instead of 17280 (this is because of the 2549 * granularity), we allow it too. Here the graphics has already 2550 * negotiated with the DPRX the maximum possible rates (which is 2551 * 17280 in this case). 2552 * 2553 * Since the link cannot go higher than 17280 we use that in our 2554 * calculations but the DP IN adapter Allocated BW write must be 2555 * the same value (17500) otherwise the adapter will mark it as 2556 * failed for graphics. 2557 */ 2558 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down); 2559 if (ret) 2560 goto fail; 2561 2562 ret = usb4_dp_port_granularity(in); 2563 if (ret < 0) 2564 goto fail; 2565 granularity = ret; 2566 2567 max_up_rounded = roundup(max_up, granularity); 2568 max_down_rounded = roundup(max_down, granularity); 2569 2570 /* 2571 * This will "fix" the request down to the maximum supported 2572 * rate * lanes if it is at the maximum rounded up level. 2573 */ 2574 requested_up_corrected = *requested_up; 2575 if (requested_up_corrected == max_up_rounded) 2576 requested_up_corrected = max_up; 2577 else if (requested_up_corrected < 0) 2578 requested_up_corrected = 0; 2579 requested_down_corrected = *requested_down; 2580 if (requested_down_corrected == max_down_rounded) 2581 requested_down_corrected = max_down; 2582 else if (requested_down_corrected < 0) 2583 requested_down_corrected = 0; 2584 2585 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n", 2586 requested_up_corrected, requested_down_corrected); 2587 2588 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || 2589 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { 2590 tb_tunnel_dbg(tunnel, 2591 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", 2592 requested_up_corrected, requested_down_corrected, 2593 max_up_rounded, max_down_rounded); 2594 ret = -ENOBUFS; 2595 goto fail; 2596 } 2597 2598 downstream = tb_tunnel_direction_downstream(tunnel); 2599 group = in->group; 2600 2601 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || 2602 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { 2603 if (tunnel->bw_mode) { 2604 int reserved; 2605 /* 2606 * If requested bandwidth is less or equal than 2607 * what is currently allocated to that tunnel we 2608 * simply change the reservation of the tunnel 2609 * and add the released bandwidth for the group 2610 * for the next 10s. Then we release it for 2611 * others to use. 2612 */ 2613 if (downstream) 2614 reserved = allocated_down - *requested_down; 2615 else 2616 reserved = allocated_up - *requested_up; 2617 2618 if (reserved > 0) { 2619 group->reserved += reserved; 2620 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n", 2621 group->index, reserved, group->reserved); 2622 2623 /* 2624 * If it was not already pending, 2625 * schedule release now. If it is then 2626 * postpone it for the next 10s (unless 2627 * it is already running in which case 2628 * the 10s already expired and we should 2629 * give the reserved back to others). 2630 */ 2631 mod_delayed_work(system_wq, &group->release_work, 2632 msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT)); 2633 } 2634 } 2635 2636 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2637 requested_down); 2638 if (ret) 2639 goto fail; 2640 2641 return 0; 2642 } 2643 2644 /* 2645 * More bandwidth is requested. Release all the potential 2646 * bandwidth from USB3 first. 2647 */ 2648 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 2649 if (ret) 2650 goto fail; 2651 2652 /* 2653 * Then go over all tunnels that cross the same USB4 ports (they 2654 * are also in the same group but we use the same function here 2655 * that we use with the normal bandwidth allocation). 2656 */ 2657 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, 2658 true); 2659 if (ret) 2660 goto reclaim; 2661 2662 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n", 2663 available_up, available_down, group->reserved); 2664 2665 if ((*requested_up >= 0 && 2666 available_up + group->reserved >= requested_up_corrected) || 2667 (*requested_down >= 0 && 2668 available_down + group->reserved >= requested_down_corrected)) { 2669 int released = 0; 2670 2671 /* 2672 * If bandwidth on a link is >= asym_threshold 2673 * transition the link to asymmetric. 2674 */ 2675 ret = tb_configure_asym(tb, in, out, *requested_up, 2676 *requested_down); 2677 if (ret) { 2678 tb_configure_sym(tb, in, out, true); 2679 goto fail; 2680 } 2681 2682 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, 2683 requested_down); 2684 if (ret) { 2685 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n"); 2686 tb_configure_sym(tb, in, out, true); 2687 } 2688 2689 if (downstream) { 2690 if (*requested_down > available_down) 2691 released = *requested_down - available_down; 2692 } else { 2693 if (*requested_up > available_up) 2694 released = *requested_up - available_up; 2695 } 2696 if (released) { 2697 group->reserved -= released; 2698 tb_dbg(tb, "group %d released %d total %d Mb/s\n", 2699 group->index, released, group->reserved); 2700 } 2701 } else { 2702 ret = -ENOBUFS; 2703 } 2704 2705 reclaim: 2706 tb_reclaim_usb3_bandwidth(tb, in, out); 2707 fail: 2708 if (ret && ret != -ENODEV) { 2709 /* 2710 * Write back the same allocated (so no change), this 2711 * makes the DPTX request fail on graphics side. 2712 */ 2713 tb_tunnel_dbg(tunnel, 2714 "failing the request by rewriting allocated %d/%d Mb/s\n", 2715 allocated_up, allocated_down); 2716 tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down); 2717 tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out); 2718 } 2719 2720 return ret; 2721 } 2722 2723 static void tb_handle_dp_bandwidth_request(struct work_struct *work) 2724 { 2725 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work); 2726 int requested_bw, requested_up, requested_down, ret; 2727 struct tb_tunnel *tunnel; 2728 struct tb *tb = ev->tb; 2729 struct tb_cm *tcm = tb_priv(tb); 2730 struct tb_switch *sw; 2731 struct tb_port *in; 2732 2733 pm_runtime_get_sync(&tb->dev); 2734 2735 mutex_lock(&tb->lock); 2736 if (!tcm->hotplug_active) 2737 goto unlock; 2738 2739 sw = tb_switch_find_by_route(tb, ev->route); 2740 if (!sw) { 2741 tb_warn(tb, "bandwidth request from non-existent router %llx\n", 2742 ev->route); 2743 goto unlock; 2744 } 2745 2746 in = &sw->ports[ev->port]; 2747 if (!tb_port_is_dpin(in)) { 2748 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); 2749 goto put_sw; 2750 } 2751 2752 tb_port_dbg(in, "handling bandwidth allocation request, retry %d\n", ev->retry); 2753 2754 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 2755 if (!tunnel) { 2756 tb_port_warn(in, "failed to find tunnel\n"); 2757 goto put_sw; 2758 } 2759 2760 if (!usb4_dp_port_bandwidth_mode_enabled(in)) { 2761 if (tunnel->bw_mode) { 2762 /* 2763 * Reset the tunnel back to use the legacy 2764 * allocation. 2765 */ 2766 tunnel->bw_mode = false; 2767 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n"); 2768 } else { 2769 tb_port_warn(in, "bandwidth allocation mode not enabled\n"); 2770 } 2771 goto put_sw; 2772 } 2773 2774 ret = usb4_dp_port_requested_bandwidth(in); 2775 if (ret < 0) { 2776 if (ret == -ENODATA) { 2777 /* 2778 * There is no request active so this means the 2779 * BW allocation mode was enabled from graphics 2780 * side. At this point we know that the graphics 2781 * driver has read the DRPX capabilities so we 2782 * can offer an better bandwidth estimatation. 2783 */ 2784 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n"); 2785 tb_recalc_estimated_bandwidth(tb); 2786 } else { 2787 tb_port_warn(in, "failed to read requested bandwidth\n"); 2788 } 2789 goto put_sw; 2790 } 2791 requested_bw = ret; 2792 2793 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); 2794 2795 if (tb_tunnel_direction_downstream(tunnel)) { 2796 requested_up = -1; 2797 requested_down = requested_bw; 2798 } else { 2799 requested_up = requested_bw; 2800 requested_down = -1; 2801 } 2802 2803 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down); 2804 if (ret) { 2805 if (ret == -ENOBUFS) { 2806 tb_tunnel_warn(tunnel, 2807 "not enough bandwidth available\n"); 2808 } else if (ret == -ENOTCONN) { 2809 tb_tunnel_dbg(tunnel, "not active yet\n"); 2810 /* 2811 * We got bandwidth allocation request but the 2812 * tunnel is not yet active. This means that 2813 * tb_dp_tunnel_active() is not yet called for 2814 * this tunnel. Allow it some time and retry 2815 * this request a couple of times. 2816 */ 2817 if (ev->retry < TB_BW_ALLOC_RETRIES) { 2818 tb_tunnel_dbg(tunnel, 2819 "retrying bandwidth allocation request\n"); 2820 tb_queue_dp_bandwidth_request(tb, ev->route, 2821 ev->port, 2822 ev->retry + 1, 2823 msecs_to_jiffies(50)); 2824 } else { 2825 tb_tunnel_dbg(tunnel, 2826 "run out of retries, failing the request"); 2827 } 2828 } else { 2829 tb_tunnel_warn(tunnel, 2830 "failed to change bandwidth allocation\n"); 2831 } 2832 } else { 2833 tb_tunnel_dbg(tunnel, 2834 "bandwidth allocation changed to %d/%d Mb/s\n", 2835 requested_up, requested_down); 2836 2837 /* Update other clients about the allocation change */ 2838 tb_recalc_estimated_bandwidth(tb); 2839 } 2840 2841 put_sw: 2842 tb_switch_put(sw); 2843 unlock: 2844 mutex_unlock(&tb->lock); 2845 2846 pm_runtime_mark_last_busy(&tb->dev); 2847 pm_runtime_put_autosuspend(&tb->dev); 2848 2849 kfree(ev); 2850 } 2851 2852 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port, 2853 int retry, unsigned long delay) 2854 { 2855 struct tb_hotplug_event *ev; 2856 2857 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 2858 if (!ev) 2859 return; 2860 2861 ev->tb = tb; 2862 ev->route = route; 2863 ev->port = port; 2864 ev->retry = retry; 2865 INIT_DELAYED_WORK(&ev->work, tb_handle_dp_bandwidth_request); 2866 queue_delayed_work(tb->wq, &ev->work, delay); 2867 } 2868 2869 static void tb_handle_notification(struct tb *tb, u64 route, 2870 const struct cfg_error_pkg *error) 2871 { 2872 2873 switch (error->error) { 2874 case TB_CFG_ERROR_PCIE_WAKE: 2875 case TB_CFG_ERROR_DP_CON_CHANGE: 2876 case TB_CFG_ERROR_DPTX_DISCOVERY: 2877 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2878 tb_warn(tb, "could not ack notification on %llx\n", 2879 route); 2880 break; 2881 2882 case TB_CFG_ERROR_DP_BW: 2883 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2884 tb_warn(tb, "could not ack notification on %llx\n", 2885 route); 2886 tb_queue_dp_bandwidth_request(tb, route, error->port, 0, 0); 2887 break; 2888 2889 default: 2890 /* Ignore for now */ 2891 break; 2892 } 2893 } 2894 2895 /* 2896 * tb_schedule_hotplug_handler() - callback function for the control channel 2897 * 2898 * Delegates to tb_handle_hotplug. 2899 */ 2900 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 2901 const void *buf, size_t size) 2902 { 2903 const struct cfg_event_pkg *pkg = buf; 2904 u64 route = tb_cfg_get_route(&pkg->header); 2905 2906 switch (type) { 2907 case TB_CFG_PKG_ERROR: 2908 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf); 2909 return; 2910 case TB_CFG_PKG_EVENT: 2911 break; 2912 default: 2913 tb_warn(tb, "unexpected event %#x, ignoring\n", type); 2914 return; 2915 } 2916 2917 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) { 2918 tb_warn(tb, "could not ack plug event on %llx:%x\n", route, 2919 pkg->port); 2920 } 2921 2922 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug); 2923 } 2924 2925 static void tb_stop(struct tb *tb) 2926 { 2927 struct tb_cm *tcm = tb_priv(tb); 2928 struct tb_tunnel *tunnel; 2929 struct tb_tunnel *n; 2930 2931 cancel_delayed_work(&tcm->remove_work); 2932 /* tunnels are only present after everything has been initialized */ 2933 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2934 /* 2935 * DMA tunnels require the driver to be functional so we 2936 * tear them down. Other protocol tunnels can be left 2937 * intact. 2938 */ 2939 if (tb_tunnel_is_dma(tunnel)) 2940 tb_tunnel_deactivate(tunnel); 2941 tb_tunnel_put(tunnel); 2942 } 2943 tb_switch_remove(tb->root_switch); 2944 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2945 } 2946 2947 static void tb_deinit(struct tb *tb) 2948 { 2949 struct tb_cm *tcm = tb_priv(tb); 2950 int i; 2951 2952 /* Cancel all the release bandwidth workers */ 2953 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) 2954 cancel_delayed_work_sync(&tcm->groups[i].release_work); 2955 } 2956 2957 static int tb_scan_finalize_switch(struct device *dev, void *data) 2958 { 2959 if (tb_is_switch(dev)) { 2960 struct tb_switch *sw = tb_to_switch(dev); 2961 2962 /* 2963 * If we found that the switch was already setup by the 2964 * boot firmware, mark it as authorized now before we 2965 * send uevent to userspace. 2966 */ 2967 if (sw->boot) 2968 sw->authorized = 1; 2969 2970 dev_set_uevent_suppress(dev, false); 2971 kobject_uevent(&dev->kobj, KOBJ_ADD); 2972 device_for_each_child(dev, NULL, tb_scan_finalize_switch); 2973 } 2974 2975 return 0; 2976 } 2977 2978 static int tb_start(struct tb *tb, bool reset) 2979 { 2980 struct tb_cm *tcm = tb_priv(tb); 2981 bool discover = true; 2982 int ret; 2983 2984 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 2985 if (IS_ERR(tb->root_switch)) 2986 return PTR_ERR(tb->root_switch); 2987 2988 /* 2989 * ICM firmware upgrade needs running firmware and in native 2990 * mode that is not available so disable firmware upgrade of the 2991 * root switch. 2992 * 2993 * However, USB4 routers support NVM firmware upgrade if they 2994 * implement the necessary router operations. 2995 */ 2996 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch); 2997 /* All USB4 routers support runtime PM */ 2998 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch); 2999 3000 ret = tb_switch_configure(tb->root_switch); 3001 if (ret) { 3002 tb_switch_put(tb->root_switch); 3003 return ret; 3004 } 3005 3006 /* Announce the switch to the world */ 3007 ret = tb_switch_add(tb->root_switch); 3008 if (ret) { 3009 tb_switch_put(tb->root_switch); 3010 return ret; 3011 } 3012 3013 /* 3014 * To support highest CLx state, we set host router's TMU to 3015 * Normal mode. 3016 */ 3017 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES); 3018 /* Enable TMU if it is off */ 3019 tb_switch_tmu_enable(tb->root_switch); 3020 3021 /* 3022 * Boot firmware might have created tunnels of its own. Since we 3023 * cannot be sure they are usable for us, tear them down and 3024 * reset the ports to handle it as new hotplug for USB4 v1 3025 * routers (for USB4 v2 and beyond we already do host reset). 3026 */ 3027 if (reset && tb_switch_is_usb4(tb->root_switch)) { 3028 discover = false; 3029 if (usb4_switch_version(tb->root_switch) == 1) 3030 tb_switch_reset(tb->root_switch); 3031 } 3032 3033 if (discover) { 3034 /* Full scan to discover devices added before the driver was loaded. */ 3035 tb_scan_switch(tb->root_switch); 3036 /* Find out tunnels created by the boot firmware */ 3037 tb_discover_tunnels(tb); 3038 /* Add DP resources from the DP tunnels created by the boot firmware */ 3039 tb_discover_dp_resources(tb); 3040 } 3041 3042 /* 3043 * If the boot firmware did not create USB 3.x tunnels create them 3044 * now for the whole topology. 3045 */ 3046 tb_create_usb3_tunnels(tb->root_switch); 3047 /* Add DP IN resources for the root switch */ 3048 tb_add_dp_resources(tb->root_switch); 3049 tb_switch_enter_redrive(tb->root_switch); 3050 /* Make the discovered switches available to the userspace */ 3051 device_for_each_child(&tb->root_switch->dev, NULL, 3052 tb_scan_finalize_switch); 3053 3054 /* Allow tb_handle_hotplug to progress events */ 3055 tcm->hotplug_active = true; 3056 return 0; 3057 } 3058 3059 static int tb_suspend_noirq(struct tb *tb) 3060 { 3061 struct tb_cm *tcm = tb_priv(tb); 3062 3063 tb_dbg(tb, "suspending...\n"); 3064 tb_disconnect_and_release_dp(tb); 3065 tb_switch_exit_redrive(tb->root_switch); 3066 tb_switch_suspend(tb->root_switch, false); 3067 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 3068 tb_dbg(tb, "suspend finished\n"); 3069 3070 return 0; 3071 } 3072 3073 static void tb_restore_children(struct tb_switch *sw) 3074 { 3075 struct tb_port *port; 3076 3077 /* No need to restore if the router is already unplugged */ 3078 if (sw->is_unplugged) 3079 return; 3080 3081 if (tb_enable_clx(sw)) 3082 tb_sw_warn(sw, "failed to re-enable CL states\n"); 3083 3084 if (tb_enable_tmu(sw)) 3085 tb_sw_warn(sw, "failed to restore TMU configuration\n"); 3086 3087 tb_switch_configuration_valid(sw); 3088 3089 tb_switch_for_each_port(sw, port) { 3090 if (!tb_port_has_remote(port) && !port->xdomain) 3091 continue; 3092 3093 if (port->remote) { 3094 tb_switch_set_link_width(port->remote->sw, 3095 port->remote->sw->link_width); 3096 tb_switch_configure_link(port->remote->sw); 3097 3098 tb_restore_children(port->remote->sw); 3099 } else if (port->xdomain) { 3100 tb_port_configure_xdomain(port, port->xdomain); 3101 } 3102 } 3103 } 3104 3105 static int tb_resume_noirq(struct tb *tb) 3106 { 3107 struct tb_cm *tcm = tb_priv(tb); 3108 struct tb_tunnel *tunnel, *n; 3109 unsigned int usb3_delay = 0; 3110 LIST_HEAD(tunnels); 3111 3112 tb_dbg(tb, "resuming...\n"); 3113 3114 /* 3115 * For non-USB4 hosts (Apple systems) remove any PCIe devices 3116 * the firmware might have setup. 3117 */ 3118 if (!tb_switch_is_usb4(tb->root_switch)) 3119 tb_switch_reset(tb->root_switch); 3120 3121 tb_switch_resume(tb->root_switch, false); 3122 tb_free_invalid_tunnels(tb); 3123 tb_free_unplugged_children(tb->root_switch); 3124 tb_restore_children(tb->root_switch); 3125 3126 /* 3127 * If we get here from suspend to disk the boot firmware or the 3128 * restore kernel might have created tunnels of its own. Since 3129 * we cannot be sure they are usable for us we find and tear 3130 * them down. 3131 */ 3132 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false); 3133 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { 3134 if (tb_tunnel_is_usb3(tunnel)) 3135 usb3_delay = 500; 3136 tb_tunnel_deactivate(tunnel); 3137 tb_tunnel_put(tunnel); 3138 } 3139 3140 /* Re-create our tunnels now */ 3141 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 3142 /* USB3 requires delay before it can be re-activated */ 3143 if (tb_tunnel_is_usb3(tunnel)) { 3144 msleep(usb3_delay); 3145 /* Only need to do it once */ 3146 usb3_delay = 0; 3147 } 3148 tb_tunnel_activate(tunnel); 3149 } 3150 if (!list_empty(&tcm->tunnel_list)) { 3151 /* 3152 * the pcie links need some time to get going. 3153 * 100ms works for me... 3154 */ 3155 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); 3156 msleep(100); 3157 } 3158 tb_switch_enter_redrive(tb->root_switch); 3159 /* Allow tb_handle_hotplug to progress events */ 3160 tcm->hotplug_active = true; 3161 tb_dbg(tb, "resume finished\n"); 3162 3163 return 0; 3164 } 3165 3166 static int tb_free_unplugged_xdomains(struct tb_switch *sw) 3167 { 3168 struct tb_port *port; 3169 int ret = 0; 3170 3171 tb_switch_for_each_port(sw, port) { 3172 if (tb_is_upstream_port(port)) 3173 continue; 3174 if (port->xdomain && port->xdomain->is_unplugged) { 3175 tb_retimer_remove_all(port); 3176 tb_xdomain_remove(port->xdomain); 3177 tb_port_unconfigure_xdomain(port); 3178 port->xdomain = NULL; 3179 ret++; 3180 } else if (port->remote) { 3181 ret += tb_free_unplugged_xdomains(port->remote->sw); 3182 } 3183 } 3184 3185 return ret; 3186 } 3187 3188 static int tb_freeze_noirq(struct tb *tb) 3189 { 3190 struct tb_cm *tcm = tb_priv(tb); 3191 3192 tcm->hotplug_active = false; 3193 return 0; 3194 } 3195 3196 static int tb_thaw_noirq(struct tb *tb) 3197 { 3198 struct tb_cm *tcm = tb_priv(tb); 3199 3200 tcm->hotplug_active = true; 3201 return 0; 3202 } 3203 3204 static void tb_complete(struct tb *tb) 3205 { 3206 /* 3207 * Release any unplugged XDomains and if there is a case where 3208 * another domain is swapped in place of unplugged XDomain we 3209 * need to run another rescan. 3210 */ 3211 mutex_lock(&tb->lock); 3212 if (tb_free_unplugged_xdomains(tb->root_switch)) 3213 tb_scan_switch(tb->root_switch); 3214 mutex_unlock(&tb->lock); 3215 } 3216 3217 static int tb_runtime_suspend(struct tb *tb) 3218 { 3219 struct tb_cm *tcm = tb_priv(tb); 3220 3221 mutex_lock(&tb->lock); 3222 /* 3223 * The below call only releases DP resources to allow exiting and 3224 * re-entering redrive mode. 3225 */ 3226 tb_disconnect_and_release_dp(tb); 3227 tb_switch_exit_redrive(tb->root_switch); 3228 tb_switch_suspend(tb->root_switch, true); 3229 tcm->hotplug_active = false; 3230 mutex_unlock(&tb->lock); 3231 3232 return 0; 3233 } 3234 3235 static void tb_remove_work(struct work_struct *work) 3236 { 3237 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); 3238 struct tb *tb = tcm_to_tb(tcm); 3239 3240 mutex_lock(&tb->lock); 3241 if (tb->root_switch) { 3242 tb_free_unplugged_children(tb->root_switch); 3243 tb_free_unplugged_xdomains(tb->root_switch); 3244 } 3245 mutex_unlock(&tb->lock); 3246 } 3247 3248 static int tb_runtime_resume(struct tb *tb) 3249 { 3250 struct tb_cm *tcm = tb_priv(tb); 3251 struct tb_tunnel *tunnel, *n; 3252 3253 mutex_lock(&tb->lock); 3254 tb_switch_resume(tb->root_switch, true); 3255 tb_free_invalid_tunnels(tb); 3256 tb_restore_children(tb->root_switch); 3257 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) 3258 tb_tunnel_activate(tunnel); 3259 tb_switch_enter_redrive(tb->root_switch); 3260 tcm->hotplug_active = true; 3261 mutex_unlock(&tb->lock); 3262 3263 /* 3264 * Schedule cleanup of any unplugged devices. Run this in a 3265 * separate thread to avoid possible deadlock if the device 3266 * removal runtime resumes the unplugged device. 3267 */ 3268 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50)); 3269 return 0; 3270 } 3271 3272 static const struct tb_cm_ops tb_cm_ops = { 3273 .start = tb_start, 3274 .stop = tb_stop, 3275 .deinit = tb_deinit, 3276 .suspend_noirq = tb_suspend_noirq, 3277 .resume_noirq = tb_resume_noirq, 3278 .freeze_noirq = tb_freeze_noirq, 3279 .thaw_noirq = tb_thaw_noirq, 3280 .complete = tb_complete, 3281 .runtime_suspend = tb_runtime_suspend, 3282 .runtime_resume = tb_runtime_resume, 3283 .handle_event = tb_handle_event, 3284 .disapprove_switch = tb_disconnect_pci, 3285 .approve_switch = tb_tunnel_pci, 3286 .approve_xdomain_paths = tb_approve_xdomain_paths, 3287 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, 3288 }; 3289 3290 /* 3291 * During suspend the Thunderbolt controller is reset and all PCIe 3292 * tunnels are lost. The NHI driver will try to reestablish all tunnels 3293 * during resume. This adds device links between the tunneled PCIe 3294 * downstream ports and the NHI so that the device core will make sure 3295 * NHI is resumed first before the rest. 3296 */ 3297 static bool tb_apple_add_links(struct tb_nhi *nhi) 3298 { 3299 struct pci_dev *upstream, *pdev; 3300 bool ret; 3301 3302 if (!x86_apple_machine) 3303 return false; 3304 3305 switch (nhi->pdev->device) { 3306 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 3307 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 3308 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 3309 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 3310 break; 3311 default: 3312 return false; 3313 } 3314 3315 upstream = pci_upstream_bridge(nhi->pdev); 3316 while (upstream) { 3317 if (!pci_is_pcie(upstream)) 3318 return false; 3319 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 3320 break; 3321 upstream = pci_upstream_bridge(upstream); 3322 } 3323 3324 if (!upstream) 3325 return false; 3326 3327 /* 3328 * For each hotplug downstream port, create add device link 3329 * back to NHI so that PCIe tunnels can be re-established after 3330 * sleep. 3331 */ 3332 ret = false; 3333 for_each_pci_bridge(pdev, upstream->subordinate) { 3334 const struct device_link *link; 3335 3336 if (!pci_is_pcie(pdev)) 3337 continue; 3338 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 3339 !pdev->is_hotplug_bridge) 3340 continue; 3341 3342 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 3343 DL_FLAG_AUTOREMOVE_SUPPLIER | 3344 DL_FLAG_PM_RUNTIME); 3345 if (link) { 3346 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 3347 dev_name(&pdev->dev)); 3348 ret = true; 3349 } else { 3350 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 3351 dev_name(&pdev->dev)); 3352 } 3353 } 3354 3355 return ret; 3356 } 3357 3358 struct tb *tb_probe(struct tb_nhi *nhi) 3359 { 3360 struct tb_cm *tcm; 3361 struct tb *tb; 3362 3363 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm)); 3364 if (!tb) 3365 return NULL; 3366 3367 if (tb_acpi_may_tunnel_pcie()) 3368 tb->security_level = TB_SECURITY_USER; 3369 else 3370 tb->security_level = TB_SECURITY_NOPCIE; 3371 3372 tb->cm_ops = &tb_cm_ops; 3373 3374 tcm = tb_priv(tb); 3375 INIT_LIST_HEAD(&tcm->tunnel_list); 3376 INIT_LIST_HEAD(&tcm->dp_resources); 3377 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); 3378 tb_init_bandwidth_groups(tcm); 3379 3380 tb_dbg(tb, "using software connection manager\n"); 3381 3382 /* 3383 * Device links are needed to make sure we establish tunnels 3384 * before the PCIe/USB stack is resumed so complain here if we 3385 * found them missing. 3386 */ 3387 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi)) 3388 tb_warn(tb, "device links to tunneled native ports are missing!\n"); 3389 3390 return tb; 3391 } 3392