1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 #define TB_RELEASE_BW_TIMEOUT	10000	/* ms */
21 
22 /*
23  * How many time bandwidth allocation request from graphics driver is
24  * retried if the DP tunnel is still activating.
25  */
26 #define TB_BW_ALLOC_RETRIES	3
27 
28 /*
29  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
30  * direction. This is 40G - 10% guard band bandwidth.
31  */
32 #define TB_ASYM_MIN		(40000 * 90 / 100)
33 
34 /*
35  * Threshold bandwidth (in Mb/s) that is used to switch the links to
36  * asymmetric and back. This is selected as 45G which means when the
37  * request is higher than this, we switch the link to asymmetric, and
38  * when it is less than this we switch it back. The 45G is selected so
39  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
40  * switching back to symmetric.
41  */
42 #define TB_ASYM_THRESHOLD	45000
43 
44 #define MAX_GROUPS		7	/* max Group_ID is 7 */
45 
46 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
47 module_param_named(asym_threshold, asym_threshold, uint, 0444);
48 MODULE_PARM_DESC(asym_threshold,
49 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
50 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
51 
52 /**
53  * struct tb_cm - Simple Thunderbolt connection manager
54  * @tunnel_list: List of active tunnels
55  * @dp_resources: List of available DP resources for DP tunneling
56  * @hotplug_active: tb_handle_hotplug will stop progressing plug
57  *		    events and exit if this is not set (it needs to
58  *		    acquire the lock one more time). Used to drain wq
59  *		    after cfg has been paused.
60  * @remove_work: Work used to remove any unplugged routers after
61  *		 runtime resume
62  * @groups: Bandwidth groups used in this domain.
63  */
64 struct tb_cm {
65 	struct list_head tunnel_list;
66 	struct list_head dp_resources;
67 	bool hotplug_active;
68 	struct delayed_work remove_work;
69 	struct tb_bandwidth_group groups[MAX_GROUPS];
70 };
71 
72 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
73 {
74 	return ((void *)tcm - sizeof(struct tb));
75 }
76 
77 struct tb_hotplug_event {
78 	struct delayed_work work;
79 	struct tb *tb;
80 	u64 route;
81 	u8 port;
82 	bool unplug;
83 	int retry;
84 };
85 
86 static void tb_scan_port(struct tb_port *port);
87 static void tb_handle_hotplug(struct work_struct *work);
88 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
89 				       const char *reason);
90 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
91 					  int retry, unsigned long delay);
92 
93 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
94 {
95 	struct tb_hotplug_event *ev;
96 
97 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
98 	if (!ev)
99 		return;
100 
101 	ev->tb = tb;
102 	ev->route = route;
103 	ev->port = port;
104 	ev->unplug = unplug;
105 	INIT_DELAYED_WORK(&ev->work, tb_handle_hotplug);
106 	queue_delayed_work(tb->wq, &ev->work, 0);
107 }
108 
109 /* enumeration & hot plug handling */
110 
111 static void tb_add_dp_resources(struct tb_switch *sw)
112 {
113 	struct tb_cm *tcm = tb_priv(sw->tb);
114 	struct tb_port *port;
115 
116 	tb_switch_for_each_port(sw, port) {
117 		if (!tb_port_is_dpin(port))
118 			continue;
119 
120 		if (!tb_switch_query_dp_resource(sw, port))
121 			continue;
122 
123 		/*
124 		 * If DP IN on device router exist, position it at the
125 		 * beginning of the DP resources list, so that it is used
126 		 * before DP IN of the host router. This way external GPU(s)
127 		 * will be prioritized when pairing DP IN to a DP OUT.
128 		 */
129 		if (tb_route(sw))
130 			list_add(&port->list, &tcm->dp_resources);
131 		else
132 			list_add_tail(&port->list, &tcm->dp_resources);
133 
134 		tb_port_dbg(port, "DP IN resource available\n");
135 	}
136 }
137 
138 static void tb_remove_dp_resources(struct tb_switch *sw)
139 {
140 	struct tb_cm *tcm = tb_priv(sw->tb);
141 	struct tb_port *port, *tmp;
142 
143 	/* Clear children resources first */
144 	tb_switch_for_each_port(sw, port) {
145 		if (tb_port_has_remote(port))
146 			tb_remove_dp_resources(port->remote->sw);
147 	}
148 
149 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
150 		if (port->sw == sw) {
151 			tb_port_dbg(port, "DP OUT resource unavailable\n");
152 			list_del_init(&port->list);
153 		}
154 	}
155 }
156 
157 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
158 {
159 	struct tb_cm *tcm = tb_priv(tb);
160 	struct tb_port *p;
161 
162 	list_for_each_entry(p, &tcm->dp_resources, list) {
163 		if (p == port)
164 			return;
165 	}
166 
167 	tb_port_dbg(port, "DP %s resource available discovered\n",
168 		    tb_port_is_dpin(port) ? "IN" : "OUT");
169 	list_add_tail(&port->list, &tcm->dp_resources);
170 }
171 
172 static void tb_discover_dp_resources(struct tb *tb)
173 {
174 	struct tb_cm *tcm = tb_priv(tb);
175 	struct tb_tunnel *tunnel;
176 
177 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
178 		if (tb_tunnel_is_dp(tunnel))
179 			tb_discover_dp_resource(tb, tunnel->dst_port);
180 	}
181 }
182 
183 /* Enables CL states up to host router */
184 static int tb_enable_clx(struct tb_switch *sw)
185 {
186 	struct tb_cm *tcm = tb_priv(sw->tb);
187 	unsigned int clx = TB_CL0S | TB_CL1;
188 	const struct tb_tunnel *tunnel;
189 	int ret;
190 
191 	/*
192 	 * Currently only enable CLx for the first link. This is enough
193 	 * to allow the CPU to save energy at least on Intel hardware
194 	 * and makes it slightly simpler to implement. We may change
195 	 * this in the future to cover the whole topology if it turns
196 	 * out to be beneficial.
197 	 */
198 	while (sw && tb_switch_depth(sw) > 1)
199 		sw = tb_switch_parent(sw);
200 
201 	if (!sw)
202 		return 0;
203 
204 	if (tb_switch_depth(sw) != 1)
205 		return 0;
206 
207 	/*
208 	 * If we are re-enabling then check if there is an active DMA
209 	 * tunnel and in that case bail out.
210 	 */
211 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
212 		if (tb_tunnel_is_dma(tunnel)) {
213 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
214 				return 0;
215 		}
216 	}
217 
218 	/*
219 	 * Initially try with CL2. If that's not supported by the
220 	 * topology try with CL0s and CL1 and then give up.
221 	 */
222 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
223 	if (ret == -EOPNOTSUPP)
224 		ret = tb_switch_clx_enable(sw, clx);
225 	return ret == -EOPNOTSUPP ? 0 : ret;
226 }
227 
228 /**
229  * tb_disable_clx() - Disable CL states up to host router
230  * @sw: Router to start
231  *
232  * Disables CL states from @sw up to the host router. Returns true if
233  * any CL state were disabled. This can be used to figure out whether
234  * the link was setup by us or the boot firmware so we don't
235  * accidentally enable them if they were not enabled during discovery.
236  */
237 static bool tb_disable_clx(struct tb_switch *sw)
238 {
239 	bool disabled = false;
240 
241 	do {
242 		int ret;
243 
244 		ret = tb_switch_clx_disable(sw);
245 		if (ret > 0)
246 			disabled = true;
247 		else if (ret < 0)
248 			tb_sw_warn(sw, "failed to disable CL states\n");
249 
250 		sw = tb_switch_parent(sw);
251 	} while (sw);
252 
253 	return disabled;
254 }
255 
256 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
257 {
258 	struct tb_switch *sw;
259 
260 	sw = tb_to_switch(dev);
261 	if (!sw)
262 		return 0;
263 
264 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
265 		enum tb_switch_tmu_mode mode;
266 		int ret;
267 
268 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
269 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
270 		else
271 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
272 
273 		ret = tb_switch_tmu_configure(sw, mode);
274 		if (ret)
275 			return ret;
276 
277 		return tb_switch_tmu_enable(sw);
278 	}
279 
280 	return 0;
281 }
282 
283 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
284 {
285 	struct tb_switch *sw;
286 
287 	if (!tunnel)
288 		return;
289 
290 	/*
291 	 * Once first DP tunnel is established we change the TMU
292 	 * accuracy of first depth child routers (and the host router)
293 	 * to the highest. This is needed for the DP tunneling to work
294 	 * but also allows CL0s.
295 	 *
296 	 * If both routers are v2 then we don't need to do anything as
297 	 * they are using enhanced TMU mode that allows all CLx.
298 	 */
299 	sw = tunnel->tb->root_switch;
300 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
301 }
302 
303 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
304 {
305 	struct tb_switch *sw = tb_to_switch(dev);
306 
307 	if (sw && tb_switch_tmu_is_enabled(sw) &&
308 	    tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
309 		return 1;
310 
311 	return device_for_each_child(dev, NULL,
312 				     tb_switch_tmu_hifi_uni_required);
313 }
314 
315 static bool tb_tmu_hifi_uni_required(struct tb *tb)
316 {
317 	return device_for_each_child(&tb->dev, NULL,
318 				     tb_switch_tmu_hifi_uni_required) == 1;
319 }
320 
321 static int tb_enable_tmu(struct tb_switch *sw)
322 {
323 	int ret;
324 
325 	/*
326 	 * If both routers at the end of the link are v2 we simply
327 	 * enable the enhanched uni-directional mode. That covers all
328 	 * the CL states. For v1 and before we need to use the normal
329 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
330 	 * running at the highest accuracy.
331 	 */
332 	ret = tb_switch_tmu_configure(sw,
333 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
334 	if (ret == -EOPNOTSUPP) {
335 		if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
336 			/*
337 			 * Figure out uni-directional HiFi TMU requirements
338 			 * currently in the domain. If there are no
339 			 * uni-directional HiFi requirements we can put the TMU
340 			 * into LowRes mode.
341 			 *
342 			 * Deliberately skip bi-directional HiFi links
343 			 * as these work independently of other links
344 			 * (and they do not allow any CL states anyway).
345 			 */
346 			if (tb_tmu_hifi_uni_required(sw->tb))
347 				ret = tb_switch_tmu_configure(sw,
348 						TB_SWITCH_TMU_MODE_HIFI_UNI);
349 			else
350 				ret = tb_switch_tmu_configure(sw,
351 						TB_SWITCH_TMU_MODE_LOWRES);
352 		} else {
353 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
354 		}
355 
356 		/* If not supported, fallback to bi-directional HiFi */
357 		if (ret == -EOPNOTSUPP)
358 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
359 	}
360 	if (ret)
361 		return ret;
362 
363 	/* If it is already enabled in correct mode, don't touch it */
364 	if (tb_switch_tmu_is_enabled(sw))
365 		return 0;
366 
367 	ret = tb_switch_tmu_disable(sw);
368 	if (ret)
369 		return ret;
370 
371 	ret = tb_switch_tmu_post_time(sw);
372 	if (ret)
373 		return ret;
374 
375 	return tb_switch_tmu_enable(sw);
376 }
377 
378 static void tb_switch_discover_tunnels(struct tb_switch *sw,
379 				       struct list_head *list,
380 				       bool alloc_hopids)
381 {
382 	struct tb *tb = sw->tb;
383 	struct tb_port *port;
384 
385 	tb_switch_for_each_port(sw, port) {
386 		struct tb_tunnel *tunnel = NULL;
387 
388 		switch (port->config.type) {
389 		case TB_TYPE_DP_HDMI_IN:
390 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
391 			tb_increase_tmu_accuracy(tunnel);
392 			break;
393 
394 		case TB_TYPE_PCIE_DOWN:
395 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
396 			break;
397 
398 		case TB_TYPE_USB3_DOWN:
399 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
400 			break;
401 
402 		default:
403 			break;
404 		}
405 
406 		if (tunnel)
407 			list_add_tail(&tunnel->list, list);
408 	}
409 
410 	tb_switch_for_each_port(sw, port) {
411 		if (tb_port_has_remote(port)) {
412 			tb_switch_discover_tunnels(port->remote->sw, list,
413 						   alloc_hopids);
414 		}
415 	}
416 }
417 
418 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
419 {
420 	if (tb_switch_is_usb4(port->sw))
421 		return usb4_port_configure_xdomain(port, xd);
422 	return tb_lc_configure_xdomain(port);
423 }
424 
425 static void tb_port_unconfigure_xdomain(struct tb_port *port)
426 {
427 	if (tb_switch_is_usb4(port->sw))
428 		usb4_port_unconfigure_xdomain(port);
429 	else
430 		tb_lc_unconfigure_xdomain(port);
431 }
432 
433 static void tb_scan_xdomain(struct tb_port *port)
434 {
435 	struct tb_switch *sw = port->sw;
436 	struct tb *tb = sw->tb;
437 	struct tb_xdomain *xd;
438 	u64 route;
439 
440 	if (!tb_is_xdomain_enabled())
441 		return;
442 
443 	route = tb_downstream_route(port);
444 	xd = tb_xdomain_find_by_route(tb, route);
445 	if (xd) {
446 		tb_xdomain_put(xd);
447 		return;
448 	}
449 
450 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
451 			      NULL);
452 	if (xd) {
453 		tb_port_at(route, sw)->xdomain = xd;
454 		tb_port_configure_xdomain(port, xd);
455 		tb_xdomain_add(xd);
456 	}
457 }
458 
459 /**
460  * tb_find_unused_port() - return the first inactive port on @sw
461  * @sw: Switch to find the port on
462  * @type: Port type to look for
463  */
464 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
465 					   enum tb_port_type type)
466 {
467 	struct tb_port *port;
468 
469 	tb_switch_for_each_port(sw, port) {
470 		if (tb_is_upstream_port(port))
471 			continue;
472 		if (port->config.type != type)
473 			continue;
474 		if (!port->cap_adap)
475 			continue;
476 		if (tb_port_is_enabled(port))
477 			continue;
478 		return port;
479 	}
480 	return NULL;
481 }
482 
483 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
484 					 const struct tb_port *port)
485 {
486 	struct tb_port *down;
487 
488 	down = usb4_switch_map_usb3_down(sw, port);
489 	if (down && !tb_usb3_port_is_enabled(down))
490 		return down;
491 	return NULL;
492 }
493 
494 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
495 					struct tb_port *src_port,
496 					struct tb_port *dst_port)
497 {
498 	struct tb_cm *tcm = tb_priv(tb);
499 	struct tb_tunnel *tunnel;
500 
501 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
502 		if (tunnel->type == type &&
503 		    ((src_port && src_port == tunnel->src_port) ||
504 		     (dst_port && dst_port == tunnel->dst_port))) {
505 			return tunnel;
506 		}
507 	}
508 
509 	return NULL;
510 }
511 
512 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
513 						   struct tb_port *src_port,
514 						   struct tb_port *dst_port)
515 {
516 	struct tb_port *port, *usb3_down;
517 	struct tb_switch *sw;
518 
519 	/* Pick the router that is deepest in the topology */
520 	if (tb_port_path_direction_downstream(src_port, dst_port))
521 		sw = dst_port->sw;
522 	else
523 		sw = src_port->sw;
524 
525 	/* Can't be the host router */
526 	if (sw == tb->root_switch)
527 		return NULL;
528 
529 	/* Find the downstream USB4 port that leads to this router */
530 	port = tb_port_at(tb_route(sw), tb->root_switch);
531 	/* Find the corresponding host router USB3 downstream port */
532 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
533 	if (!usb3_down)
534 		return NULL;
535 
536 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
537 }
538 
539 /**
540  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
541  * @tb: Domain structure
542  * @src_port: Source protocol adapter
543  * @dst_port: Destination protocol adapter
544  * @port: USB4 port the consumed bandwidth is calculated
545  * @consumed_up: Consumed upsream bandwidth (Mb/s)
546  * @consumed_down: Consumed downstream bandwidth (Mb/s)
547  *
548  * Calculates consumed USB3 and PCIe bandwidth at @port between path
549  * from @src_port to @dst_port. Does not take USB3 tunnel starting from
550  * @src_port and ending on @src_port into account because that bandwidth is
551  * already included in as part of the "first hop" USB3 tunnel.
552  */
553 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
554 					   struct tb_port *src_port,
555 					   struct tb_port *dst_port,
556 					   struct tb_port *port,
557 					   int *consumed_up,
558 					   int *consumed_down)
559 {
560 	int pci_consumed_up, pci_consumed_down;
561 	struct tb_tunnel *tunnel;
562 
563 	*consumed_up = *consumed_down = 0;
564 
565 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
566 	if (tunnel && !tb_port_is_usb3_down(src_port) &&
567 	    !tb_port_is_usb3_up(dst_port)) {
568 		int ret;
569 
570 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
571 						   consumed_down);
572 		if (ret)
573 			return ret;
574 	}
575 
576 	/*
577 	 * If there is anything reserved for PCIe bulk traffic take it
578 	 * into account here too.
579 	 */
580 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
581 		*consumed_up += pci_consumed_up;
582 		*consumed_down += pci_consumed_down;
583 	}
584 
585 	return 0;
586 }
587 
588 /**
589  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
590  * @tb: Domain structure
591  * @src_port: Source protocol adapter
592  * @dst_port: Destination protocol adapter
593  * @port: USB4 port the consumed bandwidth is calculated
594  * @consumed_up: Consumed upsream bandwidth (Mb/s)
595  * @consumed_down: Consumed downstream bandwidth (Mb/s)
596  *
597  * Calculates consumed DP bandwidth at @port between path from @src_port
598  * to @dst_port. Does not take tunnel starting from @src_port and ending
599  * from @src_port into account.
600  *
601  * If there is bandwidth reserved for any of the groups between
602  * @src_port and @dst_port (but not yet used) that is also taken into
603  * account in the returned consumed bandwidth.
604  */
605 static int tb_consumed_dp_bandwidth(struct tb *tb,
606 				    struct tb_port *src_port,
607 				    struct tb_port *dst_port,
608 				    struct tb_port *port,
609 				    int *consumed_up,
610 				    int *consumed_down)
611 {
612 	int group_reserved[MAX_GROUPS] = {};
613 	struct tb_cm *tcm = tb_priv(tb);
614 	struct tb_tunnel *tunnel;
615 	bool downstream;
616 	int i, ret;
617 
618 	*consumed_up = *consumed_down = 0;
619 
620 	/*
621 	 * Find all DP tunnels that cross the port and reduce
622 	 * their consumed bandwidth from the available.
623 	 */
624 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
625 		const struct tb_bandwidth_group *group;
626 		int dp_consumed_up, dp_consumed_down;
627 
628 		if (tb_tunnel_is_invalid(tunnel))
629 			continue;
630 
631 		if (!tb_tunnel_is_dp(tunnel))
632 			continue;
633 
634 		if (!tb_tunnel_port_on_path(tunnel, port))
635 			continue;
636 
637 		/*
638 		 * Calculate what is reserved for groups crossing the
639 		 * same ports only once (as that is reserved for all the
640 		 * tunnels in the group).
641 		 */
642 		group = tunnel->src_port->group;
643 		if (group && group->reserved && !group_reserved[group->index])
644 			group_reserved[group->index] = group->reserved;
645 
646 		/*
647 		 * Ignore the DP tunnel between src_port and dst_port
648 		 * because it is the same tunnel and we may be
649 		 * re-calculating estimated bandwidth.
650 		 */
651 		if (tunnel->src_port == src_port &&
652 		    tunnel->dst_port == dst_port)
653 			continue;
654 
655 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
656 						   &dp_consumed_down);
657 		if (ret)
658 			return ret;
659 
660 		*consumed_up += dp_consumed_up;
661 		*consumed_down += dp_consumed_down;
662 	}
663 
664 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
665 	for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
666 		if (downstream)
667 			*consumed_down += group_reserved[i];
668 		else
669 			*consumed_up += group_reserved[i];
670 	}
671 
672 	return 0;
673 }
674 
675 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
676 			      struct tb_port *port)
677 {
678 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
679 	enum tb_link_width width;
680 
681 	if (tb_is_upstream_port(port))
682 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
683 	else
684 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
685 
686 	return tb_port_width_supported(port, width);
687 }
688 
689 /**
690  * tb_maximum_bandwidth() - Maximum bandwidth over a single link
691  * @tb: Domain structure
692  * @src_port: Source protocol adapter
693  * @dst_port: Destination protocol adapter
694  * @port: USB4 port the total bandwidth is calculated
695  * @max_up: Maximum upstream bandwidth (Mb/s)
696  * @max_down: Maximum downstream bandwidth (Mb/s)
697  * @include_asym: Include bandwidth if the link is switched from
698  *		  symmetric to asymmetric
699  *
700  * Returns maximum possible bandwidth in @max_up and @max_down over a
701  * single link at @port. If @include_asym is set then includes the
702  * additional banwdith if the links are transitioned into asymmetric to
703  * direction from @src_port to @dst_port.
704  */
705 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
706 				struct tb_port *dst_port, struct tb_port *port,
707 				int *max_up, int *max_down, bool include_asym)
708 {
709 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
710 	int link_speed, link_width, up_bw, down_bw;
711 
712 	/*
713 	 * Can include asymmetric, only if it is actually supported by
714 	 * the lane adapter.
715 	 */
716 	if (!tb_asym_supported(src_port, dst_port, port))
717 		include_asym = false;
718 
719 	if (tb_is_upstream_port(port)) {
720 		link_speed = port->sw->link_speed;
721 		/*
722 		 * sw->link_width is from upstream perspective so we use
723 		 * the opposite for downstream of the host router.
724 		 */
725 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
726 			up_bw = link_speed * 3 * 1000;
727 			down_bw = link_speed * 1 * 1000;
728 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
729 			up_bw = link_speed * 1 * 1000;
730 			down_bw = link_speed * 3 * 1000;
731 		} else if (include_asym) {
732 			/*
733 			 * The link is symmetric at the moment but we
734 			 * can switch it to asymmetric as needed. Report
735 			 * this bandwidth as available (even though it
736 			 * is not yet enabled).
737 			 */
738 			if (downstream) {
739 				up_bw = link_speed * 1 * 1000;
740 				down_bw = link_speed * 3 * 1000;
741 			} else {
742 				up_bw = link_speed * 3 * 1000;
743 				down_bw = link_speed * 1 * 1000;
744 			}
745 		} else {
746 			up_bw = link_speed * port->sw->link_width * 1000;
747 			down_bw = up_bw;
748 		}
749 	} else {
750 		link_speed = tb_port_get_link_speed(port);
751 		if (link_speed < 0)
752 			return link_speed;
753 
754 		link_width = tb_port_get_link_width(port);
755 		if (link_width < 0)
756 			return link_width;
757 
758 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
759 			up_bw = link_speed * 1 * 1000;
760 			down_bw = link_speed * 3 * 1000;
761 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
762 			up_bw = link_speed * 3 * 1000;
763 			down_bw = link_speed * 1 * 1000;
764 		} else if (include_asym) {
765 			/*
766 			 * The link is symmetric at the moment but we
767 			 * can switch it to asymmetric as needed. Report
768 			 * this bandwidth as available (even though it
769 			 * is not yet enabled).
770 			 */
771 			if (downstream) {
772 				up_bw = link_speed * 1 * 1000;
773 				down_bw = link_speed * 3 * 1000;
774 			} else {
775 				up_bw = link_speed * 3 * 1000;
776 				down_bw = link_speed * 1 * 1000;
777 			}
778 		} else {
779 			up_bw = link_speed * link_width * 1000;
780 			down_bw = up_bw;
781 		}
782 	}
783 
784 	/* Leave 10% guard band */
785 	*max_up = up_bw - up_bw / 10;
786 	*max_down = down_bw - down_bw / 10;
787 
788 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
789 	return 0;
790 }
791 
792 /**
793  * tb_available_bandwidth() - Available bandwidth for tunneling
794  * @tb: Domain structure
795  * @src_port: Source protocol adapter
796  * @dst_port: Destination protocol adapter
797  * @available_up: Available bandwidth upstream (Mb/s)
798  * @available_down: Available bandwidth downstream (Mb/s)
799  * @include_asym: Include bandwidth if the link is switched from
800  *		  symmetric to asymmetric
801  *
802  * Calculates maximum available bandwidth for protocol tunneling between
803  * @src_port and @dst_port at the moment. This is minimum of maximum
804  * link bandwidth across all links reduced by currently consumed
805  * bandwidth on that link.
806  *
807  * If @include_asym is true then includes also bandwidth that can be
808  * added when the links are transitioned into asymmetric (but does not
809  * transition the links).
810  */
811 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
812 				 struct tb_port *dst_port, int *available_up,
813 				 int *available_down, bool include_asym)
814 {
815 	struct tb_port *port;
816 	int ret;
817 
818 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
819 	*available_up = *available_down = 120000;
820 
821 	/* Find the minimum available bandwidth over all links */
822 	tb_for_each_port_on_path(src_port, dst_port, port) {
823 		int max_up, max_down, consumed_up, consumed_down;
824 
825 		if (!tb_port_is_null(port))
826 			continue;
827 
828 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
829 					   &max_up, &max_down, include_asym);
830 		if (ret)
831 			return ret;
832 
833 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
834 						      port, &consumed_up,
835 						      &consumed_down);
836 		if (ret)
837 			return ret;
838 		max_up -= consumed_up;
839 		max_down -= consumed_down;
840 
841 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
842 					       &consumed_up, &consumed_down);
843 		if (ret)
844 			return ret;
845 		max_up -= consumed_up;
846 		max_down -= consumed_down;
847 
848 		if (max_up < *available_up)
849 			*available_up = max_up;
850 		if (max_down < *available_down)
851 			*available_down = max_down;
852 	}
853 
854 	if (*available_up < 0)
855 		*available_up = 0;
856 	if (*available_down < 0)
857 		*available_down = 0;
858 
859 	return 0;
860 }
861 
862 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
863 					    struct tb_port *src_port,
864 					    struct tb_port *dst_port)
865 {
866 	struct tb_tunnel *tunnel;
867 
868 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
869 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
870 }
871 
872 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
873 				      struct tb_port *dst_port)
874 {
875 	int ret, available_up, available_down;
876 	struct tb_tunnel *tunnel;
877 
878 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
879 	if (!tunnel)
880 		return;
881 
882 	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
883 
884 	/*
885 	 * Calculate available bandwidth for the first hop USB3 tunnel.
886 	 * That determines the whole USB3 bandwidth for this branch.
887 	 */
888 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
889 				     &available_up, &available_down, false);
890 	if (ret) {
891 		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
892 		return;
893 	}
894 
895 	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
896 		      available_down);
897 
898 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
899 }
900 
901 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
902 {
903 	struct tb_switch *parent = tb_switch_parent(sw);
904 	int ret, available_up, available_down;
905 	struct tb_port *up, *down, *port;
906 	struct tb_cm *tcm = tb_priv(tb);
907 	struct tb_tunnel *tunnel;
908 
909 	if (!tb_acpi_may_tunnel_usb3()) {
910 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
911 		return 0;
912 	}
913 
914 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
915 	if (!up)
916 		return 0;
917 
918 	if (!sw->link_usb4)
919 		return 0;
920 
921 	/*
922 	 * Look up available down port. Since we are chaining it should
923 	 * be found right above this switch.
924 	 */
925 	port = tb_switch_downstream_port(sw);
926 	down = tb_find_usb3_down(parent, port);
927 	if (!down)
928 		return 0;
929 
930 	if (tb_route(parent)) {
931 		struct tb_port *parent_up;
932 		/*
933 		 * Check first that the parent switch has its upstream USB3
934 		 * port enabled. Otherwise the chain is not complete and
935 		 * there is no point setting up a new tunnel.
936 		 */
937 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
938 		if (!parent_up || !tb_port_is_enabled(parent_up))
939 			return 0;
940 
941 		/* Make all unused bandwidth available for the new tunnel */
942 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
943 		if (ret)
944 			return ret;
945 	}
946 
947 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
948 				     false);
949 	if (ret)
950 		goto err_reclaim;
951 
952 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
953 		    available_up, available_down);
954 
955 	/*
956 	 * If the available bandwidth is less than 1.5 Gb/s notify
957 	 * userspace that the connected isochronous device may not work
958 	 * properly.
959 	 */
960 	if (available_up < 1500 || available_down < 1500)
961 		tb_tunnel_event(tb, TB_TUNNEL_LOW_BANDWIDTH, TB_TUNNEL_USB3,
962 				down, up);
963 
964 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
965 				      available_down);
966 	if (!tunnel) {
967 		ret = -ENOMEM;
968 		goto err_reclaim;
969 	}
970 
971 	if (tb_tunnel_activate(tunnel)) {
972 		tb_port_info(up,
973 			     "USB3 tunnel activation failed, aborting\n");
974 		ret = -EIO;
975 		goto err_free;
976 	}
977 
978 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
979 	if (tb_route(parent))
980 		tb_reclaim_usb3_bandwidth(tb, down, up);
981 
982 	return 0;
983 
984 err_free:
985 	tb_tunnel_put(tunnel);
986 err_reclaim:
987 	if (tb_route(parent))
988 		tb_reclaim_usb3_bandwidth(tb, down, up);
989 
990 	return ret;
991 }
992 
993 static int tb_create_usb3_tunnels(struct tb_switch *sw)
994 {
995 	struct tb_port *port;
996 	int ret;
997 
998 	if (!tb_acpi_may_tunnel_usb3())
999 		return 0;
1000 
1001 	if (tb_route(sw)) {
1002 		ret = tb_tunnel_usb3(sw->tb, sw);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	tb_switch_for_each_port(sw, port) {
1008 		if (!tb_port_has_remote(port))
1009 			continue;
1010 		ret = tb_create_usb3_tunnels(port->remote->sw);
1011 		if (ret)
1012 			return ret;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 /**
1019  * tb_configure_asym() - Transition links to asymmetric if needed
1020  * @tb: Domain structure
1021  * @src_port: Source adapter to start the transition
1022  * @dst_port: Destination adapter
1023  * @requested_up: Additional bandwidth (Mb/s) required upstream
1024  * @requested_down: Additional bandwidth (Mb/s) required downstream
1025  *
1026  * Transition links between @src_port and @dst_port into asymmetric, with
1027  * three lanes in the direction from @src_port towards @dst_port and one lane
1028  * in the opposite direction, if the bandwidth requirements
1029  * (requested + currently consumed) on that link exceed @asym_threshold.
1030  *
1031  * Must be called with available >= requested over all links.
1032  */
1033 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1034 			     struct tb_port *dst_port, int requested_up,
1035 			     int requested_down)
1036 {
1037 	bool clx = false, clx_disabled = false, downstream;
1038 	struct tb_switch *sw;
1039 	struct tb_port *up;
1040 	int ret = 0;
1041 
1042 	if (!asym_threshold)
1043 		return 0;
1044 
1045 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1046 	/* Pick up router deepest in the hierarchy */
1047 	if (downstream)
1048 		sw = dst_port->sw;
1049 	else
1050 		sw = src_port->sw;
1051 
1052 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1053 		struct tb_port *down = tb_switch_downstream_port(up->sw);
1054 		enum tb_link_width width_up, width_down;
1055 		int consumed_up, consumed_down;
1056 
1057 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1058 					       &consumed_up, &consumed_down);
1059 		if (ret)
1060 			break;
1061 
1062 		if (downstream) {
1063 			/*
1064 			 * Downstream so make sure upstream is within the 36G
1065 			 * (40G - guard band 10%), and the requested is above
1066 			 * what the threshold is.
1067 			 */
1068 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1069 				ret = -ENOBUFS;
1070 				break;
1071 			}
1072 			/* Does consumed + requested exceed the threshold */
1073 			if (consumed_down + requested_down < asym_threshold)
1074 				continue;
1075 
1076 			width_up = TB_LINK_WIDTH_ASYM_RX;
1077 			width_down = TB_LINK_WIDTH_ASYM_TX;
1078 		} else {
1079 			/* Upstream, the opposite of above */
1080 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1081 				ret = -ENOBUFS;
1082 				break;
1083 			}
1084 			if (consumed_up + requested_up < asym_threshold)
1085 				continue;
1086 
1087 			width_up = TB_LINK_WIDTH_ASYM_TX;
1088 			width_down = TB_LINK_WIDTH_ASYM_RX;
1089 		}
1090 
1091 		if (up->sw->link_width == width_up)
1092 			continue;
1093 
1094 		if (!tb_port_width_supported(up, width_up) ||
1095 		    !tb_port_width_supported(down, width_down))
1096 			continue;
1097 
1098 		/*
1099 		 * Disable CL states before doing any transitions. We
1100 		 * delayed it until now that we know there is a real
1101 		 * transition taking place.
1102 		 */
1103 		if (!clx_disabled) {
1104 			clx = tb_disable_clx(sw);
1105 			clx_disabled = true;
1106 		}
1107 
1108 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1109 
1110 		/*
1111 		 * Here requested + consumed > threshold so we need to
1112 		 * transtion the link into asymmetric now.
1113 		 */
1114 		ret = tb_switch_set_link_width(up->sw, width_up);
1115 		if (ret) {
1116 			tb_sw_warn(up->sw, "failed to set link width\n");
1117 			break;
1118 		}
1119 	}
1120 
1121 	/* Re-enable CL states if they were previosly enabled */
1122 	if (clx)
1123 		tb_enable_clx(sw);
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * tb_configure_sym() - Transition links to symmetric if possible
1130  * @tb: Domain structure
1131  * @src_port: Source adapter to start the transition
1132  * @dst_port: Destination adapter
1133  * @keep_asym: Keep asymmetric link if preferred
1134  *
1135  * Goes over each link from @src_port to @dst_port and tries to
1136  * transition the link to symmetric if the currently consumed bandwidth
1137  * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1138  */
1139 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1140 			    struct tb_port *dst_port, bool keep_asym)
1141 {
1142 	bool clx = false, clx_disabled = false, downstream;
1143 	struct tb_switch *sw;
1144 	struct tb_port *up;
1145 	int ret = 0;
1146 
1147 	if (!asym_threshold)
1148 		return 0;
1149 
1150 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1151 	/* Pick up router deepest in the hierarchy */
1152 	if (downstream)
1153 		sw = dst_port->sw;
1154 	else
1155 		sw = src_port->sw;
1156 
1157 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1158 		int consumed_up, consumed_down;
1159 
1160 		/* Already symmetric */
1161 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1162 			continue;
1163 		/* Unplugged, no need to switch */
1164 		if (up->sw->is_unplugged)
1165 			continue;
1166 
1167 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1168 					       &consumed_up, &consumed_down);
1169 		if (ret)
1170 			break;
1171 
1172 		if (downstream) {
1173 			/*
1174 			 * Downstream so we want the consumed_down < threshold.
1175 			 * Upstream traffic should be less than 36G (40G
1176 			 * guard band 10%) as the link was configured asymmetric
1177 			 * already.
1178 			 */
1179 			if (consumed_down >= asym_threshold)
1180 				continue;
1181 		} else {
1182 			if (consumed_up >= asym_threshold)
1183 				continue;
1184 		}
1185 
1186 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1187 			continue;
1188 
1189 		/*
1190 		 * Here consumed < threshold so we can transition the
1191 		 * link to symmetric.
1192 		 *
1193 		 * However, if the router prefers asymmetric link we
1194 		 * honor that (unless @keep_asym is %false).
1195 		 */
1196 		if (keep_asym &&
1197 		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1198 			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1199 			continue;
1200 		}
1201 
1202 		/* Disable CL states before doing any transitions */
1203 		if (!clx_disabled) {
1204 			clx = tb_disable_clx(sw);
1205 			clx_disabled = true;
1206 		}
1207 
1208 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1209 
1210 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1211 		if (ret) {
1212 			tb_sw_warn(up->sw, "failed to set link width\n");
1213 			break;
1214 		}
1215 	}
1216 
1217 	/* Re-enable CL states if they were previosly enabled */
1218 	if (clx)
1219 		tb_enable_clx(sw);
1220 
1221 	return ret;
1222 }
1223 
1224 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1225 			      struct tb_switch *sw)
1226 {
1227 	struct tb *tb = sw->tb;
1228 
1229 	/* Link the routers using both links if available */
1230 	down->remote = up;
1231 	up->remote = down;
1232 	if (down->dual_link_port && up->dual_link_port) {
1233 		down->dual_link_port->remote = up->dual_link_port;
1234 		up->dual_link_port->remote = down->dual_link_port;
1235 	}
1236 
1237 	/*
1238 	 * Enable lane bonding if the link is currently two single lane
1239 	 * links.
1240 	 */
1241 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1242 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1243 
1244 	/*
1245 	 * Device router that comes up as symmetric link is
1246 	 * connected deeper in the hierarchy, we transition the links
1247 	 * above into symmetric if bandwidth allows.
1248 	 */
1249 	if (tb_switch_depth(sw) > 1 &&
1250 	    tb_port_get_link_generation(up) >= 4 &&
1251 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1252 		struct tb_port *host_port;
1253 
1254 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1255 		tb_configure_sym(tb, host_port, up, false);
1256 	}
1257 
1258 	/* Set the link configured */
1259 	tb_switch_configure_link(sw);
1260 }
1261 
1262 /*
1263  * tb_scan_switch() - scan for and initialize downstream switches
1264  */
1265 static void tb_scan_switch(struct tb_switch *sw)
1266 {
1267 	struct tb_port *port;
1268 
1269 	pm_runtime_get_sync(&sw->dev);
1270 
1271 	tb_switch_for_each_port(sw, port)
1272 		tb_scan_port(port);
1273 
1274 	pm_runtime_mark_last_busy(&sw->dev);
1275 	pm_runtime_put_autosuspend(&sw->dev);
1276 }
1277 
1278 /*
1279  * tb_scan_port() - check for and initialize switches below port
1280  */
1281 static void tb_scan_port(struct tb_port *port)
1282 {
1283 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1284 	struct tb_port *upstream_port;
1285 	bool discovery = false;
1286 	struct tb_switch *sw;
1287 
1288 	if (tb_is_upstream_port(port))
1289 		return;
1290 
1291 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1292 	    !tb_dp_port_is_enabled(port)) {
1293 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1294 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1295 				 false);
1296 		return;
1297 	}
1298 
1299 	if (port->config.type != TB_TYPE_PORT)
1300 		return;
1301 	if (port->dual_link_port && port->link_nr)
1302 		return; /*
1303 			 * Downstream switch is reachable through two ports.
1304 			 * Only scan on the primary port (link_nr == 0).
1305 			 */
1306 
1307 	if (port->usb4)
1308 		pm_runtime_get_sync(&port->usb4->dev);
1309 
1310 	if (tb_wait_for_port(port, false) <= 0)
1311 		goto out_rpm_put;
1312 	if (port->remote) {
1313 		tb_port_dbg(port, "port already has a remote\n");
1314 		goto out_rpm_put;
1315 	}
1316 
1317 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1318 			     tb_downstream_route(port));
1319 	if (IS_ERR(sw)) {
1320 		/*
1321 		 * Make the downstream retimers available even if there
1322 		 * is no router connected.
1323 		 */
1324 		tb_retimer_scan(port, true);
1325 
1326 		/*
1327 		 * If there is an error accessing the connected switch
1328 		 * it may be connected to another domain. Also we allow
1329 		 * the other domain to be connected to a max depth switch.
1330 		 */
1331 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1332 			tb_scan_xdomain(port);
1333 		goto out_rpm_put;
1334 	}
1335 
1336 	if (tb_switch_configure(sw)) {
1337 		tb_switch_put(sw);
1338 		goto out_rpm_put;
1339 	}
1340 
1341 	/*
1342 	 * If there was previously another domain connected remove it
1343 	 * first.
1344 	 */
1345 	if (port->xdomain) {
1346 		tb_xdomain_remove(port->xdomain);
1347 		tb_port_unconfigure_xdomain(port);
1348 		port->xdomain = NULL;
1349 	}
1350 
1351 	/*
1352 	 * Do not send uevents until we have discovered all existing
1353 	 * tunnels and know which switches were authorized already by
1354 	 * the boot firmware.
1355 	 */
1356 	if (!tcm->hotplug_active) {
1357 		dev_set_uevent_suppress(&sw->dev, true);
1358 		discovery = true;
1359 	}
1360 
1361 	/*
1362 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1363 	 * can support runtime PM.
1364 	 */
1365 	sw->rpm = sw->generation > 1;
1366 
1367 	if (tb_switch_add(sw)) {
1368 		tb_switch_put(sw);
1369 		goto out_rpm_put;
1370 	}
1371 
1372 	upstream_port = tb_upstream_port(sw);
1373 	tb_configure_link(port, upstream_port, sw);
1374 
1375 	/*
1376 	 * Scan for downstream retimers. We only scan them after the
1377 	 * router has been enumerated to avoid issues with certain
1378 	 * Pluggable devices that expect the host to enumerate them
1379 	 * within certain timeout.
1380 	 */
1381 	tb_retimer_scan(port, true);
1382 
1383 	/*
1384 	 * CL0s and CL1 are enabled and supported together.
1385 	 * Silently ignore CLx enabling in case CLx is not supported.
1386 	 */
1387 	if (discovery)
1388 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1389 	else if (tb_enable_clx(sw))
1390 		tb_sw_warn(sw, "failed to enable CL states\n");
1391 
1392 	if (tb_enable_tmu(sw))
1393 		tb_sw_warn(sw, "failed to enable TMU\n");
1394 
1395 	/*
1396 	 * Configuration valid needs to be set after the TMU has been
1397 	 * enabled for the upstream port of the router so we do it here.
1398 	 */
1399 	tb_switch_configuration_valid(sw);
1400 
1401 	/* Scan upstream retimers */
1402 	tb_retimer_scan(upstream_port, true);
1403 
1404 	/*
1405 	 * Create USB 3.x tunnels only when the switch is plugged to the
1406 	 * domain. This is because we scan the domain also during discovery
1407 	 * and want to discover existing USB 3.x tunnels before we create
1408 	 * any new.
1409 	 */
1410 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1411 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1412 
1413 	tb_add_dp_resources(sw);
1414 	tb_scan_switch(sw);
1415 
1416 out_rpm_put:
1417 	if (port->usb4) {
1418 		pm_runtime_mark_last_busy(&port->usb4->dev);
1419 		pm_runtime_put_autosuspend(&port->usb4->dev);
1420 	}
1421 }
1422 
1423 static void
1424 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1425 {
1426 	struct tb_tunnel *first_tunnel;
1427 	struct tb *tb = group->tb;
1428 	struct tb_port *in;
1429 	int ret;
1430 
1431 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1432 	       group->index);
1433 
1434 	first_tunnel = NULL;
1435 	list_for_each_entry(in, &group->ports, group_list) {
1436 		int estimated_bw, estimated_up, estimated_down;
1437 		struct tb_tunnel *tunnel;
1438 		struct tb_port *out;
1439 
1440 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1441 			continue;
1442 
1443 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1444 		if (WARN_ON(!tunnel))
1445 			break;
1446 
1447 		if (!first_tunnel) {
1448 			/*
1449 			 * Since USB3 bandwidth is shared by all DP
1450 			 * tunnels under the host router USB4 port, even
1451 			 * if they do not begin from the host router, we
1452 			 * can release USB3 bandwidth just once and not
1453 			 * for each tunnel separately.
1454 			 */
1455 			first_tunnel = tunnel;
1456 			ret = tb_release_unused_usb3_bandwidth(tb,
1457 				first_tunnel->src_port, first_tunnel->dst_port);
1458 			if (ret) {
1459 				tb_tunnel_warn(tunnel,
1460 					"failed to release unused bandwidth\n");
1461 				break;
1462 			}
1463 		}
1464 
1465 		out = tunnel->dst_port;
1466 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1467 					     &estimated_down, true);
1468 		if (ret) {
1469 			tb_tunnel_warn(tunnel,
1470 				"failed to re-calculate estimated bandwidth\n");
1471 			break;
1472 		}
1473 
1474 		/*
1475 		 * Estimated bandwidth includes:
1476 		 *  - already allocated bandwidth for the DP tunnel
1477 		 *  - available bandwidth along the path
1478 		 *  - bandwidth allocated for USB 3.x but not used.
1479 		 */
1480 		if (tb_tunnel_direction_downstream(tunnel))
1481 			estimated_bw = estimated_down;
1482 		else
1483 			estimated_bw = estimated_up;
1484 
1485 		/*
1486 		 * If there is reserved bandwidth for the group that is
1487 		 * not yet released we report that too.
1488 		 */
1489 		tb_tunnel_dbg(tunnel,
1490 			      "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1491 			      estimated_bw, group->reserved,
1492 			      estimated_bw + group->reserved);
1493 
1494 		if (usb4_dp_port_set_estimated_bandwidth(in,
1495 				estimated_bw + group->reserved))
1496 			tb_tunnel_warn(tunnel,
1497 				       "failed to update estimated bandwidth\n");
1498 	}
1499 
1500 	if (first_tunnel)
1501 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1502 					  first_tunnel->dst_port);
1503 
1504 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1505 }
1506 
1507 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1508 {
1509 	struct tb_cm *tcm = tb_priv(tb);
1510 	int i;
1511 
1512 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1513 
1514 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1515 		struct tb_bandwidth_group *group = &tcm->groups[i];
1516 
1517 		if (!list_empty(&group->ports))
1518 			tb_recalc_estimated_bandwidth_for_group(group);
1519 	}
1520 
1521 	tb_dbg(tb, "bandwidth re-calculation done\n");
1522 }
1523 
1524 static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1525 {
1526 	if (group->reserved) {
1527 		tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1528 			group->reserved);
1529 		group->reserved = 0;
1530 		return true;
1531 	}
1532 	return false;
1533 }
1534 
1535 static void __configure_group_sym(struct tb_bandwidth_group *group)
1536 {
1537 	struct tb_tunnel *tunnel;
1538 	struct tb_port *in;
1539 
1540 	if (list_empty(&group->ports))
1541 		return;
1542 
1543 	/*
1544 	 * All the tunnels in the group go through the same USB4 links
1545 	 * so we find the first one here and pass the IN and OUT
1546 	 * adapters to tb_configure_sym() which now transitions the
1547 	 * links back to symmetric if bandwidth requirement < asym_threshold.
1548 	 *
1549 	 * We do this here to avoid unnecessary transitions (for example
1550 	 * if the graphics released bandwidth for other tunnel in the
1551 	 * same group).
1552 	 */
1553 	in = list_first_entry(&group->ports, struct tb_port, group_list);
1554 	tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL);
1555 	if (tunnel)
1556 		tb_configure_sym(group->tb, in, tunnel->dst_port, true);
1557 }
1558 
1559 static void tb_bandwidth_group_release_work(struct work_struct *work)
1560 {
1561 	struct tb_bandwidth_group *group =
1562 		container_of(work, typeof(*group), release_work.work);
1563 	struct tb *tb = group->tb;
1564 
1565 	mutex_lock(&tb->lock);
1566 	if (__release_group_bandwidth(group))
1567 		tb_recalc_estimated_bandwidth(tb);
1568 	__configure_group_sym(group);
1569 	mutex_unlock(&tb->lock);
1570 }
1571 
1572 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1573 {
1574 	int i;
1575 
1576 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1577 		struct tb_bandwidth_group *group = &tcm->groups[i];
1578 
1579 		group->tb = tcm_to_tb(tcm);
1580 		group->index = i + 1;
1581 		INIT_LIST_HEAD(&group->ports);
1582 		INIT_DELAYED_WORK(&group->release_work,
1583 				  tb_bandwidth_group_release_work);
1584 	}
1585 }
1586 
1587 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1588 					   struct tb_port *in)
1589 {
1590 	if (!group || WARN_ON(in->group))
1591 		return;
1592 
1593 	in->group = group;
1594 	list_add_tail(&in->group_list, &group->ports);
1595 
1596 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1597 }
1598 
1599 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1604 		struct tb_bandwidth_group *group = &tcm->groups[i];
1605 
1606 		if (list_empty(&group->ports))
1607 			return group;
1608 	}
1609 
1610 	return NULL;
1611 }
1612 
1613 static struct tb_bandwidth_group *
1614 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1615 			  struct tb_port *out)
1616 {
1617 	struct tb_bandwidth_group *group;
1618 	struct tb_tunnel *tunnel;
1619 
1620 	/*
1621 	 * Find all DP tunnels that go through all the same USB4 links
1622 	 * as this one. Because we always setup tunnels the same way we
1623 	 * can just check for the routers at both ends of the tunnels
1624 	 * and if they are the same we have a match.
1625 	 */
1626 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1627 		if (!tb_tunnel_is_dp(tunnel))
1628 			continue;
1629 
1630 		if (tunnel->src_port->sw == in->sw &&
1631 		    tunnel->dst_port->sw == out->sw) {
1632 			group = tunnel->src_port->group;
1633 			if (group) {
1634 				tb_bandwidth_group_attach_port(group, in);
1635 				return group;
1636 			}
1637 		}
1638 	}
1639 
1640 	/* Pick up next available group then */
1641 	group = tb_find_free_bandwidth_group(tcm);
1642 	if (group)
1643 		tb_bandwidth_group_attach_port(group, in);
1644 	else
1645 		tb_port_warn(in, "no available bandwidth groups\n");
1646 
1647 	return group;
1648 }
1649 
1650 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1651 					struct tb_port *out)
1652 {
1653 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
1654 		int index, i;
1655 
1656 		index = usb4_dp_port_group_id(in);
1657 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1658 			if (tcm->groups[i].index == index) {
1659 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
1660 				return;
1661 			}
1662 		}
1663 	}
1664 
1665 	tb_attach_bandwidth_group(tcm, in, out);
1666 }
1667 
1668 static void tb_detach_bandwidth_group(struct tb_port *in)
1669 {
1670 	struct tb_bandwidth_group *group = in->group;
1671 
1672 	if (group) {
1673 		in->group = NULL;
1674 		list_del_init(&in->group_list);
1675 
1676 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1677 
1678 		/* No more tunnels so release the reserved bandwidth if any */
1679 		if (list_empty(&group->ports)) {
1680 			cancel_delayed_work(&group->release_work);
1681 			__release_group_bandwidth(group);
1682 		}
1683 	}
1684 }
1685 
1686 static void tb_discover_tunnels(struct tb *tb)
1687 {
1688 	struct tb_cm *tcm = tb_priv(tb);
1689 	struct tb_tunnel *tunnel;
1690 
1691 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
1692 
1693 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1694 		if (tb_tunnel_is_pci(tunnel)) {
1695 			struct tb_switch *parent = tunnel->dst_port->sw;
1696 
1697 			while (parent != tunnel->src_port->sw) {
1698 				parent->boot = true;
1699 				parent = tb_switch_parent(parent);
1700 			}
1701 		} else if (tb_tunnel_is_dp(tunnel)) {
1702 			struct tb_port *in = tunnel->src_port;
1703 			struct tb_port *out = tunnel->dst_port;
1704 
1705 			/* Keep the domain from powering down */
1706 			pm_runtime_get_sync(&in->sw->dev);
1707 			pm_runtime_get_sync(&out->sw->dev);
1708 
1709 			tb_discover_bandwidth_group(tcm, in, out);
1710 		}
1711 	}
1712 }
1713 
1714 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1715 {
1716 	struct tb_port *src_port, *dst_port;
1717 	struct tb *tb;
1718 
1719 	if (!tunnel)
1720 		return;
1721 
1722 	tb_tunnel_deactivate(tunnel);
1723 	list_del(&tunnel->list);
1724 
1725 	tb = tunnel->tb;
1726 	src_port = tunnel->src_port;
1727 	dst_port = tunnel->dst_port;
1728 
1729 	switch (tunnel->type) {
1730 	case TB_TUNNEL_DP:
1731 		tb_detach_bandwidth_group(src_port);
1732 		/*
1733 		 * In case of DP tunnel make sure the DP IN resource is
1734 		 * deallocated properly.
1735 		 */
1736 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1737 		/*
1738 		 * If bandwidth on a link is < asym_threshold
1739 		 * transition the link to symmetric.
1740 		 */
1741 		tb_configure_sym(tb, src_port, dst_port, true);
1742 		/* Now we can allow the domain to runtime suspend again */
1743 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1744 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1745 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1746 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1747 		fallthrough;
1748 
1749 	case TB_TUNNEL_USB3:
1750 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1751 		break;
1752 
1753 	default:
1754 		/*
1755 		 * PCIe and DMA tunnels do not consume guaranteed
1756 		 * bandwidth.
1757 		 */
1758 		break;
1759 	}
1760 
1761 	tb_tunnel_put(tunnel);
1762 }
1763 
1764 /*
1765  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1766  */
1767 static void tb_free_invalid_tunnels(struct tb *tb)
1768 {
1769 	struct tb_cm *tcm = tb_priv(tb);
1770 	struct tb_tunnel *tunnel;
1771 	struct tb_tunnel *n;
1772 
1773 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1774 		if (tb_tunnel_is_invalid(tunnel))
1775 			tb_deactivate_and_free_tunnel(tunnel);
1776 	}
1777 }
1778 
1779 /*
1780  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1781  */
1782 static void tb_free_unplugged_children(struct tb_switch *sw)
1783 {
1784 	struct tb_port *port;
1785 
1786 	tb_switch_for_each_port(sw, port) {
1787 		if (!tb_port_has_remote(port))
1788 			continue;
1789 
1790 		if (port->remote->sw->is_unplugged) {
1791 			tb_retimer_remove_all(port);
1792 			tb_remove_dp_resources(port->remote->sw);
1793 			tb_switch_unconfigure_link(port->remote->sw);
1794 			tb_switch_set_link_width(port->remote->sw,
1795 						 TB_LINK_WIDTH_SINGLE);
1796 			tb_switch_remove(port->remote->sw);
1797 			port->remote = NULL;
1798 			if (port->dual_link_port)
1799 				port->dual_link_port->remote = NULL;
1800 		} else {
1801 			tb_free_unplugged_children(port->remote->sw);
1802 		}
1803 	}
1804 }
1805 
1806 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1807 					 const struct tb_port *port)
1808 {
1809 	struct tb_port *down = NULL;
1810 
1811 	/*
1812 	 * To keep plugging devices consistently in the same PCIe
1813 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1814 	 */
1815 	if (tb_switch_is_usb4(sw)) {
1816 		down = usb4_switch_map_pcie_down(sw, port);
1817 	} else if (!tb_route(sw)) {
1818 		int phy_port = tb_phy_port_from_link(port->port);
1819 		int index;
1820 
1821 		/*
1822 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1823 		 * per controller.
1824 		 */
1825 		if (tb_switch_is_cactus_ridge(sw) ||
1826 		    tb_switch_is_alpine_ridge(sw))
1827 			index = !phy_port ? 6 : 7;
1828 		else if (tb_switch_is_falcon_ridge(sw))
1829 			index = !phy_port ? 6 : 8;
1830 		else if (tb_switch_is_titan_ridge(sw))
1831 			index = !phy_port ? 8 : 9;
1832 		else
1833 			goto out;
1834 
1835 		/* Validate the hard-coding */
1836 		if (WARN_ON(index > sw->config.max_port_number))
1837 			goto out;
1838 
1839 		down = &sw->ports[index];
1840 	}
1841 
1842 	if (down) {
1843 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1844 			goto out;
1845 		if (tb_pci_port_is_enabled(down))
1846 			goto out;
1847 
1848 		return down;
1849 	}
1850 
1851 out:
1852 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1853 }
1854 
1855 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1856 {
1857 	struct tb_port *host_port, *port;
1858 	struct tb_cm *tcm = tb_priv(tb);
1859 
1860 	host_port = tb_route(in->sw) ?
1861 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1862 
1863 	list_for_each_entry(port, &tcm->dp_resources, list) {
1864 		if (!tb_port_is_dpout(port))
1865 			continue;
1866 
1867 		if (tb_port_is_enabled(port)) {
1868 			tb_port_dbg(port, "DP OUT in use\n");
1869 			continue;
1870 		}
1871 
1872 		/* Needs to be on different routers */
1873 		if (in->sw == port->sw) {
1874 			tb_port_dbg(port, "skipping DP OUT on same router\n");
1875 			continue;
1876 		}
1877 
1878 		tb_port_dbg(port, "DP OUT available\n");
1879 
1880 		/*
1881 		 * Keep the DP tunnel under the topology starting from
1882 		 * the same host router downstream port.
1883 		 */
1884 		if (host_port && tb_route(port->sw)) {
1885 			struct tb_port *p;
1886 
1887 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1888 			if (p != host_port)
1889 				continue;
1890 		}
1891 
1892 		return port;
1893 	}
1894 
1895 	return NULL;
1896 }
1897 
1898 static void tb_dp_tunnel_active(struct tb_tunnel *tunnel, void *data)
1899 {
1900 	struct tb_port *in = tunnel->src_port;
1901 	struct tb_port *out = tunnel->dst_port;
1902 	struct tb *tb = data;
1903 
1904 	mutex_lock(&tb->lock);
1905 	if (tb_tunnel_is_active(tunnel)) {
1906 		int consumed_up, consumed_down, ret;
1907 
1908 		tb_tunnel_dbg(tunnel, "DPRX capabilities read completed\n");
1909 
1910 		/* If fail reading tunnel's consumed bandwidth, tear it down */
1911 		ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up,
1912 						   &consumed_down);
1913 		if (ret) {
1914 			tb_tunnel_warn(tunnel,
1915 				       "failed to read consumed bandwidth, tearing down\n");
1916 			tb_deactivate_and_free_tunnel(tunnel);
1917 		} else {
1918 			tb_reclaim_usb3_bandwidth(tb, in, out);
1919 			/*
1920 			 * Transition the links to asymmetric if the
1921 			 * consumption exceeds the threshold.
1922 			 */
1923 			tb_configure_asym(tb, in, out, consumed_up,
1924 					  consumed_down);
1925 			/*
1926 			 * Update the domain with the new bandwidth
1927 			 * estimation.
1928 			 */
1929 			tb_recalc_estimated_bandwidth(tb);
1930 			/*
1931 			 * In case of DP tunnel exists, change host
1932 			 * router's 1st children TMU mode to HiFi for
1933 			 * CL0s to work.
1934 			 */
1935 			tb_increase_tmu_accuracy(tunnel);
1936 		}
1937 	} else {
1938 		struct tb_port *in = tunnel->src_port;
1939 
1940 		/*
1941 		 * This tunnel failed to establish. This means DPRX
1942 		 * negotiation most likely did not complete which
1943 		 * happens either because there is no graphics driver
1944 		 * loaded or not all DP cables where connected to the
1945 		 * discrete router.
1946 		 *
1947 		 * In both cases we remove the DP IN adapter from the
1948 		 * available resources as it is not usable. This will
1949 		 * also tear down the tunnel and try to re-use the
1950 		 * released DP OUT.
1951 		 *
1952 		 * It will be added back only if there is hotplug for
1953 		 * the DP IN again.
1954 		 */
1955 		tb_tunnel_warn(tunnel, "not active, tearing down\n");
1956 		tb_dp_resource_unavailable(tb, in, "DPRX negotiation failed");
1957 	}
1958 	mutex_unlock(&tb->lock);
1959 
1960 	tb_domain_put(tb);
1961 }
1962 
1963 static void tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1964 			     struct tb_port *out)
1965 {
1966 	int available_up, available_down, ret, link_nr;
1967 	struct tb_cm *tcm = tb_priv(tb);
1968 	struct tb_tunnel *tunnel;
1969 
1970 	/*
1971 	 * This is only applicable to links that are not bonded (so
1972 	 * when Thunderbolt 1 hardware is involved somewhere in the
1973 	 * topology). For these try to share the DP bandwidth between
1974 	 * the two lanes.
1975 	 */
1976 	link_nr = 1;
1977 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1978 		if (tb_tunnel_is_dp(tunnel)) {
1979 			link_nr = 0;
1980 			break;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * DP stream needs the domain to be active so runtime resume
1986 	 * both ends of the tunnel.
1987 	 *
1988 	 * This should bring the routers in the middle active as well
1989 	 * and keeps the domain from runtime suspending while the DP
1990 	 * tunnel is active.
1991 	 */
1992 	pm_runtime_get_sync(&in->sw->dev);
1993 	pm_runtime_get_sync(&out->sw->dev);
1994 
1995 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1996 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1997 		goto err_rpm_put;
1998 	}
1999 
2000 	if (!tb_attach_bandwidth_group(tcm, in, out))
2001 		goto err_dealloc_dp;
2002 
2003 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
2004 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2005 	if (ret) {
2006 		tb_warn(tb, "failed to release unused bandwidth\n");
2007 		goto err_detach_group;
2008 	}
2009 
2010 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2011 				     true);
2012 	if (ret) {
2013 		tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out);
2014 		goto err_reclaim_usb;
2015 	}
2016 
2017 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
2018 	       available_up, available_down);
2019 
2020 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
2021 				    available_down, tb_dp_tunnel_active,
2022 				    tb_domain_get(tb));
2023 	if (!tunnel) {
2024 		tb_port_dbg(out, "could not allocate DP tunnel\n");
2025 		goto err_reclaim_usb;
2026 	}
2027 
2028 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2029 
2030 	ret = tb_tunnel_activate(tunnel);
2031 	if (ret && ret != -EINPROGRESS) {
2032 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
2033 		list_del(&tunnel->list);
2034 		goto err_free;
2035 	}
2036 
2037 	return;
2038 
2039 err_free:
2040 	tb_tunnel_put(tunnel);
2041 err_reclaim_usb:
2042 	tb_reclaim_usb3_bandwidth(tb, in, out);
2043 	tb_domain_put(tb);
2044 err_detach_group:
2045 	tb_detach_bandwidth_group(in);
2046 err_dealloc_dp:
2047 	tb_switch_dealloc_dp_resource(in->sw, in);
2048 err_rpm_put:
2049 	pm_runtime_mark_last_busy(&out->sw->dev);
2050 	pm_runtime_put_autosuspend(&out->sw->dev);
2051 	pm_runtime_mark_last_busy(&in->sw->dev);
2052 	pm_runtime_put_autosuspend(&in->sw->dev);
2053 }
2054 
2055 static void tb_tunnel_dp(struct tb *tb)
2056 {
2057 	struct tb_cm *tcm = tb_priv(tb);
2058 	struct tb_port *port, *in, *out;
2059 
2060 	if (!tb_acpi_may_tunnel_dp()) {
2061 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
2062 		return;
2063 	}
2064 
2065 	/*
2066 	 * Find pair of inactive DP IN and DP OUT adapters and then
2067 	 * establish a DP tunnel between them.
2068 	 */
2069 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
2070 
2071 	in = NULL;
2072 	out = NULL;
2073 	list_for_each_entry(port, &tcm->dp_resources, list) {
2074 		if (!tb_port_is_dpin(port))
2075 			continue;
2076 
2077 		if (tb_port_is_enabled(port)) {
2078 			tb_port_dbg(port, "DP IN in use\n");
2079 			continue;
2080 		}
2081 
2082 		in = port;
2083 		tb_port_dbg(in, "DP IN available\n");
2084 
2085 		out = tb_find_dp_out(tb, port);
2086 		if (out)
2087 			tb_tunnel_one_dp(tb, in, out);
2088 		else
2089 			tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
2090 	}
2091 
2092 	if (!in)
2093 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
2094 }
2095 
2096 static void tb_enter_redrive(struct tb_port *port)
2097 {
2098 	struct tb_switch *sw = port->sw;
2099 
2100 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2101 		return;
2102 
2103 	/*
2104 	 * If we get hot-unplug for the DP IN port of the host router
2105 	 * and the DP resource is not available anymore it means there
2106 	 * is a monitor connected directly to the Type-C port and we are
2107 	 * in "redrive" mode. For this to work we cannot enter RTD3 so
2108 	 * we bump up the runtime PM reference count here.
2109 	 */
2110 	if (!tb_port_is_dpin(port))
2111 		return;
2112 	if (tb_route(sw))
2113 		return;
2114 	if (!tb_switch_query_dp_resource(sw, port)) {
2115 		port->redrive = true;
2116 		pm_runtime_get(&sw->dev);
2117 		tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2118 	}
2119 }
2120 
2121 static void tb_exit_redrive(struct tb_port *port)
2122 {
2123 	struct tb_switch *sw = port->sw;
2124 
2125 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2126 		return;
2127 
2128 	if (!tb_port_is_dpin(port))
2129 		return;
2130 	if (tb_route(sw))
2131 		return;
2132 	if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
2133 		port->redrive = false;
2134 		pm_runtime_put(&sw->dev);
2135 		tb_port_dbg(port, "exit redrive mode\n");
2136 	}
2137 }
2138 
2139 static void tb_switch_enter_redrive(struct tb_switch *sw)
2140 {
2141 	struct tb_port *port;
2142 
2143 	tb_switch_for_each_port(sw, port)
2144 		tb_enter_redrive(port);
2145 }
2146 
2147 /*
2148  * Called during system and runtime suspend to forcefully exit redrive
2149  * mode without querying whether the resource is available.
2150  */
2151 static void tb_switch_exit_redrive(struct tb_switch *sw)
2152 {
2153 	struct tb_port *port;
2154 
2155 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2156 		return;
2157 
2158 	tb_switch_for_each_port(sw, port) {
2159 		if (!tb_port_is_dpin(port))
2160 			continue;
2161 
2162 		if (port->redrive) {
2163 			port->redrive = false;
2164 			pm_runtime_put(&sw->dev);
2165 			tb_port_dbg(port, "exit redrive mode\n");
2166 		}
2167 	}
2168 }
2169 
2170 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
2171 				       const char *reason)
2172 {
2173 	struct tb_port *in, *out;
2174 	struct tb_tunnel *tunnel;
2175 
2176 	if (tb_port_is_dpin(port)) {
2177 		tb_port_dbg(port, "DP IN resource unavailable: %s\n", reason);
2178 		in = port;
2179 		out = NULL;
2180 	} else {
2181 		tb_port_dbg(port, "DP OUT resource unavailable: %s\n", reason);
2182 		in = NULL;
2183 		out = port;
2184 	}
2185 
2186 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
2187 	if (tunnel)
2188 		tb_deactivate_and_free_tunnel(tunnel);
2189 	else
2190 		tb_enter_redrive(port);
2191 	list_del_init(&port->list);
2192 
2193 	/*
2194 	 * See if there is another DP OUT port that can be used for
2195 	 * to create another tunnel.
2196 	 */
2197 	tb_recalc_estimated_bandwidth(tb);
2198 	tb_tunnel_dp(tb);
2199 }
2200 
2201 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2202 {
2203 	struct tb_cm *tcm = tb_priv(tb);
2204 	struct tb_port *p;
2205 
2206 	if (tb_port_is_enabled(port))
2207 		return;
2208 
2209 	list_for_each_entry(p, &tcm->dp_resources, list) {
2210 		if (p == port)
2211 			return;
2212 	}
2213 
2214 	tb_port_dbg(port, "DP %s resource available after hotplug\n",
2215 		    tb_port_is_dpin(port) ? "IN" : "OUT");
2216 	list_add_tail(&port->list, &tcm->dp_resources);
2217 	tb_exit_redrive(port);
2218 
2219 	/* Look for suitable DP IN <-> DP OUT pairs now */
2220 	tb_tunnel_dp(tb);
2221 }
2222 
2223 static void tb_disconnect_and_release_dp(struct tb *tb)
2224 {
2225 	struct tb_cm *tcm = tb_priv(tb);
2226 	struct tb_tunnel *tunnel, *n;
2227 
2228 	/*
2229 	 * Tear down all DP tunnels and release their resources. They
2230 	 * will be re-established after resume based on plug events.
2231 	 */
2232 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2233 		if (tb_tunnel_is_dp(tunnel))
2234 			tb_deactivate_and_free_tunnel(tunnel);
2235 	}
2236 
2237 	while (!list_empty(&tcm->dp_resources)) {
2238 		struct tb_port *port;
2239 
2240 		port = list_first_entry(&tcm->dp_resources,
2241 					struct tb_port, list);
2242 		list_del_init(&port->list);
2243 	}
2244 }
2245 
2246 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2247 {
2248 	struct tb_tunnel *tunnel;
2249 	struct tb_port *up;
2250 
2251 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2252 	if (WARN_ON(!up))
2253 		return -ENODEV;
2254 
2255 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2256 	if (WARN_ON(!tunnel))
2257 		return -ENODEV;
2258 
2259 	tb_switch_xhci_disconnect(sw);
2260 
2261 	tb_tunnel_deactivate(tunnel);
2262 	list_del(&tunnel->list);
2263 	tb_tunnel_put(tunnel);
2264 	return 0;
2265 }
2266 
2267 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2268 {
2269 	struct tb_port *up, *down, *port;
2270 	struct tb_cm *tcm = tb_priv(tb);
2271 	struct tb_tunnel *tunnel;
2272 
2273 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2274 	if (!up)
2275 		return 0;
2276 
2277 	/*
2278 	 * Look up available down port. Since we are chaining it should
2279 	 * be found right above this switch.
2280 	 */
2281 	port = tb_switch_downstream_port(sw);
2282 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
2283 	if (!down)
2284 		return 0;
2285 
2286 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2287 	if (!tunnel)
2288 		return -ENOMEM;
2289 
2290 	if (tb_tunnel_activate(tunnel)) {
2291 		tb_port_info(up,
2292 			     "PCIe tunnel activation failed, aborting\n");
2293 		tb_tunnel_put(tunnel);
2294 		return -EIO;
2295 	}
2296 
2297 	/*
2298 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2299 	 * here.
2300 	 */
2301 	if (tb_switch_pcie_l1_enable(sw))
2302 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2303 
2304 	if (tb_switch_xhci_connect(sw))
2305 		tb_sw_warn(sw, "failed to connect xHCI\n");
2306 
2307 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2308 	return 0;
2309 }
2310 
2311 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2312 				    int transmit_path, int transmit_ring,
2313 				    int receive_path, int receive_ring)
2314 {
2315 	struct tb_cm *tcm = tb_priv(tb);
2316 	struct tb_port *nhi_port, *dst_port;
2317 	struct tb_tunnel *tunnel;
2318 	struct tb_switch *sw;
2319 	int ret;
2320 
2321 	sw = tb_to_switch(xd->dev.parent);
2322 	dst_port = tb_port_at(xd->route, sw);
2323 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2324 
2325 	mutex_lock(&tb->lock);
2326 
2327 	/*
2328 	 * When tunneling DMA paths the link should not enter CL states
2329 	 * so disable them now.
2330 	 */
2331 	tb_disable_clx(sw);
2332 
2333 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2334 				     transmit_ring, receive_path, receive_ring);
2335 	if (!tunnel) {
2336 		ret = -ENOMEM;
2337 		goto err_clx;
2338 	}
2339 
2340 	if (tb_tunnel_activate(tunnel)) {
2341 		tb_port_info(nhi_port,
2342 			     "DMA tunnel activation failed, aborting\n");
2343 		ret = -EIO;
2344 		goto err_free;
2345 	}
2346 
2347 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2348 	mutex_unlock(&tb->lock);
2349 	return 0;
2350 
2351 err_free:
2352 	tb_tunnel_put(tunnel);
2353 err_clx:
2354 	tb_enable_clx(sw);
2355 	mutex_unlock(&tb->lock);
2356 
2357 	return ret;
2358 }
2359 
2360 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2361 					  int transmit_path, int transmit_ring,
2362 					  int receive_path, int receive_ring)
2363 {
2364 	struct tb_cm *tcm = tb_priv(tb);
2365 	struct tb_port *nhi_port, *dst_port;
2366 	struct tb_tunnel *tunnel, *n;
2367 	struct tb_switch *sw;
2368 
2369 	sw = tb_to_switch(xd->dev.parent);
2370 	dst_port = tb_port_at(xd->route, sw);
2371 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2372 
2373 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2374 		if (!tb_tunnel_is_dma(tunnel))
2375 			continue;
2376 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2377 			continue;
2378 
2379 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2380 					receive_path, receive_ring))
2381 			tb_deactivate_and_free_tunnel(tunnel);
2382 	}
2383 
2384 	/*
2385 	 * Try to re-enable CL states now, it is OK if this fails
2386 	 * because we may still have another DMA tunnel active through
2387 	 * the same host router USB4 downstream port.
2388 	 */
2389 	tb_enable_clx(sw);
2390 }
2391 
2392 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2393 				       int transmit_path, int transmit_ring,
2394 				       int receive_path, int receive_ring)
2395 {
2396 	if (!xd->is_unplugged) {
2397 		mutex_lock(&tb->lock);
2398 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2399 					      transmit_ring, receive_path,
2400 					      receive_ring);
2401 		mutex_unlock(&tb->lock);
2402 	}
2403 	return 0;
2404 }
2405 
2406 /* hotplug handling */
2407 
2408 /*
2409  * tb_handle_hotplug() - handle hotplug event
2410  *
2411  * Executes on tb->wq.
2412  */
2413 static void tb_handle_hotplug(struct work_struct *work)
2414 {
2415 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2416 	struct tb *tb = ev->tb;
2417 	struct tb_cm *tcm = tb_priv(tb);
2418 	struct tb_switch *sw;
2419 	struct tb_port *port;
2420 
2421 	/* Bring the domain back from sleep if it was suspended */
2422 	pm_runtime_get_sync(&tb->dev);
2423 
2424 	mutex_lock(&tb->lock);
2425 	if (!tcm->hotplug_active)
2426 		goto out; /* during init, suspend or shutdown */
2427 
2428 	sw = tb_switch_find_by_route(tb, ev->route);
2429 	if (!sw) {
2430 		tb_warn(tb,
2431 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2432 			ev->route, ev->port, ev->unplug);
2433 		goto out;
2434 	}
2435 	if (ev->port > sw->config.max_port_number) {
2436 		tb_warn(tb,
2437 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2438 			ev->route, ev->port, ev->unplug);
2439 		goto put_sw;
2440 	}
2441 	port = &sw->ports[ev->port];
2442 	if (tb_is_upstream_port(port)) {
2443 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2444 		       ev->route, ev->port, ev->unplug);
2445 		goto put_sw;
2446 	}
2447 
2448 	pm_runtime_get_sync(&sw->dev);
2449 
2450 	if (ev->unplug) {
2451 		tb_retimer_remove_all(port);
2452 
2453 		if (tb_port_has_remote(port)) {
2454 			tb_port_dbg(port, "switch unplugged\n");
2455 			tb_sw_set_unplugged(port->remote->sw);
2456 			tb_free_invalid_tunnels(tb);
2457 			tb_remove_dp_resources(port->remote->sw);
2458 			tb_switch_tmu_disable(port->remote->sw);
2459 			tb_switch_unconfigure_link(port->remote->sw);
2460 			tb_switch_set_link_width(port->remote->sw,
2461 						 TB_LINK_WIDTH_SINGLE);
2462 			tb_switch_remove(port->remote->sw);
2463 			port->remote = NULL;
2464 			if (port->dual_link_port)
2465 				port->dual_link_port->remote = NULL;
2466 			/* Maybe we can create another DP tunnel */
2467 			tb_recalc_estimated_bandwidth(tb);
2468 			tb_tunnel_dp(tb);
2469 		} else if (port->xdomain) {
2470 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2471 
2472 			tb_port_dbg(port, "xdomain unplugged\n");
2473 			/*
2474 			 * Service drivers are unbound during
2475 			 * tb_xdomain_remove() so setting XDomain as
2476 			 * unplugged here prevents deadlock if they call
2477 			 * tb_xdomain_disable_paths(). We will tear down
2478 			 * all the tunnels below.
2479 			 */
2480 			xd->is_unplugged = true;
2481 			tb_xdomain_remove(xd);
2482 			port->xdomain = NULL;
2483 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2484 			tb_xdomain_put(xd);
2485 			tb_port_unconfigure_xdomain(port);
2486 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2487 			tb_dp_resource_unavailable(tb, port, "adapter unplug");
2488 		} else if (!port->port) {
2489 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2490 			tb_switch_xhci_disconnect(sw);
2491 		} else {
2492 			tb_port_dbg(port,
2493 				   "got unplug event for disconnected port, ignoring\n");
2494 		}
2495 	} else if (port->remote) {
2496 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2497 	} else if (!port->port && sw->authorized) {
2498 		tb_sw_dbg(sw, "xHCI connect request\n");
2499 		tb_switch_xhci_connect(sw);
2500 	} else {
2501 		if (tb_port_is_null(port)) {
2502 			tb_port_dbg(port, "hotplug: scanning\n");
2503 			tb_scan_port(port);
2504 			if (!port->remote)
2505 				tb_port_dbg(port, "hotplug: no switch found\n");
2506 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2507 			tb_dp_resource_available(tb, port);
2508 		}
2509 	}
2510 
2511 	pm_runtime_mark_last_busy(&sw->dev);
2512 	pm_runtime_put_autosuspend(&sw->dev);
2513 
2514 put_sw:
2515 	tb_switch_put(sw);
2516 out:
2517 	mutex_unlock(&tb->lock);
2518 
2519 	pm_runtime_mark_last_busy(&tb->dev);
2520 	pm_runtime_put_autosuspend(&tb->dev);
2521 
2522 	kfree(ev);
2523 }
2524 
2525 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2526 				 int *requested_down)
2527 {
2528 	int allocated_up, allocated_down, available_up, available_down, ret;
2529 	int requested_up_corrected, requested_down_corrected, granularity;
2530 	int max_up, max_down, max_up_rounded, max_down_rounded;
2531 	struct tb_bandwidth_group *group;
2532 	struct tb *tb = tunnel->tb;
2533 	struct tb_port *in, *out;
2534 	bool downstream;
2535 
2536 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2537 	if (ret)
2538 		return ret;
2539 
2540 	in = tunnel->src_port;
2541 	out = tunnel->dst_port;
2542 
2543 	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2544 		      allocated_up, allocated_down);
2545 
2546 	/*
2547 	 * If we get rounded up request from graphics side, say HBR2 x 4
2548 	 * that is 17500 instead of 17280 (this is because of the
2549 	 * granularity), we allow it too. Here the graphics has already
2550 	 * negotiated with the DPRX the maximum possible rates (which is
2551 	 * 17280 in this case).
2552 	 *
2553 	 * Since the link cannot go higher than 17280 we use that in our
2554 	 * calculations but the DP IN adapter Allocated BW write must be
2555 	 * the same value (17500) otherwise the adapter will mark it as
2556 	 * failed for graphics.
2557 	 */
2558 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2559 	if (ret)
2560 		goto fail;
2561 
2562 	ret = usb4_dp_port_granularity(in);
2563 	if (ret < 0)
2564 		goto fail;
2565 	granularity = ret;
2566 
2567 	max_up_rounded = roundup(max_up, granularity);
2568 	max_down_rounded = roundup(max_down, granularity);
2569 
2570 	/*
2571 	 * This will "fix" the request down to the maximum supported
2572 	 * rate * lanes if it is at the maximum rounded up level.
2573 	 */
2574 	requested_up_corrected = *requested_up;
2575 	if (requested_up_corrected == max_up_rounded)
2576 		requested_up_corrected = max_up;
2577 	else if (requested_up_corrected < 0)
2578 		requested_up_corrected = 0;
2579 	requested_down_corrected = *requested_down;
2580 	if (requested_down_corrected == max_down_rounded)
2581 		requested_down_corrected = max_down;
2582 	else if (requested_down_corrected < 0)
2583 		requested_down_corrected = 0;
2584 
2585 	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2586 		      requested_up_corrected, requested_down_corrected);
2587 
2588 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2589 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2590 		tb_tunnel_dbg(tunnel,
2591 			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2592 			      requested_up_corrected, requested_down_corrected,
2593 			      max_up_rounded, max_down_rounded);
2594 		ret = -ENOBUFS;
2595 		goto fail;
2596 	}
2597 
2598 	downstream = tb_tunnel_direction_downstream(tunnel);
2599 	group = in->group;
2600 
2601 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2602 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2603 		if (tunnel->bw_mode) {
2604 			int reserved;
2605 			/*
2606 			 * If requested bandwidth is less or equal than
2607 			 * what is currently allocated to that tunnel we
2608 			 * simply change the reservation of the tunnel
2609 			 * and add the released bandwidth for the group
2610 			 * for the next 10s. Then we release it for
2611 			 * others to use.
2612 			 */
2613 			if (downstream)
2614 				reserved = allocated_down - *requested_down;
2615 			else
2616 				reserved = allocated_up - *requested_up;
2617 
2618 			if (reserved > 0) {
2619 				group->reserved += reserved;
2620 				tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2621 				       group->index, reserved, group->reserved);
2622 
2623 				/*
2624 				 * If it was not already pending,
2625 				 * schedule release now. If it is then
2626 				 * postpone it for the next 10s (unless
2627 				 * it is already running in which case
2628 				 * the 10s already expired and we should
2629 				 * give the reserved back to others).
2630 				 */
2631 				mod_delayed_work(system_wq, &group->release_work,
2632 					msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2633 			}
2634 		}
2635 
2636 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2637 						requested_down);
2638 		if (ret)
2639 			goto fail;
2640 
2641 		return 0;
2642 	}
2643 
2644 	/*
2645 	 * More bandwidth is requested. Release all the potential
2646 	 * bandwidth from USB3 first.
2647 	 */
2648 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2649 	if (ret)
2650 		goto fail;
2651 
2652 	/*
2653 	 * Then go over all tunnels that cross the same USB4 ports (they
2654 	 * are also in the same group but we use the same function here
2655 	 * that we use with the normal bandwidth allocation).
2656 	 */
2657 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2658 				     true);
2659 	if (ret)
2660 		goto reclaim;
2661 
2662 	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2663 		      available_up, available_down, group->reserved);
2664 
2665 	if ((*requested_up >= 0 &&
2666 		available_up + group->reserved >= requested_up_corrected) ||
2667 	    (*requested_down >= 0 &&
2668 		available_down + group->reserved >= requested_down_corrected)) {
2669 		int released = 0;
2670 
2671 		/*
2672 		 * If bandwidth on a link is >= asym_threshold
2673 		 * transition the link to asymmetric.
2674 		 */
2675 		ret = tb_configure_asym(tb, in, out, *requested_up,
2676 					*requested_down);
2677 		if (ret) {
2678 			tb_configure_sym(tb, in, out, true);
2679 			goto fail;
2680 		}
2681 
2682 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2683 						requested_down);
2684 		if (ret) {
2685 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2686 			tb_configure_sym(tb, in, out, true);
2687 		}
2688 
2689 		if (downstream) {
2690 			if (*requested_down > available_down)
2691 				released = *requested_down - available_down;
2692 		} else {
2693 			if (*requested_up > available_up)
2694 				released = *requested_up - available_up;
2695 		}
2696 		if (released) {
2697 			group->reserved -= released;
2698 			tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2699 			       group->index, released, group->reserved);
2700 		}
2701 	} else {
2702 		ret = -ENOBUFS;
2703 	}
2704 
2705 reclaim:
2706 	tb_reclaim_usb3_bandwidth(tb, in, out);
2707 fail:
2708 	if (ret && ret != -ENODEV) {
2709 		/*
2710 		 * Write back the same allocated (so no change), this
2711 		 * makes the DPTX request fail on graphics side.
2712 		 */
2713 		tb_tunnel_dbg(tunnel,
2714 			      "failing the request by rewriting allocated %d/%d Mb/s\n",
2715 			      allocated_up, allocated_down);
2716 		tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down);
2717 		tb_tunnel_event(tb, TB_TUNNEL_NO_BANDWIDTH, TB_TUNNEL_DP, in, out);
2718 	}
2719 
2720 	return ret;
2721 }
2722 
2723 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2724 {
2725 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2726 	int requested_bw, requested_up, requested_down, ret;
2727 	struct tb_tunnel *tunnel;
2728 	struct tb *tb = ev->tb;
2729 	struct tb_cm *tcm = tb_priv(tb);
2730 	struct tb_switch *sw;
2731 	struct tb_port *in;
2732 
2733 	pm_runtime_get_sync(&tb->dev);
2734 
2735 	mutex_lock(&tb->lock);
2736 	if (!tcm->hotplug_active)
2737 		goto unlock;
2738 
2739 	sw = tb_switch_find_by_route(tb, ev->route);
2740 	if (!sw) {
2741 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2742 			ev->route);
2743 		goto unlock;
2744 	}
2745 
2746 	in = &sw->ports[ev->port];
2747 	if (!tb_port_is_dpin(in)) {
2748 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2749 		goto put_sw;
2750 	}
2751 
2752 	tb_port_dbg(in, "handling bandwidth allocation request, retry %d\n", ev->retry);
2753 
2754 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2755 	if (!tunnel) {
2756 		tb_port_warn(in, "failed to find tunnel\n");
2757 		goto put_sw;
2758 	}
2759 
2760 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2761 		if (tunnel->bw_mode) {
2762 			/*
2763 			 * Reset the tunnel back to use the legacy
2764 			 * allocation.
2765 			 */
2766 			tunnel->bw_mode = false;
2767 			tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2768 		} else {
2769 			tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2770 		}
2771 		goto put_sw;
2772 	}
2773 
2774 	ret = usb4_dp_port_requested_bandwidth(in);
2775 	if (ret < 0) {
2776 		if (ret == -ENODATA) {
2777 			/*
2778 			 * There is no request active so this means the
2779 			 * BW allocation mode was enabled from graphics
2780 			 * side. At this point we know that the graphics
2781 			 * driver has read the DRPX capabilities so we
2782 			 * can offer an better bandwidth estimatation.
2783 			 */
2784 			tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2785 			tb_recalc_estimated_bandwidth(tb);
2786 		} else {
2787 			tb_port_warn(in, "failed to read requested bandwidth\n");
2788 		}
2789 		goto put_sw;
2790 	}
2791 	requested_bw = ret;
2792 
2793 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2794 
2795 	if (tb_tunnel_direction_downstream(tunnel)) {
2796 		requested_up = -1;
2797 		requested_down = requested_bw;
2798 	} else {
2799 		requested_up = requested_bw;
2800 		requested_down = -1;
2801 	}
2802 
2803 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2804 	if (ret) {
2805 		if (ret == -ENOBUFS) {
2806 			tb_tunnel_warn(tunnel,
2807 				       "not enough bandwidth available\n");
2808 		} else if (ret == -ENOTCONN) {
2809 			tb_tunnel_dbg(tunnel, "not active yet\n");
2810 			/*
2811 			 * We got bandwidth allocation request but the
2812 			 * tunnel is not yet active. This means that
2813 			 * tb_dp_tunnel_active() is not yet called for
2814 			 * this tunnel. Allow it some time and retry
2815 			 * this request a couple of times.
2816 			 */
2817 			if (ev->retry < TB_BW_ALLOC_RETRIES) {
2818 				tb_tunnel_dbg(tunnel,
2819 					      "retrying bandwidth allocation request\n");
2820 				tb_queue_dp_bandwidth_request(tb, ev->route,
2821 							      ev->port,
2822 							      ev->retry + 1,
2823 							      msecs_to_jiffies(50));
2824 			} else {
2825 				tb_tunnel_dbg(tunnel,
2826 					      "run out of retries, failing the request");
2827 			}
2828 		} else {
2829 			tb_tunnel_warn(tunnel,
2830 				       "failed to change bandwidth allocation\n");
2831 		}
2832 	} else {
2833 		tb_tunnel_dbg(tunnel,
2834 			      "bandwidth allocation changed to %d/%d Mb/s\n",
2835 			      requested_up, requested_down);
2836 
2837 		/* Update other clients about the allocation change */
2838 		tb_recalc_estimated_bandwidth(tb);
2839 	}
2840 
2841 put_sw:
2842 	tb_switch_put(sw);
2843 unlock:
2844 	mutex_unlock(&tb->lock);
2845 
2846 	pm_runtime_mark_last_busy(&tb->dev);
2847 	pm_runtime_put_autosuspend(&tb->dev);
2848 
2849 	kfree(ev);
2850 }
2851 
2852 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
2853 					  int retry, unsigned long delay)
2854 {
2855 	struct tb_hotplug_event *ev;
2856 
2857 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2858 	if (!ev)
2859 		return;
2860 
2861 	ev->tb = tb;
2862 	ev->route = route;
2863 	ev->port = port;
2864 	ev->retry = retry;
2865 	INIT_DELAYED_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2866 	queue_delayed_work(tb->wq, &ev->work, delay);
2867 }
2868 
2869 static void tb_handle_notification(struct tb *tb, u64 route,
2870 				   const struct cfg_error_pkg *error)
2871 {
2872 
2873 	switch (error->error) {
2874 	case TB_CFG_ERROR_PCIE_WAKE:
2875 	case TB_CFG_ERROR_DP_CON_CHANGE:
2876 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2877 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2878 			tb_warn(tb, "could not ack notification on %llx\n",
2879 				route);
2880 		break;
2881 
2882 	case TB_CFG_ERROR_DP_BW:
2883 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2884 			tb_warn(tb, "could not ack notification on %llx\n",
2885 				route);
2886 		tb_queue_dp_bandwidth_request(tb, route, error->port, 0, 0);
2887 		break;
2888 
2889 	default:
2890 		/* Ignore for now */
2891 		break;
2892 	}
2893 }
2894 
2895 /*
2896  * tb_schedule_hotplug_handler() - callback function for the control channel
2897  *
2898  * Delegates to tb_handle_hotplug.
2899  */
2900 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2901 			    const void *buf, size_t size)
2902 {
2903 	const struct cfg_event_pkg *pkg = buf;
2904 	u64 route = tb_cfg_get_route(&pkg->header);
2905 
2906 	switch (type) {
2907 	case TB_CFG_PKG_ERROR:
2908 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2909 		return;
2910 	case TB_CFG_PKG_EVENT:
2911 		break;
2912 	default:
2913 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2914 		return;
2915 	}
2916 
2917 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2918 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2919 			pkg->port);
2920 	}
2921 
2922 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2923 }
2924 
2925 static void tb_stop(struct tb *tb)
2926 {
2927 	struct tb_cm *tcm = tb_priv(tb);
2928 	struct tb_tunnel *tunnel;
2929 	struct tb_tunnel *n;
2930 
2931 	cancel_delayed_work(&tcm->remove_work);
2932 	/* tunnels are only present after everything has been initialized */
2933 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2934 		/*
2935 		 * DMA tunnels require the driver to be functional so we
2936 		 * tear them down. Other protocol tunnels can be left
2937 		 * intact.
2938 		 */
2939 		if (tb_tunnel_is_dma(tunnel))
2940 			tb_tunnel_deactivate(tunnel);
2941 		tb_tunnel_put(tunnel);
2942 	}
2943 	tb_switch_remove(tb->root_switch);
2944 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2945 }
2946 
2947 static void tb_deinit(struct tb *tb)
2948 {
2949 	struct tb_cm *tcm = tb_priv(tb);
2950 	int i;
2951 
2952 	/* Cancel all the release bandwidth workers */
2953 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2954 		cancel_delayed_work_sync(&tcm->groups[i].release_work);
2955 }
2956 
2957 static int tb_scan_finalize_switch(struct device *dev, void *data)
2958 {
2959 	if (tb_is_switch(dev)) {
2960 		struct tb_switch *sw = tb_to_switch(dev);
2961 
2962 		/*
2963 		 * If we found that the switch was already setup by the
2964 		 * boot firmware, mark it as authorized now before we
2965 		 * send uevent to userspace.
2966 		 */
2967 		if (sw->boot)
2968 			sw->authorized = 1;
2969 
2970 		dev_set_uevent_suppress(dev, false);
2971 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2972 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 static int tb_start(struct tb *tb, bool reset)
2979 {
2980 	struct tb_cm *tcm = tb_priv(tb);
2981 	bool discover = true;
2982 	int ret;
2983 
2984 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2985 	if (IS_ERR(tb->root_switch))
2986 		return PTR_ERR(tb->root_switch);
2987 
2988 	/*
2989 	 * ICM firmware upgrade needs running firmware and in native
2990 	 * mode that is not available so disable firmware upgrade of the
2991 	 * root switch.
2992 	 *
2993 	 * However, USB4 routers support NVM firmware upgrade if they
2994 	 * implement the necessary router operations.
2995 	 */
2996 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2997 	/* All USB4 routers support runtime PM */
2998 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2999 
3000 	ret = tb_switch_configure(tb->root_switch);
3001 	if (ret) {
3002 		tb_switch_put(tb->root_switch);
3003 		return ret;
3004 	}
3005 
3006 	/* Announce the switch to the world */
3007 	ret = tb_switch_add(tb->root_switch);
3008 	if (ret) {
3009 		tb_switch_put(tb->root_switch);
3010 		return ret;
3011 	}
3012 
3013 	/*
3014 	 * To support highest CLx state, we set host router's TMU to
3015 	 * Normal mode.
3016 	 */
3017 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
3018 	/* Enable TMU if it is off */
3019 	tb_switch_tmu_enable(tb->root_switch);
3020 
3021 	/*
3022 	 * Boot firmware might have created tunnels of its own. Since we
3023 	 * cannot be sure they are usable for us, tear them down and
3024 	 * reset the ports to handle it as new hotplug for USB4 v1
3025 	 * routers (for USB4 v2 and beyond we already do host reset).
3026 	 */
3027 	if (reset && tb_switch_is_usb4(tb->root_switch)) {
3028 		discover = false;
3029 		if (usb4_switch_version(tb->root_switch) == 1)
3030 			tb_switch_reset(tb->root_switch);
3031 	}
3032 
3033 	if (discover) {
3034 		/* Full scan to discover devices added before the driver was loaded. */
3035 		tb_scan_switch(tb->root_switch);
3036 		/* Find out tunnels created by the boot firmware */
3037 		tb_discover_tunnels(tb);
3038 		/* Add DP resources from the DP tunnels created by the boot firmware */
3039 		tb_discover_dp_resources(tb);
3040 	}
3041 
3042 	/*
3043 	 * If the boot firmware did not create USB 3.x tunnels create them
3044 	 * now for the whole topology.
3045 	 */
3046 	tb_create_usb3_tunnels(tb->root_switch);
3047 	/* Add DP IN resources for the root switch */
3048 	tb_add_dp_resources(tb->root_switch);
3049 	tb_switch_enter_redrive(tb->root_switch);
3050 	/* Make the discovered switches available to the userspace */
3051 	device_for_each_child(&tb->root_switch->dev, NULL,
3052 			      tb_scan_finalize_switch);
3053 
3054 	/* Allow tb_handle_hotplug to progress events */
3055 	tcm->hotplug_active = true;
3056 	return 0;
3057 }
3058 
3059 static int tb_suspend_noirq(struct tb *tb)
3060 {
3061 	struct tb_cm *tcm = tb_priv(tb);
3062 
3063 	tb_dbg(tb, "suspending...\n");
3064 	tb_disconnect_and_release_dp(tb);
3065 	tb_switch_exit_redrive(tb->root_switch);
3066 	tb_switch_suspend(tb->root_switch, false);
3067 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
3068 	tb_dbg(tb, "suspend finished\n");
3069 
3070 	return 0;
3071 }
3072 
3073 static void tb_restore_children(struct tb_switch *sw)
3074 {
3075 	struct tb_port *port;
3076 
3077 	/* No need to restore if the router is already unplugged */
3078 	if (sw->is_unplugged)
3079 		return;
3080 
3081 	if (tb_enable_clx(sw))
3082 		tb_sw_warn(sw, "failed to re-enable CL states\n");
3083 
3084 	if (tb_enable_tmu(sw))
3085 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
3086 
3087 	tb_switch_configuration_valid(sw);
3088 
3089 	tb_switch_for_each_port(sw, port) {
3090 		if (!tb_port_has_remote(port) && !port->xdomain)
3091 			continue;
3092 
3093 		if (port->remote) {
3094 			tb_switch_set_link_width(port->remote->sw,
3095 						 port->remote->sw->link_width);
3096 			tb_switch_configure_link(port->remote->sw);
3097 
3098 			tb_restore_children(port->remote->sw);
3099 		} else if (port->xdomain) {
3100 			tb_port_configure_xdomain(port, port->xdomain);
3101 		}
3102 	}
3103 }
3104 
3105 static int tb_resume_noirq(struct tb *tb)
3106 {
3107 	struct tb_cm *tcm = tb_priv(tb);
3108 	struct tb_tunnel *tunnel, *n;
3109 	unsigned int usb3_delay = 0;
3110 	LIST_HEAD(tunnels);
3111 
3112 	tb_dbg(tb, "resuming...\n");
3113 
3114 	/*
3115 	 * For non-USB4 hosts (Apple systems) remove any PCIe devices
3116 	 * the firmware might have setup.
3117 	 */
3118 	if (!tb_switch_is_usb4(tb->root_switch))
3119 		tb_switch_reset(tb->root_switch);
3120 
3121 	tb_switch_resume(tb->root_switch, false);
3122 	tb_free_invalid_tunnels(tb);
3123 	tb_free_unplugged_children(tb->root_switch);
3124 	tb_restore_children(tb->root_switch);
3125 
3126 	/*
3127 	 * If we get here from suspend to disk the boot firmware or the
3128 	 * restore kernel might have created tunnels of its own. Since
3129 	 * we cannot be sure they are usable for us we find and tear
3130 	 * them down.
3131 	 */
3132 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
3133 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
3134 		if (tb_tunnel_is_usb3(tunnel))
3135 			usb3_delay = 500;
3136 		tb_tunnel_deactivate(tunnel);
3137 		tb_tunnel_put(tunnel);
3138 	}
3139 
3140 	/* Re-create our tunnels now */
3141 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
3142 		/* USB3 requires delay before it can be re-activated */
3143 		if (tb_tunnel_is_usb3(tunnel)) {
3144 			msleep(usb3_delay);
3145 			/* Only need to do it once */
3146 			usb3_delay = 0;
3147 		}
3148 		tb_tunnel_activate(tunnel);
3149 	}
3150 	if (!list_empty(&tcm->tunnel_list)) {
3151 		/*
3152 		 * the pcie links need some time to get going.
3153 		 * 100ms works for me...
3154 		 */
3155 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
3156 		msleep(100);
3157 	}
3158 	tb_switch_enter_redrive(tb->root_switch);
3159 	 /* Allow tb_handle_hotplug to progress events */
3160 	tcm->hotplug_active = true;
3161 	tb_dbg(tb, "resume finished\n");
3162 
3163 	return 0;
3164 }
3165 
3166 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
3167 {
3168 	struct tb_port *port;
3169 	int ret = 0;
3170 
3171 	tb_switch_for_each_port(sw, port) {
3172 		if (tb_is_upstream_port(port))
3173 			continue;
3174 		if (port->xdomain && port->xdomain->is_unplugged) {
3175 			tb_retimer_remove_all(port);
3176 			tb_xdomain_remove(port->xdomain);
3177 			tb_port_unconfigure_xdomain(port);
3178 			port->xdomain = NULL;
3179 			ret++;
3180 		} else if (port->remote) {
3181 			ret += tb_free_unplugged_xdomains(port->remote->sw);
3182 		}
3183 	}
3184 
3185 	return ret;
3186 }
3187 
3188 static int tb_freeze_noirq(struct tb *tb)
3189 {
3190 	struct tb_cm *tcm = tb_priv(tb);
3191 
3192 	tcm->hotplug_active = false;
3193 	return 0;
3194 }
3195 
3196 static int tb_thaw_noirq(struct tb *tb)
3197 {
3198 	struct tb_cm *tcm = tb_priv(tb);
3199 
3200 	tcm->hotplug_active = true;
3201 	return 0;
3202 }
3203 
3204 static void tb_complete(struct tb *tb)
3205 {
3206 	/*
3207 	 * Release any unplugged XDomains and if there is a case where
3208 	 * another domain is swapped in place of unplugged XDomain we
3209 	 * need to run another rescan.
3210 	 */
3211 	mutex_lock(&tb->lock);
3212 	if (tb_free_unplugged_xdomains(tb->root_switch))
3213 		tb_scan_switch(tb->root_switch);
3214 	mutex_unlock(&tb->lock);
3215 }
3216 
3217 static int tb_runtime_suspend(struct tb *tb)
3218 {
3219 	struct tb_cm *tcm = tb_priv(tb);
3220 
3221 	mutex_lock(&tb->lock);
3222 	/*
3223 	 * The below call only releases DP resources to allow exiting and
3224 	 * re-entering redrive mode.
3225 	 */
3226 	tb_disconnect_and_release_dp(tb);
3227 	tb_switch_exit_redrive(tb->root_switch);
3228 	tb_switch_suspend(tb->root_switch, true);
3229 	tcm->hotplug_active = false;
3230 	mutex_unlock(&tb->lock);
3231 
3232 	return 0;
3233 }
3234 
3235 static void tb_remove_work(struct work_struct *work)
3236 {
3237 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3238 	struct tb *tb = tcm_to_tb(tcm);
3239 
3240 	mutex_lock(&tb->lock);
3241 	if (tb->root_switch) {
3242 		tb_free_unplugged_children(tb->root_switch);
3243 		tb_free_unplugged_xdomains(tb->root_switch);
3244 	}
3245 	mutex_unlock(&tb->lock);
3246 }
3247 
3248 static int tb_runtime_resume(struct tb *tb)
3249 {
3250 	struct tb_cm *tcm = tb_priv(tb);
3251 	struct tb_tunnel *tunnel, *n;
3252 
3253 	mutex_lock(&tb->lock);
3254 	tb_switch_resume(tb->root_switch, true);
3255 	tb_free_invalid_tunnels(tb);
3256 	tb_restore_children(tb->root_switch);
3257 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3258 		tb_tunnel_activate(tunnel);
3259 	tb_switch_enter_redrive(tb->root_switch);
3260 	tcm->hotplug_active = true;
3261 	mutex_unlock(&tb->lock);
3262 
3263 	/*
3264 	 * Schedule cleanup of any unplugged devices. Run this in a
3265 	 * separate thread to avoid possible deadlock if the device
3266 	 * removal runtime resumes the unplugged device.
3267 	 */
3268 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
3269 	return 0;
3270 }
3271 
3272 static const struct tb_cm_ops tb_cm_ops = {
3273 	.start = tb_start,
3274 	.stop = tb_stop,
3275 	.deinit = tb_deinit,
3276 	.suspend_noirq = tb_suspend_noirq,
3277 	.resume_noirq = tb_resume_noirq,
3278 	.freeze_noirq = tb_freeze_noirq,
3279 	.thaw_noirq = tb_thaw_noirq,
3280 	.complete = tb_complete,
3281 	.runtime_suspend = tb_runtime_suspend,
3282 	.runtime_resume = tb_runtime_resume,
3283 	.handle_event = tb_handle_event,
3284 	.disapprove_switch = tb_disconnect_pci,
3285 	.approve_switch = tb_tunnel_pci,
3286 	.approve_xdomain_paths = tb_approve_xdomain_paths,
3287 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3288 };
3289 
3290 /*
3291  * During suspend the Thunderbolt controller is reset and all PCIe
3292  * tunnels are lost. The NHI driver will try to reestablish all tunnels
3293  * during resume. This adds device links between the tunneled PCIe
3294  * downstream ports and the NHI so that the device core will make sure
3295  * NHI is resumed first before the rest.
3296  */
3297 static bool tb_apple_add_links(struct tb_nhi *nhi)
3298 {
3299 	struct pci_dev *upstream, *pdev;
3300 	bool ret;
3301 
3302 	if (!x86_apple_machine)
3303 		return false;
3304 
3305 	switch (nhi->pdev->device) {
3306 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3307 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3308 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3309 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3310 		break;
3311 	default:
3312 		return false;
3313 	}
3314 
3315 	upstream = pci_upstream_bridge(nhi->pdev);
3316 	while (upstream) {
3317 		if (!pci_is_pcie(upstream))
3318 			return false;
3319 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
3320 			break;
3321 		upstream = pci_upstream_bridge(upstream);
3322 	}
3323 
3324 	if (!upstream)
3325 		return false;
3326 
3327 	/*
3328 	 * For each hotplug downstream port, create add device link
3329 	 * back to NHI so that PCIe tunnels can be re-established after
3330 	 * sleep.
3331 	 */
3332 	ret = false;
3333 	for_each_pci_bridge(pdev, upstream->subordinate) {
3334 		const struct device_link *link;
3335 
3336 		if (!pci_is_pcie(pdev))
3337 			continue;
3338 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3339 		    !pdev->is_hotplug_bridge)
3340 			continue;
3341 
3342 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
3343 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
3344 				       DL_FLAG_PM_RUNTIME);
3345 		if (link) {
3346 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3347 				dev_name(&pdev->dev));
3348 			ret = true;
3349 		} else {
3350 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3351 				 dev_name(&pdev->dev));
3352 		}
3353 	}
3354 
3355 	return ret;
3356 }
3357 
3358 struct tb *tb_probe(struct tb_nhi *nhi)
3359 {
3360 	struct tb_cm *tcm;
3361 	struct tb *tb;
3362 
3363 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
3364 	if (!tb)
3365 		return NULL;
3366 
3367 	if (tb_acpi_may_tunnel_pcie())
3368 		tb->security_level = TB_SECURITY_USER;
3369 	else
3370 		tb->security_level = TB_SECURITY_NOPCIE;
3371 
3372 	tb->cm_ops = &tb_cm_ops;
3373 
3374 	tcm = tb_priv(tb);
3375 	INIT_LIST_HEAD(&tcm->tunnel_list);
3376 	INIT_LIST_HEAD(&tcm->dp_resources);
3377 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3378 	tb_init_bandwidth_groups(tcm);
3379 
3380 	tb_dbg(tb, "using software connection manager\n");
3381 
3382 	/*
3383 	 * Device links are needed to make sure we establish tunnels
3384 	 * before the PCIe/USB stack is resumed so complain here if we
3385 	 * found them missing.
3386 	 */
3387 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3388 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
3389 
3390 	return tb;
3391 }
3392