1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/sched/clock.h> 34 #include <linux/ctype.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/irq.h> 40 #include <linux/bitops.h> 41 #include <linux/crash_dump.h> 42 #include <linux/cpu.h> 43 #include <linux/cpuhotplug.h> 44 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_transport_fc.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/fc/fc_fs.h> 51 52 #include "lpfc_hw4.h" 53 #include "lpfc_hw.h" 54 #include "lpfc_sli.h" 55 #include "lpfc_sli4.h" 56 #include "lpfc_nl.h" 57 #include "lpfc_disc.h" 58 #include "lpfc.h" 59 #include "lpfc_scsi.h" 60 #include "lpfc_nvme.h" 61 #include "lpfc_logmsg.h" 62 #include "lpfc_crtn.h" 63 #include "lpfc_vport.h" 64 #include "lpfc_version.h" 65 #include "lpfc_ids.h" 66 67 static enum cpuhp_state lpfc_cpuhp_state; 68 /* Used when mapping IRQ vectors in a driver centric manner */ 69 static uint32_t lpfc_present_cpu; 70 static bool lpfc_pldv_detect; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba); 98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 99 100 static struct scsi_transport_template *lpfc_transport_template = NULL; 101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 102 static DEFINE_IDR(lpfc_hba_index); 103 #define LPFC_NVMET_BUF_POST 254 104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts); 106 107 /** 108 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 109 * @phba: pointer to lpfc hba data structure. 110 * 111 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 112 * mailbox command. It retrieves the revision information from the HBA and 113 * collects the Vital Product Data (VPD) about the HBA for preparing the 114 * configuration of the HBA. 115 * 116 * Return codes: 117 * 0 - success. 118 * -ERESTART - requests the SLI layer to reset the HBA and try again. 119 * Any other value - indicates an error. 120 **/ 121 int 122 lpfc_config_port_prep(struct lpfc_hba *phba) 123 { 124 lpfc_vpd_t *vp = &phba->vpd; 125 int i = 0, rc; 126 LPFC_MBOXQ_t *pmb; 127 MAILBOX_t *mb; 128 char *lpfc_vpd_data = NULL; 129 uint16_t offset = 0; 130 static char licensed[56] = 131 "key unlock for use with gnu public licensed code only\0"; 132 static int init_key = 1; 133 134 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 135 if (!pmb) { 136 phba->link_state = LPFC_HBA_ERROR; 137 return -ENOMEM; 138 } 139 140 mb = &pmb->u.mb; 141 phba->link_state = LPFC_INIT_MBX_CMDS; 142 143 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 144 if (init_key) { 145 uint32_t *ptext = (uint32_t *) licensed; 146 147 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 148 *ptext = cpu_to_be32(*ptext); 149 init_key = 0; 150 } 151 152 lpfc_read_nv(phba, pmb); 153 memset((char*)mb->un.varRDnvp.rsvd3, 0, 154 sizeof (mb->un.varRDnvp.rsvd3)); 155 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 156 sizeof (licensed)); 157 158 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 159 160 if (rc != MBX_SUCCESS) { 161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 162 "0324 Config Port initialization " 163 "error, mbxCmd x%x READ_NVPARM, " 164 "mbxStatus x%x\n", 165 mb->mbxCommand, mb->mbxStatus); 166 mempool_free(pmb, phba->mbox_mem_pool); 167 return -ERESTART; 168 } 169 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 170 sizeof(phba->wwnn)); 171 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 172 sizeof(phba->wwpn)); 173 } 174 175 /* 176 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 177 * which was already set in lpfc_get_cfgparam() 178 */ 179 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 180 181 /* Setup and issue mailbox READ REV command */ 182 lpfc_read_rev(phba, pmb); 183 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 184 if (rc != MBX_SUCCESS) { 185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 186 "0439 Adapter failed to init, mbxCmd x%x " 187 "READ_REV, mbxStatus x%x\n", 188 mb->mbxCommand, mb->mbxStatus); 189 mempool_free( pmb, phba->mbox_mem_pool); 190 return -ERESTART; 191 } 192 193 194 /* 195 * The value of rr must be 1 since the driver set the cv field to 1. 196 * This setting requires the FW to set all revision fields. 197 */ 198 if (mb->un.varRdRev.rr == 0) { 199 vp->rev.rBit = 0; 200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 201 "0440 Adapter failed to init, READ_REV has " 202 "missing revision information.\n"); 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -ERESTART; 205 } 206 207 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 208 mempool_free(pmb, phba->mbox_mem_pool); 209 return -EINVAL; 210 } 211 212 /* Save information as VPD data */ 213 vp->rev.rBit = 1; 214 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 215 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 216 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 217 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 218 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 219 vp->rev.biuRev = mb->un.varRdRev.biuRev; 220 vp->rev.smRev = mb->un.varRdRev.smRev; 221 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 222 vp->rev.endecRev = mb->un.varRdRev.endecRev; 223 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 224 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 225 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 226 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 227 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 228 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 229 230 /* If the sli feature level is less then 9, we must 231 * tear down all RPIs and VPIs on link down if NPIV 232 * is enabled. 233 */ 234 if (vp->rev.feaLevelHigh < 9) 235 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 236 237 if (lpfc_is_LC_HBA(phba->pcidev->device)) 238 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 239 sizeof (phba->RandomData)); 240 241 /* Get adapter VPD information */ 242 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 243 if (!lpfc_vpd_data) 244 goto out_free_mbox; 245 do { 246 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 247 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 248 249 if (rc != MBX_SUCCESS) { 250 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 251 "0441 VPD not present on adapter, " 252 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 253 mb->mbxCommand, mb->mbxStatus); 254 mb->un.varDmp.word_cnt = 0; 255 } 256 /* dump mem may return a zero when finished or we got a 257 * mailbox error, either way we are done. 258 */ 259 if (mb->un.varDmp.word_cnt == 0) 260 break; 261 262 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 263 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 264 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 265 lpfc_vpd_data + offset, 266 mb->un.varDmp.word_cnt); 267 offset += mb->un.varDmp.word_cnt; 268 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 269 270 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 271 272 kfree(lpfc_vpd_data); 273 out_free_mbox: 274 mempool_free(pmb, phba->mbox_mem_pool); 275 return 0; 276 } 277 278 /** 279 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 280 * @phba: pointer to lpfc hba data structure. 281 * @pmboxq: pointer to the driver internal queue element for mailbox command. 282 * 283 * This is the completion handler for driver's configuring asynchronous event 284 * mailbox command to the device. If the mailbox command returns successfully, 285 * it will set internal async event support flag to 1; otherwise, it will 286 * set internal async event support flag to 0. 287 **/ 288 static void 289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 290 { 291 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 292 phba->temp_sensor_support = 1; 293 else 294 phba->temp_sensor_support = 0; 295 mempool_free(pmboxq, phba->mbox_mem_pool); 296 return; 297 } 298 299 /** 300 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 301 * @phba: pointer to lpfc hba data structure. 302 * @pmboxq: pointer to the driver internal queue element for mailbox command. 303 * 304 * This is the completion handler for dump mailbox command for getting 305 * wake up parameters. When this command complete, the response contain 306 * Option rom version of the HBA. This function translate the version number 307 * into a human readable string and store it in OptionROMVersion. 308 **/ 309 static void 310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 311 { 312 struct prog_id *prg; 313 uint32_t prog_id_word; 314 char dist = ' '; 315 /* character array used for decoding dist type. */ 316 char dist_char[] = "nabx"; 317 318 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 319 mempool_free(pmboxq, phba->mbox_mem_pool); 320 return; 321 } 322 323 prg = (struct prog_id *) &prog_id_word; 324 325 /* word 7 contain option rom version */ 326 prog_id_word = pmboxq->u.mb.un.varWords[7]; 327 328 /* Decode the Option rom version word to a readable string */ 329 dist = dist_char[prg->dist]; 330 331 if ((prg->dist == 3) && (prg->num == 0)) 332 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 333 prg->ver, prg->rev, prg->lev); 334 else 335 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 336 prg->ver, prg->rev, prg->lev, 337 dist, prg->num); 338 mempool_free(pmboxq, phba->mbox_mem_pool); 339 return; 340 } 341 342 /** 343 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 344 * @vport: pointer to lpfc vport data structure. 345 * 346 * 347 * Return codes 348 * None. 349 **/ 350 void 351 lpfc_update_vport_wwn(struct lpfc_vport *vport) 352 { 353 struct lpfc_hba *phba = vport->phba; 354 355 /* 356 * If the name is empty or there exists a soft name 357 * then copy the service params name, otherwise use the fc name 358 */ 359 if (vport->fc_nodename.u.wwn[0] == 0) 360 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 361 sizeof(struct lpfc_name)); 362 else 363 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 364 sizeof(struct lpfc_name)); 365 366 /* 367 * If the port name has changed, then set the Param changes flag 368 * to unreg the login 369 */ 370 if (vport->fc_portname.u.wwn[0] != 0 && 371 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 372 sizeof(struct lpfc_name))) { 373 vport->vport_flag |= FAWWPN_PARAM_CHG; 374 375 if (phba->sli_rev == LPFC_SLI_REV4 && 376 vport->port_type == LPFC_PHYSICAL_PORT && 377 phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { 378 if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)) 379 phba->sli4_hba.fawwpn_flag &= 380 ~LPFC_FAWWPN_FABRIC; 381 lpfc_printf_log(phba, KERN_INFO, 382 LOG_SLI | LOG_DISCOVERY | LOG_ELS, 383 "2701 FA-PWWN change WWPN from %llx to " 384 "%llx: vflag x%x fawwpn_flag x%x\n", 385 wwn_to_u64(vport->fc_portname.u.wwn), 386 wwn_to_u64 387 (vport->fc_sparam.portName.u.wwn), 388 vport->vport_flag, 389 phba->sli4_hba.fawwpn_flag); 390 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 391 sizeof(struct lpfc_name)); 392 } 393 } 394 395 if (vport->fc_portname.u.wwn[0] == 0) 396 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 397 sizeof(struct lpfc_name)); 398 else 399 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 400 sizeof(struct lpfc_name)); 401 } 402 403 /** 404 * lpfc_config_port_post - Perform lpfc initialization after config port 405 * @phba: pointer to lpfc hba data structure. 406 * 407 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 408 * command call. It performs all internal resource and state setups on the 409 * port: post IOCB buffers, enable appropriate host interrupt attentions, 410 * ELS ring timers, etc. 411 * 412 * Return codes 413 * 0 - success. 414 * Any other value - error. 415 **/ 416 int 417 lpfc_config_port_post(struct lpfc_hba *phba) 418 { 419 struct lpfc_vport *vport = phba->pport; 420 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 421 LPFC_MBOXQ_t *pmb; 422 MAILBOX_t *mb; 423 struct lpfc_dmabuf *mp; 424 struct lpfc_sli *psli = &phba->sli; 425 uint32_t status, timeout; 426 int i, j; 427 int rc; 428 429 spin_lock_irq(&phba->hbalock); 430 /* 431 * If the Config port completed correctly the HBA is not 432 * over heated any more. 433 */ 434 if (phba->over_temp_state == HBA_OVER_TEMP) 435 phba->over_temp_state = HBA_NORMAL_TEMP; 436 spin_unlock_irq(&phba->hbalock); 437 438 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 439 if (!pmb) { 440 phba->link_state = LPFC_HBA_ERROR; 441 return -ENOMEM; 442 } 443 mb = &pmb->u.mb; 444 445 /* Get login parameters for NID. */ 446 rc = lpfc_read_sparam(phba, pmb, 0); 447 if (rc) { 448 mempool_free(pmb, phba->mbox_mem_pool); 449 return -ENOMEM; 450 } 451 452 pmb->vport = vport; 453 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 455 "0448 Adapter failed init, mbxCmd x%x " 456 "READ_SPARM mbxStatus x%x\n", 457 mb->mbxCommand, mb->mbxStatus); 458 phba->link_state = LPFC_HBA_ERROR; 459 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 460 return -EIO; 461 } 462 463 mp = pmb->ctx_buf; 464 465 /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no 466 * longer needed. Prevent unintended ctx_buf access as the mbox is 467 * reused. 468 */ 469 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 470 lpfc_mbuf_free(phba, mp->virt, mp->phys); 471 kfree(mp); 472 pmb->ctx_buf = NULL; 473 lpfc_update_vport_wwn(vport); 474 475 /* Update the fc_host data structures with new wwn. */ 476 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 477 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 478 fc_host_max_npiv_vports(shost) = phba->max_vpi; 479 480 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 481 /* This should be consolidated into parse_vpd ? - mr */ 482 if (phba->SerialNumber[0] == 0) { 483 uint8_t *outptr; 484 485 outptr = &vport->fc_nodename.u.s.IEEE[0]; 486 for (i = 0; i < 12; i++) { 487 status = *outptr++; 488 j = ((status & 0xf0) >> 4); 489 if (j <= 9) 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x30 + (uint8_t) j); 492 else 493 phba->SerialNumber[i] = 494 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 495 i++; 496 j = (status & 0xf); 497 if (j <= 9) 498 phba->SerialNumber[i] = 499 (char)((uint8_t) 0x30 + (uint8_t) j); 500 else 501 phba->SerialNumber[i] = 502 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 503 } 504 } 505 506 lpfc_read_config(phba, pmb); 507 pmb->vport = vport; 508 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 509 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 510 "0453 Adapter failed to init, mbxCmd x%x " 511 "READ_CONFIG, mbxStatus x%x\n", 512 mb->mbxCommand, mb->mbxStatus); 513 phba->link_state = LPFC_HBA_ERROR; 514 mempool_free( pmb, phba->mbox_mem_pool); 515 return -EIO; 516 } 517 518 /* Check if the port is disabled */ 519 lpfc_sli_read_link_ste(phba); 520 521 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 522 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 524 "3359 HBA queue depth changed from %d to %d\n", 525 phba->cfg_hba_queue_depth, 526 mb->un.varRdConfig.max_xri); 527 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 528 } 529 530 phba->lmt = mb->un.varRdConfig.lmt; 531 532 /* Get the default values for Model Name and Description */ 533 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 534 535 phba->link_state = LPFC_LINK_DOWN; 536 537 /* Only process IOCBs on ELS ring till hba_state is READY */ 538 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 539 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 540 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 541 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 542 543 /* Post receive buffers for desired rings */ 544 if (phba->sli_rev != 3) 545 lpfc_post_rcv_buf(phba); 546 547 /* 548 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 549 */ 550 if (phba->intr_type == MSIX) { 551 rc = lpfc_config_msi(phba, pmb); 552 if (rc) { 553 mempool_free(pmb, phba->mbox_mem_pool); 554 return -EIO; 555 } 556 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 557 if (rc != MBX_SUCCESS) { 558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 559 "0352 Config MSI mailbox command " 560 "failed, mbxCmd x%x, mbxStatus x%x\n", 561 pmb->u.mb.mbxCommand, 562 pmb->u.mb.mbxStatus); 563 mempool_free(pmb, phba->mbox_mem_pool); 564 return -EIO; 565 } 566 } 567 568 spin_lock_irq(&phba->hbalock); 569 /* Initialize ERATT handling flag */ 570 clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 571 572 /* Enable appropriate host interrupts */ 573 if (lpfc_readl(phba->HCregaddr, &status)) { 574 spin_unlock_irq(&phba->hbalock); 575 return -EIO; 576 } 577 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 578 if (psli->num_rings > 0) 579 status |= HC_R0INT_ENA; 580 if (psli->num_rings > 1) 581 status |= HC_R1INT_ENA; 582 if (psli->num_rings > 2) 583 status |= HC_R2INT_ENA; 584 if (psli->num_rings > 3) 585 status |= HC_R3INT_ENA; 586 587 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 588 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 589 status &= ~(HC_R0INT_ENA); 590 591 writel(status, phba->HCregaddr); 592 readl(phba->HCregaddr); /* flush */ 593 spin_unlock_irq(&phba->hbalock); 594 595 /* Set up ring-0 (ELS) timer */ 596 timeout = phba->fc_ratov * 2; 597 mod_timer(&vport->els_tmofunc, 598 jiffies + secs_to_jiffies(timeout)); 599 /* Set up heart beat (HB) timer */ 600 mod_timer(&phba->hb_tmofunc, 601 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 602 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 603 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 604 phba->last_completion_time = jiffies; 605 /* Set up error attention (ERATT) polling timer */ 606 mod_timer(&phba->eratt_poll, 607 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 608 609 if (test_bit(LINK_DISABLED, &phba->hba_flag)) { 610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 611 "2598 Adapter Link is disabled.\n"); 612 lpfc_down_link(phba, pmb); 613 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 614 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 615 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 617 "2599 Adapter failed to issue DOWN_LINK" 618 " mbox command rc 0x%x\n", rc); 619 620 mempool_free(pmb, phba->mbox_mem_pool); 621 return -EIO; 622 } 623 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 624 mempool_free(pmb, phba->mbox_mem_pool); 625 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 626 if (rc) 627 return rc; 628 } 629 /* MBOX buffer will be freed in mbox compl */ 630 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 631 if (!pmb) { 632 phba->link_state = LPFC_HBA_ERROR; 633 return -ENOMEM; 634 } 635 636 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 637 pmb->mbox_cmpl = lpfc_config_async_cmpl; 638 pmb->vport = phba->pport; 639 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 640 641 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 643 "0456 Adapter failed to issue " 644 "ASYNCEVT_ENABLE mbox status x%x\n", 645 rc); 646 mempool_free(pmb, phba->mbox_mem_pool); 647 } 648 649 /* Get Option rom version */ 650 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 651 if (!pmb) { 652 phba->link_state = LPFC_HBA_ERROR; 653 return -ENOMEM; 654 } 655 656 lpfc_dump_wakeup_param(phba, pmb); 657 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 658 pmb->vport = phba->pport; 659 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 660 661 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 663 "0435 Adapter failed " 664 "to get Option ROM version status x%x\n", rc); 665 mempool_free(pmb, phba->mbox_mem_pool); 666 } 667 668 return 0; 669 } 670 671 /** 672 * lpfc_sli4_refresh_params - update driver copy of params. 673 * @phba: Pointer to HBA context object. 674 * 675 * This is called to refresh driver copy of dynamic fields from the 676 * common_get_sli4_parameters descriptor. 677 **/ 678 int 679 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 680 { 681 LPFC_MBOXQ_t *mboxq; 682 struct lpfc_mqe *mqe; 683 struct lpfc_sli4_parameters *mbx_sli4_parameters; 684 int length, rc; 685 686 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 687 if (!mboxq) 688 return -ENOMEM; 689 690 mqe = &mboxq->u.mqe; 691 /* Read the port's SLI4 Config Parameters */ 692 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 693 sizeof(struct lpfc_sli4_cfg_mhdr)); 694 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 695 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 696 length, LPFC_SLI4_MBX_EMBED); 697 698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 699 if (unlikely(rc)) { 700 mempool_free(mboxq, phba->mbox_mem_pool); 701 return rc; 702 } 703 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 704 phba->sli4_hba.pc_sli4_params.mi_cap = 705 bf_get(cfg_mi_ver, mbx_sli4_parameters); 706 707 /* Are we forcing MI off via module parameter? */ 708 if (phba->cfg_enable_mi) 709 phba->sli4_hba.pc_sli4_params.mi_ver = 710 bf_get(cfg_mi_ver, mbx_sli4_parameters); 711 else 712 phba->sli4_hba.pc_sli4_params.mi_ver = 0; 713 714 phba->sli4_hba.pc_sli4_params.cmf = 715 bf_get(cfg_cmf, mbx_sli4_parameters); 716 phba->sli4_hba.pc_sli4_params.pls = 717 bf_get(cfg_pvl, mbx_sli4_parameters); 718 719 mempool_free(mboxq, phba->mbox_mem_pool); 720 return rc; 721 } 722 723 /** 724 * lpfc_hba_init_link - Initialize the FC link 725 * @phba: pointer to lpfc hba data structure. 726 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 727 * 728 * This routine will issue the INIT_LINK mailbox command call. 729 * It is available to other drivers through the lpfc_hba data 730 * structure for use as a delayed link up mechanism with the 731 * module parameter lpfc_suppress_link_up. 732 * 733 * Return code 734 * 0 - success 735 * Any other value - error 736 **/ 737 static int 738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 739 { 740 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 741 } 742 743 /** 744 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 745 * @phba: pointer to lpfc hba data structure. 746 * @fc_topology: desired fc topology. 747 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 748 * 749 * This routine will issue the INIT_LINK mailbox command call. 750 * It is available to other drivers through the lpfc_hba data 751 * structure for use as a delayed link up mechanism with the 752 * module parameter lpfc_suppress_link_up. 753 * 754 * Return code 755 * 0 - success 756 * Any other value - error 757 **/ 758 int 759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 760 uint32_t flag) 761 { 762 struct lpfc_vport *vport = phba->pport; 763 LPFC_MBOXQ_t *pmb; 764 MAILBOX_t *mb; 765 int rc; 766 767 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 768 if (!pmb) { 769 phba->link_state = LPFC_HBA_ERROR; 770 return -ENOMEM; 771 } 772 mb = &pmb->u.mb; 773 pmb->vport = vport; 774 775 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 776 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 777 !(phba->lmt & LMT_1Gb)) || 778 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 779 !(phba->lmt & LMT_2Gb)) || 780 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 781 !(phba->lmt & LMT_4Gb)) || 782 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 783 !(phba->lmt & LMT_8Gb)) || 784 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 785 !(phba->lmt & LMT_10Gb)) || 786 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 787 !(phba->lmt & LMT_16Gb)) || 788 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 789 !(phba->lmt & LMT_32Gb)) || 790 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 791 !(phba->lmt & LMT_64Gb))) { 792 /* Reset link speed to auto */ 793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 794 "1302 Invalid speed for this board:%d " 795 "Reset link speed to auto.\n", 796 phba->cfg_link_speed); 797 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 798 } 799 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 800 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 801 if (phba->sli_rev < LPFC_SLI_REV4) 802 lpfc_set_loopback_flag(phba); 803 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 804 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 806 "0498 Adapter failed to init, mbxCmd x%x " 807 "INIT_LINK, mbxStatus x%x\n", 808 mb->mbxCommand, mb->mbxStatus); 809 if (phba->sli_rev <= LPFC_SLI_REV3) { 810 /* Clear all interrupt enable conditions */ 811 writel(0, phba->HCregaddr); 812 readl(phba->HCregaddr); /* flush */ 813 /* Clear all pending interrupts */ 814 writel(0xffffffff, phba->HAregaddr); 815 readl(phba->HAregaddr); /* flush */ 816 } 817 phba->link_state = LPFC_HBA_ERROR; 818 if (rc != MBX_BUSY || flag == MBX_POLL) 819 mempool_free(pmb, phba->mbox_mem_pool); 820 return -EIO; 821 } 822 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 823 if (flag == MBX_POLL) 824 mempool_free(pmb, phba->mbox_mem_pool); 825 826 return 0; 827 } 828 829 /** 830 * lpfc_hba_down_link - this routine downs the FC link 831 * @phba: pointer to lpfc hba data structure. 832 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 833 * 834 * This routine will issue the DOWN_LINK mailbox command call. 835 * It is available to other drivers through the lpfc_hba data 836 * structure for use to stop the link. 837 * 838 * Return code 839 * 0 - success 840 * Any other value - error 841 **/ 842 static int 843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 844 { 845 LPFC_MBOXQ_t *pmb; 846 int rc; 847 848 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 849 if (!pmb) { 850 phba->link_state = LPFC_HBA_ERROR; 851 return -ENOMEM; 852 } 853 854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 855 "0491 Adapter Link is disabled.\n"); 856 lpfc_down_link(phba, pmb); 857 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 858 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 859 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 861 "2522 Adapter failed to issue DOWN_LINK" 862 " mbox command rc 0x%x\n", rc); 863 864 mempool_free(pmb, phba->mbox_mem_pool); 865 return -EIO; 866 } 867 if (flag == MBX_POLL) 868 mempool_free(pmb, phba->mbox_mem_pool); 869 870 return 0; 871 } 872 873 /** 874 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 875 * @phba: pointer to lpfc HBA data structure. 876 * 877 * This routine will do LPFC uninitialization before the HBA is reset when 878 * bringing down the SLI Layer. 879 * 880 * Return codes 881 * 0 - success. 882 * Any other value - error. 883 **/ 884 int 885 lpfc_hba_down_prep(struct lpfc_hba *phba) 886 { 887 struct lpfc_vport **vports; 888 int i; 889 890 if (phba->sli_rev <= LPFC_SLI_REV3) { 891 /* Disable interrupts */ 892 writel(0, phba->HCregaddr); 893 readl(phba->HCregaddr); /* flush */ 894 } 895 896 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 897 lpfc_cleanup_discovery_resources(phba->pport); 898 else { 899 vports = lpfc_create_vport_work_array(phba); 900 if (vports != NULL) 901 for (i = 0; i <= phba->max_vports && 902 vports[i] != NULL; i++) 903 lpfc_cleanup_discovery_resources(vports[i]); 904 lpfc_destroy_vport_work_array(phba, vports); 905 } 906 return 0; 907 } 908 909 /** 910 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 911 * rspiocb which got deferred 912 * 913 * @phba: pointer to lpfc HBA data structure. 914 * 915 * This routine will cleanup completed slow path events after HBA is reset 916 * when bringing down the SLI Layer. 917 * 918 * 919 * Return codes 920 * void. 921 **/ 922 static void 923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 924 { 925 struct lpfc_iocbq *rspiocbq; 926 struct hbq_dmabuf *dmabuf; 927 struct lpfc_cq_event *cq_event; 928 929 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 930 931 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 932 /* Get the response iocb from the head of work queue */ 933 spin_lock_irq(&phba->hbalock); 934 list_remove_head(&phba->sli4_hba.sp_queue_event, 935 cq_event, struct lpfc_cq_event, list); 936 spin_unlock_irq(&phba->hbalock); 937 938 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 939 case CQE_CODE_COMPL_WQE: 940 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 941 cq_event); 942 lpfc_sli_release_iocbq(phba, rspiocbq); 943 break; 944 case CQE_CODE_RECEIVE: 945 case CQE_CODE_RECEIVE_V1: 946 dmabuf = container_of(cq_event, struct hbq_dmabuf, 947 cq_event); 948 lpfc_in_buf_free(phba, &dmabuf->dbuf); 949 } 950 } 951 } 952 953 /** 954 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 955 * @phba: pointer to lpfc HBA data structure. 956 * 957 * This routine will cleanup posted ELS buffers after the HBA is reset 958 * when bringing down the SLI Layer. 959 * 960 * 961 * Return codes 962 * void. 963 **/ 964 static void 965 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 966 { 967 struct lpfc_sli *psli = &phba->sli; 968 struct lpfc_sli_ring *pring; 969 struct lpfc_dmabuf *mp, *next_mp; 970 LIST_HEAD(buflist); 971 int count; 972 973 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 974 lpfc_sli_hbqbuf_free_all(phba); 975 else { 976 /* Cleanup preposted buffers on the ELS ring */ 977 pring = &psli->sli3_ring[LPFC_ELS_RING]; 978 spin_lock_irq(&phba->hbalock); 979 list_splice_init(&pring->postbufq, &buflist); 980 spin_unlock_irq(&phba->hbalock); 981 982 count = 0; 983 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 984 list_del(&mp->list); 985 count++; 986 lpfc_mbuf_free(phba, mp->virt, mp->phys); 987 kfree(mp); 988 } 989 990 spin_lock_irq(&phba->hbalock); 991 pring->postbufq_cnt -= count; 992 spin_unlock_irq(&phba->hbalock); 993 } 994 } 995 996 /** 997 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 998 * @phba: pointer to lpfc HBA data structure. 999 * 1000 * This routine will cleanup the txcmplq after the HBA is reset when bringing 1001 * down the SLI Layer. 1002 * 1003 * Return codes 1004 * void 1005 **/ 1006 static void 1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 1008 { 1009 struct lpfc_sli *psli = &phba->sli; 1010 struct lpfc_queue *qp = NULL; 1011 struct lpfc_sli_ring *pring; 1012 LIST_HEAD(completions); 1013 int i; 1014 struct lpfc_iocbq *piocb, *next_iocb; 1015 1016 if (phba->sli_rev != LPFC_SLI_REV4) { 1017 for (i = 0; i < psli->num_rings; i++) { 1018 pring = &psli->sli3_ring[i]; 1019 spin_lock_irq(&phba->hbalock); 1020 /* At this point in time the HBA is either reset or DOA 1021 * Nothing should be on txcmplq as it will 1022 * NEVER complete. 1023 */ 1024 list_splice_init(&pring->txcmplq, &completions); 1025 pring->txcmplq_cnt = 0; 1026 spin_unlock_irq(&phba->hbalock); 1027 1028 lpfc_sli_abort_iocb_ring(phba, pring); 1029 } 1030 /* Cancel all the IOCBs from the completions list */ 1031 lpfc_sli_cancel_iocbs(phba, &completions, 1032 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1033 return; 1034 } 1035 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1036 pring = qp->pring; 1037 if (!pring) 1038 continue; 1039 spin_lock_irq(&pring->ring_lock); 1040 list_for_each_entry_safe(piocb, next_iocb, 1041 &pring->txcmplq, list) 1042 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1043 list_splice_init(&pring->txcmplq, &completions); 1044 pring->txcmplq_cnt = 0; 1045 spin_unlock_irq(&pring->ring_lock); 1046 lpfc_sli_abort_iocb_ring(phba, pring); 1047 } 1048 /* Cancel all the IOCBs from the completions list */ 1049 lpfc_sli_cancel_iocbs(phba, &completions, 1050 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1051 } 1052 1053 /** 1054 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1055 * @phba: pointer to lpfc HBA data structure. 1056 * 1057 * This routine will do uninitialization after the HBA is reset when bring 1058 * down the SLI Layer. 1059 * 1060 * Return codes 1061 * 0 - success. 1062 * Any other value - error. 1063 **/ 1064 static int 1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1066 { 1067 lpfc_hba_free_post_buf(phba); 1068 lpfc_hba_clean_txcmplq(phba); 1069 return 0; 1070 } 1071 1072 /** 1073 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1074 * @phba: pointer to lpfc HBA data structure. 1075 * 1076 * This routine will do uninitialization after the HBA is reset when bring 1077 * down the SLI Layer. 1078 * 1079 * Return codes 1080 * 0 - success. 1081 * Any other value - error. 1082 **/ 1083 static int 1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1085 { 1086 struct lpfc_io_buf *psb, *psb_next; 1087 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1088 struct lpfc_sli4_hdw_queue *qp; 1089 LIST_HEAD(aborts); 1090 LIST_HEAD(nvme_aborts); 1091 LIST_HEAD(nvmet_aborts); 1092 struct lpfc_sglq *sglq_entry = NULL; 1093 int cnt, idx; 1094 1095 1096 lpfc_sli_hbqbuf_free_all(phba); 1097 lpfc_hba_clean_txcmplq(phba); 1098 1099 /* At this point in time the HBA is either reset or DOA. Either 1100 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1101 * on the lpfc_els_sgl_list so that it can either be freed if the 1102 * driver is unloading or reposted if the driver is restarting 1103 * the port. 1104 */ 1105 1106 /* sgl_list_lock required because worker thread uses this 1107 * list. 1108 */ 1109 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1110 list_for_each_entry(sglq_entry, 1111 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1112 sglq_entry->state = SGL_FREED; 1113 1114 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1115 &phba->sli4_hba.lpfc_els_sgl_list); 1116 1117 1118 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1119 1120 /* abts_xxxx_buf_list_lock required because worker thread uses this 1121 * list. 1122 */ 1123 spin_lock_irq(&phba->hbalock); 1124 cnt = 0; 1125 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1126 qp = &phba->sli4_hba.hdwq[idx]; 1127 1128 spin_lock(&qp->abts_io_buf_list_lock); 1129 list_splice_init(&qp->lpfc_abts_io_buf_list, 1130 &aborts); 1131 1132 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1133 psb->pCmd = NULL; 1134 psb->status = IOSTAT_SUCCESS; 1135 cnt++; 1136 } 1137 spin_lock(&qp->io_buf_list_put_lock); 1138 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1139 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1140 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1141 qp->abts_scsi_io_bufs = 0; 1142 qp->abts_nvme_io_bufs = 0; 1143 spin_unlock(&qp->io_buf_list_put_lock); 1144 spin_unlock(&qp->abts_io_buf_list_lock); 1145 } 1146 spin_unlock_irq(&phba->hbalock); 1147 1148 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1149 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1150 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1151 &nvmet_aborts); 1152 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1153 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1154 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1155 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1156 } 1157 } 1158 1159 lpfc_sli4_free_sp_events(phba); 1160 return cnt; 1161 } 1162 1163 /** 1164 * lpfc_hba_down_post - Wrapper func for hba down post routine 1165 * @phba: pointer to lpfc HBA data structure. 1166 * 1167 * This routine wraps the actual SLI3 or SLI4 routine for performing 1168 * uninitialization after the HBA is reset when bring down the SLI Layer. 1169 * 1170 * Return codes 1171 * 0 - success. 1172 * Any other value - error. 1173 **/ 1174 int 1175 lpfc_hba_down_post(struct lpfc_hba *phba) 1176 { 1177 return (*phba->lpfc_hba_down_post)(phba); 1178 } 1179 1180 /** 1181 * lpfc_hb_timeout - The HBA-timer timeout handler 1182 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1183 * 1184 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1185 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1186 * work-port-events bitmap and the worker thread is notified. This timeout 1187 * event will be used by the worker thread to invoke the actual timeout 1188 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1189 * be performed in the timeout handler and the HBA timeout event bit shall 1190 * be cleared by the worker thread after it has taken the event bitmap out. 1191 **/ 1192 static void 1193 lpfc_hb_timeout(struct timer_list *t) 1194 { 1195 struct lpfc_hba *phba; 1196 uint32_t tmo_posted; 1197 unsigned long iflag; 1198 1199 phba = from_timer(phba, t, hb_tmofunc); 1200 1201 /* Check for heart beat timeout conditions */ 1202 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1203 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1204 if (!tmo_posted) 1205 phba->pport->work_port_events |= WORKER_HB_TMO; 1206 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1207 1208 /* Tell the worker thread there is work to do */ 1209 if (!tmo_posted) 1210 lpfc_worker_wake_up(phba); 1211 return; 1212 } 1213 1214 /** 1215 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1216 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1217 * 1218 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1219 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1220 * work-port-events bitmap and the worker thread is notified. This timeout 1221 * event will be used by the worker thread to invoke the actual timeout 1222 * handler routine, lpfc_rrq_handler. Any periodical operations will 1223 * be performed in the timeout handler and the RRQ timeout event bit shall 1224 * be cleared by the worker thread after it has taken the event bitmap out. 1225 **/ 1226 static void 1227 lpfc_rrq_timeout(struct timer_list *t) 1228 { 1229 struct lpfc_hba *phba; 1230 1231 phba = from_timer(phba, t, rrq_tmr); 1232 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1233 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1234 return; 1235 } 1236 1237 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1238 lpfc_worker_wake_up(phba); 1239 } 1240 1241 /** 1242 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1243 * @phba: pointer to lpfc hba data structure. 1244 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1245 * 1246 * This is the callback function to the lpfc heart-beat mailbox command. 1247 * If configured, the lpfc driver issues the heart-beat mailbox command to 1248 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1249 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1250 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1251 * heart-beat outstanding state. Once the mailbox command comes back and 1252 * no error conditions detected, the heart-beat mailbox command timer is 1253 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1254 * state is cleared for the next heart-beat. If the timer expired with the 1255 * heart-beat outstanding state set, the driver will put the HBA offline. 1256 **/ 1257 static void 1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1259 { 1260 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 1261 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1262 1263 /* Check and reset heart-beat timer if necessary */ 1264 mempool_free(pmboxq, phba->mbox_mem_pool); 1265 if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) && 1266 !(phba->link_state == LPFC_HBA_ERROR) && 1267 !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1268 mod_timer(&phba->hb_tmofunc, 1269 jiffies + 1270 secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 1271 return; 1272 } 1273 1274 /* 1275 * lpfc_idle_stat_delay_work - idle_stat tracking 1276 * 1277 * This routine tracks per-eq idle_stat and determines polling decisions. 1278 * 1279 * Return codes: 1280 * None 1281 **/ 1282 static void 1283 lpfc_idle_stat_delay_work(struct work_struct *work) 1284 { 1285 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1286 struct lpfc_hba, 1287 idle_stat_delay_work); 1288 struct lpfc_queue *eq; 1289 struct lpfc_sli4_hdw_queue *hdwq; 1290 struct lpfc_idle_stat *idle_stat; 1291 u32 i, idle_percent; 1292 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1293 1294 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1295 return; 1296 1297 if (phba->link_state == LPFC_HBA_ERROR || 1298 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) || 1299 phba->cmf_active_mode != LPFC_CFG_OFF) 1300 goto requeue; 1301 1302 for_each_present_cpu(i) { 1303 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1304 eq = hdwq->hba_eq; 1305 1306 /* Skip if we've already handled this eq's primary CPU */ 1307 if (eq->chann != i) 1308 continue; 1309 1310 idle_stat = &phba->sli4_hba.idle_stat[i]; 1311 1312 /* get_cpu_idle_time returns values as running counters. Thus, 1313 * to know the amount for this period, the prior counter values 1314 * need to be subtracted from the current counter values. 1315 * From there, the idle time stat can be calculated as a 1316 * percentage of 100 - the sum of the other consumption times. 1317 */ 1318 wall_idle = get_cpu_idle_time(i, &wall, 1); 1319 diff_idle = wall_idle - idle_stat->prev_idle; 1320 diff_wall = wall - idle_stat->prev_wall; 1321 1322 if (diff_wall <= diff_idle) 1323 busy_time = 0; 1324 else 1325 busy_time = diff_wall - diff_idle; 1326 1327 idle_percent = div64_u64(100 * busy_time, diff_wall); 1328 idle_percent = 100 - idle_percent; 1329 1330 if (idle_percent < 15) 1331 eq->poll_mode = LPFC_QUEUE_WORK; 1332 else 1333 eq->poll_mode = LPFC_THREADED_IRQ; 1334 1335 idle_stat->prev_idle = wall_idle; 1336 idle_stat->prev_wall = wall; 1337 } 1338 1339 requeue: 1340 schedule_delayed_work(&phba->idle_stat_delay_work, 1341 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1342 } 1343 1344 static void 1345 lpfc_hb_eq_delay_work(struct work_struct *work) 1346 { 1347 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1348 struct lpfc_hba, eq_delay_work); 1349 struct lpfc_eq_intr_info *eqi, *eqi_new; 1350 struct lpfc_queue *eq, *eq_next; 1351 unsigned char *ena_delay = NULL; 1352 uint32_t usdelay; 1353 int i; 1354 1355 if (!phba->cfg_auto_imax || 1356 test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1357 return; 1358 1359 if (phba->link_state == LPFC_HBA_ERROR || 1360 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1361 goto requeue; 1362 1363 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1364 GFP_KERNEL); 1365 if (!ena_delay) 1366 goto requeue; 1367 1368 for (i = 0; i < phba->cfg_irq_chann; i++) { 1369 /* Get the EQ corresponding to the IRQ vector */ 1370 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1371 if (!eq) 1372 continue; 1373 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1374 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1375 ena_delay[eq->last_cpu] = 1; 1376 } 1377 } 1378 1379 for_each_present_cpu(i) { 1380 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1381 if (ena_delay[i]) { 1382 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1383 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1384 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1385 } else { 1386 usdelay = 0; 1387 } 1388 1389 eqi->icnt = 0; 1390 1391 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1392 if (unlikely(eq->last_cpu != i)) { 1393 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1394 eq->last_cpu); 1395 list_move_tail(&eq->cpu_list, &eqi_new->list); 1396 continue; 1397 } 1398 if (usdelay != eq->q_mode) 1399 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1400 usdelay); 1401 } 1402 } 1403 1404 kfree(ena_delay); 1405 1406 requeue: 1407 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1408 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1409 } 1410 1411 /** 1412 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1413 * @phba: pointer to lpfc hba data structure. 1414 * 1415 * For each heartbeat, this routine does some heuristic methods to adjust 1416 * XRI distribution. The goal is to fully utilize free XRIs. 1417 **/ 1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1419 { 1420 u32 i; 1421 u32 hwq_count; 1422 1423 hwq_count = phba->cfg_hdw_queue; 1424 for (i = 0; i < hwq_count; i++) { 1425 /* Adjust XRIs in private pool */ 1426 lpfc_adjust_pvt_pool_count(phba, i); 1427 1428 /* Adjust high watermark */ 1429 lpfc_adjust_high_watermark(phba, i); 1430 1431 #ifdef LPFC_MXP_STAT 1432 /* Snapshot pbl, pvt and busy count */ 1433 lpfc_snapshot_mxp(phba, i); 1434 #endif 1435 } 1436 } 1437 1438 /** 1439 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1440 * @phba: pointer to lpfc hba data structure. 1441 * 1442 * If a HB mbox is not already in progrees, this routine will allocate 1443 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1444 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1445 **/ 1446 int 1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1448 { 1449 LPFC_MBOXQ_t *pmboxq; 1450 int retval; 1451 1452 /* Is a Heartbeat mbox already in progress */ 1453 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1454 return 0; 1455 1456 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1457 if (!pmboxq) 1458 return -ENOMEM; 1459 1460 lpfc_heart_beat(phba, pmboxq); 1461 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1462 pmboxq->vport = phba->pport; 1463 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1464 1465 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1466 mempool_free(pmboxq, phba->mbox_mem_pool); 1467 return -ENXIO; 1468 } 1469 set_bit(HBA_HBEAT_INP, &phba->hba_flag); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1476 * @phba: pointer to lpfc hba data structure. 1477 * 1478 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1479 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1480 * of the value of lpfc_enable_hba_heartbeat. 1481 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1482 * try to issue a MBX_HEARTBEAT mbox command. 1483 **/ 1484 void 1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1486 { 1487 if (phba->cfg_enable_hba_heartbeat) 1488 return; 1489 set_bit(HBA_HBEAT_TMO, &phba->hba_flag); 1490 } 1491 1492 /** 1493 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1494 * @phba: pointer to lpfc hba data structure. 1495 * 1496 * This is the actual HBA-timer timeout handler to be invoked by the worker 1497 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1498 * handler performs any periodic operations needed for the device. If such 1499 * periodic event has already been attended to either in the interrupt handler 1500 * or by processing slow-ring or fast-ring events within the HBA-timer 1501 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1502 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1503 * is configured and there is no heart-beat mailbox command outstanding, a 1504 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1505 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1506 * to offline. 1507 **/ 1508 void 1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1510 { 1511 struct lpfc_vport **vports; 1512 struct lpfc_dmabuf *buf_ptr; 1513 int retval = 0; 1514 int i, tmo; 1515 struct lpfc_sli *psli = &phba->sli; 1516 LIST_HEAD(completions); 1517 1518 if (phba->cfg_xri_rebalancing) { 1519 /* Multi-XRI pools handler */ 1520 lpfc_hb_mxp_handler(phba); 1521 } 1522 1523 vports = lpfc_create_vport_work_array(phba); 1524 if (vports != NULL) 1525 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1526 lpfc_rcv_seq_check_edtov(vports[i]); 1527 lpfc_fdmi_change_check(vports[i]); 1528 } 1529 lpfc_destroy_vport_work_array(phba, vports); 1530 1531 if (phba->link_state == LPFC_HBA_ERROR || 1532 test_bit(FC_UNLOADING, &phba->pport->load_flag) || 1533 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 1534 return; 1535 1536 if (phba->elsbuf_cnt && 1537 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1538 spin_lock_irq(&phba->hbalock); 1539 list_splice_init(&phba->elsbuf, &completions); 1540 phba->elsbuf_cnt = 0; 1541 phba->elsbuf_prev_cnt = 0; 1542 spin_unlock_irq(&phba->hbalock); 1543 1544 while (!list_empty(&completions)) { 1545 list_remove_head(&completions, buf_ptr, 1546 struct lpfc_dmabuf, list); 1547 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1548 kfree(buf_ptr); 1549 } 1550 } 1551 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1552 1553 /* If there is no heart beat outstanding, issue a heartbeat command */ 1554 if (phba->cfg_enable_hba_heartbeat) { 1555 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1556 spin_lock_irq(&phba->pport->work_port_lock); 1557 if (time_after(phba->last_completion_time + 1558 secs_to_jiffies(LPFC_HB_MBOX_INTERVAL), 1559 jiffies)) { 1560 spin_unlock_irq(&phba->pport->work_port_lock); 1561 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) 1562 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1563 else 1564 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1565 goto out; 1566 } 1567 spin_unlock_irq(&phba->pport->work_port_lock); 1568 1569 /* Check if a MBX_HEARTBEAT is already in progress */ 1570 if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) { 1571 /* 1572 * If heart beat timeout called with HBA_HBEAT_INP set 1573 * we need to give the hb mailbox cmd a chance to 1574 * complete or TMO. 1575 */ 1576 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1577 "0459 Adapter heartbeat still outstanding: " 1578 "last compl time was %d ms.\n", 1579 jiffies_to_msecs(jiffies 1580 - phba->last_completion_time)); 1581 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1582 } else { 1583 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1584 (list_empty(&psli->mboxq))) { 1585 1586 retval = lpfc_issue_hb_mbox(phba); 1587 if (retval) { 1588 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1589 goto out; 1590 } 1591 phba->skipped_hb = 0; 1592 } else if (time_before_eq(phba->last_completion_time, 1593 phba->skipped_hb)) { 1594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1595 "2857 Last completion time not " 1596 " updated in %d ms\n", 1597 jiffies_to_msecs(jiffies 1598 - phba->last_completion_time)); 1599 } else 1600 phba->skipped_hb = jiffies; 1601 1602 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1603 goto out; 1604 } 1605 } else { 1606 /* Check to see if we want to force a MBX_HEARTBEAT */ 1607 if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) { 1608 retval = lpfc_issue_hb_mbox(phba); 1609 if (retval) 1610 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1611 else 1612 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1613 goto out; 1614 } 1615 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1616 } 1617 out: 1618 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1619 } 1620 1621 /** 1622 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1623 * @phba: pointer to lpfc hba data structure. 1624 * 1625 * This routine is called to bring the HBA offline when HBA hardware error 1626 * other than Port Error 6 has been detected. 1627 **/ 1628 static void 1629 lpfc_offline_eratt(struct lpfc_hba *phba) 1630 { 1631 struct lpfc_sli *psli = &phba->sli; 1632 1633 spin_lock_irq(&phba->hbalock); 1634 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1635 spin_unlock_irq(&phba->hbalock); 1636 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1637 1638 lpfc_offline(phba); 1639 lpfc_reset_barrier(phba); 1640 spin_lock_irq(&phba->hbalock); 1641 lpfc_sli_brdreset(phba); 1642 spin_unlock_irq(&phba->hbalock); 1643 lpfc_hba_down_post(phba); 1644 lpfc_sli_brdready(phba, HS_MBRDY); 1645 lpfc_unblock_mgmt_io(phba); 1646 phba->link_state = LPFC_HBA_ERROR; 1647 return; 1648 } 1649 1650 /** 1651 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1652 * @phba: pointer to lpfc hba data structure. 1653 * 1654 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1655 * other than Port Error 6 has been detected. 1656 **/ 1657 void 1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1659 { 1660 spin_lock_irq(&phba->hbalock); 1661 if (phba->link_state == LPFC_HBA_ERROR && 1662 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1663 spin_unlock_irq(&phba->hbalock); 1664 return; 1665 } 1666 phba->link_state = LPFC_HBA_ERROR; 1667 spin_unlock_irq(&phba->hbalock); 1668 1669 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1670 lpfc_sli_flush_io_rings(phba); 1671 lpfc_offline(phba); 1672 lpfc_hba_down_post(phba); 1673 lpfc_unblock_mgmt_io(phba); 1674 } 1675 1676 /** 1677 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1678 * @phba: pointer to lpfc hba data structure. 1679 * 1680 * This routine is invoked to handle the deferred HBA hardware error 1681 * conditions. This type of error is indicated by HBA by setting ER1 1682 * and another ER bit in the host status register. The driver will 1683 * wait until the ER1 bit clears before handling the error condition. 1684 **/ 1685 static void 1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1687 { 1688 uint32_t old_host_status = phba->work_hs; 1689 struct lpfc_sli *psli = &phba->sli; 1690 1691 /* If the pci channel is offline, ignore possible errors, 1692 * since we cannot communicate with the pci card anyway. 1693 */ 1694 if (pci_channel_offline(phba->pcidev)) { 1695 clear_bit(DEFER_ERATT, &phba->hba_flag); 1696 return; 1697 } 1698 1699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1700 "0479 Deferred Adapter Hardware Error " 1701 "Data: x%x x%x x%x\n", 1702 phba->work_hs, phba->work_status[0], 1703 phba->work_status[1]); 1704 1705 spin_lock_irq(&phba->hbalock); 1706 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1707 spin_unlock_irq(&phba->hbalock); 1708 1709 1710 /* 1711 * Firmware stops when it triggred erratt. That could cause the I/Os 1712 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1713 * SCSI layer retry it after re-establishing link. 1714 */ 1715 lpfc_sli_abort_fcp_rings(phba); 1716 1717 /* 1718 * There was a firmware error. Take the hba offline and then 1719 * attempt to restart it. 1720 */ 1721 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1722 lpfc_offline(phba); 1723 1724 /* Wait for the ER1 bit to clear.*/ 1725 while (phba->work_hs & HS_FFER1) { 1726 msleep(100); 1727 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1728 phba->work_hs = UNPLUG_ERR ; 1729 break; 1730 } 1731 /* If driver is unloading let the worker thread continue */ 1732 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1733 phba->work_hs = 0; 1734 break; 1735 } 1736 } 1737 1738 /* 1739 * This is to ptrotect against a race condition in which 1740 * first write to the host attention register clear the 1741 * host status register. 1742 */ 1743 if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1744 phba->work_hs = old_host_status & ~HS_FFER1; 1745 1746 clear_bit(DEFER_ERATT, &phba->hba_flag); 1747 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1748 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1749 } 1750 1751 static void 1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1753 { 1754 struct lpfc_board_event_header board_event; 1755 struct Scsi_Host *shost; 1756 1757 board_event.event_type = FC_REG_BOARD_EVENT; 1758 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1759 shost = lpfc_shost_from_vport(phba->pport); 1760 fc_host_post_vendor_event(shost, fc_get_event_number(), 1761 sizeof(board_event), 1762 (char *) &board_event, 1763 LPFC_NL_VENDOR_ID); 1764 } 1765 1766 /** 1767 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1768 * @phba: pointer to lpfc hba data structure. 1769 * 1770 * This routine is invoked to handle the following HBA hardware error 1771 * conditions: 1772 * 1 - HBA error attention interrupt 1773 * 2 - DMA ring index out of range 1774 * 3 - Mailbox command came back as unknown 1775 **/ 1776 static void 1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1778 { 1779 struct lpfc_vport *vport = phba->pport; 1780 struct lpfc_sli *psli = &phba->sli; 1781 uint32_t event_data; 1782 unsigned long temperature; 1783 struct temp_event temp_event_data; 1784 struct Scsi_Host *shost; 1785 1786 /* If the pci channel is offline, ignore possible errors, 1787 * since we cannot communicate with the pci card anyway. 1788 */ 1789 if (pci_channel_offline(phba->pcidev)) { 1790 clear_bit(DEFER_ERATT, &phba->hba_flag); 1791 return; 1792 } 1793 1794 /* If resets are disabled then leave the HBA alone and return */ 1795 if (!phba->cfg_enable_hba_reset) 1796 return; 1797 1798 /* Send an internal error event to mgmt application */ 1799 lpfc_board_errevt_to_mgmt(phba); 1800 1801 if (test_bit(DEFER_ERATT, &phba->hba_flag)) 1802 lpfc_handle_deferred_eratt(phba); 1803 1804 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1805 if (phba->work_hs & HS_FFER6) 1806 /* Re-establishing Link */ 1807 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1808 "1301 Re-establishing Link " 1809 "Data: x%x x%x x%x\n", 1810 phba->work_hs, phba->work_status[0], 1811 phba->work_status[1]); 1812 if (phba->work_hs & HS_FFER8) 1813 /* Device Zeroization */ 1814 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1815 "2861 Host Authentication device " 1816 "zeroization Data:x%x x%x x%x\n", 1817 phba->work_hs, phba->work_status[0], 1818 phba->work_status[1]); 1819 1820 spin_lock_irq(&phba->hbalock); 1821 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1822 spin_unlock_irq(&phba->hbalock); 1823 1824 /* 1825 * Firmware stops when it triggled erratt with HS_FFER6. 1826 * That could cause the I/Os dropped by the firmware. 1827 * Error iocb (I/O) on txcmplq and let the SCSI layer 1828 * retry it after re-establishing link. 1829 */ 1830 lpfc_sli_abort_fcp_rings(phba); 1831 1832 /* 1833 * There was a firmware error. Take the hba offline and then 1834 * attempt to restart it. 1835 */ 1836 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1837 lpfc_offline(phba); 1838 lpfc_sli_brdrestart(phba); 1839 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1840 lpfc_unblock_mgmt_io(phba); 1841 return; 1842 } 1843 lpfc_unblock_mgmt_io(phba); 1844 } else if (phba->work_hs & HS_CRIT_TEMP) { 1845 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1846 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1847 temp_event_data.event_code = LPFC_CRIT_TEMP; 1848 temp_event_data.data = (uint32_t)temperature; 1849 1850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1851 "0406 Adapter maximum temperature exceeded " 1852 "(%ld), taking this port offline " 1853 "Data: x%x x%x x%x\n", 1854 temperature, phba->work_hs, 1855 phba->work_status[0], phba->work_status[1]); 1856 1857 shost = lpfc_shost_from_vport(phba->pport); 1858 fc_host_post_vendor_event(shost, fc_get_event_number(), 1859 sizeof(temp_event_data), 1860 (char *) &temp_event_data, 1861 SCSI_NL_VID_TYPE_PCI 1862 | PCI_VENDOR_ID_EMULEX); 1863 1864 spin_lock_irq(&phba->hbalock); 1865 phba->over_temp_state = HBA_OVER_TEMP; 1866 spin_unlock_irq(&phba->hbalock); 1867 lpfc_offline_eratt(phba); 1868 1869 } else { 1870 /* The if clause above forces this code path when the status 1871 * failure is a value other than FFER6. Do not call the offline 1872 * twice. This is the adapter hardware error path. 1873 */ 1874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1875 "0457 Adapter Hardware Error " 1876 "Data: x%x x%x x%x\n", 1877 phba->work_hs, 1878 phba->work_status[0], phba->work_status[1]); 1879 1880 event_data = FC_REG_DUMP_EVENT; 1881 shost = lpfc_shost_from_vport(vport); 1882 fc_host_post_vendor_event(shost, fc_get_event_number(), 1883 sizeof(event_data), (char *) &event_data, 1884 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1885 1886 lpfc_offline_eratt(phba); 1887 } 1888 return; 1889 } 1890 1891 /** 1892 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1893 * @phba: pointer to lpfc hba data structure. 1894 * @mbx_action: flag for mailbox shutdown action. 1895 * @en_rn_msg: send reset/port recovery message. 1896 * This routine is invoked to perform an SLI4 port PCI function reset in 1897 * response to port status register polling attention. It waits for port 1898 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1899 * During this process, interrupt vectors are freed and later requested 1900 * for handling possible port resource change. 1901 **/ 1902 static int 1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1904 bool en_rn_msg) 1905 { 1906 int rc; 1907 uint32_t intr_mode; 1908 LPFC_MBOXQ_t *mboxq; 1909 1910 /* Notifying the transport that the targets are going offline. */ 1911 lpfc_scsi_dev_block(phba); 1912 1913 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1914 LPFC_SLI_INTF_IF_TYPE_2) { 1915 /* 1916 * On error status condition, driver need to wait for port 1917 * ready before performing reset. 1918 */ 1919 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1920 if (rc) 1921 return rc; 1922 } 1923 1924 /* need reset: attempt for port recovery */ 1925 if (en_rn_msg) 1926 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1927 "2887 Reset Needed: Attempting Port " 1928 "Recovery...\n"); 1929 1930 /* If we are no wait, the HBA has been reset and is not 1931 * functional, thus we should clear 1932 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1933 */ 1934 if (mbx_action == LPFC_MBX_NO_WAIT) { 1935 spin_lock_irq(&phba->hbalock); 1936 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1937 if (phba->sli.mbox_active) { 1938 mboxq = phba->sli.mbox_active; 1939 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1940 __lpfc_mbox_cmpl_put(phba, mboxq); 1941 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1942 phba->sli.mbox_active = NULL; 1943 } 1944 spin_unlock_irq(&phba->hbalock); 1945 } 1946 1947 lpfc_offline_prep(phba, mbx_action); 1948 lpfc_sli_flush_io_rings(phba); 1949 lpfc_nvmels_flush_cmd(phba); 1950 lpfc_offline(phba); 1951 /* release interrupt for possible resource change */ 1952 lpfc_sli4_disable_intr(phba); 1953 rc = lpfc_sli_brdrestart(phba); 1954 if (rc) { 1955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1956 "6309 Failed to restart board\n"); 1957 return rc; 1958 } 1959 /* request and enable interrupt */ 1960 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1961 if (intr_mode == LPFC_INTR_ERROR) { 1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1963 "3175 Failed to enable interrupt\n"); 1964 return -EIO; 1965 } 1966 phba->intr_mode = intr_mode; 1967 rc = lpfc_online(phba); 1968 if (rc == 0) 1969 lpfc_unblock_mgmt_io(phba); 1970 1971 return rc; 1972 } 1973 1974 /** 1975 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1976 * @phba: pointer to lpfc hba data structure. 1977 * 1978 * This routine is invoked to handle the SLI4 HBA hardware error attention 1979 * conditions. 1980 **/ 1981 static void 1982 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1983 { 1984 struct lpfc_vport *vport = phba->pport; 1985 uint32_t event_data; 1986 struct Scsi_Host *shost; 1987 uint32_t if_type; 1988 struct lpfc_register portstat_reg = {0}; 1989 uint32_t reg_err1, reg_err2; 1990 uint32_t uerrlo_reg, uemasklo_reg; 1991 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1992 bool en_rn_msg = true; 1993 struct temp_event temp_event_data; 1994 struct lpfc_register portsmphr_reg; 1995 int rc, i; 1996 1997 /* If the pci channel is offline, ignore possible errors, since 1998 * we cannot communicate with the pci card anyway. 1999 */ 2000 if (pci_channel_offline(phba->pcidev)) { 2001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2002 "3166 pci channel is offline\n"); 2003 lpfc_sli_flush_io_rings(phba); 2004 return; 2005 } 2006 2007 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 2008 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 2009 switch (if_type) { 2010 case LPFC_SLI_INTF_IF_TYPE_0: 2011 pci_rd_rc1 = lpfc_readl( 2012 phba->sli4_hba.u.if_type0.UERRLOregaddr, 2013 &uerrlo_reg); 2014 pci_rd_rc2 = lpfc_readl( 2015 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2016 &uemasklo_reg); 2017 /* consider PCI bus read error as pci_channel_offline */ 2018 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2019 return; 2020 if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) { 2021 lpfc_sli4_offline_eratt(phba); 2022 return; 2023 } 2024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2025 "7623 Checking UE recoverable"); 2026 2027 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2028 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2029 &portsmphr_reg.word0)) 2030 continue; 2031 2032 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2033 &portsmphr_reg); 2034 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2035 LPFC_PORT_SEM_UE_RECOVERABLE) 2036 break; 2037 /*Sleep for 1Sec, before checking SEMAPHORE */ 2038 msleep(1000); 2039 } 2040 2041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2042 "4827 smphr_port_status x%x : Waited %dSec", 2043 smphr_port_status, i); 2044 2045 /* Recoverable UE, reset the HBA device */ 2046 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2047 LPFC_PORT_SEM_UE_RECOVERABLE) { 2048 for (i = 0; i < 20; i++) { 2049 msleep(1000); 2050 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2051 &portsmphr_reg.word0) && 2052 (LPFC_POST_STAGE_PORT_READY == 2053 bf_get(lpfc_port_smphr_port_status, 2054 &portsmphr_reg))) { 2055 rc = lpfc_sli4_port_sta_fn_reset(phba, 2056 LPFC_MBX_NO_WAIT, en_rn_msg); 2057 if (rc == 0) 2058 return; 2059 lpfc_printf_log(phba, KERN_ERR, 2060 LOG_TRACE_EVENT, 2061 "4215 Failed to recover UE"); 2062 break; 2063 } 2064 } 2065 } 2066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2067 "7624 Firmware not ready: Failing UE recovery," 2068 " waited %dSec", i); 2069 phba->link_state = LPFC_HBA_ERROR; 2070 break; 2071 2072 case LPFC_SLI_INTF_IF_TYPE_2: 2073 case LPFC_SLI_INTF_IF_TYPE_6: 2074 pci_rd_rc1 = lpfc_readl( 2075 phba->sli4_hba.u.if_type2.STATUSregaddr, 2076 &portstat_reg.word0); 2077 /* consider PCI bus read error as pci_channel_offline */ 2078 if (pci_rd_rc1 == -EIO) { 2079 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2080 "3151 PCI bus read access failure: x%x\n", 2081 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2082 lpfc_sli4_offline_eratt(phba); 2083 return; 2084 } 2085 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2086 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2087 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2089 "2889 Port Overtemperature event, " 2090 "taking port offline Data: x%x x%x\n", 2091 reg_err1, reg_err2); 2092 2093 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2094 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2095 temp_event_data.event_code = LPFC_CRIT_TEMP; 2096 temp_event_data.data = 0xFFFFFFFF; 2097 2098 shost = lpfc_shost_from_vport(phba->pport); 2099 fc_host_post_vendor_event(shost, fc_get_event_number(), 2100 sizeof(temp_event_data), 2101 (char *)&temp_event_data, 2102 SCSI_NL_VID_TYPE_PCI 2103 | PCI_VENDOR_ID_EMULEX); 2104 2105 spin_lock_irq(&phba->hbalock); 2106 phba->over_temp_state = HBA_OVER_TEMP; 2107 spin_unlock_irq(&phba->hbalock); 2108 lpfc_sli4_offline_eratt(phba); 2109 return; 2110 } 2111 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2112 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2114 "3143 Port Down: Firmware Update " 2115 "Detected\n"); 2116 en_rn_msg = false; 2117 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2118 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2119 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2120 "3144 Port Down: Debug Dump\n"); 2121 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2122 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2124 "3145 Port Down: Provisioning\n"); 2125 2126 /* If resets are disabled then leave the HBA alone and return */ 2127 if (!phba->cfg_enable_hba_reset) 2128 return; 2129 2130 /* Check port status register for function reset */ 2131 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2132 en_rn_msg); 2133 if (rc == 0) { 2134 /* don't report event on forced debug dump */ 2135 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2136 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2137 return; 2138 else 2139 break; 2140 } 2141 /* fall through for not able to recover */ 2142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2143 "3152 Unrecoverable error\n"); 2144 lpfc_sli4_offline_eratt(phba); 2145 break; 2146 case LPFC_SLI_INTF_IF_TYPE_1: 2147 default: 2148 break; 2149 } 2150 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2151 "3123 Report dump event to upper layer\n"); 2152 /* Send an internal error event to mgmt application */ 2153 lpfc_board_errevt_to_mgmt(phba); 2154 2155 event_data = FC_REG_DUMP_EVENT; 2156 shost = lpfc_shost_from_vport(vport); 2157 fc_host_post_vendor_event(shost, fc_get_event_number(), 2158 sizeof(event_data), (char *) &event_data, 2159 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2160 } 2161 2162 /** 2163 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2164 * @phba: pointer to lpfc HBA data structure. 2165 * 2166 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2167 * routine from the API jump table function pointer from the lpfc_hba struct. 2168 * 2169 * Return codes 2170 * 0 - success. 2171 * Any other value - error. 2172 **/ 2173 void 2174 lpfc_handle_eratt(struct lpfc_hba *phba) 2175 { 2176 (*phba->lpfc_handle_eratt)(phba); 2177 } 2178 2179 /** 2180 * lpfc_handle_latt - The HBA link event handler 2181 * @phba: pointer to lpfc hba data structure. 2182 * 2183 * This routine is invoked from the worker thread to handle a HBA host 2184 * attention link event. SLI3 only. 2185 **/ 2186 void 2187 lpfc_handle_latt(struct lpfc_hba *phba) 2188 { 2189 struct lpfc_vport *vport = phba->pport; 2190 struct lpfc_sli *psli = &phba->sli; 2191 LPFC_MBOXQ_t *pmb; 2192 volatile uint32_t control; 2193 int rc = 0; 2194 2195 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2196 if (!pmb) { 2197 rc = 1; 2198 goto lpfc_handle_latt_err_exit; 2199 } 2200 2201 rc = lpfc_mbox_rsrc_prep(phba, pmb); 2202 if (rc) { 2203 rc = 2; 2204 mempool_free(pmb, phba->mbox_mem_pool); 2205 goto lpfc_handle_latt_err_exit; 2206 } 2207 2208 /* Cleanup any outstanding ELS commands */ 2209 lpfc_els_flush_all_cmd(phba); 2210 psli->slistat.link_event++; 2211 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 2212 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2213 pmb->vport = vport; 2214 /* Block ELS IOCBs until we have processed this mbox command */ 2215 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2216 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2217 if (rc == MBX_NOT_FINISHED) { 2218 rc = 4; 2219 goto lpfc_handle_latt_free_mbuf; 2220 } 2221 2222 /* Clear Link Attention in HA REG */ 2223 spin_lock_irq(&phba->hbalock); 2224 writel(HA_LATT, phba->HAregaddr); 2225 readl(phba->HAregaddr); /* flush */ 2226 spin_unlock_irq(&phba->hbalock); 2227 2228 return; 2229 2230 lpfc_handle_latt_free_mbuf: 2231 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2232 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2233 lpfc_handle_latt_err_exit: 2234 /* Enable Link attention interrupts */ 2235 spin_lock_irq(&phba->hbalock); 2236 psli->sli_flag |= LPFC_PROCESS_LA; 2237 control = readl(phba->HCregaddr); 2238 control |= HC_LAINT_ENA; 2239 writel(control, phba->HCregaddr); 2240 readl(phba->HCregaddr); /* flush */ 2241 2242 /* Clear Link Attention in HA REG */ 2243 writel(HA_LATT, phba->HAregaddr); 2244 readl(phba->HAregaddr); /* flush */ 2245 spin_unlock_irq(&phba->hbalock); 2246 lpfc_linkdown(phba); 2247 phba->link_state = LPFC_HBA_ERROR; 2248 2249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2250 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2251 2252 return; 2253 } 2254 2255 static void 2256 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex) 2257 { 2258 int i, j; 2259 2260 while (length > 0) { 2261 /* Look for Serial Number */ 2262 if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) { 2263 *pindex += 2; 2264 i = vpd[*pindex]; 2265 *pindex += 1; 2266 j = 0; 2267 length -= (3+i); 2268 while (i--) { 2269 phba->SerialNumber[j++] = vpd[(*pindex)++]; 2270 if (j == 31) 2271 break; 2272 } 2273 phba->SerialNumber[j] = 0; 2274 continue; 2275 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) { 2276 phba->vpd_flag |= VPD_MODEL_DESC; 2277 *pindex += 2; 2278 i = vpd[*pindex]; 2279 *pindex += 1; 2280 j = 0; 2281 length -= (3+i); 2282 while (i--) { 2283 phba->ModelDesc[j++] = vpd[(*pindex)++]; 2284 if (j == 255) 2285 break; 2286 } 2287 phba->ModelDesc[j] = 0; 2288 continue; 2289 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) { 2290 phba->vpd_flag |= VPD_MODEL_NAME; 2291 *pindex += 2; 2292 i = vpd[*pindex]; 2293 *pindex += 1; 2294 j = 0; 2295 length -= (3+i); 2296 while (i--) { 2297 phba->ModelName[j++] = vpd[(*pindex)++]; 2298 if (j == 79) 2299 break; 2300 } 2301 phba->ModelName[j] = 0; 2302 continue; 2303 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) { 2304 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2305 *pindex += 2; 2306 i = vpd[*pindex]; 2307 *pindex += 1; 2308 j = 0; 2309 length -= (3+i); 2310 while (i--) { 2311 phba->ProgramType[j++] = vpd[(*pindex)++]; 2312 if (j == 255) 2313 break; 2314 } 2315 phba->ProgramType[j] = 0; 2316 continue; 2317 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) { 2318 phba->vpd_flag |= VPD_PORT; 2319 *pindex += 2; 2320 i = vpd[*pindex]; 2321 *pindex += 1; 2322 j = 0; 2323 length -= (3 + i); 2324 while (i--) { 2325 if ((phba->sli_rev == LPFC_SLI_REV4) && 2326 (phba->sli4_hba.pport_name_sta == 2327 LPFC_SLI4_PPNAME_GET)) { 2328 j++; 2329 (*pindex)++; 2330 } else 2331 phba->Port[j++] = vpd[(*pindex)++]; 2332 if (j == 19) 2333 break; 2334 } 2335 if ((phba->sli_rev != LPFC_SLI_REV4) || 2336 (phba->sli4_hba.pport_name_sta == 2337 LPFC_SLI4_PPNAME_NON)) 2338 phba->Port[j] = 0; 2339 continue; 2340 } else { 2341 *pindex += 2; 2342 i = vpd[*pindex]; 2343 *pindex += 1; 2344 *pindex += i; 2345 length -= (3 + i); 2346 } 2347 } 2348 } 2349 2350 /** 2351 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2352 * @phba: pointer to lpfc hba data structure. 2353 * @vpd: pointer to the vital product data. 2354 * @len: length of the vital product data in bytes. 2355 * 2356 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2357 * an array of characters. In this routine, the ModelName, ProgramType, and 2358 * ModelDesc, etc. fields of the phba data structure will be populated. 2359 * 2360 * Return codes 2361 * 0 - pointer to the VPD passed in is NULL 2362 * 1 - success 2363 **/ 2364 int 2365 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2366 { 2367 uint8_t lenlo, lenhi; 2368 int Length; 2369 int i; 2370 int finished = 0; 2371 int index = 0; 2372 2373 if (!vpd) 2374 return 0; 2375 2376 /* Vital Product */ 2377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2378 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2379 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2380 (uint32_t) vpd[3]); 2381 while (!finished && (index < (len - 4))) { 2382 switch (vpd[index]) { 2383 case 0x82: 2384 case 0x91: 2385 index += 1; 2386 lenlo = vpd[index]; 2387 index += 1; 2388 lenhi = vpd[index]; 2389 index += 1; 2390 i = ((((unsigned short)lenhi) << 8) + lenlo); 2391 index += i; 2392 break; 2393 case 0x90: 2394 index += 1; 2395 lenlo = vpd[index]; 2396 index += 1; 2397 lenhi = vpd[index]; 2398 index += 1; 2399 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2400 if (Length > len - index) 2401 Length = len - index; 2402 2403 lpfc_fill_vpd(phba, vpd, Length, &index); 2404 finished = 0; 2405 break; 2406 case 0x78: 2407 finished = 1; 2408 break; 2409 default: 2410 index ++; 2411 break; 2412 } 2413 } 2414 2415 return(1); 2416 } 2417 2418 /** 2419 * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description 2420 * @phba: pointer to lpfc hba data structure. 2421 * @mdp: pointer to the data structure to hold the derived model name. 2422 * @descp: pointer to the data structure to hold the derived description. 2423 * 2424 * This routine retrieves HBA's description based on its registered PCI device 2425 * ID. The @descp passed into this function points to an array of 256 chars. It 2426 * shall be returned with the model name, maximum speed, and the host bus type. 2427 * The @mdp passed into this function points to an array of 80 chars. When the 2428 * function returns, the @mdp will be filled with the model name. 2429 **/ 2430 static void 2431 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2432 { 2433 uint16_t sub_dev_id = phba->pcidev->subsystem_device; 2434 char *model = "<Unknown>"; 2435 int tbolt = 0; 2436 2437 switch (sub_dev_id) { 2438 case PCI_DEVICE_ID_CLRY_161E: 2439 model = "161E"; 2440 break; 2441 case PCI_DEVICE_ID_CLRY_162E: 2442 model = "162E"; 2443 break; 2444 case PCI_DEVICE_ID_CLRY_164E: 2445 model = "164E"; 2446 break; 2447 case PCI_DEVICE_ID_CLRY_161P: 2448 model = "161P"; 2449 break; 2450 case PCI_DEVICE_ID_CLRY_162P: 2451 model = "162P"; 2452 break; 2453 case PCI_DEVICE_ID_CLRY_164P: 2454 model = "164P"; 2455 break; 2456 case PCI_DEVICE_ID_CLRY_321E: 2457 model = "321E"; 2458 break; 2459 case PCI_DEVICE_ID_CLRY_322E: 2460 model = "322E"; 2461 break; 2462 case PCI_DEVICE_ID_CLRY_324E: 2463 model = "324E"; 2464 break; 2465 case PCI_DEVICE_ID_CLRY_321P: 2466 model = "321P"; 2467 break; 2468 case PCI_DEVICE_ID_CLRY_322P: 2469 model = "322P"; 2470 break; 2471 case PCI_DEVICE_ID_CLRY_324P: 2472 model = "324P"; 2473 break; 2474 case PCI_DEVICE_ID_TLFC_2XX2: 2475 model = "2XX2"; 2476 tbolt = 1; 2477 break; 2478 case PCI_DEVICE_ID_TLFC_3162: 2479 model = "3162"; 2480 tbolt = 1; 2481 break; 2482 case PCI_DEVICE_ID_TLFC_3322: 2483 model = "3322"; 2484 tbolt = 1; 2485 break; 2486 default: 2487 model = "Unknown"; 2488 break; 2489 } 2490 2491 if (mdp && mdp[0] == '\0') 2492 snprintf(mdp, 79, "%s", model); 2493 2494 if (descp && descp[0] == '\0') 2495 snprintf(descp, 255, 2496 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", 2497 (tbolt) ? "ThunderLink FC " : "Celerity FC-", 2498 model, 2499 phba->Port); 2500 } 2501 2502 /** 2503 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2504 * @phba: pointer to lpfc hba data structure. 2505 * @mdp: pointer to the data structure to hold the derived model name. 2506 * @descp: pointer to the data structure to hold the derived description. 2507 * 2508 * This routine retrieves HBA's description based on its registered PCI device 2509 * ID. The @descp passed into this function points to an array of 256 chars. It 2510 * shall be returned with the model name, maximum speed, and the host bus type. 2511 * The @mdp passed into this function points to an array of 80 chars. When the 2512 * function returns, the @mdp will be filled with the model name. 2513 **/ 2514 static void 2515 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2516 { 2517 lpfc_vpd_t *vp; 2518 uint16_t dev_id = phba->pcidev->device; 2519 int max_speed; 2520 int GE = 0; 2521 int oneConnect = 0; /* default is not a oneConnect */ 2522 struct { 2523 char *name; 2524 char *bus; 2525 char *function; 2526 } m = {"<Unknown>", "", ""}; 2527 2528 if (mdp && mdp[0] != '\0' 2529 && descp && descp[0] != '\0') 2530 return; 2531 2532 if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { 2533 lpfc_get_atto_model_desc(phba, mdp, descp); 2534 return; 2535 } 2536 2537 if (phba->lmt & LMT_64Gb) 2538 max_speed = 64; 2539 else if (phba->lmt & LMT_32Gb) 2540 max_speed = 32; 2541 else if (phba->lmt & LMT_16Gb) 2542 max_speed = 16; 2543 else if (phba->lmt & LMT_10Gb) 2544 max_speed = 10; 2545 else if (phba->lmt & LMT_8Gb) 2546 max_speed = 8; 2547 else if (phba->lmt & LMT_4Gb) 2548 max_speed = 4; 2549 else if (phba->lmt & LMT_2Gb) 2550 max_speed = 2; 2551 else if (phba->lmt & LMT_1Gb) 2552 max_speed = 1; 2553 else 2554 max_speed = 0; 2555 2556 vp = &phba->vpd; 2557 2558 switch (dev_id) { 2559 case PCI_DEVICE_ID_FIREFLY: 2560 m = (typeof(m)){"LP6000", "PCI", 2561 "Obsolete, Unsupported Fibre Channel Adapter"}; 2562 break; 2563 case PCI_DEVICE_ID_SUPERFLY: 2564 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2565 m = (typeof(m)){"LP7000", "PCI", ""}; 2566 else 2567 m = (typeof(m)){"LP7000E", "PCI", ""}; 2568 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2569 break; 2570 case PCI_DEVICE_ID_DRAGONFLY: 2571 m = (typeof(m)){"LP8000", "PCI", 2572 "Obsolete, Unsupported Fibre Channel Adapter"}; 2573 break; 2574 case PCI_DEVICE_ID_CENTAUR: 2575 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2576 m = (typeof(m)){"LP9002", "PCI", ""}; 2577 else 2578 m = (typeof(m)){"LP9000", "PCI", ""}; 2579 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2580 break; 2581 case PCI_DEVICE_ID_RFLY: 2582 m = (typeof(m)){"LP952", "PCI", 2583 "Obsolete, Unsupported Fibre Channel Adapter"}; 2584 break; 2585 case PCI_DEVICE_ID_PEGASUS: 2586 m = (typeof(m)){"LP9802", "PCI-X", 2587 "Obsolete, Unsupported Fibre Channel Adapter"}; 2588 break; 2589 case PCI_DEVICE_ID_THOR: 2590 m = (typeof(m)){"LP10000", "PCI-X", 2591 "Obsolete, Unsupported Fibre Channel Adapter"}; 2592 break; 2593 case PCI_DEVICE_ID_VIPER: 2594 m = (typeof(m)){"LPX1000", "PCI-X", 2595 "Obsolete, Unsupported Fibre Channel Adapter"}; 2596 break; 2597 case PCI_DEVICE_ID_PFLY: 2598 m = (typeof(m)){"LP982", "PCI-X", 2599 "Obsolete, Unsupported Fibre Channel Adapter"}; 2600 break; 2601 case PCI_DEVICE_ID_TFLY: 2602 m = (typeof(m)){"LP1050", "PCI-X", 2603 "Obsolete, Unsupported Fibre Channel Adapter"}; 2604 break; 2605 case PCI_DEVICE_ID_HELIOS: 2606 m = (typeof(m)){"LP11000", "PCI-X2", 2607 "Obsolete, Unsupported Fibre Channel Adapter"}; 2608 break; 2609 case PCI_DEVICE_ID_HELIOS_SCSP: 2610 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2611 "Obsolete, Unsupported Fibre Channel Adapter"}; 2612 break; 2613 case PCI_DEVICE_ID_HELIOS_DCSP: 2614 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2615 "Obsolete, Unsupported Fibre Channel Adapter"}; 2616 break; 2617 case PCI_DEVICE_ID_NEPTUNE: 2618 m = (typeof(m)){"LPe1000", "PCIe", 2619 "Obsolete, Unsupported Fibre Channel Adapter"}; 2620 break; 2621 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2622 m = (typeof(m)){"LPe1000-SP", "PCIe", 2623 "Obsolete, Unsupported Fibre Channel Adapter"}; 2624 break; 2625 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2626 m = (typeof(m)){"LPe1002-SP", "PCIe", 2627 "Obsolete, Unsupported Fibre Channel Adapter"}; 2628 break; 2629 case PCI_DEVICE_ID_BMID: 2630 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2631 break; 2632 case PCI_DEVICE_ID_BSMB: 2633 m = (typeof(m)){"LP111", "PCI-X2", 2634 "Obsolete, Unsupported Fibre Channel Adapter"}; 2635 break; 2636 case PCI_DEVICE_ID_ZEPHYR: 2637 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2638 break; 2639 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2640 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2641 break; 2642 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2643 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2644 GE = 1; 2645 break; 2646 case PCI_DEVICE_ID_ZMID: 2647 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2648 break; 2649 case PCI_DEVICE_ID_ZSMB: 2650 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2651 break; 2652 case PCI_DEVICE_ID_LP101: 2653 m = (typeof(m)){"LP101", "PCI-X", 2654 "Obsolete, Unsupported Fibre Channel Adapter"}; 2655 break; 2656 case PCI_DEVICE_ID_LP10000S: 2657 m = (typeof(m)){"LP10000-S", "PCI", 2658 "Obsolete, Unsupported Fibre Channel Adapter"}; 2659 break; 2660 case PCI_DEVICE_ID_LP11000S: 2661 m = (typeof(m)){"LP11000-S", "PCI-X2", 2662 "Obsolete, Unsupported Fibre Channel Adapter"}; 2663 break; 2664 case PCI_DEVICE_ID_LPE11000S: 2665 m = (typeof(m)){"LPe11000-S", "PCIe", 2666 "Obsolete, Unsupported Fibre Channel Adapter"}; 2667 break; 2668 case PCI_DEVICE_ID_SAT: 2669 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2670 break; 2671 case PCI_DEVICE_ID_SAT_MID: 2672 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2673 break; 2674 case PCI_DEVICE_ID_SAT_SMB: 2675 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2676 break; 2677 case PCI_DEVICE_ID_SAT_DCSP: 2678 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2679 break; 2680 case PCI_DEVICE_ID_SAT_SCSP: 2681 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2682 break; 2683 case PCI_DEVICE_ID_SAT_S: 2684 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2685 break; 2686 case PCI_DEVICE_ID_PROTEUS_VF: 2687 m = (typeof(m)){"LPev12000", "PCIe IOV", 2688 "Obsolete, Unsupported Fibre Channel Adapter"}; 2689 break; 2690 case PCI_DEVICE_ID_PROTEUS_PF: 2691 m = (typeof(m)){"LPev12000", "PCIe IOV", 2692 "Obsolete, Unsupported Fibre Channel Adapter"}; 2693 break; 2694 case PCI_DEVICE_ID_PROTEUS_S: 2695 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2696 "Obsolete, Unsupported Fibre Channel Adapter"}; 2697 break; 2698 case PCI_DEVICE_ID_TIGERSHARK: 2699 oneConnect = 1; 2700 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2701 break; 2702 case PCI_DEVICE_ID_TOMCAT: 2703 oneConnect = 1; 2704 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2705 break; 2706 case PCI_DEVICE_ID_FALCON: 2707 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2708 "EmulexSecure Fibre"}; 2709 break; 2710 case PCI_DEVICE_ID_BALIUS: 2711 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2712 "Obsolete, Unsupported Fibre Channel Adapter"}; 2713 break; 2714 case PCI_DEVICE_ID_LANCER_FC: 2715 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2716 break; 2717 case PCI_DEVICE_ID_LANCER_FC_VF: 2718 m = (typeof(m)){"LPe16000", "PCIe", 2719 "Obsolete, Unsupported Fibre Channel Adapter"}; 2720 break; 2721 case PCI_DEVICE_ID_LANCER_FCOE: 2722 oneConnect = 1; 2723 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2724 break; 2725 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2726 oneConnect = 1; 2727 m = (typeof(m)){"OCe15100", "PCIe", 2728 "Obsolete, Unsupported FCoE"}; 2729 break; 2730 case PCI_DEVICE_ID_LANCER_G6_FC: 2731 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2732 break; 2733 case PCI_DEVICE_ID_LANCER_G7_FC: 2734 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2735 break; 2736 case PCI_DEVICE_ID_LANCER_G7P_FC: 2737 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2738 break; 2739 case PCI_DEVICE_ID_SKYHAWK: 2740 case PCI_DEVICE_ID_SKYHAWK_VF: 2741 oneConnect = 1; 2742 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2743 break; 2744 default: 2745 m = (typeof(m)){"Unknown", "", ""}; 2746 break; 2747 } 2748 2749 if (mdp && mdp[0] == '\0') 2750 snprintf(mdp, 79,"%s", m.name); 2751 /* 2752 * oneConnect hba requires special processing, they are all initiators 2753 * and we put the port number on the end 2754 */ 2755 if (descp && descp[0] == '\0') { 2756 if (oneConnect) 2757 snprintf(descp, 255, 2758 "Emulex OneConnect %s, %s Initiator %s", 2759 m.name, m.function, 2760 phba->Port); 2761 else if (max_speed == 0) 2762 snprintf(descp, 255, 2763 "Emulex %s %s %s", 2764 m.name, m.bus, m.function); 2765 else 2766 snprintf(descp, 255, 2767 "Emulex %s %d%s %s %s", 2768 m.name, max_speed, (GE) ? "GE" : "Gb", 2769 m.bus, m.function); 2770 } 2771 } 2772 2773 /** 2774 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2775 * @phba: pointer to lpfc hba data structure. 2776 * @pring: pointer to a IOCB ring. 2777 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2778 * 2779 * This routine posts a given number of IOCBs with the associated DMA buffer 2780 * descriptors specified by the cnt argument to the given IOCB ring. 2781 * 2782 * Return codes 2783 * The number of IOCBs NOT able to be posted to the IOCB ring. 2784 **/ 2785 int 2786 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2787 { 2788 IOCB_t *icmd; 2789 struct lpfc_iocbq *iocb; 2790 struct lpfc_dmabuf *mp1, *mp2; 2791 2792 cnt += pring->missbufcnt; 2793 2794 /* While there are buffers to post */ 2795 while (cnt > 0) { 2796 /* Allocate buffer for command iocb */ 2797 iocb = lpfc_sli_get_iocbq(phba); 2798 if (iocb == NULL) { 2799 pring->missbufcnt = cnt; 2800 return cnt; 2801 } 2802 icmd = &iocb->iocb; 2803 2804 /* 2 buffers can be posted per command */ 2805 /* Allocate buffer to post */ 2806 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2807 if (mp1) 2808 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2809 if (!mp1 || !mp1->virt) { 2810 kfree(mp1); 2811 lpfc_sli_release_iocbq(phba, iocb); 2812 pring->missbufcnt = cnt; 2813 return cnt; 2814 } 2815 2816 INIT_LIST_HEAD(&mp1->list); 2817 /* Allocate buffer to post */ 2818 if (cnt > 1) { 2819 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2820 if (mp2) 2821 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2822 &mp2->phys); 2823 if (!mp2 || !mp2->virt) { 2824 kfree(mp2); 2825 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2826 kfree(mp1); 2827 lpfc_sli_release_iocbq(phba, iocb); 2828 pring->missbufcnt = cnt; 2829 return cnt; 2830 } 2831 2832 INIT_LIST_HEAD(&mp2->list); 2833 } else { 2834 mp2 = NULL; 2835 } 2836 2837 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2838 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2839 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2840 icmd->ulpBdeCount = 1; 2841 cnt--; 2842 if (mp2) { 2843 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2844 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2845 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2846 cnt--; 2847 icmd->ulpBdeCount = 2; 2848 } 2849 2850 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2851 icmd->ulpLe = 1; 2852 2853 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2854 IOCB_ERROR) { 2855 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2856 kfree(mp1); 2857 cnt++; 2858 if (mp2) { 2859 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2860 kfree(mp2); 2861 cnt++; 2862 } 2863 lpfc_sli_release_iocbq(phba, iocb); 2864 pring->missbufcnt = cnt; 2865 return cnt; 2866 } 2867 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2868 if (mp2) 2869 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2870 } 2871 pring->missbufcnt = 0; 2872 return 0; 2873 } 2874 2875 /** 2876 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2877 * @phba: pointer to lpfc hba data structure. 2878 * 2879 * This routine posts initial receive IOCB buffers to the ELS ring. The 2880 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2881 * set to 64 IOCBs. SLI3 only. 2882 * 2883 * Return codes 2884 * 0 - success (currently always success) 2885 **/ 2886 static int 2887 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2888 { 2889 struct lpfc_sli *psli = &phba->sli; 2890 2891 /* Ring 0, ELS / CT buffers */ 2892 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2893 /* Ring 2 - FCP no buffers needed */ 2894 2895 return 0; 2896 } 2897 2898 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2899 2900 /** 2901 * lpfc_sha_init - Set up initial array of hash table entries 2902 * @HashResultPointer: pointer to an array as hash table. 2903 * 2904 * This routine sets up the initial values to the array of hash table entries 2905 * for the LC HBAs. 2906 **/ 2907 static void 2908 lpfc_sha_init(uint32_t * HashResultPointer) 2909 { 2910 HashResultPointer[0] = 0x67452301; 2911 HashResultPointer[1] = 0xEFCDAB89; 2912 HashResultPointer[2] = 0x98BADCFE; 2913 HashResultPointer[3] = 0x10325476; 2914 HashResultPointer[4] = 0xC3D2E1F0; 2915 } 2916 2917 /** 2918 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2919 * @HashResultPointer: pointer to an initial/result hash table. 2920 * @HashWorkingPointer: pointer to an working hash table. 2921 * 2922 * This routine iterates an initial hash table pointed by @HashResultPointer 2923 * with the values from the working hash table pointeed by @HashWorkingPointer. 2924 * The results are putting back to the initial hash table, returned through 2925 * the @HashResultPointer as the result hash table. 2926 **/ 2927 static void 2928 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2929 { 2930 int t; 2931 uint32_t TEMP; 2932 uint32_t A, B, C, D, E; 2933 t = 16; 2934 do { 2935 HashWorkingPointer[t] = 2936 S(1, 2937 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2938 8] ^ 2939 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2940 } while (++t <= 79); 2941 t = 0; 2942 A = HashResultPointer[0]; 2943 B = HashResultPointer[1]; 2944 C = HashResultPointer[2]; 2945 D = HashResultPointer[3]; 2946 E = HashResultPointer[4]; 2947 2948 do { 2949 if (t < 20) { 2950 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2951 } else if (t < 40) { 2952 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2953 } else if (t < 60) { 2954 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2955 } else { 2956 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2957 } 2958 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2959 E = D; 2960 D = C; 2961 C = S(30, B); 2962 B = A; 2963 A = TEMP; 2964 } while (++t <= 79); 2965 2966 HashResultPointer[0] += A; 2967 HashResultPointer[1] += B; 2968 HashResultPointer[2] += C; 2969 HashResultPointer[3] += D; 2970 HashResultPointer[4] += E; 2971 2972 } 2973 2974 /** 2975 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2976 * @RandomChallenge: pointer to the entry of host challenge random number array. 2977 * @HashWorking: pointer to the entry of the working hash array. 2978 * 2979 * This routine calculates the working hash array referred by @HashWorking 2980 * from the challenge random numbers associated with the host, referred by 2981 * @RandomChallenge. The result is put into the entry of the working hash 2982 * array and returned by reference through @HashWorking. 2983 **/ 2984 static void 2985 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2986 { 2987 *HashWorking = (*RandomChallenge ^ *HashWorking); 2988 } 2989 2990 /** 2991 * lpfc_hba_init - Perform special handling for LC HBA initialization 2992 * @phba: pointer to lpfc hba data structure. 2993 * @hbainit: pointer to an array of unsigned 32-bit integers. 2994 * 2995 * This routine performs the special handling for LC HBA initialization. 2996 **/ 2997 void 2998 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2999 { 3000 int t; 3001 uint32_t *HashWorking; 3002 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 3003 3004 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 3005 if (!HashWorking) 3006 return; 3007 3008 HashWorking[0] = HashWorking[78] = *pwwnn++; 3009 HashWorking[1] = HashWorking[79] = *pwwnn; 3010 3011 for (t = 0; t < 7; t++) 3012 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 3013 3014 lpfc_sha_init(hbainit); 3015 lpfc_sha_iterate(hbainit, HashWorking); 3016 kfree(HashWorking); 3017 } 3018 3019 /** 3020 * lpfc_cleanup - Performs vport cleanups before deleting a vport 3021 * @vport: pointer to a virtual N_Port data structure. 3022 * 3023 * This routine performs the necessary cleanups before deleting the @vport. 3024 * It invokes the discovery state machine to perform necessary state 3025 * transitions and to release the ndlps associated with the @vport. Note, 3026 * the physical port is treated as @vport 0. 3027 **/ 3028 void 3029 lpfc_cleanup(struct lpfc_vport *vport) 3030 { 3031 struct lpfc_hba *phba = vport->phba; 3032 struct lpfc_nodelist *ndlp, *next_ndlp; 3033 int i = 0; 3034 3035 if (phba->link_state > LPFC_LINK_DOWN) 3036 lpfc_port_link_failure(vport); 3037 3038 /* Clean up VMID resources */ 3039 if (lpfc_is_vmid_enabled(phba)) 3040 lpfc_vmid_vport_cleanup(vport); 3041 3042 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 3043 if (vport->port_type != LPFC_PHYSICAL_PORT && 3044 ndlp->nlp_DID == Fabric_DID) { 3045 /* Just free up ndlp with Fabric_DID for vports */ 3046 lpfc_nlp_put(ndlp); 3047 continue; 3048 } 3049 3050 if (ndlp->nlp_DID == Fabric_Cntl_DID && 3051 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3052 lpfc_nlp_put(ndlp); 3053 continue; 3054 } 3055 3056 /* Fabric Ports not in UNMAPPED state are cleaned up in the 3057 * DEVICE_RM event. 3058 */ 3059 if (ndlp->nlp_type & NLP_FABRIC && 3060 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 3061 lpfc_disc_state_machine(vport, ndlp, NULL, 3062 NLP_EVT_DEVICE_RECOVERY); 3063 3064 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 3065 lpfc_disc_state_machine(vport, ndlp, NULL, 3066 NLP_EVT_DEVICE_RM); 3067 } 3068 3069 /* This is a special case flush to return all 3070 * IOs before entering this loop. There are 3071 * two points in the code where a flush is 3072 * avoided if the FC_UNLOADING flag is set. 3073 * one is in the multipool destroy, 3074 * (this prevents a crash) and the other is 3075 * in the nvme abort handler, ( also prevents 3076 * a crash). Both of these exceptions are 3077 * cases where the slot is still accessible. 3078 * The flush here is only when the pci slot 3079 * is offline. 3080 */ 3081 if (test_bit(FC_UNLOADING, &vport->load_flag) && 3082 pci_channel_offline(phba->pcidev)) 3083 lpfc_sli_flush_io_rings(vport->phba); 3084 3085 /* At this point, ALL ndlp's should be gone 3086 * because of the previous NLP_EVT_DEVICE_RM. 3087 * Lets wait for this to happen, if needed. 3088 */ 3089 while (!list_empty(&vport->fc_nodes)) { 3090 if (i++ > 3000) { 3091 lpfc_printf_vlog(vport, KERN_ERR, 3092 LOG_TRACE_EVENT, 3093 "0233 Nodelist not empty\n"); 3094 list_for_each_entry_safe(ndlp, next_ndlp, 3095 &vport->fc_nodes, nlp_listp) { 3096 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3097 LOG_DISCOVERY, 3098 "0282 did:x%x ndlp:x%px " 3099 "refcnt:%d xflags x%x " 3100 "nflag x%lx\n", 3101 ndlp->nlp_DID, (void *)ndlp, 3102 kref_read(&ndlp->kref), 3103 ndlp->fc4_xpt_flags, 3104 ndlp->nlp_flag); 3105 } 3106 break; 3107 } 3108 3109 /* Wait for any activity on ndlps to settle */ 3110 msleep(10); 3111 } 3112 lpfc_cleanup_vports_rrqs(vport, NULL); 3113 } 3114 3115 /** 3116 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3117 * @vport: pointer to a virtual N_Port data structure. 3118 * 3119 * This routine stops all the timers associated with a @vport. This function 3120 * is invoked before disabling or deleting a @vport. Note that the physical 3121 * port is treated as @vport 0. 3122 **/ 3123 void 3124 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3125 { 3126 timer_delete_sync(&vport->els_tmofunc); 3127 timer_delete_sync(&vport->delayed_disc_tmo); 3128 lpfc_can_disctmo(vport); 3129 return; 3130 } 3131 3132 /** 3133 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3134 * @phba: pointer to lpfc hba data structure. 3135 * 3136 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3137 * caller of this routine should already hold the host lock. 3138 **/ 3139 void 3140 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3141 { 3142 /* Clear pending FCF rediscovery wait flag */ 3143 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3144 3145 /* Now, try to stop the timer */ 3146 timer_delete(&phba->fcf.redisc_wait); 3147 } 3148 3149 /** 3150 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3151 * @phba: pointer to lpfc hba data structure. 3152 * 3153 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3154 * checks whether the FCF rediscovery wait timer is pending with the host 3155 * lock held before proceeding with disabling the timer and clearing the 3156 * wait timer pendig flag. 3157 **/ 3158 void 3159 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3160 { 3161 spin_lock_irq(&phba->hbalock); 3162 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3163 /* FCF rediscovery timer already fired or stopped */ 3164 spin_unlock_irq(&phba->hbalock); 3165 return; 3166 } 3167 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3168 /* Clear failover in progress flags */ 3169 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3170 spin_unlock_irq(&phba->hbalock); 3171 } 3172 3173 /** 3174 * lpfc_cmf_stop - Stop CMF processing 3175 * @phba: pointer to lpfc hba data structure. 3176 * 3177 * This is called when the link goes down or if CMF mode is turned OFF. 3178 * It is also called when going offline or unloaded just before the 3179 * congestion info buffer is unregistered. 3180 **/ 3181 void 3182 lpfc_cmf_stop(struct lpfc_hba *phba) 3183 { 3184 int cpu; 3185 struct lpfc_cgn_stat *cgs; 3186 3187 /* We only do something if CMF is enabled */ 3188 if (!phba->sli4_hba.pc_sli4_params.cmf) 3189 return; 3190 3191 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3192 "6221 Stop CMF / Cancel Timer\n"); 3193 3194 /* Cancel the CMF timer */ 3195 hrtimer_cancel(&phba->cmf_stats_timer); 3196 hrtimer_cancel(&phba->cmf_timer); 3197 3198 /* Zero CMF counters */ 3199 atomic_set(&phba->cmf_busy, 0); 3200 for_each_present_cpu(cpu) { 3201 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3202 atomic64_set(&cgs->total_bytes, 0); 3203 atomic64_set(&cgs->rcv_bytes, 0); 3204 atomic_set(&cgs->rx_io_cnt, 0); 3205 atomic64_set(&cgs->rx_latency, 0); 3206 } 3207 atomic_set(&phba->cmf_bw_wait, 0); 3208 3209 /* Resume any blocked IO - Queue unblock on workqueue */ 3210 queue_work(phba->wq, &phba->unblock_request_work); 3211 } 3212 3213 static inline uint64_t 3214 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3215 { 3216 uint64_t rate = lpfc_sli_port_speed_get(phba); 3217 3218 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3219 } 3220 3221 void 3222 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3223 { 3224 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3225 "6223 Signal CMF init\n"); 3226 3227 /* Use the new fc_linkspeed to recalculate */ 3228 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3229 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3230 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3231 phba->cmf_interval_rate, 1000); 3232 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3233 3234 /* This is a signal to firmware to sync up CMF BW with link speed */ 3235 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3236 } 3237 3238 /** 3239 * lpfc_cmf_start - Start CMF processing 3240 * @phba: pointer to lpfc hba data structure. 3241 * 3242 * This is called when the link comes up or if CMF mode is turned OFF 3243 * to Monitor or Managed. 3244 **/ 3245 void 3246 lpfc_cmf_start(struct lpfc_hba *phba) 3247 { 3248 struct lpfc_cgn_stat *cgs; 3249 int cpu; 3250 3251 /* We only do something if CMF is enabled */ 3252 if (!phba->sli4_hba.pc_sli4_params.cmf || 3253 phba->cmf_active_mode == LPFC_CFG_OFF) 3254 return; 3255 3256 /* Reinitialize congestion buffer info */ 3257 lpfc_init_congestion_buf(phba); 3258 3259 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3260 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3261 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3262 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3263 3264 atomic_set(&phba->cmf_busy, 0); 3265 for_each_present_cpu(cpu) { 3266 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3267 atomic64_set(&cgs->total_bytes, 0); 3268 atomic64_set(&cgs->rcv_bytes, 0); 3269 atomic_set(&cgs->rx_io_cnt, 0); 3270 atomic64_set(&cgs->rx_latency, 0); 3271 } 3272 phba->cmf_latency.tv_sec = 0; 3273 phba->cmf_latency.tv_nsec = 0; 3274 3275 lpfc_cmf_signal_init(phba); 3276 3277 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3278 "6222 Start CMF / Timer\n"); 3279 3280 phba->cmf_timer_cnt = 0; 3281 hrtimer_start(&phba->cmf_timer, 3282 ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC), 3283 HRTIMER_MODE_REL); 3284 hrtimer_start(&phba->cmf_stats_timer, 3285 ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC), 3286 HRTIMER_MODE_REL); 3287 /* Setup for latency check in IO cmpl routines */ 3288 ktime_get_real_ts64(&phba->cmf_latency); 3289 3290 atomic_set(&phba->cmf_bw_wait, 0); 3291 atomic_set(&phba->cmf_stop_io, 0); 3292 } 3293 3294 /** 3295 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3296 * @phba: pointer to lpfc hba data structure. 3297 * 3298 * This routine stops all the timers associated with a HBA. This function is 3299 * invoked before either putting a HBA offline or unloading the driver. 3300 **/ 3301 void 3302 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3303 { 3304 if (phba->pport) 3305 lpfc_stop_vport_timers(phba->pport); 3306 cancel_delayed_work_sync(&phba->eq_delay_work); 3307 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3308 timer_delete_sync(&phba->sli.mbox_tmo); 3309 timer_delete_sync(&phba->fabric_block_timer); 3310 timer_delete_sync(&phba->eratt_poll); 3311 timer_delete_sync(&phba->hb_tmofunc); 3312 if (phba->sli_rev == LPFC_SLI_REV4) { 3313 timer_delete_sync(&phba->rrq_tmr); 3314 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 3315 } 3316 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 3317 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 3318 3319 switch (phba->pci_dev_grp) { 3320 case LPFC_PCI_DEV_LP: 3321 /* Stop any LightPulse device specific driver timers */ 3322 timer_delete_sync(&phba->fcp_poll_timer); 3323 break; 3324 case LPFC_PCI_DEV_OC: 3325 /* Stop any OneConnect device specific driver timers */ 3326 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3327 break; 3328 default: 3329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3330 "0297 Invalid device group (x%x)\n", 3331 phba->pci_dev_grp); 3332 break; 3333 } 3334 return; 3335 } 3336 3337 /** 3338 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3339 * @phba: pointer to lpfc hba data structure. 3340 * @mbx_action: flag for mailbox no wait action. 3341 * 3342 * This routine marks a HBA's management interface as blocked. Once the HBA's 3343 * management interface is marked as blocked, all the user space access to 3344 * the HBA, whether they are from sysfs interface or libdfc interface will 3345 * all be blocked. The HBA is set to block the management interface when the 3346 * driver prepares the HBA interface for online or offline. 3347 **/ 3348 static void 3349 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3350 { 3351 unsigned long iflag; 3352 uint8_t actcmd = MBX_HEARTBEAT; 3353 unsigned long timeout; 3354 3355 spin_lock_irqsave(&phba->hbalock, iflag); 3356 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3357 spin_unlock_irqrestore(&phba->hbalock, iflag); 3358 if (mbx_action == LPFC_MBX_NO_WAIT) 3359 return; 3360 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 3361 spin_lock_irqsave(&phba->hbalock, iflag); 3362 if (phba->sli.mbox_active) { 3363 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3364 /* Determine how long we might wait for the active mailbox 3365 * command to be gracefully completed by firmware. 3366 */ 3367 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 3368 phba->sli.mbox_active)) + jiffies; 3369 } 3370 spin_unlock_irqrestore(&phba->hbalock, iflag); 3371 3372 /* Wait for the outstnading mailbox command to complete */ 3373 while (phba->sli.mbox_active) { 3374 /* Check active mailbox complete status every 2ms */ 3375 msleep(2); 3376 if (time_after(jiffies, timeout)) { 3377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3378 "2813 Mgmt IO is Blocked %x " 3379 "- mbox cmd %x still active\n", 3380 phba->sli.sli_flag, actcmd); 3381 break; 3382 } 3383 } 3384 } 3385 3386 /** 3387 * lpfc_sli4_node_rpi_restore - Recover assigned RPIs for active nodes. 3388 * @phba: pointer to lpfc hba data structure. 3389 * 3390 * Allocate RPIs for all active remote nodes. This is needed whenever 3391 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3392 * is to fixup the temporary rpi assignments. 3393 **/ 3394 void 3395 lpfc_sli4_node_rpi_restore(struct lpfc_hba *phba) 3396 { 3397 struct lpfc_nodelist *ndlp, *next_ndlp; 3398 struct lpfc_vport **vports; 3399 int i, rpi; 3400 3401 if (phba->sli_rev != LPFC_SLI_REV4) 3402 return; 3403 3404 vports = lpfc_create_vport_work_array(phba); 3405 if (!vports) 3406 return; 3407 3408 for (i = 0; i <= phba->max_vports && vports[i]; i++) { 3409 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3410 continue; 3411 3412 list_for_each_entry_safe(ndlp, next_ndlp, 3413 &vports[i]->fc_nodes, 3414 nlp_listp) { 3415 rpi = lpfc_sli4_alloc_rpi(phba); 3416 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3417 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3418 LOG_NODE | LOG_DISCOVERY, 3419 "0099 RPI alloc error for " 3420 "ndlp x%px DID:x%06x " 3421 "flg:x%lx\n", 3422 ndlp, ndlp->nlp_DID, 3423 ndlp->nlp_flag); 3424 continue; 3425 } 3426 ndlp->nlp_rpi = rpi; 3427 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3428 LOG_NODE | LOG_DISCOVERY, 3429 "0009 Assign RPI x%x to ndlp x%px " 3430 "DID:x%06x flg:x%lx\n", 3431 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3432 ndlp->nlp_flag); 3433 } 3434 } 3435 lpfc_destroy_vport_work_array(phba, vports); 3436 } 3437 3438 /** 3439 * lpfc_create_expedite_pool - create expedite pool 3440 * @phba: pointer to lpfc hba data structure. 3441 * 3442 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3443 * to expedite pool. Mark them as expedite. 3444 **/ 3445 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3446 { 3447 struct lpfc_sli4_hdw_queue *qp; 3448 struct lpfc_io_buf *lpfc_ncmd; 3449 struct lpfc_io_buf *lpfc_ncmd_next; 3450 struct lpfc_epd_pool *epd_pool; 3451 unsigned long iflag; 3452 3453 epd_pool = &phba->epd_pool; 3454 qp = &phba->sli4_hba.hdwq[0]; 3455 3456 spin_lock_init(&epd_pool->lock); 3457 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3458 spin_lock(&epd_pool->lock); 3459 INIT_LIST_HEAD(&epd_pool->list); 3460 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3461 &qp->lpfc_io_buf_list_put, list) { 3462 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3463 lpfc_ncmd->expedite = true; 3464 qp->put_io_bufs--; 3465 epd_pool->count++; 3466 if (epd_pool->count >= XRI_BATCH) 3467 break; 3468 } 3469 spin_unlock(&epd_pool->lock); 3470 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3471 } 3472 3473 /** 3474 * lpfc_destroy_expedite_pool - destroy expedite pool 3475 * @phba: pointer to lpfc hba data structure. 3476 * 3477 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3478 * of HWQ 0. Clear the mark. 3479 **/ 3480 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3481 { 3482 struct lpfc_sli4_hdw_queue *qp; 3483 struct lpfc_io_buf *lpfc_ncmd; 3484 struct lpfc_io_buf *lpfc_ncmd_next; 3485 struct lpfc_epd_pool *epd_pool; 3486 unsigned long iflag; 3487 3488 epd_pool = &phba->epd_pool; 3489 qp = &phba->sli4_hba.hdwq[0]; 3490 3491 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3492 spin_lock(&epd_pool->lock); 3493 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3494 &epd_pool->list, list) { 3495 list_move_tail(&lpfc_ncmd->list, 3496 &qp->lpfc_io_buf_list_put); 3497 lpfc_ncmd->flags = false; 3498 qp->put_io_bufs++; 3499 epd_pool->count--; 3500 } 3501 spin_unlock(&epd_pool->lock); 3502 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3503 } 3504 3505 /** 3506 * lpfc_create_multixri_pools - create multi-XRI pools 3507 * @phba: pointer to lpfc hba data structure. 3508 * 3509 * This routine initialize public, private per HWQ. Then, move XRIs from 3510 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3511 * Initialized. 3512 **/ 3513 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3514 { 3515 u32 i, j; 3516 u32 hwq_count; 3517 u32 count_per_hwq; 3518 struct lpfc_io_buf *lpfc_ncmd; 3519 struct lpfc_io_buf *lpfc_ncmd_next; 3520 unsigned long iflag; 3521 struct lpfc_sli4_hdw_queue *qp; 3522 struct lpfc_multixri_pool *multixri_pool; 3523 struct lpfc_pbl_pool *pbl_pool; 3524 struct lpfc_pvt_pool *pvt_pool; 3525 3526 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3527 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3528 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3529 phba->sli4_hba.io_xri_cnt); 3530 3531 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3532 lpfc_create_expedite_pool(phba); 3533 3534 hwq_count = phba->cfg_hdw_queue; 3535 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3536 3537 for (i = 0; i < hwq_count; i++) { 3538 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3539 3540 if (!multixri_pool) { 3541 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3542 "1238 Failed to allocate memory for " 3543 "multixri_pool\n"); 3544 3545 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3546 lpfc_destroy_expedite_pool(phba); 3547 3548 j = 0; 3549 while (j < i) { 3550 qp = &phba->sli4_hba.hdwq[j]; 3551 kfree(qp->p_multixri_pool); 3552 j++; 3553 } 3554 phba->cfg_xri_rebalancing = 0; 3555 return; 3556 } 3557 3558 qp = &phba->sli4_hba.hdwq[i]; 3559 qp->p_multixri_pool = multixri_pool; 3560 3561 multixri_pool->xri_limit = count_per_hwq; 3562 multixri_pool->rrb_next_hwqid = i; 3563 3564 /* Deal with public free xri pool */ 3565 pbl_pool = &multixri_pool->pbl_pool; 3566 spin_lock_init(&pbl_pool->lock); 3567 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3568 spin_lock(&pbl_pool->lock); 3569 INIT_LIST_HEAD(&pbl_pool->list); 3570 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3571 &qp->lpfc_io_buf_list_put, list) { 3572 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3573 qp->put_io_bufs--; 3574 pbl_pool->count++; 3575 } 3576 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3577 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3578 pbl_pool->count, i); 3579 spin_unlock(&pbl_pool->lock); 3580 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3581 3582 /* Deal with private free xri pool */ 3583 pvt_pool = &multixri_pool->pvt_pool; 3584 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3585 pvt_pool->low_watermark = XRI_BATCH; 3586 spin_lock_init(&pvt_pool->lock); 3587 spin_lock_irqsave(&pvt_pool->lock, iflag); 3588 INIT_LIST_HEAD(&pvt_pool->list); 3589 pvt_pool->count = 0; 3590 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3591 } 3592 } 3593 3594 /** 3595 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3596 * @phba: pointer to lpfc hba data structure. 3597 * 3598 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3599 **/ 3600 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3601 { 3602 u32 i; 3603 u32 hwq_count; 3604 struct lpfc_io_buf *lpfc_ncmd; 3605 struct lpfc_io_buf *lpfc_ncmd_next; 3606 unsigned long iflag; 3607 struct lpfc_sli4_hdw_queue *qp; 3608 struct lpfc_multixri_pool *multixri_pool; 3609 struct lpfc_pbl_pool *pbl_pool; 3610 struct lpfc_pvt_pool *pvt_pool; 3611 3612 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3613 lpfc_destroy_expedite_pool(phba); 3614 3615 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3616 lpfc_sli_flush_io_rings(phba); 3617 3618 hwq_count = phba->cfg_hdw_queue; 3619 3620 for (i = 0; i < hwq_count; i++) { 3621 qp = &phba->sli4_hba.hdwq[i]; 3622 multixri_pool = qp->p_multixri_pool; 3623 if (!multixri_pool) 3624 continue; 3625 3626 qp->p_multixri_pool = NULL; 3627 3628 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3629 3630 /* Deal with public free xri pool */ 3631 pbl_pool = &multixri_pool->pbl_pool; 3632 spin_lock(&pbl_pool->lock); 3633 3634 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3635 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3636 pbl_pool->count, i); 3637 3638 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3639 &pbl_pool->list, list) { 3640 list_move_tail(&lpfc_ncmd->list, 3641 &qp->lpfc_io_buf_list_put); 3642 qp->put_io_bufs++; 3643 pbl_pool->count--; 3644 } 3645 3646 INIT_LIST_HEAD(&pbl_pool->list); 3647 pbl_pool->count = 0; 3648 3649 spin_unlock(&pbl_pool->lock); 3650 3651 /* Deal with private free xri pool */ 3652 pvt_pool = &multixri_pool->pvt_pool; 3653 spin_lock(&pvt_pool->lock); 3654 3655 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3656 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3657 pvt_pool->count, i); 3658 3659 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3660 &pvt_pool->list, list) { 3661 list_move_tail(&lpfc_ncmd->list, 3662 &qp->lpfc_io_buf_list_put); 3663 qp->put_io_bufs++; 3664 pvt_pool->count--; 3665 } 3666 3667 INIT_LIST_HEAD(&pvt_pool->list); 3668 pvt_pool->count = 0; 3669 3670 spin_unlock(&pvt_pool->lock); 3671 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3672 3673 kfree(multixri_pool); 3674 } 3675 } 3676 3677 /** 3678 * lpfc_online - Initialize and bring a HBA online 3679 * @phba: pointer to lpfc hba data structure. 3680 * 3681 * This routine initializes the HBA and brings a HBA online. During this 3682 * process, the management interface is blocked to prevent user space access 3683 * to the HBA interfering with the driver initialization. 3684 * 3685 * Return codes 3686 * 0 - successful 3687 * 1 - failed 3688 **/ 3689 int 3690 lpfc_online(struct lpfc_hba *phba) 3691 { 3692 struct lpfc_vport *vport; 3693 struct lpfc_vport **vports; 3694 int i, error = 0; 3695 bool vpis_cleared = false; 3696 3697 if (!phba) 3698 return 0; 3699 vport = phba->pport; 3700 3701 if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3702 return 0; 3703 3704 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3705 "0458 Bring Adapter online\n"); 3706 3707 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3708 3709 if (phba->sli_rev == LPFC_SLI_REV4) { 3710 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3711 lpfc_unblock_mgmt_io(phba); 3712 return 1; 3713 } 3714 spin_lock_irq(&phba->hbalock); 3715 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3716 vpis_cleared = true; 3717 spin_unlock_irq(&phba->hbalock); 3718 3719 /* Reestablish the local initiator port. 3720 * The offline process destroyed the previous lport. 3721 */ 3722 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3723 !phba->nvmet_support) { 3724 error = lpfc_nvme_create_localport(phba->pport); 3725 if (error) 3726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3727 "6132 NVME restore reg failed " 3728 "on nvmei error x%x\n", error); 3729 } 3730 } else { 3731 lpfc_sli_queue_init(phba); 3732 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3733 lpfc_unblock_mgmt_io(phba); 3734 return 1; 3735 } 3736 } 3737 3738 vports = lpfc_create_vport_work_array(phba); 3739 if (vports != NULL) { 3740 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3741 clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3742 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3743 set_bit(FC_VPORT_NEEDS_REG_VPI, 3744 &vports[i]->fc_flag); 3745 if (phba->sli_rev == LPFC_SLI_REV4) { 3746 set_bit(FC_VPORT_NEEDS_INIT_VPI, 3747 &vports[i]->fc_flag); 3748 if ((vpis_cleared) && 3749 (vports[i]->port_type != 3750 LPFC_PHYSICAL_PORT)) 3751 vports[i]->vpi = 0; 3752 } 3753 } 3754 } 3755 lpfc_destroy_vport_work_array(phba, vports); 3756 3757 if (phba->cfg_xri_rebalancing) 3758 lpfc_create_multixri_pools(phba); 3759 3760 lpfc_cpuhp_add(phba); 3761 3762 lpfc_unblock_mgmt_io(phba); 3763 return 0; 3764 } 3765 3766 /** 3767 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3768 * @phba: pointer to lpfc hba data structure. 3769 * 3770 * This routine marks a HBA's management interface as not blocked. Once the 3771 * HBA's management interface is marked as not blocked, all the user space 3772 * access to the HBA, whether they are from sysfs interface or libdfc 3773 * interface will be allowed. The HBA is set to block the management interface 3774 * when the driver prepares the HBA interface for online or offline and then 3775 * set to unblock the management interface afterwards. 3776 **/ 3777 void 3778 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3779 { 3780 unsigned long iflag; 3781 3782 spin_lock_irqsave(&phba->hbalock, iflag); 3783 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3784 spin_unlock_irqrestore(&phba->hbalock, iflag); 3785 } 3786 3787 /** 3788 * lpfc_offline_prep - Prepare a HBA to be brought offline 3789 * @phba: pointer to lpfc hba data structure. 3790 * @mbx_action: flag for mailbox shutdown action. 3791 * 3792 * This routine is invoked to prepare a HBA to be brought offline. It performs 3793 * unregistration login to all the nodes on all vports and flushes the mailbox 3794 * queue to make it ready to be brought offline. 3795 **/ 3796 void 3797 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3798 { 3799 struct lpfc_vport *vport = phba->pport; 3800 struct lpfc_nodelist *ndlp, *next_ndlp; 3801 struct lpfc_vport **vports; 3802 struct Scsi_Host *shost; 3803 int i; 3804 int offline; 3805 bool hba_pci_err; 3806 3807 if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) 3808 return; 3809 3810 lpfc_block_mgmt_io(phba, mbx_action); 3811 3812 lpfc_linkdown(phba); 3813 3814 offline = pci_channel_offline(phba->pcidev); 3815 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3816 3817 /* Issue an unreg_login to all nodes on all vports */ 3818 vports = lpfc_create_vport_work_array(phba); 3819 if (vports != NULL) { 3820 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3821 if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) 3822 continue; 3823 shost = lpfc_shost_from_vport(vports[i]); 3824 spin_lock_irq(shost->host_lock); 3825 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3826 spin_unlock_irq(shost->host_lock); 3827 set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag); 3828 clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag); 3829 3830 list_for_each_entry_safe(ndlp, next_ndlp, 3831 &vports[i]->fc_nodes, 3832 nlp_listp) { 3833 3834 clear_bit(NLP_NPR_ADISC, &ndlp->nlp_flag); 3835 if (offline || hba_pci_err) { 3836 clear_bit(NLP_UNREG_INP, 3837 &ndlp->nlp_flag); 3838 clear_bit(NLP_RPI_REGISTERED, 3839 &ndlp->nlp_flag); 3840 } 3841 3842 if (ndlp->nlp_type & NLP_FABRIC) { 3843 lpfc_disc_state_machine(vports[i], ndlp, 3844 NULL, NLP_EVT_DEVICE_RECOVERY); 3845 3846 /* Don't remove the node unless the node 3847 * has been unregistered with the 3848 * transport, and we're not in recovery 3849 * before dev_loss_tmo triggered. 3850 * Otherwise, let dev_loss take care of 3851 * the node. 3852 */ 3853 if (!test_bit(NLP_IN_RECOV_POST_DEV_LOSS, 3854 &ndlp->save_flags) && 3855 !(ndlp->fc4_xpt_flags & 3856 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3857 lpfc_disc_state_machine 3858 (vports[i], ndlp, 3859 NULL, 3860 NLP_EVT_DEVICE_RM); 3861 } 3862 } 3863 } 3864 } 3865 lpfc_destroy_vport_work_array(phba, vports); 3866 3867 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3868 3869 if (phba->wq) 3870 flush_workqueue(phba->wq); 3871 } 3872 3873 /** 3874 * lpfc_offline - Bring a HBA offline 3875 * @phba: pointer to lpfc hba data structure. 3876 * 3877 * This routine actually brings a HBA offline. It stops all the timers 3878 * associated with the HBA, brings down the SLI layer, and eventually 3879 * marks the HBA as in offline state for the upper layer protocol. 3880 **/ 3881 void 3882 lpfc_offline(struct lpfc_hba *phba) 3883 { 3884 struct Scsi_Host *shost; 3885 struct lpfc_vport **vports; 3886 int i; 3887 3888 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3889 return; 3890 3891 /* stop port and all timers associated with this hba */ 3892 lpfc_stop_port(phba); 3893 3894 /* Tear down the local and target port registrations. The 3895 * nvme transports need to cleanup. 3896 */ 3897 lpfc_nvmet_destroy_targetport(phba); 3898 lpfc_nvme_destroy_localport(phba->pport); 3899 3900 vports = lpfc_create_vport_work_array(phba); 3901 if (vports != NULL) 3902 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3903 lpfc_stop_vport_timers(vports[i]); 3904 lpfc_destroy_vport_work_array(phba, vports); 3905 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3906 "0460 Bring Adapter offline\n"); 3907 /* Bring down the SLI Layer and cleanup. The HBA is offline 3908 now. */ 3909 lpfc_sli_hba_down(phba); 3910 spin_lock_irq(&phba->hbalock); 3911 phba->work_ha = 0; 3912 spin_unlock_irq(&phba->hbalock); 3913 vports = lpfc_create_vport_work_array(phba); 3914 if (vports != NULL) 3915 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3916 shost = lpfc_shost_from_vport(vports[i]); 3917 spin_lock_irq(shost->host_lock); 3918 vports[i]->work_port_events = 0; 3919 spin_unlock_irq(shost->host_lock); 3920 set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); 3921 } 3922 lpfc_destroy_vport_work_array(phba, vports); 3923 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3924 * in hba_unset 3925 */ 3926 if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 3927 __lpfc_cpuhp_remove(phba); 3928 3929 if (phba->cfg_xri_rebalancing) 3930 lpfc_destroy_multixri_pools(phba); 3931 } 3932 3933 /** 3934 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3935 * @phba: pointer to lpfc hba data structure. 3936 * 3937 * This routine is to free all the SCSI buffers and IOCBs from the driver 3938 * list back to kernel. It is called from lpfc_pci_remove_one to free 3939 * the internal resources before the device is removed from the system. 3940 **/ 3941 static void 3942 lpfc_scsi_free(struct lpfc_hba *phba) 3943 { 3944 struct lpfc_io_buf *sb, *sb_next; 3945 3946 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3947 return; 3948 3949 spin_lock_irq(&phba->hbalock); 3950 3951 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3952 3953 spin_lock(&phba->scsi_buf_list_put_lock); 3954 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3955 list) { 3956 list_del(&sb->list); 3957 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3958 sb->dma_handle); 3959 kfree(sb); 3960 phba->total_scsi_bufs--; 3961 } 3962 spin_unlock(&phba->scsi_buf_list_put_lock); 3963 3964 spin_lock(&phba->scsi_buf_list_get_lock); 3965 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3966 list) { 3967 list_del(&sb->list); 3968 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3969 sb->dma_handle); 3970 kfree(sb); 3971 phba->total_scsi_bufs--; 3972 } 3973 spin_unlock(&phba->scsi_buf_list_get_lock); 3974 spin_unlock_irq(&phba->hbalock); 3975 } 3976 3977 /** 3978 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3979 * @phba: pointer to lpfc hba data structure. 3980 * 3981 * This routine is to free all the IO buffers and IOCBs from the driver 3982 * list back to kernel. It is called from lpfc_pci_remove_one to free 3983 * the internal resources before the device is removed from the system. 3984 **/ 3985 void 3986 lpfc_io_free(struct lpfc_hba *phba) 3987 { 3988 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3989 struct lpfc_sli4_hdw_queue *qp; 3990 int idx; 3991 3992 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3993 qp = &phba->sli4_hba.hdwq[idx]; 3994 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3995 spin_lock(&qp->io_buf_list_put_lock); 3996 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3997 &qp->lpfc_io_buf_list_put, 3998 list) { 3999 list_del(&lpfc_ncmd->list); 4000 qp->put_io_bufs--; 4001 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4002 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4003 if (phba->cfg_xpsgl && !phba->nvmet_support) 4004 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4005 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4006 kfree(lpfc_ncmd); 4007 qp->total_io_bufs--; 4008 } 4009 spin_unlock(&qp->io_buf_list_put_lock); 4010 4011 spin_lock(&qp->io_buf_list_get_lock); 4012 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4013 &qp->lpfc_io_buf_list_get, 4014 list) { 4015 list_del(&lpfc_ncmd->list); 4016 qp->get_io_bufs--; 4017 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4018 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4019 if (phba->cfg_xpsgl && !phba->nvmet_support) 4020 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4021 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4022 kfree(lpfc_ncmd); 4023 qp->total_io_bufs--; 4024 } 4025 spin_unlock(&qp->io_buf_list_get_lock); 4026 } 4027 } 4028 4029 /** 4030 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 4031 * @phba: pointer to lpfc hba data structure. 4032 * 4033 * This routine first calculates the sizes of the current els and allocated 4034 * scsi sgl lists, and then goes through all sgls to updates the physical 4035 * XRIs assigned due to port function reset. During port initialization, the 4036 * current els and allocated scsi sgl lists are 0s. 4037 * 4038 * Return codes 4039 * 0 - successful (for now, it always returns 0) 4040 **/ 4041 int 4042 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 4043 { 4044 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4045 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4046 LIST_HEAD(els_sgl_list); 4047 int rc; 4048 4049 /* 4050 * update on pci function's els xri-sgl list 4051 */ 4052 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4053 4054 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 4055 /* els xri-sgl expanded */ 4056 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 4057 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4058 "3157 ELS xri-sgl count increased from " 4059 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4060 els_xri_cnt); 4061 /* allocate the additional els sgls */ 4062 for (i = 0; i < xri_cnt; i++) { 4063 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4064 GFP_KERNEL); 4065 if (sglq_entry == NULL) { 4066 lpfc_printf_log(phba, KERN_ERR, 4067 LOG_TRACE_EVENT, 4068 "2562 Failure to allocate an " 4069 "ELS sgl entry:%d\n", i); 4070 rc = -ENOMEM; 4071 goto out_free_mem; 4072 } 4073 sglq_entry->buff_type = GEN_BUFF_TYPE; 4074 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 4075 &sglq_entry->phys); 4076 if (sglq_entry->virt == NULL) { 4077 kfree(sglq_entry); 4078 lpfc_printf_log(phba, KERN_ERR, 4079 LOG_TRACE_EVENT, 4080 "2563 Failure to allocate an " 4081 "ELS mbuf:%d\n", i); 4082 rc = -ENOMEM; 4083 goto out_free_mem; 4084 } 4085 sglq_entry->sgl = sglq_entry->virt; 4086 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4087 sglq_entry->state = SGL_FREED; 4088 list_add_tail(&sglq_entry->list, &els_sgl_list); 4089 } 4090 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4091 list_splice_init(&els_sgl_list, 4092 &phba->sli4_hba.lpfc_els_sgl_list); 4093 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4094 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4095 /* els xri-sgl shrinked */ 4096 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4097 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4098 "3158 ELS xri-sgl count decreased from " 4099 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4100 els_xri_cnt); 4101 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4102 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4103 &els_sgl_list); 4104 /* release extra els sgls from list */ 4105 for (i = 0; i < xri_cnt; i++) { 4106 list_remove_head(&els_sgl_list, 4107 sglq_entry, struct lpfc_sglq, list); 4108 if (sglq_entry) { 4109 __lpfc_mbuf_free(phba, sglq_entry->virt, 4110 sglq_entry->phys); 4111 kfree(sglq_entry); 4112 } 4113 } 4114 list_splice_init(&els_sgl_list, 4115 &phba->sli4_hba.lpfc_els_sgl_list); 4116 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4117 } else 4118 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4119 "3163 ELS xri-sgl count unchanged: %d\n", 4120 els_xri_cnt); 4121 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4122 4123 /* update xris to els sgls on the list */ 4124 sglq_entry = NULL; 4125 sglq_entry_next = NULL; 4126 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4127 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4128 lxri = lpfc_sli4_next_xritag(phba); 4129 if (lxri == NO_XRI) { 4130 lpfc_printf_log(phba, KERN_ERR, 4131 LOG_TRACE_EVENT, 4132 "2400 Failed to allocate xri for " 4133 "ELS sgl\n"); 4134 rc = -ENOMEM; 4135 goto out_free_mem; 4136 } 4137 sglq_entry->sli4_lxritag = lxri; 4138 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4139 } 4140 return 0; 4141 4142 out_free_mem: 4143 lpfc_free_els_sgl_list(phba); 4144 return rc; 4145 } 4146 4147 /** 4148 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4149 * @phba: pointer to lpfc hba data structure. 4150 * 4151 * This routine first calculates the sizes of the current els and allocated 4152 * scsi sgl lists, and then goes through all sgls to updates the physical 4153 * XRIs assigned due to port function reset. During port initialization, the 4154 * current els and allocated scsi sgl lists are 0s. 4155 * 4156 * Return codes 4157 * 0 - successful (for now, it always returns 0) 4158 **/ 4159 int 4160 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4161 { 4162 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4163 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4164 uint16_t nvmet_xri_cnt; 4165 LIST_HEAD(nvmet_sgl_list); 4166 int rc; 4167 4168 /* 4169 * update on pci function's nvmet xri-sgl list 4170 */ 4171 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4172 4173 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4174 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4175 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4176 /* els xri-sgl expanded */ 4177 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4178 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4179 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4180 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4181 /* allocate the additional nvmet sgls */ 4182 for (i = 0; i < xri_cnt; i++) { 4183 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4184 GFP_KERNEL); 4185 if (sglq_entry == NULL) { 4186 lpfc_printf_log(phba, KERN_ERR, 4187 LOG_TRACE_EVENT, 4188 "6303 Failure to allocate an " 4189 "NVMET sgl entry:%d\n", i); 4190 rc = -ENOMEM; 4191 goto out_free_mem; 4192 } 4193 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4194 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4195 &sglq_entry->phys); 4196 if (sglq_entry->virt == NULL) { 4197 kfree(sglq_entry); 4198 lpfc_printf_log(phba, KERN_ERR, 4199 LOG_TRACE_EVENT, 4200 "6304 Failure to allocate an " 4201 "NVMET buf:%d\n", i); 4202 rc = -ENOMEM; 4203 goto out_free_mem; 4204 } 4205 sglq_entry->sgl = sglq_entry->virt; 4206 memset(sglq_entry->sgl, 0, 4207 phba->cfg_sg_dma_buf_size); 4208 sglq_entry->state = SGL_FREED; 4209 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4210 } 4211 spin_lock_irq(&phba->hbalock); 4212 spin_lock(&phba->sli4_hba.sgl_list_lock); 4213 list_splice_init(&nvmet_sgl_list, 4214 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4215 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4216 spin_unlock_irq(&phba->hbalock); 4217 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4218 /* nvmet xri-sgl shrunk */ 4219 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4220 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4221 "6305 NVMET xri-sgl count decreased from " 4222 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4223 nvmet_xri_cnt); 4224 spin_lock_irq(&phba->hbalock); 4225 spin_lock(&phba->sli4_hba.sgl_list_lock); 4226 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4227 &nvmet_sgl_list); 4228 /* release extra nvmet sgls from list */ 4229 for (i = 0; i < xri_cnt; i++) { 4230 list_remove_head(&nvmet_sgl_list, 4231 sglq_entry, struct lpfc_sglq, list); 4232 if (sglq_entry) { 4233 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4234 sglq_entry->phys); 4235 kfree(sglq_entry); 4236 } 4237 } 4238 list_splice_init(&nvmet_sgl_list, 4239 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4240 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4241 spin_unlock_irq(&phba->hbalock); 4242 } else 4243 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4244 "6306 NVMET xri-sgl count unchanged: %d\n", 4245 nvmet_xri_cnt); 4246 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4247 4248 /* update xris to nvmet sgls on the list */ 4249 sglq_entry = NULL; 4250 sglq_entry_next = NULL; 4251 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4252 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4253 lxri = lpfc_sli4_next_xritag(phba); 4254 if (lxri == NO_XRI) { 4255 lpfc_printf_log(phba, KERN_ERR, 4256 LOG_TRACE_EVENT, 4257 "6307 Failed to allocate xri for " 4258 "NVMET sgl\n"); 4259 rc = -ENOMEM; 4260 goto out_free_mem; 4261 } 4262 sglq_entry->sli4_lxritag = lxri; 4263 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4264 } 4265 return 0; 4266 4267 out_free_mem: 4268 lpfc_free_nvmet_sgl_list(phba); 4269 return rc; 4270 } 4271 4272 int 4273 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4274 { 4275 LIST_HEAD(blist); 4276 struct lpfc_sli4_hdw_queue *qp; 4277 struct lpfc_io_buf *lpfc_cmd; 4278 struct lpfc_io_buf *iobufp, *prev_iobufp; 4279 int idx, cnt, xri, inserted; 4280 4281 cnt = 0; 4282 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4283 qp = &phba->sli4_hba.hdwq[idx]; 4284 spin_lock_irq(&qp->io_buf_list_get_lock); 4285 spin_lock(&qp->io_buf_list_put_lock); 4286 4287 /* Take everything off the get and put lists */ 4288 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4289 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4290 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4291 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4292 cnt += qp->get_io_bufs + qp->put_io_bufs; 4293 qp->get_io_bufs = 0; 4294 qp->put_io_bufs = 0; 4295 qp->total_io_bufs = 0; 4296 spin_unlock(&qp->io_buf_list_put_lock); 4297 spin_unlock_irq(&qp->io_buf_list_get_lock); 4298 } 4299 4300 /* 4301 * Take IO buffers off blist and put on cbuf sorted by XRI. 4302 * This is because POST_SGL takes a sequential range of XRIs 4303 * to post to the firmware. 4304 */ 4305 for (idx = 0; idx < cnt; idx++) { 4306 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4307 if (!lpfc_cmd) 4308 return cnt; 4309 if (idx == 0) { 4310 list_add_tail(&lpfc_cmd->list, cbuf); 4311 continue; 4312 } 4313 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4314 inserted = 0; 4315 prev_iobufp = NULL; 4316 list_for_each_entry(iobufp, cbuf, list) { 4317 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4318 if (prev_iobufp) 4319 list_add(&lpfc_cmd->list, 4320 &prev_iobufp->list); 4321 else 4322 list_add(&lpfc_cmd->list, cbuf); 4323 inserted = 1; 4324 break; 4325 } 4326 prev_iobufp = iobufp; 4327 } 4328 if (!inserted) 4329 list_add_tail(&lpfc_cmd->list, cbuf); 4330 } 4331 return cnt; 4332 } 4333 4334 int 4335 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4336 { 4337 struct lpfc_sli4_hdw_queue *qp; 4338 struct lpfc_io_buf *lpfc_cmd; 4339 int idx, cnt; 4340 unsigned long iflags; 4341 4342 qp = phba->sli4_hba.hdwq; 4343 cnt = 0; 4344 while (!list_empty(cbuf)) { 4345 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4346 list_remove_head(cbuf, lpfc_cmd, 4347 struct lpfc_io_buf, list); 4348 if (!lpfc_cmd) 4349 return cnt; 4350 cnt++; 4351 qp = &phba->sli4_hba.hdwq[idx]; 4352 lpfc_cmd->hdwq_no = idx; 4353 lpfc_cmd->hdwq = qp; 4354 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4355 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags); 4356 list_add_tail(&lpfc_cmd->list, 4357 &qp->lpfc_io_buf_list_put); 4358 qp->put_io_bufs++; 4359 qp->total_io_bufs++; 4360 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 4361 iflags); 4362 } 4363 } 4364 return cnt; 4365 } 4366 4367 /** 4368 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4369 * @phba: pointer to lpfc hba data structure. 4370 * 4371 * This routine first calculates the sizes of the current els and allocated 4372 * scsi sgl lists, and then goes through all sgls to updates the physical 4373 * XRIs assigned due to port function reset. During port initialization, the 4374 * current els and allocated scsi sgl lists are 0s. 4375 * 4376 * Return codes 4377 * 0 - successful (for now, it always returns 0) 4378 **/ 4379 int 4380 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4381 { 4382 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4383 uint16_t i, lxri, els_xri_cnt; 4384 uint16_t io_xri_cnt, io_xri_max; 4385 LIST_HEAD(io_sgl_list); 4386 int rc, cnt; 4387 4388 /* 4389 * update on pci function's allocated nvme xri-sgl list 4390 */ 4391 4392 /* maximum number of xris available for nvme buffers */ 4393 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4394 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4395 phba->sli4_hba.io_xri_max = io_xri_max; 4396 4397 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4398 "6074 Current allocated XRI sgl count:%d, " 4399 "maximum XRI count:%d els_xri_cnt:%d\n\n", 4400 phba->sli4_hba.io_xri_cnt, 4401 phba->sli4_hba.io_xri_max, 4402 els_xri_cnt); 4403 4404 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4405 4406 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4407 /* max nvme xri shrunk below the allocated nvme buffers */ 4408 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4409 phba->sli4_hba.io_xri_max; 4410 /* release the extra allocated nvme buffers */ 4411 for (i = 0; i < io_xri_cnt; i++) { 4412 list_remove_head(&io_sgl_list, lpfc_ncmd, 4413 struct lpfc_io_buf, list); 4414 if (lpfc_ncmd) { 4415 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4416 lpfc_ncmd->data, 4417 lpfc_ncmd->dma_handle); 4418 kfree(lpfc_ncmd); 4419 } 4420 } 4421 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4422 } 4423 4424 /* update xris associated to remaining allocated nvme buffers */ 4425 lpfc_ncmd = NULL; 4426 lpfc_ncmd_next = NULL; 4427 phba->sli4_hba.io_xri_cnt = cnt; 4428 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4429 &io_sgl_list, list) { 4430 lxri = lpfc_sli4_next_xritag(phba); 4431 if (lxri == NO_XRI) { 4432 lpfc_printf_log(phba, KERN_ERR, 4433 LOG_TRACE_EVENT, 4434 "6075 Failed to allocate xri for " 4435 "nvme buffer\n"); 4436 rc = -ENOMEM; 4437 goto out_free_mem; 4438 } 4439 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4440 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4441 } 4442 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4443 return 0; 4444 4445 out_free_mem: 4446 lpfc_io_free(phba); 4447 return rc; 4448 } 4449 4450 /** 4451 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4452 * @phba: Pointer to lpfc hba data structure. 4453 * @num_to_alloc: The requested number of buffers to allocate. 4454 * 4455 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4456 * the nvme buffer contains all the necessary information needed to initiate 4457 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4458 * them on a list, it post them to the port by using SGL block post. 4459 * 4460 * Return codes: 4461 * int - number of IO buffers that were allocated and posted. 4462 * 0 = failure, less than num_to_alloc is a partial failure. 4463 **/ 4464 int 4465 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4466 { 4467 struct lpfc_io_buf *lpfc_ncmd; 4468 struct lpfc_iocbq *pwqeq; 4469 uint16_t iotag, lxri = 0; 4470 int bcnt, num_posted; 4471 LIST_HEAD(prep_nblist); 4472 LIST_HEAD(post_nblist); 4473 LIST_HEAD(nvme_nblist); 4474 4475 phba->sli4_hba.io_xri_cnt = 0; 4476 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4477 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4478 if (!lpfc_ncmd) 4479 break; 4480 /* 4481 * Get memory from the pci pool to map the virt space to 4482 * pci bus space for an I/O. The DMA buffer includes the 4483 * number of SGE's necessary to support the sg_tablesize. 4484 */ 4485 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4486 GFP_KERNEL, 4487 &lpfc_ncmd->dma_handle); 4488 if (!lpfc_ncmd->data) { 4489 kfree(lpfc_ncmd); 4490 break; 4491 } 4492 4493 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4494 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4495 } else { 4496 /* 4497 * 4K Page alignment is CRITICAL to BlockGuard, double 4498 * check to be sure. 4499 */ 4500 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4501 (((unsigned long)(lpfc_ncmd->data) & 4502 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4503 lpfc_printf_log(phba, KERN_ERR, 4504 LOG_TRACE_EVENT, 4505 "3369 Memory alignment err: " 4506 "addr=%lx\n", 4507 (unsigned long)lpfc_ncmd->data); 4508 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4509 lpfc_ncmd->data, 4510 lpfc_ncmd->dma_handle); 4511 kfree(lpfc_ncmd); 4512 break; 4513 } 4514 } 4515 4516 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4517 4518 lxri = lpfc_sli4_next_xritag(phba); 4519 if (lxri == NO_XRI) { 4520 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4521 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4522 kfree(lpfc_ncmd); 4523 break; 4524 } 4525 pwqeq = &lpfc_ncmd->cur_iocbq; 4526 4527 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4528 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4529 if (iotag == 0) { 4530 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4531 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4532 kfree(lpfc_ncmd); 4533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4534 "6121 Failed to allocate IOTAG for" 4535 " XRI:0x%x\n", lxri); 4536 lpfc_sli4_free_xri(phba, lxri); 4537 break; 4538 } 4539 pwqeq->sli4_lxritag = lxri; 4540 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4541 4542 /* Initialize local short-hand pointers. */ 4543 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4544 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4545 lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; 4546 spin_lock_init(&lpfc_ncmd->buf_lock); 4547 4548 /* add the nvme buffer to a post list */ 4549 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4550 phba->sli4_hba.io_xri_cnt++; 4551 } 4552 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4553 "6114 Allocate %d out of %d requested new NVME " 4554 "buffers of size x%zu bytes\n", bcnt, num_to_alloc, 4555 sizeof(*lpfc_ncmd)); 4556 4557 4558 /* post the list of nvme buffer sgls to port if available */ 4559 if (!list_empty(&post_nblist)) 4560 num_posted = lpfc_sli4_post_io_sgl_list( 4561 phba, &post_nblist, bcnt); 4562 else 4563 num_posted = 0; 4564 4565 return num_posted; 4566 } 4567 4568 static uint64_t 4569 lpfc_get_wwpn(struct lpfc_hba *phba) 4570 { 4571 uint64_t wwn; 4572 int rc; 4573 LPFC_MBOXQ_t *mboxq; 4574 MAILBOX_t *mb; 4575 4576 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4577 GFP_KERNEL); 4578 if (!mboxq) 4579 return (uint64_t)-1; 4580 4581 /* First get WWN of HBA instance */ 4582 lpfc_read_nv(phba, mboxq); 4583 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4584 if (rc != MBX_SUCCESS) { 4585 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4586 "6019 Mailbox failed , mbxCmd x%x " 4587 "READ_NV, mbxStatus x%x\n", 4588 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4589 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4590 mempool_free(mboxq, phba->mbox_mem_pool); 4591 return (uint64_t) -1; 4592 } 4593 mb = &mboxq->u.mb; 4594 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4595 /* wwn is WWPN of HBA instance */ 4596 mempool_free(mboxq, phba->mbox_mem_pool); 4597 if (phba->sli_rev == LPFC_SLI_REV4) 4598 return be64_to_cpu(wwn); 4599 else 4600 return rol64(wwn, 32); 4601 } 4602 4603 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba) 4604 { 4605 if (phba->sli_rev == LPFC_SLI_REV4) 4606 if (phba->cfg_xpsgl && !phba->nvmet_support) 4607 return LPFC_MAX_SG_TABLESIZE; 4608 else 4609 return phba->cfg_scsi_seg_cnt; 4610 else 4611 return phba->cfg_sg_seg_cnt; 4612 } 4613 4614 /** 4615 * lpfc_vmid_res_alloc - Allocates resources for VMID 4616 * @phba: pointer to lpfc hba data structure. 4617 * @vport: pointer to vport data structure 4618 * 4619 * This routine allocated the resources needed for the VMID. 4620 * 4621 * Return codes 4622 * 0 on Success 4623 * Non-0 on Failure 4624 */ 4625 static int 4626 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4627 { 4628 /* VMID feature is supported only on SLI4 */ 4629 if (phba->sli_rev == LPFC_SLI_REV3) { 4630 phba->cfg_vmid_app_header = 0; 4631 phba->cfg_vmid_priority_tagging = 0; 4632 } 4633 4634 if (lpfc_is_vmid_enabled(phba)) { 4635 vport->vmid = 4636 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4637 GFP_KERNEL); 4638 if (!vport->vmid) 4639 return -ENOMEM; 4640 4641 rwlock_init(&vport->vmid_lock); 4642 4643 /* Set the VMID parameters for the vport */ 4644 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4645 vport->vmid_inactivity_timeout = 4646 phba->cfg_vmid_inactivity_timeout; 4647 vport->max_vmid = phba->cfg_max_vmid; 4648 vport->cur_vmid_cnt = 0; 4649 4650 vport->vmid_priority_range = bitmap_zalloc 4651 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4652 4653 if (!vport->vmid_priority_range) { 4654 kfree(vport->vmid); 4655 return -ENOMEM; 4656 } 4657 4658 hash_init(vport->hash_table); 4659 } 4660 return 0; 4661 } 4662 4663 /** 4664 * lpfc_create_port - Create an FC port 4665 * @phba: pointer to lpfc hba data structure. 4666 * @instance: a unique integer ID to this FC port. 4667 * @dev: pointer to the device data structure. 4668 * 4669 * This routine creates a FC port for the upper layer protocol. The FC port 4670 * can be created on top of either a physical port or a virtual port provided 4671 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4672 * and associates the FC port created before adding the shost into the SCSI 4673 * layer. 4674 * 4675 * Return codes 4676 * @vport - pointer to the virtual N_Port data structure. 4677 * NULL - port create failed. 4678 **/ 4679 struct lpfc_vport * 4680 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4681 { 4682 struct lpfc_vport *vport; 4683 struct Scsi_Host *shost = NULL; 4684 struct scsi_host_template *template; 4685 int error = 0; 4686 int i; 4687 uint64_t wwn; 4688 bool use_no_reset_hba = false; 4689 int rc; 4690 u8 if_type; 4691 4692 if (lpfc_no_hba_reset_cnt) { 4693 if (phba->sli_rev < LPFC_SLI_REV4 && 4694 dev == &phba->pcidev->dev) { 4695 /* Reset the port first */ 4696 lpfc_sli_brdrestart(phba); 4697 rc = lpfc_sli_chipset_init(phba); 4698 if (rc) 4699 return NULL; 4700 } 4701 wwn = lpfc_get_wwpn(phba); 4702 } 4703 4704 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4705 if (wwn == lpfc_no_hba_reset[i]) { 4706 lpfc_printf_log(phba, KERN_ERR, 4707 LOG_TRACE_EVENT, 4708 "6020 Setting use_no_reset port=%llx\n", 4709 wwn); 4710 use_no_reset_hba = true; 4711 break; 4712 } 4713 } 4714 4715 /* Seed template for SCSI host registration */ 4716 if (dev == &phba->pcidev->dev) { 4717 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4718 /* Seed physical port template */ 4719 template = &lpfc_template; 4720 4721 if (use_no_reset_hba) 4722 /* template is for a no reset SCSI Host */ 4723 template->eh_host_reset_handler = NULL; 4724 4725 /* Seed updated value of sg_tablesize */ 4726 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4727 } else { 4728 /* NVMET is for physical port only */ 4729 template = &lpfc_template_nvme; 4730 } 4731 } else { 4732 /* Seed vport template */ 4733 template = &lpfc_vport_template; 4734 4735 /* Seed updated value of sg_tablesize */ 4736 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4737 } 4738 4739 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4740 if (!shost) 4741 goto out; 4742 4743 vport = (struct lpfc_vport *) shost->hostdata; 4744 vport->phba = phba; 4745 set_bit(FC_LOADING, &vport->load_flag); 4746 set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 4747 vport->fc_rscn_flush = 0; 4748 atomic_set(&vport->fc_plogi_cnt, 0); 4749 atomic_set(&vport->fc_adisc_cnt, 0); 4750 atomic_set(&vport->fc_reglogin_cnt, 0); 4751 atomic_set(&vport->fc_prli_cnt, 0); 4752 atomic_set(&vport->fc_unmap_cnt, 0); 4753 atomic_set(&vport->fc_map_cnt, 0); 4754 atomic_set(&vport->fc_npr_cnt, 0); 4755 atomic_set(&vport->fc_unused_cnt, 0); 4756 lpfc_get_vport_cfgparam(vport); 4757 4758 /* Adjust value in vport */ 4759 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4760 4761 shost->unique_id = instance; 4762 shost->max_id = LPFC_MAX_TARGET; 4763 shost->max_lun = vport->cfg_max_luns; 4764 shost->this_id = -1; 4765 4766 /* Set max_cmd_len applicable to ASIC support */ 4767 if (phba->sli_rev == LPFC_SLI_REV4) { 4768 if_type = bf_get(lpfc_sli_intf_if_type, 4769 &phba->sli4_hba.sli_intf); 4770 switch (if_type) { 4771 case LPFC_SLI_INTF_IF_TYPE_2: 4772 fallthrough; 4773 case LPFC_SLI_INTF_IF_TYPE_6: 4774 shost->max_cmd_len = LPFC_FCP_CDB_LEN_32; 4775 break; 4776 default: 4777 shost->max_cmd_len = LPFC_FCP_CDB_LEN; 4778 break; 4779 } 4780 } else { 4781 shost->max_cmd_len = LPFC_FCP_CDB_LEN; 4782 } 4783 4784 if (phba->sli_rev == LPFC_SLI_REV4) { 4785 if (!phba->cfg_fcp_mq_threshold || 4786 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4787 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4788 4789 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4790 phba->cfg_fcp_mq_threshold); 4791 4792 shost->dma_boundary = 4793 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4794 } else 4795 /* SLI-3 has a limited number of hardware queues (3), 4796 * thus there is only one for FCP processing. 4797 */ 4798 shost->nr_hw_queues = 1; 4799 4800 /* 4801 * Set initial can_queue value since 0 is no longer supported and 4802 * scsi_add_host will fail. This will be adjusted later based on the 4803 * max xri value determined in hba setup. 4804 */ 4805 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4806 if (dev != &phba->pcidev->dev) { 4807 shost->transportt = lpfc_vport_transport_template; 4808 vport->port_type = LPFC_NPIV_PORT; 4809 } else { 4810 shost->transportt = lpfc_transport_template; 4811 vport->port_type = LPFC_PHYSICAL_PORT; 4812 } 4813 4814 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4815 "9081 CreatePort TMPLATE type %x TBLsize %d " 4816 "SEGcnt %d/%d\n", 4817 vport->port_type, shost->sg_tablesize, 4818 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4819 4820 /* Allocate the resources for VMID */ 4821 rc = lpfc_vmid_res_alloc(phba, vport); 4822 4823 if (rc) 4824 goto out_put_shost; 4825 4826 /* Initialize all internally managed lists. */ 4827 INIT_LIST_HEAD(&vport->fc_nodes); 4828 spin_lock_init(&vport->fc_nodes_list_lock); 4829 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4830 spin_lock_init(&vport->work_port_lock); 4831 4832 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4833 4834 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4835 4836 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4837 4838 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4839 lpfc_setup_bg(phba, shost); 4840 4841 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4842 if (error) 4843 goto out_free_vmid; 4844 4845 spin_lock_irq(&phba->port_list_lock); 4846 list_add_tail(&vport->listentry, &phba->port_list); 4847 spin_unlock_irq(&phba->port_list_lock); 4848 return vport; 4849 4850 out_free_vmid: 4851 kfree(vport->vmid); 4852 bitmap_free(vport->vmid_priority_range); 4853 out_put_shost: 4854 scsi_host_put(shost); 4855 out: 4856 return NULL; 4857 } 4858 4859 /** 4860 * destroy_port - destroy an FC port 4861 * @vport: pointer to an lpfc virtual N_Port data structure. 4862 * 4863 * This routine destroys a FC port from the upper layer protocol. All the 4864 * resources associated with the port are released. 4865 **/ 4866 void 4867 destroy_port(struct lpfc_vport *vport) 4868 { 4869 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4870 struct lpfc_hba *phba = vport->phba; 4871 4872 lpfc_debugfs_terminate(vport); 4873 fc_remove_host(shost); 4874 scsi_remove_host(shost); 4875 4876 spin_lock_irq(&phba->port_list_lock); 4877 list_del_init(&vport->listentry); 4878 spin_unlock_irq(&phba->port_list_lock); 4879 4880 lpfc_cleanup(vport); 4881 return; 4882 } 4883 4884 /** 4885 * lpfc_get_instance - Get a unique integer ID 4886 * 4887 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4888 * uses the kernel idr facility to perform the task. 4889 * 4890 * Return codes: 4891 * instance - a unique integer ID allocated as the new instance. 4892 * -1 - lpfc get instance failed. 4893 **/ 4894 int 4895 lpfc_get_instance(void) 4896 { 4897 int ret; 4898 4899 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4900 return ret < 0 ? -1 : ret; 4901 } 4902 4903 /** 4904 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4905 * @shost: pointer to SCSI host data structure. 4906 * @time: elapsed time of the scan in jiffies. 4907 * 4908 * This routine is called by the SCSI layer with a SCSI host to determine 4909 * whether the scan host is finished. 4910 * 4911 * Note: there is no scan_start function as adapter initialization will have 4912 * asynchronously kicked off the link initialization. 4913 * 4914 * Return codes 4915 * 0 - SCSI host scan is not over yet. 4916 * 1 - SCSI host scan is over. 4917 **/ 4918 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4919 { 4920 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4921 struct lpfc_hba *phba = vport->phba; 4922 int stat = 0; 4923 4924 spin_lock_irq(shost->host_lock); 4925 4926 if (test_bit(FC_UNLOADING, &vport->load_flag)) { 4927 stat = 1; 4928 goto finished; 4929 } 4930 if (time >= secs_to_jiffies(30)) { 4931 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4932 "0461 Scanning longer than 30 " 4933 "seconds. Continuing initialization\n"); 4934 stat = 1; 4935 goto finished; 4936 } 4937 if (time >= secs_to_jiffies(15) && 4938 phba->link_state <= LPFC_LINK_DOWN) { 4939 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4940 "0465 Link down longer than 15 " 4941 "seconds. Continuing initialization\n"); 4942 stat = 1; 4943 goto finished; 4944 } 4945 4946 if (vport->port_state != LPFC_VPORT_READY) 4947 goto finished; 4948 if (vport->num_disc_nodes || vport->fc_prli_sent) 4949 goto finished; 4950 if (!atomic_read(&vport->fc_map_cnt) && 4951 time < secs_to_jiffies(2)) 4952 goto finished; 4953 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4954 goto finished; 4955 4956 stat = 1; 4957 4958 finished: 4959 spin_unlock_irq(shost->host_lock); 4960 return stat; 4961 } 4962 4963 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4964 { 4965 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4966 struct lpfc_hba *phba = vport->phba; 4967 4968 fc_host_supported_speeds(shost) = 0; 4969 /* 4970 * Avoid reporting supported link speed for FCoE as it can't be 4971 * controlled via FCoE. 4972 */ 4973 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) 4974 return; 4975 4976 if (phba->lmt & LMT_256Gb) 4977 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4978 if (phba->lmt & LMT_128Gb) 4979 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4980 if (phba->lmt & LMT_64Gb) 4981 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4982 if (phba->lmt & LMT_32Gb) 4983 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4984 if (phba->lmt & LMT_16Gb) 4985 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4986 if (phba->lmt & LMT_10Gb) 4987 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4988 if (phba->lmt & LMT_8Gb) 4989 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4990 if (phba->lmt & LMT_4Gb) 4991 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4992 if (phba->lmt & LMT_2Gb) 4993 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4994 if (phba->lmt & LMT_1Gb) 4995 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4996 } 4997 4998 /** 4999 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 5000 * @shost: pointer to SCSI host data structure. 5001 * 5002 * This routine initializes a given SCSI host attributes on a FC port. The 5003 * SCSI host can be either on top of a physical port or a virtual port. 5004 **/ 5005 void lpfc_host_attrib_init(struct Scsi_Host *shost) 5006 { 5007 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 5008 struct lpfc_hba *phba = vport->phba; 5009 /* 5010 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 5011 */ 5012 5013 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 5014 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 5015 fc_host_supported_classes(shost) = FC_COS_CLASS3; 5016 5017 memset(fc_host_supported_fc4s(shost), 0, 5018 sizeof(fc_host_supported_fc4s(shost))); 5019 fc_host_supported_fc4s(shost)[2] = 1; 5020 fc_host_supported_fc4s(shost)[7] = 1; 5021 5022 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 5023 sizeof fc_host_symbolic_name(shost)); 5024 5025 lpfc_host_supported_speeds_set(shost); 5026 5027 fc_host_maxframe_size(shost) = 5028 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 5029 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 5030 5031 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 5032 5033 /* This value is also unchanging */ 5034 memset(fc_host_active_fc4s(shost), 0, 5035 sizeof(fc_host_active_fc4s(shost))); 5036 fc_host_active_fc4s(shost)[2] = 1; 5037 fc_host_active_fc4s(shost)[7] = 1; 5038 5039 fc_host_max_npiv_vports(shost) = phba->max_vpi; 5040 clear_bit(FC_LOADING, &vport->load_flag); 5041 } 5042 5043 /** 5044 * lpfc_stop_port_s3 - Stop SLI3 device port 5045 * @phba: pointer to lpfc hba data structure. 5046 * 5047 * This routine is invoked to stop an SLI3 device port, it stops the device 5048 * from generating interrupts and stops the device driver's timers for the 5049 * device. 5050 **/ 5051 static void 5052 lpfc_stop_port_s3(struct lpfc_hba *phba) 5053 { 5054 /* Clear all interrupt enable conditions */ 5055 writel(0, phba->HCregaddr); 5056 readl(phba->HCregaddr); /* flush */ 5057 /* Clear all pending interrupts */ 5058 writel(0xffffffff, phba->HAregaddr); 5059 readl(phba->HAregaddr); /* flush */ 5060 5061 /* Reset some HBA SLI setup states */ 5062 lpfc_stop_hba_timers(phba); 5063 phba->pport->work_port_events = 0; 5064 } 5065 5066 /** 5067 * lpfc_stop_port_s4 - Stop SLI4 device port 5068 * @phba: pointer to lpfc hba data structure. 5069 * 5070 * This routine is invoked to stop an SLI4 device port, it stops the device 5071 * from generating interrupts and stops the device driver's timers for the 5072 * device. 5073 **/ 5074 static void 5075 lpfc_stop_port_s4(struct lpfc_hba *phba) 5076 { 5077 /* Reset some HBA SLI4 setup states */ 5078 lpfc_stop_hba_timers(phba); 5079 if (phba->pport) 5080 phba->pport->work_port_events = 0; 5081 phba->sli4_hba.intr_enable = 0; 5082 } 5083 5084 /** 5085 * lpfc_stop_port - Wrapper function for stopping hba port 5086 * @phba: Pointer to HBA context object. 5087 * 5088 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 5089 * the API jump table function pointer from the lpfc_hba struct. 5090 **/ 5091 void 5092 lpfc_stop_port(struct lpfc_hba *phba) 5093 { 5094 phba->lpfc_stop_port(phba); 5095 5096 if (phba->wq) 5097 flush_workqueue(phba->wq); 5098 } 5099 5100 /** 5101 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5102 * @phba: Pointer to hba for which this call is being executed. 5103 * 5104 * This routine starts the timer waiting for the FCF rediscovery to complete. 5105 **/ 5106 void 5107 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5108 { 5109 unsigned long fcf_redisc_wait_tmo = 5110 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5111 /* Start fcf rediscovery wait period timer */ 5112 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5113 spin_lock_irq(&phba->hbalock); 5114 /* Allow action to new fcf asynchronous event */ 5115 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5116 /* Mark the FCF rediscovery pending state */ 5117 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5118 spin_unlock_irq(&phba->hbalock); 5119 } 5120 5121 /** 5122 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5123 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5124 * 5125 * This routine is invoked when waiting for FCF table rediscover has been 5126 * timed out. If new FCF record(s) has (have) been discovered during the 5127 * wait period, a new FCF event shall be added to the FCOE async event 5128 * list, and then worker thread shall be waked up for processing from the 5129 * worker thread context. 5130 **/ 5131 static void 5132 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5133 { 5134 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 5135 5136 /* Don't send FCF rediscovery event if timer cancelled */ 5137 spin_lock_irq(&phba->hbalock); 5138 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5139 spin_unlock_irq(&phba->hbalock); 5140 return; 5141 } 5142 /* Clear FCF rediscovery timer pending flag */ 5143 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5144 /* FCF rediscovery event to worker thread */ 5145 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5146 spin_unlock_irq(&phba->hbalock); 5147 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5148 "2776 FCF rediscover quiescent timer expired\n"); 5149 /* wake up worker thread */ 5150 lpfc_worker_wake_up(phba); 5151 } 5152 5153 /** 5154 * lpfc_vmid_poll - VMID timeout detection 5155 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5156 * 5157 * This routine is invoked when there is no I/O on by a VM for the specified 5158 * amount of time. When this situation is detected, the VMID has to be 5159 * deregistered from the switch and all the local resources freed. The VMID 5160 * will be reassigned to the VM once the I/O begins. 5161 **/ 5162 static void 5163 lpfc_vmid_poll(struct timer_list *t) 5164 { 5165 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 5166 u32 wake_up = 0; 5167 5168 /* check if there is a need to issue QFPA */ 5169 if (phba->pport->vmid_priority_tagging) { 5170 wake_up = 1; 5171 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5172 } 5173 5174 /* Is the vmid inactivity timer enabled */ 5175 if (phba->pport->vmid_inactivity_timeout || 5176 test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) { 5177 wake_up = 1; 5178 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5179 } 5180 5181 if (wake_up) 5182 lpfc_worker_wake_up(phba); 5183 5184 /* restart the timer for the next iteration */ 5185 mod_timer(&phba->inactive_vmid_poll, 5186 jiffies + secs_to_jiffies(LPFC_VMID_TIMER)); 5187 } 5188 5189 /** 5190 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5191 * @phba: pointer to lpfc hba data structure. 5192 * @acqe_link: pointer to the async link completion queue entry. 5193 * 5194 * This routine is to parse the SLI4 link-attention link fault code. 5195 **/ 5196 static void 5197 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5198 struct lpfc_acqe_link *acqe_link) 5199 { 5200 switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) { 5201 case LPFC_FC_LA_TYPE_LINK_DOWN: 5202 case LPFC_FC_LA_TYPE_TRUNKING_EVENT: 5203 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 5204 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 5205 break; 5206 default: 5207 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5208 case LPFC_ASYNC_LINK_FAULT_NONE: 5209 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5210 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5211 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5212 break; 5213 default: 5214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5215 "0398 Unknown link fault code: x%x\n", 5216 bf_get(lpfc_acqe_link_fault, acqe_link)); 5217 break; 5218 } 5219 break; 5220 } 5221 } 5222 5223 /** 5224 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5225 * @phba: pointer to lpfc hba data structure. 5226 * @acqe_link: pointer to the async link completion queue entry. 5227 * 5228 * This routine is to parse the SLI4 link attention type and translate it 5229 * into the base driver's link attention type coding. 5230 * 5231 * Return: Link attention type in terms of base driver's coding. 5232 **/ 5233 static uint8_t 5234 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5235 struct lpfc_acqe_link *acqe_link) 5236 { 5237 uint8_t att_type; 5238 5239 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5240 case LPFC_ASYNC_LINK_STATUS_DOWN: 5241 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5242 att_type = LPFC_ATT_LINK_DOWN; 5243 break; 5244 case LPFC_ASYNC_LINK_STATUS_UP: 5245 /* Ignore physical link up events - wait for logical link up */ 5246 att_type = LPFC_ATT_RESERVED; 5247 break; 5248 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5249 att_type = LPFC_ATT_LINK_UP; 5250 break; 5251 default: 5252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5253 "0399 Invalid link attention type: x%x\n", 5254 bf_get(lpfc_acqe_link_status, acqe_link)); 5255 att_type = LPFC_ATT_RESERVED; 5256 break; 5257 } 5258 return att_type; 5259 } 5260 5261 /** 5262 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5263 * @phba: pointer to lpfc hba data structure. 5264 * 5265 * This routine is to get an SLI3 FC port's link speed in Mbps. 5266 * 5267 * Return: link speed in terms of Mbps. 5268 **/ 5269 uint32_t 5270 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5271 { 5272 uint32_t link_speed; 5273 5274 if (!lpfc_is_link_up(phba)) 5275 return 0; 5276 5277 if (phba->sli_rev <= LPFC_SLI_REV3) { 5278 switch (phba->fc_linkspeed) { 5279 case LPFC_LINK_SPEED_1GHZ: 5280 link_speed = 1000; 5281 break; 5282 case LPFC_LINK_SPEED_2GHZ: 5283 link_speed = 2000; 5284 break; 5285 case LPFC_LINK_SPEED_4GHZ: 5286 link_speed = 4000; 5287 break; 5288 case LPFC_LINK_SPEED_8GHZ: 5289 link_speed = 8000; 5290 break; 5291 case LPFC_LINK_SPEED_10GHZ: 5292 link_speed = 10000; 5293 break; 5294 case LPFC_LINK_SPEED_16GHZ: 5295 link_speed = 16000; 5296 break; 5297 default: 5298 link_speed = 0; 5299 } 5300 } else { 5301 if (phba->sli4_hba.link_state.logical_speed) 5302 link_speed = 5303 phba->sli4_hba.link_state.logical_speed; 5304 else 5305 link_speed = phba->sli4_hba.link_state.speed; 5306 } 5307 return link_speed; 5308 } 5309 5310 /** 5311 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5312 * @phba: pointer to lpfc hba data structure. 5313 * @evt_code: asynchronous event code. 5314 * @speed_code: asynchronous event link speed code. 5315 * 5316 * This routine is to parse the giving SLI4 async event link speed code into 5317 * value of Mbps for the link speed. 5318 * 5319 * Return: link speed in terms of Mbps. 5320 **/ 5321 static uint32_t 5322 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5323 uint8_t speed_code) 5324 { 5325 uint32_t port_speed; 5326 5327 switch (evt_code) { 5328 case LPFC_TRAILER_CODE_LINK: 5329 switch (speed_code) { 5330 case LPFC_ASYNC_LINK_SPEED_ZERO: 5331 port_speed = 0; 5332 break; 5333 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5334 port_speed = 10; 5335 break; 5336 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5337 port_speed = 100; 5338 break; 5339 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5340 port_speed = 1000; 5341 break; 5342 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5343 port_speed = 10000; 5344 break; 5345 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5346 port_speed = 20000; 5347 break; 5348 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5349 port_speed = 25000; 5350 break; 5351 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5352 port_speed = 40000; 5353 break; 5354 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5355 port_speed = 100000; 5356 break; 5357 default: 5358 port_speed = 0; 5359 } 5360 break; 5361 case LPFC_TRAILER_CODE_FC: 5362 switch (speed_code) { 5363 case LPFC_FC_LA_SPEED_UNKNOWN: 5364 port_speed = 0; 5365 break; 5366 case LPFC_FC_LA_SPEED_1G: 5367 port_speed = 1000; 5368 break; 5369 case LPFC_FC_LA_SPEED_2G: 5370 port_speed = 2000; 5371 break; 5372 case LPFC_FC_LA_SPEED_4G: 5373 port_speed = 4000; 5374 break; 5375 case LPFC_FC_LA_SPEED_8G: 5376 port_speed = 8000; 5377 break; 5378 case LPFC_FC_LA_SPEED_10G: 5379 port_speed = 10000; 5380 break; 5381 case LPFC_FC_LA_SPEED_16G: 5382 port_speed = 16000; 5383 break; 5384 case LPFC_FC_LA_SPEED_32G: 5385 port_speed = 32000; 5386 break; 5387 case LPFC_FC_LA_SPEED_64G: 5388 port_speed = 64000; 5389 break; 5390 case LPFC_FC_LA_SPEED_128G: 5391 port_speed = 128000; 5392 break; 5393 case LPFC_FC_LA_SPEED_256G: 5394 port_speed = 256000; 5395 break; 5396 default: 5397 port_speed = 0; 5398 } 5399 break; 5400 default: 5401 port_speed = 0; 5402 } 5403 return port_speed; 5404 } 5405 5406 /** 5407 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5408 * @phba: pointer to lpfc hba data structure. 5409 * @acqe_link: pointer to the async link completion queue entry. 5410 * 5411 * This routine is to handle the SLI4 asynchronous FCoE link event. 5412 **/ 5413 static void 5414 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5415 struct lpfc_acqe_link *acqe_link) 5416 { 5417 LPFC_MBOXQ_t *pmb; 5418 MAILBOX_t *mb; 5419 struct lpfc_mbx_read_top *la; 5420 uint8_t att_type; 5421 int rc; 5422 5423 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5424 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5425 return; 5426 phba->fcoe_eventtag = acqe_link->event_tag; 5427 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5428 if (!pmb) { 5429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5430 "0395 The mboxq allocation failed\n"); 5431 return; 5432 } 5433 5434 rc = lpfc_mbox_rsrc_prep(phba, pmb); 5435 if (rc) { 5436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5437 "0396 mailbox allocation failed\n"); 5438 goto out_free_pmb; 5439 } 5440 5441 /* Cleanup any outstanding ELS commands */ 5442 lpfc_els_flush_all_cmd(phba); 5443 5444 /* Block ELS IOCBs until we have done process link event */ 5445 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5446 5447 /* Update link event statistics */ 5448 phba->sli.slistat.link_event++; 5449 5450 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5451 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 5452 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5453 pmb->vport = phba->pport; 5454 5455 /* Keep the link status for extra SLI4 state machine reference */ 5456 phba->sli4_hba.link_state.speed = 5457 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5458 bf_get(lpfc_acqe_link_speed, acqe_link)); 5459 phba->sli4_hba.link_state.duplex = 5460 bf_get(lpfc_acqe_link_duplex, acqe_link); 5461 phba->sli4_hba.link_state.status = 5462 bf_get(lpfc_acqe_link_status, acqe_link); 5463 phba->sli4_hba.link_state.type = 5464 bf_get(lpfc_acqe_link_type, acqe_link); 5465 phba->sli4_hba.link_state.number = 5466 bf_get(lpfc_acqe_link_number, acqe_link); 5467 phba->sli4_hba.link_state.fault = 5468 bf_get(lpfc_acqe_link_fault, acqe_link); 5469 phba->sli4_hba.link_state.logical_speed = 5470 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5471 5472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5473 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5474 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5475 "Logical speed:%dMbps Fault:%d\n", 5476 phba->sli4_hba.link_state.speed, 5477 phba->sli4_hba.link_state.topology, 5478 phba->sli4_hba.link_state.status, 5479 phba->sli4_hba.link_state.type, 5480 phba->sli4_hba.link_state.number, 5481 phba->sli4_hba.link_state.logical_speed, 5482 phba->sli4_hba.link_state.fault); 5483 /* 5484 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5485 * topology info. Note: Optional for non FC-AL ports. 5486 */ 5487 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 5488 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5489 if (rc == MBX_NOT_FINISHED) 5490 goto out_free_pmb; 5491 return; 5492 } 5493 /* 5494 * For FCoE Mode: fill in all the topology information we need and call 5495 * the READ_TOPOLOGY completion routine to continue without actually 5496 * sending the READ_TOPOLOGY mailbox command to the port. 5497 */ 5498 /* Initialize completion status */ 5499 mb = &pmb->u.mb; 5500 mb->mbxStatus = MBX_SUCCESS; 5501 5502 /* Parse port fault information field */ 5503 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5504 5505 /* Parse and translate link attention fields */ 5506 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5507 la->eventTag = acqe_link->event_tag; 5508 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5509 bf_set(lpfc_mbx_read_top_link_spd, la, 5510 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5511 5512 /* Fake the following irrelevant fields */ 5513 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5514 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5515 bf_set(lpfc_mbx_read_top_il, la, 0); 5516 bf_set(lpfc_mbx_read_top_pb, la, 0); 5517 bf_set(lpfc_mbx_read_top_fa, la, 0); 5518 bf_set(lpfc_mbx_read_top_mm, la, 0); 5519 5520 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5521 lpfc_mbx_cmpl_read_topology(phba, pmb); 5522 5523 return; 5524 5525 out_free_pmb: 5526 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 5527 } 5528 5529 /** 5530 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5531 * topology. 5532 * @phba: pointer to lpfc hba data structure. 5533 * @speed_code: asynchronous event link speed code. 5534 * 5535 * This routine is to parse the giving SLI4 async event link speed code into 5536 * value of Read topology link speed. 5537 * 5538 * Return: link speed in terms of Read topology. 5539 **/ 5540 static uint8_t 5541 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5542 { 5543 uint8_t port_speed; 5544 5545 switch (speed_code) { 5546 case LPFC_FC_LA_SPEED_1G: 5547 port_speed = LPFC_LINK_SPEED_1GHZ; 5548 break; 5549 case LPFC_FC_LA_SPEED_2G: 5550 port_speed = LPFC_LINK_SPEED_2GHZ; 5551 break; 5552 case LPFC_FC_LA_SPEED_4G: 5553 port_speed = LPFC_LINK_SPEED_4GHZ; 5554 break; 5555 case LPFC_FC_LA_SPEED_8G: 5556 port_speed = LPFC_LINK_SPEED_8GHZ; 5557 break; 5558 case LPFC_FC_LA_SPEED_16G: 5559 port_speed = LPFC_LINK_SPEED_16GHZ; 5560 break; 5561 case LPFC_FC_LA_SPEED_32G: 5562 port_speed = LPFC_LINK_SPEED_32GHZ; 5563 break; 5564 case LPFC_FC_LA_SPEED_64G: 5565 port_speed = LPFC_LINK_SPEED_64GHZ; 5566 break; 5567 case LPFC_FC_LA_SPEED_128G: 5568 port_speed = LPFC_LINK_SPEED_128GHZ; 5569 break; 5570 case LPFC_FC_LA_SPEED_256G: 5571 port_speed = LPFC_LINK_SPEED_256GHZ; 5572 break; 5573 default: 5574 port_speed = 0; 5575 break; 5576 } 5577 5578 return port_speed; 5579 } 5580 5581 void 5582 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5583 { 5584 if (!phba->rx_monitor) { 5585 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5586 "4411 Rx Monitor Info is empty.\n"); 5587 } else { 5588 lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0, 5589 LPFC_MAX_RXMONITOR_DUMP); 5590 } 5591 } 5592 5593 /** 5594 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5595 * @phba: pointer to lpfc hba data structure. 5596 * @dtag: FPIN descriptor received 5597 * 5598 * Increment the FPIN received counter/time when it happens. 5599 */ 5600 void 5601 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5602 { 5603 struct lpfc_cgn_info *cp; 5604 u32 value; 5605 5606 /* Make sure we have a congestion info buffer */ 5607 if (!phba->cgn_i) 5608 return; 5609 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5610 5611 /* Update congestion statistics */ 5612 switch (dtag) { 5613 case ELS_DTAG_LNK_INTEGRITY: 5614 le32_add_cpu(&cp->link_integ_notification, 1); 5615 lpfc_cgn_update_tstamp(phba, &cp->stat_lnk); 5616 break; 5617 case ELS_DTAG_DELIVERY: 5618 le32_add_cpu(&cp->delivery_notification, 1); 5619 lpfc_cgn_update_tstamp(phba, &cp->stat_delivery); 5620 break; 5621 case ELS_DTAG_PEER_CONGEST: 5622 le32_add_cpu(&cp->cgn_peer_notification, 1); 5623 lpfc_cgn_update_tstamp(phba, &cp->stat_peer); 5624 break; 5625 case ELS_DTAG_CONGESTION: 5626 le32_add_cpu(&cp->cgn_notification, 1); 5627 lpfc_cgn_update_tstamp(phba, &cp->stat_fpin); 5628 } 5629 if (phba->cgn_fpin_frequency && 5630 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5631 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5632 cp->cgn_stat_npm = value; 5633 } 5634 5635 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5636 LPFC_CGN_CRC32_SEED); 5637 cp->cgn_info_crc = cpu_to_le32(value); 5638 } 5639 5640 /** 5641 * lpfc_cgn_update_tstamp - Update cmf timestamp 5642 * @phba: pointer to lpfc hba data structure. 5643 * @ts: structure to write the timestamp to. 5644 */ 5645 void 5646 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts) 5647 { 5648 struct timespec64 cur_time; 5649 struct tm tm_val; 5650 5651 ktime_get_real_ts64(&cur_time); 5652 time64_to_tm(cur_time.tv_sec, 0, &tm_val); 5653 5654 ts->month = tm_val.tm_mon + 1; 5655 ts->day = tm_val.tm_mday; 5656 ts->year = tm_val.tm_year - 100; 5657 ts->hour = tm_val.tm_hour; 5658 ts->minute = tm_val.tm_min; 5659 ts->second = tm_val.tm_sec; 5660 5661 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5662 "2646 Updated CMF timestamp : " 5663 "%u/%u/%u %u:%u:%u\n", 5664 ts->day, ts->month, 5665 ts->year, ts->hour, 5666 ts->minute, ts->second); 5667 } 5668 5669 /** 5670 * lpfc_cmf_stats_timer - Save data into registered congestion buffer 5671 * @timer: Timer cookie to access lpfc private data 5672 * 5673 * Save the congestion event data every minute. 5674 * On the hour collapse all the minute data into hour data. Every day 5675 * collapse all the hour data into daily data. Separate driver 5676 * and fabrc congestion event counters that will be saved out 5677 * to the registered congestion buffer every minute. 5678 */ 5679 static enum hrtimer_restart 5680 lpfc_cmf_stats_timer(struct hrtimer *timer) 5681 { 5682 struct lpfc_hba *phba; 5683 struct lpfc_cgn_info *cp; 5684 uint32_t i, index; 5685 uint16_t value, mvalue; 5686 uint64_t bps; 5687 uint32_t mbps; 5688 uint32_t dvalue, wvalue, lvalue, avalue; 5689 uint64_t latsum; 5690 __le16 *ptr; 5691 __le32 *lptr; 5692 __le16 *mptr; 5693 5694 phba = container_of(timer, struct lpfc_hba, cmf_stats_timer); 5695 /* Make sure we have a congestion info buffer */ 5696 if (!phba->cgn_i) 5697 return HRTIMER_NORESTART; 5698 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5699 5700 phba->cgn_evt_timestamp = jiffies + 5701 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5702 phba->cgn_evt_minute++; 5703 5704 /* We should get to this point in the routine on 1 minute intervals */ 5705 lpfc_cgn_update_tstamp(phba, &cp->base_time); 5706 5707 if (phba->cgn_fpin_frequency && 5708 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5709 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5710 cp->cgn_stat_npm = value; 5711 } 5712 5713 /* Read and clear the latency counters for this minute */ 5714 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5715 latsum = atomic64_read(&phba->cgn_latency_evt); 5716 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5717 atomic64_set(&phba->cgn_latency_evt, 0); 5718 5719 /* We need to store MB/sec bandwidth in the congestion information. 5720 * block_cnt is count of 512 byte blocks for the entire minute, 5721 * bps will get bytes per sec before finally converting to MB/sec. 5722 */ 5723 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5724 phba->rx_block_cnt = 0; 5725 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5726 5727 /* Every minute */ 5728 /* cgn parameters */ 5729 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5730 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5731 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5732 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5733 5734 /* Fill in default LUN qdepth */ 5735 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5736 cp->cgn_lunq = cpu_to_le16(value); 5737 5738 /* Record congestion buffer info - every minute 5739 * cgn_driver_evt_cnt (Driver events) 5740 * cgn_fabric_warn_cnt (Congestion Warnings) 5741 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5742 * cgn_fabric_alarm_cnt (Congestion Alarms) 5743 */ 5744 index = ++cp->cgn_index_minute; 5745 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5746 cp->cgn_index_minute = 0; 5747 index = 0; 5748 } 5749 5750 /* Get the number of driver events in this sample and reset counter */ 5751 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5752 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5753 5754 /* Get the number of warning events - FPIN and Signal for this minute */ 5755 wvalue = 0; 5756 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5757 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5758 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5759 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5760 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5761 5762 /* Get the number of alarm events - FPIN and Signal for this minute */ 5763 avalue = 0; 5764 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5765 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5766 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5767 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5768 5769 /* Collect the driver, warning, alarm and latency counts for this 5770 * minute into the driver congestion buffer. 5771 */ 5772 ptr = &cp->cgn_drvr_min[index]; 5773 value = (uint16_t)dvalue; 5774 *ptr = cpu_to_le16(value); 5775 5776 ptr = &cp->cgn_warn_min[index]; 5777 value = (uint16_t)wvalue; 5778 *ptr = cpu_to_le16(value); 5779 5780 ptr = &cp->cgn_alarm_min[index]; 5781 value = (uint16_t)avalue; 5782 *ptr = cpu_to_le16(value); 5783 5784 lptr = &cp->cgn_latency_min[index]; 5785 if (lvalue) { 5786 lvalue = (uint32_t)div_u64(latsum, lvalue); 5787 *lptr = cpu_to_le32(lvalue); 5788 } else { 5789 *lptr = 0; 5790 } 5791 5792 /* Collect the bandwidth value into the driver's congesion buffer. */ 5793 mptr = &cp->cgn_bw_min[index]; 5794 *mptr = cpu_to_le16(mvalue); 5795 5796 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5797 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5798 index, dvalue, wvalue, *lptr, mvalue, avalue); 5799 5800 /* Every hour */ 5801 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5802 /* Record congestion buffer info - every hour 5803 * Collapse all minutes into an hour 5804 */ 5805 index = ++cp->cgn_index_hour; 5806 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5807 cp->cgn_index_hour = 0; 5808 index = 0; 5809 } 5810 5811 dvalue = 0; 5812 wvalue = 0; 5813 lvalue = 0; 5814 avalue = 0; 5815 mvalue = 0; 5816 mbps = 0; 5817 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5818 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5819 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5820 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5821 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5822 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5823 } 5824 if (lvalue) /* Avg of latency averages */ 5825 lvalue /= LPFC_MIN_HOUR; 5826 if (mbps) /* Avg of Bandwidth averages */ 5827 mvalue = mbps / LPFC_MIN_HOUR; 5828 5829 lptr = &cp->cgn_drvr_hr[index]; 5830 *lptr = cpu_to_le32(dvalue); 5831 lptr = &cp->cgn_warn_hr[index]; 5832 *lptr = cpu_to_le32(wvalue); 5833 lptr = &cp->cgn_latency_hr[index]; 5834 *lptr = cpu_to_le32(lvalue); 5835 mptr = &cp->cgn_bw_hr[index]; 5836 *mptr = cpu_to_le16(mvalue); 5837 lptr = &cp->cgn_alarm_hr[index]; 5838 *lptr = cpu_to_le32(avalue); 5839 5840 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5841 "2419 Congestion Info - hour " 5842 "(%d): %d %d %d %d %d\n", 5843 index, dvalue, wvalue, lvalue, mvalue, avalue); 5844 } 5845 5846 /* Every day */ 5847 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5848 /* Record congestion buffer info - every hour 5849 * Collapse all hours into a day. Rotate days 5850 * after LPFC_MAX_CGN_DAYS. 5851 */ 5852 index = ++cp->cgn_index_day; 5853 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5854 cp->cgn_index_day = 0; 5855 index = 0; 5856 } 5857 5858 dvalue = 0; 5859 wvalue = 0; 5860 lvalue = 0; 5861 mvalue = 0; 5862 mbps = 0; 5863 avalue = 0; 5864 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5865 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5866 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5867 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5868 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5869 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5870 } 5871 if (lvalue) /* Avg of latency averages */ 5872 lvalue /= LPFC_HOUR_DAY; 5873 if (mbps) /* Avg of Bandwidth averages */ 5874 mvalue = mbps / LPFC_HOUR_DAY; 5875 5876 lptr = &cp->cgn_drvr_day[index]; 5877 *lptr = cpu_to_le32(dvalue); 5878 lptr = &cp->cgn_warn_day[index]; 5879 *lptr = cpu_to_le32(wvalue); 5880 lptr = &cp->cgn_latency_day[index]; 5881 *lptr = cpu_to_le32(lvalue); 5882 mptr = &cp->cgn_bw_day[index]; 5883 *mptr = cpu_to_le16(mvalue); 5884 lptr = &cp->cgn_alarm_day[index]; 5885 *lptr = cpu_to_le32(avalue); 5886 5887 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5888 "2420 Congestion Info - daily (%d): " 5889 "%d %d %d %d %d\n", 5890 index, dvalue, wvalue, lvalue, mvalue, avalue); 5891 } 5892 5893 /* Use the frequency found in the last rcv'ed FPIN */ 5894 value = phba->cgn_fpin_frequency; 5895 cp->cgn_warn_freq = cpu_to_le16(value); 5896 cp->cgn_alarm_freq = cpu_to_le16(value); 5897 5898 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5899 LPFC_CGN_CRC32_SEED); 5900 cp->cgn_info_crc = cpu_to_le32(lvalue); 5901 5902 hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC)); 5903 5904 return HRTIMER_RESTART; 5905 } 5906 5907 /** 5908 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5909 * @phba: The Hba for which this call is being executed. 5910 * 5911 * The routine calculates the latency from the beginning of the CMF timer 5912 * interval to the current point in time. It is called from IO completion 5913 * when we exceed our Bandwidth limitation for the time interval. 5914 */ 5915 uint32_t 5916 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5917 { 5918 struct timespec64 cmpl_time; 5919 uint32_t msec = 0; 5920 5921 ktime_get_real_ts64(&cmpl_time); 5922 5923 /* This routine works on a ms granularity so sec and usec are 5924 * converted accordingly. 5925 */ 5926 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5927 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5928 NSEC_PER_MSEC; 5929 } else { 5930 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5931 msec = (cmpl_time.tv_sec - 5932 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5933 msec += ((cmpl_time.tv_nsec - 5934 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5935 } else { 5936 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5937 1) * MSEC_PER_SEC; 5938 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5939 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5940 } 5941 } 5942 return msec; 5943 } 5944 5945 /** 5946 * lpfc_cmf_timer - This is the timer function for one congestion 5947 * rate interval. 5948 * @timer: Pointer to the high resolution timer that expired 5949 */ 5950 static enum hrtimer_restart 5951 lpfc_cmf_timer(struct hrtimer *timer) 5952 { 5953 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5954 cmf_timer); 5955 struct rx_info_entry entry; 5956 uint32_t io_cnt; 5957 uint32_t busy, max_read; 5958 uint64_t total, rcv, lat, mbpi, extra, cnt; 5959 int timer_interval = LPFC_CMF_INTERVAL; 5960 uint32_t ms; 5961 struct lpfc_cgn_stat *cgs; 5962 int cpu; 5963 5964 /* Only restart the timer if congestion mgmt is on */ 5965 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5966 !phba->cmf_latency.tv_sec) { 5967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5968 "6224 CMF timer exit: %d %lld\n", 5969 phba->cmf_active_mode, 5970 (uint64_t)phba->cmf_latency.tv_sec); 5971 return HRTIMER_NORESTART; 5972 } 5973 5974 /* If pport is not ready yet, just exit and wait for 5975 * the next timer cycle to hit. 5976 */ 5977 if (!phba->pport) 5978 goto skip; 5979 5980 /* Do not block SCSI IO while in the timer routine since 5981 * total_bytes will be cleared 5982 */ 5983 atomic_set(&phba->cmf_stop_io, 1); 5984 5985 /* First we need to calculate the actual ms between 5986 * the last timer interrupt and this one. We ask for 5987 * LPFC_CMF_INTERVAL, however the actual time may 5988 * vary depending on system overhead. 5989 */ 5990 ms = lpfc_calc_cmf_latency(phba); 5991 5992 5993 /* Immediately after we calculate the time since the last 5994 * timer interrupt, set the start time for the next 5995 * interrupt 5996 */ 5997 ktime_get_real_ts64(&phba->cmf_latency); 5998 5999 phba->cmf_link_byte_count = 6000 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 6001 6002 /* Collect all the stats from the prior timer interval */ 6003 total = 0; 6004 io_cnt = 0; 6005 lat = 0; 6006 rcv = 0; 6007 for_each_present_cpu(cpu) { 6008 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 6009 total += atomic64_xchg(&cgs->total_bytes, 0); 6010 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 6011 lat += atomic64_xchg(&cgs->rx_latency, 0); 6012 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 6013 } 6014 6015 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6016 * returned from the last CMF_SYNC_WQE issued, from 6017 * cmf_last_sync_bw. This will be the target BW for 6018 * this next timer interval. 6019 */ 6020 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6021 phba->link_state != LPFC_LINK_DOWN && 6022 test_bit(HBA_SETUP, &phba->hba_flag)) { 6023 mbpi = phba->cmf_last_sync_bw; 6024 phba->cmf_last_sync_bw = 0; 6025 extra = 0; 6026 6027 /* Calculate any extra bytes needed to account for the 6028 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6029 * calculate the adjustment needed for total to reflect 6030 * a full LPFC_CMF_INTERVAL. 6031 */ 6032 if (ms && ms < LPFC_CMF_INTERVAL) { 6033 cnt = div_u64(total, ms); /* bytes per ms */ 6034 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6035 extra = cnt - total; 6036 } 6037 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6038 } else { 6039 /* For Monitor mode or link down we want mbpi 6040 * to be the full link speed 6041 */ 6042 mbpi = phba->cmf_link_byte_count; 6043 extra = 0; 6044 } 6045 phba->cmf_timer_cnt++; 6046 6047 if (io_cnt) { 6048 /* Update congestion info buffer latency in us */ 6049 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6050 atomic64_add(lat, &phba->cgn_latency_evt); 6051 } 6052 busy = atomic_xchg(&phba->cmf_busy, 0); 6053 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6054 6055 /* Calculate MBPI for the next timer interval */ 6056 if (mbpi) { 6057 if (mbpi > phba->cmf_link_byte_count || 6058 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6059 mbpi = phba->cmf_link_byte_count; 6060 6061 /* Change max_bytes_per_interval to what the prior 6062 * CMF_SYNC_WQE cmpl indicated. 6063 */ 6064 if (mbpi != phba->cmf_max_bytes_per_interval) 6065 phba->cmf_max_bytes_per_interval = mbpi; 6066 } 6067 6068 /* Save rxmonitor information for debug */ 6069 if (phba->rx_monitor) { 6070 entry.total_bytes = total; 6071 entry.cmf_bytes = total + extra; 6072 entry.rcv_bytes = rcv; 6073 entry.cmf_busy = busy; 6074 entry.cmf_info = phba->cmf_active_info; 6075 if (io_cnt) { 6076 entry.avg_io_latency = div_u64(lat, io_cnt); 6077 entry.avg_io_size = div_u64(rcv, io_cnt); 6078 } else { 6079 entry.avg_io_latency = 0; 6080 entry.avg_io_size = 0; 6081 } 6082 entry.max_read_cnt = max_read; 6083 entry.io_cnt = io_cnt; 6084 entry.max_bytes_per_interval = mbpi; 6085 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6086 entry.timer_utilization = phba->cmf_last_ts; 6087 else 6088 entry.timer_utilization = ms; 6089 entry.timer_interval = ms; 6090 phba->cmf_last_ts = 0; 6091 6092 lpfc_rx_monitor_record(phba->rx_monitor, &entry); 6093 } 6094 6095 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6096 /* If Monitor mode, check if we are oversubscribed 6097 * against the full line rate. 6098 */ 6099 if (mbpi && total > mbpi) 6100 atomic_inc(&phba->cgn_driver_evt_cnt); 6101 } 6102 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6103 6104 /* Since total_bytes has already been zero'ed, its okay to unblock 6105 * after max_bytes_per_interval is setup. 6106 */ 6107 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6108 queue_work(phba->wq, &phba->unblock_request_work); 6109 6110 /* SCSI IO is now unblocked */ 6111 atomic_set(&phba->cmf_stop_io, 0); 6112 6113 skip: 6114 hrtimer_forward_now(timer, 6115 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6116 return HRTIMER_RESTART; 6117 } 6118 6119 #define trunk_link_status(__idx)\ 6120 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6121 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6122 "Link up" : "Link down") : "NA" 6123 /* Did port __idx reported an error */ 6124 #define trunk_port_fault(__idx)\ 6125 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6126 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6127 6128 static void 6129 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6130 struct lpfc_acqe_fc_la *acqe_fc) 6131 { 6132 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6133 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6134 u8 cnt = 0; 6135 6136 phba->sli4_hba.link_state.speed = 6137 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6138 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6139 6140 phba->sli4_hba.link_state.logical_speed = 6141 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6142 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6143 phba->fc_linkspeed = 6144 lpfc_async_link_speed_to_read_top( 6145 phba, 6146 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6147 6148 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6149 phba->trunk_link.link0.state = 6150 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6151 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6152 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6153 cnt++; 6154 } 6155 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6156 phba->trunk_link.link1.state = 6157 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6158 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6159 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6160 cnt++; 6161 } 6162 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6163 phba->trunk_link.link2.state = 6164 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6165 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6166 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6167 cnt++; 6168 } 6169 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6170 phba->trunk_link.link3.state = 6171 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6172 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6173 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6174 cnt++; 6175 } 6176 6177 if (cnt) 6178 phba->trunk_link.phy_lnk_speed = 6179 phba->sli4_hba.link_state.logical_speed / (cnt * 1000); 6180 else 6181 phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN; 6182 6183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6184 "2910 Async FC Trunking Event - Speed:%d\n" 6185 "\tLogical speed:%d " 6186 "port0: %s port1: %s port2: %s port3: %s\n", 6187 phba->sli4_hba.link_state.speed, 6188 phba->sli4_hba.link_state.logical_speed, 6189 trunk_link_status(0), trunk_link_status(1), 6190 trunk_link_status(2), trunk_link_status(3)); 6191 6192 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6193 lpfc_cmf_signal_init(phba); 6194 6195 if (port_fault) 6196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6197 "3202 trunk error:0x%x (%s) seen on port0:%s " 6198 /* 6199 * SLI-4: We have only 0xA error codes 6200 * defined as of now. print an appropriate 6201 * message in case driver needs to be updated. 6202 */ 6203 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6204 "UNDEFINED. update driver." : trunk_errmsg[err], 6205 trunk_port_fault(0), trunk_port_fault(1), 6206 trunk_port_fault(2), trunk_port_fault(3)); 6207 } 6208 6209 6210 /** 6211 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6212 * @phba: pointer to lpfc hba data structure. 6213 * @acqe_fc: pointer to the async fc completion queue entry. 6214 * 6215 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6216 * that the event was received and then issue a read_topology mailbox command so 6217 * that the rest of the driver will treat it the same as SLI3. 6218 **/ 6219 static void 6220 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6221 { 6222 LPFC_MBOXQ_t *pmb; 6223 MAILBOX_t *mb; 6224 struct lpfc_mbx_read_top *la; 6225 char *log_level; 6226 int rc; 6227 6228 if (bf_get(lpfc_trailer_type, acqe_fc) != 6229 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6231 "2895 Non FC link Event detected.(%d)\n", 6232 bf_get(lpfc_trailer_type, acqe_fc)); 6233 return; 6234 } 6235 6236 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6237 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6238 lpfc_update_trunk_link_status(phba, acqe_fc); 6239 return; 6240 } 6241 6242 /* Keep the link status for extra SLI4 state machine reference */ 6243 phba->sli4_hba.link_state.speed = 6244 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6245 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6246 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6247 phba->sli4_hba.link_state.topology = 6248 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6249 phba->sli4_hba.link_state.status = 6250 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6251 phba->sli4_hba.link_state.type = 6252 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6253 phba->sli4_hba.link_state.number = 6254 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6255 phba->sli4_hba.link_state.fault = 6256 bf_get(lpfc_acqe_link_fault, acqe_fc); 6257 phba->sli4_hba.link_state.link_status = 6258 bf_get(lpfc_acqe_fc_la_link_status, acqe_fc); 6259 6260 /* 6261 * Only select attention types need logical speed modification to what 6262 * was previously set. 6263 */ 6264 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP && 6265 phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6266 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6267 LPFC_FC_LA_TYPE_LINK_DOWN) 6268 phba->sli4_hba.link_state.logical_speed = 0; 6269 else if (!phba->sli4_hba.conf_trunk) 6270 phba->sli4_hba.link_state.logical_speed = 6271 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6272 } 6273 6274 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6275 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6276 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6277 "%dMbps Fault:x%x Link Status:x%x\n", 6278 phba->sli4_hba.link_state.speed, 6279 phba->sli4_hba.link_state.topology, 6280 phba->sli4_hba.link_state.status, 6281 phba->sli4_hba.link_state.type, 6282 phba->sli4_hba.link_state.number, 6283 phba->sli4_hba.link_state.logical_speed, 6284 phba->sli4_hba.link_state.fault, 6285 phba->sli4_hba.link_state.link_status); 6286 6287 /* 6288 * The following attention types are informational only, providing 6289 * further details about link status. Overwrite the value of 6290 * link_state.status appropriately. No further action is required. 6291 */ 6292 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6293 switch (phba->sli4_hba.link_state.status) { 6294 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 6295 log_level = KERN_WARNING; 6296 phba->sli4_hba.link_state.status = 6297 LPFC_FC_LA_TYPE_LINK_DOWN; 6298 break; 6299 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 6300 /* 6301 * During bb credit recovery establishment, receiving 6302 * this attention type is normal. Link Up attention 6303 * type is expected to occur before this informational 6304 * attention type so keep the Link Up status. 6305 */ 6306 log_level = KERN_INFO; 6307 phba->sli4_hba.link_state.status = 6308 LPFC_FC_LA_TYPE_LINK_UP; 6309 break; 6310 default: 6311 log_level = KERN_INFO; 6312 break; 6313 } 6314 lpfc_log_msg(phba, log_level, LOG_SLI, 6315 "2992 Async FC event - Informational Link " 6316 "Attention Type x%x\n", 6317 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc)); 6318 return; 6319 } 6320 6321 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6322 if (!pmb) { 6323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6324 "2897 The mboxq allocation failed\n"); 6325 return; 6326 } 6327 rc = lpfc_mbox_rsrc_prep(phba, pmb); 6328 if (rc) { 6329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6330 "2898 The mboxq prep failed\n"); 6331 goto out_free_pmb; 6332 } 6333 6334 /* Cleanup any outstanding ELS commands */ 6335 lpfc_els_flush_all_cmd(phba); 6336 6337 /* Block ELS IOCBs until we have done process link event */ 6338 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6339 6340 /* Update link event statistics */ 6341 phba->sli.slistat.link_event++; 6342 6343 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6344 lpfc_read_topology(phba, pmb, pmb->ctx_buf); 6345 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6346 pmb->vport = phba->pport; 6347 6348 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6349 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6350 6351 switch (phba->sli4_hba.link_state.status) { 6352 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6353 phba->link_flag |= LS_MDS_LINK_DOWN; 6354 break; 6355 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6356 phba->link_flag |= LS_MDS_LOOPBACK; 6357 break; 6358 default: 6359 break; 6360 } 6361 6362 /* Initialize completion status */ 6363 mb = &pmb->u.mb; 6364 mb->mbxStatus = MBX_SUCCESS; 6365 6366 /* Parse port fault information field */ 6367 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6368 6369 /* Parse and translate link attention fields */ 6370 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6371 la->eventTag = acqe_fc->event_tag; 6372 6373 if (phba->sli4_hba.link_state.status == 6374 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6375 bf_set(lpfc_mbx_read_top_att_type, la, 6376 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6377 } else { 6378 bf_set(lpfc_mbx_read_top_att_type, la, 6379 LPFC_FC_LA_TYPE_LINK_DOWN); 6380 } 6381 /* Invoke the mailbox command callback function */ 6382 lpfc_mbx_cmpl_read_topology(phba, pmb); 6383 6384 return; 6385 } 6386 6387 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6388 if (rc == MBX_NOT_FINISHED) 6389 goto out_free_pmb; 6390 return; 6391 6392 out_free_pmb: 6393 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 6394 } 6395 6396 /** 6397 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6398 * @phba: pointer to lpfc hba data structure. 6399 * @acqe_sli: pointer to the async SLI completion queue entry. 6400 * 6401 * This routine is to handle the SLI4 asynchronous SLI events. 6402 **/ 6403 static void 6404 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6405 { 6406 char port_name; 6407 char message[128]; 6408 uint8_t status; 6409 uint8_t evt_type; 6410 uint8_t operational = 0; 6411 struct temp_event temp_event_data; 6412 struct lpfc_acqe_misconfigured_event *misconfigured; 6413 struct lpfc_acqe_cgn_signal *cgn_signal; 6414 struct Scsi_Host *shost; 6415 struct lpfc_vport **vports; 6416 int rc, i, cnt; 6417 6418 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6419 6420 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6421 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6422 "x%08x x%08x x%08x\n", evt_type, 6423 acqe_sli->event_data1, acqe_sli->event_data2, 6424 acqe_sli->event_data3, acqe_sli->trailer); 6425 6426 port_name = phba->Port[0]; 6427 if (port_name == 0x00) 6428 port_name = '?'; /* get port name is empty */ 6429 6430 switch (evt_type) { 6431 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6432 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6433 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6434 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6435 6436 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6437 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6438 acqe_sli->event_data1, port_name); 6439 6440 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6441 shost = lpfc_shost_from_vport(phba->pport); 6442 fc_host_post_vendor_event(shost, fc_get_event_number(), 6443 sizeof(temp_event_data), 6444 (char *)&temp_event_data, 6445 SCSI_NL_VID_TYPE_PCI 6446 | PCI_VENDOR_ID_EMULEX); 6447 break; 6448 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6449 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6450 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6451 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6452 6453 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT, 6454 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6455 acqe_sli->event_data1, port_name); 6456 6457 shost = lpfc_shost_from_vport(phba->pport); 6458 fc_host_post_vendor_event(shost, fc_get_event_number(), 6459 sizeof(temp_event_data), 6460 (char *)&temp_event_data, 6461 SCSI_NL_VID_TYPE_PCI 6462 | PCI_VENDOR_ID_EMULEX); 6463 break; 6464 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6465 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6466 &acqe_sli->event_data1; 6467 6468 /* fetch the status for this port */ 6469 switch (phba->sli4_hba.lnk_info.lnk_no) { 6470 case LPFC_LINK_NUMBER_0: 6471 status = bf_get(lpfc_sli_misconfigured_port0_state, 6472 &misconfigured->theEvent); 6473 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6474 &misconfigured->theEvent); 6475 break; 6476 case LPFC_LINK_NUMBER_1: 6477 status = bf_get(lpfc_sli_misconfigured_port1_state, 6478 &misconfigured->theEvent); 6479 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6480 &misconfigured->theEvent); 6481 break; 6482 case LPFC_LINK_NUMBER_2: 6483 status = bf_get(lpfc_sli_misconfigured_port2_state, 6484 &misconfigured->theEvent); 6485 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6486 &misconfigured->theEvent); 6487 break; 6488 case LPFC_LINK_NUMBER_3: 6489 status = bf_get(lpfc_sli_misconfigured_port3_state, 6490 &misconfigured->theEvent); 6491 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6492 &misconfigured->theEvent); 6493 break; 6494 default: 6495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6496 "3296 " 6497 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6498 "event: Invalid link %d", 6499 phba->sli4_hba.lnk_info.lnk_no); 6500 return; 6501 } 6502 6503 /* Skip if optic state unchanged */ 6504 if (phba->sli4_hba.lnk_info.optic_state == status) 6505 return; 6506 6507 switch (status) { 6508 case LPFC_SLI_EVENT_STATUS_VALID: 6509 sprintf(message, "Physical Link is functional"); 6510 break; 6511 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6512 sprintf(message, "Optics faulted/incorrectly " 6513 "installed/not installed - Reseat optics, " 6514 "if issue not resolved, replace."); 6515 break; 6516 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6517 sprintf(message, 6518 "Optics of two types installed - Remove one " 6519 "optic or install matching pair of optics."); 6520 break; 6521 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6522 sprintf(message, "Incompatible optics - Replace with " 6523 "compatible optics for card to function."); 6524 break; 6525 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6526 sprintf(message, "Unqualified optics - Replace with " 6527 "Avago optics for Warranty and Technical " 6528 "Support - Link is%s operational", 6529 (operational) ? " not" : ""); 6530 break; 6531 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6532 sprintf(message, "Uncertified optics - Replace with " 6533 "Avago-certified optics to enable link " 6534 "operation - Link is%s operational", 6535 (operational) ? " not" : ""); 6536 break; 6537 default: 6538 /* firmware is reporting a status we don't know about */ 6539 sprintf(message, "Unknown event status x%02x", status); 6540 break; 6541 } 6542 6543 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6544 rc = lpfc_sli4_read_config(phba); 6545 if (rc) { 6546 phba->lmt = 0; 6547 lpfc_printf_log(phba, KERN_ERR, 6548 LOG_TRACE_EVENT, 6549 "3194 Unable to retrieve supported " 6550 "speeds, rc = 0x%x\n", rc); 6551 } 6552 rc = lpfc_sli4_refresh_params(phba); 6553 if (rc) { 6554 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6555 "3174 Unable to update pls support, " 6556 "rc x%x\n", rc); 6557 } 6558 vports = lpfc_create_vport_work_array(phba); 6559 if (vports != NULL) { 6560 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6561 i++) { 6562 shost = lpfc_shost_from_vport(vports[i]); 6563 lpfc_host_supported_speeds_set(shost); 6564 } 6565 } 6566 lpfc_destroy_vport_work_array(phba, vports); 6567 6568 phba->sli4_hba.lnk_info.optic_state = status; 6569 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6570 "3176 Port Name %c %s\n", port_name, message); 6571 break; 6572 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6573 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6574 "3192 Remote DPort Test Initiated - " 6575 "Event Data1:x%08x Event Data2: x%08x\n", 6576 acqe_sli->event_data1, acqe_sli->event_data2); 6577 break; 6578 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6579 /* Call FW to obtain active parms */ 6580 lpfc_sli4_cgn_parm_chg_evt(phba); 6581 break; 6582 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6583 /* Misconfigured WWN. Reports that the SLI Port is configured 6584 * to use FA-WWN, but the attached device doesn’t support it. 6585 * Event Data1 - N.A, Event Data2 - N.A 6586 * This event only happens on the physical port. 6587 */ 6588 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, 6589 "2699 Misconfigured FA-PWWN - Attached device " 6590 "does not support FA-PWWN\n"); 6591 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; 6592 memset(phba->pport->fc_portname.u.wwn, 0, 6593 sizeof(struct lpfc_name)); 6594 break; 6595 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6596 /* EEPROM failure. No driver action is required */ 6597 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6598 "2518 EEPROM failure - " 6599 "Event Data1: x%08x Event Data2: x%08x\n", 6600 acqe_sli->event_data1, acqe_sli->event_data2); 6601 break; 6602 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6603 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6604 break; 6605 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6606 &acqe_sli->event_data1; 6607 phba->cgn_acqe_cnt++; 6608 6609 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6610 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6611 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6612 6613 /* no threshold for CMF, even 1 signal will trigger an event */ 6614 6615 /* Alarm overrides warning, so check that first */ 6616 if (cgn_signal->alarm_cnt) { 6617 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6618 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6619 atomic_add(cgn_signal->alarm_cnt, 6620 &phba->cgn_sync_alarm_cnt); 6621 } 6622 } else if (cnt) { 6623 /* signal action needs to be taken */ 6624 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6625 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6626 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6627 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6628 } 6629 } 6630 break; 6631 case LPFC_SLI_EVENT_TYPE_RD_SIGNAL: 6632 /* May be accompanied by a temperature event */ 6633 lpfc_printf_log(phba, KERN_INFO, 6634 LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT, 6635 "2902 Remote Degrade Signaling: x%08x x%08x " 6636 "x%08x\n", 6637 acqe_sli->event_data1, acqe_sli->event_data2, 6638 acqe_sli->event_data3); 6639 break; 6640 case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS: 6641 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 6642 "2905 Reset CM statistics\n"); 6643 lpfc_sli4_async_cmstat_evt(phba); 6644 break; 6645 default: 6646 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6647 "3193 Unrecognized SLI event, type: 0x%x", 6648 evt_type); 6649 break; 6650 } 6651 } 6652 6653 /** 6654 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6655 * @vport: pointer to vport data structure. 6656 * 6657 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6658 * response to a CVL event. 6659 * 6660 * Return the pointer to the ndlp with the vport if successful, otherwise 6661 * return NULL. 6662 **/ 6663 static struct lpfc_nodelist * 6664 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6665 { 6666 struct lpfc_nodelist *ndlp; 6667 struct Scsi_Host *shost; 6668 struct lpfc_hba *phba; 6669 6670 if (!vport) 6671 return NULL; 6672 phba = vport->phba; 6673 if (!phba) 6674 return NULL; 6675 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6676 if (!ndlp) { 6677 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6678 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6679 if (!ndlp) 6680 return NULL; 6681 /* Set the node type */ 6682 ndlp->nlp_type |= NLP_FABRIC; 6683 /* Put ndlp onto node list */ 6684 lpfc_enqueue_node(vport, ndlp); 6685 } 6686 if ((phba->pport->port_state < LPFC_FLOGI) && 6687 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6688 return NULL; 6689 /* If virtual link is not yet instantiated ignore CVL */ 6690 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6691 && (vport->port_state != LPFC_VPORT_FAILED)) 6692 return NULL; 6693 shost = lpfc_shost_from_vport(vport); 6694 if (!shost) 6695 return NULL; 6696 lpfc_linkdown_port(vport); 6697 lpfc_cleanup_pending_mbox(vport); 6698 set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag); 6699 6700 return ndlp; 6701 } 6702 6703 /** 6704 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6705 * @phba: pointer to lpfc hba data structure. 6706 * 6707 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6708 * response to a FCF dead event. 6709 **/ 6710 static void 6711 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6712 { 6713 struct lpfc_vport **vports; 6714 int i; 6715 6716 vports = lpfc_create_vport_work_array(phba); 6717 if (vports) 6718 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6719 lpfc_sli4_perform_vport_cvl(vports[i]); 6720 lpfc_destroy_vport_work_array(phba, vports); 6721 } 6722 6723 /** 6724 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6725 * @phba: pointer to lpfc hba data structure. 6726 * @acqe_fip: pointer to the async fcoe completion queue entry. 6727 * 6728 * This routine is to handle the SLI4 asynchronous fcoe event. 6729 **/ 6730 static void 6731 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6732 struct lpfc_acqe_fip *acqe_fip) 6733 { 6734 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6735 int rc; 6736 struct lpfc_vport *vport; 6737 struct lpfc_nodelist *ndlp; 6738 int active_vlink_present; 6739 struct lpfc_vport **vports; 6740 int i; 6741 6742 phba->fc_eventTag = acqe_fip->event_tag; 6743 phba->fcoe_eventtag = acqe_fip->event_tag; 6744 switch (event_type) { 6745 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6746 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6747 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6748 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6749 "2546 New FCF event, evt_tag:x%x, " 6750 "index:x%x\n", 6751 acqe_fip->event_tag, 6752 acqe_fip->index); 6753 else 6754 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6755 LOG_DISCOVERY, 6756 "2788 FCF param modified event, " 6757 "evt_tag:x%x, index:x%x\n", 6758 acqe_fip->event_tag, 6759 acqe_fip->index); 6760 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6761 /* 6762 * During period of FCF discovery, read the FCF 6763 * table record indexed by the event to update 6764 * FCF roundrobin failover eligible FCF bmask. 6765 */ 6766 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6767 LOG_DISCOVERY, 6768 "2779 Read FCF (x%x) for updating " 6769 "roundrobin FCF failover bmask\n", 6770 acqe_fip->index); 6771 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6772 } 6773 6774 /* If the FCF discovery is in progress, do nothing. */ 6775 if (test_bit(FCF_TS_INPROG, &phba->hba_flag)) 6776 break; 6777 spin_lock_irq(&phba->hbalock); 6778 /* If fast FCF failover rescan event is pending, do nothing */ 6779 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6780 spin_unlock_irq(&phba->hbalock); 6781 break; 6782 } 6783 6784 /* If the FCF has been in discovered state, do nothing. */ 6785 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6786 spin_unlock_irq(&phba->hbalock); 6787 break; 6788 } 6789 spin_unlock_irq(&phba->hbalock); 6790 6791 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6792 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6793 "2770 Start FCF table scan per async FCF " 6794 "event, evt_tag:x%x, index:x%x\n", 6795 acqe_fip->event_tag, acqe_fip->index); 6796 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6797 LPFC_FCOE_FCF_GET_FIRST); 6798 if (rc) 6799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6800 "2547 Issue FCF scan read FCF mailbox " 6801 "command failed (x%x)\n", rc); 6802 break; 6803 6804 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6806 "2548 FCF Table full count 0x%x tag 0x%x\n", 6807 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6808 acqe_fip->event_tag); 6809 break; 6810 6811 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6812 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6814 "2549 FCF (x%x) disconnected from network, " 6815 "tag:x%x\n", acqe_fip->index, 6816 acqe_fip->event_tag); 6817 /* 6818 * If we are in the middle of FCF failover process, clear 6819 * the corresponding FCF bit in the roundrobin bitmap. 6820 */ 6821 spin_lock_irq(&phba->hbalock); 6822 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6823 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6824 spin_unlock_irq(&phba->hbalock); 6825 /* Update FLOGI FCF failover eligible FCF bmask */ 6826 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6827 break; 6828 } 6829 spin_unlock_irq(&phba->hbalock); 6830 6831 /* If the event is not for currently used fcf do nothing */ 6832 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6833 break; 6834 6835 /* 6836 * Otherwise, request the port to rediscover the entire FCF 6837 * table for a fast recovery from case that the current FCF 6838 * is no longer valid as we are not in the middle of FCF 6839 * failover process already. 6840 */ 6841 spin_lock_irq(&phba->hbalock); 6842 /* Mark the fast failover process in progress */ 6843 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6844 spin_unlock_irq(&phba->hbalock); 6845 6846 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6847 "2771 Start FCF fast failover process due to " 6848 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6849 "\n", acqe_fip->event_tag, acqe_fip->index); 6850 rc = lpfc_sli4_redisc_fcf_table(phba); 6851 if (rc) { 6852 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6853 LOG_TRACE_EVENT, 6854 "2772 Issue FCF rediscover mailbox " 6855 "command failed, fail through to FCF " 6856 "dead event\n"); 6857 spin_lock_irq(&phba->hbalock); 6858 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6859 spin_unlock_irq(&phba->hbalock); 6860 /* 6861 * Last resort will fail over by treating this 6862 * as a link down to FCF registration. 6863 */ 6864 lpfc_sli4_fcf_dead_failthrough(phba); 6865 } else { 6866 /* Reset FCF roundrobin bmask for new discovery */ 6867 lpfc_sli4_clear_fcf_rr_bmask(phba); 6868 /* 6869 * Handling fast FCF failover to a DEAD FCF event is 6870 * considered equalivant to receiving CVL to all vports. 6871 */ 6872 lpfc_sli4_perform_all_vport_cvl(phba); 6873 } 6874 break; 6875 case LPFC_FIP_EVENT_TYPE_CVL: 6876 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6877 lpfc_printf_log(phba, KERN_ERR, 6878 LOG_TRACE_EVENT, 6879 "2718 Clear Virtual Link Received for VPI 0x%x" 6880 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6881 6882 vport = lpfc_find_vport_by_vpid(phba, 6883 acqe_fip->index); 6884 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6885 if (!ndlp) 6886 break; 6887 active_vlink_present = 0; 6888 6889 vports = lpfc_create_vport_work_array(phba); 6890 if (vports) { 6891 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6892 i++) { 6893 if (!test_bit(FC_VPORT_CVL_RCVD, 6894 &vports[i]->fc_flag) && 6895 vports[i]->port_state > LPFC_FDISC) { 6896 active_vlink_present = 1; 6897 break; 6898 } 6899 } 6900 lpfc_destroy_vport_work_array(phba, vports); 6901 } 6902 6903 /* 6904 * Don't re-instantiate if vport is marked for deletion. 6905 * If we are here first then vport_delete is going to wait 6906 * for discovery to complete. 6907 */ 6908 if (!test_bit(FC_UNLOADING, &vport->load_flag) && 6909 active_vlink_present) { 6910 /* 6911 * If there are other active VLinks present, 6912 * re-instantiate the Vlink using FDISC. 6913 */ 6914 mod_timer(&ndlp->nlp_delayfunc, 6915 jiffies + secs_to_jiffies(1)); 6916 set_bit(NLP_DELAY_TMO, &ndlp->nlp_flag); 6917 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6918 vport->port_state = LPFC_FDISC; 6919 } else { 6920 /* 6921 * Otherwise, we request port to rediscover 6922 * the entire FCF table for a fast recovery 6923 * from possible case that the current FCF 6924 * is no longer valid if we are not already 6925 * in the FCF failover process. 6926 */ 6927 spin_lock_irq(&phba->hbalock); 6928 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6929 spin_unlock_irq(&phba->hbalock); 6930 break; 6931 } 6932 /* Mark the fast failover process in progress */ 6933 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6934 spin_unlock_irq(&phba->hbalock); 6935 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6936 LOG_DISCOVERY, 6937 "2773 Start FCF failover per CVL, " 6938 "evt_tag:x%x\n", acqe_fip->event_tag); 6939 rc = lpfc_sli4_redisc_fcf_table(phba); 6940 if (rc) { 6941 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6942 LOG_TRACE_EVENT, 6943 "2774 Issue FCF rediscover " 6944 "mailbox command failed, " 6945 "through to CVL event\n"); 6946 spin_lock_irq(&phba->hbalock); 6947 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6948 spin_unlock_irq(&phba->hbalock); 6949 /* 6950 * Last resort will be re-try on the 6951 * the current registered FCF entry. 6952 */ 6953 lpfc_retry_pport_discovery(phba); 6954 } else 6955 /* 6956 * Reset FCF roundrobin bmask for new 6957 * discovery. 6958 */ 6959 lpfc_sli4_clear_fcf_rr_bmask(phba); 6960 } 6961 break; 6962 default: 6963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6964 "0288 Unknown FCoE event type 0x%x event tag " 6965 "0x%x\n", event_type, acqe_fip->event_tag); 6966 break; 6967 } 6968 } 6969 6970 /** 6971 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6972 * @phba: pointer to lpfc hba data structure. 6973 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6974 * 6975 * This routine is to handle the SLI4 asynchronous dcbx event. 6976 **/ 6977 static void 6978 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6979 struct lpfc_acqe_dcbx *acqe_dcbx) 6980 { 6981 phba->fc_eventTag = acqe_dcbx->event_tag; 6982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6983 "0290 The SLI4 DCBX asynchronous event is not " 6984 "handled yet\n"); 6985 } 6986 6987 /** 6988 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6989 * @phba: pointer to lpfc hba data structure. 6990 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6991 * 6992 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6993 * is an asynchronous notified of a logical link speed change. The Port 6994 * reports the logical link speed in units of 10Mbps. 6995 **/ 6996 static void 6997 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 6998 struct lpfc_acqe_grp5 *acqe_grp5) 6999 { 7000 uint16_t prev_ll_spd; 7001 7002 phba->fc_eventTag = acqe_grp5->event_tag; 7003 phba->fcoe_eventtag = acqe_grp5->event_tag; 7004 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 7005 phba->sli4_hba.link_state.logical_speed = 7006 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 7007 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 7008 "2789 GRP5 Async Event: Updating logical link speed " 7009 "from %dMbps to %dMbps\n", prev_ll_spd, 7010 phba->sli4_hba.link_state.logical_speed); 7011 } 7012 7013 /** 7014 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 7015 * @phba: pointer to lpfc hba data structure. 7016 * 7017 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 7018 * is an asynchronous notification of a request to reset CM stats. 7019 **/ 7020 static void 7021 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 7022 { 7023 if (!phba->cgn_i) 7024 return; 7025 lpfc_init_congestion_stat(phba); 7026 } 7027 7028 /** 7029 * lpfc_cgn_params_val - Validate FW congestion parameters. 7030 * @phba: pointer to lpfc hba data structure. 7031 * @p_cfg_param: pointer to FW provided congestion parameters. 7032 * 7033 * This routine validates the congestion parameters passed 7034 * by the FW to the driver via an ACQE event. 7035 **/ 7036 static void 7037 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7038 { 7039 spin_lock_irq(&phba->hbalock); 7040 7041 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7042 LPFC_CFG_MONITOR)) { 7043 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7044 "6225 CMF mode param out of range: %d\n", 7045 p_cfg_param->cgn_param_mode); 7046 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7047 } 7048 7049 spin_unlock_irq(&phba->hbalock); 7050 } 7051 7052 static const char * const lpfc_cmf_mode_to_str[] = { 7053 "OFF", 7054 "MANAGED", 7055 "MONITOR", 7056 }; 7057 7058 /** 7059 * lpfc_cgn_params_parse - Process a FW cong parm change event 7060 * @phba: pointer to lpfc hba data structure. 7061 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7062 * @len: the size of pdata in bytes. 7063 * 7064 * This routine validates the congestion management buffer signature 7065 * from the FW, validates the contents and makes corrections for 7066 * valid, in-range values. If the signature magic is correct and 7067 * after parameter validation, the contents are copied to the driver's 7068 * @phba structure. If the magic is incorrect, an error message is 7069 * logged. 7070 **/ 7071 static void 7072 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7073 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7074 { 7075 struct lpfc_cgn_info *cp; 7076 uint32_t crc, oldmode; 7077 char acr_string[4] = {0}; 7078 7079 /* Make sure the FW has encoded the correct magic number to 7080 * validate the congestion parameter in FW memory. 7081 */ 7082 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7083 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7084 "4668 FW cgn parm buffer data: " 7085 "magic 0x%x version %d mode %d " 7086 "level0 %d level1 %d " 7087 "level2 %d byte13 %d " 7088 "byte14 %d byte15 %d " 7089 "byte11 %d byte12 %d activeMode %d\n", 7090 p_cgn_param->cgn_param_magic, 7091 p_cgn_param->cgn_param_version, 7092 p_cgn_param->cgn_param_mode, 7093 p_cgn_param->cgn_param_level0, 7094 p_cgn_param->cgn_param_level1, 7095 p_cgn_param->cgn_param_level2, 7096 p_cgn_param->byte13, 7097 p_cgn_param->byte14, 7098 p_cgn_param->byte15, 7099 p_cgn_param->byte11, 7100 p_cgn_param->byte12, 7101 phba->cmf_active_mode); 7102 7103 oldmode = phba->cmf_active_mode; 7104 7105 /* Any parameters out of range are corrected to defaults 7106 * by this routine. No need to fail. 7107 */ 7108 lpfc_cgn_params_val(phba, p_cgn_param); 7109 7110 /* Parameters are verified, move them into driver storage */ 7111 spin_lock_irq(&phba->hbalock); 7112 memcpy(&phba->cgn_p, p_cgn_param, 7113 sizeof(struct lpfc_cgn_param)); 7114 7115 /* Update parameters in congestion info buffer now */ 7116 if (phba->cgn_i) { 7117 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7118 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7119 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7120 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7121 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7122 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7123 LPFC_CGN_CRC32_SEED); 7124 cp->cgn_info_crc = cpu_to_le32(crc); 7125 } 7126 spin_unlock_irq(&phba->hbalock); 7127 7128 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7129 7130 switch (oldmode) { 7131 case LPFC_CFG_OFF: 7132 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7133 /* Turning CMF on */ 7134 lpfc_cmf_start(phba); 7135 7136 if (phba->link_state >= LPFC_LINK_UP) { 7137 phba->cgn_reg_fpin = 7138 phba->cgn_init_reg_fpin; 7139 phba->cgn_reg_signal = 7140 phba->cgn_init_reg_signal; 7141 lpfc_issue_els_edc(phba->pport, 0); 7142 } 7143 } 7144 break; 7145 case LPFC_CFG_MANAGED: 7146 switch (phba->cgn_p.cgn_param_mode) { 7147 case LPFC_CFG_OFF: 7148 /* Turning CMF off */ 7149 lpfc_cmf_stop(phba); 7150 if (phba->link_state >= LPFC_LINK_UP) 7151 lpfc_issue_els_edc(phba->pport, 0); 7152 break; 7153 case LPFC_CFG_MONITOR: 7154 phba->cmf_max_bytes_per_interval = 7155 phba->cmf_link_byte_count; 7156 7157 /* Resume blocked IO - unblock on workqueue */ 7158 queue_work(phba->wq, 7159 &phba->unblock_request_work); 7160 break; 7161 } 7162 break; 7163 case LPFC_CFG_MONITOR: 7164 switch (phba->cgn_p.cgn_param_mode) { 7165 case LPFC_CFG_OFF: 7166 /* Turning CMF off */ 7167 lpfc_cmf_stop(phba); 7168 if (phba->link_state >= LPFC_LINK_UP) 7169 lpfc_issue_els_edc(phba->pport, 0); 7170 break; 7171 case LPFC_CFG_MANAGED: 7172 lpfc_cmf_signal_init(phba); 7173 break; 7174 } 7175 break; 7176 } 7177 if (oldmode != LPFC_CFG_OFF || 7178 oldmode != phba->cgn_p.cgn_param_mode) { 7179 if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED) 7180 scnprintf(acr_string, sizeof(acr_string), "%u", 7181 phba->cgn_p.cgn_param_level0); 7182 else 7183 scnprintf(acr_string, sizeof(acr_string), "NA"); 7184 7185 dev_info(&phba->pcidev->dev, "%d: " 7186 "4663 CMF: Mode %s acr %s\n", 7187 phba->brd_no, 7188 lpfc_cmf_mode_to_str 7189 [phba->cgn_p.cgn_param_mode], 7190 acr_string); 7191 } 7192 } else { 7193 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7194 "4669 FW cgn parm buf wrong magic 0x%x " 7195 "version %d\n", p_cgn_param->cgn_param_magic, 7196 p_cgn_param->cgn_param_version); 7197 } 7198 } 7199 7200 /** 7201 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7202 * @phba: pointer to lpfc hba data structure. 7203 * 7204 * This routine issues a read_object mailbox command to 7205 * get the congestion management parameters from the FW 7206 * parses it and updates the driver maintained values. 7207 * 7208 * Returns 7209 * 0 if the object was empty 7210 * -Eval if an error was encountered 7211 * Count if bytes were read from object 7212 **/ 7213 int 7214 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7215 { 7216 int ret = 0; 7217 struct lpfc_cgn_param *p_cgn_param = NULL; 7218 u32 *pdata = NULL; 7219 u32 len = 0; 7220 7221 /* Find out if the FW has a new set of congestion parameters. */ 7222 len = sizeof(struct lpfc_cgn_param); 7223 pdata = kzalloc(len, GFP_KERNEL); 7224 if (!pdata) 7225 return -ENOMEM; 7226 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7227 pdata, len); 7228 7229 /* 0 means no data. A negative means error. A positive means 7230 * bytes were copied. 7231 */ 7232 if (!ret) { 7233 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7234 "4670 CGN RD OBJ returns no data\n"); 7235 goto rd_obj_err; 7236 } else if (ret < 0) { 7237 /* Some error. Just exit and return it to the caller.*/ 7238 goto rd_obj_err; 7239 } 7240 7241 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7242 "6234 READ CGN PARAMS Successful %d\n", len); 7243 7244 /* Parse data pointer over len and update the phba congestion 7245 * parameters with values passed back. The receive rate values 7246 * may have been altered in FW, but take no action here. 7247 */ 7248 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7249 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7250 7251 rd_obj_err: 7252 kfree(pdata); 7253 return ret; 7254 } 7255 7256 /** 7257 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7258 * @phba: pointer to lpfc hba data structure. 7259 * 7260 * The FW generated Async ACQE SLI event calls this routine when 7261 * the event type is an SLI Internal Port Event and the Event Code 7262 * indicates a change to the FW maintained congestion parameters. 7263 * 7264 * This routine executes a Read_Object mailbox call to obtain the 7265 * current congestion parameters maintained in FW and corrects 7266 * the driver's active congestion parameters. 7267 * 7268 * The acqe event is not passed because there is no further data 7269 * required. 7270 * 7271 * Returns nonzero error if event processing encountered an error. 7272 * Zero otherwise for success. 7273 **/ 7274 static int 7275 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7276 { 7277 int ret = 0; 7278 7279 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7280 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7281 "4664 Cgn Evt when E2E off. Drop event\n"); 7282 return -EACCES; 7283 } 7284 7285 /* If the event is claiming an empty object, it's ok. A write 7286 * could have cleared it. Only error is a negative return 7287 * status. 7288 */ 7289 ret = lpfc_sli4_cgn_params_read(phba); 7290 if (ret < 0) { 7291 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7292 "4667 Error reading Cgn Params (%d)\n", 7293 ret); 7294 } else if (!ret) { 7295 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7296 "4673 CGN Event empty object.\n"); 7297 } 7298 return ret; 7299 } 7300 7301 /** 7302 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7303 * @phba: pointer to lpfc hba data structure. 7304 * 7305 * This routine is invoked by the worker thread to process all the pending 7306 * SLI4 asynchronous events. 7307 **/ 7308 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7309 { 7310 struct lpfc_cq_event *cq_event; 7311 unsigned long iflags; 7312 7313 /* First, declare the async event has been handled */ 7314 clear_bit(ASYNC_EVENT, &phba->hba_flag); 7315 7316 /* Now, handle all the async events */ 7317 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7318 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7319 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7320 cq_event, struct lpfc_cq_event, list); 7321 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7322 iflags); 7323 7324 /* Process the asynchronous event */ 7325 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7326 case LPFC_TRAILER_CODE_LINK: 7327 lpfc_sli4_async_link_evt(phba, 7328 &cq_event->cqe.acqe_link); 7329 break; 7330 case LPFC_TRAILER_CODE_FCOE: 7331 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7332 break; 7333 case LPFC_TRAILER_CODE_DCBX: 7334 lpfc_sli4_async_dcbx_evt(phba, 7335 &cq_event->cqe.acqe_dcbx); 7336 break; 7337 case LPFC_TRAILER_CODE_GRP5: 7338 lpfc_sli4_async_grp5_evt(phba, 7339 &cq_event->cqe.acqe_grp5); 7340 break; 7341 case LPFC_TRAILER_CODE_FC: 7342 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7343 break; 7344 case LPFC_TRAILER_CODE_SLI: 7345 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7346 break; 7347 default: 7348 lpfc_printf_log(phba, KERN_ERR, 7349 LOG_TRACE_EVENT, 7350 "1804 Invalid asynchronous event code: " 7351 "x%x\n", bf_get(lpfc_trailer_code, 7352 &cq_event->cqe.mcqe_cmpl)); 7353 break; 7354 } 7355 7356 /* Free the completion event processed to the free pool */ 7357 lpfc_sli4_cq_event_release(phba, cq_event); 7358 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7359 } 7360 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7361 } 7362 7363 /** 7364 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7365 * @phba: pointer to lpfc hba data structure. 7366 * 7367 * This routine is invoked by the worker thread to process FCF table 7368 * rediscovery pending completion event. 7369 **/ 7370 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7371 { 7372 int rc; 7373 7374 spin_lock_irq(&phba->hbalock); 7375 /* Clear FCF rediscovery timeout event */ 7376 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7377 /* Clear driver fast failover FCF record flag */ 7378 phba->fcf.failover_rec.flag = 0; 7379 /* Set state for FCF fast failover */ 7380 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7381 spin_unlock_irq(&phba->hbalock); 7382 7383 /* Scan FCF table from the first entry to re-discover SAN */ 7384 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7385 "2777 Start post-quiescent FCF table scan\n"); 7386 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7387 if (rc) 7388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7389 "2747 Issue FCF scan read FCF mailbox " 7390 "command failed 0x%x\n", rc); 7391 } 7392 7393 /** 7394 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7395 * @phba: pointer to lpfc hba data structure. 7396 * @dev_grp: The HBA PCI-Device group number. 7397 * 7398 * This routine is invoked to set up the per HBA PCI-Device group function 7399 * API jump table entries. 7400 * 7401 * Return: 0 if success, otherwise -ENODEV 7402 **/ 7403 int 7404 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7405 { 7406 int rc; 7407 7408 /* Set up lpfc PCI-device group */ 7409 phba->pci_dev_grp = dev_grp; 7410 7411 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7412 if (dev_grp == LPFC_PCI_DEV_OC) 7413 phba->sli_rev = LPFC_SLI_REV4; 7414 7415 /* Set up device INIT API function jump table */ 7416 rc = lpfc_init_api_table_setup(phba, dev_grp); 7417 if (rc) 7418 return -ENODEV; 7419 /* Set up SCSI API function jump table */ 7420 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7421 if (rc) 7422 return -ENODEV; 7423 /* Set up SLI API function jump table */ 7424 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7425 if (rc) 7426 return -ENODEV; 7427 /* Set up MBOX API function jump table */ 7428 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7429 if (rc) 7430 return -ENODEV; 7431 7432 return 0; 7433 } 7434 7435 /** 7436 * lpfc_log_intr_mode - Log the active interrupt mode 7437 * @phba: pointer to lpfc hba data structure. 7438 * @intr_mode: active interrupt mode adopted. 7439 * 7440 * This routine it invoked to log the currently used active interrupt mode 7441 * to the device. 7442 **/ 7443 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7444 { 7445 switch (intr_mode) { 7446 case 0: 7447 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7448 "0470 Enable INTx interrupt mode.\n"); 7449 break; 7450 case 1: 7451 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7452 "0481 Enabled MSI interrupt mode.\n"); 7453 break; 7454 case 2: 7455 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7456 "0480 Enabled MSI-X interrupt mode.\n"); 7457 break; 7458 default: 7459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7460 "0482 Illegal interrupt mode.\n"); 7461 break; 7462 } 7463 return; 7464 } 7465 7466 /** 7467 * lpfc_enable_pci_dev - Enable a generic PCI device. 7468 * @phba: pointer to lpfc hba data structure. 7469 * 7470 * This routine is invoked to enable the PCI device that is common to all 7471 * PCI devices. 7472 * 7473 * Return codes 7474 * 0 - successful 7475 * other values - error 7476 **/ 7477 static int 7478 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7479 { 7480 struct pci_dev *pdev; 7481 7482 /* Obtain PCI device reference */ 7483 if (!phba->pcidev) 7484 goto out_error; 7485 else 7486 pdev = phba->pcidev; 7487 /* Enable PCI device */ 7488 if (pci_enable_device_mem(pdev)) 7489 goto out_error; 7490 /* Request PCI resource for the device */ 7491 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7492 goto out_disable_device; 7493 /* Set up device as PCI master and save state for EEH */ 7494 pci_set_master(pdev); 7495 pci_try_set_mwi(pdev); 7496 pci_save_state(pdev); 7497 7498 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7499 if (pci_is_pcie(pdev)) 7500 pdev->needs_freset = 1; 7501 7502 return 0; 7503 7504 out_disable_device: 7505 pci_disable_device(pdev); 7506 out_error: 7507 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7508 "1401 Failed to enable pci device\n"); 7509 return -ENODEV; 7510 } 7511 7512 /** 7513 * lpfc_disable_pci_dev - Disable a generic PCI device. 7514 * @phba: pointer to lpfc hba data structure. 7515 * 7516 * This routine is invoked to disable the PCI device that is common to all 7517 * PCI devices. 7518 **/ 7519 static void 7520 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7521 { 7522 struct pci_dev *pdev; 7523 7524 /* Obtain PCI device reference */ 7525 if (!phba->pcidev) 7526 return; 7527 else 7528 pdev = phba->pcidev; 7529 /* Release PCI resource and disable PCI device */ 7530 pci_release_mem_regions(pdev); 7531 pci_disable_device(pdev); 7532 7533 return; 7534 } 7535 7536 /** 7537 * lpfc_reset_hba - Reset a hba 7538 * @phba: pointer to lpfc hba data structure. 7539 * 7540 * This routine is invoked to reset a hba device. It brings the HBA 7541 * offline, performs a board restart, and then brings the board back 7542 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7543 * on outstanding mailbox commands. 7544 **/ 7545 void 7546 lpfc_reset_hba(struct lpfc_hba *phba) 7547 { 7548 int rc = 0; 7549 7550 /* If resets are disabled then set error state and return. */ 7551 if (!phba->cfg_enable_hba_reset) { 7552 phba->link_state = LPFC_HBA_ERROR; 7553 return; 7554 } 7555 7556 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7557 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7558 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7559 } else { 7560 if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) { 7561 /* Perform a PCI function reset to start from clean */ 7562 rc = lpfc_pci_function_reset(phba); 7563 lpfc_els_flush_all_cmd(phba); 7564 } 7565 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7566 lpfc_sli_flush_io_rings(phba); 7567 } 7568 lpfc_offline(phba); 7569 clear_bit(MBX_TMO_ERR, &phba->bit_flags); 7570 if (unlikely(rc)) { 7571 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7572 "8888 PCI function reset failed rc %x\n", 7573 rc); 7574 } else { 7575 lpfc_sli_brdrestart(phba); 7576 lpfc_online(phba); 7577 lpfc_unblock_mgmt_io(phba); 7578 } 7579 } 7580 7581 /** 7582 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7583 * @phba: pointer to lpfc hba data structure. 7584 * 7585 * This function enables the PCI SR-IOV virtual functions to a physical 7586 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7587 * enable the number of virtual functions to the physical function. As 7588 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7589 * API call does not considered as an error condition for most of the device. 7590 **/ 7591 uint16_t 7592 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7593 { 7594 struct pci_dev *pdev = phba->pcidev; 7595 uint16_t nr_virtfn; 7596 int pos; 7597 7598 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7599 if (pos == 0) 7600 return 0; 7601 7602 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7603 return nr_virtfn; 7604 } 7605 7606 /** 7607 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7608 * @phba: pointer to lpfc hba data structure. 7609 * @nr_vfn: number of virtual functions to be enabled. 7610 * 7611 * This function enables the PCI SR-IOV virtual functions to a physical 7612 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7613 * enable the number of virtual functions to the physical function. As 7614 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7615 * API call does not considered as an error condition for most of the device. 7616 **/ 7617 int 7618 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7619 { 7620 struct pci_dev *pdev = phba->pcidev; 7621 uint16_t max_nr_vfn; 7622 int rc; 7623 7624 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7625 if (nr_vfn > max_nr_vfn) { 7626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7627 "3057 Requested vfs (%d) greater than " 7628 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7629 return -EINVAL; 7630 } 7631 7632 rc = pci_enable_sriov(pdev, nr_vfn); 7633 if (rc) { 7634 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7635 "2806 Failed to enable sriov on this device " 7636 "with vfn number nr_vf:%d, rc:%d\n", 7637 nr_vfn, rc); 7638 } else 7639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7640 "2807 Successful enable sriov on this device " 7641 "with vfn number nr_vf:%d\n", nr_vfn); 7642 return rc; 7643 } 7644 7645 static void 7646 lpfc_unblock_requests_work(struct work_struct *work) 7647 { 7648 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7649 unblock_request_work); 7650 7651 lpfc_unblock_requests(phba); 7652 } 7653 7654 /** 7655 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7656 * @phba: pointer to lpfc hba data structure. 7657 * 7658 * This routine is invoked to set up the driver internal resources before the 7659 * device specific resource setup to support the HBA device it attached to. 7660 * 7661 * Return codes 7662 * 0 - successful 7663 * other values - error 7664 **/ 7665 static int 7666 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7667 { 7668 struct lpfc_sli *psli = &phba->sli; 7669 7670 /* 7671 * Driver resources common to all SLI revisions 7672 */ 7673 atomic_set(&phba->fast_event_count, 0); 7674 atomic_set(&phba->dbg_log_idx, 0); 7675 atomic_set(&phba->dbg_log_cnt, 0); 7676 atomic_set(&phba->dbg_log_dmping, 0); 7677 spin_lock_init(&phba->hbalock); 7678 7679 /* Initialize port_list spinlock */ 7680 spin_lock_init(&phba->port_list_lock); 7681 INIT_LIST_HEAD(&phba->port_list); 7682 7683 INIT_LIST_HEAD(&phba->work_list); 7684 7685 /* Initialize the wait queue head for the kernel thread */ 7686 init_waitqueue_head(&phba->work_waitq); 7687 7688 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7689 "1403 Protocols supported %s %s %s\n", 7690 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7691 "SCSI" : " "), 7692 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7693 "NVME" : " "), 7694 (phba->nvmet_support ? "NVMET" : " ")); 7695 7696 /* ras_fwlog state */ 7697 spin_lock_init(&phba->ras_fwlog_lock); 7698 7699 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7700 spin_lock_init(&phba->scsi_buf_list_get_lock); 7701 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7702 spin_lock_init(&phba->scsi_buf_list_put_lock); 7703 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7704 7705 /* Initialize the fabric iocb list */ 7706 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7707 7708 /* Initialize list to save ELS buffers */ 7709 INIT_LIST_HEAD(&phba->elsbuf); 7710 7711 /* Initialize FCF connection rec list */ 7712 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7713 7714 /* Initialize OAS configuration list */ 7715 spin_lock_init(&phba->devicelock); 7716 INIT_LIST_HEAD(&phba->luns); 7717 7718 /* MBOX heartbeat timer */ 7719 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7720 /* Fabric block timer */ 7721 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7722 /* EA polling mode timer */ 7723 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7724 /* Heartbeat timer */ 7725 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7726 7727 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7728 7729 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7730 lpfc_idle_stat_delay_work); 7731 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7732 return 0; 7733 } 7734 7735 /** 7736 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7737 * @phba: pointer to lpfc hba data structure. 7738 * 7739 * This routine is invoked to set up the driver internal resources specific to 7740 * support the SLI-3 HBA device it attached to. 7741 * 7742 * Return codes 7743 * 0 - successful 7744 * other values - error 7745 **/ 7746 static int 7747 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7748 { 7749 int rc, entry_sz; 7750 7751 /* 7752 * Initialize timers used by driver 7753 */ 7754 7755 /* FCP polling mode timer */ 7756 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7757 7758 /* Host attention work mask setup */ 7759 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7760 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7761 7762 /* Get all the module params for configuring this host */ 7763 lpfc_get_cfgparam(phba); 7764 /* Set up phase-1 common device driver resources */ 7765 7766 rc = lpfc_setup_driver_resource_phase1(phba); 7767 if (rc) 7768 return -ENODEV; 7769 7770 if (!phba->sli.sli3_ring) 7771 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7772 sizeof(struct lpfc_sli_ring), 7773 GFP_KERNEL); 7774 if (!phba->sli.sli3_ring) 7775 return -ENOMEM; 7776 7777 /* 7778 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7779 * used to create the sg_dma_buf_pool must be dynamically calculated. 7780 */ 7781 7782 if (phba->sli_rev == LPFC_SLI_REV4) 7783 entry_sz = sizeof(struct sli4_sge); 7784 else 7785 entry_sz = sizeof(struct ulp_bde64); 7786 7787 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7788 if (phba->cfg_enable_bg) { 7789 /* 7790 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7791 * the FCP rsp, and a BDE for each. Sice we have no control 7792 * over how many protection data segments the SCSI Layer 7793 * will hand us (ie: there could be one for every block 7794 * in the IO), we just allocate enough BDEs to accomidate 7795 * our max amount and we need to limit lpfc_sg_seg_cnt to 7796 * minimize the risk of running out. 7797 */ 7798 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7799 sizeof(struct fcp_rsp) + 7800 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7801 7802 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7803 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7804 7805 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7806 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7807 } else { 7808 /* 7809 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7810 * the FCP rsp, a BDE for each, and a BDE for up to 7811 * cfg_sg_seg_cnt data segments. 7812 */ 7813 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7814 sizeof(struct fcp_rsp) + 7815 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7816 7817 /* Total BDEs in BPL for scsi_sg_list */ 7818 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7819 } 7820 7821 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7822 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7823 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7824 phba->cfg_total_seg_cnt); 7825 7826 phba->max_vpi = LPFC_MAX_VPI; 7827 /* This will be set to correct value after config_port mbox */ 7828 phba->max_vports = 0; 7829 7830 /* 7831 * Initialize the SLI Layer to run with lpfc HBAs. 7832 */ 7833 lpfc_sli_setup(phba); 7834 lpfc_sli_queue_init(phba); 7835 7836 /* Allocate device driver memory */ 7837 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7838 return -ENOMEM; 7839 7840 phba->lpfc_sg_dma_buf_pool = 7841 dma_pool_create("lpfc_sg_dma_buf_pool", 7842 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7843 BPL_ALIGN_SZ, 0); 7844 7845 if (!phba->lpfc_sg_dma_buf_pool) 7846 goto fail_free_mem; 7847 7848 phba->lpfc_cmd_rsp_buf_pool = 7849 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7850 &phba->pcidev->dev, 7851 sizeof(struct fcp_cmnd) + 7852 sizeof(struct fcp_rsp), 7853 BPL_ALIGN_SZ, 0); 7854 7855 if (!phba->lpfc_cmd_rsp_buf_pool) 7856 goto fail_free_dma_buf_pool; 7857 7858 /* 7859 * Enable sr-iov virtual functions if supported and configured 7860 * through the module parameter. 7861 */ 7862 if (phba->cfg_sriov_nr_virtfn > 0) { 7863 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7864 phba->cfg_sriov_nr_virtfn); 7865 if (rc) { 7866 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7867 "2808 Requested number of SR-IOV " 7868 "virtual functions (%d) is not " 7869 "supported\n", 7870 phba->cfg_sriov_nr_virtfn); 7871 phba->cfg_sriov_nr_virtfn = 0; 7872 } 7873 } 7874 7875 return 0; 7876 7877 fail_free_dma_buf_pool: 7878 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7879 phba->lpfc_sg_dma_buf_pool = NULL; 7880 fail_free_mem: 7881 lpfc_mem_free(phba); 7882 return -ENOMEM; 7883 } 7884 7885 /** 7886 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7887 * @phba: pointer to lpfc hba data structure. 7888 * 7889 * This routine is invoked to unset the driver internal resources set up 7890 * specific for supporting the SLI-3 HBA device it attached to. 7891 **/ 7892 static void 7893 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7894 { 7895 /* Free device driver memory allocated */ 7896 lpfc_mem_free_all(phba); 7897 7898 return; 7899 } 7900 7901 /** 7902 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7903 * @phba: pointer to lpfc hba data structure. 7904 * 7905 * This routine is invoked to set up the driver internal resources specific to 7906 * support the SLI-4 HBA device it attached to. 7907 * 7908 * Return codes 7909 * 0 - successful 7910 * other values - error 7911 **/ 7912 static int 7913 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7914 { 7915 LPFC_MBOXQ_t *mboxq; 7916 MAILBOX_t *mb; 7917 int rc, i, max_buf_size; 7918 int longs; 7919 int extra; 7920 uint64_t wwn; 7921 u32 if_type; 7922 u32 if_fam; 7923 7924 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7925 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7926 phba->sli4_hba.curr_disp_cpu = 0; 7927 7928 /* Get all the module params for configuring this host */ 7929 lpfc_get_cfgparam(phba); 7930 7931 /* Set up phase-1 common device driver resources */ 7932 rc = lpfc_setup_driver_resource_phase1(phba); 7933 if (rc) 7934 return -ENODEV; 7935 7936 /* Before proceed, wait for POST done and device ready */ 7937 rc = lpfc_sli4_post_status_check(phba); 7938 if (rc) 7939 return -ENODEV; 7940 7941 /* Allocate all driver workqueues here */ 7942 7943 /* The lpfc_wq workqueue for deferred irq use */ 7944 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7945 if (!phba->wq) 7946 return -ENOMEM; 7947 7948 /* 7949 * Initialize timers used by driver 7950 */ 7951 7952 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7953 7954 /* FCF rediscover timer */ 7955 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7956 7957 /* CMF congestion timer */ 7958 hrtimer_setup(&phba->cmf_timer, lpfc_cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7959 /* CMF 1 minute stats collection timer */ 7960 hrtimer_setup(&phba->cmf_stats_timer, lpfc_cmf_stats_timer, CLOCK_MONOTONIC, 7961 HRTIMER_MODE_REL); 7962 7963 /* 7964 * Control structure for handling external multi-buffer mailbox 7965 * command pass-through. 7966 */ 7967 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7968 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7969 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7970 7971 phba->max_vpi = LPFC_MAX_VPI; 7972 7973 /* This will be set to correct value after the read_config mbox */ 7974 phba->max_vports = 0; 7975 7976 /* Program the default value of vlan_id and fc_map */ 7977 phba->valid_vlan = 0; 7978 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7979 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7980 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7981 7982 /* 7983 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7984 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7985 * The WQ create will allocate the ring. 7986 */ 7987 7988 /* Initialize buffer queue management fields */ 7989 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7990 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7991 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7992 7993 /* for VMID idle timeout if VMID is enabled */ 7994 if (lpfc_is_vmid_enabled(phba)) 7995 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7996 7997 /* 7998 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 7999 */ 8000 /* Initialize the Abort buffer list used by driver */ 8001 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 8002 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 8003 8004 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8005 /* Initialize the Abort nvme buffer list used by driver */ 8006 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 8007 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8008 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 8009 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 8010 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 8011 } 8012 8013 /* This abort list used by worker thread */ 8014 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 8015 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 8016 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 8017 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 8018 8019 /* 8020 * Initialize driver internal slow-path work queues 8021 */ 8022 8023 /* Driver internel slow-path CQ Event pool */ 8024 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 8025 /* Response IOCB work queue list */ 8026 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 8027 /* Asynchronous event CQ Event work queue list */ 8028 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 8029 /* Slow-path XRI aborted CQ Event work queue list */ 8030 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 8031 /* Receive queue CQ Event work queue list */ 8032 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 8033 8034 /* Initialize extent block lists. */ 8035 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 8036 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 8037 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 8038 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 8039 8040 /* Initialize mboxq lists. If the early init routines fail 8041 * these lists need to be correctly initialized. 8042 */ 8043 INIT_LIST_HEAD(&phba->sli.mboxq); 8044 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 8045 8046 /* initialize optic_state to 0xFF */ 8047 phba->sli4_hba.lnk_info.optic_state = 0xff; 8048 8049 /* Allocate device driver memory */ 8050 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8051 if (rc) 8052 goto out_destroy_workqueue; 8053 8054 /* IF Type 2 ports get initialized now. */ 8055 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8056 LPFC_SLI_INTF_IF_TYPE_2) { 8057 rc = lpfc_pci_function_reset(phba); 8058 if (unlikely(rc)) { 8059 rc = -ENODEV; 8060 goto out_free_mem; 8061 } 8062 phba->temp_sensor_support = 1; 8063 } 8064 8065 /* Create the bootstrap mailbox command */ 8066 rc = lpfc_create_bootstrap_mbox(phba); 8067 if (unlikely(rc)) 8068 goto out_free_mem; 8069 8070 /* Set up the host's endian order with the device. */ 8071 rc = lpfc_setup_endian_order(phba); 8072 if (unlikely(rc)) 8073 goto out_free_bsmbx; 8074 8075 /* Set up the hba's configuration parameters. */ 8076 rc = lpfc_sli4_read_config(phba); 8077 if (unlikely(rc)) 8078 goto out_free_bsmbx; 8079 8080 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { 8081 /* Right now the link is down, if FA-PWWN is configured the 8082 * firmware will try FLOGI before the driver gets a link up. 8083 * If it fails, the driver should get a MISCONFIGURED async 8084 * event which will clear this flag. The only notification 8085 * the driver gets is if it fails, if it succeeds there is no 8086 * notification given. Assume success. 8087 */ 8088 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 8089 } 8090 8091 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8092 if (unlikely(rc)) 8093 goto out_free_bsmbx; 8094 8095 /* IF Type 0 ports get initialized now. */ 8096 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8097 LPFC_SLI_INTF_IF_TYPE_0) { 8098 rc = lpfc_pci_function_reset(phba); 8099 if (unlikely(rc)) 8100 goto out_free_bsmbx; 8101 } 8102 8103 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8104 GFP_KERNEL); 8105 if (!mboxq) { 8106 rc = -ENOMEM; 8107 goto out_free_bsmbx; 8108 } 8109 8110 /* Check for NVMET being configured */ 8111 phba->nvmet_support = 0; 8112 if (lpfc_enable_nvmet_cnt) { 8113 8114 /* First get WWN of HBA instance */ 8115 lpfc_read_nv(phba, mboxq); 8116 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8117 if (rc != MBX_SUCCESS) { 8118 lpfc_printf_log(phba, KERN_ERR, 8119 LOG_TRACE_EVENT, 8120 "6016 Mailbox failed , mbxCmd x%x " 8121 "READ_NV, mbxStatus x%x\n", 8122 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8123 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8124 mempool_free(mboxq, phba->mbox_mem_pool); 8125 rc = -EIO; 8126 goto out_free_bsmbx; 8127 } 8128 mb = &mboxq->u.mb; 8129 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8130 sizeof(uint64_t)); 8131 wwn = cpu_to_be64(wwn); 8132 phba->sli4_hba.wwnn.u.name = wwn; 8133 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8134 sizeof(uint64_t)); 8135 /* wwn is WWPN of HBA instance */ 8136 wwn = cpu_to_be64(wwn); 8137 phba->sli4_hba.wwpn.u.name = wwn; 8138 8139 /* Check to see if it matches any module parameter */ 8140 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8141 if (wwn == lpfc_enable_nvmet[i]) { 8142 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8143 if (lpfc_nvmet_mem_alloc(phba)) 8144 break; 8145 8146 phba->nvmet_support = 1; /* a match */ 8147 8148 lpfc_printf_log(phba, KERN_ERR, 8149 LOG_TRACE_EVENT, 8150 "6017 NVME Target %016llx\n", 8151 wwn); 8152 #else 8153 lpfc_printf_log(phba, KERN_ERR, 8154 LOG_TRACE_EVENT, 8155 "6021 Can't enable NVME Target." 8156 " NVME_TARGET_FC infrastructure" 8157 " is not in kernel\n"); 8158 #endif 8159 /* Not supported for NVMET */ 8160 phba->cfg_xri_rebalancing = 0; 8161 if (phba->irq_chann_mode == NHT_MODE) { 8162 phba->cfg_irq_chann = 8163 phba->sli4_hba.num_present_cpu; 8164 phba->cfg_hdw_queue = 8165 phba->sli4_hba.num_present_cpu; 8166 phba->irq_chann_mode = NORMAL_MODE; 8167 } 8168 break; 8169 } 8170 } 8171 } 8172 8173 lpfc_nvme_mod_param_dep(phba); 8174 8175 /* 8176 * Get sli4 parameters that override parameters from Port capabilities. 8177 * If this call fails, it isn't critical unless the SLI4 parameters come 8178 * back in conflict. 8179 */ 8180 rc = lpfc_get_sli4_parameters(phba, mboxq); 8181 if (rc) { 8182 if_type = bf_get(lpfc_sli_intf_if_type, 8183 &phba->sli4_hba.sli_intf); 8184 if_fam = bf_get(lpfc_sli_intf_sli_family, 8185 &phba->sli4_hba.sli_intf); 8186 if (phba->sli4_hba.extents_in_use && 8187 phba->sli4_hba.rpi_hdrs_in_use) { 8188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8189 "2999 Unsupported SLI4 Parameters " 8190 "Extents and RPI headers enabled.\n"); 8191 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8192 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8193 mempool_free(mboxq, phba->mbox_mem_pool); 8194 rc = -EIO; 8195 goto out_free_bsmbx; 8196 } 8197 } 8198 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8199 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8200 mempool_free(mboxq, phba->mbox_mem_pool); 8201 rc = -EIO; 8202 goto out_free_bsmbx; 8203 } 8204 } 8205 8206 /* 8207 * 1 for cmd, 1 for rsp, NVME adds an extra one 8208 * for boundary conditions in its max_sgl_segment template. 8209 */ 8210 extra = 2; 8211 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8212 extra++; 8213 8214 /* 8215 * It doesn't matter what family our adapter is in, we are 8216 * limited to 2 Pages, 512 SGEs, for our SGL. 8217 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8218 */ 8219 max_buf_size = (2 * SLI4_PAGE_SIZE); 8220 8221 /* 8222 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8223 * used to create the sg_dma_buf_pool must be calculated. 8224 */ 8225 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8226 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8227 8228 /* 8229 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8230 * the FCP rsp, and a SGE. Sice we have no control 8231 * over how many protection segments the SCSI Layer 8232 * will hand us (ie: there could be one for every block 8233 * in the IO), just allocate enough SGEs to accomidate 8234 * our max amount and we need to limit lpfc_sg_seg_cnt 8235 * to minimize the risk of running out. 8236 */ 8237 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8238 sizeof(struct fcp_rsp) + max_buf_size; 8239 8240 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8241 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8242 8243 /* 8244 * If supporting DIF, reduce the seg count for scsi to 8245 * allow room for the DIF sges. 8246 */ 8247 if (phba->cfg_enable_bg && 8248 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8249 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8250 else 8251 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8252 8253 } else { 8254 /* 8255 * The scsi_buf for a regular I/O holds the FCP cmnd, 8256 * the FCP rsp, a SGE for each, and a SGE for up to 8257 * cfg_sg_seg_cnt data segments. 8258 */ 8259 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + 8260 sizeof(struct fcp_rsp) + 8261 ((phba->cfg_sg_seg_cnt + extra) * 8262 sizeof(struct sli4_sge)); 8263 8264 /* Total SGEs for scsi_sg_list */ 8265 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8266 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8267 8268 /* 8269 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8270 * need to post 1 page for the SGL. 8271 */ 8272 } 8273 8274 if (phba->cfg_xpsgl && !phba->nvmet_support) 8275 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8276 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8277 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8278 else 8279 phba->cfg_sg_dma_buf_size = 8280 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8281 8282 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8283 sizeof(struct sli4_sge); 8284 8285 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8286 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8287 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8288 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8289 "6300 Reducing NVME sg segment " 8290 "cnt to %d\n", 8291 LPFC_MAX_NVME_SEG_CNT); 8292 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8293 } else 8294 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8295 } 8296 8297 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8298 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8299 "total:%d scsi:%d nvme:%d\n", 8300 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8301 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8302 phba->cfg_nvme_seg_cnt); 8303 8304 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8305 i = phba->cfg_sg_dma_buf_size; 8306 else 8307 i = SLI4_PAGE_SIZE; 8308 8309 phba->lpfc_sg_dma_buf_pool = 8310 dma_pool_create("lpfc_sg_dma_buf_pool", 8311 &phba->pcidev->dev, 8312 phba->cfg_sg_dma_buf_size, 8313 i, 0); 8314 if (!phba->lpfc_sg_dma_buf_pool) { 8315 rc = -ENOMEM; 8316 goto out_free_bsmbx; 8317 } 8318 8319 phba->lpfc_cmd_rsp_buf_pool = 8320 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8321 &phba->pcidev->dev, 8322 sizeof(struct fcp_cmnd32) + 8323 sizeof(struct fcp_rsp), 8324 i, 0); 8325 if (!phba->lpfc_cmd_rsp_buf_pool) { 8326 rc = -ENOMEM; 8327 goto out_free_sg_dma_buf; 8328 } 8329 8330 mempool_free(mboxq, phba->mbox_mem_pool); 8331 8332 /* Verify OAS is supported */ 8333 lpfc_sli4_oas_verify(phba); 8334 8335 /* Verify RAS support on adapter */ 8336 lpfc_sli4_ras_init(phba); 8337 8338 /* Verify all the SLI4 queues */ 8339 rc = lpfc_sli4_queue_verify(phba); 8340 if (rc) 8341 goto out_free_cmd_rsp_buf; 8342 8343 /* Create driver internal CQE event pool */ 8344 rc = lpfc_sli4_cq_event_pool_create(phba); 8345 if (rc) 8346 goto out_free_cmd_rsp_buf; 8347 8348 /* Initialize sgl lists per host */ 8349 lpfc_init_sgl_list(phba); 8350 8351 /* Allocate and initialize active sgl array */ 8352 rc = lpfc_init_active_sgl_array(phba); 8353 if (rc) { 8354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8355 "1430 Failed to initialize sgl list.\n"); 8356 goto out_destroy_cq_event_pool; 8357 } 8358 rc = lpfc_sli4_init_rpi_hdrs(phba); 8359 if (rc) { 8360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8361 "1432 Failed to initialize rpi headers.\n"); 8362 goto out_free_active_sgl; 8363 } 8364 8365 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8366 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8367 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8368 GFP_KERNEL); 8369 if (!phba->fcf.fcf_rr_bmask) { 8370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8371 "2759 Failed allocate memory for FCF round " 8372 "robin failover bmask\n"); 8373 rc = -ENOMEM; 8374 goto out_remove_rpi_hdrs; 8375 } 8376 8377 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8378 sizeof(struct lpfc_hba_eq_hdl), 8379 GFP_KERNEL); 8380 if (!phba->sli4_hba.hba_eq_hdl) { 8381 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8382 "2572 Failed allocate memory for " 8383 "fast-path per-EQ handle array\n"); 8384 rc = -ENOMEM; 8385 goto out_free_fcf_rr_bmask; 8386 } 8387 8388 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8389 sizeof(struct lpfc_vector_map_info), 8390 GFP_KERNEL); 8391 if (!phba->sli4_hba.cpu_map) { 8392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8393 "3327 Failed allocate memory for msi-x " 8394 "interrupt vector mapping\n"); 8395 rc = -ENOMEM; 8396 goto out_free_hba_eq_hdl; 8397 } 8398 8399 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8400 if (!phba->sli4_hba.eq_info) { 8401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8402 "3321 Failed allocation for per_cpu stats\n"); 8403 rc = -ENOMEM; 8404 goto out_free_hba_cpu_map; 8405 } 8406 8407 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8408 sizeof(*phba->sli4_hba.idle_stat), 8409 GFP_KERNEL); 8410 if (!phba->sli4_hba.idle_stat) { 8411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8412 "3390 Failed allocation for idle_stat\n"); 8413 rc = -ENOMEM; 8414 goto out_free_hba_eq_info; 8415 } 8416 8417 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8418 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8419 if (!phba->sli4_hba.c_stat) { 8420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8421 "3332 Failed allocating per cpu hdwq stats\n"); 8422 rc = -ENOMEM; 8423 goto out_free_hba_idle_stat; 8424 } 8425 #endif 8426 8427 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8428 if (!phba->cmf_stat) { 8429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8430 "3331 Failed allocating per cpu cgn stats\n"); 8431 rc = -ENOMEM; 8432 goto out_free_hba_hdwq_info; 8433 } 8434 8435 /* 8436 * Enable sr-iov virtual functions if supported and configured 8437 * through the module parameter. 8438 */ 8439 if (phba->cfg_sriov_nr_virtfn > 0) { 8440 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8441 phba->cfg_sriov_nr_virtfn); 8442 if (rc) { 8443 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8444 "3020 Requested number of SR-IOV " 8445 "virtual functions (%d) is not " 8446 "supported\n", 8447 phba->cfg_sriov_nr_virtfn); 8448 phba->cfg_sriov_nr_virtfn = 0; 8449 } 8450 } 8451 8452 return 0; 8453 8454 out_free_hba_hdwq_info: 8455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8456 free_percpu(phba->sli4_hba.c_stat); 8457 out_free_hba_idle_stat: 8458 #endif 8459 kfree(phba->sli4_hba.idle_stat); 8460 out_free_hba_eq_info: 8461 free_percpu(phba->sli4_hba.eq_info); 8462 out_free_hba_cpu_map: 8463 kfree(phba->sli4_hba.cpu_map); 8464 out_free_hba_eq_hdl: 8465 kfree(phba->sli4_hba.hba_eq_hdl); 8466 out_free_fcf_rr_bmask: 8467 kfree(phba->fcf.fcf_rr_bmask); 8468 out_remove_rpi_hdrs: 8469 lpfc_sli4_remove_rpi_hdrs(phba); 8470 out_free_active_sgl: 8471 lpfc_free_active_sgl(phba); 8472 out_destroy_cq_event_pool: 8473 lpfc_sli4_cq_event_pool_destroy(phba); 8474 out_free_cmd_rsp_buf: 8475 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8476 phba->lpfc_cmd_rsp_buf_pool = NULL; 8477 out_free_sg_dma_buf: 8478 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8479 phba->lpfc_sg_dma_buf_pool = NULL; 8480 out_free_bsmbx: 8481 lpfc_destroy_bootstrap_mbox(phba); 8482 out_free_mem: 8483 lpfc_mem_free(phba); 8484 out_destroy_workqueue: 8485 destroy_workqueue(phba->wq); 8486 phba->wq = NULL; 8487 return rc; 8488 } 8489 8490 /** 8491 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8492 * @phba: pointer to lpfc hba data structure. 8493 * 8494 * This routine is invoked to unset the driver internal resources set up 8495 * specific for supporting the SLI-4 HBA device it attached to. 8496 **/ 8497 static void 8498 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8499 { 8500 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8501 8502 free_percpu(phba->sli4_hba.eq_info); 8503 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8504 free_percpu(phba->sli4_hba.c_stat); 8505 #endif 8506 free_percpu(phba->cmf_stat); 8507 kfree(phba->sli4_hba.idle_stat); 8508 8509 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8510 kfree(phba->sli4_hba.cpu_map); 8511 phba->sli4_hba.num_possible_cpu = 0; 8512 phba->sli4_hba.num_present_cpu = 0; 8513 phba->sli4_hba.curr_disp_cpu = 0; 8514 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8515 8516 /* Free memory allocated for fast-path work queue handles */ 8517 kfree(phba->sli4_hba.hba_eq_hdl); 8518 8519 /* Free the allocated rpi headers. */ 8520 lpfc_sli4_remove_rpi_hdrs(phba); 8521 lpfc_sli4_remove_rpis(phba); 8522 8523 /* Free eligible FCF index bmask */ 8524 kfree(phba->fcf.fcf_rr_bmask); 8525 8526 /* Free the ELS sgl list */ 8527 lpfc_free_active_sgl(phba); 8528 lpfc_free_els_sgl_list(phba); 8529 lpfc_free_nvmet_sgl_list(phba); 8530 8531 /* Free the completion queue EQ event pool */ 8532 lpfc_sli4_cq_event_release_all(phba); 8533 lpfc_sli4_cq_event_pool_destroy(phba); 8534 8535 /* Release resource identifiers. */ 8536 lpfc_sli4_dealloc_resource_identifiers(phba); 8537 8538 /* Free the bsmbx region. */ 8539 lpfc_destroy_bootstrap_mbox(phba); 8540 8541 /* Free the SLI Layer memory with SLI4 HBAs */ 8542 lpfc_mem_free_all(phba); 8543 8544 /* Free the current connect table */ 8545 list_for_each_entry_safe(conn_entry, next_conn_entry, 8546 &phba->fcf_conn_rec_list, list) { 8547 list_del_init(&conn_entry->list); 8548 kfree(conn_entry); 8549 } 8550 8551 return; 8552 } 8553 8554 /** 8555 * lpfc_init_api_table_setup - Set up init api function jump table 8556 * @phba: The hba struct for which this call is being executed. 8557 * @dev_grp: The HBA PCI-Device group number. 8558 * 8559 * This routine sets up the device INIT interface API function jump table 8560 * in @phba struct. 8561 * 8562 * Returns: 0 - success, -ENODEV - failure. 8563 **/ 8564 int 8565 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8566 { 8567 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8568 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8569 phba->lpfc_selective_reset = lpfc_selective_reset; 8570 switch (dev_grp) { 8571 case LPFC_PCI_DEV_LP: 8572 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8573 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8574 phba->lpfc_stop_port = lpfc_stop_port_s3; 8575 break; 8576 case LPFC_PCI_DEV_OC: 8577 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8578 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8579 phba->lpfc_stop_port = lpfc_stop_port_s4; 8580 break; 8581 default: 8582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8583 "1431 Invalid HBA PCI-device group: 0x%x\n", 8584 dev_grp); 8585 return -ENODEV; 8586 } 8587 return 0; 8588 } 8589 8590 /** 8591 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8592 * @phba: pointer to lpfc hba data structure. 8593 * 8594 * This routine is invoked to set up the driver internal resources after the 8595 * device specific resource setup to support the HBA device it attached to. 8596 * 8597 * Return codes 8598 * 0 - successful 8599 * other values - error 8600 **/ 8601 static int 8602 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8603 { 8604 int error; 8605 8606 /* Startup the kernel thread for this host adapter. */ 8607 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8608 "lpfc_worker_%d", phba->brd_no); 8609 if (IS_ERR(phba->worker_thread)) { 8610 error = PTR_ERR(phba->worker_thread); 8611 return error; 8612 } 8613 8614 return 0; 8615 } 8616 8617 /** 8618 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8619 * @phba: pointer to lpfc hba data structure. 8620 * 8621 * This routine is invoked to unset the driver internal resources set up after 8622 * the device specific resource setup for supporting the HBA device it 8623 * attached to. 8624 **/ 8625 static void 8626 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8627 { 8628 if (phba->wq) { 8629 destroy_workqueue(phba->wq); 8630 phba->wq = NULL; 8631 } 8632 8633 /* Stop kernel worker thread */ 8634 if (phba->worker_thread) 8635 kthread_stop(phba->worker_thread); 8636 } 8637 8638 /** 8639 * lpfc_free_iocb_list - Free iocb list. 8640 * @phba: pointer to lpfc hba data structure. 8641 * 8642 * This routine is invoked to free the driver's IOCB list and memory. 8643 **/ 8644 void 8645 lpfc_free_iocb_list(struct lpfc_hba *phba) 8646 { 8647 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8648 8649 spin_lock_irq(&phba->hbalock); 8650 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8651 &phba->lpfc_iocb_list, list) { 8652 list_del(&iocbq_entry->list); 8653 kfree(iocbq_entry); 8654 phba->total_iocbq_bufs--; 8655 } 8656 spin_unlock_irq(&phba->hbalock); 8657 8658 return; 8659 } 8660 8661 /** 8662 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8663 * @phba: pointer to lpfc hba data structure. 8664 * @iocb_count: number of requested iocbs 8665 * 8666 * This routine is invoked to allocate and initizlize the driver's IOCB 8667 * list and set up the IOCB tag array accordingly. 8668 * 8669 * Return codes 8670 * 0 - successful 8671 * other values - error 8672 **/ 8673 int 8674 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8675 { 8676 struct lpfc_iocbq *iocbq_entry = NULL; 8677 uint16_t iotag; 8678 int i; 8679 8680 /* Initialize and populate the iocb list per host. */ 8681 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8682 for (i = 0; i < iocb_count; i++) { 8683 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8684 if (iocbq_entry == NULL) { 8685 printk(KERN_ERR "%s: only allocated %d iocbs of " 8686 "expected %d count. Unloading driver.\n", 8687 __func__, i, iocb_count); 8688 goto out_free_iocbq; 8689 } 8690 8691 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8692 if (iotag == 0) { 8693 kfree(iocbq_entry); 8694 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8695 "Unloading driver.\n", __func__); 8696 goto out_free_iocbq; 8697 } 8698 iocbq_entry->sli4_lxritag = NO_XRI; 8699 iocbq_entry->sli4_xritag = NO_XRI; 8700 8701 spin_lock_irq(&phba->hbalock); 8702 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8703 phba->total_iocbq_bufs++; 8704 spin_unlock_irq(&phba->hbalock); 8705 } 8706 8707 return 0; 8708 8709 out_free_iocbq: 8710 lpfc_free_iocb_list(phba); 8711 8712 return -ENOMEM; 8713 } 8714 8715 /** 8716 * lpfc_free_sgl_list - Free a given sgl list. 8717 * @phba: pointer to lpfc hba data structure. 8718 * @sglq_list: pointer to the head of sgl list. 8719 * 8720 * This routine is invoked to free a give sgl list and memory. 8721 **/ 8722 void 8723 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8724 { 8725 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8726 8727 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8728 list_del(&sglq_entry->list); 8729 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8730 kfree(sglq_entry); 8731 } 8732 } 8733 8734 /** 8735 * lpfc_free_els_sgl_list - Free els sgl list. 8736 * @phba: pointer to lpfc hba data structure. 8737 * 8738 * This routine is invoked to free the driver's els sgl list and memory. 8739 **/ 8740 static void 8741 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8742 { 8743 LIST_HEAD(sglq_list); 8744 8745 /* Retrieve all els sgls from driver list */ 8746 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8747 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8748 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8749 8750 /* Now free the sgl list */ 8751 lpfc_free_sgl_list(phba, &sglq_list); 8752 } 8753 8754 /** 8755 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8756 * @phba: pointer to lpfc hba data structure. 8757 * 8758 * This routine is invoked to free the driver's nvmet sgl list and memory. 8759 **/ 8760 static void 8761 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8762 { 8763 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8764 LIST_HEAD(sglq_list); 8765 8766 /* Retrieve all nvmet sgls from driver list */ 8767 spin_lock_irq(&phba->hbalock); 8768 spin_lock(&phba->sli4_hba.sgl_list_lock); 8769 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8770 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8771 spin_unlock_irq(&phba->hbalock); 8772 8773 /* Now free the sgl list */ 8774 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8775 list_del(&sglq_entry->list); 8776 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8777 kfree(sglq_entry); 8778 } 8779 8780 /* Update the nvmet_xri_cnt to reflect no current sgls. 8781 * The next initialization cycle sets the count and allocates 8782 * the sgls over again. 8783 */ 8784 phba->sli4_hba.nvmet_xri_cnt = 0; 8785 } 8786 8787 /** 8788 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8789 * @phba: pointer to lpfc hba data structure. 8790 * 8791 * This routine is invoked to allocate the driver's active sgl memory. 8792 * This array will hold the sglq_entry's for active IOs. 8793 **/ 8794 static int 8795 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8796 { 8797 int size; 8798 size = sizeof(struct lpfc_sglq *); 8799 size *= phba->sli4_hba.max_cfg_param.max_xri; 8800 8801 phba->sli4_hba.lpfc_sglq_active_list = 8802 kzalloc(size, GFP_KERNEL); 8803 if (!phba->sli4_hba.lpfc_sglq_active_list) 8804 return -ENOMEM; 8805 return 0; 8806 } 8807 8808 /** 8809 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8810 * @phba: pointer to lpfc hba data structure. 8811 * 8812 * This routine is invoked to walk through the array of active sglq entries 8813 * and free all of the resources. 8814 * This is just a place holder for now. 8815 **/ 8816 static void 8817 lpfc_free_active_sgl(struct lpfc_hba *phba) 8818 { 8819 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8820 } 8821 8822 /** 8823 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8824 * @phba: pointer to lpfc hba data structure. 8825 * 8826 * This routine is invoked to allocate and initizlize the driver's sgl 8827 * list and set up the sgl xritag tag array accordingly. 8828 * 8829 **/ 8830 static void 8831 lpfc_init_sgl_list(struct lpfc_hba *phba) 8832 { 8833 /* Initialize and populate the sglq list per host/VF. */ 8834 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8835 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8836 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8837 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8838 8839 /* els xri-sgl book keeping */ 8840 phba->sli4_hba.els_xri_cnt = 0; 8841 8842 /* nvme xri-buffer book keeping */ 8843 phba->sli4_hba.io_xri_cnt = 0; 8844 } 8845 8846 /** 8847 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8848 * @phba: pointer to lpfc hba data structure. 8849 * 8850 * This routine is invoked to post rpi header templates to the 8851 * port for those SLI4 ports that do not support extents. This routine 8852 * posts a PAGE_SIZE memory region to the port to hold up to 8853 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8854 * and should be called only when interrupts are disabled. 8855 * 8856 * Return codes 8857 * 0 - successful 8858 * -ERROR - otherwise. 8859 **/ 8860 int 8861 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8862 { 8863 int rc = 0; 8864 struct lpfc_rpi_hdr *rpi_hdr; 8865 8866 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8867 if (!phba->sli4_hba.rpi_hdrs_in_use) 8868 return rc; 8869 if (phba->sli4_hba.extents_in_use) 8870 return -EIO; 8871 8872 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8873 if (!rpi_hdr) { 8874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8875 "0391 Error during rpi post operation\n"); 8876 lpfc_sli4_remove_rpis(phba); 8877 rc = -ENODEV; 8878 } 8879 8880 return rc; 8881 } 8882 8883 /** 8884 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8885 * @phba: pointer to lpfc hba data structure. 8886 * 8887 * This routine is invoked to allocate a single 4KB memory region to 8888 * support rpis and stores them in the phba. This single region 8889 * provides support for up to 64 rpis. The region is used globally 8890 * by the device. 8891 * 8892 * Returns: 8893 * A valid rpi hdr on success. 8894 * A NULL pointer on any failure. 8895 **/ 8896 struct lpfc_rpi_hdr * 8897 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8898 { 8899 uint16_t rpi_limit, curr_rpi_range; 8900 struct lpfc_dmabuf *dmabuf; 8901 struct lpfc_rpi_hdr *rpi_hdr; 8902 8903 /* 8904 * If the SLI4 port supports extents, posting the rpi header isn't 8905 * required. Set the expected maximum count and let the actual value 8906 * get set when extents are fully allocated. 8907 */ 8908 if (!phba->sli4_hba.rpi_hdrs_in_use) 8909 return NULL; 8910 if (phba->sli4_hba.extents_in_use) 8911 return NULL; 8912 8913 /* The limit on the logical index is just the max_rpi count. */ 8914 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8915 8916 spin_lock_irq(&phba->hbalock); 8917 /* 8918 * Establish the starting RPI in this header block. The starting 8919 * rpi is normalized to a zero base because the physical rpi is 8920 * port based. 8921 */ 8922 curr_rpi_range = phba->sli4_hba.next_rpi; 8923 spin_unlock_irq(&phba->hbalock); 8924 8925 /* Reached full RPI range */ 8926 if (curr_rpi_range == rpi_limit) 8927 return NULL; 8928 8929 /* 8930 * First allocate the protocol header region for the port. The 8931 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8932 */ 8933 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8934 if (!dmabuf) 8935 return NULL; 8936 8937 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8938 LPFC_HDR_TEMPLATE_SIZE, 8939 &dmabuf->phys, GFP_KERNEL); 8940 if (!dmabuf->virt) { 8941 rpi_hdr = NULL; 8942 goto err_free_dmabuf; 8943 } 8944 8945 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8946 rpi_hdr = NULL; 8947 goto err_free_coherent; 8948 } 8949 8950 /* Save the rpi header data for cleanup later. */ 8951 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8952 if (!rpi_hdr) 8953 goto err_free_coherent; 8954 8955 rpi_hdr->dmabuf = dmabuf; 8956 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8957 rpi_hdr->page_count = 1; 8958 spin_lock_irq(&phba->hbalock); 8959 8960 /* The rpi_hdr stores the logical index only. */ 8961 rpi_hdr->start_rpi = curr_rpi_range; 8962 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8963 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8964 8965 spin_unlock_irq(&phba->hbalock); 8966 return rpi_hdr; 8967 8968 err_free_coherent: 8969 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8970 dmabuf->virt, dmabuf->phys); 8971 err_free_dmabuf: 8972 kfree(dmabuf); 8973 return NULL; 8974 } 8975 8976 /** 8977 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8978 * @phba: pointer to lpfc hba data structure. 8979 * 8980 * This routine is invoked to remove all memory resources allocated 8981 * to support rpis for SLI4 ports not supporting extents. This routine 8982 * presumes the caller has released all rpis consumed by fabric or port 8983 * logins and is prepared to have the header pages removed. 8984 **/ 8985 void 8986 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8987 { 8988 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8989 8990 if (!phba->sli4_hba.rpi_hdrs_in_use) 8991 goto exit; 8992 8993 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8994 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8995 list_del(&rpi_hdr->list); 8996 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 8997 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 8998 kfree(rpi_hdr->dmabuf); 8999 kfree(rpi_hdr); 9000 } 9001 exit: 9002 /* There are no rpis available to the port now. */ 9003 phba->sli4_hba.next_rpi = 0; 9004 } 9005 9006 /** 9007 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 9008 * @pdev: pointer to pci device data structure. 9009 * 9010 * This routine is invoked to allocate the driver hba data structure for an 9011 * HBA device. If the allocation is successful, the phba reference to the 9012 * PCI device data structure is set. 9013 * 9014 * Return codes 9015 * pointer to @phba - successful 9016 * NULL - error 9017 **/ 9018 static struct lpfc_hba * 9019 lpfc_hba_alloc(struct pci_dev *pdev) 9020 { 9021 struct lpfc_hba *phba; 9022 9023 /* Allocate memory for HBA structure */ 9024 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 9025 if (!phba) { 9026 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 9027 return NULL; 9028 } 9029 9030 /* Set reference to PCI device in HBA structure */ 9031 phba->pcidev = pdev; 9032 9033 /* Assign an unused board number */ 9034 phba->brd_no = lpfc_get_instance(); 9035 if (phba->brd_no < 0) { 9036 kfree(phba); 9037 return NULL; 9038 } 9039 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 9040 9041 spin_lock_init(&phba->ct_ev_lock); 9042 INIT_LIST_HEAD(&phba->ct_ev_waiters); 9043 9044 return phba; 9045 } 9046 9047 /** 9048 * lpfc_hba_free - Free driver hba data structure with a device. 9049 * @phba: pointer to lpfc hba data structure. 9050 * 9051 * This routine is invoked to free the driver hba data structure with an 9052 * HBA device. 9053 **/ 9054 static void 9055 lpfc_hba_free(struct lpfc_hba *phba) 9056 { 9057 if (phba->sli_rev == LPFC_SLI_REV4) 9058 kfree(phba->sli4_hba.hdwq); 9059 9060 /* Release the driver assigned board number */ 9061 idr_remove(&lpfc_hba_index, phba->brd_no); 9062 9063 /* Free memory allocated with sli3 rings */ 9064 kfree(phba->sli.sli3_ring); 9065 phba->sli.sli3_ring = NULL; 9066 9067 kfree(phba); 9068 return; 9069 } 9070 9071 /** 9072 * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes 9073 * @vport: pointer to lpfc vport data structure. 9074 * 9075 * This routine is will setup initial FDMI attribute masks for 9076 * FDMI2 or SmartSAN depending on module parameters. The driver will attempt 9077 * to get these attributes first before falling back, the attribute 9078 * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 9079 **/ 9080 void 9081 lpfc_setup_fdmi_mask(struct lpfc_vport *vport) 9082 { 9083 struct lpfc_hba *phba = vport->phba; 9084 9085 set_bit(FC_ALLOW_FDMI, &vport->load_flag); 9086 if (phba->cfg_enable_SmartSAN || 9087 phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { 9088 /* Setup appropriate attribute masks */ 9089 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9090 if (phba->cfg_enable_SmartSAN) 9091 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9092 else 9093 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9094 } 9095 9096 lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY, 9097 "6077 Setup FDMI mask: hba x%x port x%x\n", 9098 vport->fdmi_hba_mask, vport->fdmi_port_mask); 9099 } 9100 9101 /** 9102 * lpfc_create_shost - Create hba physical port with associated scsi host. 9103 * @phba: pointer to lpfc hba data structure. 9104 * 9105 * This routine is invoked to create HBA physical port and associate a SCSI 9106 * host with it. 9107 * 9108 * Return codes 9109 * 0 - successful 9110 * other values - error 9111 **/ 9112 static int 9113 lpfc_create_shost(struct lpfc_hba *phba) 9114 { 9115 struct lpfc_vport *vport; 9116 struct Scsi_Host *shost; 9117 9118 /* Initialize HBA FC structure */ 9119 phba->fc_edtov = FF_DEF_EDTOV; 9120 phba->fc_ratov = FF_DEF_RATOV; 9121 phba->fc_altov = FF_DEF_ALTOV; 9122 phba->fc_arbtov = FF_DEF_ARBTOV; 9123 9124 atomic_set(&phba->sdev_cnt, 0); 9125 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9126 if (!vport) 9127 return -ENODEV; 9128 9129 shost = lpfc_shost_from_vport(vport); 9130 phba->pport = vport; 9131 9132 if (phba->nvmet_support) { 9133 /* Only 1 vport (pport) will support NVME target */ 9134 phba->targetport = NULL; 9135 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9136 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9137 "6076 NVME Target Found\n"); 9138 } 9139 9140 lpfc_debugfs_initialize(vport); 9141 /* Put reference to SCSI host to driver's device private data */ 9142 pci_set_drvdata(phba->pcidev, shost); 9143 9144 lpfc_setup_fdmi_mask(vport); 9145 9146 /* 9147 * At this point we are fully registered with PSA. In addition, 9148 * any initial discovery should be completed. 9149 */ 9150 return 0; 9151 } 9152 9153 /** 9154 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9155 * @phba: pointer to lpfc hba data structure. 9156 * 9157 * This routine is invoked to destroy HBA physical port and the associated 9158 * SCSI host. 9159 **/ 9160 static void 9161 lpfc_destroy_shost(struct lpfc_hba *phba) 9162 { 9163 struct lpfc_vport *vport = phba->pport; 9164 9165 /* Destroy physical port that associated with the SCSI host */ 9166 destroy_port(vport); 9167 9168 return; 9169 } 9170 9171 /** 9172 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9173 * @phba: pointer to lpfc hba data structure. 9174 * @shost: the shost to be used to detect Block guard settings. 9175 * 9176 * This routine sets up the local Block guard protocol settings for @shost. 9177 * This routine also allocates memory for debugging bg buffers. 9178 **/ 9179 static void 9180 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9181 { 9182 uint32_t old_mask; 9183 uint32_t old_guard; 9184 9185 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9186 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9187 "1478 Registering BlockGuard with the " 9188 "SCSI layer\n"); 9189 9190 old_mask = phba->cfg_prot_mask; 9191 old_guard = phba->cfg_prot_guard; 9192 9193 /* Only allow supported values */ 9194 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9195 SHOST_DIX_TYPE0_PROTECTION | 9196 SHOST_DIX_TYPE1_PROTECTION); 9197 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9198 SHOST_DIX_GUARD_CRC); 9199 9200 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9201 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9202 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9203 9204 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9205 if ((old_mask != phba->cfg_prot_mask) || 9206 (old_guard != phba->cfg_prot_guard)) 9207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9208 "1475 Registering BlockGuard with the " 9209 "SCSI layer: mask %d guard %d\n", 9210 phba->cfg_prot_mask, 9211 phba->cfg_prot_guard); 9212 9213 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9214 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9215 } else 9216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9217 "1479 Not Registering BlockGuard with the SCSI " 9218 "layer, Bad protection parameters: %d %d\n", 9219 old_mask, old_guard); 9220 } 9221 } 9222 9223 /** 9224 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9225 * @phba: pointer to lpfc hba data structure. 9226 * 9227 * This routine is invoked to perform all the necessary post initialization 9228 * setup for the device. 9229 **/ 9230 static void 9231 lpfc_post_init_setup(struct lpfc_hba *phba) 9232 { 9233 struct Scsi_Host *shost; 9234 struct lpfc_adapter_event_header adapter_event; 9235 9236 /* Get the default values for Model Name and Description */ 9237 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9238 9239 /* 9240 * hba setup may have changed the hba_queue_depth so we need to 9241 * adjust the value of can_queue. 9242 */ 9243 shost = pci_get_drvdata(phba->pcidev); 9244 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9245 9246 lpfc_host_attrib_init(shost); 9247 9248 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9249 spin_lock_irq(shost->host_lock); 9250 lpfc_poll_start_timer(phba); 9251 spin_unlock_irq(shost->host_lock); 9252 } 9253 9254 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9255 "0428 Perform SCSI scan\n"); 9256 /* Send board arrival event to upper layer */ 9257 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9258 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9259 fc_host_post_vendor_event(shost, fc_get_event_number(), 9260 sizeof(adapter_event), 9261 (char *) &adapter_event, 9262 LPFC_NL_VENDOR_ID); 9263 return; 9264 } 9265 9266 /** 9267 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9268 * @phba: pointer to lpfc hba data structure. 9269 * 9270 * This routine is invoked to set up the PCI device memory space for device 9271 * with SLI-3 interface spec. 9272 * 9273 * Return codes 9274 * 0 - successful 9275 * other values - error 9276 **/ 9277 static int 9278 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9279 { 9280 struct pci_dev *pdev = phba->pcidev; 9281 unsigned long bar0map_len, bar2map_len; 9282 int i, hbq_count; 9283 void *ptr; 9284 int error; 9285 9286 if (!pdev) 9287 return -ENODEV; 9288 9289 /* Set the device DMA mask size */ 9290 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9291 if (error) 9292 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9293 if (error) 9294 return error; 9295 error = -ENODEV; 9296 9297 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9298 * required by each mapping. 9299 */ 9300 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9301 bar0map_len = pci_resource_len(pdev, 0); 9302 9303 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9304 bar2map_len = pci_resource_len(pdev, 2); 9305 9306 /* Map HBA SLIM to a kernel virtual address. */ 9307 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9308 if (!phba->slim_memmap_p) { 9309 dev_printk(KERN_ERR, &pdev->dev, 9310 "ioremap failed for SLIM memory.\n"); 9311 goto out; 9312 } 9313 9314 /* Map HBA Control Registers to a kernel virtual address. */ 9315 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9316 if (!phba->ctrl_regs_memmap_p) { 9317 dev_printk(KERN_ERR, &pdev->dev, 9318 "ioremap failed for HBA control registers.\n"); 9319 goto out_iounmap_slim; 9320 } 9321 9322 /* Allocate memory for SLI-2 structures */ 9323 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9324 &phba->slim2p.phys, GFP_KERNEL); 9325 if (!phba->slim2p.virt) 9326 goto out_iounmap; 9327 9328 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9329 phba->mbox_ext = (phba->slim2p.virt + 9330 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9331 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9332 phba->IOCBs = (phba->slim2p.virt + 9333 offsetof(struct lpfc_sli2_slim, IOCBs)); 9334 9335 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9336 lpfc_sli_hbq_size(), 9337 &phba->hbqslimp.phys, 9338 GFP_KERNEL); 9339 if (!phba->hbqslimp.virt) 9340 goto out_free_slim; 9341 9342 hbq_count = lpfc_sli_hbq_count(); 9343 ptr = phba->hbqslimp.virt; 9344 for (i = 0; i < hbq_count; ++i) { 9345 phba->hbqs[i].hbq_virt = ptr; 9346 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9347 ptr += (lpfc_hbq_defs[i]->entry_count * 9348 sizeof(struct lpfc_hbq_entry)); 9349 } 9350 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9351 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9352 9353 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9354 9355 phba->MBslimaddr = phba->slim_memmap_p; 9356 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9357 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9358 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9359 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9360 9361 return 0; 9362 9363 out_free_slim: 9364 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9365 phba->slim2p.virt, phba->slim2p.phys); 9366 out_iounmap: 9367 iounmap(phba->ctrl_regs_memmap_p); 9368 out_iounmap_slim: 9369 iounmap(phba->slim_memmap_p); 9370 out: 9371 return error; 9372 } 9373 9374 /** 9375 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9376 * @phba: pointer to lpfc hba data structure. 9377 * 9378 * This routine is invoked to unset the PCI device memory space for device 9379 * with SLI-3 interface spec. 9380 **/ 9381 static void 9382 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9383 { 9384 struct pci_dev *pdev; 9385 9386 /* Obtain PCI device reference */ 9387 if (!phba->pcidev) 9388 return; 9389 else 9390 pdev = phba->pcidev; 9391 9392 /* Free coherent DMA memory allocated */ 9393 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9394 phba->hbqslimp.virt, phba->hbqslimp.phys); 9395 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9396 phba->slim2p.virt, phba->slim2p.phys); 9397 9398 /* I/O memory unmap */ 9399 iounmap(phba->ctrl_regs_memmap_p); 9400 iounmap(phba->slim_memmap_p); 9401 9402 return; 9403 } 9404 9405 /** 9406 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9407 * @phba: pointer to lpfc hba data structure. 9408 * 9409 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9410 * done and check status. 9411 * 9412 * Return 0 if successful, otherwise -ENODEV. 9413 **/ 9414 int 9415 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9416 { 9417 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9418 struct lpfc_register reg_data; 9419 int i, port_error = 0; 9420 uint32_t if_type; 9421 9422 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9423 memset(®_data, 0, sizeof(reg_data)); 9424 if (!phba->sli4_hba.PSMPHRregaddr) 9425 return -ENODEV; 9426 9427 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9428 for (i = 0; i < 3000; i++) { 9429 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9430 &portsmphr_reg.word0) || 9431 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9432 /* Port has a fatal POST error, break out */ 9433 port_error = -ENODEV; 9434 break; 9435 } 9436 if (LPFC_POST_STAGE_PORT_READY == 9437 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9438 break; 9439 msleep(10); 9440 } 9441 9442 /* 9443 * If there was a port error during POST, then don't proceed with 9444 * other register reads as the data may not be valid. Just exit. 9445 */ 9446 if (port_error) { 9447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9448 "1408 Port Failed POST - portsmphr=0x%x, " 9449 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9450 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9451 portsmphr_reg.word0, 9452 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9453 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9454 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9455 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9456 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9457 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9458 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9459 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9460 } else { 9461 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9462 "2534 Device Info: SLIFamily=0x%x, " 9463 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9464 "SLIHint_2=0x%x, FT=0x%x\n", 9465 bf_get(lpfc_sli_intf_sli_family, 9466 &phba->sli4_hba.sli_intf), 9467 bf_get(lpfc_sli_intf_slirev, 9468 &phba->sli4_hba.sli_intf), 9469 bf_get(lpfc_sli_intf_if_type, 9470 &phba->sli4_hba.sli_intf), 9471 bf_get(lpfc_sli_intf_sli_hint1, 9472 &phba->sli4_hba.sli_intf), 9473 bf_get(lpfc_sli_intf_sli_hint2, 9474 &phba->sli4_hba.sli_intf), 9475 bf_get(lpfc_sli_intf_func_type, 9476 &phba->sli4_hba.sli_intf)); 9477 /* 9478 * Check for other Port errors during the initialization 9479 * process. Fail the load if the port did not come up 9480 * correctly. 9481 */ 9482 if_type = bf_get(lpfc_sli_intf_if_type, 9483 &phba->sli4_hba.sli_intf); 9484 switch (if_type) { 9485 case LPFC_SLI_INTF_IF_TYPE_0: 9486 phba->sli4_hba.ue_mask_lo = 9487 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9488 phba->sli4_hba.ue_mask_hi = 9489 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9490 uerrlo_reg.word0 = 9491 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9492 uerrhi_reg.word0 = 9493 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9494 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9495 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9496 lpfc_printf_log(phba, KERN_ERR, 9497 LOG_TRACE_EVENT, 9498 "1422 Unrecoverable Error " 9499 "Detected during POST " 9500 "uerr_lo_reg=0x%x, " 9501 "uerr_hi_reg=0x%x, " 9502 "ue_mask_lo_reg=0x%x, " 9503 "ue_mask_hi_reg=0x%x\n", 9504 uerrlo_reg.word0, 9505 uerrhi_reg.word0, 9506 phba->sli4_hba.ue_mask_lo, 9507 phba->sli4_hba.ue_mask_hi); 9508 port_error = -ENODEV; 9509 } 9510 break; 9511 case LPFC_SLI_INTF_IF_TYPE_2: 9512 case LPFC_SLI_INTF_IF_TYPE_6: 9513 /* Final checks. The port status should be clean. */ 9514 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9515 ®_data.word0) || 9516 lpfc_sli4_unrecoverable_port(®_data)) { 9517 phba->work_status[0] = 9518 readl(phba->sli4_hba.u.if_type2. 9519 ERR1regaddr); 9520 phba->work_status[1] = 9521 readl(phba->sli4_hba.u.if_type2. 9522 ERR2regaddr); 9523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9524 "2888 Unrecoverable port error " 9525 "following POST: port status reg " 9526 "0x%x, port_smphr reg 0x%x, " 9527 "error 1=0x%x, error 2=0x%x\n", 9528 reg_data.word0, 9529 portsmphr_reg.word0, 9530 phba->work_status[0], 9531 phba->work_status[1]); 9532 port_error = -ENODEV; 9533 break; 9534 } 9535 9536 if (lpfc_pldv_detect && 9537 bf_get(lpfc_sli_intf_sli_family, 9538 &phba->sli4_hba.sli_intf) == 9539 LPFC_SLI_INTF_FAMILY_G6) 9540 pci_write_config_byte(phba->pcidev, 9541 LPFC_SLI_INTF, CFG_PLD); 9542 break; 9543 case LPFC_SLI_INTF_IF_TYPE_1: 9544 default: 9545 break; 9546 } 9547 } 9548 return port_error; 9549 } 9550 9551 /** 9552 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9553 * @phba: pointer to lpfc hba data structure. 9554 * @if_type: The SLI4 interface type getting configured. 9555 * 9556 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9557 * memory map. 9558 **/ 9559 static void 9560 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9561 { 9562 switch (if_type) { 9563 case LPFC_SLI_INTF_IF_TYPE_0: 9564 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9565 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9566 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9567 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9568 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9569 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9570 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9571 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9572 phba->sli4_hba.SLIINTFregaddr = 9573 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9574 break; 9575 case LPFC_SLI_INTF_IF_TYPE_2: 9576 phba->sli4_hba.u.if_type2.EQDregaddr = 9577 phba->sli4_hba.conf_regs_memmap_p + 9578 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9579 phba->sli4_hba.u.if_type2.ERR1regaddr = 9580 phba->sli4_hba.conf_regs_memmap_p + 9581 LPFC_CTL_PORT_ER1_OFFSET; 9582 phba->sli4_hba.u.if_type2.ERR2regaddr = 9583 phba->sli4_hba.conf_regs_memmap_p + 9584 LPFC_CTL_PORT_ER2_OFFSET; 9585 phba->sli4_hba.u.if_type2.CTRLregaddr = 9586 phba->sli4_hba.conf_regs_memmap_p + 9587 LPFC_CTL_PORT_CTL_OFFSET; 9588 phba->sli4_hba.u.if_type2.STATUSregaddr = 9589 phba->sli4_hba.conf_regs_memmap_p + 9590 LPFC_CTL_PORT_STA_OFFSET; 9591 phba->sli4_hba.SLIINTFregaddr = 9592 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9593 phba->sli4_hba.PSMPHRregaddr = 9594 phba->sli4_hba.conf_regs_memmap_p + 9595 LPFC_CTL_PORT_SEM_OFFSET; 9596 phba->sli4_hba.RQDBregaddr = 9597 phba->sli4_hba.conf_regs_memmap_p + 9598 LPFC_ULP0_RQ_DOORBELL; 9599 phba->sli4_hba.WQDBregaddr = 9600 phba->sli4_hba.conf_regs_memmap_p + 9601 LPFC_ULP0_WQ_DOORBELL; 9602 phba->sli4_hba.CQDBregaddr = 9603 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9604 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9605 phba->sli4_hba.MQDBregaddr = 9606 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9607 phba->sli4_hba.BMBXregaddr = 9608 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9609 break; 9610 case LPFC_SLI_INTF_IF_TYPE_6: 9611 phba->sli4_hba.u.if_type2.EQDregaddr = 9612 phba->sli4_hba.conf_regs_memmap_p + 9613 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9614 phba->sli4_hba.u.if_type2.ERR1regaddr = 9615 phba->sli4_hba.conf_regs_memmap_p + 9616 LPFC_CTL_PORT_ER1_OFFSET; 9617 phba->sli4_hba.u.if_type2.ERR2regaddr = 9618 phba->sli4_hba.conf_regs_memmap_p + 9619 LPFC_CTL_PORT_ER2_OFFSET; 9620 phba->sli4_hba.u.if_type2.CTRLregaddr = 9621 phba->sli4_hba.conf_regs_memmap_p + 9622 LPFC_CTL_PORT_CTL_OFFSET; 9623 phba->sli4_hba.u.if_type2.STATUSregaddr = 9624 phba->sli4_hba.conf_regs_memmap_p + 9625 LPFC_CTL_PORT_STA_OFFSET; 9626 phba->sli4_hba.PSMPHRregaddr = 9627 phba->sli4_hba.conf_regs_memmap_p + 9628 LPFC_CTL_PORT_SEM_OFFSET; 9629 phba->sli4_hba.BMBXregaddr = 9630 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9631 break; 9632 case LPFC_SLI_INTF_IF_TYPE_1: 9633 default: 9634 dev_printk(KERN_ERR, &phba->pcidev->dev, 9635 "FATAL - unsupported SLI4 interface type - %d\n", 9636 if_type); 9637 break; 9638 } 9639 } 9640 9641 /** 9642 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9643 * @phba: pointer to lpfc hba data structure. 9644 * @if_type: sli if type to operate on. 9645 * 9646 * This routine is invoked to set up SLI4 BAR1 register memory map. 9647 **/ 9648 static void 9649 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9650 { 9651 switch (if_type) { 9652 case LPFC_SLI_INTF_IF_TYPE_0: 9653 phba->sli4_hba.PSMPHRregaddr = 9654 phba->sli4_hba.ctrl_regs_memmap_p + 9655 LPFC_SLIPORT_IF0_SMPHR; 9656 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9657 LPFC_HST_ISR0; 9658 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9659 LPFC_HST_IMR0; 9660 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9661 LPFC_HST_ISCR0; 9662 break; 9663 case LPFC_SLI_INTF_IF_TYPE_6: 9664 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9665 LPFC_IF6_RQ_DOORBELL; 9666 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9667 LPFC_IF6_WQ_DOORBELL; 9668 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9669 LPFC_IF6_CQ_DOORBELL; 9670 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9671 LPFC_IF6_EQ_DOORBELL; 9672 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9673 LPFC_IF6_MQ_DOORBELL; 9674 break; 9675 case LPFC_SLI_INTF_IF_TYPE_2: 9676 case LPFC_SLI_INTF_IF_TYPE_1: 9677 default: 9678 dev_err(&phba->pcidev->dev, 9679 "FATAL - unsupported SLI4 interface type - %d\n", 9680 if_type); 9681 break; 9682 } 9683 } 9684 9685 /** 9686 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9687 * @phba: pointer to lpfc hba data structure. 9688 * @vf: virtual function number 9689 * 9690 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9691 * based on the given viftual function number, @vf. 9692 * 9693 * Return 0 if successful, otherwise -ENODEV. 9694 **/ 9695 static int 9696 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9697 { 9698 if (vf > LPFC_VIR_FUNC_MAX) 9699 return -ENODEV; 9700 9701 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9702 vf * LPFC_VFR_PAGE_SIZE + 9703 LPFC_ULP0_RQ_DOORBELL); 9704 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9705 vf * LPFC_VFR_PAGE_SIZE + 9706 LPFC_ULP0_WQ_DOORBELL); 9707 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9708 vf * LPFC_VFR_PAGE_SIZE + 9709 LPFC_EQCQ_DOORBELL); 9710 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9711 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9712 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9713 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9714 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9715 return 0; 9716 } 9717 9718 /** 9719 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9720 * @phba: pointer to lpfc hba data structure. 9721 * 9722 * This routine is invoked to create the bootstrap mailbox 9723 * region consistent with the SLI-4 interface spec. This 9724 * routine allocates all memory necessary to communicate 9725 * mailbox commands to the port and sets up all alignment 9726 * needs. No locks are expected to be held when calling 9727 * this routine. 9728 * 9729 * Return codes 9730 * 0 - successful 9731 * -ENOMEM - could not allocated memory. 9732 **/ 9733 static int 9734 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9735 { 9736 uint32_t bmbx_size; 9737 struct lpfc_dmabuf *dmabuf; 9738 struct dma_address *dma_address; 9739 uint32_t pa_addr; 9740 uint64_t phys_addr; 9741 9742 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9743 if (!dmabuf) 9744 return -ENOMEM; 9745 9746 /* 9747 * The bootstrap mailbox region is comprised of 2 parts 9748 * plus an alignment restriction of 16 bytes. 9749 */ 9750 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9751 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9752 &dmabuf->phys, GFP_KERNEL); 9753 if (!dmabuf->virt) { 9754 kfree(dmabuf); 9755 return -ENOMEM; 9756 } 9757 9758 /* 9759 * Initialize the bootstrap mailbox pointers now so that the register 9760 * operations are simple later. The mailbox dma address is required 9761 * to be 16-byte aligned. Also align the virtual memory as each 9762 * maibox is copied into the bmbx mailbox region before issuing the 9763 * command to the port. 9764 */ 9765 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9766 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9767 9768 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9769 LPFC_ALIGN_16_BYTE); 9770 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9771 LPFC_ALIGN_16_BYTE); 9772 9773 /* 9774 * Set the high and low physical addresses now. The SLI4 alignment 9775 * requirement is 16 bytes and the mailbox is posted to the port 9776 * as two 30-bit addresses. The other data is a bit marking whether 9777 * the 30-bit address is the high or low address. 9778 * Upcast bmbx aphys to 64bits so shift instruction compiles 9779 * clean on 32 bit machines. 9780 */ 9781 dma_address = &phba->sli4_hba.bmbx.dma_address; 9782 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9783 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9784 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9785 LPFC_BMBX_BIT1_ADDR_HI); 9786 9787 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9788 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9789 LPFC_BMBX_BIT1_ADDR_LO); 9790 return 0; 9791 } 9792 9793 /** 9794 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9795 * @phba: pointer to lpfc hba data structure. 9796 * 9797 * This routine is invoked to teardown the bootstrap mailbox 9798 * region and release all host resources. This routine requires 9799 * the caller to ensure all mailbox commands recovered, no 9800 * additional mailbox comands are sent, and interrupts are disabled 9801 * before calling this routine. 9802 * 9803 **/ 9804 static void 9805 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9806 { 9807 dma_free_coherent(&phba->pcidev->dev, 9808 phba->sli4_hba.bmbx.bmbx_size, 9809 phba->sli4_hba.bmbx.dmabuf->virt, 9810 phba->sli4_hba.bmbx.dmabuf->phys); 9811 9812 kfree(phba->sli4_hba.bmbx.dmabuf); 9813 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9814 } 9815 9816 static const char * const lpfc_topo_to_str[] = { 9817 "Loop then P2P", 9818 "Loopback", 9819 "P2P Only", 9820 "Unsupported", 9821 "Loop Only", 9822 "Unsupported", 9823 "P2P then Loop", 9824 }; 9825 9826 #define LINK_FLAGS_DEF 0x0 9827 #define LINK_FLAGS_P2P 0x1 9828 #define LINK_FLAGS_LOOP 0x2 9829 /** 9830 * lpfc_map_topology - Map the topology read from READ_CONFIG 9831 * @phba: pointer to lpfc hba data structure. 9832 * @rd_config: pointer to read config data 9833 * 9834 * This routine is invoked to map the topology values as read 9835 * from the read config mailbox command. If the persistent 9836 * topology feature is supported, the firmware will provide the 9837 * saved topology information to be used in INIT_LINK 9838 **/ 9839 static void 9840 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9841 { 9842 u8 ptv, tf, pt; 9843 9844 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9845 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9846 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9847 9848 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9849 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9850 ptv, tf, pt); 9851 if (!ptv) { 9852 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9853 "2019 FW does not support persistent topology " 9854 "Using driver parameter defined value [%s]", 9855 lpfc_topo_to_str[phba->cfg_topology]); 9856 return; 9857 } 9858 /* FW supports persistent topology - override module parameter value */ 9859 set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9860 9861 /* if ASIC_GEN_NUM >= 0xC) */ 9862 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9863 LPFC_SLI_INTF_IF_TYPE_6) || 9864 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9865 LPFC_SLI_INTF_FAMILY_G6)) { 9866 if (!tf) 9867 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9868 ? FLAGS_TOPOLOGY_MODE_LOOP 9869 : FLAGS_TOPOLOGY_MODE_PT_PT); 9870 else 9871 clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); 9872 } else { /* G5 */ 9873 if (tf) 9874 /* If topology failover set - pt is '0' or '1' */ 9875 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9876 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9877 else 9878 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9879 ? FLAGS_TOPOLOGY_MODE_PT_PT 9880 : FLAGS_TOPOLOGY_MODE_LOOP); 9881 } 9882 if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag)) 9883 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9884 "2020 Using persistent topology value [%s]", 9885 lpfc_topo_to_str[phba->cfg_topology]); 9886 else 9887 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9888 "2021 Invalid topology values from FW " 9889 "Using driver parameter defined value [%s]", 9890 lpfc_topo_to_str[phba->cfg_topology]); 9891 } 9892 9893 /** 9894 * lpfc_sli4_read_config - Get the config parameters. 9895 * @phba: pointer to lpfc hba data structure. 9896 * 9897 * This routine is invoked to read the configuration parameters from the HBA. 9898 * The configuration parameters are used to set the base and maximum values 9899 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9900 * allocation for the port. 9901 * 9902 * Return codes 9903 * 0 - successful 9904 * -ENOMEM - No available memory 9905 * -EIO - The mailbox failed to complete successfully. 9906 **/ 9907 int 9908 lpfc_sli4_read_config(struct lpfc_hba *phba) 9909 { 9910 LPFC_MBOXQ_t *pmb; 9911 struct lpfc_mbx_read_config *rd_config; 9912 union lpfc_sli4_cfg_shdr *shdr; 9913 uint32_t shdr_status, shdr_add_status; 9914 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9915 struct lpfc_rsrc_desc_fcfcoe *desc; 9916 char *pdesc_0; 9917 uint16_t forced_link_speed; 9918 uint32_t if_type, qmin, fawwpn; 9919 int length, i, rc = 0, rc2; 9920 9921 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9922 if (!pmb) { 9923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9924 "2011 Unable to allocate memory for issuing " 9925 "SLI_CONFIG_SPECIAL mailbox command\n"); 9926 return -ENOMEM; 9927 } 9928 9929 lpfc_read_config(phba, pmb); 9930 9931 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9932 if (rc != MBX_SUCCESS) { 9933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9934 "2012 Mailbox failed , mbxCmd x%x " 9935 "READ_CONFIG, mbxStatus x%x\n", 9936 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9937 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9938 rc = -EIO; 9939 } else { 9940 rd_config = &pmb->u.mqe.un.rd_config; 9941 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9942 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9943 phba->sli4_hba.lnk_info.lnk_tp = 9944 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9945 phba->sli4_hba.lnk_info.lnk_no = 9946 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9947 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9948 "3081 lnk_type:%d, lnk_numb:%d\n", 9949 phba->sli4_hba.lnk_info.lnk_tp, 9950 phba->sli4_hba.lnk_info.lnk_no); 9951 } else 9952 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9953 "3082 Mailbox (x%x) returned ldv:x0\n", 9954 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9955 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9956 phba->bbcredit_support = 1; 9957 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9958 } 9959 9960 fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); 9961 9962 if (fawwpn) { 9963 lpfc_printf_log(phba, KERN_INFO, 9964 LOG_INIT | LOG_DISCOVERY, 9965 "2702 READ_CONFIG: FA-PWWN is " 9966 "configured on\n"); 9967 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; 9968 } else { 9969 /* Clear FW configured flag, preserve driver flag */ 9970 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG; 9971 } 9972 9973 phba->sli4_hba.conf_trunk = 9974 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9975 phba->sli4_hba.extents_in_use = 9976 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9977 9978 phba->sli4_hba.max_cfg_param.max_xri = 9979 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9980 /* Reduce resource usage in kdump environment */ 9981 if (is_kdump_kernel() && 9982 phba->sli4_hba.max_cfg_param.max_xri > 512) 9983 phba->sli4_hba.max_cfg_param.max_xri = 512; 9984 phba->sli4_hba.max_cfg_param.xri_base = 9985 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9986 phba->sli4_hba.max_cfg_param.max_vpi = 9987 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9988 /* Limit the max we support */ 9989 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9990 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9991 phba->sli4_hba.max_cfg_param.vpi_base = 9992 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9993 phba->sli4_hba.max_cfg_param.max_rpi = 9994 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 9995 phba->sli4_hba.max_cfg_param.rpi_base = 9996 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 9997 phba->sli4_hba.max_cfg_param.max_vfi = 9998 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 9999 phba->sli4_hba.max_cfg_param.vfi_base = 10000 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 10001 phba->sli4_hba.max_cfg_param.max_fcfi = 10002 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 10003 phba->sli4_hba.max_cfg_param.max_eq = 10004 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 10005 phba->sli4_hba.max_cfg_param.max_rq = 10006 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 10007 phba->sli4_hba.max_cfg_param.max_wq = 10008 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 10009 phba->sli4_hba.max_cfg_param.max_cq = 10010 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 10011 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 10012 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 10013 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 10014 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 10015 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 10016 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 10017 phba->max_vports = phba->max_vpi; 10018 10019 /* Next decide on FPIN or Signal E2E CGN support 10020 * For congestion alarms and warnings valid combination are: 10021 * 1. FPIN alarms / FPIN warnings 10022 * 2. Signal alarms / Signal warnings 10023 * 3. FPIN alarms / Signal warnings 10024 * 4. Signal alarms / FPIN warnings 10025 * 10026 * Initialize the adapter frequency to 100 mSecs 10027 */ 10028 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10029 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 10030 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 10031 10032 if (lpfc_use_cgn_signal) { 10033 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 10034 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 10035 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 10036 } 10037 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 10038 /* MUST support both alarm and warning 10039 * because EDC does not support alarm alone. 10040 */ 10041 if (phba->cgn_reg_signal != 10042 EDC_CG_SIG_WARN_ONLY) { 10043 /* Must support both or none */ 10044 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10045 phba->cgn_reg_signal = 10046 EDC_CG_SIG_NOTSUPPORTED; 10047 } else { 10048 phba->cgn_reg_signal = 10049 EDC_CG_SIG_WARN_ALARM; 10050 phba->cgn_reg_fpin = 10051 LPFC_CGN_FPIN_NONE; 10052 } 10053 } 10054 } 10055 10056 /* Set the congestion initial signal and fpin values. */ 10057 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 10058 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 10059 10060 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 10061 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 10062 phba->cgn_reg_signal, phba->cgn_reg_fpin); 10063 10064 lpfc_map_topology(phba, rd_config); 10065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10066 "2003 cfg params Extents? %d " 10067 "XRI(B:%d M:%d), " 10068 "VPI(B:%d M:%d) " 10069 "VFI(B:%d M:%d) " 10070 "RPI(B:%d M:%d) " 10071 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 10072 phba->sli4_hba.extents_in_use, 10073 phba->sli4_hba.max_cfg_param.xri_base, 10074 phba->sli4_hba.max_cfg_param.max_xri, 10075 phba->sli4_hba.max_cfg_param.vpi_base, 10076 phba->sli4_hba.max_cfg_param.max_vpi, 10077 phba->sli4_hba.max_cfg_param.vfi_base, 10078 phba->sli4_hba.max_cfg_param.max_vfi, 10079 phba->sli4_hba.max_cfg_param.rpi_base, 10080 phba->sli4_hba.max_cfg_param.max_rpi, 10081 phba->sli4_hba.max_cfg_param.max_fcfi, 10082 phba->sli4_hba.max_cfg_param.max_eq, 10083 phba->sli4_hba.max_cfg_param.max_cq, 10084 phba->sli4_hba.max_cfg_param.max_wq, 10085 phba->sli4_hba.max_cfg_param.max_rq, 10086 phba->lmt); 10087 10088 /* 10089 * Calculate queue resources based on how 10090 * many WQ/CQ/EQs are available. 10091 */ 10092 qmin = phba->sli4_hba.max_cfg_param.max_wq; 10093 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 10094 qmin = phba->sli4_hba.max_cfg_param.max_cq; 10095 /* 10096 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and 10097 * the remainder can be used for NVME / FCP. 10098 */ 10099 qmin -= 4; 10100 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 10101 qmin = phba->sli4_hba.max_cfg_param.max_eq; 10102 10103 /* Check to see if there is enough for default cfg */ 10104 if ((phba->cfg_irq_chann > qmin) || 10105 (phba->cfg_hdw_queue > qmin)) { 10106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10107 "2005 Reducing Queues - " 10108 "FW resource limitation: " 10109 "WQ %d CQ %d EQ %d: min %d: " 10110 "IRQ %d HDWQ %d\n", 10111 phba->sli4_hba.max_cfg_param.max_wq, 10112 phba->sli4_hba.max_cfg_param.max_cq, 10113 phba->sli4_hba.max_cfg_param.max_eq, 10114 qmin, phba->cfg_irq_chann, 10115 phba->cfg_hdw_queue); 10116 10117 if (phba->cfg_irq_chann > qmin) 10118 phba->cfg_irq_chann = qmin; 10119 if (phba->cfg_hdw_queue > qmin) 10120 phba->cfg_hdw_queue = qmin; 10121 } 10122 } 10123 10124 if (rc) 10125 goto read_cfg_out; 10126 10127 /* Update link speed if forced link speed is supported */ 10128 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10129 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10130 forced_link_speed = 10131 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10132 if (forced_link_speed) { 10133 set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag); 10134 10135 switch (forced_link_speed) { 10136 case LINK_SPEED_1G: 10137 phba->cfg_link_speed = 10138 LPFC_USER_LINK_SPEED_1G; 10139 break; 10140 case LINK_SPEED_2G: 10141 phba->cfg_link_speed = 10142 LPFC_USER_LINK_SPEED_2G; 10143 break; 10144 case LINK_SPEED_4G: 10145 phba->cfg_link_speed = 10146 LPFC_USER_LINK_SPEED_4G; 10147 break; 10148 case LINK_SPEED_8G: 10149 phba->cfg_link_speed = 10150 LPFC_USER_LINK_SPEED_8G; 10151 break; 10152 case LINK_SPEED_10G: 10153 phba->cfg_link_speed = 10154 LPFC_USER_LINK_SPEED_10G; 10155 break; 10156 case LINK_SPEED_16G: 10157 phba->cfg_link_speed = 10158 LPFC_USER_LINK_SPEED_16G; 10159 break; 10160 case LINK_SPEED_32G: 10161 phba->cfg_link_speed = 10162 LPFC_USER_LINK_SPEED_32G; 10163 break; 10164 case LINK_SPEED_64G: 10165 phba->cfg_link_speed = 10166 LPFC_USER_LINK_SPEED_64G; 10167 break; 10168 case 0xffff: 10169 phba->cfg_link_speed = 10170 LPFC_USER_LINK_SPEED_AUTO; 10171 break; 10172 default: 10173 lpfc_printf_log(phba, KERN_ERR, 10174 LOG_TRACE_EVENT, 10175 "0047 Unrecognized link " 10176 "speed : %d\n", 10177 forced_link_speed); 10178 phba->cfg_link_speed = 10179 LPFC_USER_LINK_SPEED_AUTO; 10180 } 10181 } 10182 } 10183 10184 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10185 length = phba->sli4_hba.max_cfg_param.max_xri - 10186 lpfc_sli4_get_els_iocb_cnt(phba); 10187 if (phba->cfg_hba_queue_depth > length) { 10188 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10189 "3361 HBA queue depth changed from %d to %d\n", 10190 phba->cfg_hba_queue_depth, length); 10191 phba->cfg_hba_queue_depth = length; 10192 } 10193 10194 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10195 LPFC_SLI_INTF_IF_TYPE_2) 10196 goto read_cfg_out; 10197 10198 /* get the pf# and vf# for SLI4 if_type 2 port */ 10199 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10200 sizeof(struct lpfc_sli4_cfg_mhdr)); 10201 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10202 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10203 length, LPFC_SLI4_MBX_EMBED); 10204 10205 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10206 shdr = (union lpfc_sli4_cfg_shdr *) 10207 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10210 if (rc2 || shdr_status || shdr_add_status) { 10211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10212 "3026 Mailbox failed , mbxCmd x%x " 10213 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10214 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10215 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10216 goto read_cfg_out; 10217 } 10218 10219 /* search for fc_fcoe resrouce descriptor */ 10220 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10221 10222 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10223 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10224 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10225 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10226 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10227 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10228 goto read_cfg_out; 10229 10230 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10231 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10232 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10233 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10234 phba->sli4_hba.iov.pf_number = 10235 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10236 phba->sli4_hba.iov.vf_number = 10237 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10238 break; 10239 } 10240 } 10241 10242 if (i < LPFC_RSRC_DESC_MAX_NUM) 10243 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10244 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10245 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10246 phba->sli4_hba.iov.vf_number); 10247 else 10248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10249 "3028 GET_FUNCTION_CONFIG: failed to find " 10250 "Resource Descriptor:x%x\n", 10251 LPFC_RSRC_DESC_TYPE_FCFCOE); 10252 10253 read_cfg_out: 10254 mempool_free(pmb, phba->mbox_mem_pool); 10255 return rc; 10256 } 10257 10258 /** 10259 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10260 * @phba: pointer to lpfc hba data structure. 10261 * 10262 * This routine is invoked to setup the port-side endian order when 10263 * the port if_type is 0. This routine has no function for other 10264 * if_types. 10265 * 10266 * Return codes 10267 * 0 - successful 10268 * -ENOMEM - No available memory 10269 * -EIO - The mailbox failed to complete successfully. 10270 **/ 10271 static int 10272 lpfc_setup_endian_order(struct lpfc_hba *phba) 10273 { 10274 LPFC_MBOXQ_t *mboxq; 10275 uint32_t if_type, rc = 0; 10276 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10277 HOST_ENDIAN_HIGH_WORD1}; 10278 10279 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10280 switch (if_type) { 10281 case LPFC_SLI_INTF_IF_TYPE_0: 10282 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10283 GFP_KERNEL); 10284 if (!mboxq) { 10285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10286 "0492 Unable to allocate memory for " 10287 "issuing SLI_CONFIG_SPECIAL mailbox " 10288 "command\n"); 10289 return -ENOMEM; 10290 } 10291 10292 /* 10293 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10294 * two words to contain special data values and no other data. 10295 */ 10296 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10297 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10298 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10299 if (rc != MBX_SUCCESS) { 10300 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10301 "0493 SLI_CONFIG_SPECIAL mailbox " 10302 "failed with status x%x\n", 10303 rc); 10304 rc = -EIO; 10305 } 10306 mempool_free(mboxq, phba->mbox_mem_pool); 10307 break; 10308 case LPFC_SLI_INTF_IF_TYPE_6: 10309 case LPFC_SLI_INTF_IF_TYPE_2: 10310 case LPFC_SLI_INTF_IF_TYPE_1: 10311 default: 10312 break; 10313 } 10314 return rc; 10315 } 10316 10317 /** 10318 * lpfc_sli4_queue_verify - Verify and update EQ counts 10319 * @phba: pointer to lpfc hba data structure. 10320 * 10321 * This routine is invoked to check the user settable queue counts for EQs. 10322 * After this routine is called the counts will be set to valid values that 10323 * adhere to the constraints of the system's interrupt vectors and the port's 10324 * queue resources. 10325 * 10326 * Return codes 10327 * 0 - successful 10328 * -ENOMEM - No available memory 10329 **/ 10330 static int 10331 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10332 { 10333 /* 10334 * Sanity check for configured queue parameters against the run-time 10335 * device parameters 10336 */ 10337 10338 if (phba->nvmet_support) { 10339 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10340 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10341 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10342 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10343 } 10344 10345 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10346 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10347 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10348 phba->cfg_nvmet_mrq); 10349 10350 /* Get EQ depth from module parameter, fake the default for now */ 10351 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10352 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10353 10354 /* Get CQ depth from module parameter, fake the default for now */ 10355 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10356 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10357 return 0; 10358 } 10359 10360 static int 10361 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10362 { 10363 struct lpfc_queue *qdesc; 10364 u32 wqesize; 10365 int cpu; 10366 10367 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10368 /* Create Fast Path IO CQs */ 10369 if (phba->enab_exp_wqcq_pages) 10370 /* Increase the CQ size when WQEs contain an embedded cdb */ 10371 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10372 phba->sli4_hba.cq_esize, 10373 LPFC_CQE_EXP_COUNT, cpu); 10374 10375 else 10376 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10377 phba->sli4_hba.cq_esize, 10378 phba->sli4_hba.cq_ecount, cpu); 10379 if (!qdesc) { 10380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10381 "0499 Failed allocate fast-path IO CQ (%d)\n", 10382 idx); 10383 return 1; 10384 } 10385 qdesc->qe_valid = 1; 10386 qdesc->hdwq = idx; 10387 qdesc->chann = cpu; 10388 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10389 10390 /* Create Fast Path IO WQs */ 10391 if (phba->enab_exp_wqcq_pages) { 10392 /* Increase the WQ size when WQEs contain an embedded cdb */ 10393 wqesize = (phba->fcp_embed_io) ? 10394 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10395 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10396 wqesize, 10397 LPFC_WQE_EXP_COUNT, cpu); 10398 } else 10399 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10400 phba->sli4_hba.wq_esize, 10401 phba->sli4_hba.wq_ecount, cpu); 10402 10403 if (!qdesc) { 10404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10405 "0503 Failed allocate fast-path IO WQ (%d)\n", 10406 idx); 10407 return 1; 10408 } 10409 qdesc->hdwq = idx; 10410 qdesc->chann = cpu; 10411 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10412 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10413 return 0; 10414 } 10415 10416 /** 10417 * lpfc_sli4_queue_create - Create all the SLI4 queues 10418 * @phba: pointer to lpfc hba data structure. 10419 * 10420 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10421 * operation. For each SLI4 queue type, the parameters such as queue entry 10422 * count (queue depth) shall be taken from the module parameter. For now, 10423 * we just use some constant number as place holder. 10424 * 10425 * Return codes 10426 * 0 - successful 10427 * -ENOMEM - No availble memory 10428 * -EIO - The mailbox failed to complete successfully. 10429 **/ 10430 int 10431 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10432 { 10433 struct lpfc_queue *qdesc; 10434 int idx, cpu, eqcpu; 10435 struct lpfc_sli4_hdw_queue *qp; 10436 struct lpfc_vector_map_info *cpup; 10437 struct lpfc_vector_map_info *eqcpup; 10438 struct lpfc_eq_intr_info *eqi; 10439 u32 wqesize; 10440 10441 /* 10442 * Create HBA Record arrays. 10443 * Both NVME and FCP will share that same vectors / EQs 10444 */ 10445 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10446 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10447 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10448 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10449 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10450 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10451 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10452 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10453 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10454 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10455 10456 if (!phba->sli4_hba.hdwq) { 10457 phba->sli4_hba.hdwq = kcalloc( 10458 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10459 GFP_KERNEL); 10460 if (!phba->sli4_hba.hdwq) { 10461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10462 "6427 Failed allocate memory for " 10463 "fast-path Hardware Queue array\n"); 10464 goto out_error; 10465 } 10466 /* Prepare hardware queues to take IO buffers */ 10467 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10468 qp = &phba->sli4_hba.hdwq[idx]; 10469 spin_lock_init(&qp->io_buf_list_get_lock); 10470 spin_lock_init(&qp->io_buf_list_put_lock); 10471 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10472 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10473 qp->get_io_bufs = 0; 10474 qp->put_io_bufs = 0; 10475 qp->total_io_bufs = 0; 10476 spin_lock_init(&qp->abts_io_buf_list_lock); 10477 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10478 qp->abts_scsi_io_bufs = 0; 10479 qp->abts_nvme_io_bufs = 0; 10480 INIT_LIST_HEAD(&qp->sgl_list); 10481 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10482 spin_lock_init(&qp->hdwq_lock); 10483 } 10484 } 10485 10486 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10487 if (phba->nvmet_support) { 10488 phba->sli4_hba.nvmet_cqset = kcalloc( 10489 phba->cfg_nvmet_mrq, 10490 sizeof(struct lpfc_queue *), 10491 GFP_KERNEL); 10492 if (!phba->sli4_hba.nvmet_cqset) { 10493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10494 "3121 Fail allocate memory for " 10495 "fast-path CQ set array\n"); 10496 goto out_error; 10497 } 10498 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10499 phba->cfg_nvmet_mrq, 10500 sizeof(struct lpfc_queue *), 10501 GFP_KERNEL); 10502 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10504 "3122 Fail allocate memory for " 10505 "fast-path RQ set hdr array\n"); 10506 goto out_error; 10507 } 10508 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10509 phba->cfg_nvmet_mrq, 10510 sizeof(struct lpfc_queue *), 10511 GFP_KERNEL); 10512 if (!phba->sli4_hba.nvmet_mrq_data) { 10513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10514 "3124 Fail allocate memory for " 10515 "fast-path RQ set data array\n"); 10516 goto out_error; 10517 } 10518 } 10519 } 10520 10521 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10522 10523 /* Create HBA Event Queues (EQs) */ 10524 for_each_present_cpu(cpu) { 10525 /* We only want to create 1 EQ per vector, even though 10526 * multiple CPUs might be using that vector. so only 10527 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10528 */ 10529 cpup = &phba->sli4_hba.cpu_map[cpu]; 10530 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10531 continue; 10532 10533 /* Get a ptr to the Hardware Queue associated with this CPU */ 10534 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10535 10536 /* Allocate an EQ */ 10537 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10538 phba->sli4_hba.eq_esize, 10539 phba->sli4_hba.eq_ecount, cpu); 10540 if (!qdesc) { 10541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10542 "0497 Failed allocate EQ (%d)\n", 10543 cpup->hdwq); 10544 goto out_error; 10545 } 10546 qdesc->qe_valid = 1; 10547 qdesc->hdwq = cpup->hdwq; 10548 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10549 qdesc->last_cpu = qdesc->chann; 10550 10551 /* Save the allocated EQ in the Hardware Queue */ 10552 qp->hba_eq = qdesc; 10553 10554 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10555 list_add(&qdesc->cpu_list, &eqi->list); 10556 } 10557 10558 /* Now we need to populate the other Hardware Queues, that share 10559 * an IRQ vector, with the associated EQ ptr. 10560 */ 10561 for_each_present_cpu(cpu) { 10562 cpup = &phba->sli4_hba.cpu_map[cpu]; 10563 10564 /* Check for EQ already allocated in previous loop */ 10565 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10566 continue; 10567 10568 /* Check for multiple CPUs per hdwq */ 10569 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10570 if (qp->hba_eq) 10571 continue; 10572 10573 /* We need to share an EQ for this hdwq */ 10574 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10575 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10576 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10577 } 10578 10579 /* Allocate IO Path SLI4 CQ/WQs */ 10580 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10581 if (lpfc_alloc_io_wq_cq(phba, idx)) 10582 goto out_error; 10583 } 10584 10585 if (phba->nvmet_support) { 10586 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10587 cpu = lpfc_find_cpu_handle(phba, idx, 10588 LPFC_FIND_BY_HDWQ); 10589 qdesc = lpfc_sli4_queue_alloc(phba, 10590 LPFC_DEFAULT_PAGE_SIZE, 10591 phba->sli4_hba.cq_esize, 10592 phba->sli4_hba.cq_ecount, 10593 cpu); 10594 if (!qdesc) { 10595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10596 "3142 Failed allocate NVME " 10597 "CQ Set (%d)\n", idx); 10598 goto out_error; 10599 } 10600 qdesc->qe_valid = 1; 10601 qdesc->hdwq = idx; 10602 qdesc->chann = cpu; 10603 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10604 } 10605 } 10606 10607 /* 10608 * Create Slow Path Completion Queues (CQs) 10609 */ 10610 10611 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10612 /* Create slow-path Mailbox Command Complete Queue */ 10613 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10614 phba->sli4_hba.cq_esize, 10615 phba->sli4_hba.cq_ecount, cpu); 10616 if (!qdesc) { 10617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10618 "0500 Failed allocate slow-path mailbox CQ\n"); 10619 goto out_error; 10620 } 10621 qdesc->qe_valid = 1; 10622 phba->sli4_hba.mbx_cq = qdesc; 10623 10624 /* Create slow-path ELS Complete Queue */ 10625 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10626 phba->sli4_hba.cq_esize, 10627 phba->sli4_hba.cq_ecount, cpu); 10628 if (!qdesc) { 10629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10630 "0501 Failed allocate slow-path ELS CQ\n"); 10631 goto out_error; 10632 } 10633 qdesc->qe_valid = 1; 10634 qdesc->chann = cpu; 10635 phba->sli4_hba.els_cq = qdesc; 10636 10637 10638 /* 10639 * Create Slow Path Work Queues (WQs) 10640 */ 10641 10642 /* Create Mailbox Command Queue */ 10643 10644 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10645 phba->sli4_hba.mq_esize, 10646 phba->sli4_hba.mq_ecount, cpu); 10647 if (!qdesc) { 10648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10649 "0505 Failed allocate slow-path MQ\n"); 10650 goto out_error; 10651 } 10652 qdesc->chann = cpu; 10653 phba->sli4_hba.mbx_wq = qdesc; 10654 10655 /* 10656 * Create ELS Work Queues 10657 */ 10658 10659 /* 10660 * Create slow-path ELS Work Queue. 10661 * Increase the ELS WQ size when WQEs contain an embedded cdb 10662 */ 10663 wqesize = (phba->fcp_embed_io) ? 10664 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10665 10666 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10667 wqesize, 10668 phba->sli4_hba.wq_ecount, cpu); 10669 if (!qdesc) { 10670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10671 "0504 Failed allocate slow-path ELS WQ\n"); 10672 goto out_error; 10673 } 10674 qdesc->chann = cpu; 10675 phba->sli4_hba.els_wq = qdesc; 10676 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10677 10678 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10679 /* Create NVME LS Complete Queue */ 10680 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10681 phba->sli4_hba.cq_esize, 10682 phba->sli4_hba.cq_ecount, cpu); 10683 if (!qdesc) { 10684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10685 "6079 Failed allocate NVME LS CQ\n"); 10686 goto out_error; 10687 } 10688 qdesc->chann = cpu; 10689 qdesc->qe_valid = 1; 10690 phba->sli4_hba.nvmels_cq = qdesc; 10691 10692 /* Create NVME LS Work Queue */ 10693 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10694 phba->sli4_hba.wq_esize, 10695 phba->sli4_hba.wq_ecount, cpu); 10696 if (!qdesc) { 10697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10698 "6080 Failed allocate NVME LS WQ\n"); 10699 goto out_error; 10700 } 10701 qdesc->chann = cpu; 10702 phba->sli4_hba.nvmels_wq = qdesc; 10703 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10704 } 10705 10706 /* 10707 * Create Receive Queue (RQ) 10708 */ 10709 10710 /* Create Receive Queue for header */ 10711 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10712 phba->sli4_hba.rq_esize, 10713 phba->sli4_hba.rq_ecount, cpu); 10714 if (!qdesc) { 10715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10716 "0506 Failed allocate receive HRQ\n"); 10717 goto out_error; 10718 } 10719 phba->sli4_hba.hdr_rq = qdesc; 10720 10721 /* Create Receive Queue for data */ 10722 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10723 phba->sli4_hba.rq_esize, 10724 phba->sli4_hba.rq_ecount, cpu); 10725 if (!qdesc) { 10726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10727 "0507 Failed allocate receive DRQ\n"); 10728 goto out_error; 10729 } 10730 phba->sli4_hba.dat_rq = qdesc; 10731 10732 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10733 phba->nvmet_support) { 10734 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10735 cpu = lpfc_find_cpu_handle(phba, idx, 10736 LPFC_FIND_BY_HDWQ); 10737 /* Create NVMET Receive Queue for header */ 10738 qdesc = lpfc_sli4_queue_alloc(phba, 10739 LPFC_DEFAULT_PAGE_SIZE, 10740 phba->sli4_hba.rq_esize, 10741 LPFC_NVMET_RQE_DEF_COUNT, 10742 cpu); 10743 if (!qdesc) { 10744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10745 "3146 Failed allocate " 10746 "receive HRQ\n"); 10747 goto out_error; 10748 } 10749 qdesc->hdwq = idx; 10750 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10751 10752 /* Only needed for header of RQ pair */ 10753 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10754 GFP_KERNEL, 10755 cpu_to_node(cpu)); 10756 if (qdesc->rqbp == NULL) { 10757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10758 "6131 Failed allocate " 10759 "Header RQBP\n"); 10760 goto out_error; 10761 } 10762 10763 /* Put list in known state in case driver load fails. */ 10764 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10765 10766 /* Create NVMET Receive Queue for data */ 10767 qdesc = lpfc_sli4_queue_alloc(phba, 10768 LPFC_DEFAULT_PAGE_SIZE, 10769 phba->sli4_hba.rq_esize, 10770 LPFC_NVMET_RQE_DEF_COUNT, 10771 cpu); 10772 if (!qdesc) { 10773 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10774 "3156 Failed allocate " 10775 "receive DRQ\n"); 10776 goto out_error; 10777 } 10778 qdesc->hdwq = idx; 10779 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10780 } 10781 } 10782 10783 /* Clear NVME stats */ 10784 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10785 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10786 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10787 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10788 } 10789 } 10790 10791 /* Clear SCSI stats */ 10792 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10793 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10794 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10795 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10796 } 10797 } 10798 10799 return 0; 10800 10801 out_error: 10802 lpfc_sli4_queue_destroy(phba); 10803 return -ENOMEM; 10804 } 10805 10806 static inline void 10807 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10808 { 10809 if (*qp != NULL) { 10810 lpfc_sli4_queue_free(*qp); 10811 *qp = NULL; 10812 } 10813 } 10814 10815 static inline void 10816 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10817 { 10818 int idx; 10819 10820 if (*qs == NULL) 10821 return; 10822 10823 for (idx = 0; idx < max; idx++) 10824 __lpfc_sli4_release_queue(&(*qs)[idx]); 10825 10826 kfree(*qs); 10827 *qs = NULL; 10828 } 10829 10830 static inline void 10831 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10832 { 10833 struct lpfc_sli4_hdw_queue *hdwq; 10834 struct lpfc_queue *eq; 10835 uint32_t idx; 10836 10837 hdwq = phba->sli4_hba.hdwq; 10838 10839 /* Loop thru all Hardware Queues */ 10840 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10841 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10842 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10843 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10844 hdwq[idx].hba_eq = NULL; 10845 hdwq[idx].io_cq = NULL; 10846 hdwq[idx].io_wq = NULL; 10847 if (phba->cfg_xpsgl && !phba->nvmet_support) 10848 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10849 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10850 } 10851 /* Loop thru all IRQ vectors */ 10852 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10853 /* Free the EQ corresponding to the IRQ vector */ 10854 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10855 lpfc_sli4_queue_free(eq); 10856 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10857 } 10858 } 10859 10860 /** 10861 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10862 * @phba: pointer to lpfc hba data structure. 10863 * 10864 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10865 * operation. 10866 * 10867 * Return codes 10868 * 0 - successful 10869 * -ENOMEM - No available memory 10870 * -EIO - The mailbox failed to complete successfully. 10871 **/ 10872 void 10873 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10874 { 10875 /* 10876 * Set FREE_INIT before beginning to free the queues. 10877 * Wait until the users of queues to acknowledge to 10878 * release queues by clearing FREE_WAIT. 10879 */ 10880 spin_lock_irq(&phba->hbalock); 10881 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10882 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10883 spin_unlock_irq(&phba->hbalock); 10884 msleep(20); 10885 spin_lock_irq(&phba->hbalock); 10886 } 10887 spin_unlock_irq(&phba->hbalock); 10888 10889 lpfc_sli4_cleanup_poll_list(phba); 10890 10891 /* Release HBA eqs */ 10892 if (phba->sli4_hba.hdwq) 10893 lpfc_sli4_release_hdwq(phba); 10894 10895 if (phba->nvmet_support) { 10896 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10897 phba->cfg_nvmet_mrq); 10898 10899 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10900 phba->cfg_nvmet_mrq); 10901 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10902 phba->cfg_nvmet_mrq); 10903 } 10904 10905 /* Release mailbox command work queue */ 10906 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10907 10908 /* Release ELS work queue */ 10909 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10910 10911 /* Release ELS work queue */ 10912 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10913 10914 /* Release unsolicited receive queue */ 10915 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10916 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10917 10918 /* Release ELS complete queue */ 10919 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10920 10921 /* Release NVME LS complete queue */ 10922 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10923 10924 /* Release mailbox command complete queue */ 10925 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10926 10927 /* Everything on this list has been freed */ 10928 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10929 10930 /* Done with freeing the queues */ 10931 spin_lock_irq(&phba->hbalock); 10932 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10933 spin_unlock_irq(&phba->hbalock); 10934 } 10935 10936 int 10937 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10938 { 10939 struct lpfc_rqb *rqbp; 10940 struct lpfc_dmabuf *h_buf; 10941 struct rqb_dmabuf *rqb_buffer; 10942 10943 rqbp = rq->rqbp; 10944 while (!list_empty(&rqbp->rqb_buffer_list)) { 10945 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10946 struct lpfc_dmabuf, list); 10947 10948 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10949 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10950 rqbp->buffer_count--; 10951 } 10952 return 1; 10953 } 10954 10955 static int 10956 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10957 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10958 int qidx, uint32_t qtype) 10959 { 10960 struct lpfc_sli_ring *pring; 10961 int rc; 10962 10963 if (!eq || !cq || !wq) { 10964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10965 "6085 Fast-path %s (%d) not allocated\n", 10966 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10967 return -ENOMEM; 10968 } 10969 10970 /* create the Cq first */ 10971 rc = lpfc_cq_create(phba, cq, eq, 10972 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10973 if (rc) { 10974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10975 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10976 qidx, (uint32_t)rc); 10977 return rc; 10978 } 10979 10980 if (qtype != LPFC_MBOX) { 10981 /* Setup cq_map for fast lookup */ 10982 if (cq_map) 10983 *cq_map = cq->queue_id; 10984 10985 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10986 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10987 qidx, cq->queue_id, qidx, eq->queue_id); 10988 10989 /* create the wq */ 10990 rc = lpfc_wq_create(phba, wq, cq, qtype); 10991 if (rc) { 10992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10993 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10994 qidx, (uint32_t)rc); 10995 /* no need to tear down cq - caller will do so */ 10996 return rc; 10997 } 10998 10999 /* Bind this CQ/WQ to the NVME ring */ 11000 pring = wq->pring; 11001 pring->sli.sli4.wqp = (void *)wq; 11002 cq->pring = pring; 11003 11004 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11005 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 11006 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 11007 } else { 11008 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 11009 if (rc) { 11010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11011 "0539 Failed setup of slow-path MQ: " 11012 "rc = 0x%x\n", rc); 11013 /* no need to tear down cq - caller will do so */ 11014 return rc; 11015 } 11016 11017 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11018 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 11019 phba->sli4_hba.mbx_wq->queue_id, 11020 phba->sli4_hba.mbx_cq->queue_id); 11021 } 11022 11023 return 0; 11024 } 11025 11026 /** 11027 * lpfc_setup_cq_lookup - Setup the CQ lookup table 11028 * @phba: pointer to lpfc hba data structure. 11029 * 11030 * This routine will populate the cq_lookup table by all 11031 * available CQ queue_id's. 11032 **/ 11033 static void 11034 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 11035 { 11036 struct lpfc_queue *eq, *childq; 11037 int qidx; 11038 11039 memset(phba->sli4_hba.cq_lookup, 0, 11040 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 11041 /* Loop thru all IRQ vectors */ 11042 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11043 /* Get the EQ corresponding to the IRQ vector */ 11044 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11045 if (!eq) 11046 continue; 11047 /* Loop through all CQs associated with that EQ */ 11048 list_for_each_entry(childq, &eq->child_list, list) { 11049 if (childq->queue_id > phba->sli4_hba.cq_max) 11050 continue; 11051 if (childq->subtype == LPFC_IO) 11052 phba->sli4_hba.cq_lookup[childq->queue_id] = 11053 childq; 11054 } 11055 } 11056 } 11057 11058 /** 11059 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 11060 * @phba: pointer to lpfc hba data structure. 11061 * 11062 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 11063 * operation. 11064 * 11065 * Return codes 11066 * 0 - successful 11067 * -ENOMEM - No available memory 11068 * -EIO - The mailbox failed to complete successfully. 11069 **/ 11070 int 11071 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 11072 { 11073 uint32_t shdr_status, shdr_add_status; 11074 union lpfc_sli4_cfg_shdr *shdr; 11075 struct lpfc_vector_map_info *cpup; 11076 struct lpfc_sli4_hdw_queue *qp; 11077 LPFC_MBOXQ_t *mboxq; 11078 int qidx, cpu; 11079 uint32_t length, usdelay; 11080 int rc = -ENOMEM; 11081 11082 /* Check for dual-ULP support */ 11083 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11084 if (!mboxq) { 11085 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11086 "3249 Unable to allocate memory for " 11087 "QUERY_FW_CFG mailbox command\n"); 11088 return -ENOMEM; 11089 } 11090 length = (sizeof(struct lpfc_mbx_query_fw_config) - 11091 sizeof(struct lpfc_sli4_cfg_mhdr)); 11092 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11093 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 11094 length, LPFC_SLI4_MBX_EMBED); 11095 11096 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11097 11098 shdr = (union lpfc_sli4_cfg_shdr *) 11099 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11100 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11101 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 11102 if (shdr_status || shdr_add_status || rc) { 11103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11104 "3250 QUERY_FW_CFG mailbox failed with status " 11105 "x%x add_status x%x, mbx status x%x\n", 11106 shdr_status, shdr_add_status, rc); 11107 mempool_free(mboxq, phba->mbox_mem_pool); 11108 rc = -ENXIO; 11109 goto out_error; 11110 } 11111 11112 phba->sli4_hba.fw_func_mode = 11113 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11114 phba->sli4_hba.physical_port = 11115 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11116 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11117 "3251 QUERY_FW_CFG: func_mode:x%x\n", 11118 phba->sli4_hba.fw_func_mode); 11119 11120 mempool_free(mboxq, phba->mbox_mem_pool); 11121 11122 /* 11123 * Set up HBA Event Queues (EQs) 11124 */ 11125 qp = phba->sli4_hba.hdwq; 11126 11127 /* Set up HBA event queue */ 11128 if (!qp) { 11129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11130 "3147 Fast-path EQs not allocated\n"); 11131 rc = -ENOMEM; 11132 goto out_error; 11133 } 11134 11135 /* Loop thru all IRQ vectors */ 11136 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11137 /* Create HBA Event Queues (EQs) in order */ 11138 for_each_present_cpu(cpu) { 11139 cpup = &phba->sli4_hba.cpu_map[cpu]; 11140 11141 /* Look for the CPU thats using that vector with 11142 * LPFC_CPU_FIRST_IRQ set. 11143 */ 11144 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11145 continue; 11146 if (qidx != cpup->eq) 11147 continue; 11148 11149 /* Create an EQ for that vector */ 11150 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11151 phba->cfg_fcp_imax); 11152 if (rc) { 11153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11154 "0523 Failed setup of fast-path" 11155 " EQ (%d), rc = 0x%x\n", 11156 cpup->eq, (uint32_t)rc); 11157 goto out_destroy; 11158 } 11159 11160 /* Save the EQ for that vector in the hba_eq_hdl */ 11161 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11162 qp[cpup->hdwq].hba_eq; 11163 11164 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11165 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11166 cpup->eq, 11167 qp[cpup->hdwq].hba_eq->queue_id); 11168 } 11169 } 11170 11171 /* Loop thru all Hardware Queues */ 11172 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11173 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11174 cpup = &phba->sli4_hba.cpu_map[cpu]; 11175 11176 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11177 rc = lpfc_create_wq_cq(phba, 11178 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11179 qp[qidx].io_cq, 11180 qp[qidx].io_wq, 11181 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11182 qidx, 11183 LPFC_IO); 11184 if (rc) { 11185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11186 "0535 Failed to setup fastpath " 11187 "IO WQ/CQ (%d), rc = 0x%x\n", 11188 qidx, (uint32_t)rc); 11189 goto out_destroy; 11190 } 11191 } 11192 11193 /* 11194 * Set up Slow Path Complete Queues (CQs) 11195 */ 11196 11197 /* Set up slow-path MBOX CQ/MQ */ 11198 11199 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11201 "0528 %s not allocated\n", 11202 phba->sli4_hba.mbx_cq ? 11203 "Mailbox WQ" : "Mailbox CQ"); 11204 rc = -ENOMEM; 11205 goto out_destroy; 11206 } 11207 11208 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11209 phba->sli4_hba.mbx_cq, 11210 phba->sli4_hba.mbx_wq, 11211 NULL, 0, LPFC_MBOX); 11212 if (rc) { 11213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11214 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11215 (uint32_t)rc); 11216 goto out_destroy; 11217 } 11218 if (phba->nvmet_support) { 11219 if (!phba->sli4_hba.nvmet_cqset) { 11220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11221 "3165 Fast-path NVME CQ Set " 11222 "array not allocated\n"); 11223 rc = -ENOMEM; 11224 goto out_destroy; 11225 } 11226 if (phba->cfg_nvmet_mrq > 1) { 11227 rc = lpfc_cq_create_set(phba, 11228 phba->sli4_hba.nvmet_cqset, 11229 qp, 11230 LPFC_WCQ, LPFC_NVMET); 11231 if (rc) { 11232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11233 "3164 Failed setup of NVME CQ " 11234 "Set, rc = 0x%x\n", 11235 (uint32_t)rc); 11236 goto out_destroy; 11237 } 11238 } else { 11239 /* Set up NVMET Receive Complete Queue */ 11240 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11241 qp[0].hba_eq, 11242 LPFC_WCQ, LPFC_NVMET); 11243 if (rc) { 11244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11245 "6089 Failed setup NVMET CQ: " 11246 "rc = 0x%x\n", (uint32_t)rc); 11247 goto out_destroy; 11248 } 11249 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11250 11251 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11252 "6090 NVMET CQ setup: cq-id=%d, " 11253 "parent eq-id=%d\n", 11254 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11255 qp[0].hba_eq->queue_id); 11256 } 11257 } 11258 11259 /* Set up slow-path ELS WQ/CQ */ 11260 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11262 "0530 ELS %s not allocated\n", 11263 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11264 rc = -ENOMEM; 11265 goto out_destroy; 11266 } 11267 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11268 phba->sli4_hba.els_cq, 11269 phba->sli4_hba.els_wq, 11270 NULL, 0, LPFC_ELS); 11271 if (rc) { 11272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11273 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11274 (uint32_t)rc); 11275 goto out_destroy; 11276 } 11277 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11278 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11279 phba->sli4_hba.els_wq->queue_id, 11280 phba->sli4_hba.els_cq->queue_id); 11281 11282 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11283 /* Set up NVME LS Complete Queue */ 11284 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11286 "6091 LS %s not allocated\n", 11287 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11288 rc = -ENOMEM; 11289 goto out_destroy; 11290 } 11291 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11292 phba->sli4_hba.nvmels_cq, 11293 phba->sli4_hba.nvmels_wq, 11294 NULL, 0, LPFC_NVME_LS); 11295 if (rc) { 11296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11297 "0526 Failed setup of NVVME LS WQ/CQ: " 11298 "rc = 0x%x\n", (uint32_t)rc); 11299 goto out_destroy; 11300 } 11301 11302 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11303 "6096 ELS WQ setup: wq-id=%d, " 11304 "parent cq-id=%d\n", 11305 phba->sli4_hba.nvmels_wq->queue_id, 11306 phba->sli4_hba.nvmels_cq->queue_id); 11307 } 11308 11309 /* 11310 * Create NVMET Receive Queue (RQ) 11311 */ 11312 if (phba->nvmet_support) { 11313 if ((!phba->sli4_hba.nvmet_cqset) || 11314 (!phba->sli4_hba.nvmet_mrq_hdr) || 11315 (!phba->sli4_hba.nvmet_mrq_data)) { 11316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11317 "6130 MRQ CQ Queues not " 11318 "allocated\n"); 11319 rc = -ENOMEM; 11320 goto out_destroy; 11321 } 11322 if (phba->cfg_nvmet_mrq > 1) { 11323 rc = lpfc_mrq_create(phba, 11324 phba->sli4_hba.nvmet_mrq_hdr, 11325 phba->sli4_hba.nvmet_mrq_data, 11326 phba->sli4_hba.nvmet_cqset, 11327 LPFC_NVMET); 11328 if (rc) { 11329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11330 "6098 Failed setup of NVMET " 11331 "MRQ: rc = 0x%x\n", 11332 (uint32_t)rc); 11333 goto out_destroy; 11334 } 11335 11336 } else { 11337 rc = lpfc_rq_create(phba, 11338 phba->sli4_hba.nvmet_mrq_hdr[0], 11339 phba->sli4_hba.nvmet_mrq_data[0], 11340 phba->sli4_hba.nvmet_cqset[0], 11341 LPFC_NVMET); 11342 if (rc) { 11343 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11344 "6057 Failed setup of NVMET " 11345 "Receive Queue: rc = 0x%x\n", 11346 (uint32_t)rc); 11347 goto out_destroy; 11348 } 11349 11350 lpfc_printf_log( 11351 phba, KERN_INFO, LOG_INIT, 11352 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11353 "dat-rq-id=%d parent cq-id=%d\n", 11354 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11355 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11356 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11357 11358 } 11359 } 11360 11361 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11363 "0540 Receive Queue not allocated\n"); 11364 rc = -ENOMEM; 11365 goto out_destroy; 11366 } 11367 11368 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11369 phba->sli4_hba.els_cq, LPFC_USOL); 11370 if (rc) { 11371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11372 "0541 Failed setup of Receive Queue: " 11373 "rc = 0x%x\n", (uint32_t)rc); 11374 goto out_destroy; 11375 } 11376 11377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11378 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11379 "parent cq-id=%d\n", 11380 phba->sli4_hba.hdr_rq->queue_id, 11381 phba->sli4_hba.dat_rq->queue_id, 11382 phba->sli4_hba.els_cq->queue_id); 11383 11384 if (phba->cfg_fcp_imax) 11385 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11386 else 11387 usdelay = 0; 11388 11389 for (qidx = 0; qidx < phba->cfg_irq_chann; 11390 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11391 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11392 usdelay); 11393 11394 if (phba->sli4_hba.cq_max) { 11395 kfree(phba->sli4_hba.cq_lookup); 11396 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11397 sizeof(struct lpfc_queue *), GFP_KERNEL); 11398 if (!phba->sli4_hba.cq_lookup) { 11399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11400 "0549 Failed setup of CQ Lookup table: " 11401 "size 0x%x\n", phba->sli4_hba.cq_max); 11402 rc = -ENOMEM; 11403 goto out_destroy; 11404 } 11405 lpfc_setup_cq_lookup(phba); 11406 } 11407 return 0; 11408 11409 out_destroy: 11410 lpfc_sli4_queue_unset(phba); 11411 out_error: 11412 return rc; 11413 } 11414 11415 /** 11416 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11417 * @phba: pointer to lpfc hba data structure. 11418 * 11419 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11420 * operation. 11421 * 11422 * Return codes 11423 * 0 - successful 11424 * -ENOMEM - No available memory 11425 * -EIO - The mailbox failed to complete successfully. 11426 **/ 11427 void 11428 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11429 { 11430 struct lpfc_sli4_hdw_queue *qp; 11431 struct lpfc_queue *eq; 11432 int qidx; 11433 11434 /* Unset mailbox command work queue */ 11435 if (phba->sli4_hba.mbx_wq) 11436 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11437 11438 /* Unset NVME LS work queue */ 11439 if (phba->sli4_hba.nvmels_wq) 11440 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11441 11442 /* Unset ELS work queue */ 11443 if (phba->sli4_hba.els_wq) 11444 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11445 11446 /* Unset unsolicited receive queue */ 11447 if (phba->sli4_hba.hdr_rq) 11448 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11449 phba->sli4_hba.dat_rq); 11450 11451 /* Unset mailbox command complete queue */ 11452 if (phba->sli4_hba.mbx_cq) 11453 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11454 11455 /* Unset ELS complete queue */ 11456 if (phba->sli4_hba.els_cq) 11457 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11458 11459 /* Unset NVME LS complete queue */ 11460 if (phba->sli4_hba.nvmels_cq) 11461 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11462 11463 if (phba->nvmet_support) { 11464 /* Unset NVMET MRQ queue */ 11465 if (phba->sli4_hba.nvmet_mrq_hdr) { 11466 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11467 lpfc_rq_destroy( 11468 phba, 11469 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11470 phba->sli4_hba.nvmet_mrq_data[qidx]); 11471 } 11472 11473 /* Unset NVMET CQ Set complete queue */ 11474 if (phba->sli4_hba.nvmet_cqset) { 11475 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11476 lpfc_cq_destroy( 11477 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11478 } 11479 } 11480 11481 /* Unset fast-path SLI4 queues */ 11482 if (phba->sli4_hba.hdwq) { 11483 /* Loop thru all Hardware Queues */ 11484 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11485 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11486 qp = &phba->sli4_hba.hdwq[qidx]; 11487 lpfc_wq_destroy(phba, qp->io_wq); 11488 lpfc_cq_destroy(phba, qp->io_cq); 11489 } 11490 /* Loop thru all IRQ vectors */ 11491 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11492 /* Destroy the EQ corresponding to the IRQ vector */ 11493 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11494 lpfc_eq_destroy(phba, eq); 11495 } 11496 } 11497 11498 kfree(phba->sli4_hba.cq_lookup); 11499 phba->sli4_hba.cq_lookup = NULL; 11500 phba->sli4_hba.cq_max = 0; 11501 } 11502 11503 /** 11504 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11505 * @phba: pointer to lpfc hba data structure. 11506 * 11507 * This routine is invoked to allocate and set up a pool of completion queue 11508 * events. The body of the completion queue event is a completion queue entry 11509 * CQE. For now, this pool is used for the interrupt service routine to queue 11510 * the following HBA completion queue events for the worker thread to process: 11511 * - Mailbox asynchronous events 11512 * - Receive queue completion unsolicited events 11513 * Later, this can be used for all the slow-path events. 11514 * 11515 * Return codes 11516 * 0 - successful 11517 * -ENOMEM - No available memory 11518 **/ 11519 static int 11520 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11521 { 11522 struct lpfc_cq_event *cq_event; 11523 int i; 11524 11525 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11526 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11527 if (!cq_event) 11528 goto out_pool_create_fail; 11529 list_add_tail(&cq_event->list, 11530 &phba->sli4_hba.sp_cqe_event_pool); 11531 } 11532 return 0; 11533 11534 out_pool_create_fail: 11535 lpfc_sli4_cq_event_pool_destroy(phba); 11536 return -ENOMEM; 11537 } 11538 11539 /** 11540 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11541 * @phba: pointer to lpfc hba data structure. 11542 * 11543 * This routine is invoked to free the pool of completion queue events at 11544 * driver unload time. Note that, it is the responsibility of the driver 11545 * cleanup routine to free all the outstanding completion-queue events 11546 * allocated from this pool back into the pool before invoking this routine 11547 * to destroy the pool. 11548 **/ 11549 static void 11550 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11551 { 11552 struct lpfc_cq_event *cq_event, *next_cq_event; 11553 11554 list_for_each_entry_safe(cq_event, next_cq_event, 11555 &phba->sli4_hba.sp_cqe_event_pool, list) { 11556 list_del(&cq_event->list); 11557 kfree(cq_event); 11558 } 11559 } 11560 11561 /** 11562 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11563 * @phba: pointer to lpfc hba data structure. 11564 * 11565 * This routine is the lock free version of the API invoked to allocate a 11566 * completion-queue event from the free pool. 11567 * 11568 * Return: Pointer to the newly allocated completion-queue event if successful 11569 * NULL otherwise. 11570 **/ 11571 struct lpfc_cq_event * 11572 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11573 { 11574 struct lpfc_cq_event *cq_event = NULL; 11575 11576 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11577 struct lpfc_cq_event, list); 11578 return cq_event; 11579 } 11580 11581 /** 11582 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11583 * @phba: pointer to lpfc hba data structure. 11584 * 11585 * This routine is the lock version of the API invoked to allocate a 11586 * completion-queue event from the free pool. 11587 * 11588 * Return: Pointer to the newly allocated completion-queue event if successful 11589 * NULL otherwise. 11590 **/ 11591 struct lpfc_cq_event * 11592 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11593 { 11594 struct lpfc_cq_event *cq_event; 11595 unsigned long iflags; 11596 11597 spin_lock_irqsave(&phba->hbalock, iflags); 11598 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11599 spin_unlock_irqrestore(&phba->hbalock, iflags); 11600 return cq_event; 11601 } 11602 11603 /** 11604 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11605 * @phba: pointer to lpfc hba data structure. 11606 * @cq_event: pointer to the completion queue event to be freed. 11607 * 11608 * This routine is the lock free version of the API invoked to release a 11609 * completion-queue event back into the free pool. 11610 **/ 11611 void 11612 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11613 struct lpfc_cq_event *cq_event) 11614 { 11615 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11616 } 11617 11618 /** 11619 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11620 * @phba: pointer to lpfc hba data structure. 11621 * @cq_event: pointer to the completion queue event to be freed. 11622 * 11623 * This routine is the lock version of the API invoked to release a 11624 * completion-queue event back into the free pool. 11625 **/ 11626 void 11627 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11628 struct lpfc_cq_event *cq_event) 11629 { 11630 unsigned long iflags; 11631 spin_lock_irqsave(&phba->hbalock, iflags); 11632 __lpfc_sli4_cq_event_release(phba, cq_event); 11633 spin_unlock_irqrestore(&phba->hbalock, iflags); 11634 } 11635 11636 /** 11637 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11638 * @phba: pointer to lpfc hba data structure. 11639 * 11640 * This routine is to free all the pending completion-queue events to the 11641 * back into the free pool for device reset. 11642 **/ 11643 static void 11644 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11645 { 11646 LIST_HEAD(cq_event_list); 11647 struct lpfc_cq_event *cq_event; 11648 unsigned long iflags; 11649 11650 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11651 11652 /* Pending ELS XRI abort events */ 11653 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11654 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11655 &cq_event_list); 11656 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11657 11658 /* Pending asynnc events */ 11659 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11660 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11661 &cq_event_list); 11662 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11663 11664 while (!list_empty(&cq_event_list)) { 11665 list_remove_head(&cq_event_list, cq_event, 11666 struct lpfc_cq_event, list); 11667 lpfc_sli4_cq_event_release(phba, cq_event); 11668 } 11669 } 11670 11671 /** 11672 * lpfc_pci_function_reset - Reset pci function. 11673 * @phba: pointer to lpfc hba data structure. 11674 * 11675 * This routine is invoked to request a PCI function reset. It will destroys 11676 * all resources assigned to the PCI function which originates this request. 11677 * 11678 * Return codes 11679 * 0 - successful 11680 * -ENOMEM - No available memory 11681 * -EIO - The mailbox failed to complete successfully. 11682 **/ 11683 int 11684 lpfc_pci_function_reset(struct lpfc_hba *phba) 11685 { 11686 LPFC_MBOXQ_t *mboxq; 11687 uint32_t rc = 0, if_type; 11688 uint32_t shdr_status, shdr_add_status; 11689 uint32_t rdy_chk; 11690 uint32_t port_reset = 0; 11691 union lpfc_sli4_cfg_shdr *shdr; 11692 struct lpfc_register reg_data; 11693 uint16_t devid; 11694 11695 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11696 switch (if_type) { 11697 case LPFC_SLI_INTF_IF_TYPE_0: 11698 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11699 GFP_KERNEL); 11700 if (!mboxq) { 11701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11702 "0494 Unable to allocate memory for " 11703 "issuing SLI_FUNCTION_RESET mailbox " 11704 "command\n"); 11705 return -ENOMEM; 11706 } 11707 11708 /* Setup PCI function reset mailbox-ioctl command */ 11709 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11710 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11711 LPFC_SLI4_MBX_EMBED); 11712 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11713 shdr = (union lpfc_sli4_cfg_shdr *) 11714 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11715 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11716 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11717 &shdr->response); 11718 mempool_free(mboxq, phba->mbox_mem_pool); 11719 if (shdr_status || shdr_add_status || rc) { 11720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11721 "0495 SLI_FUNCTION_RESET mailbox " 11722 "failed with status x%x add_status x%x," 11723 " mbx status x%x\n", 11724 shdr_status, shdr_add_status, rc); 11725 rc = -ENXIO; 11726 } 11727 break; 11728 case LPFC_SLI_INTF_IF_TYPE_2: 11729 case LPFC_SLI_INTF_IF_TYPE_6: 11730 wait: 11731 /* 11732 * Poll the Port Status Register and wait for RDY for 11733 * up to 30 seconds. If the port doesn't respond, treat 11734 * it as an error. 11735 */ 11736 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11737 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11738 STATUSregaddr, ®_data.word0)) { 11739 rc = -ENODEV; 11740 goto out; 11741 } 11742 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11743 break; 11744 msleep(20); 11745 } 11746 11747 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11748 phba->work_status[0] = readl( 11749 phba->sli4_hba.u.if_type2.ERR1regaddr); 11750 phba->work_status[1] = readl( 11751 phba->sli4_hba.u.if_type2.ERR2regaddr); 11752 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11753 "2890 Port not ready, port status reg " 11754 "0x%x error 1=0x%x, error 2=0x%x\n", 11755 reg_data.word0, 11756 phba->work_status[0], 11757 phba->work_status[1]); 11758 rc = -ENODEV; 11759 goto out; 11760 } 11761 11762 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11763 lpfc_pldv_detect = true; 11764 11765 if (!port_reset) { 11766 /* 11767 * Reset the port now 11768 */ 11769 reg_data.word0 = 0; 11770 bf_set(lpfc_sliport_ctrl_end, ®_data, 11771 LPFC_SLIPORT_LITTLE_ENDIAN); 11772 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11773 LPFC_SLIPORT_INIT_PORT); 11774 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11775 CTRLregaddr); 11776 /* flush */ 11777 pci_read_config_word(phba->pcidev, 11778 PCI_DEVICE_ID, &devid); 11779 11780 port_reset = 1; 11781 msleep(20); 11782 goto wait; 11783 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11784 rc = -ENODEV; 11785 goto out; 11786 } 11787 break; 11788 11789 case LPFC_SLI_INTF_IF_TYPE_1: 11790 default: 11791 break; 11792 } 11793 11794 out: 11795 /* Catch the not-ready port failure after a port reset. */ 11796 if (rc) { 11797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11798 "3317 HBA not functional: IP Reset Failed " 11799 "try: echo fw_reset > board_mode\n"); 11800 rc = -ENODEV; 11801 } 11802 11803 return rc; 11804 } 11805 11806 /** 11807 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11808 * @phba: pointer to lpfc hba data structure. 11809 * 11810 * This routine is invoked to set up the PCI device memory space for device 11811 * with SLI-4 interface spec. 11812 * 11813 * Return codes 11814 * 0 - successful 11815 * other values - error 11816 **/ 11817 static int 11818 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11819 { 11820 struct pci_dev *pdev = phba->pcidev; 11821 unsigned long bar0map_len, bar1map_len, bar2map_len; 11822 int error; 11823 uint32_t if_type; 11824 11825 if (!pdev) 11826 return -ENODEV; 11827 11828 /* Set the device DMA mask size */ 11829 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11830 if (error) 11831 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11832 if (error) 11833 return error; 11834 11835 /* 11836 * The BARs and register set definitions and offset locations are 11837 * dependent on the if_type. 11838 */ 11839 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11840 &phba->sli4_hba.sli_intf.word0)) { 11841 return -ENODEV; 11842 } 11843 11844 /* There is no SLI3 failback for SLI4 devices. */ 11845 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11846 LPFC_SLI_INTF_VALID) { 11847 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11848 "2894 SLI_INTF reg contents invalid " 11849 "sli_intf reg 0x%x\n", 11850 phba->sli4_hba.sli_intf.word0); 11851 return -ENODEV; 11852 } 11853 11854 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11855 /* 11856 * Get the bus address of SLI4 device Bar regions and the 11857 * number of bytes required by each mapping. The mapping of the 11858 * particular PCI BARs regions is dependent on the type of 11859 * SLI4 device. 11860 */ 11861 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11862 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11863 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11864 11865 /* 11866 * Map SLI4 PCI Config Space Register base to a kernel virtual 11867 * addr 11868 */ 11869 phba->sli4_hba.conf_regs_memmap_p = 11870 ioremap(phba->pci_bar0_map, bar0map_len); 11871 if (!phba->sli4_hba.conf_regs_memmap_p) { 11872 dev_printk(KERN_ERR, &pdev->dev, 11873 "ioremap failed for SLI4 PCI config " 11874 "registers.\n"); 11875 return -ENODEV; 11876 } 11877 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11878 /* Set up BAR0 PCI config space register memory map */ 11879 lpfc_sli4_bar0_register_memmap(phba, if_type); 11880 } else { 11881 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11882 bar0map_len = pci_resource_len(pdev, 1); 11883 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11884 dev_printk(KERN_ERR, &pdev->dev, 11885 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11886 return -ENODEV; 11887 } 11888 phba->sli4_hba.conf_regs_memmap_p = 11889 ioremap(phba->pci_bar0_map, bar0map_len); 11890 if (!phba->sli4_hba.conf_regs_memmap_p) { 11891 dev_printk(KERN_ERR, &pdev->dev, 11892 "ioremap failed for SLI4 PCI config " 11893 "registers.\n"); 11894 return -ENODEV; 11895 } 11896 lpfc_sli4_bar0_register_memmap(phba, if_type); 11897 } 11898 11899 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11900 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11901 /* 11902 * Map SLI4 if type 0 HBA Control Register base to a 11903 * kernel virtual address and setup the registers. 11904 */ 11905 phba->pci_bar1_map = pci_resource_start(pdev, 11906 PCI_64BIT_BAR2); 11907 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11908 phba->sli4_hba.ctrl_regs_memmap_p = 11909 ioremap(phba->pci_bar1_map, 11910 bar1map_len); 11911 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11912 dev_err(&pdev->dev, 11913 "ioremap failed for SLI4 HBA " 11914 "control registers.\n"); 11915 error = -ENOMEM; 11916 goto out_iounmap_conf; 11917 } 11918 phba->pci_bar2_memmap_p = 11919 phba->sli4_hba.ctrl_regs_memmap_p; 11920 lpfc_sli4_bar1_register_memmap(phba, if_type); 11921 } else { 11922 error = -ENOMEM; 11923 goto out_iounmap_conf; 11924 } 11925 } 11926 11927 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11928 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11929 /* 11930 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11931 * virtual address and setup the registers. 11932 */ 11933 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11934 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11935 phba->sli4_hba.drbl_regs_memmap_p = 11936 ioremap(phba->pci_bar1_map, bar1map_len); 11937 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11938 dev_err(&pdev->dev, 11939 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11940 error = -ENOMEM; 11941 goto out_iounmap_conf; 11942 } 11943 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11944 lpfc_sli4_bar1_register_memmap(phba, if_type); 11945 } 11946 11947 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11948 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11949 /* 11950 * Map SLI4 if type 0 HBA Doorbell Register base to 11951 * a kernel virtual address and setup the registers. 11952 */ 11953 phba->pci_bar2_map = pci_resource_start(pdev, 11954 PCI_64BIT_BAR4); 11955 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11956 phba->sli4_hba.drbl_regs_memmap_p = 11957 ioremap(phba->pci_bar2_map, 11958 bar2map_len); 11959 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11960 dev_err(&pdev->dev, 11961 "ioremap failed for SLI4 HBA" 11962 " doorbell registers.\n"); 11963 error = -ENOMEM; 11964 goto out_iounmap_ctrl; 11965 } 11966 phba->pci_bar4_memmap_p = 11967 phba->sli4_hba.drbl_regs_memmap_p; 11968 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11969 if (error) 11970 goto out_iounmap_all; 11971 } else { 11972 error = -ENOMEM; 11973 goto out_iounmap_ctrl; 11974 } 11975 } 11976 11977 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11978 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11979 /* 11980 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11981 * virtual address and setup the registers. 11982 */ 11983 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11984 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11985 phba->sli4_hba.dpp_regs_memmap_p = 11986 ioremap(phba->pci_bar2_map, bar2map_len); 11987 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11988 dev_err(&pdev->dev, 11989 "ioremap failed for SLI4 HBA dpp registers.\n"); 11990 error = -ENOMEM; 11991 goto out_iounmap_all; 11992 } 11993 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11994 } 11995 11996 /* Set up the EQ/CQ register handeling functions now */ 11997 switch (if_type) { 11998 case LPFC_SLI_INTF_IF_TYPE_0: 11999 case LPFC_SLI_INTF_IF_TYPE_2: 12000 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 12001 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 12002 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 12003 break; 12004 case LPFC_SLI_INTF_IF_TYPE_6: 12005 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 12006 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 12007 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 12008 break; 12009 default: 12010 break; 12011 } 12012 12013 return 0; 12014 12015 out_iounmap_all: 12016 if (phba->sli4_hba.drbl_regs_memmap_p) 12017 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12018 out_iounmap_ctrl: 12019 if (phba->sli4_hba.ctrl_regs_memmap_p) 12020 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12021 out_iounmap_conf: 12022 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12023 12024 return error; 12025 } 12026 12027 /** 12028 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 12029 * @phba: pointer to lpfc hba data structure. 12030 * 12031 * This routine is invoked to unset the PCI device memory space for device 12032 * with SLI-4 interface spec. 12033 **/ 12034 static void 12035 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 12036 { 12037 uint32_t if_type; 12038 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12039 12040 switch (if_type) { 12041 case LPFC_SLI_INTF_IF_TYPE_0: 12042 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12043 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12044 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12045 break; 12046 case LPFC_SLI_INTF_IF_TYPE_2: 12047 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12048 break; 12049 case LPFC_SLI_INTF_IF_TYPE_6: 12050 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12051 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12052 if (phba->sli4_hba.dpp_regs_memmap_p) 12053 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 12054 break; 12055 case LPFC_SLI_INTF_IF_TYPE_1: 12056 break; 12057 default: 12058 dev_printk(KERN_ERR, &phba->pcidev->dev, 12059 "FATAL - unsupported SLI4 interface type - %d\n", 12060 if_type); 12061 break; 12062 } 12063 } 12064 12065 /** 12066 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 12067 * @phba: pointer to lpfc hba data structure. 12068 * 12069 * This routine is invoked to enable the MSI-X interrupt vectors to device 12070 * with SLI-3 interface specs. 12071 * 12072 * Return codes 12073 * 0 - successful 12074 * other values - error 12075 **/ 12076 static int 12077 lpfc_sli_enable_msix(struct lpfc_hba *phba) 12078 { 12079 int rc; 12080 LPFC_MBOXQ_t *pmb; 12081 12082 /* Set up MSI-X multi-message vectors */ 12083 rc = pci_alloc_irq_vectors(phba->pcidev, 12084 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 12085 if (rc < 0) { 12086 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12087 "0420 PCI enable MSI-X failed (%d)\n", rc); 12088 goto vec_fail_out; 12089 } 12090 12091 /* 12092 * Assign MSI-X vectors to interrupt handlers 12093 */ 12094 12095 /* vector-0 is associated to slow-path handler */ 12096 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 12097 &lpfc_sli_sp_intr_handler, 0, 12098 LPFC_SP_DRIVER_HANDLER_NAME, phba); 12099 if (rc) { 12100 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12101 "0421 MSI-X slow-path request_irq failed " 12102 "(%d)\n", rc); 12103 goto msi_fail_out; 12104 } 12105 12106 /* vector-1 is associated to fast-path handler */ 12107 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12108 &lpfc_sli_fp_intr_handler, 0, 12109 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12110 12111 if (rc) { 12112 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12113 "0429 MSI-X fast-path request_irq failed " 12114 "(%d)\n", rc); 12115 goto irq_fail_out; 12116 } 12117 12118 /* 12119 * Configure HBA MSI-X attention conditions to messages 12120 */ 12121 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12122 12123 if (!pmb) { 12124 rc = -ENOMEM; 12125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12126 "0474 Unable to allocate memory for issuing " 12127 "MBOX_CONFIG_MSI command\n"); 12128 goto mem_fail_out; 12129 } 12130 rc = lpfc_config_msi(phba, pmb); 12131 if (rc) 12132 goto mbx_fail_out; 12133 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12134 if (rc != MBX_SUCCESS) { 12135 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12136 "0351 Config MSI mailbox command failed, " 12137 "mbxCmd x%x, mbxStatus x%x\n", 12138 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12139 goto mbx_fail_out; 12140 } 12141 12142 /* Free memory allocated for mailbox command */ 12143 mempool_free(pmb, phba->mbox_mem_pool); 12144 return rc; 12145 12146 mbx_fail_out: 12147 /* Free memory allocated for mailbox command */ 12148 mempool_free(pmb, phba->mbox_mem_pool); 12149 12150 mem_fail_out: 12151 /* free the irq already requested */ 12152 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12153 12154 irq_fail_out: 12155 /* free the irq already requested */ 12156 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12157 12158 msi_fail_out: 12159 /* Unconfigure MSI-X capability structure */ 12160 pci_free_irq_vectors(phba->pcidev); 12161 12162 vec_fail_out: 12163 return rc; 12164 } 12165 12166 /** 12167 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12168 * @phba: pointer to lpfc hba data structure. 12169 * 12170 * This routine is invoked to enable the MSI interrupt mode to device with 12171 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12172 * enable the MSI vector. The device driver is responsible for calling the 12173 * request_irq() to register MSI vector with a interrupt the handler, which 12174 * is done in this function. 12175 * 12176 * Return codes 12177 * 0 - successful 12178 * other values - error 12179 */ 12180 static int 12181 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12182 { 12183 int rc; 12184 12185 rc = pci_enable_msi(phba->pcidev); 12186 if (!rc) 12187 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12188 "0012 PCI enable MSI mode success.\n"); 12189 else { 12190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12191 "0471 PCI enable MSI mode failed (%d)\n", rc); 12192 return rc; 12193 } 12194 12195 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12196 0, LPFC_DRIVER_NAME, phba); 12197 if (rc) { 12198 pci_disable_msi(phba->pcidev); 12199 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12200 "0478 MSI request_irq failed (%d)\n", rc); 12201 } 12202 return rc; 12203 } 12204 12205 /** 12206 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12207 * @phba: pointer to lpfc hba data structure. 12208 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12209 * 12210 * This routine is invoked to enable device interrupt and associate driver's 12211 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12212 * spec. Depends on the interrupt mode configured to the driver, the driver 12213 * will try to fallback from the configured interrupt mode to an interrupt 12214 * mode which is supported by the platform, kernel, and device in the order 12215 * of: 12216 * MSI-X -> MSI -> IRQ. 12217 * 12218 * Return codes 12219 * 0 - successful 12220 * other values - error 12221 **/ 12222 static uint32_t 12223 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12224 { 12225 uint32_t intr_mode = LPFC_INTR_ERROR; 12226 int retval; 12227 12228 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12229 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12230 if (retval) 12231 return intr_mode; 12232 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 12233 12234 if (cfg_mode == 2) { 12235 /* Now, try to enable MSI-X interrupt mode */ 12236 retval = lpfc_sli_enable_msix(phba); 12237 if (!retval) { 12238 /* Indicate initialization to MSI-X mode */ 12239 phba->intr_type = MSIX; 12240 intr_mode = 2; 12241 } 12242 } 12243 12244 /* Fallback to MSI if MSI-X initialization failed */ 12245 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12246 retval = lpfc_sli_enable_msi(phba); 12247 if (!retval) { 12248 /* Indicate initialization to MSI mode */ 12249 phba->intr_type = MSI; 12250 intr_mode = 1; 12251 } 12252 } 12253 12254 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12255 if (phba->intr_type == NONE) { 12256 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12257 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12258 if (!retval) { 12259 /* Indicate initialization to INTx mode */ 12260 phba->intr_type = INTx; 12261 intr_mode = 0; 12262 } 12263 } 12264 return intr_mode; 12265 } 12266 12267 /** 12268 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12269 * @phba: pointer to lpfc hba data structure. 12270 * 12271 * This routine is invoked to disable device interrupt and disassociate the 12272 * driver's interrupt handler(s) from interrupt vector(s) to device with 12273 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12274 * release the interrupt vector(s) for the message signaled interrupt. 12275 **/ 12276 static void 12277 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12278 { 12279 int nr_irqs, i; 12280 12281 if (phba->intr_type == MSIX) 12282 nr_irqs = LPFC_MSIX_VECTORS; 12283 else 12284 nr_irqs = 1; 12285 12286 for (i = 0; i < nr_irqs; i++) 12287 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12288 pci_free_irq_vectors(phba->pcidev); 12289 12290 /* Reset interrupt management states */ 12291 phba->intr_type = NONE; 12292 phba->sli.slistat.sli_intr = 0; 12293 } 12294 12295 /** 12296 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12297 * @phba: pointer to lpfc hba data structure. 12298 * @id: EQ vector index or Hardware Queue index 12299 * @match: LPFC_FIND_BY_EQ = match by EQ 12300 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12301 * Return the CPU that matches the selection criteria 12302 */ 12303 static uint16_t 12304 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12305 { 12306 struct lpfc_vector_map_info *cpup; 12307 int cpu; 12308 12309 /* Loop through all CPUs */ 12310 for_each_present_cpu(cpu) { 12311 cpup = &phba->sli4_hba.cpu_map[cpu]; 12312 12313 /* If we are matching by EQ, there may be multiple CPUs using 12314 * using the same vector, so select the one with 12315 * LPFC_CPU_FIRST_IRQ set. 12316 */ 12317 if ((match == LPFC_FIND_BY_EQ) && 12318 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12319 (cpup->eq == id)) 12320 return cpu; 12321 12322 /* If matching by HDWQ, select the first CPU that matches */ 12323 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12324 return cpu; 12325 } 12326 return 0; 12327 } 12328 12329 #ifdef CONFIG_X86 12330 /** 12331 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12332 * @phba: pointer to lpfc hba data structure. 12333 * @cpu: CPU map index 12334 * @phys_id: CPU package physical id 12335 * @core_id: CPU core id 12336 */ 12337 static int 12338 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12339 uint16_t phys_id, uint16_t core_id) 12340 { 12341 struct lpfc_vector_map_info *cpup; 12342 int idx; 12343 12344 for_each_present_cpu(idx) { 12345 cpup = &phba->sli4_hba.cpu_map[idx]; 12346 /* Does the cpup match the one we are looking for */ 12347 if ((cpup->phys_id == phys_id) && 12348 (cpup->core_id == core_id) && 12349 (cpu != idx)) 12350 return 1; 12351 } 12352 return 0; 12353 } 12354 #endif 12355 12356 /* 12357 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12358 * @phba: pointer to lpfc hba data structure. 12359 * @eqidx: index for eq and irq vector 12360 * @flag: flags to set for vector_map structure 12361 * @cpu: cpu used to index vector_map structure 12362 * 12363 * The routine assigns eq info into vector_map structure 12364 */ 12365 static inline void 12366 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12367 unsigned int cpu) 12368 { 12369 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12370 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12371 12372 cpup->eq = eqidx; 12373 cpup->flag |= flag; 12374 12375 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12376 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12377 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12378 } 12379 12380 /** 12381 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12382 * @phba: pointer to lpfc hba data structure. 12383 * 12384 * The routine initializes the cpu_map array structure 12385 */ 12386 static void 12387 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12388 { 12389 struct lpfc_vector_map_info *cpup; 12390 struct lpfc_eq_intr_info *eqi; 12391 int cpu; 12392 12393 for_each_possible_cpu(cpu) { 12394 cpup = &phba->sli4_hba.cpu_map[cpu]; 12395 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12396 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12397 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12398 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12399 cpup->flag = 0; 12400 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12401 INIT_LIST_HEAD(&eqi->list); 12402 eqi->icnt = 0; 12403 } 12404 } 12405 12406 /** 12407 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12408 * @phba: pointer to lpfc hba data structure. 12409 * 12410 * The routine initializes the hba_eq_hdl array structure 12411 */ 12412 static void 12413 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12414 { 12415 struct lpfc_hba_eq_hdl *eqhdl; 12416 int i; 12417 12418 for (i = 0; i < phba->cfg_irq_chann; i++) { 12419 eqhdl = lpfc_get_eq_hdl(i); 12420 eqhdl->irq = LPFC_IRQ_EMPTY; 12421 eqhdl->phba = phba; 12422 } 12423 } 12424 12425 /** 12426 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12427 * @phba: pointer to lpfc hba data structure. 12428 * @vectors: number of msix vectors allocated. 12429 * 12430 * The routine will figure out the CPU affinity assignment for every 12431 * MSI-X vector allocated for the HBA. 12432 * In addition, the CPU to IO channel mapping will be calculated 12433 * and the phba->sli4_hba.cpu_map array will reflect this. 12434 */ 12435 static void 12436 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12437 { 12438 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12439 int max_phys_id, min_phys_id; 12440 int max_core_id, min_core_id; 12441 struct lpfc_vector_map_info *cpup; 12442 struct lpfc_vector_map_info *new_cpup; 12443 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12444 struct lpfc_hdwq_stat *c_stat; 12445 #endif 12446 12447 max_phys_id = 0; 12448 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12449 max_core_id = 0; 12450 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12451 12452 /* Update CPU map with physical id and core id of each CPU */ 12453 for_each_present_cpu(cpu) { 12454 cpup = &phba->sli4_hba.cpu_map[cpu]; 12455 #ifdef CONFIG_X86 12456 cpup->phys_id = topology_physical_package_id(cpu); 12457 cpup->core_id = topology_core_id(cpu); 12458 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12459 cpup->flag |= LPFC_CPU_MAP_HYPER; 12460 #else 12461 /* No distinction between CPUs for other platforms */ 12462 cpup->phys_id = 0; 12463 cpup->core_id = cpu; 12464 #endif 12465 12466 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12467 "3328 CPU %d physid %d coreid %d flag x%x\n", 12468 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12469 12470 if (cpup->phys_id > max_phys_id) 12471 max_phys_id = cpup->phys_id; 12472 if (cpup->phys_id < min_phys_id) 12473 min_phys_id = cpup->phys_id; 12474 12475 if (cpup->core_id > max_core_id) 12476 max_core_id = cpup->core_id; 12477 if (cpup->core_id < min_core_id) 12478 min_core_id = cpup->core_id; 12479 } 12480 12481 /* After looking at each irq vector assigned to this pcidev, its 12482 * possible to see that not ALL CPUs have been accounted for. 12483 * Next we will set any unassigned (unaffinitized) cpu map 12484 * entries to a IRQ on the same phys_id. 12485 */ 12486 first_cpu = cpumask_first(cpu_present_mask); 12487 start_cpu = first_cpu; 12488 12489 for_each_present_cpu(cpu) { 12490 cpup = &phba->sli4_hba.cpu_map[cpu]; 12491 12492 /* Is this CPU entry unassigned */ 12493 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12494 /* Mark CPU as IRQ not assigned by the kernel */ 12495 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12496 12497 /* If so, find a new_cpup that is on the SAME 12498 * phys_id as cpup. start_cpu will start where we 12499 * left off so all unassigned entries don't get assgined 12500 * the IRQ of the first entry. 12501 */ 12502 new_cpu = start_cpu; 12503 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12504 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12505 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12506 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12507 (new_cpup->phys_id == cpup->phys_id)) 12508 goto found_same; 12509 new_cpu = lpfc_next_present_cpu(new_cpu); 12510 } 12511 /* At this point, we leave the CPU as unassigned */ 12512 continue; 12513 found_same: 12514 /* We found a matching phys_id, so copy the IRQ info */ 12515 cpup->eq = new_cpup->eq; 12516 12517 /* Bump start_cpu to the next slot to minmize the 12518 * chance of having multiple unassigned CPU entries 12519 * selecting the same IRQ. 12520 */ 12521 start_cpu = lpfc_next_present_cpu(new_cpu); 12522 12523 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12524 "3337 Set Affinity: CPU %d " 12525 "eq %d from peer cpu %d same " 12526 "phys_id (%d)\n", 12527 cpu, cpup->eq, new_cpu, 12528 cpup->phys_id); 12529 } 12530 } 12531 12532 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12533 start_cpu = first_cpu; 12534 12535 for_each_present_cpu(cpu) { 12536 cpup = &phba->sli4_hba.cpu_map[cpu]; 12537 12538 /* Is this entry unassigned */ 12539 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12540 /* Mark it as IRQ not assigned by the kernel */ 12541 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12542 12543 /* If so, find a new_cpup thats on ANY phys_id 12544 * as the cpup. start_cpu will start where we 12545 * left off so all unassigned entries don't get 12546 * assigned the IRQ of the first entry. 12547 */ 12548 new_cpu = start_cpu; 12549 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12550 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12551 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12552 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12553 goto found_any; 12554 new_cpu = lpfc_next_present_cpu(new_cpu); 12555 } 12556 /* We should never leave an entry unassigned */ 12557 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12558 "3339 Set Affinity: CPU %d " 12559 "eq %d UNASSIGNED\n", 12560 cpup->hdwq, cpup->eq); 12561 continue; 12562 found_any: 12563 /* We found an available entry, copy the IRQ info */ 12564 cpup->eq = new_cpup->eq; 12565 12566 /* Bump start_cpu to the next slot to minmize the 12567 * chance of having multiple unassigned CPU entries 12568 * selecting the same IRQ. 12569 */ 12570 start_cpu = lpfc_next_present_cpu(new_cpu); 12571 12572 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12573 "3338 Set Affinity: CPU %d " 12574 "eq %d from peer cpu %d (%d/%d)\n", 12575 cpu, cpup->eq, new_cpu, 12576 new_cpup->phys_id, new_cpup->core_id); 12577 } 12578 } 12579 12580 /* Assign hdwq indices that are unique across all cpus in the map 12581 * that are also FIRST_CPUs. 12582 */ 12583 idx = 0; 12584 for_each_present_cpu(cpu) { 12585 cpup = &phba->sli4_hba.cpu_map[cpu]; 12586 12587 /* Only FIRST IRQs get a hdwq index assignment. */ 12588 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12589 continue; 12590 12591 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12592 cpup->hdwq = idx; 12593 idx++; 12594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12595 "3333 Set Affinity: CPU %d (phys %d core %d): " 12596 "hdwq %d eq %d flg x%x\n", 12597 cpu, cpup->phys_id, cpup->core_id, 12598 cpup->hdwq, cpup->eq, cpup->flag); 12599 } 12600 /* Associate a hdwq with each cpu_map entry 12601 * This will be 1 to 1 - hdwq to cpu, unless there are less 12602 * hardware queues then CPUs. For that case we will just round-robin 12603 * the available hardware queues as they get assigned to CPUs. 12604 * The next_idx is the idx from the FIRST_CPU loop above to account 12605 * for irq_chann < hdwq. The idx is used for round-robin assignments 12606 * and needs to start at 0. 12607 */ 12608 next_idx = idx; 12609 start_cpu = 0; 12610 idx = 0; 12611 for_each_present_cpu(cpu) { 12612 cpup = &phba->sli4_hba.cpu_map[cpu]; 12613 12614 /* FIRST cpus are already mapped. */ 12615 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12616 continue; 12617 12618 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12619 * of the unassigned cpus to the next idx so that all 12620 * hdw queues are fully utilized. 12621 */ 12622 if (next_idx < phba->cfg_hdw_queue) { 12623 cpup->hdwq = next_idx; 12624 next_idx++; 12625 continue; 12626 } 12627 12628 /* Not a First CPU and all hdw_queues are used. Reuse a 12629 * Hardware Queue for another CPU, so be smart about it 12630 * and pick one that has its IRQ/EQ mapped to the same phys_id 12631 * (CPU package) and core_id. 12632 */ 12633 new_cpu = start_cpu; 12634 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12635 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12636 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12637 new_cpup->phys_id == cpup->phys_id && 12638 new_cpup->core_id == cpup->core_id) { 12639 goto found_hdwq; 12640 } 12641 new_cpu = lpfc_next_present_cpu(new_cpu); 12642 } 12643 12644 /* If we can't match both phys_id and core_id, 12645 * settle for just a phys_id match. 12646 */ 12647 new_cpu = start_cpu; 12648 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12649 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12650 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12651 new_cpup->phys_id == cpup->phys_id) 12652 goto found_hdwq; 12653 new_cpu = lpfc_next_present_cpu(new_cpu); 12654 } 12655 12656 /* Otherwise just round robin on cfg_hdw_queue */ 12657 cpup->hdwq = idx % phba->cfg_hdw_queue; 12658 idx++; 12659 goto logit; 12660 found_hdwq: 12661 /* We found an available entry, copy the IRQ info */ 12662 start_cpu = lpfc_next_present_cpu(new_cpu); 12663 cpup->hdwq = new_cpup->hdwq; 12664 logit: 12665 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12666 "3335 Set Affinity: CPU %d (phys %d core %d): " 12667 "hdwq %d eq %d flg x%x\n", 12668 cpu, cpup->phys_id, cpup->core_id, 12669 cpup->hdwq, cpup->eq, cpup->flag); 12670 } 12671 12672 /* 12673 * Initialize the cpu_map slots for not-present cpus in case 12674 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12675 */ 12676 idx = 0; 12677 for_each_possible_cpu(cpu) { 12678 cpup = &phba->sli4_hba.cpu_map[cpu]; 12679 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12680 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12681 c_stat->hdwq_no = cpup->hdwq; 12682 #endif 12683 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12684 continue; 12685 12686 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12687 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12688 c_stat->hdwq_no = cpup->hdwq; 12689 #endif 12690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12691 "3340 Set Affinity: not present " 12692 "CPU %d hdwq %d\n", 12693 cpu, cpup->hdwq); 12694 } 12695 12696 /* The cpu_map array will be used later during initialization 12697 * when EQ / CQ / WQs are allocated and configured. 12698 */ 12699 return; 12700 } 12701 12702 /** 12703 * lpfc_cpuhp_get_eq 12704 * 12705 * @phba: pointer to lpfc hba data structure. 12706 * @cpu: cpu going offline 12707 * @eqlist: eq list to append to 12708 */ 12709 static int 12710 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12711 struct list_head *eqlist) 12712 { 12713 const struct cpumask *maskp; 12714 struct lpfc_queue *eq; 12715 struct cpumask *tmp; 12716 u16 idx; 12717 12718 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12719 if (!tmp) 12720 return -ENOMEM; 12721 12722 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12723 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12724 if (!maskp) 12725 continue; 12726 /* 12727 * if irq is not affinitized to the cpu going 12728 * then we don't need to poll the eq attached 12729 * to it. 12730 */ 12731 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12732 continue; 12733 /* get the cpus that are online and are affini- 12734 * tized to this irq vector. If the count is 12735 * more than 1 then cpuhp is not going to shut- 12736 * down this vector. Since this cpu has not 12737 * gone offline yet, we need >1. 12738 */ 12739 cpumask_and(tmp, maskp, cpu_online_mask); 12740 if (cpumask_weight(tmp) > 1) 12741 continue; 12742 12743 /* Now that we have an irq to shutdown, get the eq 12744 * mapped to this irq. Note: multiple hdwq's in 12745 * the software can share an eq, but eventually 12746 * only eq will be mapped to this vector 12747 */ 12748 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12749 list_add(&eq->_poll_list, eqlist); 12750 } 12751 kfree(tmp); 12752 return 0; 12753 } 12754 12755 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12756 { 12757 if (phba->sli_rev != LPFC_SLI_REV4) 12758 return; 12759 12760 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12761 &phba->cpuhp); 12762 /* 12763 * unregistering the instance doesn't stop the polling 12764 * timer. Wait for the poll timer to retire. 12765 */ 12766 synchronize_rcu(); 12767 timer_delete_sync(&phba->cpuhp_poll_timer); 12768 } 12769 12770 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12771 { 12772 if (phba->pport && 12773 test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) 12774 return; 12775 12776 __lpfc_cpuhp_remove(phba); 12777 } 12778 12779 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12780 { 12781 if (phba->sli_rev != LPFC_SLI_REV4) 12782 return; 12783 12784 rcu_read_lock(); 12785 12786 if (!list_empty(&phba->poll_list)) 12787 mod_timer(&phba->cpuhp_poll_timer, 12788 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12789 12790 rcu_read_unlock(); 12791 12792 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12793 &phba->cpuhp); 12794 } 12795 12796 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12797 { 12798 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 12799 *retval = -EAGAIN; 12800 return true; 12801 } 12802 12803 if (phba->sli_rev != LPFC_SLI_REV4) { 12804 *retval = 0; 12805 return true; 12806 } 12807 12808 /* proceed with the hotplug */ 12809 return false; 12810 } 12811 12812 /** 12813 * lpfc_irq_set_aff - set IRQ affinity 12814 * @eqhdl: EQ handle 12815 * @cpu: cpu to set affinity 12816 * 12817 **/ 12818 static inline void 12819 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12820 { 12821 cpumask_clear(&eqhdl->aff_mask); 12822 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12823 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12824 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12825 } 12826 12827 /** 12828 * lpfc_irq_clear_aff - clear IRQ affinity 12829 * @eqhdl: EQ handle 12830 * 12831 **/ 12832 static inline void 12833 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12834 { 12835 cpumask_clear(&eqhdl->aff_mask); 12836 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12837 } 12838 12839 /** 12840 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12841 * @phba: pointer to HBA context object. 12842 * @cpu: cpu going offline/online 12843 * @offline: true, cpu is going offline. false, cpu is coming online. 12844 * 12845 * If cpu is going offline, we'll try our best effort to find the next 12846 * online cpu on the phba's original_mask and migrate all offlining IRQ 12847 * affinities. 12848 * 12849 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12850 * 12851 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12852 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12853 * 12854 **/ 12855 static void 12856 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12857 { 12858 struct lpfc_vector_map_info *cpup; 12859 struct cpumask *aff_mask; 12860 unsigned int cpu_select, cpu_next, idx; 12861 const struct cpumask *orig_mask; 12862 12863 if (phba->irq_chann_mode == NORMAL_MODE) 12864 return; 12865 12866 orig_mask = &phba->sli4_hba.irq_aff_mask; 12867 12868 if (!cpumask_test_cpu(cpu, orig_mask)) 12869 return; 12870 12871 cpup = &phba->sli4_hba.cpu_map[cpu]; 12872 12873 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12874 return; 12875 12876 if (offline) { 12877 /* Find next online CPU on original mask */ 12878 cpu_next = cpumask_next_wrap(cpu, orig_mask); 12879 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12880 12881 /* Found a valid CPU */ 12882 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12883 /* Go through each eqhdl and ensure offlining 12884 * cpu aff_mask is migrated 12885 */ 12886 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12887 aff_mask = lpfc_get_aff_mask(idx); 12888 12889 /* Migrate affinity */ 12890 if (cpumask_test_cpu(cpu, aff_mask)) 12891 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12892 cpu_select); 12893 } 12894 } else { 12895 /* Rely on irqbalance if no online CPUs left on NUMA */ 12896 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12897 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12898 } 12899 } else { 12900 /* Migrate affinity back to this CPU */ 12901 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12902 } 12903 } 12904 12905 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12906 { 12907 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12908 struct lpfc_queue *eq, *next; 12909 LIST_HEAD(eqlist); 12910 int retval; 12911 12912 if (!phba) { 12913 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12914 return 0; 12915 } 12916 12917 if (__lpfc_cpuhp_checks(phba, &retval)) 12918 return retval; 12919 12920 lpfc_irq_rebalance(phba, cpu, true); 12921 12922 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12923 if (retval) 12924 return retval; 12925 12926 /* start polling on these eq's */ 12927 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12928 list_del_init(&eq->_poll_list); 12929 lpfc_sli4_start_polling(eq); 12930 } 12931 12932 return 0; 12933 } 12934 12935 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12936 { 12937 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12938 struct lpfc_queue *eq, *next; 12939 unsigned int n; 12940 int retval; 12941 12942 if (!phba) { 12943 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12944 return 0; 12945 } 12946 12947 if (__lpfc_cpuhp_checks(phba, &retval)) 12948 return retval; 12949 12950 lpfc_irq_rebalance(phba, cpu, false); 12951 12952 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12953 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12954 if (n == cpu) 12955 lpfc_sli4_stop_polling(eq); 12956 } 12957 12958 return 0; 12959 } 12960 12961 /** 12962 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12963 * @phba: pointer to lpfc hba data structure. 12964 * 12965 * This routine is invoked to enable the MSI-X interrupt vectors to device 12966 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12967 * to cpus on the system. 12968 * 12969 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12970 * the number of cpus on the same numa node as this adapter. The vectors are 12971 * allocated without requesting OS affinity mapping. A vector will be 12972 * allocated and assigned to each online and offline cpu. If the cpu is 12973 * online, then affinity will be set to that cpu. If the cpu is offline, then 12974 * affinity will be set to the nearest peer cpu within the numa node that is 12975 * online. If there are no online cpus within the numa node, affinity is not 12976 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12977 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12978 * configured. 12979 * 12980 * If numa mode is not enabled and there is more than 1 vector allocated, then 12981 * the driver relies on the managed irq interface where the OS assigns vector to 12982 * cpu affinity. The driver will then use that affinity mapping to setup its 12983 * cpu mapping table. 12984 * 12985 * Return codes 12986 * 0 - successful 12987 * other values - error 12988 **/ 12989 static int 12990 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12991 { 12992 int vectors, rc, index; 12993 char *name; 12994 const struct cpumask *aff_mask = NULL; 12995 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 12996 struct lpfc_vector_map_info *cpup; 12997 struct lpfc_hba_eq_hdl *eqhdl; 12998 const struct cpumask *maskp; 12999 unsigned int flags = PCI_IRQ_MSIX; 13000 13001 /* Set up MSI-X multi-message vectors */ 13002 vectors = phba->cfg_irq_chann; 13003 13004 if (phba->irq_chann_mode != NORMAL_MODE) 13005 aff_mask = &phba->sli4_hba.irq_aff_mask; 13006 13007 if (aff_mask) { 13008 cpu_cnt = cpumask_weight(aff_mask); 13009 vectors = min(phba->cfg_irq_chann, cpu_cnt); 13010 13011 /* cpu: iterates over aff_mask including offline or online 13012 * cpu_select: iterates over online aff_mask to set affinity 13013 */ 13014 cpu = cpumask_first(aff_mask); 13015 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13016 } else { 13017 flags |= PCI_IRQ_AFFINITY; 13018 } 13019 13020 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 13021 if (rc < 0) { 13022 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13023 "0484 PCI enable MSI-X failed (%d)\n", rc); 13024 goto vec_fail_out; 13025 } 13026 vectors = rc; 13027 13028 /* Assign MSI-X vectors to interrupt handlers */ 13029 for (index = 0; index < vectors; index++) { 13030 eqhdl = lpfc_get_eq_hdl(index); 13031 name = eqhdl->handler_name; 13032 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 13033 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 13034 LPFC_DRIVER_HANDLER_NAME"%d", index); 13035 13036 eqhdl->idx = index; 13037 rc = pci_irq_vector(phba->pcidev, index); 13038 if (rc < 0) { 13039 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13040 "0489 MSI-X fast-path (%d) " 13041 "pci_irq_vec failed (%d)\n", index, rc); 13042 goto cfg_fail_out; 13043 } 13044 eqhdl->irq = rc; 13045 13046 rc = request_threaded_irq(eqhdl->irq, 13047 &lpfc_sli4_hba_intr_handler, 13048 &lpfc_sli4_hba_intr_handler_th, 13049 0, name, eqhdl); 13050 if (rc) { 13051 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13052 "0486 MSI-X fast-path (%d) " 13053 "request_irq failed (%d)\n", index, rc); 13054 goto cfg_fail_out; 13055 } 13056 13057 if (aff_mask) { 13058 /* If found a neighboring online cpu, set affinity */ 13059 if (cpu_select < nr_cpu_ids) 13060 lpfc_irq_set_aff(eqhdl, cpu_select); 13061 13062 /* Assign EQ to cpu_map */ 13063 lpfc_assign_eq_map_info(phba, index, 13064 LPFC_CPU_FIRST_IRQ, 13065 cpu); 13066 13067 /* Iterate to next offline or online cpu in aff_mask */ 13068 cpu = cpumask_next(cpu, aff_mask); 13069 13070 /* Find next online cpu in aff_mask to set affinity */ 13071 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13072 } else if (vectors == 1) { 13073 cpu = cpumask_first(cpu_present_mask); 13074 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 13075 cpu); 13076 } else { 13077 maskp = pci_irq_get_affinity(phba->pcidev, index); 13078 13079 /* Loop through all CPUs associated with vector index */ 13080 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 13081 cpup = &phba->sli4_hba.cpu_map[cpu]; 13082 13083 /* If this is the first CPU thats assigned to 13084 * this vector, set LPFC_CPU_FIRST_IRQ. 13085 * 13086 * With certain platforms its possible that irq 13087 * vectors are affinitized to all the cpu's. 13088 * This can result in each cpu_map.eq to be set 13089 * to the last vector, resulting in overwrite 13090 * of all the previous cpu_map.eq. Ensure that 13091 * each vector receives a place in cpu_map. 13092 * Later call to lpfc_cpu_affinity_check will 13093 * ensure we are nicely balanced out. 13094 */ 13095 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13096 continue; 13097 lpfc_assign_eq_map_info(phba, index, 13098 LPFC_CPU_FIRST_IRQ, 13099 cpu); 13100 break; 13101 } 13102 } 13103 } 13104 13105 if (vectors != phba->cfg_irq_chann) { 13106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13107 "3238 Reducing IO channels to match number of " 13108 "MSI-X vectors, requested %d got %d\n", 13109 phba->cfg_irq_chann, vectors); 13110 if (phba->cfg_irq_chann > vectors) 13111 phba->cfg_irq_chann = vectors; 13112 } 13113 13114 return rc; 13115 13116 cfg_fail_out: 13117 /* free the irq already requested */ 13118 for (--index; index >= 0; index--) { 13119 eqhdl = lpfc_get_eq_hdl(index); 13120 lpfc_irq_clear_aff(eqhdl); 13121 free_irq(eqhdl->irq, eqhdl); 13122 } 13123 13124 /* Unconfigure MSI-X capability structure */ 13125 pci_free_irq_vectors(phba->pcidev); 13126 13127 vec_fail_out: 13128 return rc; 13129 } 13130 13131 /** 13132 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13133 * @phba: pointer to lpfc hba data structure. 13134 * 13135 * This routine is invoked to enable the MSI interrupt mode to device with 13136 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13137 * called to enable the MSI vector. The device driver is responsible for 13138 * calling the request_irq() to register MSI vector with a interrupt the 13139 * handler, which is done in this function. 13140 * 13141 * Return codes 13142 * 0 - successful 13143 * other values - error 13144 **/ 13145 static int 13146 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13147 { 13148 int rc, index; 13149 unsigned int cpu; 13150 struct lpfc_hba_eq_hdl *eqhdl; 13151 13152 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13153 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13154 if (rc > 0) 13155 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13156 "0487 PCI enable MSI mode success.\n"); 13157 else { 13158 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13159 "0488 PCI enable MSI mode failed (%d)\n", rc); 13160 return rc ? rc : -1; 13161 } 13162 13163 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13164 0, LPFC_DRIVER_NAME, phba); 13165 if (rc) { 13166 pci_free_irq_vectors(phba->pcidev); 13167 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13168 "0490 MSI request_irq failed (%d)\n", rc); 13169 return rc; 13170 } 13171 13172 eqhdl = lpfc_get_eq_hdl(0); 13173 rc = pci_irq_vector(phba->pcidev, 0); 13174 if (rc < 0) { 13175 free_irq(phba->pcidev->irq, phba); 13176 pci_free_irq_vectors(phba->pcidev); 13177 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13178 "0496 MSI pci_irq_vec failed (%d)\n", rc); 13179 return rc; 13180 } 13181 eqhdl->irq = rc; 13182 13183 cpu = cpumask_first(cpu_present_mask); 13184 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13185 13186 for (index = 0; index < phba->cfg_irq_chann; index++) { 13187 eqhdl = lpfc_get_eq_hdl(index); 13188 eqhdl->idx = index; 13189 } 13190 13191 return 0; 13192 } 13193 13194 /** 13195 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13196 * @phba: pointer to lpfc hba data structure. 13197 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13198 * 13199 * This routine is invoked to enable device interrupt and associate driver's 13200 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13201 * interface spec. Depends on the interrupt mode configured to the driver, 13202 * the driver will try to fallback from the configured interrupt mode to an 13203 * interrupt mode which is supported by the platform, kernel, and device in 13204 * the order of: 13205 * MSI-X -> MSI -> IRQ. 13206 * 13207 * Return codes 13208 * Interrupt mode (2, 1, 0) - successful 13209 * LPFC_INTR_ERROR - error 13210 **/ 13211 static uint32_t 13212 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13213 { 13214 uint32_t intr_mode = LPFC_INTR_ERROR; 13215 int retval, idx; 13216 13217 if (cfg_mode == 2) { 13218 /* Preparation before conf_msi mbox cmd */ 13219 retval = 0; 13220 if (!retval) { 13221 /* Now, try to enable MSI-X interrupt mode */ 13222 retval = lpfc_sli4_enable_msix(phba); 13223 if (!retval) { 13224 /* Indicate initialization to MSI-X mode */ 13225 phba->intr_type = MSIX; 13226 intr_mode = 2; 13227 } 13228 } 13229 } 13230 13231 /* Fallback to MSI if MSI-X initialization failed */ 13232 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13233 retval = lpfc_sli4_enable_msi(phba); 13234 if (!retval) { 13235 /* Indicate initialization to MSI mode */ 13236 phba->intr_type = MSI; 13237 intr_mode = 1; 13238 } 13239 } 13240 13241 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13242 if (phba->intr_type == NONE) { 13243 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13244 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13245 if (!retval) { 13246 struct lpfc_hba_eq_hdl *eqhdl; 13247 unsigned int cpu; 13248 13249 /* Indicate initialization to INTx mode */ 13250 phba->intr_type = INTx; 13251 intr_mode = 0; 13252 13253 eqhdl = lpfc_get_eq_hdl(0); 13254 retval = pci_irq_vector(phba->pcidev, 0); 13255 if (retval < 0) { 13256 free_irq(phba->pcidev->irq, phba); 13257 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13258 "0502 INTR pci_irq_vec failed (%d)\n", 13259 retval); 13260 return LPFC_INTR_ERROR; 13261 } 13262 eqhdl->irq = retval; 13263 13264 cpu = cpumask_first(cpu_present_mask); 13265 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13266 cpu); 13267 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13268 eqhdl = lpfc_get_eq_hdl(idx); 13269 eqhdl->idx = idx; 13270 } 13271 } 13272 } 13273 return intr_mode; 13274 } 13275 13276 /** 13277 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13278 * @phba: pointer to lpfc hba data structure. 13279 * 13280 * This routine is invoked to disable device interrupt and disassociate 13281 * the driver's interrupt handler(s) from interrupt vector(s) to device 13282 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13283 * will release the interrupt vector(s) for the message signaled interrupt. 13284 **/ 13285 static void 13286 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13287 { 13288 /* Disable the currently initialized interrupt mode */ 13289 if (phba->intr_type == MSIX) { 13290 int index; 13291 struct lpfc_hba_eq_hdl *eqhdl; 13292 13293 /* Free up MSI-X multi-message vectors */ 13294 for (index = 0; index < phba->cfg_irq_chann; index++) { 13295 eqhdl = lpfc_get_eq_hdl(index); 13296 lpfc_irq_clear_aff(eqhdl); 13297 free_irq(eqhdl->irq, eqhdl); 13298 } 13299 } else { 13300 free_irq(phba->pcidev->irq, phba); 13301 } 13302 13303 pci_free_irq_vectors(phba->pcidev); 13304 13305 /* Reset interrupt management states */ 13306 phba->intr_type = NONE; 13307 phba->sli.slistat.sli_intr = 0; 13308 } 13309 13310 /** 13311 * lpfc_unset_hba - Unset SLI3 hba device initialization 13312 * @phba: pointer to lpfc hba data structure. 13313 * 13314 * This routine is invoked to unset the HBA device initialization steps to 13315 * a device with SLI-3 interface spec. 13316 **/ 13317 static void 13318 lpfc_unset_hba(struct lpfc_hba *phba) 13319 { 13320 set_bit(FC_UNLOADING, &phba->pport->load_flag); 13321 13322 kfree(phba->vpi_bmask); 13323 kfree(phba->vpi_ids); 13324 13325 lpfc_stop_hba_timers(phba); 13326 13327 phba->pport->work_port_events = 0; 13328 13329 lpfc_sli_hba_down(phba); 13330 13331 lpfc_sli_brdrestart(phba); 13332 13333 lpfc_sli_disable_intr(phba); 13334 13335 return; 13336 } 13337 13338 /** 13339 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13340 * @phba: Pointer to HBA context object. 13341 * 13342 * This function is called in the SLI4 code path to wait for completion 13343 * of device's XRIs exchange busy. It will check the XRI exchange busy 13344 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13345 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13346 * I/Os every 30 seconds, log error message, and wait forever. Only when 13347 * all XRI exchange busy complete, the driver unload shall proceed with 13348 * invoking the function reset ioctl mailbox command to the CNA and the 13349 * the rest of the driver unload resource release. 13350 **/ 13351 static void 13352 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13353 { 13354 struct lpfc_sli4_hdw_queue *qp; 13355 int idx, ccnt; 13356 int wait_time = 0; 13357 int io_xri_cmpl = 1; 13358 int nvmet_xri_cmpl = 1; 13359 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13360 13361 /* Driver just aborted IOs during the hba_unset process. Pause 13362 * here to give the HBA time to complete the IO and get entries 13363 * into the abts lists. 13364 */ 13365 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13366 13367 /* Wait for NVME pending IO to flush back to transport. */ 13368 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13369 lpfc_nvme_wait_for_io_drain(phba); 13370 13371 ccnt = 0; 13372 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13373 qp = &phba->sli4_hba.hdwq[idx]; 13374 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13375 if (!io_xri_cmpl) /* if list is NOT empty */ 13376 ccnt++; 13377 } 13378 if (ccnt) 13379 io_xri_cmpl = 0; 13380 13381 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13382 nvmet_xri_cmpl = 13383 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13384 } 13385 13386 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13387 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13388 if (!nvmet_xri_cmpl) 13389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13390 "6424 NVMET XRI exchange busy " 13391 "wait time: %d seconds.\n", 13392 wait_time/1000); 13393 if (!io_xri_cmpl) 13394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13395 "6100 IO XRI exchange busy " 13396 "wait time: %d seconds.\n", 13397 wait_time/1000); 13398 if (!els_xri_cmpl) 13399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13400 "2878 ELS XRI exchange busy " 13401 "wait time: %d seconds.\n", 13402 wait_time/1000); 13403 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13404 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13405 } else { 13406 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13407 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13408 } 13409 13410 ccnt = 0; 13411 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13412 qp = &phba->sli4_hba.hdwq[idx]; 13413 io_xri_cmpl = list_empty( 13414 &qp->lpfc_abts_io_buf_list); 13415 if (!io_xri_cmpl) /* if list is NOT empty */ 13416 ccnt++; 13417 } 13418 if (ccnt) 13419 io_xri_cmpl = 0; 13420 13421 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13422 nvmet_xri_cmpl = list_empty( 13423 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13424 } 13425 els_xri_cmpl = 13426 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13427 13428 } 13429 } 13430 13431 /** 13432 * lpfc_sli4_hba_unset - Unset the fcoe hba 13433 * @phba: Pointer to HBA context object. 13434 * 13435 * This function is called in the SLI4 code path to reset the HBA's FCoE 13436 * function. The caller is not required to hold any lock. This routine 13437 * issues PCI function reset mailbox command to reset the FCoE function. 13438 * At the end of the function, it calls lpfc_hba_down_post function to 13439 * free any pending commands. 13440 **/ 13441 static void 13442 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13443 { 13444 int wait_cnt = 0; 13445 LPFC_MBOXQ_t *mboxq; 13446 struct pci_dev *pdev = phba->pcidev; 13447 13448 lpfc_stop_hba_timers(phba); 13449 hrtimer_cancel(&phba->cmf_stats_timer); 13450 hrtimer_cancel(&phba->cmf_timer); 13451 13452 if (phba->pport) 13453 phba->sli4_hba.intr_enable = 0; 13454 13455 /* 13456 * Gracefully wait out the potential current outstanding asynchronous 13457 * mailbox command. 13458 */ 13459 13460 /* First, block any pending async mailbox command from posted */ 13461 spin_lock_irq(&phba->hbalock); 13462 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13463 spin_unlock_irq(&phba->hbalock); 13464 /* Now, trying to wait it out if we can */ 13465 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13466 msleep(10); 13467 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13468 break; 13469 } 13470 /* Forcefully release the outstanding mailbox command if timed out */ 13471 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13472 spin_lock_irq(&phba->hbalock); 13473 mboxq = phba->sli.mbox_active; 13474 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13475 __lpfc_mbox_cmpl_put(phba, mboxq); 13476 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13477 phba->sli.mbox_active = NULL; 13478 spin_unlock_irq(&phba->hbalock); 13479 } 13480 13481 /* Abort all iocbs associated with the hba */ 13482 lpfc_sli_hba_iocb_abort(phba); 13483 13484 if (!pci_channel_offline(phba->pcidev)) 13485 /* Wait for completion of device XRI exchange busy */ 13486 lpfc_sli4_xri_exchange_busy_wait(phba); 13487 13488 /* per-phba callback de-registration for hotplug event */ 13489 if (phba->pport) 13490 lpfc_cpuhp_remove(phba); 13491 13492 /* Disable PCI subsystem interrupt */ 13493 lpfc_sli4_disable_intr(phba); 13494 13495 /* Disable SR-IOV if enabled */ 13496 if (phba->cfg_sriov_nr_virtfn) 13497 pci_disable_sriov(pdev); 13498 13499 /* Stop kthread signal shall trigger work_done one more time */ 13500 kthread_stop(phba->worker_thread); 13501 13502 /* Disable FW logging to host memory */ 13503 lpfc_ras_stop_fwlog(phba); 13504 13505 lpfc_sli4_queue_unset(phba); 13506 13507 /* Reset SLI4 HBA FCoE function */ 13508 lpfc_pci_function_reset(phba); 13509 13510 /* release all queue allocated resources. */ 13511 lpfc_sli4_queue_destroy(phba); 13512 13513 /* Free RAS DMA memory */ 13514 if (phba->ras_fwlog.ras_enabled) 13515 lpfc_sli4_ras_dma_free(phba); 13516 13517 /* Stop the SLI4 device port */ 13518 if (phba->pport) 13519 phba->pport->work_port_events = 0; 13520 } 13521 13522 static uint32_t 13523 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13524 { 13525 uint32_t msb = 0; 13526 uint32_t bit; 13527 13528 for (bit = 0; bit < 8; bit++) { 13529 msb = (crc >> 31) & 1; 13530 crc <<= 1; 13531 13532 if (msb ^ (byte & 1)) { 13533 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13534 crc |= 1; 13535 } 13536 byte >>= 1; 13537 } 13538 return crc; 13539 } 13540 13541 static uint32_t 13542 lpfc_cgn_reverse_bits(uint32_t wd) 13543 { 13544 uint32_t result = 0; 13545 uint32_t i; 13546 13547 for (i = 0; i < 32; i++) { 13548 result <<= 1; 13549 result |= (1 & (wd >> i)); 13550 } 13551 return result; 13552 } 13553 13554 /* 13555 * The routine corresponds with the algorithm the HBA firmware 13556 * uses to validate the data integrity. 13557 */ 13558 uint32_t 13559 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13560 { 13561 uint32_t i; 13562 uint32_t result; 13563 uint8_t *data = (uint8_t *)ptr; 13564 13565 for (i = 0; i < byteLen; ++i) 13566 crc = lpfc_cgn_crc32(crc, data[i]); 13567 13568 result = ~lpfc_cgn_reverse_bits(crc); 13569 return result; 13570 } 13571 13572 void 13573 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13574 { 13575 struct lpfc_cgn_info *cp; 13576 uint16_t size; 13577 uint32_t crc; 13578 13579 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13580 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13581 13582 if (!phba->cgn_i) 13583 return; 13584 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13585 13586 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13587 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13588 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13589 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13590 13591 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13592 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13593 atomic64_set(&phba->cgn_latency_evt, 0); 13594 phba->cgn_evt_minute = 0; 13595 13596 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13597 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13598 cp->cgn_info_version = LPFC_CGN_INFO_V4; 13599 13600 /* cgn parameters */ 13601 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13602 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13603 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13604 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13605 13606 lpfc_cgn_update_tstamp(phba, &cp->base_time); 13607 13608 /* Fill in default LUN qdepth */ 13609 if (phba->pport) { 13610 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13611 cp->cgn_lunq = cpu_to_le16(size); 13612 } 13613 13614 /* last used Index initialized to 0xff already */ 13615 13616 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13617 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13618 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13619 cp->cgn_info_crc = cpu_to_le32(crc); 13620 13621 phba->cgn_evt_timestamp = jiffies + 13622 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13623 } 13624 13625 void 13626 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13627 { 13628 struct lpfc_cgn_info *cp; 13629 uint32_t crc; 13630 13631 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13632 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13633 13634 if (!phba->cgn_i) 13635 return; 13636 13637 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13638 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13639 13640 lpfc_cgn_update_tstamp(phba, &cp->stat_start); 13641 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13642 cp->cgn_info_crc = cpu_to_le32(crc); 13643 } 13644 13645 /** 13646 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13647 * @phba: Pointer to hba context object. 13648 * @reg: flag to determine register or unregister. 13649 */ 13650 static int 13651 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13652 { 13653 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13654 union lpfc_sli4_cfg_shdr *shdr; 13655 uint32_t shdr_status, shdr_add_status; 13656 LPFC_MBOXQ_t *mboxq; 13657 int length, rc; 13658 13659 if (!phba->cgn_i) 13660 return -ENXIO; 13661 13662 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13663 if (!mboxq) { 13664 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13665 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13666 "HBA state x%x reg %d\n", 13667 phba->pport->port_state, reg); 13668 return -ENOMEM; 13669 } 13670 13671 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13672 sizeof(struct lpfc_sli4_cfg_mhdr)); 13673 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13674 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13675 LPFC_SLI4_MBX_EMBED); 13676 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13677 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13678 if (reg > 0) 13679 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13680 else 13681 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13682 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13683 reg_congestion_buf->addr_lo = 13684 putPaddrLow(phba->cgn_i->phys); 13685 reg_congestion_buf->addr_hi = 13686 putPaddrHigh(phba->cgn_i->phys); 13687 13688 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13689 shdr = (union lpfc_sli4_cfg_shdr *) 13690 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13691 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13692 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13693 &shdr->response); 13694 mempool_free(mboxq, phba->mbox_mem_pool); 13695 if (shdr_status || shdr_add_status || rc) { 13696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13697 "2642 REG_CONGESTION_BUF mailbox " 13698 "failed with status x%x add_status x%x," 13699 " mbx status x%x reg %d\n", 13700 shdr_status, shdr_add_status, rc, reg); 13701 return -ENXIO; 13702 } 13703 return 0; 13704 } 13705 13706 int 13707 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13708 { 13709 lpfc_cmf_stop(phba); 13710 return __lpfc_reg_congestion_buf(phba, 0); 13711 } 13712 13713 int 13714 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13715 { 13716 return __lpfc_reg_congestion_buf(phba, 1); 13717 } 13718 13719 /** 13720 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13721 * @phba: Pointer to HBA context object. 13722 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13723 * 13724 * This function is called in the SLI4 code path to read the port's 13725 * sli4 capabilities. 13726 * 13727 * This function may be be called from any context that can block-wait 13728 * for the completion. The expectation is that this routine is called 13729 * typically from probe_one or from the online routine. 13730 **/ 13731 int 13732 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13733 { 13734 int rc; 13735 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13736 struct lpfc_pc_sli4_params *sli4_params; 13737 uint32_t mbox_tmo; 13738 int length; 13739 bool exp_wqcq_pages = true; 13740 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13741 13742 /* 13743 * By default, the driver assumes the SLI4 port requires RPI 13744 * header postings. The SLI4_PARAM response will correct this 13745 * assumption. 13746 */ 13747 phba->sli4_hba.rpi_hdrs_in_use = 1; 13748 13749 /* Read the port's SLI4 Config Parameters */ 13750 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13751 sizeof(struct lpfc_sli4_cfg_mhdr)); 13752 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13753 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13754 length, LPFC_SLI4_MBX_EMBED); 13755 if (!phba->sli4_hba.intr_enable) 13756 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13757 else { 13758 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13759 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13760 } 13761 if (unlikely(rc)) 13762 return rc; 13763 sli4_params = &phba->sli4_hba.pc_sli4_params; 13764 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13765 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13766 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13767 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13768 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13769 mbx_sli4_parameters); 13770 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13771 mbx_sli4_parameters); 13772 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13773 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13774 else 13775 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13776 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13777 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13778 mbx_sli4_parameters); 13779 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13780 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13781 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13782 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13783 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13784 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13785 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13786 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13787 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13788 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13789 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13790 mbx_sli4_parameters); 13791 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13792 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13793 mbx_sli4_parameters); 13794 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13795 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13796 sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); 13797 13798 /* Check for Extended Pre-Registered SGL support */ 13799 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13800 13801 /* Check for firmware nvme support */ 13802 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13803 bf_get(cfg_xib, mbx_sli4_parameters)); 13804 13805 if (rc) { 13806 /* Save this to indicate the Firmware supports NVME */ 13807 sli4_params->nvme = 1; 13808 13809 /* Firmware NVME support, check driver FC4 NVME support */ 13810 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13811 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13812 "6133 Disabling NVME support: " 13813 "FC4 type not supported: x%x\n", 13814 phba->cfg_enable_fc4_type); 13815 goto fcponly; 13816 } 13817 } else { 13818 /* No firmware NVME support, check driver FC4 NVME support */ 13819 sli4_params->nvme = 0; 13820 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13822 "6101 Disabling NVME support: Not " 13823 "supported by firmware (%d %d) x%x\n", 13824 bf_get(cfg_nvme, mbx_sli4_parameters), 13825 bf_get(cfg_xib, mbx_sli4_parameters), 13826 phba->cfg_enable_fc4_type); 13827 fcponly: 13828 phba->nvmet_support = 0; 13829 phba->cfg_nvmet_mrq = 0; 13830 phba->cfg_nvme_seg_cnt = 0; 13831 13832 /* If no FC4 type support, move to just SCSI support */ 13833 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13834 return -ENODEV; 13835 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13836 } 13837 } 13838 13839 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13840 * accommodate 512K and 1M IOs in a single nvme buf. 13841 */ 13842 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13843 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13844 13845 /* Enable embedded Payload BDE if support is indicated */ 13846 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13847 phba->cfg_enable_pbde = 1; 13848 else 13849 phba->cfg_enable_pbde = 0; 13850 13851 /* 13852 * To support Suppress Response feature we must satisfy 3 conditions. 13853 * lpfc_suppress_rsp module parameter must be set (default). 13854 * In SLI4-Parameters Descriptor: 13855 * Extended Inline Buffers (XIB) must be supported. 13856 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13857 * (double negative). 13858 */ 13859 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13860 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13861 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13862 else 13863 phba->cfg_suppress_rsp = 0; 13864 13865 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13866 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13867 13868 /* Make sure that sge_supp_len can be handled by the driver */ 13869 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13870 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13871 13872 dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len); 13873 13874 /* 13875 * Check whether the adapter supports an embedded copy of the 13876 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13877 * to use this option, 128-byte WQEs must be used. 13878 */ 13879 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13880 phba->fcp_embed_io = 1; 13881 else 13882 phba->fcp_embed_io = 0; 13883 13884 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13885 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13886 bf_get(cfg_xib, mbx_sli4_parameters), 13887 phba->cfg_enable_pbde, 13888 phba->fcp_embed_io, sli4_params->nvme, 13889 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13890 13891 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13892 LPFC_SLI_INTF_IF_TYPE_2) && 13893 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13894 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13895 exp_wqcq_pages = false; 13896 13897 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13898 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13899 exp_wqcq_pages && 13900 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13901 phba->enab_exp_wqcq_pages = 1; 13902 else 13903 phba->enab_exp_wqcq_pages = 0; 13904 /* 13905 * Check if the SLI port supports MDS Diagnostics 13906 */ 13907 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13908 phba->mds_diags_support = 1; 13909 else 13910 phba->mds_diags_support = 0; 13911 13912 /* 13913 * Check if the SLI port supports NSLER 13914 */ 13915 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13916 phba->nsler = 1; 13917 else 13918 phba->nsler = 0; 13919 13920 return 0; 13921 } 13922 13923 /** 13924 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13925 * @pdev: pointer to PCI device 13926 * @pid: pointer to PCI device identifier 13927 * 13928 * This routine is to be called to attach a device with SLI-3 interface spec 13929 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13930 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13931 * information of the device and driver to see if the driver state that it can 13932 * support this kind of device. If the match is successful, the driver core 13933 * invokes this routine. If this routine determines it can claim the HBA, it 13934 * does all the initialization that it needs to do to handle the HBA properly. 13935 * 13936 * Return code 13937 * 0 - driver can claim the device 13938 * negative value - driver can not claim the device 13939 **/ 13940 static int 13941 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13942 { 13943 struct lpfc_hba *phba; 13944 struct lpfc_vport *vport = NULL; 13945 struct Scsi_Host *shost = NULL; 13946 int error; 13947 uint32_t cfg_mode, intr_mode; 13948 13949 /* Allocate memory for HBA structure */ 13950 phba = lpfc_hba_alloc(pdev); 13951 if (!phba) 13952 return -ENOMEM; 13953 13954 /* Perform generic PCI device enabling operation */ 13955 error = lpfc_enable_pci_dev(phba); 13956 if (error) 13957 goto out_free_phba; 13958 13959 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13960 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13961 if (error) 13962 goto out_disable_pci_dev; 13963 13964 /* Set up SLI-3 specific device PCI memory space */ 13965 error = lpfc_sli_pci_mem_setup(phba); 13966 if (error) { 13967 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13968 "1402 Failed to set up pci memory space.\n"); 13969 goto out_disable_pci_dev; 13970 } 13971 13972 /* Set up SLI-3 specific device driver resources */ 13973 error = lpfc_sli_driver_resource_setup(phba); 13974 if (error) { 13975 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13976 "1404 Failed to set up driver resource.\n"); 13977 goto out_unset_pci_mem_s3; 13978 } 13979 13980 /* Initialize and populate the iocb list per host */ 13981 13982 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13983 if (error) { 13984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13985 "1405 Failed to initialize iocb list.\n"); 13986 goto out_unset_driver_resource_s3; 13987 } 13988 13989 /* Set up common device driver resources */ 13990 error = lpfc_setup_driver_resource_phase2(phba); 13991 if (error) { 13992 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13993 "1406 Failed to set up driver resource.\n"); 13994 goto out_free_iocb_list; 13995 } 13996 13997 /* Get the default values for Model Name and Description */ 13998 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13999 14000 /* Create SCSI host to the physical port */ 14001 error = lpfc_create_shost(phba); 14002 if (error) { 14003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14004 "1407 Failed to create scsi host.\n"); 14005 goto out_unset_driver_resource; 14006 } 14007 14008 /* Configure sysfs attributes */ 14009 vport = phba->pport; 14010 error = lpfc_alloc_sysfs_attr(vport); 14011 if (error) { 14012 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14013 "1476 Failed to allocate sysfs attr\n"); 14014 goto out_destroy_shost; 14015 } 14016 14017 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14018 /* Now, trying to enable interrupt and bring up the device */ 14019 cfg_mode = phba->cfg_use_msi; 14020 while (true) { 14021 /* Put device to a known state before enabling interrupt */ 14022 lpfc_stop_port(phba); 14023 /* Configure and enable interrupt */ 14024 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 14025 if (intr_mode == LPFC_INTR_ERROR) { 14026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14027 "0431 Failed to enable interrupt.\n"); 14028 error = -ENODEV; 14029 goto out_free_sysfs_attr; 14030 } 14031 /* SLI-3 HBA setup */ 14032 if (lpfc_sli_hba_setup(phba)) { 14033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14034 "1477 Failed to set up hba\n"); 14035 error = -ENODEV; 14036 goto out_remove_device; 14037 } 14038 14039 /* Wait 50ms for the interrupts of previous mailbox commands */ 14040 msleep(50); 14041 /* Check active interrupts on message signaled interrupts */ 14042 if (intr_mode == 0 || 14043 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 14044 /* Log the current active interrupt mode */ 14045 phba->intr_mode = intr_mode; 14046 lpfc_log_intr_mode(phba, intr_mode); 14047 break; 14048 } else { 14049 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14050 "0447 Configure interrupt mode (%d) " 14051 "failed active interrupt test.\n", 14052 intr_mode); 14053 /* Disable the current interrupt mode */ 14054 lpfc_sli_disable_intr(phba); 14055 /* Try next level of interrupt mode */ 14056 cfg_mode = --intr_mode; 14057 } 14058 } 14059 14060 /* Perform post initialization setup */ 14061 lpfc_post_init_setup(phba); 14062 14063 /* Check if there are static vports to be created. */ 14064 lpfc_create_static_vport(phba); 14065 14066 return 0; 14067 14068 out_remove_device: 14069 lpfc_unset_hba(phba); 14070 out_free_sysfs_attr: 14071 lpfc_free_sysfs_attr(vport); 14072 out_destroy_shost: 14073 lpfc_destroy_shost(phba); 14074 out_unset_driver_resource: 14075 lpfc_unset_driver_resource_phase2(phba); 14076 out_free_iocb_list: 14077 lpfc_free_iocb_list(phba); 14078 out_unset_driver_resource_s3: 14079 lpfc_sli_driver_resource_unset(phba); 14080 out_unset_pci_mem_s3: 14081 lpfc_sli_pci_mem_unset(phba); 14082 out_disable_pci_dev: 14083 lpfc_disable_pci_dev(phba); 14084 if (shost) 14085 scsi_host_put(shost); 14086 out_free_phba: 14087 lpfc_hba_free(phba); 14088 return error; 14089 } 14090 14091 /** 14092 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14093 * @pdev: pointer to PCI device 14094 * 14095 * This routine is to be called to disattach a device with SLI-3 interface 14096 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14097 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14098 * device to be removed from the PCI subsystem properly. 14099 **/ 14100 static void 14101 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14102 { 14103 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14104 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14105 struct lpfc_vport **vports; 14106 struct lpfc_hba *phba = vport->phba; 14107 int i; 14108 14109 set_bit(FC_UNLOADING, &vport->load_flag); 14110 14111 lpfc_free_sysfs_attr(vport); 14112 14113 /* Release all the vports against this physical port */ 14114 vports = lpfc_create_vport_work_array(phba); 14115 if (vports != NULL) 14116 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14117 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14118 continue; 14119 fc_vport_terminate(vports[i]->fc_vport); 14120 } 14121 lpfc_destroy_vport_work_array(phba, vports); 14122 14123 /* Remove FC host with the physical port */ 14124 fc_remove_host(shost); 14125 scsi_remove_host(shost); 14126 14127 /* Clean up all nodes, mailboxes and IOs. */ 14128 lpfc_cleanup(vport); 14129 14130 /* 14131 * Bring down the SLI Layer. This step disable all interrupts, 14132 * clears the rings, discards all mailbox commands, and resets 14133 * the HBA. 14134 */ 14135 14136 /* HBA interrupt will be disabled after this call */ 14137 lpfc_sli_hba_down(phba); 14138 /* Stop kthread signal shall trigger work_done one more time */ 14139 kthread_stop(phba->worker_thread); 14140 /* Final cleanup of txcmplq and reset the HBA */ 14141 lpfc_sli_brdrestart(phba); 14142 14143 kfree(phba->vpi_bmask); 14144 kfree(phba->vpi_ids); 14145 14146 lpfc_stop_hba_timers(phba); 14147 spin_lock_irq(&phba->port_list_lock); 14148 list_del_init(&vport->listentry); 14149 spin_unlock_irq(&phba->port_list_lock); 14150 14151 lpfc_debugfs_terminate(vport); 14152 14153 /* Disable SR-IOV if enabled */ 14154 if (phba->cfg_sriov_nr_virtfn) 14155 pci_disable_sriov(pdev); 14156 14157 /* Disable interrupt */ 14158 lpfc_sli_disable_intr(phba); 14159 14160 scsi_host_put(shost); 14161 14162 /* 14163 * Call scsi_free before mem_free since scsi bufs are released to their 14164 * corresponding pools here. 14165 */ 14166 lpfc_scsi_free(phba); 14167 lpfc_free_iocb_list(phba); 14168 14169 lpfc_mem_free_all(phba); 14170 14171 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14172 phba->hbqslimp.virt, phba->hbqslimp.phys); 14173 14174 /* Free resources associated with SLI2 interface */ 14175 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14176 phba->slim2p.virt, phba->slim2p.phys); 14177 14178 /* unmap adapter SLIM and Control Registers */ 14179 iounmap(phba->ctrl_regs_memmap_p); 14180 iounmap(phba->slim_memmap_p); 14181 14182 lpfc_hba_free(phba); 14183 14184 pci_release_mem_regions(pdev); 14185 pci_disable_device(pdev); 14186 } 14187 14188 /** 14189 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14190 * @dev_d: pointer to device 14191 * 14192 * This routine is to be called from the kernel's PCI subsystem to support 14193 * system Power Management (PM) to device with SLI-3 interface spec. When 14194 * PM invokes this method, it quiesces the device by stopping the driver's 14195 * worker thread for the device, turning off device's interrupt and DMA, 14196 * and bring the device offline. Note that as the driver implements the 14197 * minimum PM requirements to a power-aware driver's PM support for the 14198 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14199 * to the suspend() method call will be treated as SUSPEND and the driver will 14200 * fully reinitialize its device during resume() method call, the driver will 14201 * set device to PCI_D3hot state in PCI config space instead of setting it 14202 * according to the @msg provided by the PM. 14203 * 14204 * Return code 14205 * 0 - driver suspended the device 14206 * Error otherwise 14207 **/ 14208 static int __maybe_unused 14209 lpfc_pci_suspend_one_s3(struct device *dev_d) 14210 { 14211 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14212 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14213 14214 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14215 "0473 PCI device Power Management suspend.\n"); 14216 14217 /* Bring down the device */ 14218 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14219 lpfc_offline(phba); 14220 kthread_stop(phba->worker_thread); 14221 14222 /* Disable interrupt from device */ 14223 lpfc_sli_disable_intr(phba); 14224 14225 return 0; 14226 } 14227 14228 /** 14229 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14230 * @dev_d: pointer to device 14231 * 14232 * This routine is to be called from the kernel's PCI subsystem to support 14233 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14234 * invokes this method, it restores the device's PCI config space state and 14235 * fully reinitializes the device and brings it online. Note that as the 14236 * driver implements the minimum PM requirements to a power-aware driver's 14237 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14238 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14239 * driver will fully reinitialize its device during resume() method call, 14240 * the device will be set to PCI_D0 directly in PCI config space before 14241 * restoring the state. 14242 * 14243 * Return code 14244 * 0 - driver suspended the device 14245 * Error otherwise 14246 **/ 14247 static int __maybe_unused 14248 lpfc_pci_resume_one_s3(struct device *dev_d) 14249 { 14250 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14251 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14252 uint32_t intr_mode; 14253 int error; 14254 14255 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14256 "0452 PCI device Power Management resume.\n"); 14257 14258 /* Startup the kernel thread for this host adapter. */ 14259 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14260 "lpfc_worker_%d", phba->brd_no); 14261 if (IS_ERR(phba->worker_thread)) { 14262 error = PTR_ERR(phba->worker_thread); 14263 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14264 "0434 PM resume failed to start worker " 14265 "thread: error=x%x.\n", error); 14266 return error; 14267 } 14268 14269 /* Init cpu_map array */ 14270 lpfc_cpu_map_array_init(phba); 14271 /* Init hba_eq_hdl array */ 14272 lpfc_hba_eq_hdl_array_init(phba); 14273 /* Configure and enable interrupt */ 14274 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14275 if (intr_mode == LPFC_INTR_ERROR) { 14276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14277 "0430 PM resume Failed to enable interrupt\n"); 14278 return -EIO; 14279 } else 14280 phba->intr_mode = intr_mode; 14281 14282 /* Restart HBA and bring it online */ 14283 lpfc_sli_brdrestart(phba); 14284 lpfc_online(phba); 14285 14286 /* Log the current active interrupt mode */ 14287 lpfc_log_intr_mode(phba, phba->intr_mode); 14288 14289 return 0; 14290 } 14291 14292 /** 14293 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14294 * @phba: pointer to lpfc hba data structure. 14295 * 14296 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14297 * aborts all the outstanding SCSI I/Os to the pci device. 14298 **/ 14299 static void 14300 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14301 { 14302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14303 "2723 PCI channel I/O abort preparing for recovery\n"); 14304 14305 /* 14306 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14307 * and let the SCSI mid-layer to retry them to recover. 14308 */ 14309 lpfc_sli_abort_fcp_rings(phba); 14310 } 14311 14312 /** 14313 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14314 * @phba: pointer to lpfc hba data structure. 14315 * 14316 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14317 * disables the device interrupt and pci device, and aborts the internal FCP 14318 * pending I/Os. 14319 **/ 14320 static void 14321 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14322 { 14323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14324 "2710 PCI channel disable preparing for reset\n"); 14325 14326 /* Block any management I/Os to the device */ 14327 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14328 14329 /* Block all SCSI devices' I/Os on the host */ 14330 lpfc_scsi_dev_block(phba); 14331 14332 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14333 lpfc_sli_flush_io_rings(phba); 14334 14335 /* stop all timers */ 14336 lpfc_stop_hba_timers(phba); 14337 14338 /* Disable interrupt and pci device */ 14339 lpfc_sli_disable_intr(phba); 14340 pci_disable_device(phba->pcidev); 14341 } 14342 14343 /** 14344 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14345 * @phba: pointer to lpfc hba data structure. 14346 * 14347 * This routine is called to prepare the SLI3 device for PCI slot permanently 14348 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14349 * pending I/Os. 14350 **/ 14351 static void 14352 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14353 { 14354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14355 "2711 PCI channel permanent disable for failure\n"); 14356 /* Block all SCSI devices' I/Os on the host */ 14357 lpfc_scsi_dev_block(phba); 14358 lpfc_sli4_prep_dev_for_reset(phba); 14359 14360 /* stop all timers */ 14361 lpfc_stop_hba_timers(phba); 14362 14363 /* Clean up all driver's outstanding SCSI I/Os */ 14364 lpfc_sli_flush_io_rings(phba); 14365 } 14366 14367 /** 14368 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14369 * @pdev: pointer to PCI device. 14370 * @state: the current PCI connection state. 14371 * 14372 * This routine is called from the PCI subsystem for I/O error handling to 14373 * device with SLI-3 interface spec. This function is called by the PCI 14374 * subsystem after a PCI bus error affecting this device has been detected. 14375 * When this function is invoked, it will need to stop all the I/Os and 14376 * interrupt(s) to the device. Once that is done, it will return 14377 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14378 * as desired. 14379 * 14380 * Return codes 14381 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14382 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14383 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14384 **/ 14385 static pci_ers_result_t 14386 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14387 { 14388 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14389 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14390 14391 switch (state) { 14392 case pci_channel_io_normal: 14393 /* Non-fatal error, prepare for recovery */ 14394 lpfc_sli_prep_dev_for_recover(phba); 14395 return PCI_ERS_RESULT_CAN_RECOVER; 14396 case pci_channel_io_frozen: 14397 /* Fatal error, prepare for slot reset */ 14398 lpfc_sli_prep_dev_for_reset(phba); 14399 return PCI_ERS_RESULT_NEED_RESET; 14400 case pci_channel_io_perm_failure: 14401 /* Permanent failure, prepare for device down */ 14402 lpfc_sli_prep_dev_for_perm_failure(phba); 14403 return PCI_ERS_RESULT_DISCONNECT; 14404 default: 14405 /* Unknown state, prepare and request slot reset */ 14406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14407 "0472 Unknown PCI error state: x%x\n", state); 14408 lpfc_sli_prep_dev_for_reset(phba); 14409 return PCI_ERS_RESULT_NEED_RESET; 14410 } 14411 } 14412 14413 /** 14414 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14415 * @pdev: pointer to PCI device. 14416 * 14417 * This routine is called from the PCI subsystem for error handling to 14418 * device with SLI-3 interface spec. This is called after PCI bus has been 14419 * reset to restart the PCI card from scratch, as if from a cold-boot. 14420 * During the PCI subsystem error recovery, after driver returns 14421 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14422 * recovery and then call this routine before calling the .resume method 14423 * to recover the device. This function will initialize the HBA device, 14424 * enable the interrupt, but it will just put the HBA to offline state 14425 * without passing any I/O traffic. 14426 * 14427 * Return codes 14428 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14429 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14430 */ 14431 static pci_ers_result_t 14432 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14433 { 14434 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14435 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14436 struct lpfc_sli *psli = &phba->sli; 14437 uint32_t intr_mode; 14438 14439 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14440 if (pci_enable_device_mem(pdev)) { 14441 printk(KERN_ERR "lpfc: Cannot re-enable " 14442 "PCI device after reset.\n"); 14443 return PCI_ERS_RESULT_DISCONNECT; 14444 } 14445 14446 pci_restore_state(pdev); 14447 14448 /* 14449 * As the new kernel behavior of pci_restore_state() API call clears 14450 * device saved_state flag, need to save the restored state again. 14451 */ 14452 pci_save_state(pdev); 14453 14454 if (pdev->is_busmaster) 14455 pci_set_master(pdev); 14456 14457 spin_lock_irq(&phba->hbalock); 14458 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14459 spin_unlock_irq(&phba->hbalock); 14460 14461 /* Configure and enable interrupt */ 14462 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14463 if (intr_mode == LPFC_INTR_ERROR) { 14464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14465 "0427 Cannot re-enable interrupt after " 14466 "slot reset.\n"); 14467 return PCI_ERS_RESULT_DISCONNECT; 14468 } else 14469 phba->intr_mode = intr_mode; 14470 14471 /* Take device offline, it will perform cleanup */ 14472 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14473 lpfc_offline(phba); 14474 lpfc_sli_brdrestart(phba); 14475 14476 /* Log the current active interrupt mode */ 14477 lpfc_log_intr_mode(phba, phba->intr_mode); 14478 14479 return PCI_ERS_RESULT_RECOVERED; 14480 } 14481 14482 /** 14483 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14484 * @pdev: pointer to PCI device 14485 * 14486 * This routine is called from the PCI subsystem for error handling to device 14487 * with SLI-3 interface spec. It is called when kernel error recovery tells 14488 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14489 * error recovery. After this call, traffic can start to flow from this device 14490 * again. 14491 */ 14492 static void 14493 lpfc_io_resume_s3(struct pci_dev *pdev) 14494 { 14495 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14496 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14497 14498 /* Bring device online, it will be no-op for non-fatal error resume */ 14499 lpfc_online(phba); 14500 } 14501 14502 /** 14503 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14504 * @phba: pointer to lpfc hba data structure. 14505 * 14506 * returns the number of ELS/CT IOCBs to reserve 14507 **/ 14508 int 14509 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14510 { 14511 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14512 14513 if (phba->sli_rev == LPFC_SLI_REV4) { 14514 if (max_xri <= 100) 14515 return 10; 14516 else if (max_xri <= 256) 14517 return 25; 14518 else if (max_xri <= 512) 14519 return 50; 14520 else if (max_xri <= 1024) 14521 return 100; 14522 else if (max_xri <= 1536) 14523 return 150; 14524 else if (max_xri <= 2048) 14525 return 200; 14526 else 14527 return 250; 14528 } else 14529 return 0; 14530 } 14531 14532 /** 14533 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14534 * @phba: pointer to lpfc hba data structure. 14535 * 14536 * returns the number of ELS/CT + NVMET IOCBs to reserve 14537 **/ 14538 int 14539 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14540 { 14541 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14542 14543 if (phba->nvmet_support) 14544 max_xri += LPFC_NVMET_BUF_POST; 14545 return max_xri; 14546 } 14547 14548 14549 static int 14550 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14551 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14552 const struct firmware *fw) 14553 { 14554 int rc; 14555 u8 sli_family; 14556 14557 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14558 /* Three cases: (1) FW was not supported on the detected adapter. 14559 * (2) FW update has been locked out administratively. 14560 * (3) Some other error during FW update. 14561 * In each case, an unmaskable message is written to the console 14562 * for admin diagnosis. 14563 */ 14564 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14565 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14566 magic_number != MAGIC_NUMBER_G6) || 14567 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14568 magic_number != MAGIC_NUMBER_G7) || 14569 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14570 magic_number != MAGIC_NUMBER_G7P)) { 14571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14572 "3030 This firmware version is not supported on" 14573 " this HBA model. Device:%x Magic:%x Type:%x " 14574 "ID:%x Size %d %zd\n", 14575 phba->pcidev->device, magic_number, ftype, fid, 14576 fsize, fw->size); 14577 rc = -EINVAL; 14578 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14580 "3021 Firmware downloads have been prohibited " 14581 "by a system configuration setting on " 14582 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14583 "%zd\n", 14584 phba->pcidev->device, magic_number, ftype, fid, 14585 fsize, fw->size); 14586 rc = -EACCES; 14587 } else { 14588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14589 "3022 FW Download failed. Add Status x%x " 14590 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14591 "%zd\n", 14592 offset, phba->pcidev->device, magic_number, 14593 ftype, fid, fsize, fw->size); 14594 rc = -EIO; 14595 } 14596 return rc; 14597 } 14598 14599 /** 14600 * lpfc_write_firmware - attempt to write a firmware image to the port 14601 * @fw: pointer to firmware image returned from request_firmware. 14602 * @context: pointer to firmware image returned from request_firmware. 14603 * 14604 **/ 14605 static void 14606 lpfc_write_firmware(const struct firmware *fw, void *context) 14607 { 14608 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14609 char fwrev[FW_REV_STR_SIZE]; 14610 struct lpfc_grp_hdr *image; 14611 struct list_head dma_buffer_list; 14612 int i, rc = 0; 14613 struct lpfc_dmabuf *dmabuf, *next; 14614 uint32_t offset = 0, temp_offset = 0; 14615 uint32_t magic_number, ftype, fid, fsize; 14616 14617 /* It can be null in no-wait mode, sanity check */ 14618 if (!fw) { 14619 rc = -ENXIO; 14620 goto out; 14621 } 14622 image = (struct lpfc_grp_hdr *)fw->data; 14623 14624 magic_number = be32_to_cpu(image->magic_number); 14625 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14626 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14627 fsize = be32_to_cpu(image->size); 14628 14629 INIT_LIST_HEAD(&dma_buffer_list); 14630 lpfc_decode_firmware_rev(phba, fwrev, 1); 14631 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14632 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14633 "3023 Updating Firmware, Current Version:%s " 14634 "New Version:%s\n", 14635 fwrev, image->revision); 14636 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14637 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14638 GFP_KERNEL); 14639 if (!dmabuf) { 14640 rc = -ENOMEM; 14641 goto release_out; 14642 } 14643 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14644 SLI4_PAGE_SIZE, 14645 &dmabuf->phys, 14646 GFP_KERNEL); 14647 if (!dmabuf->virt) { 14648 kfree(dmabuf); 14649 rc = -ENOMEM; 14650 goto release_out; 14651 } 14652 list_add_tail(&dmabuf->list, &dma_buffer_list); 14653 } 14654 while (offset < fw->size) { 14655 temp_offset = offset; 14656 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14657 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14658 memcpy(dmabuf->virt, 14659 fw->data + temp_offset, 14660 fw->size - temp_offset); 14661 temp_offset = fw->size; 14662 break; 14663 } 14664 memcpy(dmabuf->virt, fw->data + temp_offset, 14665 SLI4_PAGE_SIZE); 14666 temp_offset += SLI4_PAGE_SIZE; 14667 } 14668 rc = lpfc_wr_object(phba, &dma_buffer_list, 14669 (fw->size - offset), &offset); 14670 if (rc) { 14671 rc = lpfc_log_write_firmware_error(phba, offset, 14672 magic_number, 14673 ftype, 14674 fid, 14675 fsize, 14676 fw); 14677 goto release_out; 14678 } 14679 } 14680 rc = offset; 14681 } else 14682 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14683 "3029 Skipped Firmware update, Current " 14684 "Version:%s New Version:%s\n", 14685 fwrev, image->revision); 14686 14687 release_out: 14688 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14689 list_del(&dmabuf->list); 14690 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14691 dmabuf->virt, dmabuf->phys); 14692 kfree(dmabuf); 14693 } 14694 release_firmware(fw); 14695 out: 14696 if (rc < 0) 14697 lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI, 14698 "3062 Firmware update error, status %d.\n", rc); 14699 else 14700 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14701 "3024 Firmware update success: size %d.\n", rc); 14702 } 14703 14704 /** 14705 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14706 * @phba: pointer to lpfc hba data structure. 14707 * @fw_upgrade: which firmware to update. 14708 * 14709 * This routine is called to perform Linux generic firmware upgrade on device 14710 * that supports such feature. 14711 **/ 14712 int 14713 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14714 { 14715 char file_name[ELX_FW_NAME_SIZE] = {0}; 14716 int ret; 14717 const struct firmware *fw; 14718 14719 /* Only supported on SLI4 interface type 2 for now */ 14720 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14721 LPFC_SLI_INTF_IF_TYPE_2) 14722 return -EPERM; 14723 14724 scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName); 14725 14726 if (fw_upgrade == INT_FW_UPGRADE) { 14727 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14728 file_name, &phba->pcidev->dev, 14729 GFP_KERNEL, (void *)phba, 14730 lpfc_write_firmware); 14731 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14732 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14733 if (!ret) 14734 lpfc_write_firmware(fw, (void *)phba); 14735 } else { 14736 ret = -EINVAL; 14737 } 14738 14739 return ret; 14740 } 14741 14742 /** 14743 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14744 * @pdev: pointer to PCI device 14745 * @pid: pointer to PCI device identifier 14746 * 14747 * This routine is called from the kernel's PCI subsystem to device with 14748 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14749 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14750 * information of the device and driver to see if the driver state that it 14751 * can support this kind of device. If the match is successful, the driver 14752 * core invokes this routine. If this routine determines it can claim the HBA, 14753 * it does all the initialization that it needs to do to handle the HBA 14754 * properly. 14755 * 14756 * Return code 14757 * 0 - driver can claim the device 14758 * negative value - driver can not claim the device 14759 **/ 14760 static int 14761 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14762 { 14763 struct lpfc_hba *phba; 14764 struct lpfc_vport *vport = NULL; 14765 struct Scsi_Host *shost = NULL; 14766 int error; 14767 uint32_t cfg_mode, intr_mode; 14768 14769 /* Allocate memory for HBA structure */ 14770 phba = lpfc_hba_alloc(pdev); 14771 if (!phba) 14772 return -ENOMEM; 14773 14774 INIT_LIST_HEAD(&phba->poll_list); 14775 14776 /* Perform generic PCI device enabling operation */ 14777 error = lpfc_enable_pci_dev(phba); 14778 if (error) 14779 goto out_free_phba; 14780 14781 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14782 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14783 if (error) 14784 goto out_disable_pci_dev; 14785 14786 /* Set up SLI-4 specific device PCI memory space */ 14787 error = lpfc_sli4_pci_mem_setup(phba); 14788 if (error) { 14789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14790 "1410 Failed to set up pci memory space.\n"); 14791 goto out_disable_pci_dev; 14792 } 14793 14794 /* Set up SLI-4 Specific device driver resources */ 14795 error = lpfc_sli4_driver_resource_setup(phba); 14796 if (error) { 14797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14798 "1412 Failed to set up driver resource.\n"); 14799 goto out_unset_pci_mem_s4; 14800 } 14801 14802 spin_lock_init(&phba->rrq_list_lock); 14803 INIT_LIST_HEAD(&phba->active_rrq_list); 14804 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14805 14806 /* Set up common device driver resources */ 14807 error = lpfc_setup_driver_resource_phase2(phba); 14808 if (error) { 14809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14810 "1414 Failed to set up driver resource.\n"); 14811 goto out_unset_driver_resource_s4; 14812 } 14813 14814 /* Get the default values for Model Name and Description */ 14815 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14816 14817 /* Now, trying to enable interrupt and bring up the device */ 14818 cfg_mode = phba->cfg_use_msi; 14819 14820 /* Put device to a known state before enabling interrupt */ 14821 phba->pport = NULL; 14822 lpfc_stop_port(phba); 14823 14824 /* Init cpu_map array */ 14825 lpfc_cpu_map_array_init(phba); 14826 14827 /* Init hba_eq_hdl array */ 14828 lpfc_hba_eq_hdl_array_init(phba); 14829 14830 /* Configure and enable interrupt */ 14831 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14832 if (intr_mode == LPFC_INTR_ERROR) { 14833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14834 "0426 Failed to enable interrupt.\n"); 14835 error = -ENODEV; 14836 goto out_unset_driver_resource; 14837 } 14838 /* Default to single EQ for non-MSI-X */ 14839 if (phba->intr_type != MSIX) { 14840 phba->cfg_irq_chann = 1; 14841 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14842 if (phba->nvmet_support) 14843 phba->cfg_nvmet_mrq = 1; 14844 } 14845 } 14846 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14847 14848 /* Create SCSI host to the physical port */ 14849 error = lpfc_create_shost(phba); 14850 if (error) { 14851 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14852 "1415 Failed to create scsi host.\n"); 14853 goto out_disable_intr; 14854 } 14855 vport = phba->pport; 14856 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14857 14858 /* Configure sysfs attributes */ 14859 error = lpfc_alloc_sysfs_attr(vport); 14860 if (error) { 14861 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14862 "1416 Failed to allocate sysfs attr\n"); 14863 goto out_destroy_shost; 14864 } 14865 14866 /* Set up SLI-4 HBA */ 14867 if (lpfc_sli4_hba_setup(phba)) { 14868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14869 "1421 Failed to set up hba\n"); 14870 error = -ENODEV; 14871 goto out_free_sysfs_attr; 14872 } 14873 14874 /* Log the current active interrupt mode */ 14875 phba->intr_mode = intr_mode; 14876 lpfc_log_intr_mode(phba, intr_mode); 14877 14878 /* Perform post initialization setup */ 14879 lpfc_post_init_setup(phba); 14880 14881 /* NVME support in FW earlier in the driver load corrects the 14882 * FC4 type making a check for nvme_support unnecessary. 14883 */ 14884 if (phba->nvmet_support == 0) { 14885 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14886 /* Create NVME binding with nvme_fc_transport. This 14887 * ensures the vport is initialized. If the localport 14888 * create fails, it should not unload the driver to 14889 * support field issues. 14890 */ 14891 error = lpfc_nvme_create_localport(vport); 14892 if (error) { 14893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14894 "6004 NVME registration " 14895 "failed, error x%x\n", 14896 error); 14897 } 14898 } 14899 } 14900 14901 /* check for firmware upgrade or downgrade */ 14902 if (phba->cfg_request_firmware_upgrade) 14903 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14904 14905 /* Check if there are static vports to be created. */ 14906 lpfc_create_static_vport(phba); 14907 14908 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14909 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14910 14911 return 0; 14912 14913 out_free_sysfs_attr: 14914 lpfc_free_sysfs_attr(vport); 14915 out_destroy_shost: 14916 lpfc_destroy_shost(phba); 14917 out_disable_intr: 14918 lpfc_sli4_disable_intr(phba); 14919 out_unset_driver_resource: 14920 lpfc_unset_driver_resource_phase2(phba); 14921 out_unset_driver_resource_s4: 14922 lpfc_sli4_driver_resource_unset(phba); 14923 out_unset_pci_mem_s4: 14924 lpfc_sli4_pci_mem_unset(phba); 14925 out_disable_pci_dev: 14926 lpfc_disable_pci_dev(phba); 14927 if (shost) 14928 scsi_host_put(shost); 14929 out_free_phba: 14930 lpfc_hba_free(phba); 14931 return error; 14932 } 14933 14934 /** 14935 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14936 * @pdev: pointer to PCI device 14937 * 14938 * This routine is called from the kernel's PCI subsystem to device with 14939 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14940 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14941 * device to be removed from the PCI subsystem properly. 14942 **/ 14943 static void 14944 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14945 { 14946 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14947 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14948 struct lpfc_vport **vports; 14949 struct lpfc_hba *phba = vport->phba; 14950 int i; 14951 14952 /* Mark the device unloading flag */ 14953 set_bit(FC_UNLOADING, &vport->load_flag); 14954 if (phba->cgn_i) 14955 lpfc_unreg_congestion_buf(phba); 14956 14957 lpfc_free_sysfs_attr(vport); 14958 14959 /* Release all the vports against this physical port */ 14960 vports = lpfc_create_vport_work_array(phba); 14961 if (vports != NULL) 14962 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14963 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14964 continue; 14965 fc_vport_terminate(vports[i]->fc_vport); 14966 } 14967 lpfc_destroy_vport_work_array(phba, vports); 14968 14969 /* Remove FC host with the physical port */ 14970 fc_remove_host(shost); 14971 scsi_remove_host(shost); 14972 14973 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14974 * localports are destroyed after to cleanup all transport memory. 14975 */ 14976 lpfc_cleanup(vport); 14977 lpfc_nvmet_destroy_targetport(phba); 14978 lpfc_nvme_destroy_localport(vport); 14979 14980 /* De-allocate multi-XRI pools */ 14981 if (phba->cfg_xri_rebalancing) 14982 lpfc_destroy_multixri_pools(phba); 14983 14984 /* 14985 * Bring down the SLI Layer. This step disables all interrupts, 14986 * clears the rings, discards all mailbox commands, and resets 14987 * the HBA FCoE function. 14988 */ 14989 lpfc_debugfs_terminate(vport); 14990 14991 lpfc_stop_hba_timers(phba); 14992 spin_lock_irq(&phba->port_list_lock); 14993 list_del_init(&vport->listentry); 14994 spin_unlock_irq(&phba->port_list_lock); 14995 14996 /* Perform scsi free before driver resource_unset since scsi 14997 * buffers are released to their corresponding pools here. 14998 */ 14999 lpfc_io_free(phba); 15000 lpfc_free_iocb_list(phba); 15001 lpfc_sli4_hba_unset(phba); 15002 15003 lpfc_unset_driver_resource_phase2(phba); 15004 lpfc_sli4_driver_resource_unset(phba); 15005 15006 /* Unmap adapter Control and Doorbell registers */ 15007 lpfc_sli4_pci_mem_unset(phba); 15008 15009 /* Release PCI resources and disable device's PCI function */ 15010 scsi_host_put(shost); 15011 lpfc_disable_pci_dev(phba); 15012 15013 /* Finally, free the driver's device data structure */ 15014 lpfc_hba_free(phba); 15015 15016 return; 15017 } 15018 15019 /** 15020 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 15021 * @dev_d: pointer to device 15022 * 15023 * This routine is called from the kernel's PCI subsystem to support system 15024 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 15025 * this method, it quiesces the device by stopping the driver's worker 15026 * thread for the device, turning off device's interrupt and DMA, and bring 15027 * the device offline. Note that as the driver implements the minimum PM 15028 * requirements to a power-aware driver's PM support for suspend/resume -- all 15029 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 15030 * method call will be treated as SUSPEND and the driver will fully 15031 * reinitialize its device during resume() method call, the driver will set 15032 * device to PCI_D3hot state in PCI config space instead of setting it 15033 * according to the @msg provided by the PM. 15034 * 15035 * Return code 15036 * 0 - driver suspended the device 15037 * Error otherwise 15038 **/ 15039 static int __maybe_unused 15040 lpfc_pci_suspend_one_s4(struct device *dev_d) 15041 { 15042 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15043 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15044 15045 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15046 "2843 PCI device Power Management suspend.\n"); 15047 15048 /* Bring down the device */ 15049 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15050 lpfc_offline(phba); 15051 kthread_stop(phba->worker_thread); 15052 15053 /* Disable interrupt from device */ 15054 lpfc_sli4_disable_intr(phba); 15055 lpfc_sli4_queue_destroy(phba); 15056 15057 return 0; 15058 } 15059 15060 /** 15061 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 15062 * @dev_d: pointer to device 15063 * 15064 * This routine is called from the kernel's PCI subsystem to support system 15065 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 15066 * this method, it restores the device's PCI config space state and fully 15067 * reinitializes the device and brings it online. Note that as the driver 15068 * implements the minimum PM requirements to a power-aware driver's PM for 15069 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15070 * to the suspend() method call will be treated as SUSPEND and the driver 15071 * will fully reinitialize its device during resume() method call, the device 15072 * will be set to PCI_D0 directly in PCI config space before restoring the 15073 * state. 15074 * 15075 * Return code 15076 * 0 - driver suspended the device 15077 * Error otherwise 15078 **/ 15079 static int __maybe_unused 15080 lpfc_pci_resume_one_s4(struct device *dev_d) 15081 { 15082 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15083 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15084 uint32_t intr_mode; 15085 int error; 15086 15087 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15088 "0292 PCI device Power Management resume.\n"); 15089 15090 /* Startup the kernel thread for this host adapter. */ 15091 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15092 "lpfc_worker_%d", phba->brd_no); 15093 if (IS_ERR(phba->worker_thread)) { 15094 error = PTR_ERR(phba->worker_thread); 15095 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15096 "0293 PM resume failed to start worker " 15097 "thread: error=x%x.\n", error); 15098 return error; 15099 } 15100 15101 /* Configure and enable interrupt */ 15102 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15103 if (intr_mode == LPFC_INTR_ERROR) { 15104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15105 "0294 PM resume Failed to enable interrupt\n"); 15106 return -EIO; 15107 } else 15108 phba->intr_mode = intr_mode; 15109 15110 /* Restart HBA and bring it online */ 15111 lpfc_sli_brdrestart(phba); 15112 lpfc_online(phba); 15113 15114 /* Log the current active interrupt mode */ 15115 lpfc_log_intr_mode(phba, phba->intr_mode); 15116 15117 return 0; 15118 } 15119 15120 /** 15121 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15122 * @phba: pointer to lpfc hba data structure. 15123 * 15124 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15125 * aborts all the outstanding SCSI I/Os to the pci device. 15126 **/ 15127 static void 15128 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15129 { 15130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15131 "2828 PCI channel I/O abort preparing for recovery\n"); 15132 /* 15133 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15134 * and let the SCSI mid-layer to retry them to recover. 15135 */ 15136 lpfc_sli_abort_fcp_rings(phba); 15137 } 15138 15139 /** 15140 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15141 * @phba: pointer to lpfc hba data structure. 15142 * 15143 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15144 * disables the device interrupt and pci device, and aborts the internal FCP 15145 * pending I/Os. 15146 **/ 15147 static void 15148 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15149 { 15150 int offline = pci_channel_offline(phba->pcidev); 15151 15152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15153 "2826 PCI channel disable preparing for reset offline" 15154 " %d\n", offline); 15155 15156 /* Block any management I/Os to the device */ 15157 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15158 15159 15160 /* HBA_PCI_ERR was set in io_error_detect */ 15161 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15162 /* Flush all driver's outstanding I/Os as we are to reset */ 15163 lpfc_sli_flush_io_rings(phba); 15164 lpfc_offline(phba); 15165 15166 /* stop all timers */ 15167 lpfc_stop_hba_timers(phba); 15168 15169 lpfc_sli4_queue_destroy(phba); 15170 /* Disable interrupt and pci device */ 15171 lpfc_sli4_disable_intr(phba); 15172 pci_disable_device(phba->pcidev); 15173 } 15174 15175 /** 15176 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15177 * @phba: pointer to lpfc hba data structure. 15178 * 15179 * This routine is called to prepare the SLI4 device for PCI slot permanently 15180 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15181 * pending I/Os. 15182 **/ 15183 static void 15184 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15185 { 15186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15187 "2827 PCI channel permanent disable for failure\n"); 15188 15189 /* Block all SCSI devices' I/Os on the host */ 15190 lpfc_scsi_dev_block(phba); 15191 15192 /* stop all timers */ 15193 lpfc_stop_hba_timers(phba); 15194 15195 /* Clean up all driver's outstanding I/Os */ 15196 lpfc_sli_flush_io_rings(phba); 15197 } 15198 15199 /** 15200 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15201 * @pdev: pointer to PCI device. 15202 * @state: the current PCI connection state. 15203 * 15204 * This routine is called from the PCI subsystem for error handling to device 15205 * with SLI-4 interface spec. This function is called by the PCI subsystem 15206 * after a PCI bus error affecting this device has been detected. When this 15207 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15208 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15209 * for the PCI subsystem to perform proper recovery as desired. 15210 * 15211 * Return codes 15212 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15213 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15214 **/ 15215 static pci_ers_result_t 15216 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15217 { 15218 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15219 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15220 bool hba_pci_err; 15221 15222 switch (state) { 15223 case pci_channel_io_normal: 15224 /* Non-fatal error, prepare for recovery */ 15225 lpfc_sli4_prep_dev_for_recover(phba); 15226 return PCI_ERS_RESULT_CAN_RECOVER; 15227 case pci_channel_io_frozen: 15228 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15229 /* Fatal error, prepare for slot reset */ 15230 if (!hba_pci_err) 15231 lpfc_sli4_prep_dev_for_reset(phba); 15232 else 15233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15234 "2832 Already handling PCI error " 15235 "state: x%x\n", state); 15236 return PCI_ERS_RESULT_NEED_RESET; 15237 case pci_channel_io_perm_failure: 15238 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15239 /* Permanent failure, prepare for device down */ 15240 lpfc_sli4_prep_dev_for_perm_failure(phba); 15241 return PCI_ERS_RESULT_DISCONNECT; 15242 default: 15243 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15244 if (!hba_pci_err) 15245 lpfc_sli4_prep_dev_for_reset(phba); 15246 /* Unknown state, prepare and request slot reset */ 15247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15248 "2825 Unknown PCI error state: x%x\n", state); 15249 lpfc_sli4_prep_dev_for_reset(phba); 15250 return PCI_ERS_RESULT_NEED_RESET; 15251 } 15252 } 15253 15254 /** 15255 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15256 * @pdev: pointer to PCI device. 15257 * 15258 * This routine is called from the PCI subsystem for error handling to device 15259 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15260 * restart the PCI card from scratch, as if from a cold-boot. During the 15261 * PCI subsystem error recovery, after the driver returns 15262 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15263 * recovery and then call this routine before calling the .resume method to 15264 * recover the device. This function will initialize the HBA device, enable 15265 * the interrupt, but it will just put the HBA to offline state without 15266 * passing any I/O traffic. 15267 * 15268 * Return codes 15269 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15270 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15271 */ 15272 static pci_ers_result_t 15273 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15274 { 15275 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15276 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15277 struct lpfc_sli *psli = &phba->sli; 15278 uint32_t intr_mode; 15279 bool hba_pci_err; 15280 15281 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15282 if (pci_enable_device_mem(pdev)) { 15283 printk(KERN_ERR "lpfc: Cannot re-enable " 15284 "PCI device after reset.\n"); 15285 return PCI_ERS_RESULT_DISCONNECT; 15286 } 15287 15288 pci_restore_state(pdev); 15289 15290 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15291 if (!hba_pci_err) 15292 dev_info(&pdev->dev, 15293 "hba_pci_err was not set, recovering slot reset.\n"); 15294 /* 15295 * As the new kernel behavior of pci_restore_state() API call clears 15296 * device saved_state flag, need to save the restored state again. 15297 */ 15298 pci_save_state(pdev); 15299 15300 if (pdev->is_busmaster) 15301 pci_set_master(pdev); 15302 15303 spin_lock_irq(&phba->hbalock); 15304 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15305 spin_unlock_irq(&phba->hbalock); 15306 15307 /* Init cpu_map array */ 15308 lpfc_cpu_map_array_init(phba); 15309 /* Configure and enable interrupt */ 15310 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15311 if (intr_mode == LPFC_INTR_ERROR) { 15312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15313 "2824 Cannot re-enable interrupt after " 15314 "slot reset.\n"); 15315 return PCI_ERS_RESULT_DISCONNECT; 15316 } else 15317 phba->intr_mode = intr_mode; 15318 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15319 15320 /* Log the current active interrupt mode */ 15321 lpfc_log_intr_mode(phba, phba->intr_mode); 15322 15323 return PCI_ERS_RESULT_RECOVERED; 15324 } 15325 15326 /** 15327 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15328 * @pdev: pointer to PCI device 15329 * 15330 * This routine is called from the PCI subsystem for error handling to device 15331 * with SLI-4 interface spec. It is called when kernel error recovery tells 15332 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15333 * error recovery. After this call, traffic can start to flow from this device 15334 * again. 15335 **/ 15336 static void 15337 lpfc_io_resume_s4(struct pci_dev *pdev) 15338 { 15339 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15340 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15341 15342 /* 15343 * In case of slot reset, as function reset is performed through 15344 * mailbox command which needs DMA to be enabled, this operation 15345 * has to be moved to the io resume phase. Taking device offline 15346 * will perform the necessary cleanup. 15347 */ 15348 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15349 /* Perform device reset */ 15350 lpfc_sli_brdrestart(phba); 15351 /* Bring the device back online */ 15352 lpfc_online(phba); 15353 } 15354 } 15355 15356 /** 15357 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15358 * @pdev: pointer to PCI device 15359 * @pid: pointer to PCI device identifier 15360 * 15361 * This routine is to be registered to the kernel's PCI subsystem. When an 15362 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15363 * at PCI device-specific information of the device and driver to see if the 15364 * driver state that it can support this kind of device. If the match is 15365 * successful, the driver core invokes this routine. This routine dispatches 15366 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15367 * do all the initialization that it needs to do to handle the HBA device 15368 * properly. 15369 * 15370 * Return code 15371 * 0 - driver can claim the device 15372 * negative value - driver can not claim the device 15373 **/ 15374 static int 15375 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15376 { 15377 int rc; 15378 struct lpfc_sli_intf intf; 15379 15380 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15381 return -ENODEV; 15382 15383 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15384 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15385 rc = lpfc_pci_probe_one_s4(pdev, pid); 15386 else 15387 rc = lpfc_pci_probe_one_s3(pdev, pid); 15388 15389 return rc; 15390 } 15391 15392 /** 15393 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15394 * @pdev: pointer to PCI device 15395 * 15396 * This routine is to be registered to the kernel's PCI subsystem. When an 15397 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15398 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15399 * remove routine, which will perform all the necessary cleanup for the 15400 * device to be removed from the PCI subsystem properly. 15401 **/ 15402 static void 15403 lpfc_pci_remove_one(struct pci_dev *pdev) 15404 { 15405 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15406 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15407 15408 switch (phba->pci_dev_grp) { 15409 case LPFC_PCI_DEV_LP: 15410 lpfc_pci_remove_one_s3(pdev); 15411 break; 15412 case LPFC_PCI_DEV_OC: 15413 lpfc_pci_remove_one_s4(pdev); 15414 break; 15415 default: 15416 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15417 "1424 Invalid PCI device group: 0x%x\n", 15418 phba->pci_dev_grp); 15419 break; 15420 } 15421 return; 15422 } 15423 15424 /** 15425 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15426 * @dev: pointer to device 15427 * 15428 * This routine is to be registered to the kernel's PCI subsystem to support 15429 * system Power Management (PM). When PM invokes this method, it dispatches 15430 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15431 * suspend the device. 15432 * 15433 * Return code 15434 * 0 - driver suspended the device 15435 * Error otherwise 15436 **/ 15437 static int __maybe_unused 15438 lpfc_pci_suspend_one(struct device *dev) 15439 { 15440 struct Scsi_Host *shost = dev_get_drvdata(dev); 15441 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15442 int rc = -ENODEV; 15443 15444 switch (phba->pci_dev_grp) { 15445 case LPFC_PCI_DEV_LP: 15446 rc = lpfc_pci_suspend_one_s3(dev); 15447 break; 15448 case LPFC_PCI_DEV_OC: 15449 rc = lpfc_pci_suspend_one_s4(dev); 15450 break; 15451 default: 15452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15453 "1425 Invalid PCI device group: 0x%x\n", 15454 phba->pci_dev_grp); 15455 break; 15456 } 15457 return rc; 15458 } 15459 15460 /** 15461 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15462 * @dev: pointer to device 15463 * 15464 * This routine is to be registered to the kernel's PCI subsystem to support 15465 * system Power Management (PM). When PM invokes this method, it dispatches 15466 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15467 * resume the device. 15468 * 15469 * Return code 15470 * 0 - driver suspended the device 15471 * Error otherwise 15472 **/ 15473 static int __maybe_unused 15474 lpfc_pci_resume_one(struct device *dev) 15475 { 15476 struct Scsi_Host *shost = dev_get_drvdata(dev); 15477 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15478 int rc = -ENODEV; 15479 15480 switch (phba->pci_dev_grp) { 15481 case LPFC_PCI_DEV_LP: 15482 rc = lpfc_pci_resume_one_s3(dev); 15483 break; 15484 case LPFC_PCI_DEV_OC: 15485 rc = lpfc_pci_resume_one_s4(dev); 15486 break; 15487 default: 15488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15489 "1426 Invalid PCI device group: 0x%x\n", 15490 phba->pci_dev_grp); 15491 break; 15492 } 15493 return rc; 15494 } 15495 15496 /** 15497 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15498 * @pdev: pointer to PCI device. 15499 * @state: the current PCI connection state. 15500 * 15501 * This routine is registered to the PCI subsystem for error handling. This 15502 * function is called by the PCI subsystem after a PCI bus error affecting 15503 * this device has been detected. When this routine is invoked, it dispatches 15504 * the action to the proper SLI-3 or SLI-4 device error detected handling 15505 * routine, which will perform the proper error detected operation. 15506 * 15507 * Return codes 15508 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15509 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15510 **/ 15511 static pci_ers_result_t 15512 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15513 { 15514 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15515 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15516 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15517 15518 if (phba->link_state == LPFC_HBA_ERROR && 15519 test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 15520 return PCI_ERS_RESULT_NEED_RESET; 15521 15522 switch (phba->pci_dev_grp) { 15523 case LPFC_PCI_DEV_LP: 15524 rc = lpfc_io_error_detected_s3(pdev, state); 15525 break; 15526 case LPFC_PCI_DEV_OC: 15527 rc = lpfc_io_error_detected_s4(pdev, state); 15528 break; 15529 default: 15530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15531 "1427 Invalid PCI device group: 0x%x\n", 15532 phba->pci_dev_grp); 15533 break; 15534 } 15535 return rc; 15536 } 15537 15538 /** 15539 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15540 * @pdev: pointer to PCI device. 15541 * 15542 * This routine is registered to the PCI subsystem for error handling. This 15543 * function is called after PCI bus has been reset to restart the PCI card 15544 * from scratch, as if from a cold-boot. When this routine is invoked, it 15545 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15546 * routine, which will perform the proper device reset. 15547 * 15548 * Return codes 15549 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15550 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15551 **/ 15552 static pci_ers_result_t 15553 lpfc_io_slot_reset(struct pci_dev *pdev) 15554 { 15555 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15556 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15557 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15558 15559 switch (phba->pci_dev_grp) { 15560 case LPFC_PCI_DEV_LP: 15561 rc = lpfc_io_slot_reset_s3(pdev); 15562 break; 15563 case LPFC_PCI_DEV_OC: 15564 rc = lpfc_io_slot_reset_s4(pdev); 15565 break; 15566 default: 15567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15568 "1428 Invalid PCI device group: 0x%x\n", 15569 phba->pci_dev_grp); 15570 break; 15571 } 15572 return rc; 15573 } 15574 15575 /** 15576 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15577 * @pdev: pointer to PCI device 15578 * 15579 * This routine is registered to the PCI subsystem for error handling. It 15580 * is called when kernel error recovery tells the lpfc driver that it is 15581 * OK to resume normal PCI operation after PCI bus error recovery. When 15582 * this routine is invoked, it dispatches the action to the proper SLI-3 15583 * or SLI-4 device io_resume routine, which will resume the device operation. 15584 **/ 15585 static void 15586 lpfc_io_resume(struct pci_dev *pdev) 15587 { 15588 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15589 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15590 15591 switch (phba->pci_dev_grp) { 15592 case LPFC_PCI_DEV_LP: 15593 lpfc_io_resume_s3(pdev); 15594 break; 15595 case LPFC_PCI_DEV_OC: 15596 lpfc_io_resume_s4(pdev); 15597 break; 15598 default: 15599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15600 "1429 Invalid PCI device group: 0x%x\n", 15601 phba->pci_dev_grp); 15602 break; 15603 } 15604 return; 15605 } 15606 15607 /** 15608 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15609 * @phba: pointer to lpfc hba data structure. 15610 * 15611 * This routine checks to see if OAS is supported for this adapter. If 15612 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15613 * the enable oas flag is cleared and the pool created for OAS device data 15614 * is destroyed. 15615 * 15616 **/ 15617 static void 15618 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15619 { 15620 15621 if (!phba->cfg_EnableXLane) 15622 return; 15623 15624 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15625 phba->cfg_fof = 1; 15626 } else { 15627 phba->cfg_fof = 0; 15628 mempool_destroy(phba->device_data_mem_pool); 15629 phba->device_data_mem_pool = NULL; 15630 } 15631 15632 return; 15633 } 15634 15635 /** 15636 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15637 * @phba: pointer to lpfc hba data structure. 15638 * 15639 * This routine checks to see if RAS is supported by the adapter. Check the 15640 * function through which RAS support enablement is to be done. 15641 **/ 15642 void 15643 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15644 { 15645 /* if ASIC_GEN_NUM >= 0xC) */ 15646 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15647 LPFC_SLI_INTF_IF_TYPE_6) || 15648 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15649 LPFC_SLI_INTF_FAMILY_G6)) { 15650 phba->ras_fwlog.ras_hwsupport = true; 15651 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15652 phba->cfg_ras_fwlog_buffsize) 15653 phba->ras_fwlog.ras_enabled = true; 15654 else 15655 phba->ras_fwlog.ras_enabled = false; 15656 } else { 15657 phba->ras_fwlog.ras_hwsupport = false; 15658 } 15659 } 15660 15661 15662 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15663 15664 static const struct pci_error_handlers lpfc_err_handler = { 15665 .error_detected = lpfc_io_error_detected, 15666 .slot_reset = lpfc_io_slot_reset, 15667 .resume = lpfc_io_resume, 15668 }; 15669 15670 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15671 lpfc_pci_suspend_one, 15672 lpfc_pci_resume_one); 15673 15674 static struct pci_driver lpfc_driver = { 15675 .name = LPFC_DRIVER_NAME, 15676 .id_table = lpfc_id_table, 15677 .probe = lpfc_pci_probe_one, 15678 .remove = lpfc_pci_remove_one, 15679 .shutdown = lpfc_pci_remove_one, 15680 .driver.pm = &lpfc_pci_pm_ops_one, 15681 .err_handler = &lpfc_err_handler, 15682 }; 15683 15684 static const struct file_operations lpfc_mgmt_fop = { 15685 .owner = THIS_MODULE, 15686 }; 15687 15688 static struct miscdevice lpfc_mgmt_dev = { 15689 .minor = MISC_DYNAMIC_MINOR, 15690 .name = "lpfcmgmt", 15691 .fops = &lpfc_mgmt_fop, 15692 }; 15693 15694 /** 15695 * lpfc_init - lpfc module initialization routine 15696 * 15697 * This routine is to be invoked when the lpfc module is loaded into the 15698 * kernel. The special kernel macro module_init() is used to indicate the 15699 * role of this routine to the kernel as lpfc module entry point. 15700 * 15701 * Return codes 15702 * 0 - successful 15703 * -ENOMEM - FC attach transport failed 15704 * all others - failed 15705 */ 15706 static int __init 15707 lpfc_init(void) 15708 { 15709 int error = 0; 15710 15711 pr_info(LPFC_MODULE_DESC "\n"); 15712 pr_info(LPFC_COPYRIGHT "\n"); 15713 15714 error = misc_register(&lpfc_mgmt_dev); 15715 if (error) 15716 printk(KERN_ERR "Could not register lpfcmgmt device, " 15717 "misc_register returned with status %d", error); 15718 15719 error = -ENOMEM; 15720 lpfc_transport_functions.vport_create = lpfc_vport_create; 15721 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15722 lpfc_transport_template = 15723 fc_attach_transport(&lpfc_transport_functions); 15724 if (lpfc_transport_template == NULL) 15725 goto unregister; 15726 lpfc_vport_transport_template = 15727 fc_attach_transport(&lpfc_vport_transport_functions); 15728 if (lpfc_vport_transport_template == NULL) { 15729 fc_release_transport(lpfc_transport_template); 15730 goto unregister; 15731 } 15732 lpfc_wqe_cmd_template(); 15733 lpfc_nvmet_cmd_template(); 15734 15735 /* Initialize in case vector mapping is needed */ 15736 lpfc_present_cpu = num_present_cpus(); 15737 15738 lpfc_pldv_detect = false; 15739 15740 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15741 "lpfc/sli4:online", 15742 lpfc_cpu_online, lpfc_cpu_offline); 15743 if (error < 0) 15744 goto cpuhp_failure; 15745 lpfc_cpuhp_state = error; 15746 15747 error = pci_register_driver(&lpfc_driver); 15748 if (error) 15749 goto unwind; 15750 15751 return error; 15752 15753 unwind: 15754 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15755 cpuhp_failure: 15756 fc_release_transport(lpfc_transport_template); 15757 fc_release_transport(lpfc_vport_transport_template); 15758 unregister: 15759 misc_deregister(&lpfc_mgmt_dev); 15760 15761 return error; 15762 } 15763 15764 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15765 { 15766 unsigned int start_idx; 15767 unsigned int dbg_cnt; 15768 unsigned int temp_idx; 15769 int i; 15770 int j = 0; 15771 unsigned long rem_nsec; 15772 15773 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15774 return; 15775 15776 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15777 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15778 if (!dbg_cnt) 15779 goto out; 15780 temp_idx = start_idx; 15781 if (dbg_cnt >= DBG_LOG_SZ) { 15782 dbg_cnt = DBG_LOG_SZ; 15783 temp_idx -= 1; 15784 } else { 15785 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15786 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15787 } else { 15788 if (start_idx < dbg_cnt) 15789 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15790 else 15791 start_idx -= dbg_cnt; 15792 } 15793 } 15794 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15795 start_idx, temp_idx, dbg_cnt); 15796 15797 for (i = 0; i < dbg_cnt; i++) { 15798 if ((start_idx + i) < DBG_LOG_SZ) 15799 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15800 else 15801 temp_idx = j++; 15802 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15803 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15804 temp_idx, 15805 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15806 rem_nsec / 1000, 15807 phba->dbg_log[temp_idx].log); 15808 } 15809 out: 15810 atomic_set(&phba->dbg_log_cnt, 0); 15811 atomic_set(&phba->dbg_log_dmping, 0); 15812 } 15813 15814 __printf(2, 3) 15815 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15816 { 15817 unsigned int idx; 15818 va_list args; 15819 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15820 struct va_format vaf; 15821 15822 15823 va_start(args, fmt); 15824 if (unlikely(dbg_dmping)) { 15825 vaf.fmt = fmt; 15826 vaf.va = &args; 15827 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15828 va_end(args); 15829 return; 15830 } 15831 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15832 DBG_LOG_SZ; 15833 15834 atomic_inc(&phba->dbg_log_cnt); 15835 15836 vscnprintf(phba->dbg_log[idx].log, 15837 sizeof(phba->dbg_log[idx].log), fmt, args); 15838 va_end(args); 15839 15840 phba->dbg_log[idx].t_ns = local_clock(); 15841 } 15842 15843 /** 15844 * lpfc_exit - lpfc module removal routine 15845 * 15846 * This routine is invoked when the lpfc module is removed from the kernel. 15847 * The special kernel macro module_exit() is used to indicate the role of 15848 * this routine to the kernel as lpfc module exit point. 15849 */ 15850 static void __exit 15851 lpfc_exit(void) 15852 { 15853 misc_deregister(&lpfc_mgmt_dev); 15854 pci_unregister_driver(&lpfc_driver); 15855 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15856 fc_release_transport(lpfc_transport_template); 15857 fc_release_transport(lpfc_vport_transport_template); 15858 idr_destroy(&lpfc_hba_index); 15859 } 15860 15861 module_init(lpfc_init); 15862 module_exit(lpfc_exit); 15863 MODULE_LICENSE("GPL"); 15864 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15865 MODULE_AUTHOR("Broadcom"); 15866 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15867