1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2025 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
106 
107 /**
108  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
109  * @phba: pointer to lpfc hba data structure.
110  *
111  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
112  * mailbox command. It retrieves the revision information from the HBA and
113  * collects the Vital Product Data (VPD) about the HBA for preparing the
114  * configuration of the HBA.
115  *
116  * Return codes:
117  *   0 - success.
118  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
119  *   Any other value - indicates an error.
120  **/
121 int
122 lpfc_config_port_prep(struct lpfc_hba *phba)
123 {
124 	lpfc_vpd_t *vp = &phba->vpd;
125 	int i = 0, rc;
126 	LPFC_MBOXQ_t *pmb;
127 	MAILBOX_t *mb;
128 	char *lpfc_vpd_data = NULL;
129 	uint16_t offset = 0;
130 	static char licensed[56] =
131 		    "key unlock for use with gnu public licensed code only\0";
132 	static int init_key = 1;
133 
134 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
135 	if (!pmb) {
136 		phba->link_state = LPFC_HBA_ERROR;
137 		return -ENOMEM;
138 	}
139 
140 	mb = &pmb->u.mb;
141 	phba->link_state = LPFC_INIT_MBX_CMDS;
142 
143 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
144 		if (init_key) {
145 			uint32_t *ptext = (uint32_t *) licensed;
146 
147 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
148 				*ptext = cpu_to_be32(*ptext);
149 			init_key = 0;
150 		}
151 
152 		lpfc_read_nv(phba, pmb);
153 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
154 			sizeof (mb->un.varRDnvp.rsvd3));
155 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
156 			 sizeof (licensed));
157 
158 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
159 
160 		if (rc != MBX_SUCCESS) {
161 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
162 					"0324 Config Port initialization "
163 					"error, mbxCmd x%x READ_NVPARM, "
164 					"mbxStatus x%x\n",
165 					mb->mbxCommand, mb->mbxStatus);
166 			mempool_free(pmb, phba->mbox_mem_pool);
167 			return -ERESTART;
168 		}
169 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
170 		       sizeof(phba->wwnn));
171 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
172 		       sizeof(phba->wwpn));
173 	}
174 
175 	/*
176 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
177 	 * which was already set in lpfc_get_cfgparam()
178 	 */
179 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
180 
181 	/* Setup and issue mailbox READ REV command */
182 	lpfc_read_rev(phba, pmb);
183 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
184 	if (rc != MBX_SUCCESS) {
185 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
186 				"0439 Adapter failed to init, mbxCmd x%x "
187 				"READ_REV, mbxStatus x%x\n",
188 				mb->mbxCommand, mb->mbxStatus);
189 		mempool_free( pmb, phba->mbox_mem_pool);
190 		return -ERESTART;
191 	}
192 
193 
194 	/*
195 	 * The value of rr must be 1 since the driver set the cv field to 1.
196 	 * This setting requires the FW to set all revision fields.
197 	 */
198 	if (mb->un.varRdRev.rr == 0) {
199 		vp->rev.rBit = 0;
200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
201 				"0440 Adapter failed to init, READ_REV has "
202 				"missing revision information.\n");
203 		mempool_free(pmb, phba->mbox_mem_pool);
204 		return -ERESTART;
205 	}
206 
207 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
208 		mempool_free(pmb, phba->mbox_mem_pool);
209 		return -EINVAL;
210 	}
211 
212 	/* Save information as VPD data */
213 	vp->rev.rBit = 1;
214 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
215 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
216 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
217 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
218 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
219 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
220 	vp->rev.smRev = mb->un.varRdRev.smRev;
221 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
222 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
223 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
224 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
225 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
226 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
227 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
228 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
229 
230 	/* If the sli feature level is less then 9, we must
231 	 * tear down all RPIs and VPIs on link down if NPIV
232 	 * is enabled.
233 	 */
234 	if (vp->rev.feaLevelHigh < 9)
235 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
236 
237 	if (lpfc_is_LC_HBA(phba->pcidev->device))
238 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
239 						sizeof (phba->RandomData));
240 
241 	/* Get adapter VPD information */
242 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
243 	if (!lpfc_vpd_data)
244 		goto out_free_mbox;
245 	do {
246 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
247 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
248 
249 		if (rc != MBX_SUCCESS) {
250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
251 					"0441 VPD not present on adapter, "
252 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
253 					mb->mbxCommand, mb->mbxStatus);
254 			mb->un.varDmp.word_cnt = 0;
255 		}
256 		/* dump mem may return a zero when finished or we got a
257 		 * mailbox error, either way we are done.
258 		 */
259 		if (mb->un.varDmp.word_cnt == 0)
260 			break;
261 
262 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
263 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
264 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
265 				      lpfc_vpd_data + offset,
266 				      mb->un.varDmp.word_cnt);
267 		offset += mb->un.varDmp.word_cnt;
268 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
269 
270 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
271 
272 	kfree(lpfc_vpd_data);
273 out_free_mbox:
274 	mempool_free(pmb, phba->mbox_mem_pool);
275 	return 0;
276 }
277 
278 /**
279  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
280  * @phba: pointer to lpfc hba data structure.
281  * @pmboxq: pointer to the driver internal queue element for mailbox command.
282  *
283  * This is the completion handler for driver's configuring asynchronous event
284  * mailbox command to the device. If the mailbox command returns successfully,
285  * it will set internal async event support flag to 1; otherwise, it will
286  * set internal async event support flag to 0.
287  **/
288 static void
289 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
290 {
291 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
292 		phba->temp_sensor_support = 1;
293 	else
294 		phba->temp_sensor_support = 0;
295 	mempool_free(pmboxq, phba->mbox_mem_pool);
296 	return;
297 }
298 
299 /**
300  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
301  * @phba: pointer to lpfc hba data structure.
302  * @pmboxq: pointer to the driver internal queue element for mailbox command.
303  *
304  * This is the completion handler for dump mailbox command for getting
305  * wake up parameters. When this command complete, the response contain
306  * Option rom version of the HBA. This function translate the version number
307  * into a human readable string and store it in OptionROMVersion.
308  **/
309 static void
310 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
311 {
312 	struct prog_id *prg;
313 	uint32_t prog_id_word;
314 	char dist = ' ';
315 	/* character array used for decoding dist type. */
316 	char dist_char[] = "nabx";
317 
318 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
319 		mempool_free(pmboxq, phba->mbox_mem_pool);
320 		return;
321 	}
322 
323 	prg = (struct prog_id *) &prog_id_word;
324 
325 	/* word 7 contain option rom version */
326 	prog_id_word = pmboxq->u.mb.un.varWords[7];
327 
328 	/* Decode the Option rom version word to a readable string */
329 	dist = dist_char[prg->dist];
330 
331 	if ((prg->dist == 3) && (prg->num == 0))
332 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333 			prg->ver, prg->rev, prg->lev);
334 	else
335 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336 			prg->ver, prg->rev, prg->lev,
337 			dist, prg->num);
338 	mempool_free(pmboxq, phba->mbox_mem_pool);
339 	return;
340 }
341 
342 /**
343  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	struct lpfc_hba *phba = vport->phba;
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 		       sizeof(struct lpfc_name))) {
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 		if (phba->sli_rev == LPFC_SLI_REV4 &&
376 		    vport->port_type == LPFC_PHYSICAL_PORT &&
377 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379 				phba->sli4_hba.fawwpn_flag &=
380 						~LPFC_FAWWPN_FABRIC;
381 			lpfc_printf_log(phba, KERN_INFO,
382 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383 					"2701 FA-PWWN change WWPN from %llx to "
384 					"%llx: vflag x%x fawwpn_flag x%x\n",
385 					wwn_to_u64(vport->fc_portname.u.wwn),
386 					wwn_to_u64
387 					   (vport->fc_sparam.portName.u.wwn),
388 					vport->vport_flag,
389 					phba->sli4_hba.fawwpn_flag);
390 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391 			       sizeof(struct lpfc_name));
392 		}
393 	}
394 
395 	if (vport->fc_portname.u.wwn[0] == 0)
396 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397 		       sizeof(struct lpfc_name));
398 	else
399 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400 		       sizeof(struct lpfc_name));
401 }
402 
403 /**
404  * lpfc_config_port_post - Perform lpfc initialization after config port
405  * @phba: pointer to lpfc hba data structure.
406  *
407  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408  * command call. It performs all internal resource and state setups on the
409  * port: post IOCB buffers, enable appropriate host interrupt attentions,
410  * ELS ring timers, etc.
411  *
412  * Return codes
413  *   0 - success.
414  *   Any other value - error.
415  **/
416 int
417 lpfc_config_port_post(struct lpfc_hba *phba)
418 {
419 	struct lpfc_vport *vport = phba->pport;
420 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421 	LPFC_MBOXQ_t *pmb;
422 	MAILBOX_t *mb;
423 	struct lpfc_dmabuf *mp;
424 	struct lpfc_sli *psli = &phba->sli;
425 	uint32_t status, timeout;
426 	int i, j;
427 	int rc;
428 
429 	spin_lock_irq(&phba->hbalock);
430 	/*
431 	 * If the Config port completed correctly the HBA is not
432 	 * over heated any more.
433 	 */
434 	if (phba->over_temp_state == HBA_OVER_TEMP)
435 		phba->over_temp_state = HBA_NORMAL_TEMP;
436 	spin_unlock_irq(&phba->hbalock);
437 
438 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439 	if (!pmb) {
440 		phba->link_state = LPFC_HBA_ERROR;
441 		return -ENOMEM;
442 	}
443 	mb = &pmb->u.mb;
444 
445 	/* Get login parameters for NID.  */
446 	rc = lpfc_read_sparam(phba, pmb, 0);
447 	if (rc) {
448 		mempool_free(pmb, phba->mbox_mem_pool);
449 		return -ENOMEM;
450 	}
451 
452 	pmb->vport = vport;
453 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455 				"0448 Adapter failed init, mbxCmd x%x "
456 				"READ_SPARM mbxStatus x%x\n",
457 				mb->mbxCommand, mb->mbxStatus);
458 		phba->link_state = LPFC_HBA_ERROR;
459 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460 		return -EIO;
461 	}
462 
463 	mp = pmb->ctx_buf;
464 
465 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467 	 * reused.
468 	 */
469 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471 	kfree(mp);
472 	pmb->ctx_buf = NULL;
473 	lpfc_update_vport_wwn(vport);
474 
475 	/* Update the fc_host data structures with new wwn. */
476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479 
480 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481 	/* This should be consolidated into parse_vpd ? - mr */
482 	if (phba->SerialNumber[0] == 0) {
483 		uint8_t *outptr;
484 
485 		outptr = &vport->fc_nodename.u.s.IEEE[0];
486 		for (i = 0; i < 12; i++) {
487 			status = *outptr++;
488 			j = ((status & 0xf0) >> 4);
489 			if (j <= 9)
490 				phba->SerialNumber[i] =
491 				    (char)((uint8_t) 0x30 + (uint8_t) j);
492 			else
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495 			i++;
496 			j = (status & 0xf);
497 			if (j <= 9)
498 				phba->SerialNumber[i] =
499 				    (char)((uint8_t) 0x30 + (uint8_t) j);
500 			else
501 				phba->SerialNumber[i] =
502 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503 		}
504 	}
505 
506 	lpfc_read_config(phba, pmb);
507 	pmb->vport = vport;
508 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510 				"0453 Adapter failed to init, mbxCmd x%x "
511 				"READ_CONFIG, mbxStatus x%x\n",
512 				mb->mbxCommand, mb->mbxStatus);
513 		phba->link_state = LPFC_HBA_ERROR;
514 		mempool_free( pmb, phba->mbox_mem_pool);
515 		return -EIO;
516 	}
517 
518 	/* Check if the port is disabled */
519 	lpfc_sli_read_link_ste(phba);
520 
521 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524 				"3359 HBA queue depth changed from %d to %d\n",
525 				phba->cfg_hba_queue_depth,
526 				mb->un.varRdConfig.max_xri);
527 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528 	}
529 
530 	phba->lmt = mb->un.varRdConfig.lmt;
531 
532 	/* Get the default values for Model Name and Description */
533 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534 
535 	phba->link_state = LPFC_LINK_DOWN;
536 
537 	/* Only process IOCBs on ELS ring till hba_state is READY */
538 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542 
543 	/* Post receive buffers for desired rings */
544 	if (phba->sli_rev != 3)
545 		lpfc_post_rcv_buf(phba);
546 
547 	/*
548 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549 	 */
550 	if (phba->intr_type == MSIX) {
551 		rc = lpfc_config_msi(phba, pmb);
552 		if (rc) {
553 			mempool_free(pmb, phba->mbox_mem_pool);
554 			return -EIO;
555 		}
556 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557 		if (rc != MBX_SUCCESS) {
558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559 					"0352 Config MSI mailbox command "
560 					"failed, mbxCmd x%x, mbxStatus x%x\n",
561 					pmb->u.mb.mbxCommand,
562 					pmb->u.mb.mbxStatus);
563 			mempool_free(pmb, phba->mbox_mem_pool);
564 			return -EIO;
565 		}
566 	}
567 
568 	spin_lock_irq(&phba->hbalock);
569 	/* Initialize ERATT handling flag */
570 	clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
571 
572 	/* Enable appropriate host interrupts */
573 	if (lpfc_readl(phba->HCregaddr, &status)) {
574 		spin_unlock_irq(&phba->hbalock);
575 		return -EIO;
576 	}
577 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578 	if (psli->num_rings > 0)
579 		status |= HC_R0INT_ENA;
580 	if (psli->num_rings > 1)
581 		status |= HC_R1INT_ENA;
582 	if (psli->num_rings > 2)
583 		status |= HC_R2INT_ENA;
584 	if (psli->num_rings > 3)
585 		status |= HC_R3INT_ENA;
586 
587 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589 		status &= ~(HC_R0INT_ENA);
590 
591 	writel(status, phba->HCregaddr);
592 	readl(phba->HCregaddr); /* flush */
593 	spin_unlock_irq(&phba->hbalock);
594 
595 	/* Set up ring-0 (ELS) timer */
596 	timeout = phba->fc_ratov * 2;
597 	mod_timer(&vport->els_tmofunc,
598 		  jiffies + secs_to_jiffies(timeout));
599 	/* Set up heart beat (HB) timer */
600 	mod_timer(&phba->hb_tmofunc,
601 		  jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL));
602 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
603 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
604 	phba->last_completion_time = jiffies;
605 	/* Set up error attention (ERATT) polling timer */
606 	mod_timer(&phba->eratt_poll,
607 		  jiffies + secs_to_jiffies(phba->eratt_poll_interval));
608 
609 	if (test_bit(LINK_DISABLED, &phba->hba_flag)) {
610 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611 				"2598 Adapter Link is disabled.\n");
612 		lpfc_down_link(phba, pmb);
613 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
614 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
615 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
616 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
617 					"2599 Adapter failed to issue DOWN_LINK"
618 					" mbox command rc 0x%x\n", rc);
619 
620 			mempool_free(pmb, phba->mbox_mem_pool);
621 			return -EIO;
622 		}
623 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
624 		mempool_free(pmb, phba->mbox_mem_pool);
625 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
626 		if (rc)
627 			return rc;
628 	}
629 	/* MBOX buffer will be freed in mbox compl */
630 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
631 	if (!pmb) {
632 		phba->link_state = LPFC_HBA_ERROR;
633 		return -ENOMEM;
634 	}
635 
636 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
637 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
638 	pmb->vport = phba->pport;
639 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
640 
641 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
642 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
643 				"0456 Adapter failed to issue "
644 				"ASYNCEVT_ENABLE mbox status x%x\n",
645 				rc);
646 		mempool_free(pmb, phba->mbox_mem_pool);
647 	}
648 
649 	/* Get Option rom version */
650 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
651 	if (!pmb) {
652 		phba->link_state = LPFC_HBA_ERROR;
653 		return -ENOMEM;
654 	}
655 
656 	lpfc_dump_wakeup_param(phba, pmb);
657 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
658 	pmb->vport = phba->pport;
659 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
660 
661 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
662 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
663 				"0435 Adapter failed "
664 				"to get Option ROM version status x%x\n", rc);
665 		mempool_free(pmb, phba->mbox_mem_pool);
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  * lpfc_sli4_refresh_params - update driver copy of params.
673  * @phba: Pointer to HBA context object.
674  *
675  * This is called to refresh driver copy of dynamic fields from the
676  * common_get_sli4_parameters descriptor.
677  **/
678 int
679 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
680 {
681 	LPFC_MBOXQ_t *mboxq;
682 	struct lpfc_mqe *mqe;
683 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
684 	int length, rc;
685 
686 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
687 	if (!mboxq)
688 		return -ENOMEM;
689 
690 	mqe = &mboxq->u.mqe;
691 	/* Read the port's SLI4 Config Parameters */
692 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
693 		  sizeof(struct lpfc_sli4_cfg_mhdr));
694 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
695 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
696 			 length, LPFC_SLI4_MBX_EMBED);
697 
698 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
699 	if (unlikely(rc)) {
700 		mempool_free(mboxq, phba->mbox_mem_pool);
701 		return rc;
702 	}
703 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
704 	phba->sli4_hba.pc_sli4_params.mi_cap =
705 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
706 
707 	/* Are we forcing MI off via module parameter? */
708 	if (phba->cfg_enable_mi)
709 		phba->sli4_hba.pc_sli4_params.mi_ver =
710 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
711 	else
712 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
713 
714 	phba->sli4_hba.pc_sli4_params.cmf =
715 			bf_get(cfg_cmf, mbx_sli4_parameters);
716 	phba->sli4_hba.pc_sli4_params.pls =
717 			bf_get(cfg_pvl, mbx_sli4_parameters);
718 
719 	mempool_free(mboxq, phba->mbox_mem_pool);
720 	return rc;
721 }
722 
723 /**
724  * lpfc_hba_init_link - Initialize the FC link
725  * @phba: pointer to lpfc hba data structure.
726  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
727  *
728  * This routine will issue the INIT_LINK mailbox command call.
729  * It is available to other drivers through the lpfc_hba data
730  * structure for use as a delayed link up mechanism with the
731  * module parameter lpfc_suppress_link_up.
732  *
733  * Return code
734  *		0 - success
735  *		Any other value - error
736  **/
737 static int
738 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
739 {
740 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
741 }
742 
743 /**
744  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
745  * @phba: pointer to lpfc hba data structure.
746  * @fc_topology: desired fc topology.
747  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
748  *
749  * This routine will issue the INIT_LINK mailbox command call.
750  * It is available to other drivers through the lpfc_hba data
751  * structure for use as a delayed link up mechanism with the
752  * module parameter lpfc_suppress_link_up.
753  *
754  * Return code
755  *              0 - success
756  *              Any other value - error
757  **/
758 int
759 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
760 			       uint32_t flag)
761 {
762 	struct lpfc_vport *vport = phba->pport;
763 	LPFC_MBOXQ_t *pmb;
764 	MAILBOX_t *mb;
765 	int rc;
766 
767 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
768 	if (!pmb) {
769 		phba->link_state = LPFC_HBA_ERROR;
770 		return -ENOMEM;
771 	}
772 	mb = &pmb->u.mb;
773 	pmb->vport = vport;
774 
775 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
777 	     !(phba->lmt & LMT_1Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
779 	     !(phba->lmt & LMT_2Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
781 	     !(phba->lmt & LMT_4Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
783 	     !(phba->lmt & LMT_8Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
785 	     !(phba->lmt & LMT_10Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
787 	     !(phba->lmt & LMT_16Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
789 	     !(phba->lmt & LMT_32Gb)) ||
790 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
791 	     !(phba->lmt & LMT_64Gb))) {
792 		/* Reset link speed to auto */
793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
794 				"1302 Invalid speed for this board:%d "
795 				"Reset link speed to auto.\n",
796 				phba->cfg_link_speed);
797 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
798 	}
799 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
800 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
801 	if (phba->sli_rev < LPFC_SLI_REV4)
802 		lpfc_set_loopback_flag(phba);
803 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
804 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
805 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
806 				"0498 Adapter failed to init, mbxCmd x%x "
807 				"INIT_LINK, mbxStatus x%x\n",
808 				mb->mbxCommand, mb->mbxStatus);
809 		if (phba->sli_rev <= LPFC_SLI_REV3) {
810 			/* Clear all interrupt enable conditions */
811 			writel(0, phba->HCregaddr);
812 			readl(phba->HCregaddr); /* flush */
813 			/* Clear all pending interrupts */
814 			writel(0xffffffff, phba->HAregaddr);
815 			readl(phba->HAregaddr); /* flush */
816 		}
817 		phba->link_state = LPFC_HBA_ERROR;
818 		if (rc != MBX_BUSY || flag == MBX_POLL)
819 			mempool_free(pmb, phba->mbox_mem_pool);
820 		return -EIO;
821 	}
822 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
823 	if (flag == MBX_POLL)
824 		mempool_free(pmb, phba->mbox_mem_pool);
825 
826 	return 0;
827 }
828 
829 /**
830  * lpfc_hba_down_link - this routine downs the FC link
831  * @phba: pointer to lpfc hba data structure.
832  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
833  *
834  * This routine will issue the DOWN_LINK mailbox command call.
835  * It is available to other drivers through the lpfc_hba data
836  * structure for use to stop the link.
837  *
838  * Return code
839  *		0 - success
840  *		Any other value - error
841  **/
842 static int
843 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
844 {
845 	LPFC_MBOXQ_t *pmb;
846 	int rc;
847 
848 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
849 	if (!pmb) {
850 		phba->link_state = LPFC_HBA_ERROR;
851 		return -ENOMEM;
852 	}
853 
854 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
855 			"0491 Adapter Link is disabled.\n");
856 	lpfc_down_link(phba, pmb);
857 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
858 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
859 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
861 				"2522 Adapter failed to issue DOWN_LINK"
862 				" mbox command rc 0x%x\n", rc);
863 
864 		mempool_free(pmb, phba->mbox_mem_pool);
865 		return -EIO;
866 	}
867 	if (flag == MBX_POLL)
868 		mempool_free(pmb, phba->mbox_mem_pool);
869 
870 	return 0;
871 }
872 
873 /**
874  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
875  * @phba: pointer to lpfc HBA data structure.
876  *
877  * This routine will do LPFC uninitialization before the HBA is reset when
878  * bringing down the SLI Layer.
879  *
880  * Return codes
881  *   0 - success.
882  *   Any other value - error.
883  **/
884 int
885 lpfc_hba_down_prep(struct lpfc_hba *phba)
886 {
887 	struct lpfc_vport **vports;
888 	int i;
889 
890 	if (phba->sli_rev <= LPFC_SLI_REV3) {
891 		/* Disable interrupts */
892 		writel(0, phba->HCregaddr);
893 		readl(phba->HCregaddr); /* flush */
894 	}
895 
896 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
897 		lpfc_cleanup_discovery_resources(phba->pport);
898 	else {
899 		vports = lpfc_create_vport_work_array(phba);
900 		if (vports != NULL)
901 			for (i = 0; i <= phba->max_vports &&
902 				vports[i] != NULL; i++)
903 				lpfc_cleanup_discovery_resources(vports[i]);
904 		lpfc_destroy_vport_work_array(phba, vports);
905 	}
906 	return 0;
907 }
908 
909 /**
910  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
911  * rspiocb which got deferred
912  *
913  * @phba: pointer to lpfc HBA data structure.
914  *
915  * This routine will cleanup completed slow path events after HBA is reset
916  * when bringing down the SLI Layer.
917  *
918  *
919  * Return codes
920  *   void.
921  **/
922 static void
923 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
924 {
925 	struct lpfc_iocbq *rspiocbq;
926 	struct hbq_dmabuf *dmabuf;
927 	struct lpfc_cq_event *cq_event;
928 
929 	clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1233 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1234 		return;
1235 	}
1236 
1237 	set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1238 	lpfc_worker_wake_up(phba);
1239 }
1240 
1241 /**
1242  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1243  * @phba: pointer to lpfc hba data structure.
1244  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1245  *
1246  * This is the callback function to the lpfc heart-beat mailbox command.
1247  * If configured, the lpfc driver issues the heart-beat mailbox command to
1248  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1249  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1250  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1251  * heart-beat outstanding state. Once the mailbox command comes back and
1252  * no error conditions detected, the heart-beat mailbox command timer is
1253  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1254  * state is cleared for the next heart-beat. If the timer expired with the
1255  * heart-beat outstanding state set, the driver will put the HBA offline.
1256  **/
1257 static void
1258 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1259 {
1260 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
1261 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1262 
1263 	/* Check and reset heart-beat timer if necessary */
1264 	mempool_free(pmboxq, phba->mbox_mem_pool);
1265 	if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) &&
1266 	    !(phba->link_state == LPFC_HBA_ERROR) &&
1267 	    !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1268 		mod_timer(&phba->hb_tmofunc,
1269 			  jiffies +
1270 			  secs_to_jiffies(LPFC_HB_MBOX_INTERVAL));
1271 	return;
1272 }
1273 
1274 /*
1275  * lpfc_idle_stat_delay_work - idle_stat tracking
1276  *
1277  * This routine tracks per-eq idle_stat and determines polling decisions.
1278  *
1279  * Return codes:
1280  *   None
1281  **/
1282 static void
1283 lpfc_idle_stat_delay_work(struct work_struct *work)
1284 {
1285 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1286 					     struct lpfc_hba,
1287 					     idle_stat_delay_work);
1288 	struct lpfc_queue *eq;
1289 	struct lpfc_sli4_hdw_queue *hdwq;
1290 	struct lpfc_idle_stat *idle_stat;
1291 	u32 i, idle_percent;
1292 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1293 
1294 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1295 		return;
1296 
1297 	if (phba->link_state == LPFC_HBA_ERROR ||
1298 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) ||
1299 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1300 		goto requeue;
1301 
1302 	for_each_present_cpu(i) {
1303 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1304 		eq = hdwq->hba_eq;
1305 
1306 		/* Skip if we've already handled this eq's primary CPU */
1307 		if (eq->chann != i)
1308 			continue;
1309 
1310 		idle_stat = &phba->sli4_hba.idle_stat[i];
1311 
1312 		/* get_cpu_idle_time returns values as running counters. Thus,
1313 		 * to know the amount for this period, the prior counter values
1314 		 * need to be subtracted from the current counter values.
1315 		 * From there, the idle time stat can be calculated as a
1316 		 * percentage of 100 - the sum of the other consumption times.
1317 		 */
1318 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1319 		diff_idle = wall_idle - idle_stat->prev_idle;
1320 		diff_wall = wall - idle_stat->prev_wall;
1321 
1322 		if (diff_wall <= diff_idle)
1323 			busy_time = 0;
1324 		else
1325 			busy_time = diff_wall - diff_idle;
1326 
1327 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1328 		idle_percent = 100 - idle_percent;
1329 
1330 		if (idle_percent < 15)
1331 			eq->poll_mode = LPFC_QUEUE_WORK;
1332 		else
1333 			eq->poll_mode = LPFC_THREADED_IRQ;
1334 
1335 		idle_stat->prev_idle = wall_idle;
1336 		idle_stat->prev_wall = wall;
1337 	}
1338 
1339 requeue:
1340 	schedule_delayed_work(&phba->idle_stat_delay_work,
1341 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1342 }
1343 
1344 static void
1345 lpfc_hb_eq_delay_work(struct work_struct *work)
1346 {
1347 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1348 					     struct lpfc_hba, eq_delay_work);
1349 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1350 	struct lpfc_queue *eq, *eq_next;
1351 	unsigned char *ena_delay = NULL;
1352 	uint32_t usdelay;
1353 	int i;
1354 
1355 	if (!phba->cfg_auto_imax ||
1356 	    test_bit(FC_UNLOADING, &phba->pport->load_flag))
1357 		return;
1358 
1359 	if (phba->link_state == LPFC_HBA_ERROR ||
1360 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1361 		goto requeue;
1362 
1363 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1364 			    GFP_KERNEL);
1365 	if (!ena_delay)
1366 		goto requeue;
1367 
1368 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1369 		/* Get the EQ corresponding to the IRQ vector */
1370 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1371 		if (!eq)
1372 			continue;
1373 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1374 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1375 			ena_delay[eq->last_cpu] = 1;
1376 		}
1377 	}
1378 
1379 	for_each_present_cpu(i) {
1380 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1381 		if (ena_delay[i]) {
1382 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1383 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1384 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1385 		} else {
1386 			usdelay = 0;
1387 		}
1388 
1389 		eqi->icnt = 0;
1390 
1391 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1392 			if (unlikely(eq->last_cpu != i)) {
1393 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1394 						      eq->last_cpu);
1395 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1396 				continue;
1397 			}
1398 			if (usdelay != eq->q_mode)
1399 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1400 							 usdelay);
1401 		}
1402 	}
1403 
1404 	kfree(ena_delay);
1405 
1406 requeue:
1407 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1408 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1409 }
1410 
1411 /**
1412  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1413  * @phba: pointer to lpfc hba data structure.
1414  *
1415  * For each heartbeat, this routine does some heuristic methods to adjust
1416  * XRI distribution. The goal is to fully utilize free XRIs.
1417  **/
1418 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1419 {
1420 	u32 i;
1421 	u32 hwq_count;
1422 
1423 	hwq_count = phba->cfg_hdw_queue;
1424 	for (i = 0; i < hwq_count; i++) {
1425 		/* Adjust XRIs in private pool */
1426 		lpfc_adjust_pvt_pool_count(phba, i);
1427 
1428 		/* Adjust high watermark */
1429 		lpfc_adjust_high_watermark(phba, i);
1430 
1431 #ifdef LPFC_MXP_STAT
1432 		/* Snapshot pbl, pvt and busy count */
1433 		lpfc_snapshot_mxp(phba, i);
1434 #endif
1435 	}
1436 }
1437 
1438 /**
1439  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1440  * @phba: pointer to lpfc hba data structure.
1441  *
1442  * If a HB mbox is not already in progrees, this routine will allocate
1443  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1444  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1445  **/
1446 int
1447 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1448 {
1449 	LPFC_MBOXQ_t *pmboxq;
1450 	int retval;
1451 
1452 	/* Is a Heartbeat mbox already in progress */
1453 	if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1454 		return 0;
1455 
1456 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1457 	if (!pmboxq)
1458 		return -ENOMEM;
1459 
1460 	lpfc_heart_beat(phba, pmboxq);
1461 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1462 	pmboxq->vport = phba->pport;
1463 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1464 
1465 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1466 		mempool_free(pmboxq, phba->mbox_mem_pool);
1467 		return -ENXIO;
1468 	}
1469 	set_bit(HBA_HBEAT_INP, &phba->hba_flag);
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1476  * @phba: pointer to lpfc hba data structure.
1477  *
1478  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1479  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1480  * of the value of lpfc_enable_hba_heartbeat.
1481  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1482  * try to issue a MBX_HEARTBEAT mbox command.
1483  **/
1484 void
1485 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1486 {
1487 	if (phba->cfg_enable_hba_heartbeat)
1488 		return;
1489 	set_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1490 }
1491 
1492 /**
1493  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1494  * @phba: pointer to lpfc hba data structure.
1495  *
1496  * This is the actual HBA-timer timeout handler to be invoked by the worker
1497  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1498  * handler performs any periodic operations needed for the device. If such
1499  * periodic event has already been attended to either in the interrupt handler
1500  * or by processing slow-ring or fast-ring events within the HBA-timer
1501  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1502  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1503  * is configured and there is no heart-beat mailbox command outstanding, a
1504  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1505  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1506  * to offline.
1507  **/
1508 void
1509 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1510 {
1511 	struct lpfc_vport **vports;
1512 	struct lpfc_dmabuf *buf_ptr;
1513 	int retval = 0;
1514 	int i, tmo;
1515 	struct lpfc_sli *psli = &phba->sli;
1516 	LIST_HEAD(completions);
1517 
1518 	if (phba->cfg_xri_rebalancing) {
1519 		/* Multi-XRI pools handler */
1520 		lpfc_hb_mxp_handler(phba);
1521 	}
1522 
1523 	vports = lpfc_create_vport_work_array(phba);
1524 	if (vports != NULL)
1525 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1526 			lpfc_rcv_seq_check_edtov(vports[i]);
1527 			lpfc_fdmi_change_check(vports[i]);
1528 		}
1529 	lpfc_destroy_vport_work_array(phba, vports);
1530 
1531 	if (phba->link_state == LPFC_HBA_ERROR ||
1532 	    test_bit(FC_UNLOADING, &phba->pport->load_flag) ||
1533 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1534 		return;
1535 
1536 	if (phba->elsbuf_cnt &&
1537 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1538 		spin_lock_irq(&phba->hbalock);
1539 		list_splice_init(&phba->elsbuf, &completions);
1540 		phba->elsbuf_cnt = 0;
1541 		phba->elsbuf_prev_cnt = 0;
1542 		spin_unlock_irq(&phba->hbalock);
1543 
1544 		while (!list_empty(&completions)) {
1545 			list_remove_head(&completions, buf_ptr,
1546 				struct lpfc_dmabuf, list);
1547 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1548 			kfree(buf_ptr);
1549 		}
1550 	}
1551 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1552 
1553 	/* If there is no heart beat outstanding, issue a heartbeat command */
1554 	if (phba->cfg_enable_hba_heartbeat) {
1555 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1556 		spin_lock_irq(&phba->pport->work_port_lock);
1557 		if (time_after(phba->last_completion_time +
1558 				secs_to_jiffies(LPFC_HB_MBOX_INTERVAL),
1559 				jiffies)) {
1560 			spin_unlock_irq(&phba->pport->work_port_lock);
1561 			if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1562 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1563 			else
1564 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1565 			goto out;
1566 		}
1567 		spin_unlock_irq(&phba->pport->work_port_lock);
1568 
1569 		/* Check if a MBX_HEARTBEAT is already in progress */
1570 		if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) {
1571 			/*
1572 			 * If heart beat timeout called with HBA_HBEAT_INP set
1573 			 * we need to give the hb mailbox cmd a chance to
1574 			 * complete or TMO.
1575 			 */
1576 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1577 				"0459 Adapter heartbeat still outstanding: "
1578 				"last compl time was %d ms.\n",
1579 				jiffies_to_msecs(jiffies
1580 					 - phba->last_completion_time));
1581 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1582 		} else {
1583 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1584 				(list_empty(&psli->mboxq))) {
1585 
1586 				retval = lpfc_issue_hb_mbox(phba);
1587 				if (retval) {
1588 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1589 					goto out;
1590 				}
1591 				phba->skipped_hb = 0;
1592 			} else if (time_before_eq(phba->last_completion_time,
1593 					phba->skipped_hb)) {
1594 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1595 					"2857 Last completion time not "
1596 					" updated in %d ms\n",
1597 					jiffies_to_msecs(jiffies
1598 						 - phba->last_completion_time));
1599 			} else
1600 				phba->skipped_hb = jiffies;
1601 
1602 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1603 			goto out;
1604 		}
1605 	} else {
1606 		/* Check to see if we want to force a MBX_HEARTBEAT */
1607 		if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) {
1608 			retval = lpfc_issue_hb_mbox(phba);
1609 			if (retval)
1610 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1611 			else
1612 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1613 			goto out;
1614 		}
1615 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 	}
1617 out:
1618 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1619 }
1620 
1621 /**
1622  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1623  * @phba: pointer to lpfc hba data structure.
1624  *
1625  * This routine is called to bring the HBA offline when HBA hardware error
1626  * other than Port Error 6 has been detected.
1627  **/
1628 static void
1629 lpfc_offline_eratt(struct lpfc_hba *phba)
1630 {
1631 	struct lpfc_sli   *psli = &phba->sli;
1632 
1633 	spin_lock_irq(&phba->hbalock);
1634 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1635 	spin_unlock_irq(&phba->hbalock);
1636 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1637 
1638 	lpfc_offline(phba);
1639 	lpfc_reset_barrier(phba);
1640 	spin_lock_irq(&phba->hbalock);
1641 	lpfc_sli_brdreset(phba);
1642 	spin_unlock_irq(&phba->hbalock);
1643 	lpfc_hba_down_post(phba);
1644 	lpfc_sli_brdready(phba, HS_MBRDY);
1645 	lpfc_unblock_mgmt_io(phba);
1646 	phba->link_state = LPFC_HBA_ERROR;
1647 	return;
1648 }
1649 
1650 /**
1651  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1652  * @phba: pointer to lpfc hba data structure.
1653  *
1654  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1655  * other than Port Error 6 has been detected.
1656  **/
1657 void
1658 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1659 {
1660 	spin_lock_irq(&phba->hbalock);
1661 	if (phba->link_state == LPFC_HBA_ERROR &&
1662 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1663 		spin_unlock_irq(&phba->hbalock);
1664 		return;
1665 	}
1666 	phba->link_state = LPFC_HBA_ERROR;
1667 	spin_unlock_irq(&phba->hbalock);
1668 
1669 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1670 	lpfc_sli_flush_io_rings(phba);
1671 	lpfc_offline(phba);
1672 	lpfc_hba_down_post(phba);
1673 	lpfc_unblock_mgmt_io(phba);
1674 }
1675 
1676 /**
1677  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1678  * @phba: pointer to lpfc hba data structure.
1679  *
1680  * This routine is invoked to handle the deferred HBA hardware error
1681  * conditions. This type of error is indicated by HBA by setting ER1
1682  * and another ER bit in the host status register. The driver will
1683  * wait until the ER1 bit clears before handling the error condition.
1684  **/
1685 static void
1686 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1687 {
1688 	uint32_t old_host_status = phba->work_hs;
1689 	struct lpfc_sli *psli = &phba->sli;
1690 
1691 	/* If the pci channel is offline, ignore possible errors,
1692 	 * since we cannot communicate with the pci card anyway.
1693 	 */
1694 	if (pci_channel_offline(phba->pcidev)) {
1695 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1696 		return;
1697 	}
1698 
1699 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1700 			"0479 Deferred Adapter Hardware Error "
1701 			"Data: x%x x%x x%x\n",
1702 			phba->work_hs, phba->work_status[0],
1703 			phba->work_status[1]);
1704 
1705 	spin_lock_irq(&phba->hbalock);
1706 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1707 	spin_unlock_irq(&phba->hbalock);
1708 
1709 
1710 	/*
1711 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1712 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1713 	 * SCSI layer retry it after re-establishing link.
1714 	 */
1715 	lpfc_sli_abort_fcp_rings(phba);
1716 
1717 	/*
1718 	 * There was a firmware error. Take the hba offline and then
1719 	 * attempt to restart it.
1720 	 */
1721 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1722 	lpfc_offline(phba);
1723 
1724 	/* Wait for the ER1 bit to clear.*/
1725 	while (phba->work_hs & HS_FFER1) {
1726 		msleep(100);
1727 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1728 			phba->work_hs = UNPLUG_ERR ;
1729 			break;
1730 		}
1731 		/* If driver is unloading let the worker thread continue */
1732 		if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1733 			phba->work_hs = 0;
1734 			break;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * This is to ptrotect against a race condition in which
1740 	 * first write to the host attention register clear the
1741 	 * host status register.
1742 	 */
1743 	if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1744 		phba->work_hs = old_host_status & ~HS_FFER1;
1745 
1746 	clear_bit(DEFER_ERATT, &phba->hba_flag);
1747 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1748 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1749 }
1750 
1751 static void
1752 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1753 {
1754 	struct lpfc_board_event_header board_event;
1755 	struct Scsi_Host *shost;
1756 
1757 	board_event.event_type = FC_REG_BOARD_EVENT;
1758 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1759 	shost = lpfc_shost_from_vport(phba->pport);
1760 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1761 				  sizeof(board_event),
1762 				  (char *) &board_event,
1763 				  LPFC_NL_VENDOR_ID);
1764 }
1765 
1766 /**
1767  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1768  * @phba: pointer to lpfc hba data structure.
1769  *
1770  * This routine is invoked to handle the following HBA hardware error
1771  * conditions:
1772  * 1 - HBA error attention interrupt
1773  * 2 - DMA ring index out of range
1774  * 3 - Mailbox command came back as unknown
1775  **/
1776 static void
1777 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1778 {
1779 	struct lpfc_vport *vport = phba->pport;
1780 	struct lpfc_sli   *psli = &phba->sli;
1781 	uint32_t event_data;
1782 	unsigned long temperature;
1783 	struct temp_event temp_event_data;
1784 	struct Scsi_Host  *shost;
1785 
1786 	/* If the pci channel is offline, ignore possible errors,
1787 	 * since we cannot communicate with the pci card anyway.
1788 	 */
1789 	if (pci_channel_offline(phba->pcidev)) {
1790 		clear_bit(DEFER_ERATT, &phba->hba_flag);
1791 		return;
1792 	}
1793 
1794 	/* If resets are disabled then leave the HBA alone and return */
1795 	if (!phba->cfg_enable_hba_reset)
1796 		return;
1797 
1798 	/* Send an internal error event to mgmt application */
1799 	lpfc_board_errevt_to_mgmt(phba);
1800 
1801 	if (test_bit(DEFER_ERATT, &phba->hba_flag))
1802 		lpfc_handle_deferred_eratt(phba);
1803 
1804 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1805 		if (phba->work_hs & HS_FFER6)
1806 			/* Re-establishing Link */
1807 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1808 					"1301 Re-establishing Link "
1809 					"Data: x%x x%x x%x\n",
1810 					phba->work_hs, phba->work_status[0],
1811 					phba->work_status[1]);
1812 		if (phba->work_hs & HS_FFER8)
1813 			/* Device Zeroization */
1814 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1815 					"2861 Host Authentication device "
1816 					"zeroization Data:x%x x%x x%x\n",
1817 					phba->work_hs, phba->work_status[0],
1818 					phba->work_status[1]);
1819 
1820 		spin_lock_irq(&phba->hbalock);
1821 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1822 		spin_unlock_irq(&phba->hbalock);
1823 
1824 		/*
1825 		* Firmware stops when it triggled erratt with HS_FFER6.
1826 		* That could cause the I/Os dropped by the firmware.
1827 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1828 		* retry it after re-establishing link.
1829 		*/
1830 		lpfc_sli_abort_fcp_rings(phba);
1831 
1832 		/*
1833 		 * There was a firmware error.  Take the hba offline and then
1834 		 * attempt to restart it.
1835 		 */
1836 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1837 		lpfc_offline(phba);
1838 		lpfc_sli_brdrestart(phba);
1839 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1840 			lpfc_unblock_mgmt_io(phba);
1841 			return;
1842 		}
1843 		lpfc_unblock_mgmt_io(phba);
1844 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1845 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1846 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1847 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1848 		temp_event_data.data = (uint32_t)temperature;
1849 
1850 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1851 				"0406 Adapter maximum temperature exceeded "
1852 				"(%ld), taking this port offline "
1853 				"Data: x%x x%x x%x\n",
1854 				temperature, phba->work_hs,
1855 				phba->work_status[0], phba->work_status[1]);
1856 
1857 		shost = lpfc_shost_from_vport(phba->pport);
1858 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1859 					  sizeof(temp_event_data),
1860 					  (char *) &temp_event_data,
1861 					  SCSI_NL_VID_TYPE_PCI
1862 					  | PCI_VENDOR_ID_EMULEX);
1863 
1864 		spin_lock_irq(&phba->hbalock);
1865 		phba->over_temp_state = HBA_OVER_TEMP;
1866 		spin_unlock_irq(&phba->hbalock);
1867 		lpfc_offline_eratt(phba);
1868 
1869 	} else {
1870 		/* The if clause above forces this code path when the status
1871 		 * failure is a value other than FFER6. Do not call the offline
1872 		 * twice. This is the adapter hardware error path.
1873 		 */
1874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1875 				"0457 Adapter Hardware Error "
1876 				"Data: x%x x%x x%x\n",
1877 				phba->work_hs,
1878 				phba->work_status[0], phba->work_status[1]);
1879 
1880 		event_data = FC_REG_DUMP_EVENT;
1881 		shost = lpfc_shost_from_vport(vport);
1882 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1883 				sizeof(event_data), (char *) &event_data,
1884 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1885 
1886 		lpfc_offline_eratt(phba);
1887 	}
1888 	return;
1889 }
1890 
1891 /**
1892  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1893  * @phba: pointer to lpfc hba data structure.
1894  * @mbx_action: flag for mailbox shutdown action.
1895  * @en_rn_msg: send reset/port recovery message.
1896  * This routine is invoked to perform an SLI4 port PCI function reset in
1897  * response to port status register polling attention. It waits for port
1898  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1899  * During this process, interrupt vectors are freed and later requested
1900  * for handling possible port resource change.
1901  **/
1902 static int
1903 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1904 			    bool en_rn_msg)
1905 {
1906 	int rc;
1907 	uint32_t intr_mode;
1908 	LPFC_MBOXQ_t *mboxq;
1909 
1910 	/* Notifying the transport that the targets are going offline. */
1911 	lpfc_scsi_dev_block(phba);
1912 
1913 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1914 	    LPFC_SLI_INTF_IF_TYPE_2) {
1915 		/*
1916 		 * On error status condition, driver need to wait for port
1917 		 * ready before performing reset.
1918 		 */
1919 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1920 		if (rc)
1921 			return rc;
1922 	}
1923 
1924 	/* need reset: attempt for port recovery */
1925 	if (en_rn_msg)
1926 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1927 				"2887 Reset Needed: Attempting Port "
1928 				"Recovery...\n");
1929 
1930 	/* If we are no wait, the HBA has been reset and is not
1931 	 * functional, thus we should clear
1932 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1933 	 */
1934 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1935 		spin_lock_irq(&phba->hbalock);
1936 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1937 		if (phba->sli.mbox_active) {
1938 			mboxq = phba->sli.mbox_active;
1939 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1940 			__lpfc_mbox_cmpl_put(phba, mboxq);
1941 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1942 			phba->sli.mbox_active = NULL;
1943 		}
1944 		spin_unlock_irq(&phba->hbalock);
1945 	}
1946 
1947 	lpfc_offline_prep(phba, mbx_action);
1948 	lpfc_sli_flush_io_rings(phba);
1949 	lpfc_nvmels_flush_cmd(phba);
1950 	lpfc_offline(phba);
1951 	/* release interrupt for possible resource change */
1952 	lpfc_sli4_disable_intr(phba);
1953 	rc = lpfc_sli_brdrestart(phba);
1954 	if (rc) {
1955 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1956 				"6309 Failed to restart board\n");
1957 		return rc;
1958 	}
1959 	/* request and enable interrupt */
1960 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1961 	if (intr_mode == LPFC_INTR_ERROR) {
1962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963 				"3175 Failed to enable interrupt\n");
1964 		return -EIO;
1965 	}
1966 	phba->intr_mode = intr_mode;
1967 	rc = lpfc_online(phba);
1968 	if (rc == 0)
1969 		lpfc_unblock_mgmt_io(phba);
1970 
1971 	return rc;
1972 }
1973 
1974 /**
1975  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1976  * @phba: pointer to lpfc hba data structure.
1977  *
1978  * This routine is invoked to handle the SLI4 HBA hardware error attention
1979  * conditions.
1980  **/
1981 static void
1982 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1983 {
1984 	struct lpfc_vport *vport = phba->pport;
1985 	uint32_t event_data;
1986 	struct Scsi_Host *shost;
1987 	uint32_t if_type;
1988 	struct lpfc_register portstat_reg = {0};
1989 	uint32_t reg_err1, reg_err2;
1990 	uint32_t uerrlo_reg, uemasklo_reg;
1991 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1992 	bool en_rn_msg = true;
1993 	struct temp_event temp_event_data;
1994 	struct lpfc_register portsmphr_reg;
1995 	int rc, i;
1996 
1997 	/* If the pci channel is offline, ignore possible errors, since
1998 	 * we cannot communicate with the pci card anyway.
1999 	 */
2000 	if (pci_channel_offline(phba->pcidev)) {
2001 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2002 				"3166 pci channel is offline\n");
2003 		lpfc_sli_flush_io_rings(phba);
2004 		return;
2005 	}
2006 
2007 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2008 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2009 	switch (if_type) {
2010 	case LPFC_SLI_INTF_IF_TYPE_0:
2011 		pci_rd_rc1 = lpfc_readl(
2012 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2013 				&uerrlo_reg);
2014 		pci_rd_rc2 = lpfc_readl(
2015 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2016 				&uemasklo_reg);
2017 		/* consider PCI bus read error as pci_channel_offline */
2018 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2019 			return;
2020 		if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) {
2021 			lpfc_sli4_offline_eratt(phba);
2022 			return;
2023 		}
2024 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2025 				"7623 Checking UE recoverable");
2026 
2027 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2028 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2029 				       &portsmphr_reg.word0))
2030 				continue;
2031 
2032 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2033 						   &portsmphr_reg);
2034 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2035 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2036 				break;
2037 			/*Sleep for 1Sec, before checking SEMAPHORE */
2038 			msleep(1000);
2039 		}
2040 
2041 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2042 				"4827 smphr_port_status x%x : Waited %dSec",
2043 				smphr_port_status, i);
2044 
2045 		/* Recoverable UE, reset the HBA device */
2046 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2047 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2048 			for (i = 0; i < 20; i++) {
2049 				msleep(1000);
2050 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2051 				    &portsmphr_reg.word0) &&
2052 				    (LPFC_POST_STAGE_PORT_READY ==
2053 				     bf_get(lpfc_port_smphr_port_status,
2054 				     &portsmphr_reg))) {
2055 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2056 						LPFC_MBX_NO_WAIT, en_rn_msg);
2057 					if (rc == 0)
2058 						return;
2059 					lpfc_printf_log(phba, KERN_ERR,
2060 						LOG_TRACE_EVENT,
2061 						"4215 Failed to recover UE");
2062 					break;
2063 				}
2064 			}
2065 		}
2066 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2067 				"7624 Firmware not ready: Failing UE recovery,"
2068 				" waited %dSec", i);
2069 		phba->link_state = LPFC_HBA_ERROR;
2070 		break;
2071 
2072 	case LPFC_SLI_INTF_IF_TYPE_2:
2073 	case LPFC_SLI_INTF_IF_TYPE_6:
2074 		pci_rd_rc1 = lpfc_readl(
2075 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2076 				&portstat_reg.word0);
2077 		/* consider PCI bus read error as pci_channel_offline */
2078 		if (pci_rd_rc1 == -EIO) {
2079 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2080 				"3151 PCI bus read access failure: x%x\n",
2081 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2082 			lpfc_sli4_offline_eratt(phba);
2083 			return;
2084 		}
2085 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2086 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2087 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2088 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2089 					"2889 Port Overtemperature event, "
2090 					"taking port offline Data: x%x x%x\n",
2091 					reg_err1, reg_err2);
2092 
2093 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2094 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2095 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2096 			temp_event_data.data = 0xFFFFFFFF;
2097 
2098 			shost = lpfc_shost_from_vport(phba->pport);
2099 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2100 						  sizeof(temp_event_data),
2101 						  (char *)&temp_event_data,
2102 						  SCSI_NL_VID_TYPE_PCI
2103 						  | PCI_VENDOR_ID_EMULEX);
2104 
2105 			spin_lock_irq(&phba->hbalock);
2106 			phba->over_temp_state = HBA_OVER_TEMP;
2107 			spin_unlock_irq(&phba->hbalock);
2108 			lpfc_sli4_offline_eratt(phba);
2109 			return;
2110 		}
2111 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2112 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2113 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2114 					"3143 Port Down: Firmware Update "
2115 					"Detected\n");
2116 			en_rn_msg = false;
2117 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2120 					"3144 Port Down: Debug Dump\n");
2121 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2122 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2123 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2124 					"3145 Port Down: Provisioning\n");
2125 
2126 		/* If resets are disabled then leave the HBA alone and return */
2127 		if (!phba->cfg_enable_hba_reset)
2128 			return;
2129 
2130 		/* Check port status register for function reset */
2131 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2132 				en_rn_msg);
2133 		if (rc == 0) {
2134 			/* don't report event on forced debug dump */
2135 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2136 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2137 				return;
2138 			else
2139 				break;
2140 		}
2141 		/* fall through for not able to recover */
2142 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2143 				"3152 Unrecoverable error\n");
2144 		lpfc_sli4_offline_eratt(phba);
2145 		break;
2146 	case LPFC_SLI_INTF_IF_TYPE_1:
2147 	default:
2148 		break;
2149 	}
2150 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2151 			"3123 Report dump event to upper layer\n");
2152 	/* Send an internal error event to mgmt application */
2153 	lpfc_board_errevt_to_mgmt(phba);
2154 
2155 	event_data = FC_REG_DUMP_EVENT;
2156 	shost = lpfc_shost_from_vport(vport);
2157 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2158 				  sizeof(event_data), (char *) &event_data,
2159 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2160 }
2161 
2162 /**
2163  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2164  * @phba: pointer to lpfc HBA data structure.
2165  *
2166  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2167  * routine from the API jump table function pointer from the lpfc_hba struct.
2168  *
2169  * Return codes
2170  *   0 - success.
2171  *   Any other value - error.
2172  **/
2173 void
2174 lpfc_handle_eratt(struct lpfc_hba *phba)
2175 {
2176 	(*phba->lpfc_handle_eratt)(phba);
2177 }
2178 
2179 /**
2180  * lpfc_handle_latt - The HBA link event handler
2181  * @phba: pointer to lpfc hba data structure.
2182  *
2183  * This routine is invoked from the worker thread to handle a HBA host
2184  * attention link event. SLI3 only.
2185  **/
2186 void
2187 lpfc_handle_latt(struct lpfc_hba *phba)
2188 {
2189 	struct lpfc_vport *vport = phba->pport;
2190 	struct lpfc_sli   *psli = &phba->sli;
2191 	LPFC_MBOXQ_t *pmb;
2192 	volatile uint32_t control;
2193 	int rc = 0;
2194 
2195 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2196 	if (!pmb) {
2197 		rc = 1;
2198 		goto lpfc_handle_latt_err_exit;
2199 	}
2200 
2201 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2202 	if (rc) {
2203 		rc = 2;
2204 		mempool_free(pmb, phba->mbox_mem_pool);
2205 		goto lpfc_handle_latt_err_exit;
2206 	}
2207 
2208 	/* Cleanup any outstanding ELS commands */
2209 	lpfc_els_flush_all_cmd(phba);
2210 	psli->slistat.link_event++;
2211 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
2212 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2213 	pmb->vport = vport;
2214 	/* Block ELS IOCBs until we have processed this mbox command */
2215 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2216 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2217 	if (rc == MBX_NOT_FINISHED) {
2218 		rc = 4;
2219 		goto lpfc_handle_latt_free_mbuf;
2220 	}
2221 
2222 	/* Clear Link Attention in HA REG */
2223 	spin_lock_irq(&phba->hbalock);
2224 	writel(HA_LATT, phba->HAregaddr);
2225 	readl(phba->HAregaddr); /* flush */
2226 	spin_unlock_irq(&phba->hbalock);
2227 
2228 	return;
2229 
2230 lpfc_handle_latt_free_mbuf:
2231 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2232 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2233 lpfc_handle_latt_err_exit:
2234 	/* Enable Link attention interrupts */
2235 	spin_lock_irq(&phba->hbalock);
2236 	psli->sli_flag |= LPFC_PROCESS_LA;
2237 	control = readl(phba->HCregaddr);
2238 	control |= HC_LAINT_ENA;
2239 	writel(control, phba->HCregaddr);
2240 	readl(phba->HCregaddr); /* flush */
2241 
2242 	/* Clear Link Attention in HA REG */
2243 	writel(HA_LATT, phba->HAregaddr);
2244 	readl(phba->HAregaddr); /* flush */
2245 	spin_unlock_irq(&phba->hbalock);
2246 	lpfc_linkdown(phba);
2247 	phba->link_state = LPFC_HBA_ERROR;
2248 
2249 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2250 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2251 
2252 	return;
2253 }
2254 
2255 static void
2256 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2257 {
2258 	int i, j;
2259 
2260 	while (length > 0) {
2261 		/* Look for Serial Number */
2262 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2263 			*pindex += 2;
2264 			i = vpd[*pindex];
2265 			*pindex += 1;
2266 			j = 0;
2267 			length -= (3+i);
2268 			while (i--) {
2269 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2270 				if (j == 31)
2271 					break;
2272 			}
2273 			phba->SerialNumber[j] = 0;
2274 			continue;
2275 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2276 			phba->vpd_flag |= VPD_MODEL_DESC;
2277 			*pindex += 2;
2278 			i = vpd[*pindex];
2279 			*pindex += 1;
2280 			j = 0;
2281 			length -= (3+i);
2282 			while (i--) {
2283 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2284 				if (j == 255)
2285 					break;
2286 			}
2287 			phba->ModelDesc[j] = 0;
2288 			continue;
2289 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2290 			phba->vpd_flag |= VPD_MODEL_NAME;
2291 			*pindex += 2;
2292 			i = vpd[*pindex];
2293 			*pindex += 1;
2294 			j = 0;
2295 			length -= (3+i);
2296 			while (i--) {
2297 				phba->ModelName[j++] = vpd[(*pindex)++];
2298 				if (j == 79)
2299 					break;
2300 			}
2301 			phba->ModelName[j] = 0;
2302 			continue;
2303 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2304 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2305 			*pindex += 2;
2306 			i = vpd[*pindex];
2307 			*pindex += 1;
2308 			j = 0;
2309 			length -= (3+i);
2310 			while (i--) {
2311 				phba->ProgramType[j++] = vpd[(*pindex)++];
2312 				if (j == 255)
2313 					break;
2314 			}
2315 			phba->ProgramType[j] = 0;
2316 			continue;
2317 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2318 			phba->vpd_flag |= VPD_PORT;
2319 			*pindex += 2;
2320 			i = vpd[*pindex];
2321 			*pindex += 1;
2322 			j = 0;
2323 			length -= (3 + i);
2324 			while (i--) {
2325 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2326 				    (phba->sli4_hba.pport_name_sta ==
2327 				     LPFC_SLI4_PPNAME_GET)) {
2328 					j++;
2329 					(*pindex)++;
2330 				} else
2331 					phba->Port[j++] = vpd[(*pindex)++];
2332 				if (j == 19)
2333 					break;
2334 			}
2335 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2336 			    (phba->sli4_hba.pport_name_sta ==
2337 			     LPFC_SLI4_PPNAME_NON))
2338 				phba->Port[j] = 0;
2339 			continue;
2340 		} else {
2341 			*pindex += 2;
2342 			i = vpd[*pindex];
2343 			*pindex += 1;
2344 			*pindex += i;
2345 			length -= (3 + i);
2346 		}
2347 	}
2348 }
2349 
2350 /**
2351  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2352  * @phba: pointer to lpfc hba data structure.
2353  * @vpd: pointer to the vital product data.
2354  * @len: length of the vital product data in bytes.
2355  *
2356  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2357  * an array of characters. In this routine, the ModelName, ProgramType, and
2358  * ModelDesc, etc. fields of the phba data structure will be populated.
2359  *
2360  * Return codes
2361  *   0 - pointer to the VPD passed in is NULL
2362  *   1 - success
2363  **/
2364 int
2365 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2366 {
2367 	uint8_t lenlo, lenhi;
2368 	int Length;
2369 	int i;
2370 	int finished = 0;
2371 	int index = 0;
2372 
2373 	if (!vpd)
2374 		return 0;
2375 
2376 	/* Vital Product */
2377 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2378 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2379 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2380 			(uint32_t) vpd[3]);
2381 	while (!finished && (index < (len - 4))) {
2382 		switch (vpd[index]) {
2383 		case 0x82:
2384 		case 0x91:
2385 			index += 1;
2386 			lenlo = vpd[index];
2387 			index += 1;
2388 			lenhi = vpd[index];
2389 			index += 1;
2390 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2391 			index += i;
2392 			break;
2393 		case 0x90:
2394 			index += 1;
2395 			lenlo = vpd[index];
2396 			index += 1;
2397 			lenhi = vpd[index];
2398 			index += 1;
2399 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2400 			if (Length > len - index)
2401 				Length = len - index;
2402 
2403 			lpfc_fill_vpd(phba, vpd, Length, &index);
2404 			finished = 0;
2405 			break;
2406 		case 0x78:
2407 			finished = 1;
2408 			break;
2409 		default:
2410 			index ++;
2411 			break;
2412 		}
2413 	}
2414 
2415 	return(1);
2416 }
2417 
2418 /**
2419  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2420  * @phba: pointer to lpfc hba data structure.
2421  * @mdp: pointer to the data structure to hold the derived model name.
2422  * @descp: pointer to the data structure to hold the derived description.
2423  *
2424  * This routine retrieves HBA's description based on its registered PCI device
2425  * ID. The @descp passed into this function points to an array of 256 chars. It
2426  * shall be returned with the model name, maximum speed, and the host bus type.
2427  * The @mdp passed into this function points to an array of 80 chars. When the
2428  * function returns, the @mdp will be filled with the model name.
2429  **/
2430 static void
2431 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2432 {
2433 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2434 	char *model = "<Unknown>";
2435 	int tbolt = 0;
2436 
2437 	switch (sub_dev_id) {
2438 	case PCI_DEVICE_ID_CLRY_161E:
2439 		model = "161E";
2440 		break;
2441 	case PCI_DEVICE_ID_CLRY_162E:
2442 		model = "162E";
2443 		break;
2444 	case PCI_DEVICE_ID_CLRY_164E:
2445 		model = "164E";
2446 		break;
2447 	case PCI_DEVICE_ID_CLRY_161P:
2448 		model = "161P";
2449 		break;
2450 	case PCI_DEVICE_ID_CLRY_162P:
2451 		model = "162P";
2452 		break;
2453 	case PCI_DEVICE_ID_CLRY_164P:
2454 		model = "164P";
2455 		break;
2456 	case PCI_DEVICE_ID_CLRY_321E:
2457 		model = "321E";
2458 		break;
2459 	case PCI_DEVICE_ID_CLRY_322E:
2460 		model = "322E";
2461 		break;
2462 	case PCI_DEVICE_ID_CLRY_324E:
2463 		model = "324E";
2464 		break;
2465 	case PCI_DEVICE_ID_CLRY_321P:
2466 		model = "321P";
2467 		break;
2468 	case PCI_DEVICE_ID_CLRY_322P:
2469 		model = "322P";
2470 		break;
2471 	case PCI_DEVICE_ID_CLRY_324P:
2472 		model = "324P";
2473 		break;
2474 	case PCI_DEVICE_ID_TLFC_2XX2:
2475 		model = "2XX2";
2476 		tbolt = 1;
2477 		break;
2478 	case PCI_DEVICE_ID_TLFC_3162:
2479 		model = "3162";
2480 		tbolt = 1;
2481 		break;
2482 	case PCI_DEVICE_ID_TLFC_3322:
2483 		model = "3322";
2484 		tbolt = 1;
2485 		break;
2486 	default:
2487 		model = "Unknown";
2488 		break;
2489 	}
2490 
2491 	if (mdp && mdp[0] == '\0')
2492 		snprintf(mdp, 79, "%s", model);
2493 
2494 	if (descp && descp[0] == '\0')
2495 		snprintf(descp, 255,
2496 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2497 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2498 			 model,
2499 			 phba->Port);
2500 }
2501 
2502 /**
2503  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2504  * @phba: pointer to lpfc hba data structure.
2505  * @mdp: pointer to the data structure to hold the derived model name.
2506  * @descp: pointer to the data structure to hold the derived description.
2507  *
2508  * This routine retrieves HBA's description based on its registered PCI device
2509  * ID. The @descp passed into this function points to an array of 256 chars. It
2510  * shall be returned with the model name, maximum speed, and the host bus type.
2511  * The @mdp passed into this function points to an array of 80 chars. When the
2512  * function returns, the @mdp will be filled with the model name.
2513  **/
2514 static void
2515 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2516 {
2517 	lpfc_vpd_t *vp;
2518 	uint16_t dev_id = phba->pcidev->device;
2519 	int max_speed;
2520 	int GE = 0;
2521 	int oneConnect = 0; /* default is not a oneConnect */
2522 	struct {
2523 		char *name;
2524 		char *bus;
2525 		char *function;
2526 	} m = {"<Unknown>", "", ""};
2527 
2528 	if (mdp && mdp[0] != '\0'
2529 		&& descp && descp[0] != '\0')
2530 		return;
2531 
2532 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2533 		lpfc_get_atto_model_desc(phba, mdp, descp);
2534 		return;
2535 	}
2536 
2537 	if (phba->lmt & LMT_64Gb)
2538 		max_speed = 64;
2539 	else if (phba->lmt & LMT_32Gb)
2540 		max_speed = 32;
2541 	else if (phba->lmt & LMT_16Gb)
2542 		max_speed = 16;
2543 	else if (phba->lmt & LMT_10Gb)
2544 		max_speed = 10;
2545 	else if (phba->lmt & LMT_8Gb)
2546 		max_speed = 8;
2547 	else if (phba->lmt & LMT_4Gb)
2548 		max_speed = 4;
2549 	else if (phba->lmt & LMT_2Gb)
2550 		max_speed = 2;
2551 	else if (phba->lmt & LMT_1Gb)
2552 		max_speed = 1;
2553 	else
2554 		max_speed = 0;
2555 
2556 	vp = &phba->vpd;
2557 
2558 	switch (dev_id) {
2559 	case PCI_DEVICE_ID_FIREFLY:
2560 		m = (typeof(m)){"LP6000", "PCI",
2561 				"Obsolete, Unsupported Fibre Channel Adapter"};
2562 		break;
2563 	case PCI_DEVICE_ID_SUPERFLY:
2564 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2565 			m = (typeof(m)){"LP7000", "PCI", ""};
2566 		else
2567 			m = (typeof(m)){"LP7000E", "PCI", ""};
2568 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2569 		break;
2570 	case PCI_DEVICE_ID_DRAGONFLY:
2571 		m = (typeof(m)){"LP8000", "PCI",
2572 				"Obsolete, Unsupported Fibre Channel Adapter"};
2573 		break;
2574 	case PCI_DEVICE_ID_CENTAUR:
2575 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2576 			m = (typeof(m)){"LP9002", "PCI", ""};
2577 		else
2578 			m = (typeof(m)){"LP9000", "PCI", ""};
2579 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2580 		break;
2581 	case PCI_DEVICE_ID_RFLY:
2582 		m = (typeof(m)){"LP952", "PCI",
2583 				"Obsolete, Unsupported Fibre Channel Adapter"};
2584 		break;
2585 	case PCI_DEVICE_ID_PEGASUS:
2586 		m = (typeof(m)){"LP9802", "PCI-X",
2587 				"Obsolete, Unsupported Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_THOR:
2590 		m = (typeof(m)){"LP10000", "PCI-X",
2591 				"Obsolete, Unsupported Fibre Channel Adapter"};
2592 		break;
2593 	case PCI_DEVICE_ID_VIPER:
2594 		m = (typeof(m)){"LPX1000",  "PCI-X",
2595 				"Obsolete, Unsupported Fibre Channel Adapter"};
2596 		break;
2597 	case PCI_DEVICE_ID_PFLY:
2598 		m = (typeof(m)){"LP982", "PCI-X",
2599 				"Obsolete, Unsupported Fibre Channel Adapter"};
2600 		break;
2601 	case PCI_DEVICE_ID_TFLY:
2602 		m = (typeof(m)){"LP1050", "PCI-X",
2603 				"Obsolete, Unsupported Fibre Channel Adapter"};
2604 		break;
2605 	case PCI_DEVICE_ID_HELIOS:
2606 		m = (typeof(m)){"LP11000", "PCI-X2",
2607 				"Obsolete, Unsupported Fibre Channel Adapter"};
2608 		break;
2609 	case PCI_DEVICE_ID_HELIOS_SCSP:
2610 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2611 				"Obsolete, Unsupported Fibre Channel Adapter"};
2612 		break;
2613 	case PCI_DEVICE_ID_HELIOS_DCSP:
2614 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2615 				"Obsolete, Unsupported Fibre Channel Adapter"};
2616 		break;
2617 	case PCI_DEVICE_ID_NEPTUNE:
2618 		m = (typeof(m)){"LPe1000", "PCIe",
2619 				"Obsolete, Unsupported Fibre Channel Adapter"};
2620 		break;
2621 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2622 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2623 				"Obsolete, Unsupported Fibre Channel Adapter"};
2624 		break;
2625 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2626 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2627 				"Obsolete, Unsupported Fibre Channel Adapter"};
2628 		break;
2629 	case PCI_DEVICE_ID_BMID:
2630 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_BSMB:
2633 		m = (typeof(m)){"LP111", "PCI-X2",
2634 				"Obsolete, Unsupported Fibre Channel Adapter"};
2635 		break;
2636 	case PCI_DEVICE_ID_ZEPHYR:
2637 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2638 		break;
2639 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2640 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2641 		break;
2642 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2643 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2644 		GE = 1;
2645 		break;
2646 	case PCI_DEVICE_ID_ZMID:
2647 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2648 		break;
2649 	case PCI_DEVICE_ID_ZSMB:
2650 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2651 		break;
2652 	case PCI_DEVICE_ID_LP101:
2653 		m = (typeof(m)){"LP101", "PCI-X",
2654 				"Obsolete, Unsupported Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_LP10000S:
2657 		m = (typeof(m)){"LP10000-S", "PCI",
2658 				"Obsolete, Unsupported Fibre Channel Adapter"};
2659 		break;
2660 	case PCI_DEVICE_ID_LP11000S:
2661 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2662 				"Obsolete, Unsupported Fibre Channel Adapter"};
2663 		break;
2664 	case PCI_DEVICE_ID_LPE11000S:
2665 		m = (typeof(m)){"LPe11000-S", "PCIe",
2666 				"Obsolete, Unsupported Fibre Channel Adapter"};
2667 		break;
2668 	case PCI_DEVICE_ID_SAT:
2669 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2670 		break;
2671 	case PCI_DEVICE_ID_SAT_MID:
2672 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2673 		break;
2674 	case PCI_DEVICE_ID_SAT_SMB:
2675 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2676 		break;
2677 	case PCI_DEVICE_ID_SAT_DCSP:
2678 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2679 		break;
2680 	case PCI_DEVICE_ID_SAT_SCSP:
2681 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2682 		break;
2683 	case PCI_DEVICE_ID_SAT_S:
2684 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_PROTEUS_VF:
2687 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2688 				"Obsolete, Unsupported Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_PROTEUS_PF:
2691 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2692 				"Obsolete, Unsupported Fibre Channel Adapter"};
2693 		break;
2694 	case PCI_DEVICE_ID_PROTEUS_S:
2695 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2696 				"Obsolete, Unsupported Fibre Channel Adapter"};
2697 		break;
2698 	case PCI_DEVICE_ID_TIGERSHARK:
2699 		oneConnect = 1;
2700 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2701 		break;
2702 	case PCI_DEVICE_ID_TOMCAT:
2703 		oneConnect = 1;
2704 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2705 		break;
2706 	case PCI_DEVICE_ID_FALCON:
2707 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2708 				"EmulexSecure Fibre"};
2709 		break;
2710 	case PCI_DEVICE_ID_BALIUS:
2711 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2712 				"Obsolete, Unsupported Fibre Channel Adapter"};
2713 		break;
2714 	case PCI_DEVICE_ID_LANCER_FC:
2715 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2716 		break;
2717 	case PCI_DEVICE_ID_LANCER_FC_VF:
2718 		m = (typeof(m)){"LPe16000", "PCIe",
2719 				"Obsolete, Unsupported Fibre Channel Adapter"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FCOE:
2722 		oneConnect = 1;
2723 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2724 		break;
2725 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2726 		oneConnect = 1;
2727 		m = (typeof(m)){"OCe15100", "PCIe",
2728 				"Obsolete, Unsupported FCoE"};
2729 		break;
2730 	case PCI_DEVICE_ID_LANCER_G6_FC:
2731 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2732 		break;
2733 	case PCI_DEVICE_ID_LANCER_G7_FC:
2734 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2735 		break;
2736 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2737 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2738 		break;
2739 	case PCI_DEVICE_ID_SKYHAWK:
2740 	case PCI_DEVICE_ID_SKYHAWK_VF:
2741 		oneConnect = 1;
2742 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2743 		break;
2744 	default:
2745 		m = (typeof(m)){"Unknown", "", ""};
2746 		break;
2747 	}
2748 
2749 	if (mdp && mdp[0] == '\0')
2750 		snprintf(mdp, 79,"%s", m.name);
2751 	/*
2752 	 * oneConnect hba requires special processing, they are all initiators
2753 	 * and we put the port number on the end
2754 	 */
2755 	if (descp && descp[0] == '\0') {
2756 		if (oneConnect)
2757 			snprintf(descp, 255,
2758 				"Emulex OneConnect %s, %s Initiator %s",
2759 				m.name, m.function,
2760 				phba->Port);
2761 		else if (max_speed == 0)
2762 			snprintf(descp, 255,
2763 				"Emulex %s %s %s",
2764 				m.name, m.bus, m.function);
2765 		else
2766 			snprintf(descp, 255,
2767 				"Emulex %s %d%s %s %s",
2768 				m.name, max_speed, (GE) ? "GE" : "Gb",
2769 				m.bus, m.function);
2770 	}
2771 }
2772 
2773 /**
2774  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2775  * @phba: pointer to lpfc hba data structure.
2776  * @pring: pointer to a IOCB ring.
2777  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2778  *
2779  * This routine posts a given number of IOCBs with the associated DMA buffer
2780  * descriptors specified by the cnt argument to the given IOCB ring.
2781  *
2782  * Return codes
2783  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2784  **/
2785 int
2786 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2787 {
2788 	IOCB_t *icmd;
2789 	struct lpfc_iocbq *iocb;
2790 	struct lpfc_dmabuf *mp1, *mp2;
2791 
2792 	cnt += pring->missbufcnt;
2793 
2794 	/* While there are buffers to post */
2795 	while (cnt > 0) {
2796 		/* Allocate buffer for  command iocb */
2797 		iocb = lpfc_sli_get_iocbq(phba);
2798 		if (iocb == NULL) {
2799 			pring->missbufcnt = cnt;
2800 			return cnt;
2801 		}
2802 		icmd = &iocb->iocb;
2803 
2804 		/* 2 buffers can be posted per command */
2805 		/* Allocate buffer to post */
2806 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2807 		if (mp1)
2808 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2809 		if (!mp1 || !mp1->virt) {
2810 			kfree(mp1);
2811 			lpfc_sli_release_iocbq(phba, iocb);
2812 			pring->missbufcnt = cnt;
2813 			return cnt;
2814 		}
2815 
2816 		INIT_LIST_HEAD(&mp1->list);
2817 		/* Allocate buffer to post */
2818 		if (cnt > 1) {
2819 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2820 			if (mp2)
2821 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2822 							    &mp2->phys);
2823 			if (!mp2 || !mp2->virt) {
2824 				kfree(mp2);
2825 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2826 				kfree(mp1);
2827 				lpfc_sli_release_iocbq(phba, iocb);
2828 				pring->missbufcnt = cnt;
2829 				return cnt;
2830 			}
2831 
2832 			INIT_LIST_HEAD(&mp2->list);
2833 		} else {
2834 			mp2 = NULL;
2835 		}
2836 
2837 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2838 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2839 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2840 		icmd->ulpBdeCount = 1;
2841 		cnt--;
2842 		if (mp2) {
2843 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2844 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2845 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2846 			cnt--;
2847 			icmd->ulpBdeCount = 2;
2848 		}
2849 
2850 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2851 		icmd->ulpLe = 1;
2852 
2853 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2854 		    IOCB_ERROR) {
2855 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2856 			kfree(mp1);
2857 			cnt++;
2858 			if (mp2) {
2859 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2860 				kfree(mp2);
2861 				cnt++;
2862 			}
2863 			lpfc_sli_release_iocbq(phba, iocb);
2864 			pring->missbufcnt = cnt;
2865 			return cnt;
2866 		}
2867 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2868 		if (mp2)
2869 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2870 	}
2871 	pring->missbufcnt = 0;
2872 	return 0;
2873 }
2874 
2875 /**
2876  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2877  * @phba: pointer to lpfc hba data structure.
2878  *
2879  * This routine posts initial receive IOCB buffers to the ELS ring. The
2880  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2881  * set to 64 IOCBs. SLI3 only.
2882  *
2883  * Return codes
2884  *   0 - success (currently always success)
2885  **/
2886 static int
2887 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2888 {
2889 	struct lpfc_sli *psli = &phba->sli;
2890 
2891 	/* Ring 0, ELS / CT buffers */
2892 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2893 	/* Ring 2 - FCP no buffers needed */
2894 
2895 	return 0;
2896 }
2897 
2898 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2899 
2900 /**
2901  * lpfc_sha_init - Set up initial array of hash table entries
2902  * @HashResultPointer: pointer to an array as hash table.
2903  *
2904  * This routine sets up the initial values to the array of hash table entries
2905  * for the LC HBAs.
2906  **/
2907 static void
2908 lpfc_sha_init(uint32_t * HashResultPointer)
2909 {
2910 	HashResultPointer[0] = 0x67452301;
2911 	HashResultPointer[1] = 0xEFCDAB89;
2912 	HashResultPointer[2] = 0x98BADCFE;
2913 	HashResultPointer[3] = 0x10325476;
2914 	HashResultPointer[4] = 0xC3D2E1F0;
2915 }
2916 
2917 /**
2918  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2919  * @HashResultPointer: pointer to an initial/result hash table.
2920  * @HashWorkingPointer: pointer to an working hash table.
2921  *
2922  * This routine iterates an initial hash table pointed by @HashResultPointer
2923  * with the values from the working hash table pointeed by @HashWorkingPointer.
2924  * The results are putting back to the initial hash table, returned through
2925  * the @HashResultPointer as the result hash table.
2926  **/
2927 static void
2928 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2929 {
2930 	int t;
2931 	uint32_t TEMP;
2932 	uint32_t A, B, C, D, E;
2933 	t = 16;
2934 	do {
2935 		HashWorkingPointer[t] =
2936 		    S(1,
2937 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2938 								     8] ^
2939 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2940 	} while (++t <= 79);
2941 	t = 0;
2942 	A = HashResultPointer[0];
2943 	B = HashResultPointer[1];
2944 	C = HashResultPointer[2];
2945 	D = HashResultPointer[3];
2946 	E = HashResultPointer[4];
2947 
2948 	do {
2949 		if (t < 20) {
2950 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2951 		} else if (t < 40) {
2952 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2953 		} else if (t < 60) {
2954 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2955 		} else {
2956 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2957 		}
2958 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2959 		E = D;
2960 		D = C;
2961 		C = S(30, B);
2962 		B = A;
2963 		A = TEMP;
2964 	} while (++t <= 79);
2965 
2966 	HashResultPointer[0] += A;
2967 	HashResultPointer[1] += B;
2968 	HashResultPointer[2] += C;
2969 	HashResultPointer[3] += D;
2970 	HashResultPointer[4] += E;
2971 
2972 }
2973 
2974 /**
2975  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2976  * @RandomChallenge: pointer to the entry of host challenge random number array.
2977  * @HashWorking: pointer to the entry of the working hash array.
2978  *
2979  * This routine calculates the working hash array referred by @HashWorking
2980  * from the challenge random numbers associated with the host, referred by
2981  * @RandomChallenge. The result is put into the entry of the working hash
2982  * array and returned by reference through @HashWorking.
2983  **/
2984 static void
2985 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2986 {
2987 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2988 }
2989 
2990 /**
2991  * lpfc_hba_init - Perform special handling for LC HBA initialization
2992  * @phba: pointer to lpfc hba data structure.
2993  * @hbainit: pointer to an array of unsigned 32-bit integers.
2994  *
2995  * This routine performs the special handling for LC HBA initialization.
2996  **/
2997 void
2998 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2999 {
3000 	int t;
3001 	uint32_t *HashWorking;
3002 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3003 
3004 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3005 	if (!HashWorking)
3006 		return;
3007 
3008 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3009 	HashWorking[1] = HashWorking[79] = *pwwnn;
3010 
3011 	for (t = 0; t < 7; t++)
3012 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3013 
3014 	lpfc_sha_init(hbainit);
3015 	lpfc_sha_iterate(hbainit, HashWorking);
3016 	kfree(HashWorking);
3017 }
3018 
3019 /**
3020  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3021  * @vport: pointer to a virtual N_Port data structure.
3022  *
3023  * This routine performs the necessary cleanups before deleting the @vport.
3024  * It invokes the discovery state machine to perform necessary state
3025  * transitions and to release the ndlps associated with the @vport. Note,
3026  * the physical port is treated as @vport 0.
3027  **/
3028 void
3029 lpfc_cleanup(struct lpfc_vport *vport)
3030 {
3031 	struct lpfc_hba   *phba = vport->phba;
3032 	struct lpfc_nodelist *ndlp, *next_ndlp;
3033 	int i = 0;
3034 
3035 	if (phba->link_state > LPFC_LINK_DOWN)
3036 		lpfc_port_link_failure(vport);
3037 
3038 	/* Clean up VMID resources */
3039 	if (lpfc_is_vmid_enabled(phba))
3040 		lpfc_vmid_vport_cleanup(vport);
3041 
3042 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3043 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3044 		    ndlp->nlp_DID == Fabric_DID) {
3045 			/* Just free up ndlp with Fabric_DID for vports */
3046 			lpfc_nlp_put(ndlp);
3047 			continue;
3048 		}
3049 
3050 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3051 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3052 			lpfc_nlp_put(ndlp);
3053 			continue;
3054 		}
3055 
3056 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3057 		 * DEVICE_RM event.
3058 		 */
3059 		if (ndlp->nlp_type & NLP_FABRIC &&
3060 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3061 			lpfc_disc_state_machine(vport, ndlp, NULL,
3062 					NLP_EVT_DEVICE_RECOVERY);
3063 
3064 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3065 			lpfc_disc_state_machine(vport, ndlp, NULL,
3066 					NLP_EVT_DEVICE_RM);
3067 	}
3068 
3069 	/* This is a special case flush to return all
3070 	 * IOs before entering this loop. There are
3071 	 * two points in the code where a flush is
3072 	 * avoided if the FC_UNLOADING flag is set.
3073 	 * one is in the multipool destroy,
3074 	 * (this prevents a crash) and the other is
3075 	 * in the nvme abort handler, ( also prevents
3076 	 * a crash). Both of these exceptions are
3077 	 * cases where the slot is still accessible.
3078 	 * The flush here is only when the pci slot
3079 	 * is offline.
3080 	 */
3081 	if (test_bit(FC_UNLOADING, &vport->load_flag) &&
3082 	    pci_channel_offline(phba->pcidev))
3083 		lpfc_sli_flush_io_rings(vport->phba);
3084 
3085 	/* At this point, ALL ndlp's should be gone
3086 	 * because of the previous NLP_EVT_DEVICE_RM.
3087 	 * Lets wait for this to happen, if needed.
3088 	 */
3089 	while (!list_empty(&vport->fc_nodes)) {
3090 		if (i++ > 3000) {
3091 			lpfc_printf_vlog(vport, KERN_ERR,
3092 					 LOG_TRACE_EVENT,
3093 				"0233 Nodelist not empty\n");
3094 			list_for_each_entry_safe(ndlp, next_ndlp,
3095 						&vport->fc_nodes, nlp_listp) {
3096 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3097 						 LOG_DISCOVERY,
3098 						 "0282 did:x%x ndlp:x%px "
3099 						 "refcnt:%d xflags x%x "
3100 						 "nflag x%lx\n",
3101 						 ndlp->nlp_DID, (void *)ndlp,
3102 						 kref_read(&ndlp->kref),
3103 						 ndlp->fc4_xpt_flags,
3104 						 ndlp->nlp_flag);
3105 			}
3106 			break;
3107 		}
3108 
3109 		/* Wait for any activity on ndlps to settle */
3110 		msleep(10);
3111 	}
3112 	lpfc_cleanup_vports_rrqs(vport, NULL);
3113 }
3114 
3115 /**
3116  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3117  * @vport: pointer to a virtual N_Port data structure.
3118  *
3119  * This routine stops all the timers associated with a @vport. This function
3120  * is invoked before disabling or deleting a @vport. Note that the physical
3121  * port is treated as @vport 0.
3122  **/
3123 void
3124 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3125 {
3126 	timer_delete_sync(&vport->els_tmofunc);
3127 	timer_delete_sync(&vport->delayed_disc_tmo);
3128 	lpfc_can_disctmo(vport);
3129 	return;
3130 }
3131 
3132 /**
3133  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3134  * @phba: pointer to lpfc hba data structure.
3135  *
3136  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3137  * caller of this routine should already hold the host lock.
3138  **/
3139 void
3140 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3141 {
3142 	/* Clear pending FCF rediscovery wait flag */
3143 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3144 
3145 	/* Now, try to stop the timer */
3146 	timer_delete(&phba->fcf.redisc_wait);
3147 }
3148 
3149 /**
3150  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3151  * @phba: pointer to lpfc hba data structure.
3152  *
3153  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3154  * checks whether the FCF rediscovery wait timer is pending with the host
3155  * lock held before proceeding with disabling the timer and clearing the
3156  * wait timer pendig flag.
3157  **/
3158 void
3159 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3160 {
3161 	spin_lock_irq(&phba->hbalock);
3162 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3163 		/* FCF rediscovery timer already fired or stopped */
3164 		spin_unlock_irq(&phba->hbalock);
3165 		return;
3166 	}
3167 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3168 	/* Clear failover in progress flags */
3169 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3170 	spin_unlock_irq(&phba->hbalock);
3171 }
3172 
3173 /**
3174  * lpfc_cmf_stop - Stop CMF processing
3175  * @phba: pointer to lpfc hba data structure.
3176  *
3177  * This is called when the link goes down or if CMF mode is turned OFF.
3178  * It is also called when going offline or unloaded just before the
3179  * congestion info buffer is unregistered.
3180  **/
3181 void
3182 lpfc_cmf_stop(struct lpfc_hba *phba)
3183 {
3184 	int cpu;
3185 	struct lpfc_cgn_stat *cgs;
3186 
3187 	/* We only do something if CMF is enabled */
3188 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3189 		return;
3190 
3191 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3192 			"6221 Stop CMF / Cancel Timer\n");
3193 
3194 	/* Cancel the CMF timer */
3195 	hrtimer_cancel(&phba->cmf_stats_timer);
3196 	hrtimer_cancel(&phba->cmf_timer);
3197 
3198 	/* Zero CMF counters */
3199 	atomic_set(&phba->cmf_busy, 0);
3200 	for_each_present_cpu(cpu) {
3201 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3202 		atomic64_set(&cgs->total_bytes, 0);
3203 		atomic64_set(&cgs->rcv_bytes, 0);
3204 		atomic_set(&cgs->rx_io_cnt, 0);
3205 		atomic64_set(&cgs->rx_latency, 0);
3206 	}
3207 	atomic_set(&phba->cmf_bw_wait, 0);
3208 
3209 	/* Resume any blocked IO - Queue unblock on workqueue */
3210 	queue_work(phba->wq, &phba->unblock_request_work);
3211 }
3212 
3213 static inline uint64_t
3214 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3215 {
3216 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3217 
3218 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3219 }
3220 
3221 void
3222 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3223 {
3224 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3225 			"6223 Signal CMF init\n");
3226 
3227 	/* Use the new fc_linkspeed to recalculate */
3228 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3229 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3230 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3231 					    phba->cmf_interval_rate, 1000);
3232 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3233 
3234 	/* This is a signal to firmware to sync up CMF BW with link speed */
3235 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3236 }
3237 
3238 /**
3239  * lpfc_cmf_start - Start CMF processing
3240  * @phba: pointer to lpfc hba data structure.
3241  *
3242  * This is called when the link comes up or if CMF mode is turned OFF
3243  * to Monitor or Managed.
3244  **/
3245 void
3246 lpfc_cmf_start(struct lpfc_hba *phba)
3247 {
3248 	struct lpfc_cgn_stat *cgs;
3249 	int cpu;
3250 
3251 	/* We only do something if CMF is enabled */
3252 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3253 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3254 		return;
3255 
3256 	/* Reinitialize congestion buffer info */
3257 	lpfc_init_congestion_buf(phba);
3258 
3259 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3260 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3261 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3262 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3263 
3264 	atomic_set(&phba->cmf_busy, 0);
3265 	for_each_present_cpu(cpu) {
3266 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3267 		atomic64_set(&cgs->total_bytes, 0);
3268 		atomic64_set(&cgs->rcv_bytes, 0);
3269 		atomic_set(&cgs->rx_io_cnt, 0);
3270 		atomic64_set(&cgs->rx_latency, 0);
3271 	}
3272 	phba->cmf_latency.tv_sec = 0;
3273 	phba->cmf_latency.tv_nsec = 0;
3274 
3275 	lpfc_cmf_signal_init(phba);
3276 
3277 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3278 			"6222 Start CMF / Timer\n");
3279 
3280 	phba->cmf_timer_cnt = 0;
3281 	hrtimer_start(&phba->cmf_timer,
3282 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3283 		      HRTIMER_MODE_REL);
3284 	hrtimer_start(&phba->cmf_stats_timer,
3285 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3286 		      HRTIMER_MODE_REL);
3287 	/* Setup for latency check in IO cmpl routines */
3288 	ktime_get_real_ts64(&phba->cmf_latency);
3289 
3290 	atomic_set(&phba->cmf_bw_wait, 0);
3291 	atomic_set(&phba->cmf_stop_io, 0);
3292 }
3293 
3294 /**
3295  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3296  * @phba: pointer to lpfc hba data structure.
3297  *
3298  * This routine stops all the timers associated with a HBA. This function is
3299  * invoked before either putting a HBA offline or unloading the driver.
3300  **/
3301 void
3302 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3303 {
3304 	if (phba->pport)
3305 		lpfc_stop_vport_timers(phba->pport);
3306 	cancel_delayed_work_sync(&phba->eq_delay_work);
3307 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3308 	timer_delete_sync(&phba->sli.mbox_tmo);
3309 	timer_delete_sync(&phba->fabric_block_timer);
3310 	timer_delete_sync(&phba->eratt_poll);
3311 	timer_delete_sync(&phba->hb_tmofunc);
3312 	if (phba->sli_rev == LPFC_SLI_REV4) {
3313 		timer_delete_sync(&phba->rrq_tmr);
3314 		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
3315 	}
3316 	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
3317 	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
3318 
3319 	switch (phba->pci_dev_grp) {
3320 	case LPFC_PCI_DEV_LP:
3321 		/* Stop any LightPulse device specific driver timers */
3322 		timer_delete_sync(&phba->fcp_poll_timer);
3323 		break;
3324 	case LPFC_PCI_DEV_OC:
3325 		/* Stop any OneConnect device specific driver timers */
3326 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3327 		break;
3328 	default:
3329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3330 				"0297 Invalid device group (x%x)\n",
3331 				phba->pci_dev_grp);
3332 		break;
3333 	}
3334 	return;
3335 }
3336 
3337 /**
3338  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3339  * @phba: pointer to lpfc hba data structure.
3340  * @mbx_action: flag for mailbox no wait action.
3341  *
3342  * This routine marks a HBA's management interface as blocked. Once the HBA's
3343  * management interface is marked as blocked, all the user space access to
3344  * the HBA, whether they are from sysfs interface or libdfc interface will
3345  * all be blocked. The HBA is set to block the management interface when the
3346  * driver prepares the HBA interface for online or offline.
3347  **/
3348 static void
3349 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3350 {
3351 	unsigned long iflag;
3352 	uint8_t actcmd = MBX_HEARTBEAT;
3353 	unsigned long timeout;
3354 
3355 	spin_lock_irqsave(&phba->hbalock, iflag);
3356 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3357 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3358 	if (mbx_action == LPFC_MBX_NO_WAIT)
3359 		return;
3360 	timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies;
3361 	spin_lock_irqsave(&phba->hbalock, iflag);
3362 	if (phba->sli.mbox_active) {
3363 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3364 		/* Determine how long we might wait for the active mailbox
3365 		 * command to be gracefully completed by firmware.
3366 		 */
3367 		timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba,
3368 				phba->sli.mbox_active)) + jiffies;
3369 	}
3370 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3371 
3372 	/* Wait for the outstnading mailbox command to complete */
3373 	while (phba->sli.mbox_active) {
3374 		/* Check active mailbox complete status every 2ms */
3375 		msleep(2);
3376 		if (time_after(jiffies, timeout)) {
3377 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3378 					"2813 Mgmt IO is Blocked %x "
3379 					"- mbox cmd %x still active\n",
3380 					phba->sli.sli_flag, actcmd);
3381 			break;
3382 		}
3383 	}
3384 }
3385 
3386 /**
3387  * lpfc_sli4_node_rpi_restore - Recover assigned RPIs for active nodes.
3388  * @phba: pointer to lpfc hba data structure.
3389  *
3390  * Allocate RPIs for all active remote nodes. This is needed whenever
3391  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3392  * is to fixup the temporary rpi assignments.
3393  **/
3394 void
3395 lpfc_sli4_node_rpi_restore(struct lpfc_hba *phba)
3396 {
3397 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3398 	struct lpfc_vport **vports;
3399 	int i, rpi;
3400 
3401 	if (phba->sli_rev != LPFC_SLI_REV4)
3402 		return;
3403 
3404 	vports = lpfc_create_vport_work_array(phba);
3405 	if (!vports)
3406 		return;
3407 
3408 	for (i = 0; i <= phba->max_vports && vports[i]; i++) {
3409 		if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3410 			continue;
3411 
3412 		list_for_each_entry_safe(ndlp, next_ndlp,
3413 					 &vports[i]->fc_nodes,
3414 					 nlp_listp) {
3415 			rpi = lpfc_sli4_alloc_rpi(phba);
3416 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3417 				lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3418 						 LOG_NODE | LOG_DISCOVERY,
3419 						 "0099 RPI alloc error for "
3420 						 "ndlp x%px DID:x%06x "
3421 						 "flg:x%lx\n",
3422 						 ndlp, ndlp->nlp_DID,
3423 						 ndlp->nlp_flag);
3424 				continue;
3425 			}
3426 			ndlp->nlp_rpi = rpi;
3427 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3428 					 LOG_NODE | LOG_DISCOVERY,
3429 					 "0009 Assign RPI x%x to ndlp x%px "
3430 					 "DID:x%06x flg:x%lx\n",
3431 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3432 					 ndlp->nlp_flag);
3433 		}
3434 	}
3435 	lpfc_destroy_vport_work_array(phba, vports);
3436 }
3437 
3438 /**
3439  * lpfc_create_expedite_pool - create expedite pool
3440  * @phba: pointer to lpfc hba data structure.
3441  *
3442  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3443  * to expedite pool. Mark them as expedite.
3444  **/
3445 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3446 {
3447 	struct lpfc_sli4_hdw_queue *qp;
3448 	struct lpfc_io_buf *lpfc_ncmd;
3449 	struct lpfc_io_buf *lpfc_ncmd_next;
3450 	struct lpfc_epd_pool *epd_pool;
3451 	unsigned long iflag;
3452 
3453 	epd_pool = &phba->epd_pool;
3454 	qp = &phba->sli4_hba.hdwq[0];
3455 
3456 	spin_lock_init(&epd_pool->lock);
3457 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3458 	spin_lock(&epd_pool->lock);
3459 	INIT_LIST_HEAD(&epd_pool->list);
3460 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3461 				 &qp->lpfc_io_buf_list_put, list) {
3462 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3463 		lpfc_ncmd->expedite = true;
3464 		qp->put_io_bufs--;
3465 		epd_pool->count++;
3466 		if (epd_pool->count >= XRI_BATCH)
3467 			break;
3468 	}
3469 	spin_unlock(&epd_pool->lock);
3470 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3471 }
3472 
3473 /**
3474  * lpfc_destroy_expedite_pool - destroy expedite pool
3475  * @phba: pointer to lpfc hba data structure.
3476  *
3477  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3478  * of HWQ 0. Clear the mark.
3479  **/
3480 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3481 {
3482 	struct lpfc_sli4_hdw_queue *qp;
3483 	struct lpfc_io_buf *lpfc_ncmd;
3484 	struct lpfc_io_buf *lpfc_ncmd_next;
3485 	struct lpfc_epd_pool *epd_pool;
3486 	unsigned long iflag;
3487 
3488 	epd_pool = &phba->epd_pool;
3489 	qp = &phba->sli4_hba.hdwq[0];
3490 
3491 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3492 	spin_lock(&epd_pool->lock);
3493 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3494 				 &epd_pool->list, list) {
3495 		list_move_tail(&lpfc_ncmd->list,
3496 			       &qp->lpfc_io_buf_list_put);
3497 		lpfc_ncmd->flags = false;
3498 		qp->put_io_bufs++;
3499 		epd_pool->count--;
3500 	}
3501 	spin_unlock(&epd_pool->lock);
3502 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3503 }
3504 
3505 /**
3506  * lpfc_create_multixri_pools - create multi-XRI pools
3507  * @phba: pointer to lpfc hba data structure.
3508  *
3509  * This routine initialize public, private per HWQ. Then, move XRIs from
3510  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3511  * Initialized.
3512  **/
3513 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3514 {
3515 	u32 i, j;
3516 	u32 hwq_count;
3517 	u32 count_per_hwq;
3518 	struct lpfc_io_buf *lpfc_ncmd;
3519 	struct lpfc_io_buf *lpfc_ncmd_next;
3520 	unsigned long iflag;
3521 	struct lpfc_sli4_hdw_queue *qp;
3522 	struct lpfc_multixri_pool *multixri_pool;
3523 	struct lpfc_pbl_pool *pbl_pool;
3524 	struct lpfc_pvt_pool *pvt_pool;
3525 
3526 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3527 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3528 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3529 			phba->sli4_hba.io_xri_cnt);
3530 
3531 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3532 		lpfc_create_expedite_pool(phba);
3533 
3534 	hwq_count = phba->cfg_hdw_queue;
3535 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3536 
3537 	for (i = 0; i < hwq_count; i++) {
3538 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3539 
3540 		if (!multixri_pool) {
3541 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3542 					"1238 Failed to allocate memory for "
3543 					"multixri_pool\n");
3544 
3545 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3546 				lpfc_destroy_expedite_pool(phba);
3547 
3548 			j = 0;
3549 			while (j < i) {
3550 				qp = &phba->sli4_hba.hdwq[j];
3551 				kfree(qp->p_multixri_pool);
3552 				j++;
3553 			}
3554 			phba->cfg_xri_rebalancing = 0;
3555 			return;
3556 		}
3557 
3558 		qp = &phba->sli4_hba.hdwq[i];
3559 		qp->p_multixri_pool = multixri_pool;
3560 
3561 		multixri_pool->xri_limit = count_per_hwq;
3562 		multixri_pool->rrb_next_hwqid = i;
3563 
3564 		/* Deal with public free xri pool */
3565 		pbl_pool = &multixri_pool->pbl_pool;
3566 		spin_lock_init(&pbl_pool->lock);
3567 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3568 		spin_lock(&pbl_pool->lock);
3569 		INIT_LIST_HEAD(&pbl_pool->list);
3570 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3571 					 &qp->lpfc_io_buf_list_put, list) {
3572 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3573 			qp->put_io_bufs--;
3574 			pbl_pool->count++;
3575 		}
3576 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3577 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3578 				pbl_pool->count, i);
3579 		spin_unlock(&pbl_pool->lock);
3580 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3581 
3582 		/* Deal with private free xri pool */
3583 		pvt_pool = &multixri_pool->pvt_pool;
3584 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3585 		pvt_pool->low_watermark = XRI_BATCH;
3586 		spin_lock_init(&pvt_pool->lock);
3587 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3588 		INIT_LIST_HEAD(&pvt_pool->list);
3589 		pvt_pool->count = 0;
3590 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3591 	}
3592 }
3593 
3594 /**
3595  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3596  * @phba: pointer to lpfc hba data structure.
3597  *
3598  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3599  **/
3600 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3601 {
3602 	u32 i;
3603 	u32 hwq_count;
3604 	struct lpfc_io_buf *lpfc_ncmd;
3605 	struct lpfc_io_buf *lpfc_ncmd_next;
3606 	unsigned long iflag;
3607 	struct lpfc_sli4_hdw_queue *qp;
3608 	struct lpfc_multixri_pool *multixri_pool;
3609 	struct lpfc_pbl_pool *pbl_pool;
3610 	struct lpfc_pvt_pool *pvt_pool;
3611 
3612 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3613 		lpfc_destroy_expedite_pool(phba);
3614 
3615 	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
3616 		lpfc_sli_flush_io_rings(phba);
3617 
3618 	hwq_count = phba->cfg_hdw_queue;
3619 
3620 	for (i = 0; i < hwq_count; i++) {
3621 		qp = &phba->sli4_hba.hdwq[i];
3622 		multixri_pool = qp->p_multixri_pool;
3623 		if (!multixri_pool)
3624 			continue;
3625 
3626 		qp->p_multixri_pool = NULL;
3627 
3628 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3629 
3630 		/* Deal with public free xri pool */
3631 		pbl_pool = &multixri_pool->pbl_pool;
3632 		spin_lock(&pbl_pool->lock);
3633 
3634 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3635 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3636 				pbl_pool->count, i);
3637 
3638 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3639 					 &pbl_pool->list, list) {
3640 			list_move_tail(&lpfc_ncmd->list,
3641 				       &qp->lpfc_io_buf_list_put);
3642 			qp->put_io_bufs++;
3643 			pbl_pool->count--;
3644 		}
3645 
3646 		INIT_LIST_HEAD(&pbl_pool->list);
3647 		pbl_pool->count = 0;
3648 
3649 		spin_unlock(&pbl_pool->lock);
3650 
3651 		/* Deal with private free xri pool */
3652 		pvt_pool = &multixri_pool->pvt_pool;
3653 		spin_lock(&pvt_pool->lock);
3654 
3655 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3656 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3657 				pvt_pool->count, i);
3658 
3659 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3660 					 &pvt_pool->list, list) {
3661 			list_move_tail(&lpfc_ncmd->list,
3662 				       &qp->lpfc_io_buf_list_put);
3663 			qp->put_io_bufs++;
3664 			pvt_pool->count--;
3665 		}
3666 
3667 		INIT_LIST_HEAD(&pvt_pool->list);
3668 		pvt_pool->count = 0;
3669 
3670 		spin_unlock(&pvt_pool->lock);
3671 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3672 
3673 		kfree(multixri_pool);
3674 	}
3675 }
3676 
3677 /**
3678  * lpfc_online - Initialize and bring a HBA online
3679  * @phba: pointer to lpfc hba data structure.
3680  *
3681  * This routine initializes the HBA and brings a HBA online. During this
3682  * process, the management interface is blocked to prevent user space access
3683  * to the HBA interfering with the driver initialization.
3684  *
3685  * Return codes
3686  *   0 - successful
3687  *   1 - failed
3688  **/
3689 int
3690 lpfc_online(struct lpfc_hba *phba)
3691 {
3692 	struct lpfc_vport *vport;
3693 	struct lpfc_vport **vports;
3694 	int i, error = 0;
3695 	bool vpis_cleared = false;
3696 
3697 	if (!phba)
3698 		return 0;
3699 	vport = phba->pport;
3700 
3701 	if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3702 		return 0;
3703 
3704 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3705 			"0458 Bring Adapter online\n");
3706 
3707 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3708 
3709 	if (phba->sli_rev == LPFC_SLI_REV4) {
3710 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3711 			lpfc_unblock_mgmt_io(phba);
3712 			return 1;
3713 		}
3714 		spin_lock_irq(&phba->hbalock);
3715 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3716 			vpis_cleared = true;
3717 		spin_unlock_irq(&phba->hbalock);
3718 
3719 		/* Reestablish the local initiator port.
3720 		 * The offline process destroyed the previous lport.
3721 		 */
3722 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3723 				!phba->nvmet_support) {
3724 			error = lpfc_nvme_create_localport(phba->pport);
3725 			if (error)
3726 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3727 					"6132 NVME restore reg failed "
3728 					"on nvmei error x%x\n", error);
3729 		}
3730 	} else {
3731 		lpfc_sli_queue_init(phba);
3732 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3733 			lpfc_unblock_mgmt_io(phba);
3734 			return 1;
3735 		}
3736 	}
3737 
3738 	vports = lpfc_create_vport_work_array(phba);
3739 	if (vports != NULL) {
3740 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3741 			clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3742 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3743 				set_bit(FC_VPORT_NEEDS_REG_VPI,
3744 					&vports[i]->fc_flag);
3745 			if (phba->sli_rev == LPFC_SLI_REV4) {
3746 				set_bit(FC_VPORT_NEEDS_INIT_VPI,
3747 					&vports[i]->fc_flag);
3748 				if ((vpis_cleared) &&
3749 				    (vports[i]->port_type !=
3750 					LPFC_PHYSICAL_PORT))
3751 					vports[i]->vpi = 0;
3752 			}
3753 		}
3754 	}
3755 	lpfc_destroy_vport_work_array(phba, vports);
3756 
3757 	if (phba->cfg_xri_rebalancing)
3758 		lpfc_create_multixri_pools(phba);
3759 
3760 	lpfc_cpuhp_add(phba);
3761 
3762 	lpfc_unblock_mgmt_io(phba);
3763 	return 0;
3764 }
3765 
3766 /**
3767  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3768  * @phba: pointer to lpfc hba data structure.
3769  *
3770  * This routine marks a HBA's management interface as not blocked. Once the
3771  * HBA's management interface is marked as not blocked, all the user space
3772  * access to the HBA, whether they are from sysfs interface or libdfc
3773  * interface will be allowed. The HBA is set to block the management interface
3774  * when the driver prepares the HBA interface for online or offline and then
3775  * set to unblock the management interface afterwards.
3776  **/
3777 void
3778 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3779 {
3780 	unsigned long iflag;
3781 
3782 	spin_lock_irqsave(&phba->hbalock, iflag);
3783 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3784 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3785 }
3786 
3787 /**
3788  * lpfc_offline_prep - Prepare a HBA to be brought offline
3789  * @phba: pointer to lpfc hba data structure.
3790  * @mbx_action: flag for mailbox shutdown action.
3791  *
3792  * This routine is invoked to prepare a HBA to be brought offline. It performs
3793  * unregistration login to all the nodes on all vports and flushes the mailbox
3794  * queue to make it ready to be brought offline.
3795  **/
3796 void
3797 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3798 {
3799 	struct lpfc_vport *vport = phba->pport;
3800 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3801 	struct lpfc_vport **vports;
3802 	struct Scsi_Host *shost;
3803 	int i;
3804 	int offline;
3805 	bool hba_pci_err;
3806 
3807 	if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3808 		return;
3809 
3810 	lpfc_block_mgmt_io(phba, mbx_action);
3811 
3812 	lpfc_linkdown(phba);
3813 
3814 	offline =  pci_channel_offline(phba->pcidev);
3815 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3816 
3817 	/* Issue an unreg_login to all nodes on all vports */
3818 	vports = lpfc_create_vport_work_array(phba);
3819 	if (vports != NULL) {
3820 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3821 			if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3822 				continue;
3823 			shost = lpfc_shost_from_vport(vports[i]);
3824 			spin_lock_irq(shost->host_lock);
3825 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3826 			spin_unlock_irq(shost->host_lock);
3827 			set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag);
3828 			clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag);
3829 
3830 			list_for_each_entry_safe(ndlp, next_ndlp,
3831 						 &vports[i]->fc_nodes,
3832 						 nlp_listp) {
3833 
3834 				clear_bit(NLP_NPR_ADISC, &ndlp->nlp_flag);
3835 				if (offline || hba_pci_err) {
3836 					clear_bit(NLP_UNREG_INP,
3837 						  &ndlp->nlp_flag);
3838 					clear_bit(NLP_RPI_REGISTERED,
3839 						  &ndlp->nlp_flag);
3840 				}
3841 
3842 				if (ndlp->nlp_type & NLP_FABRIC) {
3843 					lpfc_disc_state_machine(vports[i], ndlp,
3844 						NULL, NLP_EVT_DEVICE_RECOVERY);
3845 
3846 					/* Don't remove the node unless the node
3847 					 * has been unregistered with the
3848 					 * transport, and we're not in recovery
3849 					 * before dev_loss_tmo triggered.
3850 					 * Otherwise, let dev_loss take care of
3851 					 * the node.
3852 					 */
3853 					if (!test_bit(NLP_IN_RECOV_POST_DEV_LOSS,
3854 						      &ndlp->save_flags) &&
3855 					    !(ndlp->fc4_xpt_flags &
3856 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3857 						lpfc_disc_state_machine
3858 							(vports[i], ndlp,
3859 							 NULL,
3860 							 NLP_EVT_DEVICE_RM);
3861 				}
3862 			}
3863 		}
3864 	}
3865 	lpfc_destroy_vport_work_array(phba, vports);
3866 
3867 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3868 
3869 	if (phba->wq)
3870 		flush_workqueue(phba->wq);
3871 }
3872 
3873 /**
3874  * lpfc_offline - Bring a HBA offline
3875  * @phba: pointer to lpfc hba data structure.
3876  *
3877  * This routine actually brings a HBA offline. It stops all the timers
3878  * associated with the HBA, brings down the SLI layer, and eventually
3879  * marks the HBA as in offline state for the upper layer protocol.
3880  **/
3881 void
3882 lpfc_offline(struct lpfc_hba *phba)
3883 {
3884 	struct Scsi_Host  *shost;
3885 	struct lpfc_vport **vports;
3886 	int i;
3887 
3888 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3889 		return;
3890 
3891 	/* stop port and all timers associated with this hba */
3892 	lpfc_stop_port(phba);
3893 
3894 	/* Tear down the local and target port registrations.  The
3895 	 * nvme transports need to cleanup.
3896 	 */
3897 	lpfc_nvmet_destroy_targetport(phba);
3898 	lpfc_nvme_destroy_localport(phba->pport);
3899 
3900 	vports = lpfc_create_vport_work_array(phba);
3901 	if (vports != NULL)
3902 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3903 			lpfc_stop_vport_timers(vports[i]);
3904 	lpfc_destroy_vport_work_array(phba, vports);
3905 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3906 			"0460 Bring Adapter offline\n");
3907 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3908 	   now.  */
3909 	lpfc_sli_hba_down(phba);
3910 	spin_lock_irq(&phba->hbalock);
3911 	phba->work_ha = 0;
3912 	spin_unlock_irq(&phba->hbalock);
3913 	vports = lpfc_create_vport_work_array(phba);
3914 	if (vports != NULL)
3915 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3916 			shost = lpfc_shost_from_vport(vports[i]);
3917 			spin_lock_irq(shost->host_lock);
3918 			vports[i]->work_port_events = 0;
3919 			spin_unlock_irq(shost->host_lock);
3920 			set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3921 		}
3922 	lpfc_destroy_vport_work_array(phba, vports);
3923 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3924 	 * in hba_unset
3925 	 */
3926 	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3927 		__lpfc_cpuhp_remove(phba);
3928 
3929 	if (phba->cfg_xri_rebalancing)
3930 		lpfc_destroy_multixri_pools(phba);
3931 }
3932 
3933 /**
3934  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3935  * @phba: pointer to lpfc hba data structure.
3936  *
3937  * This routine is to free all the SCSI buffers and IOCBs from the driver
3938  * list back to kernel. It is called from lpfc_pci_remove_one to free
3939  * the internal resources before the device is removed from the system.
3940  **/
3941 static void
3942 lpfc_scsi_free(struct lpfc_hba *phba)
3943 {
3944 	struct lpfc_io_buf *sb, *sb_next;
3945 
3946 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3947 		return;
3948 
3949 	spin_lock_irq(&phba->hbalock);
3950 
3951 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3952 
3953 	spin_lock(&phba->scsi_buf_list_put_lock);
3954 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3955 				 list) {
3956 		list_del(&sb->list);
3957 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3958 			      sb->dma_handle);
3959 		kfree(sb);
3960 		phba->total_scsi_bufs--;
3961 	}
3962 	spin_unlock(&phba->scsi_buf_list_put_lock);
3963 
3964 	spin_lock(&phba->scsi_buf_list_get_lock);
3965 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3966 				 list) {
3967 		list_del(&sb->list);
3968 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3969 			      sb->dma_handle);
3970 		kfree(sb);
3971 		phba->total_scsi_bufs--;
3972 	}
3973 	spin_unlock(&phba->scsi_buf_list_get_lock);
3974 	spin_unlock_irq(&phba->hbalock);
3975 }
3976 
3977 /**
3978  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3979  * @phba: pointer to lpfc hba data structure.
3980  *
3981  * This routine is to free all the IO buffers and IOCBs from the driver
3982  * list back to kernel. It is called from lpfc_pci_remove_one to free
3983  * the internal resources before the device is removed from the system.
3984  **/
3985 void
3986 lpfc_io_free(struct lpfc_hba *phba)
3987 {
3988 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3989 	struct lpfc_sli4_hdw_queue *qp;
3990 	int idx;
3991 
3992 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3993 		qp = &phba->sli4_hba.hdwq[idx];
3994 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3995 		spin_lock(&qp->io_buf_list_put_lock);
3996 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3997 					 &qp->lpfc_io_buf_list_put,
3998 					 list) {
3999 			list_del(&lpfc_ncmd->list);
4000 			qp->put_io_bufs--;
4001 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4002 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4003 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4004 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4005 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4006 			kfree(lpfc_ncmd);
4007 			qp->total_io_bufs--;
4008 		}
4009 		spin_unlock(&qp->io_buf_list_put_lock);
4010 
4011 		spin_lock(&qp->io_buf_list_get_lock);
4012 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4013 					 &qp->lpfc_io_buf_list_get,
4014 					 list) {
4015 			list_del(&lpfc_ncmd->list);
4016 			qp->get_io_bufs--;
4017 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4018 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4019 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4020 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4021 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4022 			kfree(lpfc_ncmd);
4023 			qp->total_io_bufs--;
4024 		}
4025 		spin_unlock(&qp->io_buf_list_get_lock);
4026 	}
4027 }
4028 
4029 /**
4030  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4031  * @phba: pointer to lpfc hba data structure.
4032  *
4033  * This routine first calculates the sizes of the current els and allocated
4034  * scsi sgl lists, and then goes through all sgls to updates the physical
4035  * XRIs assigned due to port function reset. During port initialization, the
4036  * current els and allocated scsi sgl lists are 0s.
4037  *
4038  * Return codes
4039  *   0 - successful (for now, it always returns 0)
4040  **/
4041 int
4042 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4043 {
4044 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4045 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4046 	LIST_HEAD(els_sgl_list);
4047 	int rc;
4048 
4049 	/*
4050 	 * update on pci function's els xri-sgl list
4051 	 */
4052 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4053 
4054 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4055 		/* els xri-sgl expanded */
4056 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4057 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4058 				"3157 ELS xri-sgl count increased from "
4059 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4060 				els_xri_cnt);
4061 		/* allocate the additional els sgls */
4062 		for (i = 0; i < xri_cnt; i++) {
4063 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4064 					     GFP_KERNEL);
4065 			if (sglq_entry == NULL) {
4066 				lpfc_printf_log(phba, KERN_ERR,
4067 						LOG_TRACE_EVENT,
4068 						"2562 Failure to allocate an "
4069 						"ELS sgl entry:%d\n", i);
4070 				rc = -ENOMEM;
4071 				goto out_free_mem;
4072 			}
4073 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4074 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4075 							   &sglq_entry->phys);
4076 			if (sglq_entry->virt == NULL) {
4077 				kfree(sglq_entry);
4078 				lpfc_printf_log(phba, KERN_ERR,
4079 						LOG_TRACE_EVENT,
4080 						"2563 Failure to allocate an "
4081 						"ELS mbuf:%d\n", i);
4082 				rc = -ENOMEM;
4083 				goto out_free_mem;
4084 			}
4085 			sglq_entry->sgl = sglq_entry->virt;
4086 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4087 			sglq_entry->state = SGL_FREED;
4088 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4089 		}
4090 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4091 		list_splice_init(&els_sgl_list,
4092 				 &phba->sli4_hba.lpfc_els_sgl_list);
4093 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4094 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4095 		/* els xri-sgl shrinked */
4096 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4097 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4098 				"3158 ELS xri-sgl count decreased from "
4099 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4100 				els_xri_cnt);
4101 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4102 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4103 				 &els_sgl_list);
4104 		/* release extra els sgls from list */
4105 		for (i = 0; i < xri_cnt; i++) {
4106 			list_remove_head(&els_sgl_list,
4107 					 sglq_entry, struct lpfc_sglq, list);
4108 			if (sglq_entry) {
4109 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4110 						 sglq_entry->phys);
4111 				kfree(sglq_entry);
4112 			}
4113 		}
4114 		list_splice_init(&els_sgl_list,
4115 				 &phba->sli4_hba.lpfc_els_sgl_list);
4116 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4117 	} else
4118 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4119 				"3163 ELS xri-sgl count unchanged: %d\n",
4120 				els_xri_cnt);
4121 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4122 
4123 	/* update xris to els sgls on the list */
4124 	sglq_entry = NULL;
4125 	sglq_entry_next = NULL;
4126 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4127 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4128 		lxri = lpfc_sli4_next_xritag(phba);
4129 		if (lxri == NO_XRI) {
4130 			lpfc_printf_log(phba, KERN_ERR,
4131 					LOG_TRACE_EVENT,
4132 					"2400 Failed to allocate xri for "
4133 					"ELS sgl\n");
4134 			rc = -ENOMEM;
4135 			goto out_free_mem;
4136 		}
4137 		sglq_entry->sli4_lxritag = lxri;
4138 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4139 	}
4140 	return 0;
4141 
4142 out_free_mem:
4143 	lpfc_free_els_sgl_list(phba);
4144 	return rc;
4145 }
4146 
4147 /**
4148  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4149  * @phba: pointer to lpfc hba data structure.
4150  *
4151  * This routine first calculates the sizes of the current els and allocated
4152  * scsi sgl lists, and then goes through all sgls to updates the physical
4153  * XRIs assigned due to port function reset. During port initialization, the
4154  * current els and allocated scsi sgl lists are 0s.
4155  *
4156  * Return codes
4157  *   0 - successful (for now, it always returns 0)
4158  **/
4159 int
4160 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4161 {
4162 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4163 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4164 	uint16_t nvmet_xri_cnt;
4165 	LIST_HEAD(nvmet_sgl_list);
4166 	int rc;
4167 
4168 	/*
4169 	 * update on pci function's nvmet xri-sgl list
4170 	 */
4171 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4172 
4173 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4174 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4175 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4176 		/* els xri-sgl expanded */
4177 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4178 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4179 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4180 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4181 		/* allocate the additional nvmet sgls */
4182 		for (i = 0; i < xri_cnt; i++) {
4183 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4184 					     GFP_KERNEL);
4185 			if (sglq_entry == NULL) {
4186 				lpfc_printf_log(phba, KERN_ERR,
4187 						LOG_TRACE_EVENT,
4188 						"6303 Failure to allocate an "
4189 						"NVMET sgl entry:%d\n", i);
4190 				rc = -ENOMEM;
4191 				goto out_free_mem;
4192 			}
4193 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4194 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4195 							   &sglq_entry->phys);
4196 			if (sglq_entry->virt == NULL) {
4197 				kfree(sglq_entry);
4198 				lpfc_printf_log(phba, KERN_ERR,
4199 						LOG_TRACE_EVENT,
4200 						"6304 Failure to allocate an "
4201 						"NVMET buf:%d\n", i);
4202 				rc = -ENOMEM;
4203 				goto out_free_mem;
4204 			}
4205 			sglq_entry->sgl = sglq_entry->virt;
4206 			memset(sglq_entry->sgl, 0,
4207 			       phba->cfg_sg_dma_buf_size);
4208 			sglq_entry->state = SGL_FREED;
4209 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4210 		}
4211 		spin_lock_irq(&phba->hbalock);
4212 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4213 		list_splice_init(&nvmet_sgl_list,
4214 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4215 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4216 		spin_unlock_irq(&phba->hbalock);
4217 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4218 		/* nvmet xri-sgl shrunk */
4219 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4220 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4221 				"6305 NVMET xri-sgl count decreased from "
4222 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4223 				nvmet_xri_cnt);
4224 		spin_lock_irq(&phba->hbalock);
4225 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4226 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4227 				 &nvmet_sgl_list);
4228 		/* release extra nvmet sgls from list */
4229 		for (i = 0; i < xri_cnt; i++) {
4230 			list_remove_head(&nvmet_sgl_list,
4231 					 sglq_entry, struct lpfc_sglq, list);
4232 			if (sglq_entry) {
4233 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4234 						    sglq_entry->phys);
4235 				kfree(sglq_entry);
4236 			}
4237 		}
4238 		list_splice_init(&nvmet_sgl_list,
4239 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4240 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4241 		spin_unlock_irq(&phba->hbalock);
4242 	} else
4243 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4244 				"6306 NVMET xri-sgl count unchanged: %d\n",
4245 				nvmet_xri_cnt);
4246 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4247 
4248 	/* update xris to nvmet sgls on the list */
4249 	sglq_entry = NULL;
4250 	sglq_entry_next = NULL;
4251 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4252 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4253 		lxri = lpfc_sli4_next_xritag(phba);
4254 		if (lxri == NO_XRI) {
4255 			lpfc_printf_log(phba, KERN_ERR,
4256 					LOG_TRACE_EVENT,
4257 					"6307 Failed to allocate xri for "
4258 					"NVMET sgl\n");
4259 			rc = -ENOMEM;
4260 			goto out_free_mem;
4261 		}
4262 		sglq_entry->sli4_lxritag = lxri;
4263 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4264 	}
4265 	return 0;
4266 
4267 out_free_mem:
4268 	lpfc_free_nvmet_sgl_list(phba);
4269 	return rc;
4270 }
4271 
4272 int
4273 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4274 {
4275 	LIST_HEAD(blist);
4276 	struct lpfc_sli4_hdw_queue *qp;
4277 	struct lpfc_io_buf *lpfc_cmd;
4278 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4279 	int idx, cnt, xri, inserted;
4280 
4281 	cnt = 0;
4282 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4283 		qp = &phba->sli4_hba.hdwq[idx];
4284 		spin_lock_irq(&qp->io_buf_list_get_lock);
4285 		spin_lock(&qp->io_buf_list_put_lock);
4286 
4287 		/* Take everything off the get and put lists */
4288 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4289 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4290 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4291 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4292 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4293 		qp->get_io_bufs = 0;
4294 		qp->put_io_bufs = 0;
4295 		qp->total_io_bufs = 0;
4296 		spin_unlock(&qp->io_buf_list_put_lock);
4297 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4298 	}
4299 
4300 	/*
4301 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4302 	 * This is because POST_SGL takes a sequential range of XRIs
4303 	 * to post to the firmware.
4304 	 */
4305 	for (idx = 0; idx < cnt; idx++) {
4306 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4307 		if (!lpfc_cmd)
4308 			return cnt;
4309 		if (idx == 0) {
4310 			list_add_tail(&lpfc_cmd->list, cbuf);
4311 			continue;
4312 		}
4313 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4314 		inserted = 0;
4315 		prev_iobufp = NULL;
4316 		list_for_each_entry(iobufp, cbuf, list) {
4317 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4318 				if (prev_iobufp)
4319 					list_add(&lpfc_cmd->list,
4320 						 &prev_iobufp->list);
4321 				else
4322 					list_add(&lpfc_cmd->list, cbuf);
4323 				inserted = 1;
4324 				break;
4325 			}
4326 			prev_iobufp = iobufp;
4327 		}
4328 		if (!inserted)
4329 			list_add_tail(&lpfc_cmd->list, cbuf);
4330 	}
4331 	return cnt;
4332 }
4333 
4334 int
4335 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4336 {
4337 	struct lpfc_sli4_hdw_queue *qp;
4338 	struct lpfc_io_buf *lpfc_cmd;
4339 	int idx, cnt;
4340 	unsigned long iflags;
4341 
4342 	qp = phba->sli4_hba.hdwq;
4343 	cnt = 0;
4344 	while (!list_empty(cbuf)) {
4345 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4346 			list_remove_head(cbuf, lpfc_cmd,
4347 					 struct lpfc_io_buf, list);
4348 			if (!lpfc_cmd)
4349 				return cnt;
4350 			cnt++;
4351 			qp = &phba->sli4_hba.hdwq[idx];
4352 			lpfc_cmd->hdwq_no = idx;
4353 			lpfc_cmd->hdwq = qp;
4354 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4355 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4356 			list_add_tail(&lpfc_cmd->list,
4357 				      &qp->lpfc_io_buf_list_put);
4358 			qp->put_io_bufs++;
4359 			qp->total_io_bufs++;
4360 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4361 					       iflags);
4362 		}
4363 	}
4364 	return cnt;
4365 }
4366 
4367 /**
4368  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4369  * @phba: pointer to lpfc hba data structure.
4370  *
4371  * This routine first calculates the sizes of the current els and allocated
4372  * scsi sgl lists, and then goes through all sgls to updates the physical
4373  * XRIs assigned due to port function reset. During port initialization, the
4374  * current els and allocated scsi sgl lists are 0s.
4375  *
4376  * Return codes
4377  *   0 - successful (for now, it always returns 0)
4378  **/
4379 int
4380 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4381 {
4382 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4383 	uint16_t i, lxri, els_xri_cnt;
4384 	uint16_t io_xri_cnt, io_xri_max;
4385 	LIST_HEAD(io_sgl_list);
4386 	int rc, cnt;
4387 
4388 	/*
4389 	 * update on pci function's allocated nvme xri-sgl list
4390 	 */
4391 
4392 	/* maximum number of xris available for nvme buffers */
4393 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4394 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4395 	phba->sli4_hba.io_xri_max = io_xri_max;
4396 
4397 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4398 			"6074 Current allocated XRI sgl count:%d, "
4399 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4400 			phba->sli4_hba.io_xri_cnt,
4401 			phba->sli4_hba.io_xri_max,
4402 			els_xri_cnt);
4403 
4404 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4405 
4406 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4407 		/* max nvme xri shrunk below the allocated nvme buffers */
4408 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4409 					phba->sli4_hba.io_xri_max;
4410 		/* release the extra allocated nvme buffers */
4411 		for (i = 0; i < io_xri_cnt; i++) {
4412 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4413 					 struct lpfc_io_buf, list);
4414 			if (lpfc_ncmd) {
4415 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4416 					      lpfc_ncmd->data,
4417 					      lpfc_ncmd->dma_handle);
4418 				kfree(lpfc_ncmd);
4419 			}
4420 		}
4421 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4422 	}
4423 
4424 	/* update xris associated to remaining allocated nvme buffers */
4425 	lpfc_ncmd = NULL;
4426 	lpfc_ncmd_next = NULL;
4427 	phba->sli4_hba.io_xri_cnt = cnt;
4428 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4429 				 &io_sgl_list, list) {
4430 		lxri = lpfc_sli4_next_xritag(phba);
4431 		if (lxri == NO_XRI) {
4432 			lpfc_printf_log(phba, KERN_ERR,
4433 					LOG_TRACE_EVENT,
4434 					"6075 Failed to allocate xri for "
4435 					"nvme buffer\n");
4436 			rc = -ENOMEM;
4437 			goto out_free_mem;
4438 		}
4439 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4440 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4441 	}
4442 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4443 	return 0;
4444 
4445 out_free_mem:
4446 	lpfc_io_free(phba);
4447 	return rc;
4448 }
4449 
4450 /**
4451  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4452  * @phba: Pointer to lpfc hba data structure.
4453  * @num_to_alloc: The requested number of buffers to allocate.
4454  *
4455  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4456  * the nvme buffer contains all the necessary information needed to initiate
4457  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4458  * them on a list, it post them to the port by using SGL block post.
4459  *
4460  * Return codes:
4461  *   int - number of IO buffers that were allocated and posted.
4462  *   0 = failure, less than num_to_alloc is a partial failure.
4463  **/
4464 int
4465 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4466 {
4467 	struct lpfc_io_buf *lpfc_ncmd;
4468 	struct lpfc_iocbq *pwqeq;
4469 	uint16_t iotag, lxri = 0;
4470 	int bcnt, num_posted;
4471 	LIST_HEAD(prep_nblist);
4472 	LIST_HEAD(post_nblist);
4473 	LIST_HEAD(nvme_nblist);
4474 
4475 	phba->sli4_hba.io_xri_cnt = 0;
4476 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4477 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4478 		if (!lpfc_ncmd)
4479 			break;
4480 		/*
4481 		 * Get memory from the pci pool to map the virt space to
4482 		 * pci bus space for an I/O. The DMA buffer includes the
4483 		 * number of SGE's necessary to support the sg_tablesize.
4484 		 */
4485 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4486 						  GFP_KERNEL,
4487 						  &lpfc_ncmd->dma_handle);
4488 		if (!lpfc_ncmd->data) {
4489 			kfree(lpfc_ncmd);
4490 			break;
4491 		}
4492 
4493 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4494 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4495 		} else {
4496 			/*
4497 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4498 			 * check to be sure.
4499 			 */
4500 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4501 			    (((unsigned long)(lpfc_ncmd->data) &
4502 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4503 				lpfc_printf_log(phba, KERN_ERR,
4504 						LOG_TRACE_EVENT,
4505 						"3369 Memory alignment err: "
4506 						"addr=%lx\n",
4507 						(unsigned long)lpfc_ncmd->data);
4508 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4509 					      lpfc_ncmd->data,
4510 					      lpfc_ncmd->dma_handle);
4511 				kfree(lpfc_ncmd);
4512 				break;
4513 			}
4514 		}
4515 
4516 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4517 
4518 		lxri = lpfc_sli4_next_xritag(phba);
4519 		if (lxri == NO_XRI) {
4520 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4521 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4522 			kfree(lpfc_ncmd);
4523 			break;
4524 		}
4525 		pwqeq = &lpfc_ncmd->cur_iocbq;
4526 
4527 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4528 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4529 		if (iotag == 0) {
4530 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4531 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4532 			kfree(lpfc_ncmd);
4533 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4534 					"6121 Failed to allocate IOTAG for"
4535 					" XRI:0x%x\n", lxri);
4536 			lpfc_sli4_free_xri(phba, lxri);
4537 			break;
4538 		}
4539 		pwqeq->sli4_lxritag = lxri;
4540 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4541 
4542 		/* Initialize local short-hand pointers. */
4543 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4544 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4545 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4546 		spin_lock_init(&lpfc_ncmd->buf_lock);
4547 
4548 		/* add the nvme buffer to a post list */
4549 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4550 		phba->sli4_hba.io_xri_cnt++;
4551 	}
4552 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4553 			"6114 Allocate %d out of %d requested new NVME "
4554 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4555 			sizeof(*lpfc_ncmd));
4556 
4557 
4558 	/* post the list of nvme buffer sgls to port if available */
4559 	if (!list_empty(&post_nblist))
4560 		num_posted = lpfc_sli4_post_io_sgl_list(
4561 				phba, &post_nblist, bcnt);
4562 	else
4563 		num_posted = 0;
4564 
4565 	return num_posted;
4566 }
4567 
4568 static uint64_t
4569 lpfc_get_wwpn(struct lpfc_hba *phba)
4570 {
4571 	uint64_t wwn;
4572 	int rc;
4573 	LPFC_MBOXQ_t *mboxq;
4574 	MAILBOX_t *mb;
4575 
4576 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4577 						GFP_KERNEL);
4578 	if (!mboxq)
4579 		return (uint64_t)-1;
4580 
4581 	/* First get WWN of HBA instance */
4582 	lpfc_read_nv(phba, mboxq);
4583 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4584 	if (rc != MBX_SUCCESS) {
4585 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4586 				"6019 Mailbox failed , mbxCmd x%x "
4587 				"READ_NV, mbxStatus x%x\n",
4588 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4589 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4590 		mempool_free(mboxq, phba->mbox_mem_pool);
4591 		return (uint64_t) -1;
4592 	}
4593 	mb = &mboxq->u.mb;
4594 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4595 	/* wwn is WWPN of HBA instance */
4596 	mempool_free(mboxq, phba->mbox_mem_pool);
4597 	if (phba->sli_rev == LPFC_SLI_REV4)
4598 		return be64_to_cpu(wwn);
4599 	else
4600 		return rol64(wwn, 32);
4601 }
4602 
4603 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4604 {
4605 	if (phba->sli_rev == LPFC_SLI_REV4)
4606 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4607 			return LPFC_MAX_SG_TABLESIZE;
4608 		else
4609 			return phba->cfg_scsi_seg_cnt;
4610 	else
4611 		return phba->cfg_sg_seg_cnt;
4612 }
4613 
4614 /**
4615  * lpfc_vmid_res_alloc - Allocates resources for VMID
4616  * @phba: pointer to lpfc hba data structure.
4617  * @vport: pointer to vport data structure
4618  *
4619  * This routine allocated the resources needed for the VMID.
4620  *
4621  * Return codes
4622  *	0 on Success
4623  *	Non-0 on Failure
4624  */
4625 static int
4626 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4627 {
4628 	/* VMID feature is supported only on SLI4 */
4629 	if (phba->sli_rev == LPFC_SLI_REV3) {
4630 		phba->cfg_vmid_app_header = 0;
4631 		phba->cfg_vmid_priority_tagging = 0;
4632 	}
4633 
4634 	if (lpfc_is_vmid_enabled(phba)) {
4635 		vport->vmid =
4636 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4637 			    GFP_KERNEL);
4638 		if (!vport->vmid)
4639 			return -ENOMEM;
4640 
4641 		rwlock_init(&vport->vmid_lock);
4642 
4643 		/* Set the VMID parameters for the vport */
4644 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4645 		vport->vmid_inactivity_timeout =
4646 		    phba->cfg_vmid_inactivity_timeout;
4647 		vport->max_vmid = phba->cfg_max_vmid;
4648 		vport->cur_vmid_cnt = 0;
4649 
4650 		vport->vmid_priority_range = bitmap_zalloc
4651 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4652 
4653 		if (!vport->vmid_priority_range) {
4654 			kfree(vport->vmid);
4655 			return -ENOMEM;
4656 		}
4657 
4658 		hash_init(vport->hash_table);
4659 	}
4660 	return 0;
4661 }
4662 
4663 /**
4664  * lpfc_create_port - Create an FC port
4665  * @phba: pointer to lpfc hba data structure.
4666  * @instance: a unique integer ID to this FC port.
4667  * @dev: pointer to the device data structure.
4668  *
4669  * This routine creates a FC port for the upper layer protocol. The FC port
4670  * can be created on top of either a physical port or a virtual port provided
4671  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4672  * and associates the FC port created before adding the shost into the SCSI
4673  * layer.
4674  *
4675  * Return codes
4676  *   @vport - pointer to the virtual N_Port data structure.
4677  *   NULL - port create failed.
4678  **/
4679 struct lpfc_vport *
4680 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4681 {
4682 	struct lpfc_vport *vport;
4683 	struct Scsi_Host  *shost = NULL;
4684 	struct scsi_host_template *template;
4685 	int error = 0;
4686 	int i;
4687 	uint64_t wwn;
4688 	bool use_no_reset_hba = false;
4689 	int rc;
4690 	u8 if_type;
4691 
4692 	if (lpfc_no_hba_reset_cnt) {
4693 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4694 		    dev == &phba->pcidev->dev) {
4695 			/* Reset the port first */
4696 			lpfc_sli_brdrestart(phba);
4697 			rc = lpfc_sli_chipset_init(phba);
4698 			if (rc)
4699 				return NULL;
4700 		}
4701 		wwn = lpfc_get_wwpn(phba);
4702 	}
4703 
4704 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4705 		if (wwn == lpfc_no_hba_reset[i]) {
4706 			lpfc_printf_log(phba, KERN_ERR,
4707 					LOG_TRACE_EVENT,
4708 					"6020 Setting use_no_reset port=%llx\n",
4709 					wwn);
4710 			use_no_reset_hba = true;
4711 			break;
4712 		}
4713 	}
4714 
4715 	/* Seed template for SCSI host registration */
4716 	if (dev == &phba->pcidev->dev) {
4717 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4718 			/* Seed physical port template */
4719 			template = &lpfc_template;
4720 
4721 			if (use_no_reset_hba)
4722 				/* template is for a no reset SCSI Host */
4723 				template->eh_host_reset_handler = NULL;
4724 
4725 			/* Seed updated value of sg_tablesize */
4726 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4727 		} else {
4728 			/* NVMET is for physical port only */
4729 			template = &lpfc_template_nvme;
4730 		}
4731 	} else {
4732 		/* Seed vport template */
4733 		template = &lpfc_vport_template;
4734 
4735 		/* Seed updated value of sg_tablesize */
4736 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4737 	}
4738 
4739 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4740 	if (!shost)
4741 		goto out;
4742 
4743 	vport = (struct lpfc_vport *) shost->hostdata;
4744 	vport->phba = phba;
4745 	set_bit(FC_LOADING, &vport->load_flag);
4746 	set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
4747 	vport->fc_rscn_flush = 0;
4748 	atomic_set(&vport->fc_plogi_cnt, 0);
4749 	atomic_set(&vport->fc_adisc_cnt, 0);
4750 	atomic_set(&vport->fc_reglogin_cnt, 0);
4751 	atomic_set(&vport->fc_prli_cnt, 0);
4752 	atomic_set(&vport->fc_unmap_cnt, 0);
4753 	atomic_set(&vport->fc_map_cnt, 0);
4754 	atomic_set(&vport->fc_npr_cnt, 0);
4755 	atomic_set(&vport->fc_unused_cnt, 0);
4756 	lpfc_get_vport_cfgparam(vport);
4757 
4758 	/* Adjust value in vport */
4759 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4760 
4761 	shost->unique_id = instance;
4762 	shost->max_id = LPFC_MAX_TARGET;
4763 	shost->max_lun = vport->cfg_max_luns;
4764 	shost->this_id = -1;
4765 
4766 	/* Set max_cmd_len applicable to ASIC support */
4767 	if (phba->sli_rev == LPFC_SLI_REV4) {
4768 		if_type = bf_get(lpfc_sli_intf_if_type,
4769 				 &phba->sli4_hba.sli_intf);
4770 		switch (if_type) {
4771 		case LPFC_SLI_INTF_IF_TYPE_2:
4772 			fallthrough;
4773 		case LPFC_SLI_INTF_IF_TYPE_6:
4774 			shost->max_cmd_len = LPFC_FCP_CDB_LEN_32;
4775 			break;
4776 		default:
4777 			shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4778 			break;
4779 		}
4780 	} else {
4781 		shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4782 	}
4783 
4784 	if (phba->sli_rev == LPFC_SLI_REV4) {
4785 		if (!phba->cfg_fcp_mq_threshold ||
4786 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4787 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4788 
4789 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4790 					    phba->cfg_fcp_mq_threshold);
4791 
4792 		shost->dma_boundary =
4793 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4794 	} else
4795 		/* SLI-3 has a limited number of hardware queues (3),
4796 		 * thus there is only one for FCP processing.
4797 		 */
4798 		shost->nr_hw_queues = 1;
4799 
4800 	/*
4801 	 * Set initial can_queue value since 0 is no longer supported and
4802 	 * scsi_add_host will fail. This will be adjusted later based on the
4803 	 * max xri value determined in hba setup.
4804 	 */
4805 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4806 	if (dev != &phba->pcidev->dev) {
4807 		shost->transportt = lpfc_vport_transport_template;
4808 		vport->port_type = LPFC_NPIV_PORT;
4809 	} else {
4810 		shost->transportt = lpfc_transport_template;
4811 		vport->port_type = LPFC_PHYSICAL_PORT;
4812 	}
4813 
4814 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4815 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4816 			"SEGcnt %d/%d\n",
4817 			vport->port_type, shost->sg_tablesize,
4818 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4819 
4820 	/* Allocate the resources for VMID */
4821 	rc = lpfc_vmid_res_alloc(phba, vport);
4822 
4823 	if (rc)
4824 		goto out_put_shost;
4825 
4826 	/* Initialize all internally managed lists. */
4827 	INIT_LIST_HEAD(&vport->fc_nodes);
4828 	spin_lock_init(&vport->fc_nodes_list_lock);
4829 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4830 	spin_lock_init(&vport->work_port_lock);
4831 
4832 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4833 
4834 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4835 
4836 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4837 
4838 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4839 		lpfc_setup_bg(phba, shost);
4840 
4841 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4842 	if (error)
4843 		goto out_free_vmid;
4844 
4845 	spin_lock_irq(&phba->port_list_lock);
4846 	list_add_tail(&vport->listentry, &phba->port_list);
4847 	spin_unlock_irq(&phba->port_list_lock);
4848 	return vport;
4849 
4850 out_free_vmid:
4851 	kfree(vport->vmid);
4852 	bitmap_free(vport->vmid_priority_range);
4853 out_put_shost:
4854 	scsi_host_put(shost);
4855 out:
4856 	return NULL;
4857 }
4858 
4859 /**
4860  * destroy_port -  destroy an FC port
4861  * @vport: pointer to an lpfc virtual N_Port data structure.
4862  *
4863  * This routine destroys a FC port from the upper layer protocol. All the
4864  * resources associated with the port are released.
4865  **/
4866 void
4867 destroy_port(struct lpfc_vport *vport)
4868 {
4869 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4870 	struct lpfc_hba  *phba = vport->phba;
4871 
4872 	lpfc_debugfs_terminate(vport);
4873 	fc_remove_host(shost);
4874 	scsi_remove_host(shost);
4875 
4876 	spin_lock_irq(&phba->port_list_lock);
4877 	list_del_init(&vport->listentry);
4878 	spin_unlock_irq(&phba->port_list_lock);
4879 
4880 	lpfc_cleanup(vport);
4881 	return;
4882 }
4883 
4884 /**
4885  * lpfc_get_instance - Get a unique integer ID
4886  *
4887  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4888  * uses the kernel idr facility to perform the task.
4889  *
4890  * Return codes:
4891  *   instance - a unique integer ID allocated as the new instance.
4892  *   -1 - lpfc get instance failed.
4893  **/
4894 int
4895 lpfc_get_instance(void)
4896 {
4897 	int ret;
4898 
4899 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4900 	return ret < 0 ? -1 : ret;
4901 }
4902 
4903 /**
4904  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4905  * @shost: pointer to SCSI host data structure.
4906  * @time: elapsed time of the scan in jiffies.
4907  *
4908  * This routine is called by the SCSI layer with a SCSI host to determine
4909  * whether the scan host is finished.
4910  *
4911  * Note: there is no scan_start function as adapter initialization will have
4912  * asynchronously kicked off the link initialization.
4913  *
4914  * Return codes
4915  *   0 - SCSI host scan is not over yet.
4916  *   1 - SCSI host scan is over.
4917  **/
4918 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4919 {
4920 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4921 	struct lpfc_hba   *phba = vport->phba;
4922 	int stat = 0;
4923 
4924 	spin_lock_irq(shost->host_lock);
4925 
4926 	if (test_bit(FC_UNLOADING, &vport->load_flag)) {
4927 		stat = 1;
4928 		goto finished;
4929 	}
4930 	if (time >= secs_to_jiffies(30)) {
4931 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4932 				"0461 Scanning longer than 30 "
4933 				"seconds.  Continuing initialization\n");
4934 		stat = 1;
4935 		goto finished;
4936 	}
4937 	if (time >= secs_to_jiffies(15) &&
4938 	    phba->link_state <= LPFC_LINK_DOWN) {
4939 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4940 				"0465 Link down longer than 15 "
4941 				"seconds.  Continuing initialization\n");
4942 		stat = 1;
4943 		goto finished;
4944 	}
4945 
4946 	if (vport->port_state != LPFC_VPORT_READY)
4947 		goto finished;
4948 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4949 		goto finished;
4950 	if (!atomic_read(&vport->fc_map_cnt) &&
4951 	    time < secs_to_jiffies(2))
4952 		goto finished;
4953 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4954 		goto finished;
4955 
4956 	stat = 1;
4957 
4958 finished:
4959 	spin_unlock_irq(shost->host_lock);
4960 	return stat;
4961 }
4962 
4963 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4964 {
4965 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4966 	struct lpfc_hba   *phba = vport->phba;
4967 
4968 	fc_host_supported_speeds(shost) = 0;
4969 	/*
4970 	 * Avoid reporting supported link speed for FCoE as it can't be
4971 	 * controlled via FCoE.
4972 	 */
4973 	if (test_bit(HBA_FCOE_MODE, &phba->hba_flag))
4974 		return;
4975 
4976 	if (phba->lmt & LMT_256Gb)
4977 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4978 	if (phba->lmt & LMT_128Gb)
4979 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4980 	if (phba->lmt & LMT_64Gb)
4981 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4982 	if (phba->lmt & LMT_32Gb)
4983 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4984 	if (phba->lmt & LMT_16Gb)
4985 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4986 	if (phba->lmt & LMT_10Gb)
4987 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4988 	if (phba->lmt & LMT_8Gb)
4989 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4990 	if (phba->lmt & LMT_4Gb)
4991 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4992 	if (phba->lmt & LMT_2Gb)
4993 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4994 	if (phba->lmt & LMT_1Gb)
4995 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4996 }
4997 
4998 /**
4999  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
5000  * @shost: pointer to SCSI host data structure.
5001  *
5002  * This routine initializes a given SCSI host attributes on a FC port. The
5003  * SCSI host can be either on top of a physical port or a virtual port.
5004  **/
5005 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5006 {
5007 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5008 	struct lpfc_hba   *phba = vport->phba;
5009 	/*
5010 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5011 	 */
5012 
5013 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5014 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5015 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5016 
5017 	memset(fc_host_supported_fc4s(shost), 0,
5018 	       sizeof(fc_host_supported_fc4s(shost)));
5019 	fc_host_supported_fc4s(shost)[2] = 1;
5020 	fc_host_supported_fc4s(shost)[7] = 1;
5021 
5022 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5023 				 sizeof fc_host_symbolic_name(shost));
5024 
5025 	lpfc_host_supported_speeds_set(shost);
5026 
5027 	fc_host_maxframe_size(shost) =
5028 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5029 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5030 
5031 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5032 
5033 	/* This value is also unchanging */
5034 	memset(fc_host_active_fc4s(shost), 0,
5035 	       sizeof(fc_host_active_fc4s(shost)));
5036 	fc_host_active_fc4s(shost)[2] = 1;
5037 	fc_host_active_fc4s(shost)[7] = 1;
5038 
5039 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5040 	clear_bit(FC_LOADING, &vport->load_flag);
5041 }
5042 
5043 /**
5044  * lpfc_stop_port_s3 - Stop SLI3 device port
5045  * @phba: pointer to lpfc hba data structure.
5046  *
5047  * This routine is invoked to stop an SLI3 device port, it stops the device
5048  * from generating interrupts and stops the device driver's timers for the
5049  * device.
5050  **/
5051 static void
5052 lpfc_stop_port_s3(struct lpfc_hba *phba)
5053 {
5054 	/* Clear all interrupt enable conditions */
5055 	writel(0, phba->HCregaddr);
5056 	readl(phba->HCregaddr); /* flush */
5057 	/* Clear all pending interrupts */
5058 	writel(0xffffffff, phba->HAregaddr);
5059 	readl(phba->HAregaddr); /* flush */
5060 
5061 	/* Reset some HBA SLI setup states */
5062 	lpfc_stop_hba_timers(phba);
5063 	phba->pport->work_port_events = 0;
5064 }
5065 
5066 /**
5067  * lpfc_stop_port_s4 - Stop SLI4 device port
5068  * @phba: pointer to lpfc hba data structure.
5069  *
5070  * This routine is invoked to stop an SLI4 device port, it stops the device
5071  * from generating interrupts and stops the device driver's timers for the
5072  * device.
5073  **/
5074 static void
5075 lpfc_stop_port_s4(struct lpfc_hba *phba)
5076 {
5077 	/* Reset some HBA SLI4 setup states */
5078 	lpfc_stop_hba_timers(phba);
5079 	if (phba->pport)
5080 		phba->pport->work_port_events = 0;
5081 	phba->sli4_hba.intr_enable = 0;
5082 }
5083 
5084 /**
5085  * lpfc_stop_port - Wrapper function for stopping hba port
5086  * @phba: Pointer to HBA context object.
5087  *
5088  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5089  * the API jump table function pointer from the lpfc_hba struct.
5090  **/
5091 void
5092 lpfc_stop_port(struct lpfc_hba *phba)
5093 {
5094 	phba->lpfc_stop_port(phba);
5095 
5096 	if (phba->wq)
5097 		flush_workqueue(phba->wq);
5098 }
5099 
5100 /**
5101  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5102  * @phba: Pointer to hba for which this call is being executed.
5103  *
5104  * This routine starts the timer waiting for the FCF rediscovery to complete.
5105  **/
5106 void
5107 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5108 {
5109 	unsigned long fcf_redisc_wait_tmo =
5110 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5111 	/* Start fcf rediscovery wait period timer */
5112 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5113 	spin_lock_irq(&phba->hbalock);
5114 	/* Allow action to new fcf asynchronous event */
5115 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5116 	/* Mark the FCF rediscovery pending state */
5117 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5118 	spin_unlock_irq(&phba->hbalock);
5119 }
5120 
5121 /**
5122  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5123  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5124  *
5125  * This routine is invoked when waiting for FCF table rediscover has been
5126  * timed out. If new FCF record(s) has (have) been discovered during the
5127  * wait period, a new FCF event shall be added to the FCOE async event
5128  * list, and then worker thread shall be waked up for processing from the
5129  * worker thread context.
5130  **/
5131 static void
5132 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5133 {
5134 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5135 
5136 	/* Don't send FCF rediscovery event if timer cancelled */
5137 	spin_lock_irq(&phba->hbalock);
5138 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5139 		spin_unlock_irq(&phba->hbalock);
5140 		return;
5141 	}
5142 	/* Clear FCF rediscovery timer pending flag */
5143 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5144 	/* FCF rediscovery event to worker thread */
5145 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5146 	spin_unlock_irq(&phba->hbalock);
5147 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5148 			"2776 FCF rediscover quiescent timer expired\n");
5149 	/* wake up worker thread */
5150 	lpfc_worker_wake_up(phba);
5151 }
5152 
5153 /**
5154  * lpfc_vmid_poll - VMID timeout detection
5155  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5156  *
5157  * This routine is invoked when there is no I/O on by a VM for the specified
5158  * amount of time. When this situation is detected, the VMID has to be
5159  * deregistered from the switch and all the local resources freed. The VMID
5160  * will be reassigned to the VM once the I/O begins.
5161  **/
5162 static void
5163 lpfc_vmid_poll(struct timer_list *t)
5164 {
5165 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5166 	u32 wake_up = 0;
5167 
5168 	/* check if there is a need to issue QFPA */
5169 	if (phba->pport->vmid_priority_tagging) {
5170 		wake_up = 1;
5171 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5172 	}
5173 
5174 	/* Is the vmid inactivity timer enabled */
5175 	if (phba->pport->vmid_inactivity_timeout ||
5176 	    test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) {
5177 		wake_up = 1;
5178 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5179 	}
5180 
5181 	if (wake_up)
5182 		lpfc_worker_wake_up(phba);
5183 
5184 	/* restart the timer for the next iteration */
5185 	mod_timer(&phba->inactive_vmid_poll,
5186 		  jiffies + secs_to_jiffies(LPFC_VMID_TIMER));
5187 }
5188 
5189 /**
5190  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5191  * @phba: pointer to lpfc hba data structure.
5192  * @acqe_link: pointer to the async link completion queue entry.
5193  *
5194  * This routine is to parse the SLI4 link-attention link fault code.
5195  **/
5196 static void
5197 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5198 			   struct lpfc_acqe_link *acqe_link)
5199 {
5200 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5201 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5202 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5203 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5204 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5205 		break;
5206 	default:
5207 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5208 		case LPFC_ASYNC_LINK_FAULT_NONE:
5209 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5210 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5211 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5212 			break;
5213 		default:
5214 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5215 					"0398 Unknown link fault code: x%x\n",
5216 					bf_get(lpfc_acqe_link_fault, acqe_link));
5217 			break;
5218 		}
5219 		break;
5220 	}
5221 }
5222 
5223 /**
5224  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5225  * @phba: pointer to lpfc hba data structure.
5226  * @acqe_link: pointer to the async link completion queue entry.
5227  *
5228  * This routine is to parse the SLI4 link attention type and translate it
5229  * into the base driver's link attention type coding.
5230  *
5231  * Return: Link attention type in terms of base driver's coding.
5232  **/
5233 static uint8_t
5234 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5235 			  struct lpfc_acqe_link *acqe_link)
5236 {
5237 	uint8_t att_type;
5238 
5239 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5240 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5241 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5242 		att_type = LPFC_ATT_LINK_DOWN;
5243 		break;
5244 	case LPFC_ASYNC_LINK_STATUS_UP:
5245 		/* Ignore physical link up events - wait for logical link up */
5246 		att_type = LPFC_ATT_RESERVED;
5247 		break;
5248 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5249 		att_type = LPFC_ATT_LINK_UP;
5250 		break;
5251 	default:
5252 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5253 				"0399 Invalid link attention type: x%x\n",
5254 				bf_get(lpfc_acqe_link_status, acqe_link));
5255 		att_type = LPFC_ATT_RESERVED;
5256 		break;
5257 	}
5258 	return att_type;
5259 }
5260 
5261 /**
5262  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5263  * @phba: pointer to lpfc hba data structure.
5264  *
5265  * This routine is to get an SLI3 FC port's link speed in Mbps.
5266  *
5267  * Return: link speed in terms of Mbps.
5268  **/
5269 uint32_t
5270 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5271 {
5272 	uint32_t link_speed;
5273 
5274 	if (!lpfc_is_link_up(phba))
5275 		return 0;
5276 
5277 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5278 		switch (phba->fc_linkspeed) {
5279 		case LPFC_LINK_SPEED_1GHZ:
5280 			link_speed = 1000;
5281 			break;
5282 		case LPFC_LINK_SPEED_2GHZ:
5283 			link_speed = 2000;
5284 			break;
5285 		case LPFC_LINK_SPEED_4GHZ:
5286 			link_speed = 4000;
5287 			break;
5288 		case LPFC_LINK_SPEED_8GHZ:
5289 			link_speed = 8000;
5290 			break;
5291 		case LPFC_LINK_SPEED_10GHZ:
5292 			link_speed = 10000;
5293 			break;
5294 		case LPFC_LINK_SPEED_16GHZ:
5295 			link_speed = 16000;
5296 			break;
5297 		default:
5298 			link_speed = 0;
5299 		}
5300 	} else {
5301 		if (phba->sli4_hba.link_state.logical_speed)
5302 			link_speed =
5303 			      phba->sli4_hba.link_state.logical_speed;
5304 		else
5305 			link_speed = phba->sli4_hba.link_state.speed;
5306 	}
5307 	return link_speed;
5308 }
5309 
5310 /**
5311  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5312  * @phba: pointer to lpfc hba data structure.
5313  * @evt_code: asynchronous event code.
5314  * @speed_code: asynchronous event link speed code.
5315  *
5316  * This routine is to parse the giving SLI4 async event link speed code into
5317  * value of Mbps for the link speed.
5318  *
5319  * Return: link speed in terms of Mbps.
5320  **/
5321 static uint32_t
5322 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5323 			   uint8_t speed_code)
5324 {
5325 	uint32_t port_speed;
5326 
5327 	switch (evt_code) {
5328 	case LPFC_TRAILER_CODE_LINK:
5329 		switch (speed_code) {
5330 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5331 			port_speed = 0;
5332 			break;
5333 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5334 			port_speed = 10;
5335 			break;
5336 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5337 			port_speed = 100;
5338 			break;
5339 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5340 			port_speed = 1000;
5341 			break;
5342 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5343 			port_speed = 10000;
5344 			break;
5345 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5346 			port_speed = 20000;
5347 			break;
5348 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5349 			port_speed = 25000;
5350 			break;
5351 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5352 			port_speed = 40000;
5353 			break;
5354 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5355 			port_speed = 100000;
5356 			break;
5357 		default:
5358 			port_speed = 0;
5359 		}
5360 		break;
5361 	case LPFC_TRAILER_CODE_FC:
5362 		switch (speed_code) {
5363 		case LPFC_FC_LA_SPEED_UNKNOWN:
5364 			port_speed = 0;
5365 			break;
5366 		case LPFC_FC_LA_SPEED_1G:
5367 			port_speed = 1000;
5368 			break;
5369 		case LPFC_FC_LA_SPEED_2G:
5370 			port_speed = 2000;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_4G:
5373 			port_speed = 4000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_8G:
5376 			port_speed = 8000;
5377 			break;
5378 		case LPFC_FC_LA_SPEED_10G:
5379 			port_speed = 10000;
5380 			break;
5381 		case LPFC_FC_LA_SPEED_16G:
5382 			port_speed = 16000;
5383 			break;
5384 		case LPFC_FC_LA_SPEED_32G:
5385 			port_speed = 32000;
5386 			break;
5387 		case LPFC_FC_LA_SPEED_64G:
5388 			port_speed = 64000;
5389 			break;
5390 		case LPFC_FC_LA_SPEED_128G:
5391 			port_speed = 128000;
5392 			break;
5393 		case LPFC_FC_LA_SPEED_256G:
5394 			port_speed = 256000;
5395 			break;
5396 		default:
5397 			port_speed = 0;
5398 		}
5399 		break;
5400 	default:
5401 		port_speed = 0;
5402 	}
5403 	return port_speed;
5404 }
5405 
5406 /**
5407  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5408  * @phba: pointer to lpfc hba data structure.
5409  * @acqe_link: pointer to the async link completion queue entry.
5410  *
5411  * This routine is to handle the SLI4 asynchronous FCoE link event.
5412  **/
5413 static void
5414 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5415 			 struct lpfc_acqe_link *acqe_link)
5416 {
5417 	LPFC_MBOXQ_t *pmb;
5418 	MAILBOX_t *mb;
5419 	struct lpfc_mbx_read_top *la;
5420 	uint8_t att_type;
5421 	int rc;
5422 
5423 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5424 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5425 		return;
5426 	phba->fcoe_eventtag = acqe_link->event_tag;
5427 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5428 	if (!pmb) {
5429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5430 				"0395 The mboxq allocation failed\n");
5431 		return;
5432 	}
5433 
5434 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5435 	if (rc) {
5436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5437 				"0396 mailbox allocation failed\n");
5438 		goto out_free_pmb;
5439 	}
5440 
5441 	/* Cleanup any outstanding ELS commands */
5442 	lpfc_els_flush_all_cmd(phba);
5443 
5444 	/* Block ELS IOCBs until we have done process link event */
5445 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5446 
5447 	/* Update link event statistics */
5448 	phba->sli.slistat.link_event++;
5449 
5450 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5451 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
5452 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5453 	pmb->vport = phba->pport;
5454 
5455 	/* Keep the link status for extra SLI4 state machine reference */
5456 	phba->sli4_hba.link_state.speed =
5457 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5458 				bf_get(lpfc_acqe_link_speed, acqe_link));
5459 	phba->sli4_hba.link_state.duplex =
5460 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5461 	phba->sli4_hba.link_state.status =
5462 				bf_get(lpfc_acqe_link_status, acqe_link);
5463 	phba->sli4_hba.link_state.type =
5464 				bf_get(lpfc_acqe_link_type, acqe_link);
5465 	phba->sli4_hba.link_state.number =
5466 				bf_get(lpfc_acqe_link_number, acqe_link);
5467 	phba->sli4_hba.link_state.fault =
5468 				bf_get(lpfc_acqe_link_fault, acqe_link);
5469 	phba->sli4_hba.link_state.logical_speed =
5470 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5471 
5472 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5473 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5474 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5475 			"Logical speed:%dMbps Fault:%d\n",
5476 			phba->sli4_hba.link_state.speed,
5477 			phba->sli4_hba.link_state.topology,
5478 			phba->sli4_hba.link_state.status,
5479 			phba->sli4_hba.link_state.type,
5480 			phba->sli4_hba.link_state.number,
5481 			phba->sli4_hba.link_state.logical_speed,
5482 			phba->sli4_hba.link_state.fault);
5483 	/*
5484 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5485 	 * topology info. Note: Optional for non FC-AL ports.
5486 	 */
5487 	if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
5488 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5489 		if (rc == MBX_NOT_FINISHED)
5490 			goto out_free_pmb;
5491 		return;
5492 	}
5493 	/*
5494 	 * For FCoE Mode: fill in all the topology information we need and call
5495 	 * the READ_TOPOLOGY completion routine to continue without actually
5496 	 * sending the READ_TOPOLOGY mailbox command to the port.
5497 	 */
5498 	/* Initialize completion status */
5499 	mb = &pmb->u.mb;
5500 	mb->mbxStatus = MBX_SUCCESS;
5501 
5502 	/* Parse port fault information field */
5503 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5504 
5505 	/* Parse and translate link attention fields */
5506 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5507 	la->eventTag = acqe_link->event_tag;
5508 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5509 	bf_set(lpfc_mbx_read_top_link_spd, la,
5510 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5511 
5512 	/* Fake the following irrelevant fields */
5513 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5514 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5515 	bf_set(lpfc_mbx_read_top_il, la, 0);
5516 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5517 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5518 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5519 
5520 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5521 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5522 
5523 	return;
5524 
5525 out_free_pmb:
5526 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5527 }
5528 
5529 /**
5530  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5531  * topology.
5532  * @phba: pointer to lpfc hba data structure.
5533  * @speed_code: asynchronous event link speed code.
5534  *
5535  * This routine is to parse the giving SLI4 async event link speed code into
5536  * value of Read topology link speed.
5537  *
5538  * Return: link speed in terms of Read topology.
5539  **/
5540 static uint8_t
5541 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5542 {
5543 	uint8_t port_speed;
5544 
5545 	switch (speed_code) {
5546 	case LPFC_FC_LA_SPEED_1G:
5547 		port_speed = LPFC_LINK_SPEED_1GHZ;
5548 		break;
5549 	case LPFC_FC_LA_SPEED_2G:
5550 		port_speed = LPFC_LINK_SPEED_2GHZ;
5551 		break;
5552 	case LPFC_FC_LA_SPEED_4G:
5553 		port_speed = LPFC_LINK_SPEED_4GHZ;
5554 		break;
5555 	case LPFC_FC_LA_SPEED_8G:
5556 		port_speed = LPFC_LINK_SPEED_8GHZ;
5557 		break;
5558 	case LPFC_FC_LA_SPEED_16G:
5559 		port_speed = LPFC_LINK_SPEED_16GHZ;
5560 		break;
5561 	case LPFC_FC_LA_SPEED_32G:
5562 		port_speed = LPFC_LINK_SPEED_32GHZ;
5563 		break;
5564 	case LPFC_FC_LA_SPEED_64G:
5565 		port_speed = LPFC_LINK_SPEED_64GHZ;
5566 		break;
5567 	case LPFC_FC_LA_SPEED_128G:
5568 		port_speed = LPFC_LINK_SPEED_128GHZ;
5569 		break;
5570 	case LPFC_FC_LA_SPEED_256G:
5571 		port_speed = LPFC_LINK_SPEED_256GHZ;
5572 		break;
5573 	default:
5574 		port_speed = 0;
5575 		break;
5576 	}
5577 
5578 	return port_speed;
5579 }
5580 
5581 void
5582 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5583 {
5584 	if (!phba->rx_monitor) {
5585 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5586 				"4411 Rx Monitor Info is empty.\n");
5587 	} else {
5588 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5589 				       LPFC_MAX_RXMONITOR_DUMP);
5590 	}
5591 }
5592 
5593 /**
5594  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5595  * @phba: pointer to lpfc hba data structure.
5596  * @dtag: FPIN descriptor received
5597  *
5598  * Increment the FPIN received counter/time when it happens.
5599  */
5600 void
5601 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5602 {
5603 	struct lpfc_cgn_info *cp;
5604 	u32 value;
5605 
5606 	/* Make sure we have a congestion info buffer */
5607 	if (!phba->cgn_i)
5608 		return;
5609 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5610 
5611 	/* Update congestion statistics */
5612 	switch (dtag) {
5613 	case ELS_DTAG_LNK_INTEGRITY:
5614 		le32_add_cpu(&cp->link_integ_notification, 1);
5615 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5616 		break;
5617 	case ELS_DTAG_DELIVERY:
5618 		le32_add_cpu(&cp->delivery_notification, 1);
5619 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5620 		break;
5621 	case ELS_DTAG_PEER_CONGEST:
5622 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5623 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5624 		break;
5625 	case ELS_DTAG_CONGESTION:
5626 		le32_add_cpu(&cp->cgn_notification, 1);
5627 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5628 	}
5629 	if (phba->cgn_fpin_frequency &&
5630 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5631 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5632 		cp->cgn_stat_npm = value;
5633 	}
5634 
5635 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5636 				    LPFC_CGN_CRC32_SEED);
5637 	cp->cgn_info_crc = cpu_to_le32(value);
5638 }
5639 
5640 /**
5641  * lpfc_cgn_update_tstamp - Update cmf timestamp
5642  * @phba: pointer to lpfc hba data structure.
5643  * @ts: structure to write the timestamp to.
5644  */
5645 void
5646 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5647 {
5648 	struct timespec64 cur_time;
5649 	struct tm tm_val;
5650 
5651 	ktime_get_real_ts64(&cur_time);
5652 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5653 
5654 	ts->month = tm_val.tm_mon + 1;
5655 	ts->day	= tm_val.tm_mday;
5656 	ts->year = tm_val.tm_year - 100;
5657 	ts->hour = tm_val.tm_hour;
5658 	ts->minute = tm_val.tm_min;
5659 	ts->second = tm_val.tm_sec;
5660 
5661 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5662 			"2646 Updated CMF timestamp : "
5663 			"%u/%u/%u %u:%u:%u\n",
5664 			ts->day, ts->month,
5665 			ts->year, ts->hour,
5666 			ts->minute, ts->second);
5667 }
5668 
5669 /**
5670  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5671  * @timer: Timer cookie to access lpfc private data
5672  *
5673  * Save the congestion event data every minute.
5674  * On the hour collapse all the minute data into hour data. Every day
5675  * collapse all the hour data into daily data. Separate driver
5676  * and fabrc congestion event counters that will be saved out
5677  * to the registered congestion buffer every minute.
5678  */
5679 static enum hrtimer_restart
5680 lpfc_cmf_stats_timer(struct hrtimer *timer)
5681 {
5682 	struct lpfc_hba *phba;
5683 	struct lpfc_cgn_info *cp;
5684 	uint32_t i, index;
5685 	uint16_t value, mvalue;
5686 	uint64_t bps;
5687 	uint32_t mbps;
5688 	uint32_t dvalue, wvalue, lvalue, avalue;
5689 	uint64_t latsum;
5690 	__le16 *ptr;
5691 	__le32 *lptr;
5692 	__le16 *mptr;
5693 
5694 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5695 	/* Make sure we have a congestion info buffer */
5696 	if (!phba->cgn_i)
5697 		return HRTIMER_NORESTART;
5698 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5699 
5700 	phba->cgn_evt_timestamp = jiffies +
5701 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5702 	phba->cgn_evt_minute++;
5703 
5704 	/* We should get to this point in the routine on 1 minute intervals */
5705 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5706 
5707 	if (phba->cgn_fpin_frequency &&
5708 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5709 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5710 		cp->cgn_stat_npm = value;
5711 	}
5712 
5713 	/* Read and clear the latency counters for this minute */
5714 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5715 	latsum = atomic64_read(&phba->cgn_latency_evt);
5716 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5717 	atomic64_set(&phba->cgn_latency_evt, 0);
5718 
5719 	/* We need to store MB/sec bandwidth in the congestion information.
5720 	 * block_cnt is count of 512 byte blocks for the entire minute,
5721 	 * bps will get bytes per sec before finally converting to MB/sec.
5722 	 */
5723 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5724 	phba->rx_block_cnt = 0;
5725 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5726 
5727 	/* Every minute */
5728 	/* cgn parameters */
5729 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5730 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5731 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5732 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5733 
5734 	/* Fill in default LUN qdepth */
5735 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5736 	cp->cgn_lunq = cpu_to_le16(value);
5737 
5738 	/* Record congestion buffer info - every minute
5739 	 * cgn_driver_evt_cnt (Driver events)
5740 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5741 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5742 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5743 	 */
5744 	index = ++cp->cgn_index_minute;
5745 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5746 		cp->cgn_index_minute = 0;
5747 		index = 0;
5748 	}
5749 
5750 	/* Get the number of driver events in this sample and reset counter */
5751 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5752 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5753 
5754 	/* Get the number of warning events - FPIN and Signal for this minute */
5755 	wvalue = 0;
5756 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5757 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5758 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5759 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5760 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5761 
5762 	/* Get the number of alarm events - FPIN and Signal for this minute */
5763 	avalue = 0;
5764 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5765 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5766 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5767 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5768 
5769 	/* Collect the driver, warning, alarm and latency counts for this
5770 	 * minute into the driver congestion buffer.
5771 	 */
5772 	ptr = &cp->cgn_drvr_min[index];
5773 	value = (uint16_t)dvalue;
5774 	*ptr = cpu_to_le16(value);
5775 
5776 	ptr = &cp->cgn_warn_min[index];
5777 	value = (uint16_t)wvalue;
5778 	*ptr = cpu_to_le16(value);
5779 
5780 	ptr = &cp->cgn_alarm_min[index];
5781 	value = (uint16_t)avalue;
5782 	*ptr = cpu_to_le16(value);
5783 
5784 	lptr = &cp->cgn_latency_min[index];
5785 	if (lvalue) {
5786 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5787 		*lptr = cpu_to_le32(lvalue);
5788 	} else {
5789 		*lptr = 0;
5790 	}
5791 
5792 	/* Collect the bandwidth value into the driver's congesion buffer. */
5793 	mptr = &cp->cgn_bw_min[index];
5794 	*mptr = cpu_to_le16(mvalue);
5795 
5796 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5797 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5798 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5799 
5800 	/* Every hour */
5801 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5802 		/* Record congestion buffer info - every hour
5803 		 * Collapse all minutes into an hour
5804 		 */
5805 		index = ++cp->cgn_index_hour;
5806 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5807 			cp->cgn_index_hour = 0;
5808 			index = 0;
5809 		}
5810 
5811 		dvalue = 0;
5812 		wvalue = 0;
5813 		lvalue = 0;
5814 		avalue = 0;
5815 		mvalue = 0;
5816 		mbps = 0;
5817 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5818 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5819 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5820 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5821 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5822 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5823 		}
5824 		if (lvalue)		/* Avg of latency averages */
5825 			lvalue /= LPFC_MIN_HOUR;
5826 		if (mbps)		/* Avg of Bandwidth averages */
5827 			mvalue = mbps / LPFC_MIN_HOUR;
5828 
5829 		lptr = &cp->cgn_drvr_hr[index];
5830 		*lptr = cpu_to_le32(dvalue);
5831 		lptr = &cp->cgn_warn_hr[index];
5832 		*lptr = cpu_to_le32(wvalue);
5833 		lptr = &cp->cgn_latency_hr[index];
5834 		*lptr = cpu_to_le32(lvalue);
5835 		mptr = &cp->cgn_bw_hr[index];
5836 		*mptr = cpu_to_le16(mvalue);
5837 		lptr = &cp->cgn_alarm_hr[index];
5838 		*lptr = cpu_to_le32(avalue);
5839 
5840 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5841 				"2419 Congestion Info - hour "
5842 				"(%d): %d %d %d %d %d\n",
5843 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5844 	}
5845 
5846 	/* Every day */
5847 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5848 		/* Record congestion buffer info - every hour
5849 		 * Collapse all hours into a day. Rotate days
5850 		 * after LPFC_MAX_CGN_DAYS.
5851 		 */
5852 		index = ++cp->cgn_index_day;
5853 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5854 			cp->cgn_index_day = 0;
5855 			index = 0;
5856 		}
5857 
5858 		dvalue = 0;
5859 		wvalue = 0;
5860 		lvalue = 0;
5861 		mvalue = 0;
5862 		mbps = 0;
5863 		avalue = 0;
5864 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5865 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5866 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5867 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5868 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5869 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5870 		}
5871 		if (lvalue)		/* Avg of latency averages */
5872 			lvalue /= LPFC_HOUR_DAY;
5873 		if (mbps)		/* Avg of Bandwidth averages */
5874 			mvalue = mbps / LPFC_HOUR_DAY;
5875 
5876 		lptr = &cp->cgn_drvr_day[index];
5877 		*lptr = cpu_to_le32(dvalue);
5878 		lptr = &cp->cgn_warn_day[index];
5879 		*lptr = cpu_to_le32(wvalue);
5880 		lptr = &cp->cgn_latency_day[index];
5881 		*lptr = cpu_to_le32(lvalue);
5882 		mptr = &cp->cgn_bw_day[index];
5883 		*mptr = cpu_to_le16(mvalue);
5884 		lptr = &cp->cgn_alarm_day[index];
5885 		*lptr = cpu_to_le32(avalue);
5886 
5887 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5888 				"2420 Congestion Info - daily (%d): "
5889 				"%d %d %d %d %d\n",
5890 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5891 	}
5892 
5893 	/* Use the frequency found in the last rcv'ed FPIN */
5894 	value = phba->cgn_fpin_frequency;
5895 	cp->cgn_warn_freq = cpu_to_le16(value);
5896 	cp->cgn_alarm_freq = cpu_to_le16(value);
5897 
5898 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5899 				     LPFC_CGN_CRC32_SEED);
5900 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5901 
5902 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5903 
5904 	return HRTIMER_RESTART;
5905 }
5906 
5907 /**
5908  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5909  * @phba: The Hba for which this call is being executed.
5910  *
5911  * The routine calculates the latency from the beginning of the CMF timer
5912  * interval to the current point in time. It is called from IO completion
5913  * when we exceed our Bandwidth limitation for the time interval.
5914  */
5915 uint32_t
5916 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5917 {
5918 	struct timespec64 cmpl_time;
5919 	uint32_t msec = 0;
5920 
5921 	ktime_get_real_ts64(&cmpl_time);
5922 
5923 	/* This routine works on a ms granularity so sec and usec are
5924 	 * converted accordingly.
5925 	 */
5926 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5927 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5928 			NSEC_PER_MSEC;
5929 	} else {
5930 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5931 			msec = (cmpl_time.tv_sec -
5932 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5933 			msec += ((cmpl_time.tv_nsec -
5934 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5935 		} else {
5936 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5937 				1) * MSEC_PER_SEC;
5938 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5939 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5940 		}
5941 	}
5942 	return msec;
5943 }
5944 
5945 /**
5946  * lpfc_cmf_timer -  This is the timer function for one congestion
5947  * rate interval.
5948  * @timer: Pointer to the high resolution timer that expired
5949  */
5950 static enum hrtimer_restart
5951 lpfc_cmf_timer(struct hrtimer *timer)
5952 {
5953 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5954 					     cmf_timer);
5955 	struct rx_info_entry entry;
5956 	uint32_t io_cnt;
5957 	uint32_t busy, max_read;
5958 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5959 	int timer_interval = LPFC_CMF_INTERVAL;
5960 	uint32_t ms;
5961 	struct lpfc_cgn_stat *cgs;
5962 	int cpu;
5963 
5964 	/* Only restart the timer if congestion mgmt is on */
5965 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5966 	    !phba->cmf_latency.tv_sec) {
5967 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5968 				"6224 CMF timer exit: %d %lld\n",
5969 				phba->cmf_active_mode,
5970 				(uint64_t)phba->cmf_latency.tv_sec);
5971 		return HRTIMER_NORESTART;
5972 	}
5973 
5974 	/* If pport is not ready yet, just exit and wait for
5975 	 * the next timer cycle to hit.
5976 	 */
5977 	if (!phba->pport)
5978 		goto skip;
5979 
5980 	/* Do not block SCSI IO while in the timer routine since
5981 	 * total_bytes will be cleared
5982 	 */
5983 	atomic_set(&phba->cmf_stop_io, 1);
5984 
5985 	/* First we need to calculate the actual ms between
5986 	 * the last timer interrupt and this one. We ask for
5987 	 * LPFC_CMF_INTERVAL, however the actual time may
5988 	 * vary depending on system overhead.
5989 	 */
5990 	ms = lpfc_calc_cmf_latency(phba);
5991 
5992 
5993 	/* Immediately after we calculate the time since the last
5994 	 * timer interrupt, set the start time for the next
5995 	 * interrupt
5996 	 */
5997 	ktime_get_real_ts64(&phba->cmf_latency);
5998 
5999 	phba->cmf_link_byte_count =
6000 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6001 
6002 	/* Collect all the stats from the prior timer interval */
6003 	total = 0;
6004 	io_cnt = 0;
6005 	lat = 0;
6006 	rcv = 0;
6007 	for_each_present_cpu(cpu) {
6008 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6009 		total += atomic64_xchg(&cgs->total_bytes, 0);
6010 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6011 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6012 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6013 	}
6014 
6015 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6016 	 * returned from the last CMF_SYNC_WQE issued, from
6017 	 * cmf_last_sync_bw. This will be the target BW for
6018 	 * this next timer interval.
6019 	 */
6020 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6021 	    phba->link_state != LPFC_LINK_DOWN &&
6022 	    test_bit(HBA_SETUP, &phba->hba_flag)) {
6023 		mbpi = phba->cmf_last_sync_bw;
6024 		phba->cmf_last_sync_bw = 0;
6025 		extra = 0;
6026 
6027 		/* Calculate any extra bytes needed to account for the
6028 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6029 		 * calculate the adjustment needed for total to reflect
6030 		 * a full LPFC_CMF_INTERVAL.
6031 		 */
6032 		if (ms && ms < LPFC_CMF_INTERVAL) {
6033 			cnt = div_u64(total, ms); /* bytes per ms */
6034 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6035 			extra = cnt - total;
6036 		}
6037 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6038 	} else {
6039 		/* For Monitor mode or link down we want mbpi
6040 		 * to be the full link speed
6041 		 */
6042 		mbpi = phba->cmf_link_byte_count;
6043 		extra = 0;
6044 	}
6045 	phba->cmf_timer_cnt++;
6046 
6047 	if (io_cnt) {
6048 		/* Update congestion info buffer latency in us */
6049 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6050 		atomic64_add(lat, &phba->cgn_latency_evt);
6051 	}
6052 	busy = atomic_xchg(&phba->cmf_busy, 0);
6053 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6054 
6055 	/* Calculate MBPI for the next timer interval */
6056 	if (mbpi) {
6057 		if (mbpi > phba->cmf_link_byte_count ||
6058 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6059 			mbpi = phba->cmf_link_byte_count;
6060 
6061 		/* Change max_bytes_per_interval to what the prior
6062 		 * CMF_SYNC_WQE cmpl indicated.
6063 		 */
6064 		if (mbpi != phba->cmf_max_bytes_per_interval)
6065 			phba->cmf_max_bytes_per_interval = mbpi;
6066 	}
6067 
6068 	/* Save rxmonitor information for debug */
6069 	if (phba->rx_monitor) {
6070 		entry.total_bytes = total;
6071 		entry.cmf_bytes = total + extra;
6072 		entry.rcv_bytes = rcv;
6073 		entry.cmf_busy = busy;
6074 		entry.cmf_info = phba->cmf_active_info;
6075 		if (io_cnt) {
6076 			entry.avg_io_latency = div_u64(lat, io_cnt);
6077 			entry.avg_io_size = div_u64(rcv, io_cnt);
6078 		} else {
6079 			entry.avg_io_latency = 0;
6080 			entry.avg_io_size = 0;
6081 		}
6082 		entry.max_read_cnt = max_read;
6083 		entry.io_cnt = io_cnt;
6084 		entry.max_bytes_per_interval = mbpi;
6085 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6086 			entry.timer_utilization = phba->cmf_last_ts;
6087 		else
6088 			entry.timer_utilization = ms;
6089 		entry.timer_interval = ms;
6090 		phba->cmf_last_ts = 0;
6091 
6092 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6093 	}
6094 
6095 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6096 		/* If Monitor mode, check if we are oversubscribed
6097 		 * against the full line rate.
6098 		 */
6099 		if (mbpi && total > mbpi)
6100 			atomic_inc(&phba->cgn_driver_evt_cnt);
6101 	}
6102 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6103 
6104 	/* Since total_bytes has already been zero'ed, its okay to unblock
6105 	 * after max_bytes_per_interval is setup.
6106 	 */
6107 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6108 		queue_work(phba->wq, &phba->unblock_request_work);
6109 
6110 	/* SCSI IO is now unblocked */
6111 	atomic_set(&phba->cmf_stop_io, 0);
6112 
6113 skip:
6114 	hrtimer_forward_now(timer,
6115 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6116 	return HRTIMER_RESTART;
6117 }
6118 
6119 #define trunk_link_status(__idx)\
6120 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6121 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6122 		"Link up" : "Link down") : "NA"
6123 /* Did port __idx reported an error */
6124 #define trunk_port_fault(__idx)\
6125 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6126 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6127 
6128 static void
6129 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6130 			      struct lpfc_acqe_fc_la *acqe_fc)
6131 {
6132 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6133 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6134 	u8 cnt = 0;
6135 
6136 	phba->sli4_hba.link_state.speed =
6137 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6138 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6139 
6140 	phba->sli4_hba.link_state.logical_speed =
6141 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6142 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6143 	phba->fc_linkspeed =
6144 		 lpfc_async_link_speed_to_read_top(
6145 				phba,
6146 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6147 
6148 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6149 		phba->trunk_link.link0.state =
6150 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6151 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6152 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6153 		cnt++;
6154 	}
6155 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6156 		phba->trunk_link.link1.state =
6157 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6158 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6159 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6160 		cnt++;
6161 	}
6162 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6163 		phba->trunk_link.link2.state =
6164 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6165 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6166 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6167 		cnt++;
6168 	}
6169 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6170 		phba->trunk_link.link3.state =
6171 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6172 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6173 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6174 		cnt++;
6175 	}
6176 
6177 	if (cnt)
6178 		phba->trunk_link.phy_lnk_speed =
6179 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6180 	else
6181 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6182 
6183 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6184 			"2910 Async FC Trunking Event - Speed:%d\n"
6185 			"\tLogical speed:%d "
6186 			"port0: %s port1: %s port2: %s port3: %s\n",
6187 			phba->sli4_hba.link_state.speed,
6188 			phba->sli4_hba.link_state.logical_speed,
6189 			trunk_link_status(0), trunk_link_status(1),
6190 			trunk_link_status(2), trunk_link_status(3));
6191 
6192 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6193 		lpfc_cmf_signal_init(phba);
6194 
6195 	if (port_fault)
6196 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6197 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6198 				/*
6199 				 * SLI-4: We have only 0xA error codes
6200 				 * defined as of now. print an appropriate
6201 				 * message in case driver needs to be updated.
6202 				 */
6203 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6204 				"UNDEFINED. update driver." : trunk_errmsg[err],
6205 				trunk_port_fault(0), trunk_port_fault(1),
6206 				trunk_port_fault(2), trunk_port_fault(3));
6207 }
6208 
6209 
6210 /**
6211  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6212  * @phba: pointer to lpfc hba data structure.
6213  * @acqe_fc: pointer to the async fc completion queue entry.
6214  *
6215  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6216  * that the event was received and then issue a read_topology mailbox command so
6217  * that the rest of the driver will treat it the same as SLI3.
6218  **/
6219 static void
6220 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6221 {
6222 	LPFC_MBOXQ_t *pmb;
6223 	MAILBOX_t *mb;
6224 	struct lpfc_mbx_read_top *la;
6225 	char *log_level;
6226 	int rc;
6227 
6228 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6229 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6230 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6231 				"2895 Non FC link Event detected.(%d)\n",
6232 				bf_get(lpfc_trailer_type, acqe_fc));
6233 		return;
6234 	}
6235 
6236 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6237 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6238 		lpfc_update_trunk_link_status(phba, acqe_fc);
6239 		return;
6240 	}
6241 
6242 	/* Keep the link status for extra SLI4 state machine reference */
6243 	phba->sli4_hba.link_state.speed =
6244 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6245 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6246 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6247 	phba->sli4_hba.link_state.topology =
6248 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6249 	phba->sli4_hba.link_state.status =
6250 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6251 	phba->sli4_hba.link_state.type =
6252 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6253 	phba->sli4_hba.link_state.number =
6254 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6255 	phba->sli4_hba.link_state.fault =
6256 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6257 	phba->sli4_hba.link_state.link_status =
6258 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6259 
6260 	/*
6261 	 * Only select attention types need logical speed modification to what
6262 	 * was previously set.
6263 	 */
6264 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6265 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6266 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6267 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6268 			phba->sli4_hba.link_state.logical_speed = 0;
6269 		else if (!phba->sli4_hba.conf_trunk)
6270 			phba->sli4_hba.link_state.logical_speed =
6271 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6272 	}
6273 
6274 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6275 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6276 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6277 			"%dMbps Fault:x%x Link Status:x%x\n",
6278 			phba->sli4_hba.link_state.speed,
6279 			phba->sli4_hba.link_state.topology,
6280 			phba->sli4_hba.link_state.status,
6281 			phba->sli4_hba.link_state.type,
6282 			phba->sli4_hba.link_state.number,
6283 			phba->sli4_hba.link_state.logical_speed,
6284 			phba->sli4_hba.link_state.fault,
6285 			phba->sli4_hba.link_state.link_status);
6286 
6287 	/*
6288 	 * The following attention types are informational only, providing
6289 	 * further details about link status.  Overwrite the value of
6290 	 * link_state.status appropriately.  No further action is required.
6291 	 */
6292 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6293 		switch (phba->sli4_hba.link_state.status) {
6294 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6295 			log_level = KERN_WARNING;
6296 			phba->sli4_hba.link_state.status =
6297 					LPFC_FC_LA_TYPE_LINK_DOWN;
6298 			break;
6299 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6300 			/*
6301 			 * During bb credit recovery establishment, receiving
6302 			 * this attention type is normal.  Link Up attention
6303 			 * type is expected to occur before this informational
6304 			 * attention type so keep the Link Up status.
6305 			 */
6306 			log_level = KERN_INFO;
6307 			phba->sli4_hba.link_state.status =
6308 					LPFC_FC_LA_TYPE_LINK_UP;
6309 			break;
6310 		default:
6311 			log_level = KERN_INFO;
6312 			break;
6313 		}
6314 		lpfc_log_msg(phba, log_level, LOG_SLI,
6315 			     "2992 Async FC event - Informational Link "
6316 			     "Attention Type x%x\n",
6317 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6318 		return;
6319 	}
6320 
6321 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6322 	if (!pmb) {
6323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6324 				"2897 The mboxq allocation failed\n");
6325 		return;
6326 	}
6327 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6328 	if (rc) {
6329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6330 				"2898 The mboxq prep failed\n");
6331 		goto out_free_pmb;
6332 	}
6333 
6334 	/* Cleanup any outstanding ELS commands */
6335 	lpfc_els_flush_all_cmd(phba);
6336 
6337 	/* Block ELS IOCBs until we have done process link event */
6338 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6339 
6340 	/* Update link event statistics */
6341 	phba->sli.slistat.link_event++;
6342 
6343 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6344 	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
6345 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6346 	pmb->vport = phba->pport;
6347 
6348 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6349 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6350 
6351 		switch (phba->sli4_hba.link_state.status) {
6352 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6353 			phba->link_flag |= LS_MDS_LINK_DOWN;
6354 			break;
6355 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6356 			phba->link_flag |= LS_MDS_LOOPBACK;
6357 			break;
6358 		default:
6359 			break;
6360 		}
6361 
6362 		/* Initialize completion status */
6363 		mb = &pmb->u.mb;
6364 		mb->mbxStatus = MBX_SUCCESS;
6365 
6366 		/* Parse port fault information field */
6367 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6368 
6369 		/* Parse and translate link attention fields */
6370 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6371 		la->eventTag = acqe_fc->event_tag;
6372 
6373 		if (phba->sli4_hba.link_state.status ==
6374 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6375 			bf_set(lpfc_mbx_read_top_att_type, la,
6376 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6377 		} else {
6378 			bf_set(lpfc_mbx_read_top_att_type, la,
6379 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6380 		}
6381 		/* Invoke the mailbox command callback function */
6382 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6383 
6384 		return;
6385 	}
6386 
6387 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6388 	if (rc == MBX_NOT_FINISHED)
6389 		goto out_free_pmb;
6390 	return;
6391 
6392 out_free_pmb:
6393 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6394 }
6395 
6396 /**
6397  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6398  * @phba: pointer to lpfc hba data structure.
6399  * @acqe_sli: pointer to the async SLI completion queue entry.
6400  *
6401  * This routine is to handle the SLI4 asynchronous SLI events.
6402  **/
6403 static void
6404 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6405 {
6406 	char port_name;
6407 	char message[128];
6408 	uint8_t status;
6409 	uint8_t evt_type;
6410 	uint8_t operational = 0;
6411 	struct temp_event temp_event_data;
6412 	struct lpfc_acqe_misconfigured_event *misconfigured;
6413 	struct lpfc_acqe_cgn_signal *cgn_signal;
6414 	struct Scsi_Host  *shost;
6415 	struct lpfc_vport **vports;
6416 	int rc, i, cnt;
6417 
6418 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6419 
6420 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6421 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6422 			"x%08x x%08x x%08x\n", evt_type,
6423 			acqe_sli->event_data1, acqe_sli->event_data2,
6424 			acqe_sli->event_data3, acqe_sli->trailer);
6425 
6426 	port_name = phba->Port[0];
6427 	if (port_name == 0x00)
6428 		port_name = '?'; /* get port name is empty */
6429 
6430 	switch (evt_type) {
6431 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6432 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6433 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6434 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6435 
6436 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6437 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6438 				acqe_sli->event_data1, port_name);
6439 
6440 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6441 		shost = lpfc_shost_from_vport(phba->pport);
6442 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6443 					  sizeof(temp_event_data),
6444 					  (char *)&temp_event_data,
6445 					  SCSI_NL_VID_TYPE_PCI
6446 					  | PCI_VENDOR_ID_EMULEX);
6447 		break;
6448 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6449 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6450 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6451 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6452 
6453 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6454 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6455 				acqe_sli->event_data1, port_name);
6456 
6457 		shost = lpfc_shost_from_vport(phba->pport);
6458 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6459 					  sizeof(temp_event_data),
6460 					  (char *)&temp_event_data,
6461 					  SCSI_NL_VID_TYPE_PCI
6462 					  | PCI_VENDOR_ID_EMULEX);
6463 		break;
6464 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6465 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6466 					&acqe_sli->event_data1;
6467 
6468 		/* fetch the status for this port */
6469 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6470 		case LPFC_LINK_NUMBER_0:
6471 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6472 					&misconfigured->theEvent);
6473 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6474 					&misconfigured->theEvent);
6475 			break;
6476 		case LPFC_LINK_NUMBER_1:
6477 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6478 					&misconfigured->theEvent);
6479 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6480 					&misconfigured->theEvent);
6481 			break;
6482 		case LPFC_LINK_NUMBER_2:
6483 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6484 					&misconfigured->theEvent);
6485 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6486 					&misconfigured->theEvent);
6487 			break;
6488 		case LPFC_LINK_NUMBER_3:
6489 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6490 					&misconfigured->theEvent);
6491 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6492 					&misconfigured->theEvent);
6493 			break;
6494 		default:
6495 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6496 					"3296 "
6497 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6498 					"event: Invalid link %d",
6499 					phba->sli4_hba.lnk_info.lnk_no);
6500 			return;
6501 		}
6502 
6503 		/* Skip if optic state unchanged */
6504 		if (phba->sli4_hba.lnk_info.optic_state == status)
6505 			return;
6506 
6507 		switch (status) {
6508 		case LPFC_SLI_EVENT_STATUS_VALID:
6509 			sprintf(message, "Physical Link is functional");
6510 			break;
6511 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6512 			sprintf(message, "Optics faulted/incorrectly "
6513 				"installed/not installed - Reseat optics, "
6514 				"if issue not resolved, replace.");
6515 			break;
6516 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6517 			sprintf(message,
6518 				"Optics of two types installed - Remove one "
6519 				"optic or install matching pair of optics.");
6520 			break;
6521 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6522 			sprintf(message, "Incompatible optics - Replace with "
6523 				"compatible optics for card to function.");
6524 			break;
6525 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6526 			sprintf(message, "Unqualified optics - Replace with "
6527 				"Avago optics for Warranty and Technical "
6528 				"Support - Link is%s operational",
6529 				(operational) ? " not" : "");
6530 			break;
6531 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6532 			sprintf(message, "Uncertified optics - Replace with "
6533 				"Avago-certified optics to enable link "
6534 				"operation - Link is%s operational",
6535 				(operational) ? " not" : "");
6536 			break;
6537 		default:
6538 			/* firmware is reporting a status we don't know about */
6539 			sprintf(message, "Unknown event status x%02x", status);
6540 			break;
6541 		}
6542 
6543 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6544 		rc = lpfc_sli4_read_config(phba);
6545 		if (rc) {
6546 			phba->lmt = 0;
6547 			lpfc_printf_log(phba, KERN_ERR,
6548 					LOG_TRACE_EVENT,
6549 					"3194 Unable to retrieve supported "
6550 					"speeds, rc = 0x%x\n", rc);
6551 		}
6552 		rc = lpfc_sli4_refresh_params(phba);
6553 		if (rc) {
6554 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6555 					"3174 Unable to update pls support, "
6556 					"rc x%x\n", rc);
6557 		}
6558 		vports = lpfc_create_vport_work_array(phba);
6559 		if (vports != NULL) {
6560 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6561 					i++) {
6562 				shost = lpfc_shost_from_vport(vports[i]);
6563 				lpfc_host_supported_speeds_set(shost);
6564 			}
6565 		}
6566 		lpfc_destroy_vport_work_array(phba, vports);
6567 
6568 		phba->sli4_hba.lnk_info.optic_state = status;
6569 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6570 				"3176 Port Name %c %s\n", port_name, message);
6571 		break;
6572 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6573 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6574 				"3192 Remote DPort Test Initiated - "
6575 				"Event Data1:x%08x Event Data2: x%08x\n",
6576 				acqe_sli->event_data1, acqe_sli->event_data2);
6577 		break;
6578 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6579 		/* Call FW to obtain active parms */
6580 		lpfc_sli4_cgn_parm_chg_evt(phba);
6581 		break;
6582 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6583 		/* Misconfigured WWN. Reports that the SLI Port is configured
6584 		 * to use FA-WWN, but the attached device doesn’t support it.
6585 		 * Event Data1 - N.A, Event Data2 - N.A
6586 		 * This event only happens on the physical port.
6587 		 */
6588 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6589 			     "2699 Misconfigured FA-PWWN - Attached device "
6590 			     "does not support FA-PWWN\n");
6591 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6592 		memset(phba->pport->fc_portname.u.wwn, 0,
6593 		       sizeof(struct lpfc_name));
6594 		break;
6595 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6596 		/* EEPROM failure. No driver action is required */
6597 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6598 			     "2518 EEPROM failure - "
6599 			     "Event Data1: x%08x Event Data2: x%08x\n",
6600 			     acqe_sli->event_data1, acqe_sli->event_data2);
6601 		break;
6602 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6603 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6604 			break;
6605 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6606 					&acqe_sli->event_data1;
6607 		phba->cgn_acqe_cnt++;
6608 
6609 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6610 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6611 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6612 
6613 		/* no threshold for CMF, even 1 signal will trigger an event */
6614 
6615 		/* Alarm overrides warning, so check that first */
6616 		if (cgn_signal->alarm_cnt) {
6617 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6618 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6619 				atomic_add(cgn_signal->alarm_cnt,
6620 					   &phba->cgn_sync_alarm_cnt);
6621 			}
6622 		} else if (cnt) {
6623 			/* signal action needs to be taken */
6624 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6625 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6626 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6627 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6628 			}
6629 		}
6630 		break;
6631 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6632 		/* May be accompanied by a temperature event */
6633 		lpfc_printf_log(phba, KERN_INFO,
6634 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6635 				"2902 Remote Degrade Signaling: x%08x x%08x "
6636 				"x%08x\n",
6637 				acqe_sli->event_data1, acqe_sli->event_data2,
6638 				acqe_sli->event_data3);
6639 		break;
6640 	case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS:
6641 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6642 				"2905 Reset CM statistics\n");
6643 		lpfc_sli4_async_cmstat_evt(phba);
6644 		break;
6645 	default:
6646 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6647 				"3193 Unrecognized SLI event, type: 0x%x",
6648 				evt_type);
6649 		break;
6650 	}
6651 }
6652 
6653 /**
6654  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6655  * @vport: pointer to vport data structure.
6656  *
6657  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6658  * response to a CVL event.
6659  *
6660  * Return the pointer to the ndlp with the vport if successful, otherwise
6661  * return NULL.
6662  **/
6663 static struct lpfc_nodelist *
6664 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6665 {
6666 	struct lpfc_nodelist *ndlp;
6667 	struct Scsi_Host *shost;
6668 	struct lpfc_hba *phba;
6669 
6670 	if (!vport)
6671 		return NULL;
6672 	phba = vport->phba;
6673 	if (!phba)
6674 		return NULL;
6675 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6676 	if (!ndlp) {
6677 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6678 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6679 		if (!ndlp)
6680 			return NULL;
6681 		/* Set the node type */
6682 		ndlp->nlp_type |= NLP_FABRIC;
6683 		/* Put ndlp onto node list */
6684 		lpfc_enqueue_node(vport, ndlp);
6685 	}
6686 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6687 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6688 		return NULL;
6689 	/* If virtual link is not yet instantiated ignore CVL */
6690 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6691 		&& (vport->port_state != LPFC_VPORT_FAILED))
6692 		return NULL;
6693 	shost = lpfc_shost_from_vport(vport);
6694 	if (!shost)
6695 		return NULL;
6696 	lpfc_linkdown_port(vport);
6697 	lpfc_cleanup_pending_mbox(vport);
6698 	set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag);
6699 
6700 	return ndlp;
6701 }
6702 
6703 /**
6704  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6705  * @phba: pointer to lpfc hba data structure.
6706  *
6707  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6708  * response to a FCF dead event.
6709  **/
6710 static void
6711 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6712 {
6713 	struct lpfc_vport **vports;
6714 	int i;
6715 
6716 	vports = lpfc_create_vport_work_array(phba);
6717 	if (vports)
6718 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6719 			lpfc_sli4_perform_vport_cvl(vports[i]);
6720 	lpfc_destroy_vport_work_array(phba, vports);
6721 }
6722 
6723 /**
6724  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6725  * @phba: pointer to lpfc hba data structure.
6726  * @acqe_fip: pointer to the async fcoe completion queue entry.
6727  *
6728  * This routine is to handle the SLI4 asynchronous fcoe event.
6729  **/
6730 static void
6731 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6732 			struct lpfc_acqe_fip *acqe_fip)
6733 {
6734 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6735 	int rc;
6736 	struct lpfc_vport *vport;
6737 	struct lpfc_nodelist *ndlp;
6738 	int active_vlink_present;
6739 	struct lpfc_vport **vports;
6740 	int i;
6741 
6742 	phba->fc_eventTag = acqe_fip->event_tag;
6743 	phba->fcoe_eventtag = acqe_fip->event_tag;
6744 	switch (event_type) {
6745 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6746 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6747 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6748 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6749 					"2546 New FCF event, evt_tag:x%x, "
6750 					"index:x%x\n",
6751 					acqe_fip->event_tag,
6752 					acqe_fip->index);
6753 		else
6754 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6755 					LOG_DISCOVERY,
6756 					"2788 FCF param modified event, "
6757 					"evt_tag:x%x, index:x%x\n",
6758 					acqe_fip->event_tag,
6759 					acqe_fip->index);
6760 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6761 			/*
6762 			 * During period of FCF discovery, read the FCF
6763 			 * table record indexed by the event to update
6764 			 * FCF roundrobin failover eligible FCF bmask.
6765 			 */
6766 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6767 					LOG_DISCOVERY,
6768 					"2779 Read FCF (x%x) for updating "
6769 					"roundrobin FCF failover bmask\n",
6770 					acqe_fip->index);
6771 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6772 		}
6773 
6774 		/* If the FCF discovery is in progress, do nothing. */
6775 		if (test_bit(FCF_TS_INPROG, &phba->hba_flag))
6776 			break;
6777 		spin_lock_irq(&phba->hbalock);
6778 		/* If fast FCF failover rescan event is pending, do nothing */
6779 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6780 			spin_unlock_irq(&phba->hbalock);
6781 			break;
6782 		}
6783 
6784 		/* If the FCF has been in discovered state, do nothing. */
6785 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6786 			spin_unlock_irq(&phba->hbalock);
6787 			break;
6788 		}
6789 		spin_unlock_irq(&phba->hbalock);
6790 
6791 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6792 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6793 				"2770 Start FCF table scan per async FCF "
6794 				"event, evt_tag:x%x, index:x%x\n",
6795 				acqe_fip->event_tag, acqe_fip->index);
6796 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6797 						     LPFC_FCOE_FCF_GET_FIRST);
6798 		if (rc)
6799 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6800 					"2547 Issue FCF scan read FCF mailbox "
6801 					"command failed (x%x)\n", rc);
6802 		break;
6803 
6804 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6805 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6806 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6807 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6808 				acqe_fip->event_tag);
6809 		break;
6810 
6811 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6812 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6813 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6814 				"2549 FCF (x%x) disconnected from network, "
6815 				 "tag:x%x\n", acqe_fip->index,
6816 				 acqe_fip->event_tag);
6817 		/*
6818 		 * If we are in the middle of FCF failover process, clear
6819 		 * the corresponding FCF bit in the roundrobin bitmap.
6820 		 */
6821 		spin_lock_irq(&phba->hbalock);
6822 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6823 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6824 			spin_unlock_irq(&phba->hbalock);
6825 			/* Update FLOGI FCF failover eligible FCF bmask */
6826 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6827 			break;
6828 		}
6829 		spin_unlock_irq(&phba->hbalock);
6830 
6831 		/* If the event is not for currently used fcf do nothing */
6832 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6833 			break;
6834 
6835 		/*
6836 		 * Otherwise, request the port to rediscover the entire FCF
6837 		 * table for a fast recovery from case that the current FCF
6838 		 * is no longer valid as we are not in the middle of FCF
6839 		 * failover process already.
6840 		 */
6841 		spin_lock_irq(&phba->hbalock);
6842 		/* Mark the fast failover process in progress */
6843 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6844 		spin_unlock_irq(&phba->hbalock);
6845 
6846 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6847 				"2771 Start FCF fast failover process due to "
6848 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6849 				"\n", acqe_fip->event_tag, acqe_fip->index);
6850 		rc = lpfc_sli4_redisc_fcf_table(phba);
6851 		if (rc) {
6852 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6853 					LOG_TRACE_EVENT,
6854 					"2772 Issue FCF rediscover mailbox "
6855 					"command failed, fail through to FCF "
6856 					"dead event\n");
6857 			spin_lock_irq(&phba->hbalock);
6858 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6859 			spin_unlock_irq(&phba->hbalock);
6860 			/*
6861 			 * Last resort will fail over by treating this
6862 			 * as a link down to FCF registration.
6863 			 */
6864 			lpfc_sli4_fcf_dead_failthrough(phba);
6865 		} else {
6866 			/* Reset FCF roundrobin bmask for new discovery */
6867 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6868 			/*
6869 			 * Handling fast FCF failover to a DEAD FCF event is
6870 			 * considered equalivant to receiving CVL to all vports.
6871 			 */
6872 			lpfc_sli4_perform_all_vport_cvl(phba);
6873 		}
6874 		break;
6875 	case LPFC_FIP_EVENT_TYPE_CVL:
6876 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6877 		lpfc_printf_log(phba, KERN_ERR,
6878 				LOG_TRACE_EVENT,
6879 			"2718 Clear Virtual Link Received for VPI 0x%x"
6880 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6881 
6882 		vport = lpfc_find_vport_by_vpid(phba,
6883 						acqe_fip->index);
6884 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6885 		if (!ndlp)
6886 			break;
6887 		active_vlink_present = 0;
6888 
6889 		vports = lpfc_create_vport_work_array(phba);
6890 		if (vports) {
6891 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6892 					i++) {
6893 				if (!test_bit(FC_VPORT_CVL_RCVD,
6894 					      &vports[i]->fc_flag) &&
6895 				    vports[i]->port_state > LPFC_FDISC) {
6896 					active_vlink_present = 1;
6897 					break;
6898 				}
6899 			}
6900 			lpfc_destroy_vport_work_array(phba, vports);
6901 		}
6902 
6903 		/*
6904 		 * Don't re-instantiate if vport is marked for deletion.
6905 		 * If we are here first then vport_delete is going to wait
6906 		 * for discovery to complete.
6907 		 */
6908 		if (!test_bit(FC_UNLOADING, &vport->load_flag) &&
6909 		    active_vlink_present) {
6910 			/*
6911 			 * If there are other active VLinks present,
6912 			 * re-instantiate the Vlink using FDISC.
6913 			 */
6914 			mod_timer(&ndlp->nlp_delayfunc,
6915 				  jiffies + secs_to_jiffies(1));
6916 			set_bit(NLP_DELAY_TMO, &ndlp->nlp_flag);
6917 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6918 			vport->port_state = LPFC_FDISC;
6919 		} else {
6920 			/*
6921 			 * Otherwise, we request port to rediscover
6922 			 * the entire FCF table for a fast recovery
6923 			 * from possible case that the current FCF
6924 			 * is no longer valid if we are not already
6925 			 * in the FCF failover process.
6926 			 */
6927 			spin_lock_irq(&phba->hbalock);
6928 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6929 				spin_unlock_irq(&phba->hbalock);
6930 				break;
6931 			}
6932 			/* Mark the fast failover process in progress */
6933 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6934 			spin_unlock_irq(&phba->hbalock);
6935 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6936 					LOG_DISCOVERY,
6937 					"2773 Start FCF failover per CVL, "
6938 					"evt_tag:x%x\n", acqe_fip->event_tag);
6939 			rc = lpfc_sli4_redisc_fcf_table(phba);
6940 			if (rc) {
6941 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6942 						LOG_TRACE_EVENT,
6943 						"2774 Issue FCF rediscover "
6944 						"mailbox command failed, "
6945 						"through to CVL event\n");
6946 				spin_lock_irq(&phba->hbalock);
6947 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6948 				spin_unlock_irq(&phba->hbalock);
6949 				/*
6950 				 * Last resort will be re-try on the
6951 				 * the current registered FCF entry.
6952 				 */
6953 				lpfc_retry_pport_discovery(phba);
6954 			} else
6955 				/*
6956 				 * Reset FCF roundrobin bmask for new
6957 				 * discovery.
6958 				 */
6959 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6960 		}
6961 		break;
6962 	default:
6963 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6964 				"0288 Unknown FCoE event type 0x%x event tag "
6965 				"0x%x\n", event_type, acqe_fip->event_tag);
6966 		break;
6967 	}
6968 }
6969 
6970 /**
6971  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6972  * @phba: pointer to lpfc hba data structure.
6973  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6974  *
6975  * This routine is to handle the SLI4 asynchronous dcbx event.
6976  **/
6977 static void
6978 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6979 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6980 {
6981 	phba->fc_eventTag = acqe_dcbx->event_tag;
6982 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6983 			"0290 The SLI4 DCBX asynchronous event is not "
6984 			"handled yet\n");
6985 }
6986 
6987 /**
6988  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6989  * @phba: pointer to lpfc hba data structure.
6990  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6991  *
6992  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6993  * is an asynchronous notified of a logical link speed change.  The Port
6994  * reports the logical link speed in units of 10Mbps.
6995  **/
6996 static void
6997 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6998 			 struct lpfc_acqe_grp5 *acqe_grp5)
6999 {
7000 	uint16_t prev_ll_spd;
7001 
7002 	phba->fc_eventTag = acqe_grp5->event_tag;
7003 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7004 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7005 	phba->sli4_hba.link_state.logical_speed =
7006 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7007 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7008 			"2789 GRP5 Async Event: Updating logical link speed "
7009 			"from %dMbps to %dMbps\n", prev_ll_spd,
7010 			phba->sli4_hba.link_state.logical_speed);
7011 }
7012 
7013 /**
7014  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7015  * @phba: pointer to lpfc hba data structure.
7016  *
7017  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7018  * is an asynchronous notification of a request to reset CM stats.
7019  **/
7020 static void
7021 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7022 {
7023 	if (!phba->cgn_i)
7024 		return;
7025 	lpfc_init_congestion_stat(phba);
7026 }
7027 
7028 /**
7029  * lpfc_cgn_params_val - Validate FW congestion parameters.
7030  * @phba: pointer to lpfc hba data structure.
7031  * @p_cfg_param: pointer to FW provided congestion parameters.
7032  *
7033  * This routine validates the congestion parameters passed
7034  * by the FW to the driver via an ACQE event.
7035  **/
7036 static void
7037 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7038 {
7039 	spin_lock_irq(&phba->hbalock);
7040 
7041 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7042 			     LPFC_CFG_MONITOR)) {
7043 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7044 				"6225 CMF mode param out of range: %d\n",
7045 				 p_cfg_param->cgn_param_mode);
7046 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7047 	}
7048 
7049 	spin_unlock_irq(&phba->hbalock);
7050 }
7051 
7052 static const char * const lpfc_cmf_mode_to_str[] = {
7053 	"OFF",
7054 	"MANAGED",
7055 	"MONITOR",
7056 };
7057 
7058 /**
7059  * lpfc_cgn_params_parse - Process a FW cong parm change event
7060  * @phba: pointer to lpfc hba data structure.
7061  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7062  * @len: the size of pdata in bytes.
7063  *
7064  * This routine validates the congestion management buffer signature
7065  * from the FW, validates the contents and makes corrections for
7066  * valid, in-range values.  If the signature magic is correct and
7067  * after parameter validation, the contents are copied to the driver's
7068  * @phba structure. If the magic is incorrect, an error message is
7069  * logged.
7070  **/
7071 static void
7072 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7073 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7074 {
7075 	struct lpfc_cgn_info *cp;
7076 	uint32_t crc, oldmode;
7077 	char acr_string[4] = {0};
7078 
7079 	/* Make sure the FW has encoded the correct magic number to
7080 	 * validate the congestion parameter in FW memory.
7081 	 */
7082 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7083 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7084 				"4668 FW cgn parm buffer data: "
7085 				"magic 0x%x version %d mode %d "
7086 				"level0 %d level1 %d "
7087 				"level2 %d byte13 %d "
7088 				"byte14 %d byte15 %d "
7089 				"byte11 %d byte12 %d activeMode %d\n",
7090 				p_cgn_param->cgn_param_magic,
7091 				p_cgn_param->cgn_param_version,
7092 				p_cgn_param->cgn_param_mode,
7093 				p_cgn_param->cgn_param_level0,
7094 				p_cgn_param->cgn_param_level1,
7095 				p_cgn_param->cgn_param_level2,
7096 				p_cgn_param->byte13,
7097 				p_cgn_param->byte14,
7098 				p_cgn_param->byte15,
7099 				p_cgn_param->byte11,
7100 				p_cgn_param->byte12,
7101 				phba->cmf_active_mode);
7102 
7103 		oldmode = phba->cmf_active_mode;
7104 
7105 		/* Any parameters out of range are corrected to defaults
7106 		 * by this routine.  No need to fail.
7107 		 */
7108 		lpfc_cgn_params_val(phba, p_cgn_param);
7109 
7110 		/* Parameters are verified, move them into driver storage */
7111 		spin_lock_irq(&phba->hbalock);
7112 		memcpy(&phba->cgn_p, p_cgn_param,
7113 		       sizeof(struct lpfc_cgn_param));
7114 
7115 		/* Update parameters in congestion info buffer now */
7116 		if (phba->cgn_i) {
7117 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7118 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7119 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7120 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7121 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7122 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7123 						  LPFC_CGN_CRC32_SEED);
7124 			cp->cgn_info_crc = cpu_to_le32(crc);
7125 		}
7126 		spin_unlock_irq(&phba->hbalock);
7127 
7128 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7129 
7130 		switch (oldmode) {
7131 		case LPFC_CFG_OFF:
7132 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7133 				/* Turning CMF on */
7134 				lpfc_cmf_start(phba);
7135 
7136 				if (phba->link_state >= LPFC_LINK_UP) {
7137 					phba->cgn_reg_fpin =
7138 						phba->cgn_init_reg_fpin;
7139 					phba->cgn_reg_signal =
7140 						phba->cgn_init_reg_signal;
7141 					lpfc_issue_els_edc(phba->pport, 0);
7142 				}
7143 			}
7144 			break;
7145 		case LPFC_CFG_MANAGED:
7146 			switch (phba->cgn_p.cgn_param_mode) {
7147 			case LPFC_CFG_OFF:
7148 				/* Turning CMF off */
7149 				lpfc_cmf_stop(phba);
7150 				if (phba->link_state >= LPFC_LINK_UP)
7151 					lpfc_issue_els_edc(phba->pport, 0);
7152 				break;
7153 			case LPFC_CFG_MONITOR:
7154 				phba->cmf_max_bytes_per_interval =
7155 					phba->cmf_link_byte_count;
7156 
7157 				/* Resume blocked IO - unblock on workqueue */
7158 				queue_work(phba->wq,
7159 					   &phba->unblock_request_work);
7160 				break;
7161 			}
7162 			break;
7163 		case LPFC_CFG_MONITOR:
7164 			switch (phba->cgn_p.cgn_param_mode) {
7165 			case LPFC_CFG_OFF:
7166 				/* Turning CMF off */
7167 				lpfc_cmf_stop(phba);
7168 				if (phba->link_state >= LPFC_LINK_UP)
7169 					lpfc_issue_els_edc(phba->pport, 0);
7170 				break;
7171 			case LPFC_CFG_MANAGED:
7172 				lpfc_cmf_signal_init(phba);
7173 				break;
7174 			}
7175 			break;
7176 		}
7177 		if (oldmode != LPFC_CFG_OFF ||
7178 		    oldmode != phba->cgn_p.cgn_param_mode) {
7179 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7180 				scnprintf(acr_string, sizeof(acr_string), "%u",
7181 					  phba->cgn_p.cgn_param_level0);
7182 			else
7183 				scnprintf(acr_string, sizeof(acr_string), "NA");
7184 
7185 			dev_info(&phba->pcidev->dev, "%d: "
7186 				 "4663 CMF: Mode %s acr %s\n",
7187 				 phba->brd_no,
7188 				 lpfc_cmf_mode_to_str
7189 				 [phba->cgn_p.cgn_param_mode],
7190 				 acr_string);
7191 		}
7192 	} else {
7193 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7194 				"4669 FW cgn parm buf wrong magic 0x%x "
7195 				"version %d\n", p_cgn_param->cgn_param_magic,
7196 				p_cgn_param->cgn_param_version);
7197 	}
7198 }
7199 
7200 /**
7201  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7202  * @phba: pointer to lpfc hba data structure.
7203  *
7204  * This routine issues a read_object mailbox command to
7205  * get the congestion management parameters from the FW
7206  * parses it and updates the driver maintained values.
7207  *
7208  * Returns
7209  *  0     if the object was empty
7210  *  -Eval if an error was encountered
7211  *  Count if bytes were read from object
7212  **/
7213 int
7214 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7215 {
7216 	int ret = 0;
7217 	struct lpfc_cgn_param *p_cgn_param = NULL;
7218 	u32 *pdata = NULL;
7219 	u32 len = 0;
7220 
7221 	/* Find out if the FW has a new set of congestion parameters. */
7222 	len = sizeof(struct lpfc_cgn_param);
7223 	pdata = kzalloc(len, GFP_KERNEL);
7224 	if (!pdata)
7225 		return -ENOMEM;
7226 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7227 			       pdata, len);
7228 
7229 	/* 0 means no data.  A negative means error.  A positive means
7230 	 * bytes were copied.
7231 	 */
7232 	if (!ret) {
7233 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7234 				"4670 CGN RD OBJ returns no data\n");
7235 		goto rd_obj_err;
7236 	} else if (ret < 0) {
7237 		/* Some error.  Just exit and return it to the caller.*/
7238 		goto rd_obj_err;
7239 	}
7240 
7241 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7242 			"6234 READ CGN PARAMS Successful %d\n", len);
7243 
7244 	/* Parse data pointer over len and update the phba congestion
7245 	 * parameters with values passed back.  The receive rate values
7246 	 * may have been altered in FW, but take no action here.
7247 	 */
7248 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7249 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7250 
7251  rd_obj_err:
7252 	kfree(pdata);
7253 	return ret;
7254 }
7255 
7256 /**
7257  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7258  * @phba: pointer to lpfc hba data structure.
7259  *
7260  * The FW generated Async ACQE SLI event calls this routine when
7261  * the event type is an SLI Internal Port Event and the Event Code
7262  * indicates a change to the FW maintained congestion parameters.
7263  *
7264  * This routine executes a Read_Object mailbox call to obtain the
7265  * current congestion parameters maintained in FW and corrects
7266  * the driver's active congestion parameters.
7267  *
7268  * The acqe event is not passed because there is no further data
7269  * required.
7270  *
7271  * Returns nonzero error if event processing encountered an error.
7272  * Zero otherwise for success.
7273  **/
7274 static int
7275 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7276 {
7277 	int ret = 0;
7278 
7279 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7280 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7281 				"4664 Cgn Evt when E2E off. Drop event\n");
7282 		return -EACCES;
7283 	}
7284 
7285 	/* If the event is claiming an empty object, it's ok.  A write
7286 	 * could have cleared it.  Only error is a negative return
7287 	 * status.
7288 	 */
7289 	ret = lpfc_sli4_cgn_params_read(phba);
7290 	if (ret < 0) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7292 				"4667 Error reading Cgn Params (%d)\n",
7293 				ret);
7294 	} else if (!ret) {
7295 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7296 				"4673 CGN Event empty object.\n");
7297 	}
7298 	return ret;
7299 }
7300 
7301 /**
7302  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7303  * @phba: pointer to lpfc hba data structure.
7304  *
7305  * This routine is invoked by the worker thread to process all the pending
7306  * SLI4 asynchronous events.
7307  **/
7308 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7309 {
7310 	struct lpfc_cq_event *cq_event;
7311 	unsigned long iflags;
7312 
7313 	/* First, declare the async event has been handled */
7314 	clear_bit(ASYNC_EVENT, &phba->hba_flag);
7315 
7316 	/* Now, handle all the async events */
7317 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7318 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7319 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7320 				 cq_event, struct lpfc_cq_event, list);
7321 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7322 				       iflags);
7323 
7324 		/* Process the asynchronous event */
7325 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7326 		case LPFC_TRAILER_CODE_LINK:
7327 			lpfc_sli4_async_link_evt(phba,
7328 						 &cq_event->cqe.acqe_link);
7329 			break;
7330 		case LPFC_TRAILER_CODE_FCOE:
7331 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7332 			break;
7333 		case LPFC_TRAILER_CODE_DCBX:
7334 			lpfc_sli4_async_dcbx_evt(phba,
7335 						 &cq_event->cqe.acqe_dcbx);
7336 			break;
7337 		case LPFC_TRAILER_CODE_GRP5:
7338 			lpfc_sli4_async_grp5_evt(phba,
7339 						 &cq_event->cqe.acqe_grp5);
7340 			break;
7341 		case LPFC_TRAILER_CODE_FC:
7342 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7343 			break;
7344 		case LPFC_TRAILER_CODE_SLI:
7345 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7346 			break;
7347 		default:
7348 			lpfc_printf_log(phba, KERN_ERR,
7349 					LOG_TRACE_EVENT,
7350 					"1804 Invalid asynchronous event code: "
7351 					"x%x\n", bf_get(lpfc_trailer_code,
7352 					&cq_event->cqe.mcqe_cmpl));
7353 			break;
7354 		}
7355 
7356 		/* Free the completion event processed to the free pool */
7357 		lpfc_sli4_cq_event_release(phba, cq_event);
7358 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7359 	}
7360 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7361 }
7362 
7363 /**
7364  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7365  * @phba: pointer to lpfc hba data structure.
7366  *
7367  * This routine is invoked by the worker thread to process FCF table
7368  * rediscovery pending completion event.
7369  **/
7370 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7371 {
7372 	int rc;
7373 
7374 	spin_lock_irq(&phba->hbalock);
7375 	/* Clear FCF rediscovery timeout event */
7376 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7377 	/* Clear driver fast failover FCF record flag */
7378 	phba->fcf.failover_rec.flag = 0;
7379 	/* Set state for FCF fast failover */
7380 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7381 	spin_unlock_irq(&phba->hbalock);
7382 
7383 	/* Scan FCF table from the first entry to re-discover SAN */
7384 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7385 			"2777 Start post-quiescent FCF table scan\n");
7386 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7387 	if (rc)
7388 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7389 				"2747 Issue FCF scan read FCF mailbox "
7390 				"command failed 0x%x\n", rc);
7391 }
7392 
7393 /**
7394  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7395  * @phba: pointer to lpfc hba data structure.
7396  * @dev_grp: The HBA PCI-Device group number.
7397  *
7398  * This routine is invoked to set up the per HBA PCI-Device group function
7399  * API jump table entries.
7400  *
7401  * Return: 0 if success, otherwise -ENODEV
7402  **/
7403 int
7404 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7405 {
7406 	int rc;
7407 
7408 	/* Set up lpfc PCI-device group */
7409 	phba->pci_dev_grp = dev_grp;
7410 
7411 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7412 	if (dev_grp == LPFC_PCI_DEV_OC)
7413 		phba->sli_rev = LPFC_SLI_REV4;
7414 
7415 	/* Set up device INIT API function jump table */
7416 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7417 	if (rc)
7418 		return -ENODEV;
7419 	/* Set up SCSI API function jump table */
7420 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7421 	if (rc)
7422 		return -ENODEV;
7423 	/* Set up SLI API function jump table */
7424 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7425 	if (rc)
7426 		return -ENODEV;
7427 	/* Set up MBOX API function jump table */
7428 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7429 	if (rc)
7430 		return -ENODEV;
7431 
7432 	return 0;
7433 }
7434 
7435 /**
7436  * lpfc_log_intr_mode - Log the active interrupt mode
7437  * @phba: pointer to lpfc hba data structure.
7438  * @intr_mode: active interrupt mode adopted.
7439  *
7440  * This routine it invoked to log the currently used active interrupt mode
7441  * to the device.
7442  **/
7443 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7444 {
7445 	switch (intr_mode) {
7446 	case 0:
7447 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7448 				"0470 Enable INTx interrupt mode.\n");
7449 		break;
7450 	case 1:
7451 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7452 				"0481 Enabled MSI interrupt mode.\n");
7453 		break;
7454 	case 2:
7455 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7456 				"0480 Enabled MSI-X interrupt mode.\n");
7457 		break;
7458 	default:
7459 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7460 				"0482 Illegal interrupt mode.\n");
7461 		break;
7462 	}
7463 	return;
7464 }
7465 
7466 /**
7467  * lpfc_enable_pci_dev - Enable a generic PCI device.
7468  * @phba: pointer to lpfc hba data structure.
7469  *
7470  * This routine is invoked to enable the PCI device that is common to all
7471  * PCI devices.
7472  *
7473  * Return codes
7474  * 	0 - successful
7475  * 	other values - error
7476  **/
7477 static int
7478 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7479 {
7480 	struct pci_dev *pdev;
7481 
7482 	/* Obtain PCI device reference */
7483 	if (!phba->pcidev)
7484 		goto out_error;
7485 	else
7486 		pdev = phba->pcidev;
7487 	/* Enable PCI device */
7488 	if (pci_enable_device_mem(pdev))
7489 		goto out_error;
7490 	/* Request PCI resource for the device */
7491 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7492 		goto out_disable_device;
7493 	/* Set up device as PCI master and save state for EEH */
7494 	pci_set_master(pdev);
7495 	pci_try_set_mwi(pdev);
7496 	pci_save_state(pdev);
7497 
7498 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7499 	if (pci_is_pcie(pdev))
7500 		pdev->needs_freset = 1;
7501 
7502 	return 0;
7503 
7504 out_disable_device:
7505 	pci_disable_device(pdev);
7506 out_error:
7507 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7508 			"1401 Failed to enable pci device\n");
7509 	return -ENODEV;
7510 }
7511 
7512 /**
7513  * lpfc_disable_pci_dev - Disable a generic PCI device.
7514  * @phba: pointer to lpfc hba data structure.
7515  *
7516  * This routine is invoked to disable the PCI device that is common to all
7517  * PCI devices.
7518  **/
7519 static void
7520 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7521 {
7522 	struct pci_dev *pdev;
7523 
7524 	/* Obtain PCI device reference */
7525 	if (!phba->pcidev)
7526 		return;
7527 	else
7528 		pdev = phba->pcidev;
7529 	/* Release PCI resource and disable PCI device */
7530 	pci_release_mem_regions(pdev);
7531 	pci_disable_device(pdev);
7532 
7533 	return;
7534 }
7535 
7536 /**
7537  * lpfc_reset_hba - Reset a hba
7538  * @phba: pointer to lpfc hba data structure.
7539  *
7540  * This routine is invoked to reset a hba device. It brings the HBA
7541  * offline, performs a board restart, and then brings the board back
7542  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7543  * on outstanding mailbox commands.
7544  **/
7545 void
7546 lpfc_reset_hba(struct lpfc_hba *phba)
7547 {
7548 	int rc = 0;
7549 
7550 	/* If resets are disabled then set error state and return. */
7551 	if (!phba->cfg_enable_hba_reset) {
7552 		phba->link_state = LPFC_HBA_ERROR;
7553 		return;
7554 	}
7555 
7556 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7557 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7558 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7559 	} else {
7560 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7561 			/* Perform a PCI function reset to start from clean */
7562 			rc = lpfc_pci_function_reset(phba);
7563 			lpfc_els_flush_all_cmd(phba);
7564 		}
7565 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7566 		lpfc_sli_flush_io_rings(phba);
7567 	}
7568 	lpfc_offline(phba);
7569 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7570 	if (unlikely(rc)) {
7571 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7572 				"8888 PCI function reset failed rc %x\n",
7573 				rc);
7574 	} else {
7575 		lpfc_sli_brdrestart(phba);
7576 		lpfc_online(phba);
7577 		lpfc_unblock_mgmt_io(phba);
7578 	}
7579 }
7580 
7581 /**
7582  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7583  * @phba: pointer to lpfc hba data structure.
7584  *
7585  * This function enables the PCI SR-IOV virtual functions to a physical
7586  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7587  * enable the number of virtual functions to the physical function. As
7588  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7589  * API call does not considered as an error condition for most of the device.
7590  **/
7591 uint16_t
7592 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7593 {
7594 	struct pci_dev *pdev = phba->pcidev;
7595 	uint16_t nr_virtfn;
7596 	int pos;
7597 
7598 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7599 	if (pos == 0)
7600 		return 0;
7601 
7602 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7603 	return nr_virtfn;
7604 }
7605 
7606 /**
7607  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7608  * @phba: pointer to lpfc hba data structure.
7609  * @nr_vfn: number of virtual functions to be enabled.
7610  *
7611  * This function enables the PCI SR-IOV virtual functions to a physical
7612  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7613  * enable the number of virtual functions to the physical function. As
7614  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7615  * API call does not considered as an error condition for most of the device.
7616  **/
7617 int
7618 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7619 {
7620 	struct pci_dev *pdev = phba->pcidev;
7621 	uint16_t max_nr_vfn;
7622 	int rc;
7623 
7624 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7625 	if (nr_vfn > max_nr_vfn) {
7626 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7627 				"3057 Requested vfs (%d) greater than "
7628 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7629 		return -EINVAL;
7630 	}
7631 
7632 	rc = pci_enable_sriov(pdev, nr_vfn);
7633 	if (rc) {
7634 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7635 				"2806 Failed to enable sriov on this device "
7636 				"with vfn number nr_vf:%d, rc:%d\n",
7637 				nr_vfn, rc);
7638 	} else
7639 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7640 				"2807 Successful enable sriov on this device "
7641 				"with vfn number nr_vf:%d\n", nr_vfn);
7642 	return rc;
7643 }
7644 
7645 static void
7646 lpfc_unblock_requests_work(struct work_struct *work)
7647 {
7648 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7649 					     unblock_request_work);
7650 
7651 	lpfc_unblock_requests(phba);
7652 }
7653 
7654 /**
7655  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7656  * @phba: pointer to lpfc hba data structure.
7657  *
7658  * This routine is invoked to set up the driver internal resources before the
7659  * device specific resource setup to support the HBA device it attached to.
7660  *
7661  * Return codes
7662  *	0 - successful
7663  *	other values - error
7664  **/
7665 static int
7666 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7667 {
7668 	struct lpfc_sli *psli = &phba->sli;
7669 
7670 	/*
7671 	 * Driver resources common to all SLI revisions
7672 	 */
7673 	atomic_set(&phba->fast_event_count, 0);
7674 	atomic_set(&phba->dbg_log_idx, 0);
7675 	atomic_set(&phba->dbg_log_cnt, 0);
7676 	atomic_set(&phba->dbg_log_dmping, 0);
7677 	spin_lock_init(&phba->hbalock);
7678 
7679 	/* Initialize port_list spinlock */
7680 	spin_lock_init(&phba->port_list_lock);
7681 	INIT_LIST_HEAD(&phba->port_list);
7682 
7683 	INIT_LIST_HEAD(&phba->work_list);
7684 
7685 	/* Initialize the wait queue head for the kernel thread */
7686 	init_waitqueue_head(&phba->work_waitq);
7687 
7688 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7689 			"1403 Protocols supported %s %s %s\n",
7690 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7691 				"SCSI" : " "),
7692 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7693 				"NVME" : " "),
7694 			(phba->nvmet_support ? "NVMET" : " "));
7695 
7696 	/* ras_fwlog state */
7697 	spin_lock_init(&phba->ras_fwlog_lock);
7698 
7699 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7700 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7701 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7702 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7703 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7704 
7705 	/* Initialize the fabric iocb list */
7706 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7707 
7708 	/* Initialize list to save ELS buffers */
7709 	INIT_LIST_HEAD(&phba->elsbuf);
7710 
7711 	/* Initialize FCF connection rec list */
7712 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7713 
7714 	/* Initialize OAS configuration list */
7715 	spin_lock_init(&phba->devicelock);
7716 	INIT_LIST_HEAD(&phba->luns);
7717 
7718 	/* MBOX heartbeat timer */
7719 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7720 	/* Fabric block timer */
7721 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7722 	/* EA polling mode timer */
7723 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7724 	/* Heartbeat timer */
7725 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7726 
7727 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7728 
7729 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7730 			  lpfc_idle_stat_delay_work);
7731 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7732 	return 0;
7733 }
7734 
7735 /**
7736  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7737  * @phba: pointer to lpfc hba data structure.
7738  *
7739  * This routine is invoked to set up the driver internal resources specific to
7740  * support the SLI-3 HBA device it attached to.
7741  *
7742  * Return codes
7743  * 0 - successful
7744  * other values - error
7745  **/
7746 static int
7747 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7748 {
7749 	int rc, entry_sz;
7750 
7751 	/*
7752 	 * Initialize timers used by driver
7753 	 */
7754 
7755 	/* FCP polling mode timer */
7756 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7757 
7758 	/* Host attention work mask setup */
7759 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7760 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7761 
7762 	/* Get all the module params for configuring this host */
7763 	lpfc_get_cfgparam(phba);
7764 	/* Set up phase-1 common device driver resources */
7765 
7766 	rc = lpfc_setup_driver_resource_phase1(phba);
7767 	if (rc)
7768 		return -ENODEV;
7769 
7770 	if (!phba->sli.sli3_ring)
7771 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7772 					      sizeof(struct lpfc_sli_ring),
7773 					      GFP_KERNEL);
7774 	if (!phba->sli.sli3_ring)
7775 		return -ENOMEM;
7776 
7777 	/*
7778 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7779 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7780 	 */
7781 
7782 	if (phba->sli_rev == LPFC_SLI_REV4)
7783 		entry_sz = sizeof(struct sli4_sge);
7784 	else
7785 		entry_sz = sizeof(struct ulp_bde64);
7786 
7787 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7788 	if (phba->cfg_enable_bg) {
7789 		/*
7790 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7791 		 * the FCP rsp, and a BDE for each. Sice we have no control
7792 		 * over how many protection data segments the SCSI Layer
7793 		 * will hand us (ie: there could be one for every block
7794 		 * in the IO), we just allocate enough BDEs to accomidate
7795 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7796 		 * minimize the risk of running out.
7797 		 */
7798 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7799 			sizeof(struct fcp_rsp) +
7800 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7801 
7802 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7803 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7804 
7805 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7806 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7807 	} else {
7808 		/*
7809 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7810 		 * the FCP rsp, a BDE for each, and a BDE for up to
7811 		 * cfg_sg_seg_cnt data segments.
7812 		 */
7813 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7814 			sizeof(struct fcp_rsp) +
7815 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7816 
7817 		/* Total BDEs in BPL for scsi_sg_list */
7818 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7819 	}
7820 
7821 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7822 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7823 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7824 			phba->cfg_total_seg_cnt);
7825 
7826 	phba->max_vpi = LPFC_MAX_VPI;
7827 	/* This will be set to correct value after config_port mbox */
7828 	phba->max_vports = 0;
7829 
7830 	/*
7831 	 * Initialize the SLI Layer to run with lpfc HBAs.
7832 	 */
7833 	lpfc_sli_setup(phba);
7834 	lpfc_sli_queue_init(phba);
7835 
7836 	/* Allocate device driver memory */
7837 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7838 		return -ENOMEM;
7839 
7840 	phba->lpfc_sg_dma_buf_pool =
7841 		dma_pool_create("lpfc_sg_dma_buf_pool",
7842 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7843 				BPL_ALIGN_SZ, 0);
7844 
7845 	if (!phba->lpfc_sg_dma_buf_pool)
7846 		goto fail_free_mem;
7847 
7848 	phba->lpfc_cmd_rsp_buf_pool =
7849 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7850 					&phba->pcidev->dev,
7851 					sizeof(struct fcp_cmnd) +
7852 					sizeof(struct fcp_rsp),
7853 					BPL_ALIGN_SZ, 0);
7854 
7855 	if (!phba->lpfc_cmd_rsp_buf_pool)
7856 		goto fail_free_dma_buf_pool;
7857 
7858 	/*
7859 	 * Enable sr-iov virtual functions if supported and configured
7860 	 * through the module parameter.
7861 	 */
7862 	if (phba->cfg_sriov_nr_virtfn > 0) {
7863 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7864 						 phba->cfg_sriov_nr_virtfn);
7865 		if (rc) {
7866 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7867 					"2808 Requested number of SR-IOV "
7868 					"virtual functions (%d) is not "
7869 					"supported\n",
7870 					phba->cfg_sriov_nr_virtfn);
7871 			phba->cfg_sriov_nr_virtfn = 0;
7872 		}
7873 	}
7874 
7875 	return 0;
7876 
7877 fail_free_dma_buf_pool:
7878 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7879 	phba->lpfc_sg_dma_buf_pool = NULL;
7880 fail_free_mem:
7881 	lpfc_mem_free(phba);
7882 	return -ENOMEM;
7883 }
7884 
7885 /**
7886  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7887  * @phba: pointer to lpfc hba data structure.
7888  *
7889  * This routine is invoked to unset the driver internal resources set up
7890  * specific for supporting the SLI-3 HBA device it attached to.
7891  **/
7892 static void
7893 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7894 {
7895 	/* Free device driver memory allocated */
7896 	lpfc_mem_free_all(phba);
7897 
7898 	return;
7899 }
7900 
7901 /**
7902  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7903  * @phba: pointer to lpfc hba data structure.
7904  *
7905  * This routine is invoked to set up the driver internal resources specific to
7906  * support the SLI-4 HBA device it attached to.
7907  *
7908  * Return codes
7909  * 	0 - successful
7910  * 	other values - error
7911  **/
7912 static int
7913 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7914 {
7915 	LPFC_MBOXQ_t *mboxq;
7916 	MAILBOX_t *mb;
7917 	int rc, i, max_buf_size;
7918 	int longs;
7919 	int extra;
7920 	uint64_t wwn;
7921 	u32 if_type;
7922 	u32 if_fam;
7923 
7924 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7925 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7926 	phba->sli4_hba.curr_disp_cpu = 0;
7927 
7928 	/* Get all the module params for configuring this host */
7929 	lpfc_get_cfgparam(phba);
7930 
7931 	/* Set up phase-1 common device driver resources */
7932 	rc = lpfc_setup_driver_resource_phase1(phba);
7933 	if (rc)
7934 		return -ENODEV;
7935 
7936 	/* Before proceed, wait for POST done and device ready */
7937 	rc = lpfc_sli4_post_status_check(phba);
7938 	if (rc)
7939 		return -ENODEV;
7940 
7941 	/* Allocate all driver workqueues here */
7942 
7943 	/* The lpfc_wq workqueue for deferred irq use */
7944 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7945 	if (!phba->wq)
7946 		return -ENOMEM;
7947 
7948 	/*
7949 	 * Initialize timers used by driver
7950 	 */
7951 
7952 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7953 
7954 	/* FCF rediscover timer */
7955 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7956 
7957 	/* CMF congestion timer */
7958 	hrtimer_setup(&phba->cmf_timer, lpfc_cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7959 	/* CMF 1 minute stats collection timer */
7960 	hrtimer_setup(&phba->cmf_stats_timer, lpfc_cmf_stats_timer, CLOCK_MONOTONIC,
7961 		      HRTIMER_MODE_REL);
7962 
7963 	/*
7964 	 * Control structure for handling external multi-buffer mailbox
7965 	 * command pass-through.
7966 	 */
7967 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7968 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7969 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7970 
7971 	phba->max_vpi = LPFC_MAX_VPI;
7972 
7973 	/* This will be set to correct value after the read_config mbox */
7974 	phba->max_vports = 0;
7975 
7976 	/* Program the default value of vlan_id and fc_map */
7977 	phba->valid_vlan = 0;
7978 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7979 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7980 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7981 
7982 	/*
7983 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7984 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7985 	 * The WQ create will allocate the ring.
7986 	 */
7987 
7988 	/* Initialize buffer queue management fields */
7989 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7990 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7991 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7992 
7993 	/* for VMID idle timeout if VMID is enabled */
7994 	if (lpfc_is_vmid_enabled(phba))
7995 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7996 
7997 	/*
7998 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7999 	 */
8000 	/* Initialize the Abort buffer list used by driver */
8001 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8002 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8003 
8004 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8005 		/* Initialize the Abort nvme buffer list used by driver */
8006 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8007 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8008 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8009 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8010 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8011 	}
8012 
8013 	/* This abort list used by worker thread */
8014 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8015 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8016 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8017 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8018 
8019 	/*
8020 	 * Initialize driver internal slow-path work queues
8021 	 */
8022 
8023 	/* Driver internel slow-path CQ Event pool */
8024 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8025 	/* Response IOCB work queue list */
8026 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8027 	/* Asynchronous event CQ Event work queue list */
8028 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8029 	/* Slow-path XRI aborted CQ Event work queue list */
8030 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8031 	/* Receive queue CQ Event work queue list */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8033 
8034 	/* Initialize extent block lists. */
8035 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8036 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8037 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8038 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8039 
8040 	/* Initialize mboxq lists. If the early init routines fail
8041 	 * these lists need to be correctly initialized.
8042 	 */
8043 	INIT_LIST_HEAD(&phba->sli.mboxq);
8044 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8045 
8046 	/* initialize optic_state to 0xFF */
8047 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8048 
8049 	/* Allocate device driver memory */
8050 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8051 	if (rc)
8052 		goto out_destroy_workqueue;
8053 
8054 	/* IF Type 2 ports get initialized now. */
8055 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8056 	    LPFC_SLI_INTF_IF_TYPE_2) {
8057 		rc = lpfc_pci_function_reset(phba);
8058 		if (unlikely(rc)) {
8059 			rc = -ENODEV;
8060 			goto out_free_mem;
8061 		}
8062 		phba->temp_sensor_support = 1;
8063 	}
8064 
8065 	/* Create the bootstrap mailbox command */
8066 	rc = lpfc_create_bootstrap_mbox(phba);
8067 	if (unlikely(rc))
8068 		goto out_free_mem;
8069 
8070 	/* Set up the host's endian order with the device. */
8071 	rc = lpfc_setup_endian_order(phba);
8072 	if (unlikely(rc))
8073 		goto out_free_bsmbx;
8074 
8075 	/* Set up the hba's configuration parameters. */
8076 	rc = lpfc_sli4_read_config(phba);
8077 	if (unlikely(rc))
8078 		goto out_free_bsmbx;
8079 
8080 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8081 		/* Right now the link is down, if FA-PWWN is configured the
8082 		 * firmware will try FLOGI before the driver gets a link up.
8083 		 * If it fails, the driver should get a MISCONFIGURED async
8084 		 * event which will clear this flag. The only notification
8085 		 * the driver gets is if it fails, if it succeeds there is no
8086 		 * notification given. Assume success.
8087 		 */
8088 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8089 	}
8090 
8091 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8092 	if (unlikely(rc))
8093 		goto out_free_bsmbx;
8094 
8095 	/* IF Type 0 ports get initialized now. */
8096 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8097 	    LPFC_SLI_INTF_IF_TYPE_0) {
8098 		rc = lpfc_pci_function_reset(phba);
8099 		if (unlikely(rc))
8100 			goto out_free_bsmbx;
8101 	}
8102 
8103 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8104 						       GFP_KERNEL);
8105 	if (!mboxq) {
8106 		rc = -ENOMEM;
8107 		goto out_free_bsmbx;
8108 	}
8109 
8110 	/* Check for NVMET being configured */
8111 	phba->nvmet_support = 0;
8112 	if (lpfc_enable_nvmet_cnt) {
8113 
8114 		/* First get WWN of HBA instance */
8115 		lpfc_read_nv(phba, mboxq);
8116 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8117 		if (rc != MBX_SUCCESS) {
8118 			lpfc_printf_log(phba, KERN_ERR,
8119 					LOG_TRACE_EVENT,
8120 					"6016 Mailbox failed , mbxCmd x%x "
8121 					"READ_NV, mbxStatus x%x\n",
8122 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8123 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8124 			mempool_free(mboxq, phba->mbox_mem_pool);
8125 			rc = -EIO;
8126 			goto out_free_bsmbx;
8127 		}
8128 		mb = &mboxq->u.mb;
8129 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8130 		       sizeof(uint64_t));
8131 		wwn = cpu_to_be64(wwn);
8132 		phba->sli4_hba.wwnn.u.name = wwn;
8133 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8134 		       sizeof(uint64_t));
8135 		/* wwn is WWPN of HBA instance */
8136 		wwn = cpu_to_be64(wwn);
8137 		phba->sli4_hba.wwpn.u.name = wwn;
8138 
8139 		/* Check to see if it matches any module parameter */
8140 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8141 			if (wwn == lpfc_enable_nvmet[i]) {
8142 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8143 				if (lpfc_nvmet_mem_alloc(phba))
8144 					break;
8145 
8146 				phba->nvmet_support = 1; /* a match */
8147 
8148 				lpfc_printf_log(phba, KERN_ERR,
8149 						LOG_TRACE_EVENT,
8150 						"6017 NVME Target %016llx\n",
8151 						wwn);
8152 #else
8153 				lpfc_printf_log(phba, KERN_ERR,
8154 						LOG_TRACE_EVENT,
8155 						"6021 Can't enable NVME Target."
8156 						" NVME_TARGET_FC infrastructure"
8157 						" is not in kernel\n");
8158 #endif
8159 				/* Not supported for NVMET */
8160 				phba->cfg_xri_rebalancing = 0;
8161 				if (phba->irq_chann_mode == NHT_MODE) {
8162 					phba->cfg_irq_chann =
8163 						phba->sli4_hba.num_present_cpu;
8164 					phba->cfg_hdw_queue =
8165 						phba->sli4_hba.num_present_cpu;
8166 					phba->irq_chann_mode = NORMAL_MODE;
8167 				}
8168 				break;
8169 			}
8170 		}
8171 	}
8172 
8173 	lpfc_nvme_mod_param_dep(phba);
8174 
8175 	/*
8176 	 * Get sli4 parameters that override parameters from Port capabilities.
8177 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8178 	 * back in conflict.
8179 	 */
8180 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8181 	if (rc) {
8182 		if_type = bf_get(lpfc_sli_intf_if_type,
8183 				 &phba->sli4_hba.sli_intf);
8184 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8185 				&phba->sli4_hba.sli_intf);
8186 		if (phba->sli4_hba.extents_in_use &&
8187 		    phba->sli4_hba.rpi_hdrs_in_use) {
8188 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8189 					"2999 Unsupported SLI4 Parameters "
8190 					"Extents and RPI headers enabled.\n");
8191 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8192 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8193 				mempool_free(mboxq, phba->mbox_mem_pool);
8194 				rc = -EIO;
8195 				goto out_free_bsmbx;
8196 			}
8197 		}
8198 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8199 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8200 			mempool_free(mboxq, phba->mbox_mem_pool);
8201 			rc = -EIO;
8202 			goto out_free_bsmbx;
8203 		}
8204 	}
8205 
8206 	/*
8207 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8208 	 * for boundary conditions in its max_sgl_segment template.
8209 	 */
8210 	extra = 2;
8211 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8212 		extra++;
8213 
8214 	/*
8215 	 * It doesn't matter what family our adapter is in, we are
8216 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8217 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8218 	 */
8219 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8220 
8221 	/*
8222 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8223 	 * used to create the sg_dma_buf_pool must be calculated.
8224 	 */
8225 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8226 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8227 
8228 		/*
8229 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8230 		 * the FCP rsp, and a SGE. Sice we have no control
8231 		 * over how many protection segments the SCSI Layer
8232 		 * will hand us (ie: there could be one for every block
8233 		 * in the IO), just allocate enough SGEs to accomidate
8234 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8235 		 * to minimize the risk of running out.
8236 		 */
8237 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8238 				sizeof(struct fcp_rsp) + max_buf_size;
8239 
8240 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8241 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8242 
8243 		/*
8244 		 * If supporting DIF, reduce the seg count for scsi to
8245 		 * allow room for the DIF sges.
8246 		 */
8247 		if (phba->cfg_enable_bg &&
8248 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8249 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8250 		else
8251 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8252 
8253 	} else {
8254 		/*
8255 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8256 		 * the FCP rsp, a SGE for each, and a SGE for up to
8257 		 * cfg_sg_seg_cnt data segments.
8258 		 */
8259 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8260 				sizeof(struct fcp_rsp) +
8261 				((phba->cfg_sg_seg_cnt + extra) *
8262 				sizeof(struct sli4_sge));
8263 
8264 		/* Total SGEs for scsi_sg_list */
8265 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8266 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8267 
8268 		/*
8269 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8270 		 * need to post 1 page for the SGL.
8271 		 */
8272 	}
8273 
8274 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8275 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8276 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8277 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8278 	else
8279 		phba->cfg_sg_dma_buf_size =
8280 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8281 
8282 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8283 			       sizeof(struct sli4_sge);
8284 
8285 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8286 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8287 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8288 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8289 					"6300 Reducing NVME sg segment "
8290 					"cnt to %d\n",
8291 					LPFC_MAX_NVME_SEG_CNT);
8292 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8293 		} else
8294 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8295 	}
8296 
8297 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8298 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8299 			"total:%d scsi:%d nvme:%d\n",
8300 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8301 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8302 			phba->cfg_nvme_seg_cnt);
8303 
8304 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8305 		i = phba->cfg_sg_dma_buf_size;
8306 	else
8307 		i = SLI4_PAGE_SIZE;
8308 
8309 	phba->lpfc_sg_dma_buf_pool =
8310 			dma_pool_create("lpfc_sg_dma_buf_pool",
8311 					&phba->pcidev->dev,
8312 					phba->cfg_sg_dma_buf_size,
8313 					i, 0);
8314 	if (!phba->lpfc_sg_dma_buf_pool) {
8315 		rc = -ENOMEM;
8316 		goto out_free_bsmbx;
8317 	}
8318 
8319 	phba->lpfc_cmd_rsp_buf_pool =
8320 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8321 					&phba->pcidev->dev,
8322 					sizeof(struct fcp_cmnd32) +
8323 					sizeof(struct fcp_rsp),
8324 					i, 0);
8325 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8326 		rc = -ENOMEM;
8327 		goto out_free_sg_dma_buf;
8328 	}
8329 
8330 	mempool_free(mboxq, phba->mbox_mem_pool);
8331 
8332 	/* Verify OAS is supported */
8333 	lpfc_sli4_oas_verify(phba);
8334 
8335 	/* Verify RAS support on adapter */
8336 	lpfc_sli4_ras_init(phba);
8337 
8338 	/* Verify all the SLI4 queues */
8339 	rc = lpfc_sli4_queue_verify(phba);
8340 	if (rc)
8341 		goto out_free_cmd_rsp_buf;
8342 
8343 	/* Create driver internal CQE event pool */
8344 	rc = lpfc_sli4_cq_event_pool_create(phba);
8345 	if (rc)
8346 		goto out_free_cmd_rsp_buf;
8347 
8348 	/* Initialize sgl lists per host */
8349 	lpfc_init_sgl_list(phba);
8350 
8351 	/* Allocate and initialize active sgl array */
8352 	rc = lpfc_init_active_sgl_array(phba);
8353 	if (rc) {
8354 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8355 				"1430 Failed to initialize sgl list.\n");
8356 		goto out_destroy_cq_event_pool;
8357 	}
8358 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8359 	if (rc) {
8360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8361 				"1432 Failed to initialize rpi headers.\n");
8362 		goto out_free_active_sgl;
8363 	}
8364 
8365 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8366 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8367 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8368 					 GFP_KERNEL);
8369 	if (!phba->fcf.fcf_rr_bmask) {
8370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8371 				"2759 Failed allocate memory for FCF round "
8372 				"robin failover bmask\n");
8373 		rc = -ENOMEM;
8374 		goto out_remove_rpi_hdrs;
8375 	}
8376 
8377 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8378 					    sizeof(struct lpfc_hba_eq_hdl),
8379 					    GFP_KERNEL);
8380 	if (!phba->sli4_hba.hba_eq_hdl) {
8381 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8382 				"2572 Failed allocate memory for "
8383 				"fast-path per-EQ handle array\n");
8384 		rc = -ENOMEM;
8385 		goto out_free_fcf_rr_bmask;
8386 	}
8387 
8388 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8389 					sizeof(struct lpfc_vector_map_info),
8390 					GFP_KERNEL);
8391 	if (!phba->sli4_hba.cpu_map) {
8392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8393 				"3327 Failed allocate memory for msi-x "
8394 				"interrupt vector mapping\n");
8395 		rc = -ENOMEM;
8396 		goto out_free_hba_eq_hdl;
8397 	}
8398 
8399 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8400 	if (!phba->sli4_hba.eq_info) {
8401 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8402 				"3321 Failed allocation for per_cpu stats\n");
8403 		rc = -ENOMEM;
8404 		goto out_free_hba_cpu_map;
8405 	}
8406 
8407 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8408 					   sizeof(*phba->sli4_hba.idle_stat),
8409 					   GFP_KERNEL);
8410 	if (!phba->sli4_hba.idle_stat) {
8411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8412 				"3390 Failed allocation for idle_stat\n");
8413 		rc = -ENOMEM;
8414 		goto out_free_hba_eq_info;
8415 	}
8416 
8417 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8418 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8419 	if (!phba->sli4_hba.c_stat) {
8420 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8421 				"3332 Failed allocating per cpu hdwq stats\n");
8422 		rc = -ENOMEM;
8423 		goto out_free_hba_idle_stat;
8424 	}
8425 #endif
8426 
8427 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8428 	if (!phba->cmf_stat) {
8429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8430 				"3331 Failed allocating per cpu cgn stats\n");
8431 		rc = -ENOMEM;
8432 		goto out_free_hba_hdwq_info;
8433 	}
8434 
8435 	/*
8436 	 * Enable sr-iov virtual functions if supported and configured
8437 	 * through the module parameter.
8438 	 */
8439 	if (phba->cfg_sriov_nr_virtfn > 0) {
8440 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8441 						 phba->cfg_sriov_nr_virtfn);
8442 		if (rc) {
8443 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8444 					"3020 Requested number of SR-IOV "
8445 					"virtual functions (%d) is not "
8446 					"supported\n",
8447 					phba->cfg_sriov_nr_virtfn);
8448 			phba->cfg_sriov_nr_virtfn = 0;
8449 		}
8450 	}
8451 
8452 	return 0;
8453 
8454 out_free_hba_hdwq_info:
8455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8456 	free_percpu(phba->sli4_hba.c_stat);
8457 out_free_hba_idle_stat:
8458 #endif
8459 	kfree(phba->sli4_hba.idle_stat);
8460 out_free_hba_eq_info:
8461 	free_percpu(phba->sli4_hba.eq_info);
8462 out_free_hba_cpu_map:
8463 	kfree(phba->sli4_hba.cpu_map);
8464 out_free_hba_eq_hdl:
8465 	kfree(phba->sli4_hba.hba_eq_hdl);
8466 out_free_fcf_rr_bmask:
8467 	kfree(phba->fcf.fcf_rr_bmask);
8468 out_remove_rpi_hdrs:
8469 	lpfc_sli4_remove_rpi_hdrs(phba);
8470 out_free_active_sgl:
8471 	lpfc_free_active_sgl(phba);
8472 out_destroy_cq_event_pool:
8473 	lpfc_sli4_cq_event_pool_destroy(phba);
8474 out_free_cmd_rsp_buf:
8475 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8476 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8477 out_free_sg_dma_buf:
8478 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8479 	phba->lpfc_sg_dma_buf_pool = NULL;
8480 out_free_bsmbx:
8481 	lpfc_destroy_bootstrap_mbox(phba);
8482 out_free_mem:
8483 	lpfc_mem_free(phba);
8484 out_destroy_workqueue:
8485 	destroy_workqueue(phba->wq);
8486 	phba->wq = NULL;
8487 	return rc;
8488 }
8489 
8490 /**
8491  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8492  * @phba: pointer to lpfc hba data structure.
8493  *
8494  * This routine is invoked to unset the driver internal resources set up
8495  * specific for supporting the SLI-4 HBA device it attached to.
8496  **/
8497 static void
8498 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8499 {
8500 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8501 
8502 	free_percpu(phba->sli4_hba.eq_info);
8503 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8504 	free_percpu(phba->sli4_hba.c_stat);
8505 #endif
8506 	free_percpu(phba->cmf_stat);
8507 	kfree(phba->sli4_hba.idle_stat);
8508 
8509 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8510 	kfree(phba->sli4_hba.cpu_map);
8511 	phba->sli4_hba.num_possible_cpu = 0;
8512 	phba->sli4_hba.num_present_cpu = 0;
8513 	phba->sli4_hba.curr_disp_cpu = 0;
8514 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8515 
8516 	/* Free memory allocated for fast-path work queue handles */
8517 	kfree(phba->sli4_hba.hba_eq_hdl);
8518 
8519 	/* Free the allocated rpi headers. */
8520 	lpfc_sli4_remove_rpi_hdrs(phba);
8521 	lpfc_sli4_remove_rpis(phba);
8522 
8523 	/* Free eligible FCF index bmask */
8524 	kfree(phba->fcf.fcf_rr_bmask);
8525 
8526 	/* Free the ELS sgl list */
8527 	lpfc_free_active_sgl(phba);
8528 	lpfc_free_els_sgl_list(phba);
8529 	lpfc_free_nvmet_sgl_list(phba);
8530 
8531 	/* Free the completion queue EQ event pool */
8532 	lpfc_sli4_cq_event_release_all(phba);
8533 	lpfc_sli4_cq_event_pool_destroy(phba);
8534 
8535 	/* Release resource identifiers. */
8536 	lpfc_sli4_dealloc_resource_identifiers(phba);
8537 
8538 	/* Free the bsmbx region. */
8539 	lpfc_destroy_bootstrap_mbox(phba);
8540 
8541 	/* Free the SLI Layer memory with SLI4 HBAs */
8542 	lpfc_mem_free_all(phba);
8543 
8544 	/* Free the current connect table */
8545 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8546 		&phba->fcf_conn_rec_list, list) {
8547 		list_del_init(&conn_entry->list);
8548 		kfree(conn_entry);
8549 	}
8550 
8551 	return;
8552 }
8553 
8554 /**
8555  * lpfc_init_api_table_setup - Set up init api function jump table
8556  * @phba: The hba struct for which this call is being executed.
8557  * @dev_grp: The HBA PCI-Device group number.
8558  *
8559  * This routine sets up the device INIT interface API function jump table
8560  * in @phba struct.
8561  *
8562  * Returns: 0 - success, -ENODEV - failure.
8563  **/
8564 int
8565 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8566 {
8567 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8568 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8569 	phba->lpfc_selective_reset = lpfc_selective_reset;
8570 	switch (dev_grp) {
8571 	case LPFC_PCI_DEV_LP:
8572 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8573 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8574 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8575 		break;
8576 	case LPFC_PCI_DEV_OC:
8577 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8578 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8579 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8580 		break;
8581 	default:
8582 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8583 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8584 				dev_grp);
8585 		return -ENODEV;
8586 	}
8587 	return 0;
8588 }
8589 
8590 /**
8591  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8592  * @phba: pointer to lpfc hba data structure.
8593  *
8594  * This routine is invoked to set up the driver internal resources after the
8595  * device specific resource setup to support the HBA device it attached to.
8596  *
8597  * Return codes
8598  * 	0 - successful
8599  * 	other values - error
8600  **/
8601 static int
8602 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8603 {
8604 	int error;
8605 
8606 	/* Startup the kernel thread for this host adapter. */
8607 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8608 					  "lpfc_worker_%d", phba->brd_no);
8609 	if (IS_ERR(phba->worker_thread)) {
8610 		error = PTR_ERR(phba->worker_thread);
8611 		return error;
8612 	}
8613 
8614 	return 0;
8615 }
8616 
8617 /**
8618  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8619  * @phba: pointer to lpfc hba data structure.
8620  *
8621  * This routine is invoked to unset the driver internal resources set up after
8622  * the device specific resource setup for supporting the HBA device it
8623  * attached to.
8624  **/
8625 static void
8626 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8627 {
8628 	if (phba->wq) {
8629 		destroy_workqueue(phba->wq);
8630 		phba->wq = NULL;
8631 	}
8632 
8633 	/* Stop kernel worker thread */
8634 	if (phba->worker_thread)
8635 		kthread_stop(phba->worker_thread);
8636 }
8637 
8638 /**
8639  * lpfc_free_iocb_list - Free iocb list.
8640  * @phba: pointer to lpfc hba data structure.
8641  *
8642  * This routine is invoked to free the driver's IOCB list and memory.
8643  **/
8644 void
8645 lpfc_free_iocb_list(struct lpfc_hba *phba)
8646 {
8647 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8648 
8649 	spin_lock_irq(&phba->hbalock);
8650 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8651 				 &phba->lpfc_iocb_list, list) {
8652 		list_del(&iocbq_entry->list);
8653 		kfree(iocbq_entry);
8654 		phba->total_iocbq_bufs--;
8655 	}
8656 	spin_unlock_irq(&phba->hbalock);
8657 
8658 	return;
8659 }
8660 
8661 /**
8662  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8663  * @phba: pointer to lpfc hba data structure.
8664  * @iocb_count: number of requested iocbs
8665  *
8666  * This routine is invoked to allocate and initizlize the driver's IOCB
8667  * list and set up the IOCB tag array accordingly.
8668  *
8669  * Return codes
8670  *	0 - successful
8671  *	other values - error
8672  **/
8673 int
8674 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8675 {
8676 	struct lpfc_iocbq *iocbq_entry = NULL;
8677 	uint16_t iotag;
8678 	int i;
8679 
8680 	/* Initialize and populate the iocb list per host.  */
8681 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8682 	for (i = 0; i < iocb_count; i++) {
8683 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8684 		if (iocbq_entry == NULL) {
8685 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8686 				"expected %d count. Unloading driver.\n",
8687 				__func__, i, iocb_count);
8688 			goto out_free_iocbq;
8689 		}
8690 
8691 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8692 		if (iotag == 0) {
8693 			kfree(iocbq_entry);
8694 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8695 				"Unloading driver.\n", __func__);
8696 			goto out_free_iocbq;
8697 		}
8698 		iocbq_entry->sli4_lxritag = NO_XRI;
8699 		iocbq_entry->sli4_xritag = NO_XRI;
8700 
8701 		spin_lock_irq(&phba->hbalock);
8702 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8703 		phba->total_iocbq_bufs++;
8704 		spin_unlock_irq(&phba->hbalock);
8705 	}
8706 
8707 	return 0;
8708 
8709 out_free_iocbq:
8710 	lpfc_free_iocb_list(phba);
8711 
8712 	return -ENOMEM;
8713 }
8714 
8715 /**
8716  * lpfc_free_sgl_list - Free a given sgl list.
8717  * @phba: pointer to lpfc hba data structure.
8718  * @sglq_list: pointer to the head of sgl list.
8719  *
8720  * This routine is invoked to free a give sgl list and memory.
8721  **/
8722 void
8723 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8724 {
8725 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8726 
8727 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8728 		list_del(&sglq_entry->list);
8729 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8730 		kfree(sglq_entry);
8731 	}
8732 }
8733 
8734 /**
8735  * lpfc_free_els_sgl_list - Free els sgl list.
8736  * @phba: pointer to lpfc hba data structure.
8737  *
8738  * This routine is invoked to free the driver's els sgl list and memory.
8739  **/
8740 static void
8741 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8742 {
8743 	LIST_HEAD(sglq_list);
8744 
8745 	/* Retrieve all els sgls from driver list */
8746 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8747 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8748 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8749 
8750 	/* Now free the sgl list */
8751 	lpfc_free_sgl_list(phba, &sglq_list);
8752 }
8753 
8754 /**
8755  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8756  * @phba: pointer to lpfc hba data structure.
8757  *
8758  * This routine is invoked to free the driver's nvmet sgl list and memory.
8759  **/
8760 static void
8761 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8762 {
8763 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8764 	LIST_HEAD(sglq_list);
8765 
8766 	/* Retrieve all nvmet sgls from driver list */
8767 	spin_lock_irq(&phba->hbalock);
8768 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8769 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8770 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8771 	spin_unlock_irq(&phba->hbalock);
8772 
8773 	/* Now free the sgl list */
8774 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8775 		list_del(&sglq_entry->list);
8776 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8777 		kfree(sglq_entry);
8778 	}
8779 
8780 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8781 	 * The next initialization cycle sets the count and allocates
8782 	 * the sgls over again.
8783 	 */
8784 	phba->sli4_hba.nvmet_xri_cnt = 0;
8785 }
8786 
8787 /**
8788  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8789  * @phba: pointer to lpfc hba data structure.
8790  *
8791  * This routine is invoked to allocate the driver's active sgl memory.
8792  * This array will hold the sglq_entry's for active IOs.
8793  **/
8794 static int
8795 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8796 {
8797 	int size;
8798 	size = sizeof(struct lpfc_sglq *);
8799 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8800 
8801 	phba->sli4_hba.lpfc_sglq_active_list =
8802 		kzalloc(size, GFP_KERNEL);
8803 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8804 		return -ENOMEM;
8805 	return 0;
8806 }
8807 
8808 /**
8809  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8810  * @phba: pointer to lpfc hba data structure.
8811  *
8812  * This routine is invoked to walk through the array of active sglq entries
8813  * and free all of the resources.
8814  * This is just a place holder for now.
8815  **/
8816 static void
8817 lpfc_free_active_sgl(struct lpfc_hba *phba)
8818 {
8819 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8820 }
8821 
8822 /**
8823  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8824  * @phba: pointer to lpfc hba data structure.
8825  *
8826  * This routine is invoked to allocate and initizlize the driver's sgl
8827  * list and set up the sgl xritag tag array accordingly.
8828  *
8829  **/
8830 static void
8831 lpfc_init_sgl_list(struct lpfc_hba *phba)
8832 {
8833 	/* Initialize and populate the sglq list per host/VF. */
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8835 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8836 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8837 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8838 
8839 	/* els xri-sgl book keeping */
8840 	phba->sli4_hba.els_xri_cnt = 0;
8841 
8842 	/* nvme xri-buffer book keeping */
8843 	phba->sli4_hba.io_xri_cnt = 0;
8844 }
8845 
8846 /**
8847  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8848  * @phba: pointer to lpfc hba data structure.
8849  *
8850  * This routine is invoked to post rpi header templates to the
8851  * port for those SLI4 ports that do not support extents.  This routine
8852  * posts a PAGE_SIZE memory region to the port to hold up to
8853  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8854  * and should be called only when interrupts are disabled.
8855  *
8856  * Return codes
8857  * 	0 - successful
8858  *	-ERROR - otherwise.
8859  **/
8860 int
8861 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8862 {
8863 	int rc = 0;
8864 	struct lpfc_rpi_hdr *rpi_hdr;
8865 
8866 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8867 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8868 		return rc;
8869 	if (phba->sli4_hba.extents_in_use)
8870 		return -EIO;
8871 
8872 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8873 	if (!rpi_hdr) {
8874 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8875 				"0391 Error during rpi post operation\n");
8876 		lpfc_sli4_remove_rpis(phba);
8877 		rc = -ENODEV;
8878 	}
8879 
8880 	return rc;
8881 }
8882 
8883 /**
8884  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8885  * @phba: pointer to lpfc hba data structure.
8886  *
8887  * This routine is invoked to allocate a single 4KB memory region to
8888  * support rpis and stores them in the phba.  This single region
8889  * provides support for up to 64 rpis.  The region is used globally
8890  * by the device.
8891  *
8892  * Returns:
8893  *   A valid rpi hdr on success.
8894  *   A NULL pointer on any failure.
8895  **/
8896 struct lpfc_rpi_hdr *
8897 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8898 {
8899 	uint16_t rpi_limit, curr_rpi_range;
8900 	struct lpfc_dmabuf *dmabuf;
8901 	struct lpfc_rpi_hdr *rpi_hdr;
8902 
8903 	/*
8904 	 * If the SLI4 port supports extents, posting the rpi header isn't
8905 	 * required.  Set the expected maximum count and let the actual value
8906 	 * get set when extents are fully allocated.
8907 	 */
8908 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8909 		return NULL;
8910 	if (phba->sli4_hba.extents_in_use)
8911 		return NULL;
8912 
8913 	/* The limit on the logical index is just the max_rpi count. */
8914 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8915 
8916 	spin_lock_irq(&phba->hbalock);
8917 	/*
8918 	 * Establish the starting RPI in this header block.  The starting
8919 	 * rpi is normalized to a zero base because the physical rpi is
8920 	 * port based.
8921 	 */
8922 	curr_rpi_range = phba->sli4_hba.next_rpi;
8923 	spin_unlock_irq(&phba->hbalock);
8924 
8925 	/* Reached full RPI range */
8926 	if (curr_rpi_range == rpi_limit)
8927 		return NULL;
8928 
8929 	/*
8930 	 * First allocate the protocol header region for the port.  The
8931 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8932 	 */
8933 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8934 	if (!dmabuf)
8935 		return NULL;
8936 
8937 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8938 					  LPFC_HDR_TEMPLATE_SIZE,
8939 					  &dmabuf->phys, GFP_KERNEL);
8940 	if (!dmabuf->virt) {
8941 		rpi_hdr = NULL;
8942 		goto err_free_dmabuf;
8943 	}
8944 
8945 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8946 		rpi_hdr = NULL;
8947 		goto err_free_coherent;
8948 	}
8949 
8950 	/* Save the rpi header data for cleanup later. */
8951 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8952 	if (!rpi_hdr)
8953 		goto err_free_coherent;
8954 
8955 	rpi_hdr->dmabuf = dmabuf;
8956 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8957 	rpi_hdr->page_count = 1;
8958 	spin_lock_irq(&phba->hbalock);
8959 
8960 	/* The rpi_hdr stores the logical index only. */
8961 	rpi_hdr->start_rpi = curr_rpi_range;
8962 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8963 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8964 
8965 	spin_unlock_irq(&phba->hbalock);
8966 	return rpi_hdr;
8967 
8968  err_free_coherent:
8969 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8970 			  dmabuf->virt, dmabuf->phys);
8971  err_free_dmabuf:
8972 	kfree(dmabuf);
8973 	return NULL;
8974 }
8975 
8976 /**
8977  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8978  * @phba: pointer to lpfc hba data structure.
8979  *
8980  * This routine is invoked to remove all memory resources allocated
8981  * to support rpis for SLI4 ports not supporting extents. This routine
8982  * presumes the caller has released all rpis consumed by fabric or port
8983  * logins and is prepared to have the header pages removed.
8984  **/
8985 void
8986 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8987 {
8988 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8989 
8990 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8991 		goto exit;
8992 
8993 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8994 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8995 		list_del(&rpi_hdr->list);
8996 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8997 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8998 		kfree(rpi_hdr->dmabuf);
8999 		kfree(rpi_hdr);
9000 	}
9001  exit:
9002 	/* There are no rpis available to the port now. */
9003 	phba->sli4_hba.next_rpi = 0;
9004 }
9005 
9006 /**
9007  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9008  * @pdev: pointer to pci device data structure.
9009  *
9010  * This routine is invoked to allocate the driver hba data structure for an
9011  * HBA device. If the allocation is successful, the phba reference to the
9012  * PCI device data structure is set.
9013  *
9014  * Return codes
9015  *      pointer to @phba - successful
9016  *      NULL - error
9017  **/
9018 static struct lpfc_hba *
9019 lpfc_hba_alloc(struct pci_dev *pdev)
9020 {
9021 	struct lpfc_hba *phba;
9022 
9023 	/* Allocate memory for HBA structure */
9024 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9025 	if (!phba) {
9026 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9027 		return NULL;
9028 	}
9029 
9030 	/* Set reference to PCI device in HBA structure */
9031 	phba->pcidev = pdev;
9032 
9033 	/* Assign an unused board number */
9034 	phba->brd_no = lpfc_get_instance();
9035 	if (phba->brd_no < 0) {
9036 		kfree(phba);
9037 		return NULL;
9038 	}
9039 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9040 
9041 	spin_lock_init(&phba->ct_ev_lock);
9042 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9043 
9044 	return phba;
9045 }
9046 
9047 /**
9048  * lpfc_hba_free - Free driver hba data structure with a device.
9049  * @phba: pointer to lpfc hba data structure.
9050  *
9051  * This routine is invoked to free the driver hba data structure with an
9052  * HBA device.
9053  **/
9054 static void
9055 lpfc_hba_free(struct lpfc_hba *phba)
9056 {
9057 	if (phba->sli_rev == LPFC_SLI_REV4)
9058 		kfree(phba->sli4_hba.hdwq);
9059 
9060 	/* Release the driver assigned board number */
9061 	idr_remove(&lpfc_hba_index, phba->brd_no);
9062 
9063 	/* Free memory allocated with sli3 rings */
9064 	kfree(phba->sli.sli3_ring);
9065 	phba->sli.sli3_ring = NULL;
9066 
9067 	kfree(phba);
9068 	return;
9069 }
9070 
9071 /**
9072  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9073  * @vport: pointer to lpfc vport data structure.
9074  *
9075  * This routine is will setup initial FDMI attribute masks for
9076  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9077  * to get these attributes first before falling back, the attribute
9078  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9079  **/
9080 void
9081 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9082 {
9083 	struct lpfc_hba *phba = vport->phba;
9084 
9085 	set_bit(FC_ALLOW_FDMI, &vport->load_flag);
9086 	if (phba->cfg_enable_SmartSAN ||
9087 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9088 		/* Setup appropriate attribute masks */
9089 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9090 		if (phba->cfg_enable_SmartSAN)
9091 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9092 		else
9093 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9094 	}
9095 
9096 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9097 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9098 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9099 }
9100 
9101 /**
9102  * lpfc_create_shost - Create hba physical port with associated scsi host.
9103  * @phba: pointer to lpfc hba data structure.
9104  *
9105  * This routine is invoked to create HBA physical port and associate a SCSI
9106  * host with it.
9107  *
9108  * Return codes
9109  *      0 - successful
9110  *      other values - error
9111  **/
9112 static int
9113 lpfc_create_shost(struct lpfc_hba *phba)
9114 {
9115 	struct lpfc_vport *vport;
9116 	struct Scsi_Host  *shost;
9117 
9118 	/* Initialize HBA FC structure */
9119 	phba->fc_edtov = FF_DEF_EDTOV;
9120 	phba->fc_ratov = FF_DEF_RATOV;
9121 	phba->fc_altov = FF_DEF_ALTOV;
9122 	phba->fc_arbtov = FF_DEF_ARBTOV;
9123 
9124 	atomic_set(&phba->sdev_cnt, 0);
9125 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9126 	if (!vport)
9127 		return -ENODEV;
9128 
9129 	shost = lpfc_shost_from_vport(vport);
9130 	phba->pport = vport;
9131 
9132 	if (phba->nvmet_support) {
9133 		/* Only 1 vport (pport) will support NVME target */
9134 		phba->targetport = NULL;
9135 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9136 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9137 				"6076 NVME Target Found\n");
9138 	}
9139 
9140 	lpfc_debugfs_initialize(vport);
9141 	/* Put reference to SCSI host to driver's device private data */
9142 	pci_set_drvdata(phba->pcidev, shost);
9143 
9144 	lpfc_setup_fdmi_mask(vport);
9145 
9146 	/*
9147 	 * At this point we are fully registered with PSA. In addition,
9148 	 * any initial discovery should be completed.
9149 	 */
9150 	return 0;
9151 }
9152 
9153 /**
9154  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9155  * @phba: pointer to lpfc hba data structure.
9156  *
9157  * This routine is invoked to destroy HBA physical port and the associated
9158  * SCSI host.
9159  **/
9160 static void
9161 lpfc_destroy_shost(struct lpfc_hba *phba)
9162 {
9163 	struct lpfc_vport *vport = phba->pport;
9164 
9165 	/* Destroy physical port that associated with the SCSI host */
9166 	destroy_port(vport);
9167 
9168 	return;
9169 }
9170 
9171 /**
9172  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9173  * @phba: pointer to lpfc hba data structure.
9174  * @shost: the shost to be used to detect Block guard settings.
9175  *
9176  * This routine sets up the local Block guard protocol settings for @shost.
9177  * This routine also allocates memory for debugging bg buffers.
9178  **/
9179 static void
9180 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9181 {
9182 	uint32_t old_mask;
9183 	uint32_t old_guard;
9184 
9185 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9186 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9187 				"1478 Registering BlockGuard with the "
9188 				"SCSI layer\n");
9189 
9190 		old_mask = phba->cfg_prot_mask;
9191 		old_guard = phba->cfg_prot_guard;
9192 
9193 		/* Only allow supported values */
9194 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9195 			SHOST_DIX_TYPE0_PROTECTION |
9196 			SHOST_DIX_TYPE1_PROTECTION);
9197 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9198 					 SHOST_DIX_GUARD_CRC);
9199 
9200 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9201 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9202 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9203 
9204 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9205 			if ((old_mask != phba->cfg_prot_mask) ||
9206 				(old_guard != phba->cfg_prot_guard))
9207 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9208 					"1475 Registering BlockGuard with the "
9209 					"SCSI layer: mask %d  guard %d\n",
9210 					phba->cfg_prot_mask,
9211 					phba->cfg_prot_guard);
9212 
9213 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9214 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9215 		} else
9216 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9217 				"1479 Not Registering BlockGuard with the SCSI "
9218 				"layer, Bad protection parameters: %d %d\n",
9219 				old_mask, old_guard);
9220 	}
9221 }
9222 
9223 /**
9224  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9225  * @phba: pointer to lpfc hba data structure.
9226  *
9227  * This routine is invoked to perform all the necessary post initialization
9228  * setup for the device.
9229  **/
9230 static void
9231 lpfc_post_init_setup(struct lpfc_hba *phba)
9232 {
9233 	struct Scsi_Host  *shost;
9234 	struct lpfc_adapter_event_header adapter_event;
9235 
9236 	/* Get the default values for Model Name and Description */
9237 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9238 
9239 	/*
9240 	 * hba setup may have changed the hba_queue_depth so we need to
9241 	 * adjust the value of can_queue.
9242 	 */
9243 	shost = pci_get_drvdata(phba->pcidev);
9244 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9245 
9246 	lpfc_host_attrib_init(shost);
9247 
9248 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9249 		spin_lock_irq(shost->host_lock);
9250 		lpfc_poll_start_timer(phba);
9251 		spin_unlock_irq(shost->host_lock);
9252 	}
9253 
9254 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9255 			"0428 Perform SCSI scan\n");
9256 	/* Send board arrival event to upper layer */
9257 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9258 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9259 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9260 				  sizeof(adapter_event),
9261 				  (char *) &adapter_event,
9262 				  LPFC_NL_VENDOR_ID);
9263 	return;
9264 }
9265 
9266 /**
9267  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9268  * @phba: pointer to lpfc hba data structure.
9269  *
9270  * This routine is invoked to set up the PCI device memory space for device
9271  * with SLI-3 interface spec.
9272  *
9273  * Return codes
9274  * 	0 - successful
9275  * 	other values - error
9276  **/
9277 static int
9278 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9279 {
9280 	struct pci_dev *pdev = phba->pcidev;
9281 	unsigned long bar0map_len, bar2map_len;
9282 	int i, hbq_count;
9283 	void *ptr;
9284 	int error;
9285 
9286 	if (!pdev)
9287 		return -ENODEV;
9288 
9289 	/* Set the device DMA mask size */
9290 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9291 	if (error)
9292 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9293 	if (error)
9294 		return error;
9295 	error = -ENODEV;
9296 
9297 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9298 	 * required by each mapping.
9299 	 */
9300 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9301 	bar0map_len = pci_resource_len(pdev, 0);
9302 
9303 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9304 	bar2map_len = pci_resource_len(pdev, 2);
9305 
9306 	/* Map HBA SLIM to a kernel virtual address. */
9307 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9308 	if (!phba->slim_memmap_p) {
9309 		dev_printk(KERN_ERR, &pdev->dev,
9310 			   "ioremap failed for SLIM memory.\n");
9311 		goto out;
9312 	}
9313 
9314 	/* Map HBA Control Registers to a kernel virtual address. */
9315 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9316 	if (!phba->ctrl_regs_memmap_p) {
9317 		dev_printk(KERN_ERR, &pdev->dev,
9318 			   "ioremap failed for HBA control registers.\n");
9319 		goto out_iounmap_slim;
9320 	}
9321 
9322 	/* Allocate memory for SLI-2 structures */
9323 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9324 					       &phba->slim2p.phys, GFP_KERNEL);
9325 	if (!phba->slim2p.virt)
9326 		goto out_iounmap;
9327 
9328 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9329 	phba->mbox_ext = (phba->slim2p.virt +
9330 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9331 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9332 	phba->IOCBs = (phba->slim2p.virt +
9333 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9334 
9335 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9336 						 lpfc_sli_hbq_size(),
9337 						 &phba->hbqslimp.phys,
9338 						 GFP_KERNEL);
9339 	if (!phba->hbqslimp.virt)
9340 		goto out_free_slim;
9341 
9342 	hbq_count = lpfc_sli_hbq_count();
9343 	ptr = phba->hbqslimp.virt;
9344 	for (i = 0; i < hbq_count; ++i) {
9345 		phba->hbqs[i].hbq_virt = ptr;
9346 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9347 		ptr += (lpfc_hbq_defs[i]->entry_count *
9348 			sizeof(struct lpfc_hbq_entry));
9349 	}
9350 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9351 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9352 
9353 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9354 
9355 	phba->MBslimaddr = phba->slim_memmap_p;
9356 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9357 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9358 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9359 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9360 
9361 	return 0;
9362 
9363 out_free_slim:
9364 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9365 			  phba->slim2p.virt, phba->slim2p.phys);
9366 out_iounmap:
9367 	iounmap(phba->ctrl_regs_memmap_p);
9368 out_iounmap_slim:
9369 	iounmap(phba->slim_memmap_p);
9370 out:
9371 	return error;
9372 }
9373 
9374 /**
9375  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9376  * @phba: pointer to lpfc hba data structure.
9377  *
9378  * This routine is invoked to unset the PCI device memory space for device
9379  * with SLI-3 interface spec.
9380  **/
9381 static void
9382 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9383 {
9384 	struct pci_dev *pdev;
9385 
9386 	/* Obtain PCI device reference */
9387 	if (!phba->pcidev)
9388 		return;
9389 	else
9390 		pdev = phba->pcidev;
9391 
9392 	/* Free coherent DMA memory allocated */
9393 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9394 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9395 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9396 			  phba->slim2p.virt, phba->slim2p.phys);
9397 
9398 	/* I/O memory unmap */
9399 	iounmap(phba->ctrl_regs_memmap_p);
9400 	iounmap(phba->slim_memmap_p);
9401 
9402 	return;
9403 }
9404 
9405 /**
9406  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9407  * @phba: pointer to lpfc hba data structure.
9408  *
9409  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9410  * done and check status.
9411  *
9412  * Return 0 if successful, otherwise -ENODEV.
9413  **/
9414 int
9415 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9416 {
9417 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9418 	struct lpfc_register reg_data;
9419 	int i, port_error = 0;
9420 	uint32_t if_type;
9421 
9422 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9423 	memset(&reg_data, 0, sizeof(reg_data));
9424 	if (!phba->sli4_hba.PSMPHRregaddr)
9425 		return -ENODEV;
9426 
9427 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9428 	for (i = 0; i < 3000; i++) {
9429 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9430 			&portsmphr_reg.word0) ||
9431 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9432 			/* Port has a fatal POST error, break out */
9433 			port_error = -ENODEV;
9434 			break;
9435 		}
9436 		if (LPFC_POST_STAGE_PORT_READY ==
9437 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9438 			break;
9439 		msleep(10);
9440 	}
9441 
9442 	/*
9443 	 * If there was a port error during POST, then don't proceed with
9444 	 * other register reads as the data may not be valid.  Just exit.
9445 	 */
9446 	if (port_error) {
9447 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9448 			"1408 Port Failed POST - portsmphr=0x%x, "
9449 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9450 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9451 			portsmphr_reg.word0,
9452 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9457 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9458 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9459 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9460 	} else {
9461 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9462 				"2534 Device Info: SLIFamily=0x%x, "
9463 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9464 				"SLIHint_2=0x%x, FT=0x%x\n",
9465 				bf_get(lpfc_sli_intf_sli_family,
9466 				       &phba->sli4_hba.sli_intf),
9467 				bf_get(lpfc_sli_intf_slirev,
9468 				       &phba->sli4_hba.sli_intf),
9469 				bf_get(lpfc_sli_intf_if_type,
9470 				       &phba->sli4_hba.sli_intf),
9471 				bf_get(lpfc_sli_intf_sli_hint1,
9472 				       &phba->sli4_hba.sli_intf),
9473 				bf_get(lpfc_sli_intf_sli_hint2,
9474 				       &phba->sli4_hba.sli_intf),
9475 				bf_get(lpfc_sli_intf_func_type,
9476 				       &phba->sli4_hba.sli_intf));
9477 		/*
9478 		 * Check for other Port errors during the initialization
9479 		 * process.  Fail the load if the port did not come up
9480 		 * correctly.
9481 		 */
9482 		if_type = bf_get(lpfc_sli_intf_if_type,
9483 				 &phba->sli4_hba.sli_intf);
9484 		switch (if_type) {
9485 		case LPFC_SLI_INTF_IF_TYPE_0:
9486 			phba->sli4_hba.ue_mask_lo =
9487 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9488 			phba->sli4_hba.ue_mask_hi =
9489 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9490 			uerrlo_reg.word0 =
9491 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9492 			uerrhi_reg.word0 =
9493 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9494 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9495 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9496 				lpfc_printf_log(phba, KERN_ERR,
9497 						LOG_TRACE_EVENT,
9498 						"1422 Unrecoverable Error "
9499 						"Detected during POST "
9500 						"uerr_lo_reg=0x%x, "
9501 						"uerr_hi_reg=0x%x, "
9502 						"ue_mask_lo_reg=0x%x, "
9503 						"ue_mask_hi_reg=0x%x\n",
9504 						uerrlo_reg.word0,
9505 						uerrhi_reg.word0,
9506 						phba->sli4_hba.ue_mask_lo,
9507 						phba->sli4_hba.ue_mask_hi);
9508 				port_error = -ENODEV;
9509 			}
9510 			break;
9511 		case LPFC_SLI_INTF_IF_TYPE_2:
9512 		case LPFC_SLI_INTF_IF_TYPE_6:
9513 			/* Final checks.  The port status should be clean. */
9514 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9515 				&reg_data.word0) ||
9516 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9517 				phba->work_status[0] =
9518 					readl(phba->sli4_hba.u.if_type2.
9519 					      ERR1regaddr);
9520 				phba->work_status[1] =
9521 					readl(phba->sli4_hba.u.if_type2.
9522 					      ERR2regaddr);
9523 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9524 					"2888 Unrecoverable port error "
9525 					"following POST: port status reg "
9526 					"0x%x, port_smphr reg 0x%x, "
9527 					"error 1=0x%x, error 2=0x%x\n",
9528 					reg_data.word0,
9529 					portsmphr_reg.word0,
9530 					phba->work_status[0],
9531 					phba->work_status[1]);
9532 				port_error = -ENODEV;
9533 				break;
9534 			}
9535 
9536 			if (lpfc_pldv_detect &&
9537 			    bf_get(lpfc_sli_intf_sli_family,
9538 				   &phba->sli4_hba.sli_intf) ==
9539 					LPFC_SLI_INTF_FAMILY_G6)
9540 				pci_write_config_byte(phba->pcidev,
9541 						      LPFC_SLI_INTF, CFG_PLD);
9542 			break;
9543 		case LPFC_SLI_INTF_IF_TYPE_1:
9544 		default:
9545 			break;
9546 		}
9547 	}
9548 	return port_error;
9549 }
9550 
9551 /**
9552  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9553  * @phba: pointer to lpfc hba data structure.
9554  * @if_type:  The SLI4 interface type getting configured.
9555  *
9556  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9557  * memory map.
9558  **/
9559 static void
9560 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9561 {
9562 	switch (if_type) {
9563 	case LPFC_SLI_INTF_IF_TYPE_0:
9564 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9565 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9566 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9567 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9568 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9569 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9570 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9572 		phba->sli4_hba.SLIINTFregaddr =
9573 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9574 		break;
9575 	case LPFC_SLI_INTF_IF_TYPE_2:
9576 		phba->sli4_hba.u.if_type2.EQDregaddr =
9577 			phba->sli4_hba.conf_regs_memmap_p +
9578 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9579 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9580 			phba->sli4_hba.conf_regs_memmap_p +
9581 						LPFC_CTL_PORT_ER1_OFFSET;
9582 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9583 			phba->sli4_hba.conf_regs_memmap_p +
9584 						LPFC_CTL_PORT_ER2_OFFSET;
9585 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9586 			phba->sli4_hba.conf_regs_memmap_p +
9587 						LPFC_CTL_PORT_CTL_OFFSET;
9588 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9589 			phba->sli4_hba.conf_regs_memmap_p +
9590 						LPFC_CTL_PORT_STA_OFFSET;
9591 		phba->sli4_hba.SLIINTFregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9593 		phba->sli4_hba.PSMPHRregaddr =
9594 			phba->sli4_hba.conf_regs_memmap_p +
9595 						LPFC_CTL_PORT_SEM_OFFSET;
9596 		phba->sli4_hba.RQDBregaddr =
9597 			phba->sli4_hba.conf_regs_memmap_p +
9598 						LPFC_ULP0_RQ_DOORBELL;
9599 		phba->sli4_hba.WQDBregaddr =
9600 			phba->sli4_hba.conf_regs_memmap_p +
9601 						LPFC_ULP0_WQ_DOORBELL;
9602 		phba->sli4_hba.CQDBregaddr =
9603 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9604 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9605 		phba->sli4_hba.MQDBregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9607 		phba->sli4_hba.BMBXregaddr =
9608 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9609 		break;
9610 	case LPFC_SLI_INTF_IF_TYPE_6:
9611 		phba->sli4_hba.u.if_type2.EQDregaddr =
9612 			phba->sli4_hba.conf_regs_memmap_p +
9613 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9614 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9615 			phba->sli4_hba.conf_regs_memmap_p +
9616 						LPFC_CTL_PORT_ER1_OFFSET;
9617 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p +
9619 						LPFC_CTL_PORT_ER2_OFFSET;
9620 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9621 			phba->sli4_hba.conf_regs_memmap_p +
9622 						LPFC_CTL_PORT_CTL_OFFSET;
9623 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p +
9625 						LPFC_CTL_PORT_STA_OFFSET;
9626 		phba->sli4_hba.PSMPHRregaddr =
9627 			phba->sli4_hba.conf_regs_memmap_p +
9628 						LPFC_CTL_PORT_SEM_OFFSET;
9629 		phba->sli4_hba.BMBXregaddr =
9630 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9631 		break;
9632 	case LPFC_SLI_INTF_IF_TYPE_1:
9633 	default:
9634 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9635 			   "FATAL - unsupported SLI4 interface type - %d\n",
9636 			   if_type);
9637 		break;
9638 	}
9639 }
9640 
9641 /**
9642  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9643  * @phba: pointer to lpfc hba data structure.
9644  * @if_type: sli if type to operate on.
9645  *
9646  * This routine is invoked to set up SLI4 BAR1 register memory map.
9647  **/
9648 static void
9649 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9650 {
9651 	switch (if_type) {
9652 	case LPFC_SLI_INTF_IF_TYPE_0:
9653 		phba->sli4_hba.PSMPHRregaddr =
9654 			phba->sli4_hba.ctrl_regs_memmap_p +
9655 			LPFC_SLIPORT_IF0_SMPHR;
9656 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9657 			LPFC_HST_ISR0;
9658 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9659 			LPFC_HST_IMR0;
9660 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9661 			LPFC_HST_ISCR0;
9662 		break;
9663 	case LPFC_SLI_INTF_IF_TYPE_6:
9664 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9665 			LPFC_IF6_RQ_DOORBELL;
9666 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9667 			LPFC_IF6_WQ_DOORBELL;
9668 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9669 			LPFC_IF6_CQ_DOORBELL;
9670 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_EQ_DOORBELL;
9672 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9673 			LPFC_IF6_MQ_DOORBELL;
9674 		break;
9675 	case LPFC_SLI_INTF_IF_TYPE_2:
9676 	case LPFC_SLI_INTF_IF_TYPE_1:
9677 	default:
9678 		dev_err(&phba->pcidev->dev,
9679 			   "FATAL - unsupported SLI4 interface type - %d\n",
9680 			   if_type);
9681 		break;
9682 	}
9683 }
9684 
9685 /**
9686  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9687  * @phba: pointer to lpfc hba data structure.
9688  * @vf: virtual function number
9689  *
9690  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9691  * based on the given viftual function number, @vf.
9692  *
9693  * Return 0 if successful, otherwise -ENODEV.
9694  **/
9695 static int
9696 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9697 {
9698 	if (vf > LPFC_VIR_FUNC_MAX)
9699 		return -ENODEV;
9700 
9701 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9702 				vf * LPFC_VFR_PAGE_SIZE +
9703 					LPFC_ULP0_RQ_DOORBELL);
9704 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9705 				vf * LPFC_VFR_PAGE_SIZE +
9706 					LPFC_ULP0_WQ_DOORBELL);
9707 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9708 				vf * LPFC_VFR_PAGE_SIZE +
9709 					LPFC_EQCQ_DOORBELL);
9710 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9711 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9713 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9714 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9715 	return 0;
9716 }
9717 
9718 /**
9719  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9720  * @phba: pointer to lpfc hba data structure.
9721  *
9722  * This routine is invoked to create the bootstrap mailbox
9723  * region consistent with the SLI-4 interface spec.  This
9724  * routine allocates all memory necessary to communicate
9725  * mailbox commands to the port and sets up all alignment
9726  * needs.  No locks are expected to be held when calling
9727  * this routine.
9728  *
9729  * Return codes
9730  * 	0 - successful
9731  * 	-ENOMEM - could not allocated memory.
9732  **/
9733 static int
9734 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9735 {
9736 	uint32_t bmbx_size;
9737 	struct lpfc_dmabuf *dmabuf;
9738 	struct dma_address *dma_address;
9739 	uint32_t pa_addr;
9740 	uint64_t phys_addr;
9741 
9742 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9743 	if (!dmabuf)
9744 		return -ENOMEM;
9745 
9746 	/*
9747 	 * The bootstrap mailbox region is comprised of 2 parts
9748 	 * plus an alignment restriction of 16 bytes.
9749 	 */
9750 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9751 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9752 					  &dmabuf->phys, GFP_KERNEL);
9753 	if (!dmabuf->virt) {
9754 		kfree(dmabuf);
9755 		return -ENOMEM;
9756 	}
9757 
9758 	/*
9759 	 * Initialize the bootstrap mailbox pointers now so that the register
9760 	 * operations are simple later.  The mailbox dma address is required
9761 	 * to be 16-byte aligned.  Also align the virtual memory as each
9762 	 * maibox is copied into the bmbx mailbox region before issuing the
9763 	 * command to the port.
9764 	 */
9765 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9766 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9767 
9768 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9769 					      LPFC_ALIGN_16_BYTE);
9770 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9771 					      LPFC_ALIGN_16_BYTE);
9772 
9773 	/*
9774 	 * Set the high and low physical addresses now.  The SLI4 alignment
9775 	 * requirement is 16 bytes and the mailbox is posted to the port
9776 	 * as two 30-bit addresses.  The other data is a bit marking whether
9777 	 * the 30-bit address is the high or low address.
9778 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9779 	 * clean on 32 bit machines.
9780 	 */
9781 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9782 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9783 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9784 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9785 					   LPFC_BMBX_BIT1_ADDR_HI);
9786 
9787 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9788 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9789 					   LPFC_BMBX_BIT1_ADDR_LO);
9790 	return 0;
9791 }
9792 
9793 /**
9794  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9795  * @phba: pointer to lpfc hba data structure.
9796  *
9797  * This routine is invoked to teardown the bootstrap mailbox
9798  * region and release all host resources. This routine requires
9799  * the caller to ensure all mailbox commands recovered, no
9800  * additional mailbox comands are sent, and interrupts are disabled
9801  * before calling this routine.
9802  *
9803  **/
9804 static void
9805 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9806 {
9807 	dma_free_coherent(&phba->pcidev->dev,
9808 			  phba->sli4_hba.bmbx.bmbx_size,
9809 			  phba->sli4_hba.bmbx.dmabuf->virt,
9810 			  phba->sli4_hba.bmbx.dmabuf->phys);
9811 
9812 	kfree(phba->sli4_hba.bmbx.dmabuf);
9813 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9814 }
9815 
9816 static const char * const lpfc_topo_to_str[] = {
9817 	"Loop then P2P",
9818 	"Loopback",
9819 	"P2P Only",
9820 	"Unsupported",
9821 	"Loop Only",
9822 	"Unsupported",
9823 	"P2P then Loop",
9824 };
9825 
9826 #define	LINK_FLAGS_DEF	0x0
9827 #define	LINK_FLAGS_P2P	0x1
9828 #define	LINK_FLAGS_LOOP	0x2
9829 /**
9830  * lpfc_map_topology - Map the topology read from READ_CONFIG
9831  * @phba: pointer to lpfc hba data structure.
9832  * @rd_config: pointer to read config data
9833  *
9834  * This routine is invoked to map the topology values as read
9835  * from the read config mailbox command. If the persistent
9836  * topology feature is supported, the firmware will provide the
9837  * saved topology information to be used in INIT_LINK
9838  **/
9839 static void
9840 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9841 {
9842 	u8 ptv, tf, pt;
9843 
9844 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9845 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9846 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9847 
9848 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9849 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9850 			 ptv, tf, pt);
9851 	if (!ptv) {
9852 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9853 				"2019 FW does not support persistent topology "
9854 				"Using driver parameter defined value [%s]",
9855 				lpfc_topo_to_str[phba->cfg_topology]);
9856 		return;
9857 	}
9858 	/* FW supports persistent topology - override module parameter value */
9859 	set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9860 
9861 	/* if ASIC_GEN_NUM >= 0xC) */
9862 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9863 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9864 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9865 		    LPFC_SLI_INTF_FAMILY_G6)) {
9866 		if (!tf)
9867 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9868 					? FLAGS_TOPOLOGY_MODE_LOOP
9869 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9870 		else
9871 			clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9872 	} else { /* G5 */
9873 		if (tf)
9874 			/* If topology failover set - pt is '0' or '1' */
9875 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9876 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9877 		else
9878 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9879 					? FLAGS_TOPOLOGY_MODE_PT_PT
9880 					: FLAGS_TOPOLOGY_MODE_LOOP);
9881 	}
9882 	if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag))
9883 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9884 				"2020 Using persistent topology value [%s]",
9885 				lpfc_topo_to_str[phba->cfg_topology]);
9886 	else
9887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9888 				"2021 Invalid topology values from FW "
9889 				"Using driver parameter defined value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 }
9892 
9893 /**
9894  * lpfc_sli4_read_config - Get the config parameters.
9895  * @phba: pointer to lpfc hba data structure.
9896  *
9897  * This routine is invoked to read the configuration parameters from the HBA.
9898  * The configuration parameters are used to set the base and maximum values
9899  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9900  * allocation for the port.
9901  *
9902  * Return codes
9903  * 	0 - successful
9904  * 	-ENOMEM - No available memory
9905  *      -EIO - The mailbox failed to complete successfully.
9906  **/
9907 int
9908 lpfc_sli4_read_config(struct lpfc_hba *phba)
9909 {
9910 	LPFC_MBOXQ_t *pmb;
9911 	struct lpfc_mbx_read_config *rd_config;
9912 	union  lpfc_sli4_cfg_shdr *shdr;
9913 	uint32_t shdr_status, shdr_add_status;
9914 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9915 	struct lpfc_rsrc_desc_fcfcoe *desc;
9916 	char *pdesc_0;
9917 	uint16_t forced_link_speed;
9918 	uint32_t if_type, qmin, fawwpn;
9919 	int length, i, rc = 0, rc2;
9920 
9921 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9922 	if (!pmb) {
9923 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9924 				"2011 Unable to allocate memory for issuing "
9925 				"SLI_CONFIG_SPECIAL mailbox command\n");
9926 		return -ENOMEM;
9927 	}
9928 
9929 	lpfc_read_config(phba, pmb);
9930 
9931 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9932 	if (rc != MBX_SUCCESS) {
9933 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9934 				"2012 Mailbox failed , mbxCmd x%x "
9935 				"READ_CONFIG, mbxStatus x%x\n",
9936 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9937 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9938 		rc = -EIO;
9939 	} else {
9940 		rd_config = &pmb->u.mqe.un.rd_config;
9941 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9942 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9943 			phba->sli4_hba.lnk_info.lnk_tp =
9944 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9945 			phba->sli4_hba.lnk_info.lnk_no =
9946 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9947 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9948 					"3081 lnk_type:%d, lnk_numb:%d\n",
9949 					phba->sli4_hba.lnk_info.lnk_tp,
9950 					phba->sli4_hba.lnk_info.lnk_no);
9951 		} else
9952 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9953 					"3082 Mailbox (x%x) returned ldv:x0\n",
9954 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9955 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9956 			phba->bbcredit_support = 1;
9957 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9958 		}
9959 
9960 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9961 
9962 		if (fawwpn) {
9963 			lpfc_printf_log(phba, KERN_INFO,
9964 					LOG_INIT | LOG_DISCOVERY,
9965 					"2702 READ_CONFIG: FA-PWWN is "
9966 					"configured on\n");
9967 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9968 		} else {
9969 			/* Clear FW configured flag, preserve driver flag */
9970 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9971 		}
9972 
9973 		phba->sli4_hba.conf_trunk =
9974 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9975 		phba->sli4_hba.extents_in_use =
9976 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9977 
9978 		phba->sli4_hba.max_cfg_param.max_xri =
9979 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9980 		/* Reduce resource usage in kdump environment */
9981 		if (is_kdump_kernel() &&
9982 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9983 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9984 		phba->sli4_hba.max_cfg_param.xri_base =
9985 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9986 		phba->sli4_hba.max_cfg_param.max_vpi =
9987 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9988 		/* Limit the max we support */
9989 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9990 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9991 		phba->sli4_hba.max_cfg_param.vpi_base =
9992 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9993 		phba->sli4_hba.max_cfg_param.max_rpi =
9994 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9995 		phba->sli4_hba.max_cfg_param.rpi_base =
9996 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9997 		phba->sli4_hba.max_cfg_param.max_vfi =
9998 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9999 		phba->sli4_hba.max_cfg_param.vfi_base =
10000 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10001 		phba->sli4_hba.max_cfg_param.max_fcfi =
10002 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10003 		phba->sli4_hba.max_cfg_param.max_eq =
10004 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10005 		phba->sli4_hba.max_cfg_param.max_rq =
10006 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10007 		phba->sli4_hba.max_cfg_param.max_wq =
10008 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10009 		phba->sli4_hba.max_cfg_param.max_cq =
10010 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10011 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10012 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10013 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10014 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10015 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10016 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10017 		phba->max_vports = phba->max_vpi;
10018 
10019 		/* Next decide on FPIN or Signal E2E CGN support
10020 		 * For congestion alarms and warnings valid combination are:
10021 		 * 1. FPIN alarms / FPIN warnings
10022 		 * 2. Signal alarms / Signal warnings
10023 		 * 3. FPIN alarms / Signal warnings
10024 		 * 4. Signal alarms / FPIN warnings
10025 		 *
10026 		 * Initialize the adapter frequency to 100 mSecs
10027 		 */
10028 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10029 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10030 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10031 
10032 		if (lpfc_use_cgn_signal) {
10033 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10034 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10035 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10036 			}
10037 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10038 				/* MUST support both alarm and warning
10039 				 * because EDC does not support alarm alone.
10040 				 */
10041 				if (phba->cgn_reg_signal !=
10042 				    EDC_CG_SIG_WARN_ONLY) {
10043 					/* Must support both or none */
10044 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10045 					phba->cgn_reg_signal =
10046 						EDC_CG_SIG_NOTSUPPORTED;
10047 				} else {
10048 					phba->cgn_reg_signal =
10049 						EDC_CG_SIG_WARN_ALARM;
10050 					phba->cgn_reg_fpin =
10051 						LPFC_CGN_FPIN_NONE;
10052 				}
10053 			}
10054 		}
10055 
10056 		/* Set the congestion initial signal and fpin values. */
10057 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10058 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10059 
10060 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10061 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10062 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10063 
10064 		lpfc_map_topology(phba, rd_config);
10065 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10066 				"2003 cfg params Extents? %d "
10067 				"XRI(B:%d M:%d), "
10068 				"VPI(B:%d M:%d) "
10069 				"VFI(B:%d M:%d) "
10070 				"RPI(B:%d M:%d) "
10071 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10072 				phba->sli4_hba.extents_in_use,
10073 				phba->sli4_hba.max_cfg_param.xri_base,
10074 				phba->sli4_hba.max_cfg_param.max_xri,
10075 				phba->sli4_hba.max_cfg_param.vpi_base,
10076 				phba->sli4_hba.max_cfg_param.max_vpi,
10077 				phba->sli4_hba.max_cfg_param.vfi_base,
10078 				phba->sli4_hba.max_cfg_param.max_vfi,
10079 				phba->sli4_hba.max_cfg_param.rpi_base,
10080 				phba->sli4_hba.max_cfg_param.max_rpi,
10081 				phba->sli4_hba.max_cfg_param.max_fcfi,
10082 				phba->sli4_hba.max_cfg_param.max_eq,
10083 				phba->sli4_hba.max_cfg_param.max_cq,
10084 				phba->sli4_hba.max_cfg_param.max_wq,
10085 				phba->sli4_hba.max_cfg_param.max_rq,
10086 				phba->lmt);
10087 
10088 		/*
10089 		 * Calculate queue resources based on how
10090 		 * many WQ/CQ/EQs are available.
10091 		 */
10092 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10093 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10094 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10095 		/*
10096 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10097 		 * the remainder can be used for NVME / FCP.
10098 		 */
10099 		qmin -= 4;
10100 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10101 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10102 
10103 		/* Check to see if there is enough for default cfg */
10104 		if ((phba->cfg_irq_chann > qmin) ||
10105 		    (phba->cfg_hdw_queue > qmin)) {
10106 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10107 					"2005 Reducing Queues - "
10108 					"FW resource limitation: "
10109 					"WQ %d CQ %d EQ %d: min %d: "
10110 					"IRQ %d HDWQ %d\n",
10111 					phba->sli4_hba.max_cfg_param.max_wq,
10112 					phba->sli4_hba.max_cfg_param.max_cq,
10113 					phba->sli4_hba.max_cfg_param.max_eq,
10114 					qmin, phba->cfg_irq_chann,
10115 					phba->cfg_hdw_queue);
10116 
10117 			if (phba->cfg_irq_chann > qmin)
10118 				phba->cfg_irq_chann = qmin;
10119 			if (phba->cfg_hdw_queue > qmin)
10120 				phba->cfg_hdw_queue = qmin;
10121 		}
10122 	}
10123 
10124 	if (rc)
10125 		goto read_cfg_out;
10126 
10127 	/* Update link speed if forced link speed is supported */
10128 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10129 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10130 		forced_link_speed =
10131 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10132 		if (forced_link_speed) {
10133 			set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag);
10134 
10135 			switch (forced_link_speed) {
10136 			case LINK_SPEED_1G:
10137 				phba->cfg_link_speed =
10138 					LPFC_USER_LINK_SPEED_1G;
10139 				break;
10140 			case LINK_SPEED_2G:
10141 				phba->cfg_link_speed =
10142 					LPFC_USER_LINK_SPEED_2G;
10143 				break;
10144 			case LINK_SPEED_4G:
10145 				phba->cfg_link_speed =
10146 					LPFC_USER_LINK_SPEED_4G;
10147 				break;
10148 			case LINK_SPEED_8G:
10149 				phba->cfg_link_speed =
10150 					LPFC_USER_LINK_SPEED_8G;
10151 				break;
10152 			case LINK_SPEED_10G:
10153 				phba->cfg_link_speed =
10154 					LPFC_USER_LINK_SPEED_10G;
10155 				break;
10156 			case LINK_SPEED_16G:
10157 				phba->cfg_link_speed =
10158 					LPFC_USER_LINK_SPEED_16G;
10159 				break;
10160 			case LINK_SPEED_32G:
10161 				phba->cfg_link_speed =
10162 					LPFC_USER_LINK_SPEED_32G;
10163 				break;
10164 			case LINK_SPEED_64G:
10165 				phba->cfg_link_speed =
10166 					LPFC_USER_LINK_SPEED_64G;
10167 				break;
10168 			case 0xffff:
10169 				phba->cfg_link_speed =
10170 					LPFC_USER_LINK_SPEED_AUTO;
10171 				break;
10172 			default:
10173 				lpfc_printf_log(phba, KERN_ERR,
10174 						LOG_TRACE_EVENT,
10175 						"0047 Unrecognized link "
10176 						"speed : %d\n",
10177 						forced_link_speed);
10178 				phba->cfg_link_speed =
10179 					LPFC_USER_LINK_SPEED_AUTO;
10180 			}
10181 		}
10182 	}
10183 
10184 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10185 	length = phba->sli4_hba.max_cfg_param.max_xri -
10186 			lpfc_sli4_get_els_iocb_cnt(phba);
10187 	if (phba->cfg_hba_queue_depth > length) {
10188 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10189 				"3361 HBA queue depth changed from %d to %d\n",
10190 				phba->cfg_hba_queue_depth, length);
10191 		phba->cfg_hba_queue_depth = length;
10192 	}
10193 
10194 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10195 	    LPFC_SLI_INTF_IF_TYPE_2)
10196 		goto read_cfg_out;
10197 
10198 	/* get the pf# and vf# for SLI4 if_type 2 port */
10199 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10200 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10201 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10202 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10203 			 length, LPFC_SLI4_MBX_EMBED);
10204 
10205 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10206 	shdr = (union lpfc_sli4_cfg_shdr *)
10207 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10208 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10209 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10210 	if (rc2 || shdr_status || shdr_add_status) {
10211 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10212 				"3026 Mailbox failed , mbxCmd x%x "
10213 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10214 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10215 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10216 		goto read_cfg_out;
10217 	}
10218 
10219 	/* search for fc_fcoe resrouce descriptor */
10220 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10221 
10222 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10223 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10224 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10225 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10226 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10227 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10228 		goto read_cfg_out;
10229 
10230 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10231 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10232 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10233 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10234 			phba->sli4_hba.iov.pf_number =
10235 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10236 			phba->sli4_hba.iov.vf_number =
10237 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10238 			break;
10239 		}
10240 	}
10241 
10242 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10243 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10244 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10245 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10246 				phba->sli4_hba.iov.vf_number);
10247 	else
10248 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10249 				"3028 GET_FUNCTION_CONFIG: failed to find "
10250 				"Resource Descriptor:x%x\n",
10251 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10252 
10253 read_cfg_out:
10254 	mempool_free(pmb, phba->mbox_mem_pool);
10255 	return rc;
10256 }
10257 
10258 /**
10259  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10260  * @phba: pointer to lpfc hba data structure.
10261  *
10262  * This routine is invoked to setup the port-side endian order when
10263  * the port if_type is 0.  This routine has no function for other
10264  * if_types.
10265  *
10266  * Return codes
10267  * 	0 - successful
10268  * 	-ENOMEM - No available memory
10269  *      -EIO - The mailbox failed to complete successfully.
10270  **/
10271 static int
10272 lpfc_setup_endian_order(struct lpfc_hba *phba)
10273 {
10274 	LPFC_MBOXQ_t *mboxq;
10275 	uint32_t if_type, rc = 0;
10276 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10277 				      HOST_ENDIAN_HIGH_WORD1};
10278 
10279 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10280 	switch (if_type) {
10281 	case LPFC_SLI_INTF_IF_TYPE_0:
10282 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10283 						       GFP_KERNEL);
10284 		if (!mboxq) {
10285 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10286 					"0492 Unable to allocate memory for "
10287 					"issuing SLI_CONFIG_SPECIAL mailbox "
10288 					"command\n");
10289 			return -ENOMEM;
10290 		}
10291 
10292 		/*
10293 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10294 		 * two words to contain special data values and no other data.
10295 		 */
10296 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10297 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10298 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10299 		if (rc != MBX_SUCCESS) {
10300 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10301 					"0493 SLI_CONFIG_SPECIAL mailbox "
10302 					"failed with status x%x\n",
10303 					rc);
10304 			rc = -EIO;
10305 		}
10306 		mempool_free(mboxq, phba->mbox_mem_pool);
10307 		break;
10308 	case LPFC_SLI_INTF_IF_TYPE_6:
10309 	case LPFC_SLI_INTF_IF_TYPE_2:
10310 	case LPFC_SLI_INTF_IF_TYPE_1:
10311 	default:
10312 		break;
10313 	}
10314 	return rc;
10315 }
10316 
10317 /**
10318  * lpfc_sli4_queue_verify - Verify and update EQ counts
10319  * @phba: pointer to lpfc hba data structure.
10320  *
10321  * This routine is invoked to check the user settable queue counts for EQs.
10322  * After this routine is called the counts will be set to valid values that
10323  * adhere to the constraints of the system's interrupt vectors and the port's
10324  * queue resources.
10325  *
10326  * Return codes
10327  *      0 - successful
10328  *      -ENOMEM - No available memory
10329  **/
10330 static int
10331 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10332 {
10333 	/*
10334 	 * Sanity check for configured queue parameters against the run-time
10335 	 * device parameters
10336 	 */
10337 
10338 	if (phba->nvmet_support) {
10339 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10340 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10341 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10342 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10343 	}
10344 
10345 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10346 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10347 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10348 			phba->cfg_nvmet_mrq);
10349 
10350 	/* Get EQ depth from module parameter, fake the default for now */
10351 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10352 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10353 
10354 	/* Get CQ depth from module parameter, fake the default for now */
10355 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10356 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10357 	return 0;
10358 }
10359 
10360 static int
10361 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10362 {
10363 	struct lpfc_queue *qdesc;
10364 	u32 wqesize;
10365 	int cpu;
10366 
10367 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10368 	/* Create Fast Path IO CQs */
10369 	if (phba->enab_exp_wqcq_pages)
10370 		/* Increase the CQ size when WQEs contain an embedded cdb */
10371 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10372 					      phba->sli4_hba.cq_esize,
10373 					      LPFC_CQE_EXP_COUNT, cpu);
10374 
10375 	else
10376 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10377 					      phba->sli4_hba.cq_esize,
10378 					      phba->sli4_hba.cq_ecount, cpu);
10379 	if (!qdesc) {
10380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10381 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10382 				idx);
10383 		return 1;
10384 	}
10385 	qdesc->qe_valid = 1;
10386 	qdesc->hdwq = idx;
10387 	qdesc->chann = cpu;
10388 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10389 
10390 	/* Create Fast Path IO WQs */
10391 	if (phba->enab_exp_wqcq_pages) {
10392 		/* Increase the WQ size when WQEs contain an embedded cdb */
10393 		wqesize = (phba->fcp_embed_io) ?
10394 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10395 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10396 					      wqesize,
10397 					      LPFC_WQE_EXP_COUNT, cpu);
10398 	} else
10399 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10400 					      phba->sli4_hba.wq_esize,
10401 					      phba->sli4_hba.wq_ecount, cpu);
10402 
10403 	if (!qdesc) {
10404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10405 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10406 				idx);
10407 		return 1;
10408 	}
10409 	qdesc->hdwq = idx;
10410 	qdesc->chann = cpu;
10411 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10412 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10413 	return 0;
10414 }
10415 
10416 /**
10417  * lpfc_sli4_queue_create - Create all the SLI4 queues
10418  * @phba: pointer to lpfc hba data structure.
10419  *
10420  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10421  * operation. For each SLI4 queue type, the parameters such as queue entry
10422  * count (queue depth) shall be taken from the module parameter. For now,
10423  * we just use some constant number as place holder.
10424  *
10425  * Return codes
10426  *      0 - successful
10427  *      -ENOMEM - No availble memory
10428  *      -EIO - The mailbox failed to complete successfully.
10429  **/
10430 int
10431 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10432 {
10433 	struct lpfc_queue *qdesc;
10434 	int idx, cpu, eqcpu;
10435 	struct lpfc_sli4_hdw_queue *qp;
10436 	struct lpfc_vector_map_info *cpup;
10437 	struct lpfc_vector_map_info *eqcpup;
10438 	struct lpfc_eq_intr_info *eqi;
10439 	u32 wqesize;
10440 
10441 	/*
10442 	 * Create HBA Record arrays.
10443 	 * Both NVME and FCP will share that same vectors / EQs
10444 	 */
10445 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10446 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10447 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10448 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10449 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10450 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10451 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10452 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10453 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10454 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10455 
10456 	if (!phba->sli4_hba.hdwq) {
10457 		phba->sli4_hba.hdwq = kcalloc(
10458 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10459 			GFP_KERNEL);
10460 		if (!phba->sli4_hba.hdwq) {
10461 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10462 					"6427 Failed allocate memory for "
10463 					"fast-path Hardware Queue array\n");
10464 			goto out_error;
10465 		}
10466 		/* Prepare hardware queues to take IO buffers */
10467 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10468 			qp = &phba->sli4_hba.hdwq[idx];
10469 			spin_lock_init(&qp->io_buf_list_get_lock);
10470 			spin_lock_init(&qp->io_buf_list_put_lock);
10471 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10472 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10473 			qp->get_io_bufs = 0;
10474 			qp->put_io_bufs = 0;
10475 			qp->total_io_bufs = 0;
10476 			spin_lock_init(&qp->abts_io_buf_list_lock);
10477 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10478 			qp->abts_scsi_io_bufs = 0;
10479 			qp->abts_nvme_io_bufs = 0;
10480 			INIT_LIST_HEAD(&qp->sgl_list);
10481 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10482 			spin_lock_init(&qp->hdwq_lock);
10483 		}
10484 	}
10485 
10486 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10487 		if (phba->nvmet_support) {
10488 			phba->sli4_hba.nvmet_cqset = kcalloc(
10489 					phba->cfg_nvmet_mrq,
10490 					sizeof(struct lpfc_queue *),
10491 					GFP_KERNEL);
10492 			if (!phba->sli4_hba.nvmet_cqset) {
10493 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10494 					"3121 Fail allocate memory for "
10495 					"fast-path CQ set array\n");
10496 				goto out_error;
10497 			}
10498 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10499 					phba->cfg_nvmet_mrq,
10500 					sizeof(struct lpfc_queue *),
10501 					GFP_KERNEL);
10502 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10503 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10504 					"3122 Fail allocate memory for "
10505 					"fast-path RQ set hdr array\n");
10506 				goto out_error;
10507 			}
10508 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10509 					phba->cfg_nvmet_mrq,
10510 					sizeof(struct lpfc_queue *),
10511 					GFP_KERNEL);
10512 			if (!phba->sli4_hba.nvmet_mrq_data) {
10513 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10514 					"3124 Fail allocate memory for "
10515 					"fast-path RQ set data array\n");
10516 				goto out_error;
10517 			}
10518 		}
10519 	}
10520 
10521 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10522 
10523 	/* Create HBA Event Queues (EQs) */
10524 	for_each_present_cpu(cpu) {
10525 		/* We only want to create 1 EQ per vector, even though
10526 		 * multiple CPUs might be using that vector. so only
10527 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10528 		 */
10529 		cpup = &phba->sli4_hba.cpu_map[cpu];
10530 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10531 			continue;
10532 
10533 		/* Get a ptr to the Hardware Queue associated with this CPU */
10534 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10535 
10536 		/* Allocate an EQ */
10537 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10538 					      phba->sli4_hba.eq_esize,
10539 					      phba->sli4_hba.eq_ecount, cpu);
10540 		if (!qdesc) {
10541 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10542 					"0497 Failed allocate EQ (%d)\n",
10543 					cpup->hdwq);
10544 			goto out_error;
10545 		}
10546 		qdesc->qe_valid = 1;
10547 		qdesc->hdwq = cpup->hdwq;
10548 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10549 		qdesc->last_cpu = qdesc->chann;
10550 
10551 		/* Save the allocated EQ in the Hardware Queue */
10552 		qp->hba_eq = qdesc;
10553 
10554 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10555 		list_add(&qdesc->cpu_list, &eqi->list);
10556 	}
10557 
10558 	/* Now we need to populate the other Hardware Queues, that share
10559 	 * an IRQ vector, with the associated EQ ptr.
10560 	 */
10561 	for_each_present_cpu(cpu) {
10562 		cpup = &phba->sli4_hba.cpu_map[cpu];
10563 
10564 		/* Check for EQ already allocated in previous loop */
10565 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10566 			continue;
10567 
10568 		/* Check for multiple CPUs per hdwq */
10569 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10570 		if (qp->hba_eq)
10571 			continue;
10572 
10573 		/* We need to share an EQ for this hdwq */
10574 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10575 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10576 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10577 	}
10578 
10579 	/* Allocate IO Path SLI4 CQ/WQs */
10580 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10581 		if (lpfc_alloc_io_wq_cq(phba, idx))
10582 			goto out_error;
10583 	}
10584 
10585 	if (phba->nvmet_support) {
10586 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10587 			cpu = lpfc_find_cpu_handle(phba, idx,
10588 						   LPFC_FIND_BY_HDWQ);
10589 			qdesc = lpfc_sli4_queue_alloc(phba,
10590 						      LPFC_DEFAULT_PAGE_SIZE,
10591 						      phba->sli4_hba.cq_esize,
10592 						      phba->sli4_hba.cq_ecount,
10593 						      cpu);
10594 			if (!qdesc) {
10595 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10596 						"3142 Failed allocate NVME "
10597 						"CQ Set (%d)\n", idx);
10598 				goto out_error;
10599 			}
10600 			qdesc->qe_valid = 1;
10601 			qdesc->hdwq = idx;
10602 			qdesc->chann = cpu;
10603 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10604 		}
10605 	}
10606 
10607 	/*
10608 	 * Create Slow Path Completion Queues (CQs)
10609 	 */
10610 
10611 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10612 	/* Create slow-path Mailbox Command Complete Queue */
10613 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10614 				      phba->sli4_hba.cq_esize,
10615 				      phba->sli4_hba.cq_ecount, cpu);
10616 	if (!qdesc) {
10617 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10618 				"0500 Failed allocate slow-path mailbox CQ\n");
10619 		goto out_error;
10620 	}
10621 	qdesc->qe_valid = 1;
10622 	phba->sli4_hba.mbx_cq = qdesc;
10623 
10624 	/* Create slow-path ELS Complete Queue */
10625 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10626 				      phba->sli4_hba.cq_esize,
10627 				      phba->sli4_hba.cq_ecount, cpu);
10628 	if (!qdesc) {
10629 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10630 				"0501 Failed allocate slow-path ELS CQ\n");
10631 		goto out_error;
10632 	}
10633 	qdesc->qe_valid = 1;
10634 	qdesc->chann = cpu;
10635 	phba->sli4_hba.els_cq = qdesc;
10636 
10637 
10638 	/*
10639 	 * Create Slow Path Work Queues (WQs)
10640 	 */
10641 
10642 	/* Create Mailbox Command Queue */
10643 
10644 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10645 				      phba->sli4_hba.mq_esize,
10646 				      phba->sli4_hba.mq_ecount, cpu);
10647 	if (!qdesc) {
10648 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10649 				"0505 Failed allocate slow-path MQ\n");
10650 		goto out_error;
10651 	}
10652 	qdesc->chann = cpu;
10653 	phba->sli4_hba.mbx_wq = qdesc;
10654 
10655 	/*
10656 	 * Create ELS Work Queues
10657 	 */
10658 
10659 	/*
10660 	 * Create slow-path ELS Work Queue.
10661 	 * Increase the ELS WQ size when WQEs contain an embedded cdb
10662 	 */
10663 	wqesize = (phba->fcp_embed_io) ?
10664 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10665 
10666 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10667 				      wqesize,
10668 				      phba->sli4_hba.wq_ecount, cpu);
10669 	if (!qdesc) {
10670 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10671 				"0504 Failed allocate slow-path ELS WQ\n");
10672 		goto out_error;
10673 	}
10674 	qdesc->chann = cpu;
10675 	phba->sli4_hba.els_wq = qdesc;
10676 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10677 
10678 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10679 		/* Create NVME LS Complete Queue */
10680 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10681 					      phba->sli4_hba.cq_esize,
10682 					      phba->sli4_hba.cq_ecount, cpu);
10683 		if (!qdesc) {
10684 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10685 					"6079 Failed allocate NVME LS CQ\n");
10686 			goto out_error;
10687 		}
10688 		qdesc->chann = cpu;
10689 		qdesc->qe_valid = 1;
10690 		phba->sli4_hba.nvmels_cq = qdesc;
10691 
10692 		/* Create NVME LS Work Queue */
10693 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10694 					      phba->sli4_hba.wq_esize,
10695 					      phba->sli4_hba.wq_ecount, cpu);
10696 		if (!qdesc) {
10697 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10698 					"6080 Failed allocate NVME LS WQ\n");
10699 			goto out_error;
10700 		}
10701 		qdesc->chann = cpu;
10702 		phba->sli4_hba.nvmels_wq = qdesc;
10703 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10704 	}
10705 
10706 	/*
10707 	 * Create Receive Queue (RQ)
10708 	 */
10709 
10710 	/* Create Receive Queue for header */
10711 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10712 				      phba->sli4_hba.rq_esize,
10713 				      phba->sli4_hba.rq_ecount, cpu);
10714 	if (!qdesc) {
10715 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10716 				"0506 Failed allocate receive HRQ\n");
10717 		goto out_error;
10718 	}
10719 	phba->sli4_hba.hdr_rq = qdesc;
10720 
10721 	/* Create Receive Queue for data */
10722 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10723 				      phba->sli4_hba.rq_esize,
10724 				      phba->sli4_hba.rq_ecount, cpu);
10725 	if (!qdesc) {
10726 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10727 				"0507 Failed allocate receive DRQ\n");
10728 		goto out_error;
10729 	}
10730 	phba->sli4_hba.dat_rq = qdesc;
10731 
10732 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10733 	    phba->nvmet_support) {
10734 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10735 			cpu = lpfc_find_cpu_handle(phba, idx,
10736 						   LPFC_FIND_BY_HDWQ);
10737 			/* Create NVMET Receive Queue for header */
10738 			qdesc = lpfc_sli4_queue_alloc(phba,
10739 						      LPFC_DEFAULT_PAGE_SIZE,
10740 						      phba->sli4_hba.rq_esize,
10741 						      LPFC_NVMET_RQE_DEF_COUNT,
10742 						      cpu);
10743 			if (!qdesc) {
10744 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10745 						"3146 Failed allocate "
10746 						"receive HRQ\n");
10747 				goto out_error;
10748 			}
10749 			qdesc->hdwq = idx;
10750 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10751 
10752 			/* Only needed for header of RQ pair */
10753 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10754 						   GFP_KERNEL,
10755 						   cpu_to_node(cpu));
10756 			if (qdesc->rqbp == NULL) {
10757 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10758 						"6131 Failed allocate "
10759 						"Header RQBP\n");
10760 				goto out_error;
10761 			}
10762 
10763 			/* Put list in known state in case driver load fails. */
10764 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10765 
10766 			/* Create NVMET Receive Queue for data */
10767 			qdesc = lpfc_sli4_queue_alloc(phba,
10768 						      LPFC_DEFAULT_PAGE_SIZE,
10769 						      phba->sli4_hba.rq_esize,
10770 						      LPFC_NVMET_RQE_DEF_COUNT,
10771 						      cpu);
10772 			if (!qdesc) {
10773 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10774 						"3156 Failed allocate "
10775 						"receive DRQ\n");
10776 				goto out_error;
10777 			}
10778 			qdesc->hdwq = idx;
10779 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10780 		}
10781 	}
10782 
10783 	/* Clear NVME stats */
10784 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10785 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10786 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10787 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10788 		}
10789 	}
10790 
10791 	/* Clear SCSI stats */
10792 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10793 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10794 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10795 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10796 		}
10797 	}
10798 
10799 	return 0;
10800 
10801 out_error:
10802 	lpfc_sli4_queue_destroy(phba);
10803 	return -ENOMEM;
10804 }
10805 
10806 static inline void
10807 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10808 {
10809 	if (*qp != NULL) {
10810 		lpfc_sli4_queue_free(*qp);
10811 		*qp = NULL;
10812 	}
10813 }
10814 
10815 static inline void
10816 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10817 {
10818 	int idx;
10819 
10820 	if (*qs == NULL)
10821 		return;
10822 
10823 	for (idx = 0; idx < max; idx++)
10824 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10825 
10826 	kfree(*qs);
10827 	*qs = NULL;
10828 }
10829 
10830 static inline void
10831 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10832 {
10833 	struct lpfc_sli4_hdw_queue *hdwq;
10834 	struct lpfc_queue *eq;
10835 	uint32_t idx;
10836 
10837 	hdwq = phba->sli4_hba.hdwq;
10838 
10839 	/* Loop thru all Hardware Queues */
10840 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10841 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10842 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10843 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10844 		hdwq[idx].hba_eq = NULL;
10845 		hdwq[idx].io_cq = NULL;
10846 		hdwq[idx].io_wq = NULL;
10847 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10848 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10849 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10850 	}
10851 	/* Loop thru all IRQ vectors */
10852 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10853 		/* Free the EQ corresponding to the IRQ vector */
10854 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10855 		lpfc_sli4_queue_free(eq);
10856 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10857 	}
10858 }
10859 
10860 /**
10861  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10862  * @phba: pointer to lpfc hba data structure.
10863  *
10864  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10865  * operation.
10866  *
10867  * Return codes
10868  *      0 - successful
10869  *      -ENOMEM - No available memory
10870  *      -EIO - The mailbox failed to complete successfully.
10871  **/
10872 void
10873 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10874 {
10875 	/*
10876 	 * Set FREE_INIT before beginning to free the queues.
10877 	 * Wait until the users of queues to acknowledge to
10878 	 * release queues by clearing FREE_WAIT.
10879 	 */
10880 	spin_lock_irq(&phba->hbalock);
10881 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10882 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10883 		spin_unlock_irq(&phba->hbalock);
10884 		msleep(20);
10885 		spin_lock_irq(&phba->hbalock);
10886 	}
10887 	spin_unlock_irq(&phba->hbalock);
10888 
10889 	lpfc_sli4_cleanup_poll_list(phba);
10890 
10891 	/* Release HBA eqs */
10892 	if (phba->sli4_hba.hdwq)
10893 		lpfc_sli4_release_hdwq(phba);
10894 
10895 	if (phba->nvmet_support) {
10896 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10897 					 phba->cfg_nvmet_mrq);
10898 
10899 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10900 					 phba->cfg_nvmet_mrq);
10901 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10902 					 phba->cfg_nvmet_mrq);
10903 	}
10904 
10905 	/* Release mailbox command work queue */
10906 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10907 
10908 	/* Release ELS work queue */
10909 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10910 
10911 	/* Release ELS work queue */
10912 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10913 
10914 	/* Release unsolicited receive queue */
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10916 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10917 
10918 	/* Release ELS complete queue */
10919 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10920 
10921 	/* Release NVME LS complete queue */
10922 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10923 
10924 	/* Release mailbox command complete queue */
10925 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10926 
10927 	/* Everything on this list has been freed */
10928 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10929 
10930 	/* Done with freeing the queues */
10931 	spin_lock_irq(&phba->hbalock);
10932 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10933 	spin_unlock_irq(&phba->hbalock);
10934 }
10935 
10936 int
10937 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10938 {
10939 	struct lpfc_rqb *rqbp;
10940 	struct lpfc_dmabuf *h_buf;
10941 	struct rqb_dmabuf *rqb_buffer;
10942 
10943 	rqbp = rq->rqbp;
10944 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10945 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10946 				 struct lpfc_dmabuf, list);
10947 
10948 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10949 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10950 		rqbp->buffer_count--;
10951 	}
10952 	return 1;
10953 }
10954 
10955 static int
10956 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10957 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10958 	int qidx, uint32_t qtype)
10959 {
10960 	struct lpfc_sli_ring *pring;
10961 	int rc;
10962 
10963 	if (!eq || !cq || !wq) {
10964 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10965 			"6085 Fast-path %s (%d) not allocated\n",
10966 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10967 		return -ENOMEM;
10968 	}
10969 
10970 	/* create the Cq first */
10971 	rc = lpfc_cq_create(phba, cq, eq,
10972 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10973 	if (rc) {
10974 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10975 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10976 				qidx, (uint32_t)rc);
10977 		return rc;
10978 	}
10979 
10980 	if (qtype != LPFC_MBOX) {
10981 		/* Setup cq_map for fast lookup */
10982 		if (cq_map)
10983 			*cq_map = cq->queue_id;
10984 
10985 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10986 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10987 			qidx, cq->queue_id, qidx, eq->queue_id);
10988 
10989 		/* create the wq */
10990 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10991 		if (rc) {
10992 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10993 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10994 				qidx, (uint32_t)rc);
10995 			/* no need to tear down cq - caller will do so */
10996 			return rc;
10997 		}
10998 
10999 		/* Bind this CQ/WQ to the NVME ring */
11000 		pring = wq->pring;
11001 		pring->sli.sli4.wqp = (void *)wq;
11002 		cq->pring = pring;
11003 
11004 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11005 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11006 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11007 	} else {
11008 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11009 		if (rc) {
11010 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11011 					"0539 Failed setup of slow-path MQ: "
11012 					"rc = 0x%x\n", rc);
11013 			/* no need to tear down cq - caller will do so */
11014 			return rc;
11015 		}
11016 
11017 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11018 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11019 			phba->sli4_hba.mbx_wq->queue_id,
11020 			phba->sli4_hba.mbx_cq->queue_id);
11021 	}
11022 
11023 	return 0;
11024 }
11025 
11026 /**
11027  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11028  * @phba: pointer to lpfc hba data structure.
11029  *
11030  * This routine will populate the cq_lookup table by all
11031  * available CQ queue_id's.
11032  **/
11033 static void
11034 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11035 {
11036 	struct lpfc_queue *eq, *childq;
11037 	int qidx;
11038 
11039 	memset(phba->sli4_hba.cq_lookup, 0,
11040 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11041 	/* Loop thru all IRQ vectors */
11042 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11043 		/* Get the EQ corresponding to the IRQ vector */
11044 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11045 		if (!eq)
11046 			continue;
11047 		/* Loop through all CQs associated with that EQ */
11048 		list_for_each_entry(childq, &eq->child_list, list) {
11049 			if (childq->queue_id > phba->sli4_hba.cq_max)
11050 				continue;
11051 			if (childq->subtype == LPFC_IO)
11052 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11053 					childq;
11054 		}
11055 	}
11056 }
11057 
11058 /**
11059  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11060  * @phba: pointer to lpfc hba data structure.
11061  *
11062  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11063  * operation.
11064  *
11065  * Return codes
11066  *      0 - successful
11067  *      -ENOMEM - No available memory
11068  *      -EIO - The mailbox failed to complete successfully.
11069  **/
11070 int
11071 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11072 {
11073 	uint32_t shdr_status, shdr_add_status;
11074 	union lpfc_sli4_cfg_shdr *shdr;
11075 	struct lpfc_vector_map_info *cpup;
11076 	struct lpfc_sli4_hdw_queue *qp;
11077 	LPFC_MBOXQ_t *mboxq;
11078 	int qidx, cpu;
11079 	uint32_t length, usdelay;
11080 	int rc = -ENOMEM;
11081 
11082 	/* Check for dual-ULP support */
11083 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11084 	if (!mboxq) {
11085 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11086 				"3249 Unable to allocate memory for "
11087 				"QUERY_FW_CFG mailbox command\n");
11088 		return -ENOMEM;
11089 	}
11090 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11091 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11092 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11093 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11094 			 length, LPFC_SLI4_MBX_EMBED);
11095 
11096 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11097 
11098 	shdr = (union lpfc_sli4_cfg_shdr *)
11099 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11100 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11101 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11102 	if (shdr_status || shdr_add_status || rc) {
11103 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11104 				"3250 QUERY_FW_CFG mailbox failed with status "
11105 				"x%x add_status x%x, mbx status x%x\n",
11106 				shdr_status, shdr_add_status, rc);
11107 		mempool_free(mboxq, phba->mbox_mem_pool);
11108 		rc = -ENXIO;
11109 		goto out_error;
11110 	}
11111 
11112 	phba->sli4_hba.fw_func_mode =
11113 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11114 	phba->sli4_hba.physical_port =
11115 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11116 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11117 			"3251 QUERY_FW_CFG: func_mode:x%x\n",
11118 			phba->sli4_hba.fw_func_mode);
11119 
11120 	mempool_free(mboxq, phba->mbox_mem_pool);
11121 
11122 	/*
11123 	 * Set up HBA Event Queues (EQs)
11124 	 */
11125 	qp = phba->sli4_hba.hdwq;
11126 
11127 	/* Set up HBA event queue */
11128 	if (!qp) {
11129 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11130 				"3147 Fast-path EQs not allocated\n");
11131 		rc = -ENOMEM;
11132 		goto out_error;
11133 	}
11134 
11135 	/* Loop thru all IRQ vectors */
11136 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11137 		/* Create HBA Event Queues (EQs) in order */
11138 		for_each_present_cpu(cpu) {
11139 			cpup = &phba->sli4_hba.cpu_map[cpu];
11140 
11141 			/* Look for the CPU thats using that vector with
11142 			 * LPFC_CPU_FIRST_IRQ set.
11143 			 */
11144 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11145 				continue;
11146 			if (qidx != cpup->eq)
11147 				continue;
11148 
11149 			/* Create an EQ for that vector */
11150 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11151 					    phba->cfg_fcp_imax);
11152 			if (rc) {
11153 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11154 						"0523 Failed setup of fast-path"
11155 						" EQ (%d), rc = 0x%x\n",
11156 						cpup->eq, (uint32_t)rc);
11157 				goto out_destroy;
11158 			}
11159 
11160 			/* Save the EQ for that vector in the hba_eq_hdl */
11161 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11162 				qp[cpup->hdwq].hba_eq;
11163 
11164 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11165 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11166 					cpup->eq,
11167 					qp[cpup->hdwq].hba_eq->queue_id);
11168 		}
11169 	}
11170 
11171 	/* Loop thru all Hardware Queues */
11172 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11173 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11174 		cpup = &phba->sli4_hba.cpu_map[cpu];
11175 
11176 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11177 		rc = lpfc_create_wq_cq(phba,
11178 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11179 				       qp[qidx].io_cq,
11180 				       qp[qidx].io_wq,
11181 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11182 				       qidx,
11183 				       LPFC_IO);
11184 		if (rc) {
11185 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11186 					"0535 Failed to setup fastpath "
11187 					"IO WQ/CQ (%d), rc = 0x%x\n",
11188 					qidx, (uint32_t)rc);
11189 			goto out_destroy;
11190 		}
11191 	}
11192 
11193 	/*
11194 	 * Set up Slow Path Complete Queues (CQs)
11195 	 */
11196 
11197 	/* Set up slow-path MBOX CQ/MQ */
11198 
11199 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11201 				"0528 %s not allocated\n",
11202 				phba->sli4_hba.mbx_cq ?
11203 				"Mailbox WQ" : "Mailbox CQ");
11204 		rc = -ENOMEM;
11205 		goto out_destroy;
11206 	}
11207 
11208 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11209 			       phba->sli4_hba.mbx_cq,
11210 			       phba->sli4_hba.mbx_wq,
11211 			       NULL, 0, LPFC_MBOX);
11212 	if (rc) {
11213 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11214 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11215 			(uint32_t)rc);
11216 		goto out_destroy;
11217 	}
11218 	if (phba->nvmet_support) {
11219 		if (!phba->sli4_hba.nvmet_cqset) {
11220 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11221 					"3165 Fast-path NVME CQ Set "
11222 					"array not allocated\n");
11223 			rc = -ENOMEM;
11224 			goto out_destroy;
11225 		}
11226 		if (phba->cfg_nvmet_mrq > 1) {
11227 			rc = lpfc_cq_create_set(phba,
11228 					phba->sli4_hba.nvmet_cqset,
11229 					qp,
11230 					LPFC_WCQ, LPFC_NVMET);
11231 			if (rc) {
11232 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11233 						"3164 Failed setup of NVME CQ "
11234 						"Set, rc = 0x%x\n",
11235 						(uint32_t)rc);
11236 				goto out_destroy;
11237 			}
11238 		} else {
11239 			/* Set up NVMET Receive Complete Queue */
11240 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11241 					    qp[0].hba_eq,
11242 					    LPFC_WCQ, LPFC_NVMET);
11243 			if (rc) {
11244 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11245 						"6089 Failed setup NVMET CQ: "
11246 						"rc = 0x%x\n", (uint32_t)rc);
11247 				goto out_destroy;
11248 			}
11249 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11250 
11251 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11252 					"6090 NVMET CQ setup: cq-id=%d, "
11253 					"parent eq-id=%d\n",
11254 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11255 					qp[0].hba_eq->queue_id);
11256 		}
11257 	}
11258 
11259 	/* Set up slow-path ELS WQ/CQ */
11260 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11261 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11262 				"0530 ELS %s not allocated\n",
11263 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11264 		rc = -ENOMEM;
11265 		goto out_destroy;
11266 	}
11267 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11268 			       phba->sli4_hba.els_cq,
11269 			       phba->sli4_hba.els_wq,
11270 			       NULL, 0, LPFC_ELS);
11271 	if (rc) {
11272 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11273 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11274 				(uint32_t)rc);
11275 		goto out_destroy;
11276 	}
11277 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11278 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11279 			phba->sli4_hba.els_wq->queue_id,
11280 			phba->sli4_hba.els_cq->queue_id);
11281 
11282 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11283 		/* Set up NVME LS Complete Queue */
11284 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11285 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11286 					"6091 LS %s not allocated\n",
11287 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11288 			rc = -ENOMEM;
11289 			goto out_destroy;
11290 		}
11291 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11292 				       phba->sli4_hba.nvmels_cq,
11293 				       phba->sli4_hba.nvmels_wq,
11294 				       NULL, 0, LPFC_NVME_LS);
11295 		if (rc) {
11296 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11297 					"0526 Failed setup of NVVME LS WQ/CQ: "
11298 					"rc = 0x%x\n", (uint32_t)rc);
11299 			goto out_destroy;
11300 		}
11301 
11302 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11303 				"6096 ELS WQ setup: wq-id=%d, "
11304 				"parent cq-id=%d\n",
11305 				phba->sli4_hba.nvmels_wq->queue_id,
11306 				phba->sli4_hba.nvmels_cq->queue_id);
11307 	}
11308 
11309 	/*
11310 	 * Create NVMET Receive Queue (RQ)
11311 	 */
11312 	if (phba->nvmet_support) {
11313 		if ((!phba->sli4_hba.nvmet_cqset) ||
11314 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11315 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11316 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11317 					"6130 MRQ CQ Queues not "
11318 					"allocated\n");
11319 			rc = -ENOMEM;
11320 			goto out_destroy;
11321 		}
11322 		if (phba->cfg_nvmet_mrq > 1) {
11323 			rc = lpfc_mrq_create(phba,
11324 					     phba->sli4_hba.nvmet_mrq_hdr,
11325 					     phba->sli4_hba.nvmet_mrq_data,
11326 					     phba->sli4_hba.nvmet_cqset,
11327 					     LPFC_NVMET);
11328 			if (rc) {
11329 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11330 						"6098 Failed setup of NVMET "
11331 						"MRQ: rc = 0x%x\n",
11332 						(uint32_t)rc);
11333 				goto out_destroy;
11334 			}
11335 
11336 		} else {
11337 			rc = lpfc_rq_create(phba,
11338 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11339 					    phba->sli4_hba.nvmet_mrq_data[0],
11340 					    phba->sli4_hba.nvmet_cqset[0],
11341 					    LPFC_NVMET);
11342 			if (rc) {
11343 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11344 						"6057 Failed setup of NVMET "
11345 						"Receive Queue: rc = 0x%x\n",
11346 						(uint32_t)rc);
11347 				goto out_destroy;
11348 			}
11349 
11350 			lpfc_printf_log(
11351 				phba, KERN_INFO, LOG_INIT,
11352 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11353 				"dat-rq-id=%d parent cq-id=%d\n",
11354 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11355 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11356 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11357 
11358 		}
11359 	}
11360 
11361 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11362 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11363 				"0540 Receive Queue not allocated\n");
11364 		rc = -ENOMEM;
11365 		goto out_destroy;
11366 	}
11367 
11368 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11369 			    phba->sli4_hba.els_cq, LPFC_USOL);
11370 	if (rc) {
11371 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11372 				"0541 Failed setup of Receive Queue: "
11373 				"rc = 0x%x\n", (uint32_t)rc);
11374 		goto out_destroy;
11375 	}
11376 
11377 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11378 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11379 			"parent cq-id=%d\n",
11380 			phba->sli4_hba.hdr_rq->queue_id,
11381 			phba->sli4_hba.dat_rq->queue_id,
11382 			phba->sli4_hba.els_cq->queue_id);
11383 
11384 	if (phba->cfg_fcp_imax)
11385 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11386 	else
11387 		usdelay = 0;
11388 
11389 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11390 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11391 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11392 					 usdelay);
11393 
11394 	if (phba->sli4_hba.cq_max) {
11395 		kfree(phba->sli4_hba.cq_lookup);
11396 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11397 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11398 		if (!phba->sli4_hba.cq_lookup) {
11399 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11400 					"0549 Failed setup of CQ Lookup table: "
11401 					"size 0x%x\n", phba->sli4_hba.cq_max);
11402 			rc = -ENOMEM;
11403 			goto out_destroy;
11404 		}
11405 		lpfc_setup_cq_lookup(phba);
11406 	}
11407 	return 0;
11408 
11409 out_destroy:
11410 	lpfc_sli4_queue_unset(phba);
11411 out_error:
11412 	return rc;
11413 }
11414 
11415 /**
11416  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11417  * @phba: pointer to lpfc hba data structure.
11418  *
11419  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11420  * operation.
11421  *
11422  * Return codes
11423  *      0 - successful
11424  *      -ENOMEM - No available memory
11425  *      -EIO - The mailbox failed to complete successfully.
11426  **/
11427 void
11428 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11429 {
11430 	struct lpfc_sli4_hdw_queue *qp;
11431 	struct lpfc_queue *eq;
11432 	int qidx;
11433 
11434 	/* Unset mailbox command work queue */
11435 	if (phba->sli4_hba.mbx_wq)
11436 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11437 
11438 	/* Unset NVME LS work queue */
11439 	if (phba->sli4_hba.nvmels_wq)
11440 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11441 
11442 	/* Unset ELS work queue */
11443 	if (phba->sli4_hba.els_wq)
11444 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11445 
11446 	/* Unset unsolicited receive queue */
11447 	if (phba->sli4_hba.hdr_rq)
11448 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11449 				phba->sli4_hba.dat_rq);
11450 
11451 	/* Unset mailbox command complete queue */
11452 	if (phba->sli4_hba.mbx_cq)
11453 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11454 
11455 	/* Unset ELS complete queue */
11456 	if (phba->sli4_hba.els_cq)
11457 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11458 
11459 	/* Unset NVME LS complete queue */
11460 	if (phba->sli4_hba.nvmels_cq)
11461 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11462 
11463 	if (phba->nvmet_support) {
11464 		/* Unset NVMET MRQ queue */
11465 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11466 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11467 				lpfc_rq_destroy(
11468 					phba,
11469 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11470 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11471 		}
11472 
11473 		/* Unset NVMET CQ Set complete queue */
11474 		if (phba->sli4_hba.nvmet_cqset) {
11475 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11476 				lpfc_cq_destroy(
11477 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11478 		}
11479 	}
11480 
11481 	/* Unset fast-path SLI4 queues */
11482 	if (phba->sli4_hba.hdwq) {
11483 		/* Loop thru all Hardware Queues */
11484 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11485 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11486 			qp = &phba->sli4_hba.hdwq[qidx];
11487 			lpfc_wq_destroy(phba, qp->io_wq);
11488 			lpfc_cq_destroy(phba, qp->io_cq);
11489 		}
11490 		/* Loop thru all IRQ vectors */
11491 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11492 			/* Destroy the EQ corresponding to the IRQ vector */
11493 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11494 			lpfc_eq_destroy(phba, eq);
11495 		}
11496 	}
11497 
11498 	kfree(phba->sli4_hba.cq_lookup);
11499 	phba->sli4_hba.cq_lookup = NULL;
11500 	phba->sli4_hba.cq_max = 0;
11501 }
11502 
11503 /**
11504  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11505  * @phba: pointer to lpfc hba data structure.
11506  *
11507  * This routine is invoked to allocate and set up a pool of completion queue
11508  * events. The body of the completion queue event is a completion queue entry
11509  * CQE. For now, this pool is used for the interrupt service routine to queue
11510  * the following HBA completion queue events for the worker thread to process:
11511  *   - Mailbox asynchronous events
11512  *   - Receive queue completion unsolicited events
11513  * Later, this can be used for all the slow-path events.
11514  *
11515  * Return codes
11516  *      0 - successful
11517  *      -ENOMEM - No available memory
11518  **/
11519 static int
11520 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11521 {
11522 	struct lpfc_cq_event *cq_event;
11523 	int i;
11524 
11525 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11526 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11527 		if (!cq_event)
11528 			goto out_pool_create_fail;
11529 		list_add_tail(&cq_event->list,
11530 			      &phba->sli4_hba.sp_cqe_event_pool);
11531 	}
11532 	return 0;
11533 
11534 out_pool_create_fail:
11535 	lpfc_sli4_cq_event_pool_destroy(phba);
11536 	return -ENOMEM;
11537 }
11538 
11539 /**
11540  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11541  * @phba: pointer to lpfc hba data structure.
11542  *
11543  * This routine is invoked to free the pool of completion queue events at
11544  * driver unload time. Note that, it is the responsibility of the driver
11545  * cleanup routine to free all the outstanding completion-queue events
11546  * allocated from this pool back into the pool before invoking this routine
11547  * to destroy the pool.
11548  **/
11549 static void
11550 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11551 {
11552 	struct lpfc_cq_event *cq_event, *next_cq_event;
11553 
11554 	list_for_each_entry_safe(cq_event, next_cq_event,
11555 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11556 		list_del(&cq_event->list);
11557 		kfree(cq_event);
11558 	}
11559 }
11560 
11561 /**
11562  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11563  * @phba: pointer to lpfc hba data structure.
11564  *
11565  * This routine is the lock free version of the API invoked to allocate a
11566  * completion-queue event from the free pool.
11567  *
11568  * Return: Pointer to the newly allocated completion-queue event if successful
11569  *         NULL otherwise.
11570  **/
11571 struct lpfc_cq_event *
11572 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11573 {
11574 	struct lpfc_cq_event *cq_event = NULL;
11575 
11576 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11577 			 struct lpfc_cq_event, list);
11578 	return cq_event;
11579 }
11580 
11581 /**
11582  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11583  * @phba: pointer to lpfc hba data structure.
11584  *
11585  * This routine is the lock version of the API invoked to allocate a
11586  * completion-queue event from the free pool.
11587  *
11588  * Return: Pointer to the newly allocated completion-queue event if successful
11589  *         NULL otherwise.
11590  **/
11591 struct lpfc_cq_event *
11592 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11593 {
11594 	struct lpfc_cq_event *cq_event;
11595 	unsigned long iflags;
11596 
11597 	spin_lock_irqsave(&phba->hbalock, iflags);
11598 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11599 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11600 	return cq_event;
11601 }
11602 
11603 /**
11604  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11605  * @phba: pointer to lpfc hba data structure.
11606  * @cq_event: pointer to the completion queue event to be freed.
11607  *
11608  * This routine is the lock free version of the API invoked to release a
11609  * completion-queue event back into the free pool.
11610  **/
11611 void
11612 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11613 			     struct lpfc_cq_event *cq_event)
11614 {
11615 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11616 }
11617 
11618 /**
11619  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11620  * @phba: pointer to lpfc hba data structure.
11621  * @cq_event: pointer to the completion queue event to be freed.
11622  *
11623  * This routine is the lock version of the API invoked to release a
11624  * completion-queue event back into the free pool.
11625  **/
11626 void
11627 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11628 			   struct lpfc_cq_event *cq_event)
11629 {
11630 	unsigned long iflags;
11631 	spin_lock_irqsave(&phba->hbalock, iflags);
11632 	__lpfc_sli4_cq_event_release(phba, cq_event);
11633 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11634 }
11635 
11636 /**
11637  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11638  * @phba: pointer to lpfc hba data structure.
11639  *
11640  * This routine is to free all the pending completion-queue events to the
11641  * back into the free pool for device reset.
11642  **/
11643 static void
11644 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11645 {
11646 	LIST_HEAD(cq_event_list);
11647 	struct lpfc_cq_event *cq_event;
11648 	unsigned long iflags;
11649 
11650 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11651 
11652 	/* Pending ELS XRI abort events */
11653 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11654 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11655 			 &cq_event_list);
11656 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11657 
11658 	/* Pending asynnc events */
11659 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11660 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11661 			 &cq_event_list);
11662 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11663 
11664 	while (!list_empty(&cq_event_list)) {
11665 		list_remove_head(&cq_event_list, cq_event,
11666 				 struct lpfc_cq_event, list);
11667 		lpfc_sli4_cq_event_release(phba, cq_event);
11668 	}
11669 }
11670 
11671 /**
11672  * lpfc_pci_function_reset - Reset pci function.
11673  * @phba: pointer to lpfc hba data structure.
11674  *
11675  * This routine is invoked to request a PCI function reset. It will destroys
11676  * all resources assigned to the PCI function which originates this request.
11677  *
11678  * Return codes
11679  *      0 - successful
11680  *      -ENOMEM - No available memory
11681  *      -EIO - The mailbox failed to complete successfully.
11682  **/
11683 int
11684 lpfc_pci_function_reset(struct lpfc_hba *phba)
11685 {
11686 	LPFC_MBOXQ_t *mboxq;
11687 	uint32_t rc = 0, if_type;
11688 	uint32_t shdr_status, shdr_add_status;
11689 	uint32_t rdy_chk;
11690 	uint32_t port_reset = 0;
11691 	union lpfc_sli4_cfg_shdr *shdr;
11692 	struct lpfc_register reg_data;
11693 	uint16_t devid;
11694 
11695 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11696 	switch (if_type) {
11697 	case LPFC_SLI_INTF_IF_TYPE_0:
11698 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11699 						       GFP_KERNEL);
11700 		if (!mboxq) {
11701 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11702 					"0494 Unable to allocate memory for "
11703 					"issuing SLI_FUNCTION_RESET mailbox "
11704 					"command\n");
11705 			return -ENOMEM;
11706 		}
11707 
11708 		/* Setup PCI function reset mailbox-ioctl command */
11709 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11710 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11711 				 LPFC_SLI4_MBX_EMBED);
11712 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11713 		shdr = (union lpfc_sli4_cfg_shdr *)
11714 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11715 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11716 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11717 					 &shdr->response);
11718 		mempool_free(mboxq, phba->mbox_mem_pool);
11719 		if (shdr_status || shdr_add_status || rc) {
11720 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11721 					"0495 SLI_FUNCTION_RESET mailbox "
11722 					"failed with status x%x add_status x%x,"
11723 					" mbx status x%x\n",
11724 					shdr_status, shdr_add_status, rc);
11725 			rc = -ENXIO;
11726 		}
11727 		break;
11728 	case LPFC_SLI_INTF_IF_TYPE_2:
11729 	case LPFC_SLI_INTF_IF_TYPE_6:
11730 wait:
11731 		/*
11732 		 * Poll the Port Status Register and wait for RDY for
11733 		 * up to 30 seconds. If the port doesn't respond, treat
11734 		 * it as an error.
11735 		 */
11736 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11737 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11738 				STATUSregaddr, &reg_data.word0)) {
11739 				rc = -ENODEV;
11740 				goto out;
11741 			}
11742 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11743 				break;
11744 			msleep(20);
11745 		}
11746 
11747 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11748 			phba->work_status[0] = readl(
11749 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11750 			phba->work_status[1] = readl(
11751 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11752 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11753 					"2890 Port not ready, port status reg "
11754 					"0x%x error 1=0x%x, error 2=0x%x\n",
11755 					reg_data.word0,
11756 					phba->work_status[0],
11757 					phba->work_status[1]);
11758 			rc = -ENODEV;
11759 			goto out;
11760 		}
11761 
11762 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11763 			lpfc_pldv_detect = true;
11764 
11765 		if (!port_reset) {
11766 			/*
11767 			 * Reset the port now
11768 			 */
11769 			reg_data.word0 = 0;
11770 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11771 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11772 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11773 			       LPFC_SLIPORT_INIT_PORT);
11774 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11775 			       CTRLregaddr);
11776 			/* flush */
11777 			pci_read_config_word(phba->pcidev,
11778 					     PCI_DEVICE_ID, &devid);
11779 
11780 			port_reset = 1;
11781 			msleep(20);
11782 			goto wait;
11783 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11784 			rc = -ENODEV;
11785 			goto out;
11786 		}
11787 		break;
11788 
11789 	case LPFC_SLI_INTF_IF_TYPE_1:
11790 	default:
11791 		break;
11792 	}
11793 
11794 out:
11795 	/* Catch the not-ready port failure after a port reset. */
11796 	if (rc) {
11797 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11798 				"3317 HBA not functional: IP Reset Failed "
11799 				"try: echo fw_reset > board_mode\n");
11800 		rc = -ENODEV;
11801 	}
11802 
11803 	return rc;
11804 }
11805 
11806 /**
11807  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11808  * @phba: pointer to lpfc hba data structure.
11809  *
11810  * This routine is invoked to set up the PCI device memory space for device
11811  * with SLI-4 interface spec.
11812  *
11813  * Return codes
11814  * 	0 - successful
11815  * 	other values - error
11816  **/
11817 static int
11818 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11819 {
11820 	struct pci_dev *pdev = phba->pcidev;
11821 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11822 	int error;
11823 	uint32_t if_type;
11824 
11825 	if (!pdev)
11826 		return -ENODEV;
11827 
11828 	/* Set the device DMA mask size */
11829 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11830 	if (error)
11831 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11832 	if (error)
11833 		return error;
11834 
11835 	/*
11836 	 * The BARs and register set definitions and offset locations are
11837 	 * dependent on the if_type.
11838 	 */
11839 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11840 				  &phba->sli4_hba.sli_intf.word0)) {
11841 		return -ENODEV;
11842 	}
11843 
11844 	/* There is no SLI3 failback for SLI4 devices. */
11845 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11846 	    LPFC_SLI_INTF_VALID) {
11847 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11848 				"2894 SLI_INTF reg contents invalid "
11849 				"sli_intf reg 0x%x\n",
11850 				phba->sli4_hba.sli_intf.word0);
11851 		return -ENODEV;
11852 	}
11853 
11854 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11855 	/*
11856 	 * Get the bus address of SLI4 device Bar regions and the
11857 	 * number of bytes required by each mapping. The mapping of the
11858 	 * particular PCI BARs regions is dependent on the type of
11859 	 * SLI4 device.
11860 	 */
11861 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11862 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11863 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11864 
11865 		/*
11866 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11867 		 * addr
11868 		 */
11869 		phba->sli4_hba.conf_regs_memmap_p =
11870 			ioremap(phba->pci_bar0_map, bar0map_len);
11871 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11872 			dev_printk(KERN_ERR, &pdev->dev,
11873 				   "ioremap failed for SLI4 PCI config "
11874 				   "registers.\n");
11875 			return -ENODEV;
11876 		}
11877 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11878 		/* Set up BAR0 PCI config space register memory map */
11879 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11880 	} else {
11881 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11882 		bar0map_len = pci_resource_len(pdev, 1);
11883 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11884 			dev_printk(KERN_ERR, &pdev->dev,
11885 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11886 			return -ENODEV;
11887 		}
11888 		phba->sli4_hba.conf_regs_memmap_p =
11889 				ioremap(phba->pci_bar0_map, bar0map_len);
11890 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11891 			dev_printk(KERN_ERR, &pdev->dev,
11892 				"ioremap failed for SLI4 PCI config "
11893 				"registers.\n");
11894 			return -ENODEV;
11895 		}
11896 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11897 	}
11898 
11899 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11900 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11901 			/*
11902 			 * Map SLI4 if type 0 HBA Control Register base to a
11903 			 * kernel virtual address and setup the registers.
11904 			 */
11905 			phba->pci_bar1_map = pci_resource_start(pdev,
11906 								PCI_64BIT_BAR2);
11907 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11908 			phba->sli4_hba.ctrl_regs_memmap_p =
11909 					ioremap(phba->pci_bar1_map,
11910 						bar1map_len);
11911 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11912 				dev_err(&pdev->dev,
11913 					   "ioremap failed for SLI4 HBA "
11914 					    "control registers.\n");
11915 				error = -ENOMEM;
11916 				goto out_iounmap_conf;
11917 			}
11918 			phba->pci_bar2_memmap_p =
11919 					 phba->sli4_hba.ctrl_regs_memmap_p;
11920 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11921 		} else {
11922 			error = -ENOMEM;
11923 			goto out_iounmap_conf;
11924 		}
11925 	}
11926 
11927 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11928 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11929 		/*
11930 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11931 		 * virtual address and setup the registers.
11932 		 */
11933 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11934 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11935 		phba->sli4_hba.drbl_regs_memmap_p =
11936 				ioremap(phba->pci_bar1_map, bar1map_len);
11937 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11938 			dev_err(&pdev->dev,
11939 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11940 			error = -ENOMEM;
11941 			goto out_iounmap_conf;
11942 		}
11943 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11944 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11945 	}
11946 
11947 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11948 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11949 			/*
11950 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11951 			 * a kernel virtual address and setup the registers.
11952 			 */
11953 			phba->pci_bar2_map = pci_resource_start(pdev,
11954 								PCI_64BIT_BAR4);
11955 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11956 			phba->sli4_hba.drbl_regs_memmap_p =
11957 					ioremap(phba->pci_bar2_map,
11958 						bar2map_len);
11959 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11960 				dev_err(&pdev->dev,
11961 					   "ioremap failed for SLI4 HBA"
11962 					   " doorbell registers.\n");
11963 				error = -ENOMEM;
11964 				goto out_iounmap_ctrl;
11965 			}
11966 			phba->pci_bar4_memmap_p =
11967 					phba->sli4_hba.drbl_regs_memmap_p;
11968 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11969 			if (error)
11970 				goto out_iounmap_all;
11971 		} else {
11972 			error = -ENOMEM;
11973 			goto out_iounmap_ctrl;
11974 		}
11975 	}
11976 
11977 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11978 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11979 		/*
11980 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11981 		 * virtual address and setup the registers.
11982 		 */
11983 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11984 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11985 		phba->sli4_hba.dpp_regs_memmap_p =
11986 				ioremap(phba->pci_bar2_map, bar2map_len);
11987 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11988 			dev_err(&pdev->dev,
11989 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11990 			error = -ENOMEM;
11991 			goto out_iounmap_all;
11992 		}
11993 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11994 	}
11995 
11996 	/* Set up the EQ/CQ register handeling functions now */
11997 	switch (if_type) {
11998 	case LPFC_SLI_INTF_IF_TYPE_0:
11999 	case LPFC_SLI_INTF_IF_TYPE_2:
12000 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12001 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12002 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12003 		break;
12004 	case LPFC_SLI_INTF_IF_TYPE_6:
12005 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12006 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12007 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12008 		break;
12009 	default:
12010 		break;
12011 	}
12012 
12013 	return 0;
12014 
12015 out_iounmap_all:
12016 	if (phba->sli4_hba.drbl_regs_memmap_p)
12017 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12018 out_iounmap_ctrl:
12019 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12020 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12021 out_iounmap_conf:
12022 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12023 
12024 	return error;
12025 }
12026 
12027 /**
12028  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12029  * @phba: pointer to lpfc hba data structure.
12030  *
12031  * This routine is invoked to unset the PCI device memory space for device
12032  * with SLI-4 interface spec.
12033  **/
12034 static void
12035 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12036 {
12037 	uint32_t if_type;
12038 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12039 
12040 	switch (if_type) {
12041 	case LPFC_SLI_INTF_IF_TYPE_0:
12042 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12043 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12044 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12045 		break;
12046 	case LPFC_SLI_INTF_IF_TYPE_2:
12047 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12048 		break;
12049 	case LPFC_SLI_INTF_IF_TYPE_6:
12050 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12051 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12052 		if (phba->sli4_hba.dpp_regs_memmap_p)
12053 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12054 		break;
12055 	case LPFC_SLI_INTF_IF_TYPE_1:
12056 		break;
12057 	default:
12058 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12059 			   "FATAL - unsupported SLI4 interface type - %d\n",
12060 			   if_type);
12061 		break;
12062 	}
12063 }
12064 
12065 /**
12066  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12067  * @phba: pointer to lpfc hba data structure.
12068  *
12069  * This routine is invoked to enable the MSI-X interrupt vectors to device
12070  * with SLI-3 interface specs.
12071  *
12072  * Return codes
12073  *   0 - successful
12074  *   other values - error
12075  **/
12076 static int
12077 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12078 {
12079 	int rc;
12080 	LPFC_MBOXQ_t *pmb;
12081 
12082 	/* Set up MSI-X multi-message vectors */
12083 	rc = pci_alloc_irq_vectors(phba->pcidev,
12084 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12085 	if (rc < 0) {
12086 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12087 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12088 		goto vec_fail_out;
12089 	}
12090 
12091 	/*
12092 	 * Assign MSI-X vectors to interrupt handlers
12093 	 */
12094 
12095 	/* vector-0 is associated to slow-path handler */
12096 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12097 			 &lpfc_sli_sp_intr_handler, 0,
12098 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12099 	if (rc) {
12100 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12101 				"0421 MSI-X slow-path request_irq failed "
12102 				"(%d)\n", rc);
12103 		goto msi_fail_out;
12104 	}
12105 
12106 	/* vector-1 is associated to fast-path handler */
12107 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12108 			 &lpfc_sli_fp_intr_handler, 0,
12109 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12110 
12111 	if (rc) {
12112 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12113 				"0429 MSI-X fast-path request_irq failed "
12114 				"(%d)\n", rc);
12115 		goto irq_fail_out;
12116 	}
12117 
12118 	/*
12119 	 * Configure HBA MSI-X attention conditions to messages
12120 	 */
12121 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12122 
12123 	if (!pmb) {
12124 		rc = -ENOMEM;
12125 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12126 				"0474 Unable to allocate memory for issuing "
12127 				"MBOX_CONFIG_MSI command\n");
12128 		goto mem_fail_out;
12129 	}
12130 	rc = lpfc_config_msi(phba, pmb);
12131 	if (rc)
12132 		goto mbx_fail_out;
12133 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12134 	if (rc != MBX_SUCCESS) {
12135 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12136 				"0351 Config MSI mailbox command failed, "
12137 				"mbxCmd x%x, mbxStatus x%x\n",
12138 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12139 		goto mbx_fail_out;
12140 	}
12141 
12142 	/* Free memory allocated for mailbox command */
12143 	mempool_free(pmb, phba->mbox_mem_pool);
12144 	return rc;
12145 
12146 mbx_fail_out:
12147 	/* Free memory allocated for mailbox command */
12148 	mempool_free(pmb, phba->mbox_mem_pool);
12149 
12150 mem_fail_out:
12151 	/* free the irq already requested */
12152 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12153 
12154 irq_fail_out:
12155 	/* free the irq already requested */
12156 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12157 
12158 msi_fail_out:
12159 	/* Unconfigure MSI-X capability structure */
12160 	pci_free_irq_vectors(phba->pcidev);
12161 
12162 vec_fail_out:
12163 	return rc;
12164 }
12165 
12166 /**
12167  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12168  * @phba: pointer to lpfc hba data structure.
12169  *
12170  * This routine is invoked to enable the MSI interrupt mode to device with
12171  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12172  * enable the MSI vector. The device driver is responsible for calling the
12173  * request_irq() to register MSI vector with a interrupt the handler, which
12174  * is done in this function.
12175  *
12176  * Return codes
12177  * 	0 - successful
12178  * 	other values - error
12179  */
12180 static int
12181 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12182 {
12183 	int rc;
12184 
12185 	rc = pci_enable_msi(phba->pcidev);
12186 	if (!rc)
12187 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12188 				"0012 PCI enable MSI mode success.\n");
12189 	else {
12190 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12191 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12192 		return rc;
12193 	}
12194 
12195 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12196 			 0, LPFC_DRIVER_NAME, phba);
12197 	if (rc) {
12198 		pci_disable_msi(phba->pcidev);
12199 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12200 				"0478 MSI request_irq failed (%d)\n", rc);
12201 	}
12202 	return rc;
12203 }
12204 
12205 /**
12206  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12207  * @phba: pointer to lpfc hba data structure.
12208  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12209  *
12210  * This routine is invoked to enable device interrupt and associate driver's
12211  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12212  * spec. Depends on the interrupt mode configured to the driver, the driver
12213  * will try to fallback from the configured interrupt mode to an interrupt
12214  * mode which is supported by the platform, kernel, and device in the order
12215  * of:
12216  * MSI-X -> MSI -> IRQ.
12217  *
12218  * Return codes
12219  *   0 - successful
12220  *   other values - error
12221  **/
12222 static uint32_t
12223 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12224 {
12225 	uint32_t intr_mode = LPFC_INTR_ERROR;
12226 	int retval;
12227 
12228 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12229 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12230 	if (retval)
12231 		return intr_mode;
12232 	clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
12233 
12234 	if (cfg_mode == 2) {
12235 		/* Now, try to enable MSI-X interrupt mode */
12236 		retval = lpfc_sli_enable_msix(phba);
12237 		if (!retval) {
12238 			/* Indicate initialization to MSI-X mode */
12239 			phba->intr_type = MSIX;
12240 			intr_mode = 2;
12241 		}
12242 	}
12243 
12244 	/* Fallback to MSI if MSI-X initialization failed */
12245 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12246 		retval = lpfc_sli_enable_msi(phba);
12247 		if (!retval) {
12248 			/* Indicate initialization to MSI mode */
12249 			phba->intr_type = MSI;
12250 			intr_mode = 1;
12251 		}
12252 	}
12253 
12254 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12255 	if (phba->intr_type == NONE) {
12256 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12257 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12258 		if (!retval) {
12259 			/* Indicate initialization to INTx mode */
12260 			phba->intr_type = INTx;
12261 			intr_mode = 0;
12262 		}
12263 	}
12264 	return intr_mode;
12265 }
12266 
12267 /**
12268  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12269  * @phba: pointer to lpfc hba data structure.
12270  *
12271  * This routine is invoked to disable device interrupt and disassociate the
12272  * driver's interrupt handler(s) from interrupt vector(s) to device with
12273  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12274  * release the interrupt vector(s) for the message signaled interrupt.
12275  **/
12276 static void
12277 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12278 {
12279 	int nr_irqs, i;
12280 
12281 	if (phba->intr_type == MSIX)
12282 		nr_irqs = LPFC_MSIX_VECTORS;
12283 	else
12284 		nr_irqs = 1;
12285 
12286 	for (i = 0; i < nr_irqs; i++)
12287 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12288 	pci_free_irq_vectors(phba->pcidev);
12289 
12290 	/* Reset interrupt management states */
12291 	phba->intr_type = NONE;
12292 	phba->sli.slistat.sli_intr = 0;
12293 }
12294 
12295 /**
12296  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12297  * @phba: pointer to lpfc hba data structure.
12298  * @id: EQ vector index or Hardware Queue index
12299  * @match: LPFC_FIND_BY_EQ = match by EQ
12300  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12301  * Return the CPU that matches the selection criteria
12302  */
12303 static uint16_t
12304 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12305 {
12306 	struct lpfc_vector_map_info *cpup;
12307 	int cpu;
12308 
12309 	/* Loop through all CPUs */
12310 	for_each_present_cpu(cpu) {
12311 		cpup = &phba->sli4_hba.cpu_map[cpu];
12312 
12313 		/* If we are matching by EQ, there may be multiple CPUs using
12314 		 * using the same vector, so select the one with
12315 		 * LPFC_CPU_FIRST_IRQ set.
12316 		 */
12317 		if ((match == LPFC_FIND_BY_EQ) &&
12318 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12319 		    (cpup->eq == id))
12320 			return cpu;
12321 
12322 		/* If matching by HDWQ, select the first CPU that matches */
12323 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12324 			return cpu;
12325 	}
12326 	return 0;
12327 }
12328 
12329 #ifdef CONFIG_X86
12330 /**
12331  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12332  * @phba: pointer to lpfc hba data structure.
12333  * @cpu: CPU map index
12334  * @phys_id: CPU package physical id
12335  * @core_id: CPU core id
12336  */
12337 static int
12338 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12339 		uint16_t phys_id, uint16_t core_id)
12340 {
12341 	struct lpfc_vector_map_info *cpup;
12342 	int idx;
12343 
12344 	for_each_present_cpu(idx) {
12345 		cpup = &phba->sli4_hba.cpu_map[idx];
12346 		/* Does the cpup match the one we are looking for */
12347 		if ((cpup->phys_id == phys_id) &&
12348 		    (cpup->core_id == core_id) &&
12349 		    (cpu != idx))
12350 			return 1;
12351 	}
12352 	return 0;
12353 }
12354 #endif
12355 
12356 /*
12357  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12358  * @phba: pointer to lpfc hba data structure.
12359  * @eqidx: index for eq and irq vector
12360  * @flag: flags to set for vector_map structure
12361  * @cpu: cpu used to index vector_map structure
12362  *
12363  * The routine assigns eq info into vector_map structure
12364  */
12365 static inline void
12366 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12367 			unsigned int cpu)
12368 {
12369 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12370 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12371 
12372 	cpup->eq = eqidx;
12373 	cpup->flag |= flag;
12374 
12375 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12376 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12377 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12378 }
12379 
12380 /**
12381  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12382  * @phba: pointer to lpfc hba data structure.
12383  *
12384  * The routine initializes the cpu_map array structure
12385  */
12386 static void
12387 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12388 {
12389 	struct lpfc_vector_map_info *cpup;
12390 	struct lpfc_eq_intr_info *eqi;
12391 	int cpu;
12392 
12393 	for_each_possible_cpu(cpu) {
12394 		cpup = &phba->sli4_hba.cpu_map[cpu];
12395 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12396 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12397 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12398 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12399 		cpup->flag = 0;
12400 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12401 		INIT_LIST_HEAD(&eqi->list);
12402 		eqi->icnt = 0;
12403 	}
12404 }
12405 
12406 /**
12407  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12408  * @phba: pointer to lpfc hba data structure.
12409  *
12410  * The routine initializes the hba_eq_hdl array structure
12411  */
12412 static void
12413 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12414 {
12415 	struct lpfc_hba_eq_hdl *eqhdl;
12416 	int i;
12417 
12418 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12419 		eqhdl = lpfc_get_eq_hdl(i);
12420 		eqhdl->irq = LPFC_IRQ_EMPTY;
12421 		eqhdl->phba = phba;
12422 	}
12423 }
12424 
12425 /**
12426  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12427  * @phba: pointer to lpfc hba data structure.
12428  * @vectors: number of msix vectors allocated.
12429  *
12430  * The routine will figure out the CPU affinity assignment for every
12431  * MSI-X vector allocated for the HBA.
12432  * In addition, the CPU to IO channel mapping will be calculated
12433  * and the phba->sli4_hba.cpu_map array will reflect this.
12434  */
12435 static void
12436 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12437 {
12438 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12439 	int max_phys_id, min_phys_id;
12440 	int max_core_id, min_core_id;
12441 	struct lpfc_vector_map_info *cpup;
12442 	struct lpfc_vector_map_info *new_cpup;
12443 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12444 	struct lpfc_hdwq_stat *c_stat;
12445 #endif
12446 
12447 	max_phys_id = 0;
12448 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12449 	max_core_id = 0;
12450 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12451 
12452 	/* Update CPU map with physical id and core id of each CPU */
12453 	for_each_present_cpu(cpu) {
12454 		cpup = &phba->sli4_hba.cpu_map[cpu];
12455 #ifdef CONFIG_X86
12456 		cpup->phys_id = topology_physical_package_id(cpu);
12457 		cpup->core_id = topology_core_id(cpu);
12458 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12459 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12460 #else
12461 		/* No distinction between CPUs for other platforms */
12462 		cpup->phys_id = 0;
12463 		cpup->core_id = cpu;
12464 #endif
12465 
12466 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12467 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12468 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12469 
12470 		if (cpup->phys_id > max_phys_id)
12471 			max_phys_id = cpup->phys_id;
12472 		if (cpup->phys_id < min_phys_id)
12473 			min_phys_id = cpup->phys_id;
12474 
12475 		if (cpup->core_id > max_core_id)
12476 			max_core_id = cpup->core_id;
12477 		if (cpup->core_id < min_core_id)
12478 			min_core_id = cpup->core_id;
12479 	}
12480 
12481 	/* After looking at each irq vector assigned to this pcidev, its
12482 	 * possible to see that not ALL CPUs have been accounted for.
12483 	 * Next we will set any unassigned (unaffinitized) cpu map
12484 	 * entries to a IRQ on the same phys_id.
12485 	 */
12486 	first_cpu = cpumask_first(cpu_present_mask);
12487 	start_cpu = first_cpu;
12488 
12489 	for_each_present_cpu(cpu) {
12490 		cpup = &phba->sli4_hba.cpu_map[cpu];
12491 
12492 		/* Is this CPU entry unassigned */
12493 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12494 			/* Mark CPU as IRQ not assigned by the kernel */
12495 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12496 
12497 			/* If so, find a new_cpup that is on the SAME
12498 			 * phys_id as cpup. start_cpu will start where we
12499 			 * left off so all unassigned entries don't get assgined
12500 			 * the IRQ of the first entry.
12501 			 */
12502 			new_cpu = start_cpu;
12503 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12504 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12505 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12506 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12507 				    (new_cpup->phys_id == cpup->phys_id))
12508 					goto found_same;
12509 				new_cpu = lpfc_next_present_cpu(new_cpu);
12510 			}
12511 			/* At this point, we leave the CPU as unassigned */
12512 			continue;
12513 found_same:
12514 			/* We found a matching phys_id, so copy the IRQ info */
12515 			cpup->eq = new_cpup->eq;
12516 
12517 			/* Bump start_cpu to the next slot to minmize the
12518 			 * chance of having multiple unassigned CPU entries
12519 			 * selecting the same IRQ.
12520 			 */
12521 			start_cpu = lpfc_next_present_cpu(new_cpu);
12522 
12523 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12524 					"3337 Set Affinity: CPU %d "
12525 					"eq %d from peer cpu %d same "
12526 					"phys_id (%d)\n",
12527 					cpu, cpup->eq, new_cpu,
12528 					cpup->phys_id);
12529 		}
12530 	}
12531 
12532 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12533 	start_cpu = first_cpu;
12534 
12535 	for_each_present_cpu(cpu) {
12536 		cpup = &phba->sli4_hba.cpu_map[cpu];
12537 
12538 		/* Is this entry unassigned */
12539 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12540 			/* Mark it as IRQ not assigned by the kernel */
12541 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12542 
12543 			/* If so, find a new_cpup thats on ANY phys_id
12544 			 * as the cpup. start_cpu will start where we
12545 			 * left off so all unassigned entries don't get
12546 			 * assigned the IRQ of the first entry.
12547 			 */
12548 			new_cpu = start_cpu;
12549 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12550 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12551 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12552 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12553 					goto found_any;
12554 				new_cpu = lpfc_next_present_cpu(new_cpu);
12555 			}
12556 			/* We should never leave an entry unassigned */
12557 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12558 					"3339 Set Affinity: CPU %d "
12559 					"eq %d UNASSIGNED\n",
12560 					cpup->hdwq, cpup->eq);
12561 			continue;
12562 found_any:
12563 			/* We found an available entry, copy the IRQ info */
12564 			cpup->eq = new_cpup->eq;
12565 
12566 			/* Bump start_cpu to the next slot to minmize the
12567 			 * chance of having multiple unassigned CPU entries
12568 			 * selecting the same IRQ.
12569 			 */
12570 			start_cpu = lpfc_next_present_cpu(new_cpu);
12571 
12572 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12573 					"3338 Set Affinity: CPU %d "
12574 					"eq %d from peer cpu %d (%d/%d)\n",
12575 					cpu, cpup->eq, new_cpu,
12576 					new_cpup->phys_id, new_cpup->core_id);
12577 		}
12578 	}
12579 
12580 	/* Assign hdwq indices that are unique across all cpus in the map
12581 	 * that are also FIRST_CPUs.
12582 	 */
12583 	idx = 0;
12584 	for_each_present_cpu(cpu) {
12585 		cpup = &phba->sli4_hba.cpu_map[cpu];
12586 
12587 		/* Only FIRST IRQs get a hdwq index assignment. */
12588 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12589 			continue;
12590 
12591 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12592 		cpup->hdwq = idx;
12593 		idx++;
12594 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12595 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12596 				"hdwq %d eq %d flg x%x\n",
12597 				cpu, cpup->phys_id, cpup->core_id,
12598 				cpup->hdwq, cpup->eq, cpup->flag);
12599 	}
12600 	/* Associate a hdwq with each cpu_map entry
12601 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12602 	 * hardware queues then CPUs. For that case we will just round-robin
12603 	 * the available hardware queues as they get assigned to CPUs.
12604 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12605 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12606 	 * and needs to start at 0.
12607 	 */
12608 	next_idx = idx;
12609 	start_cpu = 0;
12610 	idx = 0;
12611 	for_each_present_cpu(cpu) {
12612 		cpup = &phba->sli4_hba.cpu_map[cpu];
12613 
12614 		/* FIRST cpus are already mapped. */
12615 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12616 			continue;
12617 
12618 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12619 		 * of the unassigned cpus to the next idx so that all
12620 		 * hdw queues are fully utilized.
12621 		 */
12622 		if (next_idx < phba->cfg_hdw_queue) {
12623 			cpup->hdwq = next_idx;
12624 			next_idx++;
12625 			continue;
12626 		}
12627 
12628 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12629 		 * Hardware Queue for another CPU, so be smart about it
12630 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12631 		 * (CPU package) and core_id.
12632 		 */
12633 		new_cpu = start_cpu;
12634 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12635 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12636 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12637 			    new_cpup->phys_id == cpup->phys_id &&
12638 			    new_cpup->core_id == cpup->core_id) {
12639 				goto found_hdwq;
12640 			}
12641 			new_cpu = lpfc_next_present_cpu(new_cpu);
12642 		}
12643 
12644 		/* If we can't match both phys_id and core_id,
12645 		 * settle for just a phys_id match.
12646 		 */
12647 		new_cpu = start_cpu;
12648 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12649 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12650 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12651 			    new_cpup->phys_id == cpup->phys_id)
12652 				goto found_hdwq;
12653 			new_cpu = lpfc_next_present_cpu(new_cpu);
12654 		}
12655 
12656 		/* Otherwise just round robin on cfg_hdw_queue */
12657 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12658 		idx++;
12659 		goto logit;
12660  found_hdwq:
12661 		/* We found an available entry, copy the IRQ info */
12662 		start_cpu = lpfc_next_present_cpu(new_cpu);
12663 		cpup->hdwq = new_cpup->hdwq;
12664  logit:
12665 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12666 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12667 				"hdwq %d eq %d flg x%x\n",
12668 				cpu, cpup->phys_id, cpup->core_id,
12669 				cpup->hdwq, cpup->eq, cpup->flag);
12670 	}
12671 
12672 	/*
12673 	 * Initialize the cpu_map slots for not-present cpus in case
12674 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12675 	 */
12676 	idx = 0;
12677 	for_each_possible_cpu(cpu) {
12678 		cpup = &phba->sli4_hba.cpu_map[cpu];
12679 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12680 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12681 		c_stat->hdwq_no = cpup->hdwq;
12682 #endif
12683 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12684 			continue;
12685 
12686 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12687 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12688 		c_stat->hdwq_no = cpup->hdwq;
12689 #endif
12690 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12691 				"3340 Set Affinity: not present "
12692 				"CPU %d hdwq %d\n",
12693 				cpu, cpup->hdwq);
12694 	}
12695 
12696 	/* The cpu_map array will be used later during initialization
12697 	 * when EQ / CQ / WQs are allocated and configured.
12698 	 */
12699 	return;
12700 }
12701 
12702 /**
12703  * lpfc_cpuhp_get_eq
12704  *
12705  * @phba:   pointer to lpfc hba data structure.
12706  * @cpu:    cpu going offline
12707  * @eqlist: eq list to append to
12708  */
12709 static int
12710 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12711 		  struct list_head *eqlist)
12712 {
12713 	const struct cpumask *maskp;
12714 	struct lpfc_queue *eq;
12715 	struct cpumask *tmp;
12716 	u16 idx;
12717 
12718 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12719 	if (!tmp)
12720 		return -ENOMEM;
12721 
12722 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12723 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12724 		if (!maskp)
12725 			continue;
12726 		/*
12727 		 * if irq is not affinitized to the cpu going
12728 		 * then we don't need to poll the eq attached
12729 		 * to it.
12730 		 */
12731 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12732 			continue;
12733 		/* get the cpus that are online and are affini-
12734 		 * tized to this irq vector.  If the count is
12735 		 * more than 1 then cpuhp is not going to shut-
12736 		 * down this vector.  Since this cpu has not
12737 		 * gone offline yet, we need >1.
12738 		 */
12739 		cpumask_and(tmp, maskp, cpu_online_mask);
12740 		if (cpumask_weight(tmp) > 1)
12741 			continue;
12742 
12743 		/* Now that we have an irq to shutdown, get the eq
12744 		 * mapped to this irq.  Note: multiple hdwq's in
12745 		 * the software can share an eq, but eventually
12746 		 * only eq will be mapped to this vector
12747 		 */
12748 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12749 		list_add(&eq->_poll_list, eqlist);
12750 	}
12751 	kfree(tmp);
12752 	return 0;
12753 }
12754 
12755 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12756 {
12757 	if (phba->sli_rev != LPFC_SLI_REV4)
12758 		return;
12759 
12760 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12761 					    &phba->cpuhp);
12762 	/*
12763 	 * unregistering the instance doesn't stop the polling
12764 	 * timer. Wait for the poll timer to retire.
12765 	 */
12766 	synchronize_rcu();
12767 	timer_delete_sync(&phba->cpuhp_poll_timer);
12768 }
12769 
12770 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12771 {
12772 	if (phba->pport &&
12773 	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
12774 		return;
12775 
12776 	__lpfc_cpuhp_remove(phba);
12777 }
12778 
12779 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12780 {
12781 	if (phba->sli_rev != LPFC_SLI_REV4)
12782 		return;
12783 
12784 	rcu_read_lock();
12785 
12786 	if (!list_empty(&phba->poll_list))
12787 		mod_timer(&phba->cpuhp_poll_timer,
12788 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12789 
12790 	rcu_read_unlock();
12791 
12792 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12793 					 &phba->cpuhp);
12794 }
12795 
12796 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12797 {
12798 	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
12799 		*retval = -EAGAIN;
12800 		return true;
12801 	}
12802 
12803 	if (phba->sli_rev != LPFC_SLI_REV4) {
12804 		*retval = 0;
12805 		return true;
12806 	}
12807 
12808 	/* proceed with the hotplug */
12809 	return false;
12810 }
12811 
12812 /**
12813  * lpfc_irq_set_aff - set IRQ affinity
12814  * @eqhdl: EQ handle
12815  * @cpu: cpu to set affinity
12816  *
12817  **/
12818 static inline void
12819 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12820 {
12821 	cpumask_clear(&eqhdl->aff_mask);
12822 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12823 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12824 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12825 }
12826 
12827 /**
12828  * lpfc_irq_clear_aff - clear IRQ affinity
12829  * @eqhdl: EQ handle
12830  *
12831  **/
12832 static inline void
12833 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12834 {
12835 	cpumask_clear(&eqhdl->aff_mask);
12836 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12837 }
12838 
12839 /**
12840  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12841  * @phba: pointer to HBA context object.
12842  * @cpu: cpu going offline/online
12843  * @offline: true, cpu is going offline. false, cpu is coming online.
12844  *
12845  * If cpu is going offline, we'll try our best effort to find the next
12846  * online cpu on the phba's original_mask and migrate all offlining IRQ
12847  * affinities.
12848  *
12849  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12850  *
12851  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12852  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12853  *
12854  **/
12855 static void
12856 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12857 {
12858 	struct lpfc_vector_map_info *cpup;
12859 	struct cpumask *aff_mask;
12860 	unsigned int cpu_select, cpu_next, idx;
12861 	const struct cpumask *orig_mask;
12862 
12863 	if (phba->irq_chann_mode == NORMAL_MODE)
12864 		return;
12865 
12866 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12867 
12868 	if (!cpumask_test_cpu(cpu, orig_mask))
12869 		return;
12870 
12871 	cpup = &phba->sli4_hba.cpu_map[cpu];
12872 
12873 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12874 		return;
12875 
12876 	if (offline) {
12877 		/* Find next online CPU on original mask */
12878 		cpu_next = cpumask_next_wrap(cpu, orig_mask);
12879 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12880 
12881 		/* Found a valid CPU */
12882 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12883 			/* Go through each eqhdl and ensure offlining
12884 			 * cpu aff_mask is migrated
12885 			 */
12886 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12887 				aff_mask = lpfc_get_aff_mask(idx);
12888 
12889 				/* Migrate affinity */
12890 				if (cpumask_test_cpu(cpu, aff_mask))
12891 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12892 							 cpu_select);
12893 			}
12894 		} else {
12895 			/* Rely on irqbalance if no online CPUs left on NUMA */
12896 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12897 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12898 		}
12899 	} else {
12900 		/* Migrate affinity back to this CPU */
12901 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12902 	}
12903 }
12904 
12905 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12906 {
12907 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12908 	struct lpfc_queue *eq, *next;
12909 	LIST_HEAD(eqlist);
12910 	int retval;
12911 
12912 	if (!phba) {
12913 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12914 		return 0;
12915 	}
12916 
12917 	if (__lpfc_cpuhp_checks(phba, &retval))
12918 		return retval;
12919 
12920 	lpfc_irq_rebalance(phba, cpu, true);
12921 
12922 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12923 	if (retval)
12924 		return retval;
12925 
12926 	/* start polling on these eq's */
12927 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12928 		list_del_init(&eq->_poll_list);
12929 		lpfc_sli4_start_polling(eq);
12930 	}
12931 
12932 	return 0;
12933 }
12934 
12935 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12936 {
12937 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12938 	struct lpfc_queue *eq, *next;
12939 	unsigned int n;
12940 	int retval;
12941 
12942 	if (!phba) {
12943 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12944 		return 0;
12945 	}
12946 
12947 	if (__lpfc_cpuhp_checks(phba, &retval))
12948 		return retval;
12949 
12950 	lpfc_irq_rebalance(phba, cpu, false);
12951 
12952 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12953 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12954 		if (n == cpu)
12955 			lpfc_sli4_stop_polling(eq);
12956 	}
12957 
12958 	return 0;
12959 }
12960 
12961 /**
12962  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12963  * @phba: pointer to lpfc hba data structure.
12964  *
12965  * This routine is invoked to enable the MSI-X interrupt vectors to device
12966  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12967  * to cpus on the system.
12968  *
12969  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12970  * the number of cpus on the same numa node as this adapter.  The vectors are
12971  * allocated without requesting OS affinity mapping.  A vector will be
12972  * allocated and assigned to each online and offline cpu.  If the cpu is
12973  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12974  * affinity will be set to the nearest peer cpu within the numa node that is
12975  * online.  If there are no online cpus within the numa node, affinity is not
12976  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12977  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12978  * configured.
12979  *
12980  * If numa mode is not enabled and there is more than 1 vector allocated, then
12981  * the driver relies on the managed irq interface where the OS assigns vector to
12982  * cpu affinity.  The driver will then use that affinity mapping to setup its
12983  * cpu mapping table.
12984  *
12985  * Return codes
12986  * 0 - successful
12987  * other values - error
12988  **/
12989 static int
12990 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12991 {
12992 	int vectors, rc, index;
12993 	char *name;
12994 	const struct cpumask *aff_mask = NULL;
12995 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12996 	struct lpfc_vector_map_info *cpup;
12997 	struct lpfc_hba_eq_hdl *eqhdl;
12998 	const struct cpumask *maskp;
12999 	unsigned int flags = PCI_IRQ_MSIX;
13000 
13001 	/* Set up MSI-X multi-message vectors */
13002 	vectors = phba->cfg_irq_chann;
13003 
13004 	if (phba->irq_chann_mode != NORMAL_MODE)
13005 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13006 
13007 	if (aff_mask) {
13008 		cpu_cnt = cpumask_weight(aff_mask);
13009 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13010 
13011 		/* cpu: iterates over aff_mask including offline or online
13012 		 * cpu_select: iterates over online aff_mask to set affinity
13013 		 */
13014 		cpu = cpumask_first(aff_mask);
13015 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13016 	} else {
13017 		flags |= PCI_IRQ_AFFINITY;
13018 	}
13019 
13020 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13021 	if (rc < 0) {
13022 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13023 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13024 		goto vec_fail_out;
13025 	}
13026 	vectors = rc;
13027 
13028 	/* Assign MSI-X vectors to interrupt handlers */
13029 	for (index = 0; index < vectors; index++) {
13030 		eqhdl = lpfc_get_eq_hdl(index);
13031 		name = eqhdl->handler_name;
13032 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13033 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13034 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13035 
13036 		eqhdl->idx = index;
13037 		rc = pci_irq_vector(phba->pcidev, index);
13038 		if (rc < 0) {
13039 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13040 					"0489 MSI-X fast-path (%d) "
13041 					"pci_irq_vec failed (%d)\n", index, rc);
13042 			goto cfg_fail_out;
13043 		}
13044 		eqhdl->irq = rc;
13045 
13046 		rc = request_threaded_irq(eqhdl->irq,
13047 					  &lpfc_sli4_hba_intr_handler,
13048 					  &lpfc_sli4_hba_intr_handler_th,
13049 					  0, name, eqhdl);
13050 		if (rc) {
13051 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13052 					"0486 MSI-X fast-path (%d) "
13053 					"request_irq failed (%d)\n", index, rc);
13054 			goto cfg_fail_out;
13055 		}
13056 
13057 		if (aff_mask) {
13058 			/* If found a neighboring online cpu, set affinity */
13059 			if (cpu_select < nr_cpu_ids)
13060 				lpfc_irq_set_aff(eqhdl, cpu_select);
13061 
13062 			/* Assign EQ to cpu_map */
13063 			lpfc_assign_eq_map_info(phba, index,
13064 						LPFC_CPU_FIRST_IRQ,
13065 						cpu);
13066 
13067 			/* Iterate to next offline or online cpu in aff_mask */
13068 			cpu = cpumask_next(cpu, aff_mask);
13069 
13070 			/* Find next online cpu in aff_mask to set affinity */
13071 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13072 		} else if (vectors == 1) {
13073 			cpu = cpumask_first(cpu_present_mask);
13074 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13075 						cpu);
13076 		} else {
13077 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13078 
13079 			/* Loop through all CPUs associated with vector index */
13080 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13081 				cpup = &phba->sli4_hba.cpu_map[cpu];
13082 
13083 				/* If this is the first CPU thats assigned to
13084 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13085 				 *
13086 				 * With certain platforms its possible that irq
13087 				 * vectors are affinitized to all the cpu's.
13088 				 * This can result in each cpu_map.eq to be set
13089 				 * to the last vector, resulting in overwrite
13090 				 * of all the previous cpu_map.eq.  Ensure that
13091 				 * each vector receives a place in cpu_map.
13092 				 * Later call to lpfc_cpu_affinity_check will
13093 				 * ensure we are nicely balanced out.
13094 				 */
13095 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13096 					continue;
13097 				lpfc_assign_eq_map_info(phba, index,
13098 							LPFC_CPU_FIRST_IRQ,
13099 							cpu);
13100 				break;
13101 			}
13102 		}
13103 	}
13104 
13105 	if (vectors != phba->cfg_irq_chann) {
13106 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13107 				"3238 Reducing IO channels to match number of "
13108 				"MSI-X vectors, requested %d got %d\n",
13109 				phba->cfg_irq_chann, vectors);
13110 		if (phba->cfg_irq_chann > vectors)
13111 			phba->cfg_irq_chann = vectors;
13112 	}
13113 
13114 	return rc;
13115 
13116 cfg_fail_out:
13117 	/* free the irq already requested */
13118 	for (--index; index >= 0; index--) {
13119 		eqhdl = lpfc_get_eq_hdl(index);
13120 		lpfc_irq_clear_aff(eqhdl);
13121 		free_irq(eqhdl->irq, eqhdl);
13122 	}
13123 
13124 	/* Unconfigure MSI-X capability structure */
13125 	pci_free_irq_vectors(phba->pcidev);
13126 
13127 vec_fail_out:
13128 	return rc;
13129 }
13130 
13131 /**
13132  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13133  * @phba: pointer to lpfc hba data structure.
13134  *
13135  * This routine is invoked to enable the MSI interrupt mode to device with
13136  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13137  * called to enable the MSI vector. The device driver is responsible for
13138  * calling the request_irq() to register MSI vector with a interrupt the
13139  * handler, which is done in this function.
13140  *
13141  * Return codes
13142  * 	0 - successful
13143  * 	other values - error
13144  **/
13145 static int
13146 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13147 {
13148 	int rc, index;
13149 	unsigned int cpu;
13150 	struct lpfc_hba_eq_hdl *eqhdl;
13151 
13152 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13153 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13154 	if (rc > 0)
13155 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13156 				"0487 PCI enable MSI mode success.\n");
13157 	else {
13158 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13159 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13160 		return rc ? rc : -1;
13161 	}
13162 
13163 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13164 			 0, LPFC_DRIVER_NAME, phba);
13165 	if (rc) {
13166 		pci_free_irq_vectors(phba->pcidev);
13167 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13168 				"0490 MSI request_irq failed (%d)\n", rc);
13169 		return rc;
13170 	}
13171 
13172 	eqhdl = lpfc_get_eq_hdl(0);
13173 	rc = pci_irq_vector(phba->pcidev, 0);
13174 	if (rc < 0) {
13175 		free_irq(phba->pcidev->irq, phba);
13176 		pci_free_irq_vectors(phba->pcidev);
13177 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13178 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13179 		return rc;
13180 	}
13181 	eqhdl->irq = rc;
13182 
13183 	cpu = cpumask_first(cpu_present_mask);
13184 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13185 
13186 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13187 		eqhdl = lpfc_get_eq_hdl(index);
13188 		eqhdl->idx = index;
13189 	}
13190 
13191 	return 0;
13192 }
13193 
13194 /**
13195  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13196  * @phba: pointer to lpfc hba data structure.
13197  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13198  *
13199  * This routine is invoked to enable device interrupt and associate driver's
13200  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13201  * interface spec. Depends on the interrupt mode configured to the driver,
13202  * the driver will try to fallback from the configured interrupt mode to an
13203  * interrupt mode which is supported by the platform, kernel, and device in
13204  * the order of:
13205  * MSI-X -> MSI -> IRQ.
13206  *
13207  * Return codes
13208  *	Interrupt mode (2, 1, 0) - successful
13209  *	LPFC_INTR_ERROR - error
13210  **/
13211 static uint32_t
13212 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13213 {
13214 	uint32_t intr_mode = LPFC_INTR_ERROR;
13215 	int retval, idx;
13216 
13217 	if (cfg_mode == 2) {
13218 		/* Preparation before conf_msi mbox cmd */
13219 		retval = 0;
13220 		if (!retval) {
13221 			/* Now, try to enable MSI-X interrupt mode */
13222 			retval = lpfc_sli4_enable_msix(phba);
13223 			if (!retval) {
13224 				/* Indicate initialization to MSI-X mode */
13225 				phba->intr_type = MSIX;
13226 				intr_mode = 2;
13227 			}
13228 		}
13229 	}
13230 
13231 	/* Fallback to MSI if MSI-X initialization failed */
13232 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13233 		retval = lpfc_sli4_enable_msi(phba);
13234 		if (!retval) {
13235 			/* Indicate initialization to MSI mode */
13236 			phba->intr_type = MSI;
13237 			intr_mode = 1;
13238 		}
13239 	}
13240 
13241 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13242 	if (phba->intr_type == NONE) {
13243 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13244 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13245 		if (!retval) {
13246 			struct lpfc_hba_eq_hdl *eqhdl;
13247 			unsigned int cpu;
13248 
13249 			/* Indicate initialization to INTx mode */
13250 			phba->intr_type = INTx;
13251 			intr_mode = 0;
13252 
13253 			eqhdl = lpfc_get_eq_hdl(0);
13254 			retval = pci_irq_vector(phba->pcidev, 0);
13255 			if (retval < 0) {
13256 				free_irq(phba->pcidev->irq, phba);
13257 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13258 					"0502 INTR pci_irq_vec failed (%d)\n",
13259 					 retval);
13260 				return LPFC_INTR_ERROR;
13261 			}
13262 			eqhdl->irq = retval;
13263 
13264 			cpu = cpumask_first(cpu_present_mask);
13265 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13266 						cpu);
13267 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13268 				eqhdl = lpfc_get_eq_hdl(idx);
13269 				eqhdl->idx = idx;
13270 			}
13271 		}
13272 	}
13273 	return intr_mode;
13274 }
13275 
13276 /**
13277  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13278  * @phba: pointer to lpfc hba data structure.
13279  *
13280  * This routine is invoked to disable device interrupt and disassociate
13281  * the driver's interrupt handler(s) from interrupt vector(s) to device
13282  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13283  * will release the interrupt vector(s) for the message signaled interrupt.
13284  **/
13285 static void
13286 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13287 {
13288 	/* Disable the currently initialized interrupt mode */
13289 	if (phba->intr_type == MSIX) {
13290 		int index;
13291 		struct lpfc_hba_eq_hdl *eqhdl;
13292 
13293 		/* Free up MSI-X multi-message vectors */
13294 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13295 			eqhdl = lpfc_get_eq_hdl(index);
13296 			lpfc_irq_clear_aff(eqhdl);
13297 			free_irq(eqhdl->irq, eqhdl);
13298 		}
13299 	} else {
13300 		free_irq(phba->pcidev->irq, phba);
13301 	}
13302 
13303 	pci_free_irq_vectors(phba->pcidev);
13304 
13305 	/* Reset interrupt management states */
13306 	phba->intr_type = NONE;
13307 	phba->sli.slistat.sli_intr = 0;
13308 }
13309 
13310 /**
13311  * lpfc_unset_hba - Unset SLI3 hba device initialization
13312  * @phba: pointer to lpfc hba data structure.
13313  *
13314  * This routine is invoked to unset the HBA device initialization steps to
13315  * a device with SLI-3 interface spec.
13316  **/
13317 static void
13318 lpfc_unset_hba(struct lpfc_hba *phba)
13319 {
13320 	set_bit(FC_UNLOADING, &phba->pport->load_flag);
13321 
13322 	kfree(phba->vpi_bmask);
13323 	kfree(phba->vpi_ids);
13324 
13325 	lpfc_stop_hba_timers(phba);
13326 
13327 	phba->pport->work_port_events = 0;
13328 
13329 	lpfc_sli_hba_down(phba);
13330 
13331 	lpfc_sli_brdrestart(phba);
13332 
13333 	lpfc_sli_disable_intr(phba);
13334 
13335 	return;
13336 }
13337 
13338 /**
13339  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13340  * @phba: Pointer to HBA context object.
13341  *
13342  * This function is called in the SLI4 code path to wait for completion
13343  * of device's XRIs exchange busy. It will check the XRI exchange busy
13344  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13345  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13346  * I/Os every 30 seconds, log error message, and wait forever. Only when
13347  * all XRI exchange busy complete, the driver unload shall proceed with
13348  * invoking the function reset ioctl mailbox command to the CNA and the
13349  * the rest of the driver unload resource release.
13350  **/
13351 static void
13352 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13353 {
13354 	struct lpfc_sli4_hdw_queue *qp;
13355 	int idx, ccnt;
13356 	int wait_time = 0;
13357 	int io_xri_cmpl = 1;
13358 	int nvmet_xri_cmpl = 1;
13359 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13360 
13361 	/* Driver just aborted IOs during the hba_unset process.  Pause
13362 	 * here to give the HBA time to complete the IO and get entries
13363 	 * into the abts lists.
13364 	 */
13365 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13366 
13367 	/* Wait for NVME pending IO to flush back to transport. */
13368 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13369 		lpfc_nvme_wait_for_io_drain(phba);
13370 
13371 	ccnt = 0;
13372 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13373 		qp = &phba->sli4_hba.hdwq[idx];
13374 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13375 		if (!io_xri_cmpl) /* if list is NOT empty */
13376 			ccnt++;
13377 	}
13378 	if (ccnt)
13379 		io_xri_cmpl = 0;
13380 
13381 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13382 		nvmet_xri_cmpl =
13383 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13384 	}
13385 
13386 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13387 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13388 			if (!nvmet_xri_cmpl)
13389 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13390 						"6424 NVMET XRI exchange busy "
13391 						"wait time: %d seconds.\n",
13392 						wait_time/1000);
13393 			if (!io_xri_cmpl)
13394 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13395 						"6100 IO XRI exchange busy "
13396 						"wait time: %d seconds.\n",
13397 						wait_time/1000);
13398 			if (!els_xri_cmpl)
13399 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13400 						"2878 ELS XRI exchange busy "
13401 						"wait time: %d seconds.\n",
13402 						wait_time/1000);
13403 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13404 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13405 		} else {
13406 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13407 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13408 		}
13409 
13410 		ccnt = 0;
13411 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13412 			qp = &phba->sli4_hba.hdwq[idx];
13413 			io_xri_cmpl = list_empty(
13414 			    &qp->lpfc_abts_io_buf_list);
13415 			if (!io_xri_cmpl) /* if list is NOT empty */
13416 				ccnt++;
13417 		}
13418 		if (ccnt)
13419 			io_xri_cmpl = 0;
13420 
13421 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13422 			nvmet_xri_cmpl = list_empty(
13423 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13424 		}
13425 		els_xri_cmpl =
13426 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13427 
13428 	}
13429 }
13430 
13431 /**
13432  * lpfc_sli4_hba_unset - Unset the fcoe hba
13433  * @phba: Pointer to HBA context object.
13434  *
13435  * This function is called in the SLI4 code path to reset the HBA's FCoE
13436  * function. The caller is not required to hold any lock. This routine
13437  * issues PCI function reset mailbox command to reset the FCoE function.
13438  * At the end of the function, it calls lpfc_hba_down_post function to
13439  * free any pending commands.
13440  **/
13441 static void
13442 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13443 {
13444 	int wait_cnt = 0;
13445 	LPFC_MBOXQ_t *mboxq;
13446 	struct pci_dev *pdev = phba->pcidev;
13447 
13448 	lpfc_stop_hba_timers(phba);
13449 	hrtimer_cancel(&phba->cmf_stats_timer);
13450 	hrtimer_cancel(&phba->cmf_timer);
13451 
13452 	if (phba->pport)
13453 		phba->sli4_hba.intr_enable = 0;
13454 
13455 	/*
13456 	 * Gracefully wait out the potential current outstanding asynchronous
13457 	 * mailbox command.
13458 	 */
13459 
13460 	/* First, block any pending async mailbox command from posted */
13461 	spin_lock_irq(&phba->hbalock);
13462 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13463 	spin_unlock_irq(&phba->hbalock);
13464 	/* Now, trying to wait it out if we can */
13465 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13466 		msleep(10);
13467 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13468 			break;
13469 	}
13470 	/* Forcefully release the outstanding mailbox command if timed out */
13471 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13472 		spin_lock_irq(&phba->hbalock);
13473 		mboxq = phba->sli.mbox_active;
13474 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13475 		__lpfc_mbox_cmpl_put(phba, mboxq);
13476 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13477 		phba->sli.mbox_active = NULL;
13478 		spin_unlock_irq(&phba->hbalock);
13479 	}
13480 
13481 	/* Abort all iocbs associated with the hba */
13482 	lpfc_sli_hba_iocb_abort(phba);
13483 
13484 	if (!pci_channel_offline(phba->pcidev))
13485 		/* Wait for completion of device XRI exchange busy */
13486 		lpfc_sli4_xri_exchange_busy_wait(phba);
13487 
13488 	/* per-phba callback de-registration for hotplug event */
13489 	if (phba->pport)
13490 		lpfc_cpuhp_remove(phba);
13491 
13492 	/* Disable PCI subsystem interrupt */
13493 	lpfc_sli4_disable_intr(phba);
13494 
13495 	/* Disable SR-IOV if enabled */
13496 	if (phba->cfg_sriov_nr_virtfn)
13497 		pci_disable_sriov(pdev);
13498 
13499 	/* Stop kthread signal shall trigger work_done one more time */
13500 	kthread_stop(phba->worker_thread);
13501 
13502 	/* Disable FW logging to host memory */
13503 	lpfc_ras_stop_fwlog(phba);
13504 
13505 	lpfc_sli4_queue_unset(phba);
13506 
13507 	/* Reset SLI4 HBA FCoE function */
13508 	lpfc_pci_function_reset(phba);
13509 
13510 	/* release all queue allocated resources. */
13511 	lpfc_sli4_queue_destroy(phba);
13512 
13513 	/* Free RAS DMA memory */
13514 	if (phba->ras_fwlog.ras_enabled)
13515 		lpfc_sli4_ras_dma_free(phba);
13516 
13517 	/* Stop the SLI4 device port */
13518 	if (phba->pport)
13519 		phba->pport->work_port_events = 0;
13520 }
13521 
13522 static uint32_t
13523 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13524 {
13525 	uint32_t msb = 0;
13526 	uint32_t bit;
13527 
13528 	for (bit = 0; bit < 8; bit++) {
13529 		msb = (crc >> 31) & 1;
13530 		crc <<= 1;
13531 
13532 		if (msb ^ (byte & 1)) {
13533 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13534 			crc |= 1;
13535 		}
13536 		byte >>= 1;
13537 	}
13538 	return crc;
13539 }
13540 
13541 static uint32_t
13542 lpfc_cgn_reverse_bits(uint32_t wd)
13543 {
13544 	uint32_t result = 0;
13545 	uint32_t i;
13546 
13547 	for (i = 0; i < 32; i++) {
13548 		result <<= 1;
13549 		result |= (1 & (wd >> i));
13550 	}
13551 	return result;
13552 }
13553 
13554 /*
13555  * The routine corresponds with the algorithm the HBA firmware
13556  * uses to validate the data integrity.
13557  */
13558 uint32_t
13559 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13560 {
13561 	uint32_t  i;
13562 	uint32_t result;
13563 	uint8_t  *data = (uint8_t *)ptr;
13564 
13565 	for (i = 0; i < byteLen; ++i)
13566 		crc = lpfc_cgn_crc32(crc, data[i]);
13567 
13568 	result = ~lpfc_cgn_reverse_bits(crc);
13569 	return result;
13570 }
13571 
13572 void
13573 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13574 {
13575 	struct lpfc_cgn_info *cp;
13576 	uint16_t size;
13577 	uint32_t crc;
13578 
13579 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13580 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13581 
13582 	if (!phba->cgn_i)
13583 		return;
13584 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13585 
13586 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13587 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13588 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13589 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13590 
13591 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13592 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13593 	atomic64_set(&phba->cgn_latency_evt, 0);
13594 	phba->cgn_evt_minute = 0;
13595 
13596 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13597 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13598 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13599 
13600 	/* cgn parameters */
13601 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13602 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13603 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13604 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13605 
13606 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13607 
13608 	/* Fill in default LUN qdepth */
13609 	if (phba->pport) {
13610 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13611 		cp->cgn_lunq = cpu_to_le16(size);
13612 	}
13613 
13614 	/* last used Index initialized to 0xff already */
13615 
13616 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13617 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13618 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13619 	cp->cgn_info_crc = cpu_to_le32(crc);
13620 
13621 	phba->cgn_evt_timestamp = jiffies +
13622 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13623 }
13624 
13625 void
13626 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13627 {
13628 	struct lpfc_cgn_info *cp;
13629 	uint32_t crc;
13630 
13631 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13632 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13633 
13634 	if (!phba->cgn_i)
13635 		return;
13636 
13637 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13638 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13639 
13640 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13641 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13642 	cp->cgn_info_crc = cpu_to_le32(crc);
13643 }
13644 
13645 /**
13646  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13647  * @phba: Pointer to hba context object.
13648  * @reg: flag to determine register or unregister.
13649  */
13650 static int
13651 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13652 {
13653 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13654 	union  lpfc_sli4_cfg_shdr *shdr;
13655 	uint32_t shdr_status, shdr_add_status;
13656 	LPFC_MBOXQ_t *mboxq;
13657 	int length, rc;
13658 
13659 	if (!phba->cgn_i)
13660 		return -ENXIO;
13661 
13662 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13663 	if (!mboxq) {
13664 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13665 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13666 				"HBA state x%x reg %d\n",
13667 				phba->pport->port_state, reg);
13668 		return -ENOMEM;
13669 	}
13670 
13671 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13672 		sizeof(struct lpfc_sli4_cfg_mhdr));
13673 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13674 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13675 			 LPFC_SLI4_MBX_EMBED);
13676 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13677 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13678 	if (reg > 0)
13679 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13680 	else
13681 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13682 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13683 	reg_congestion_buf->addr_lo =
13684 		putPaddrLow(phba->cgn_i->phys);
13685 	reg_congestion_buf->addr_hi =
13686 		putPaddrHigh(phba->cgn_i->phys);
13687 
13688 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13689 	shdr = (union lpfc_sli4_cfg_shdr *)
13690 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13691 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13692 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13693 				 &shdr->response);
13694 	mempool_free(mboxq, phba->mbox_mem_pool);
13695 	if (shdr_status || shdr_add_status || rc) {
13696 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13697 				"2642 REG_CONGESTION_BUF mailbox "
13698 				"failed with status x%x add_status x%x,"
13699 				" mbx status x%x reg %d\n",
13700 				shdr_status, shdr_add_status, rc, reg);
13701 		return -ENXIO;
13702 	}
13703 	return 0;
13704 }
13705 
13706 int
13707 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13708 {
13709 	lpfc_cmf_stop(phba);
13710 	return __lpfc_reg_congestion_buf(phba, 0);
13711 }
13712 
13713 int
13714 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13715 {
13716 	return __lpfc_reg_congestion_buf(phba, 1);
13717 }
13718 
13719 /**
13720  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13721  * @phba: Pointer to HBA context object.
13722  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13723  *
13724  * This function is called in the SLI4 code path to read the port's
13725  * sli4 capabilities.
13726  *
13727  * This function may be be called from any context that can block-wait
13728  * for the completion.  The expectation is that this routine is called
13729  * typically from probe_one or from the online routine.
13730  **/
13731 int
13732 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13733 {
13734 	int rc;
13735 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13736 	struct lpfc_pc_sli4_params *sli4_params;
13737 	uint32_t mbox_tmo;
13738 	int length;
13739 	bool exp_wqcq_pages = true;
13740 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13741 
13742 	/*
13743 	 * By default, the driver assumes the SLI4 port requires RPI
13744 	 * header postings.  The SLI4_PARAM response will correct this
13745 	 * assumption.
13746 	 */
13747 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13748 
13749 	/* Read the port's SLI4 Config Parameters */
13750 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13751 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13752 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13753 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13754 			 length, LPFC_SLI4_MBX_EMBED);
13755 	if (!phba->sli4_hba.intr_enable)
13756 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13757 	else {
13758 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13759 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13760 	}
13761 	if (unlikely(rc))
13762 		return rc;
13763 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13764 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13765 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13766 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13767 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13768 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13769 					     mbx_sli4_parameters);
13770 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13771 					     mbx_sli4_parameters);
13772 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13773 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13774 	else
13775 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13776 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13777 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13778 					   mbx_sli4_parameters);
13779 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13780 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13781 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13782 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13783 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13784 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13785 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13786 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13787 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13788 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13789 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13790 					    mbx_sli4_parameters);
13791 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13792 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13793 					   mbx_sli4_parameters);
13794 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13795 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13796 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13797 
13798 	/* Check for Extended Pre-Registered SGL support */
13799 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13800 
13801 	/* Check for firmware nvme support */
13802 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13803 		     bf_get(cfg_xib, mbx_sli4_parameters));
13804 
13805 	if (rc) {
13806 		/* Save this to indicate the Firmware supports NVME */
13807 		sli4_params->nvme = 1;
13808 
13809 		/* Firmware NVME support, check driver FC4 NVME support */
13810 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13811 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13812 					"6133 Disabling NVME support: "
13813 					"FC4 type not supported: x%x\n",
13814 					phba->cfg_enable_fc4_type);
13815 			goto fcponly;
13816 		}
13817 	} else {
13818 		/* No firmware NVME support, check driver FC4 NVME support */
13819 		sli4_params->nvme = 0;
13820 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13821 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13822 					"6101 Disabling NVME support: Not "
13823 					"supported by firmware (%d %d) x%x\n",
13824 					bf_get(cfg_nvme, mbx_sli4_parameters),
13825 					bf_get(cfg_xib, mbx_sli4_parameters),
13826 					phba->cfg_enable_fc4_type);
13827 fcponly:
13828 			phba->nvmet_support = 0;
13829 			phba->cfg_nvmet_mrq = 0;
13830 			phba->cfg_nvme_seg_cnt = 0;
13831 
13832 			/* If no FC4 type support, move to just SCSI support */
13833 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13834 				return -ENODEV;
13835 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13836 		}
13837 	}
13838 
13839 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13840 	 * accommodate 512K and 1M IOs in a single nvme buf.
13841 	 */
13842 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13843 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13844 
13845 	/* Enable embedded Payload BDE if support is indicated */
13846 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13847 		phba->cfg_enable_pbde = 1;
13848 	else
13849 		phba->cfg_enable_pbde = 0;
13850 
13851 	/*
13852 	 * To support Suppress Response feature we must satisfy 3 conditions.
13853 	 * lpfc_suppress_rsp module parameter must be set (default).
13854 	 * In SLI4-Parameters Descriptor:
13855 	 * Extended Inline Buffers (XIB) must be supported.
13856 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13857 	 * (double negative).
13858 	 */
13859 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13860 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13861 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13862 	else
13863 		phba->cfg_suppress_rsp = 0;
13864 
13865 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13866 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13867 
13868 	/* Make sure that sge_supp_len can be handled by the driver */
13869 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13870 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13871 
13872 	dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13873 
13874 	/*
13875 	 * Check whether the adapter supports an embedded copy of the
13876 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13877 	 * to use this option, 128-byte WQEs must be used.
13878 	 */
13879 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13880 		phba->fcp_embed_io = 1;
13881 	else
13882 		phba->fcp_embed_io = 0;
13883 
13884 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13885 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13886 			bf_get(cfg_xib, mbx_sli4_parameters),
13887 			phba->cfg_enable_pbde,
13888 			phba->fcp_embed_io, sli4_params->nvme,
13889 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13890 
13891 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13892 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13893 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13894 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13895 		exp_wqcq_pages = false;
13896 
13897 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13898 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13899 	    exp_wqcq_pages &&
13900 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13901 		phba->enab_exp_wqcq_pages = 1;
13902 	else
13903 		phba->enab_exp_wqcq_pages = 0;
13904 	/*
13905 	 * Check if the SLI port supports MDS Diagnostics
13906 	 */
13907 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13908 		phba->mds_diags_support = 1;
13909 	else
13910 		phba->mds_diags_support = 0;
13911 
13912 	/*
13913 	 * Check if the SLI port supports NSLER
13914 	 */
13915 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13916 		phba->nsler = 1;
13917 	else
13918 		phba->nsler = 0;
13919 
13920 	return 0;
13921 }
13922 
13923 /**
13924  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13925  * @pdev: pointer to PCI device
13926  * @pid: pointer to PCI device identifier
13927  *
13928  * This routine is to be called to attach a device with SLI-3 interface spec
13929  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13930  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13931  * information of the device and driver to see if the driver state that it can
13932  * support this kind of device. If the match is successful, the driver core
13933  * invokes this routine. If this routine determines it can claim the HBA, it
13934  * does all the initialization that it needs to do to handle the HBA properly.
13935  *
13936  * Return code
13937  * 	0 - driver can claim the device
13938  * 	negative value - driver can not claim the device
13939  **/
13940 static int
13941 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13942 {
13943 	struct lpfc_hba   *phba;
13944 	struct lpfc_vport *vport = NULL;
13945 	struct Scsi_Host  *shost = NULL;
13946 	int error;
13947 	uint32_t cfg_mode, intr_mode;
13948 
13949 	/* Allocate memory for HBA structure */
13950 	phba = lpfc_hba_alloc(pdev);
13951 	if (!phba)
13952 		return -ENOMEM;
13953 
13954 	/* Perform generic PCI device enabling operation */
13955 	error = lpfc_enable_pci_dev(phba);
13956 	if (error)
13957 		goto out_free_phba;
13958 
13959 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13960 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13961 	if (error)
13962 		goto out_disable_pci_dev;
13963 
13964 	/* Set up SLI-3 specific device PCI memory space */
13965 	error = lpfc_sli_pci_mem_setup(phba);
13966 	if (error) {
13967 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13968 				"1402 Failed to set up pci memory space.\n");
13969 		goto out_disable_pci_dev;
13970 	}
13971 
13972 	/* Set up SLI-3 specific device driver resources */
13973 	error = lpfc_sli_driver_resource_setup(phba);
13974 	if (error) {
13975 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13976 				"1404 Failed to set up driver resource.\n");
13977 		goto out_unset_pci_mem_s3;
13978 	}
13979 
13980 	/* Initialize and populate the iocb list per host */
13981 
13982 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13983 	if (error) {
13984 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13985 				"1405 Failed to initialize iocb list.\n");
13986 		goto out_unset_driver_resource_s3;
13987 	}
13988 
13989 	/* Set up common device driver resources */
13990 	error = lpfc_setup_driver_resource_phase2(phba);
13991 	if (error) {
13992 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13993 				"1406 Failed to set up driver resource.\n");
13994 		goto out_free_iocb_list;
13995 	}
13996 
13997 	/* Get the default values for Model Name and Description */
13998 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13999 
14000 	/* Create SCSI host to the physical port */
14001 	error = lpfc_create_shost(phba);
14002 	if (error) {
14003 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14004 				"1407 Failed to create scsi host.\n");
14005 		goto out_unset_driver_resource;
14006 	}
14007 
14008 	/* Configure sysfs attributes */
14009 	vport = phba->pport;
14010 	error = lpfc_alloc_sysfs_attr(vport);
14011 	if (error) {
14012 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14013 				"1476 Failed to allocate sysfs attr\n");
14014 		goto out_destroy_shost;
14015 	}
14016 
14017 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14018 	/* Now, trying to enable interrupt and bring up the device */
14019 	cfg_mode = phba->cfg_use_msi;
14020 	while (true) {
14021 		/* Put device to a known state before enabling interrupt */
14022 		lpfc_stop_port(phba);
14023 		/* Configure and enable interrupt */
14024 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14025 		if (intr_mode == LPFC_INTR_ERROR) {
14026 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14027 					"0431 Failed to enable interrupt.\n");
14028 			error = -ENODEV;
14029 			goto out_free_sysfs_attr;
14030 		}
14031 		/* SLI-3 HBA setup */
14032 		if (lpfc_sli_hba_setup(phba)) {
14033 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14034 					"1477 Failed to set up hba\n");
14035 			error = -ENODEV;
14036 			goto out_remove_device;
14037 		}
14038 
14039 		/* Wait 50ms for the interrupts of previous mailbox commands */
14040 		msleep(50);
14041 		/* Check active interrupts on message signaled interrupts */
14042 		if (intr_mode == 0 ||
14043 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14044 			/* Log the current active interrupt mode */
14045 			phba->intr_mode = intr_mode;
14046 			lpfc_log_intr_mode(phba, intr_mode);
14047 			break;
14048 		} else {
14049 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14050 					"0447 Configure interrupt mode (%d) "
14051 					"failed active interrupt test.\n",
14052 					intr_mode);
14053 			/* Disable the current interrupt mode */
14054 			lpfc_sli_disable_intr(phba);
14055 			/* Try next level of interrupt mode */
14056 			cfg_mode = --intr_mode;
14057 		}
14058 	}
14059 
14060 	/* Perform post initialization setup */
14061 	lpfc_post_init_setup(phba);
14062 
14063 	/* Check if there are static vports to be created. */
14064 	lpfc_create_static_vport(phba);
14065 
14066 	return 0;
14067 
14068 out_remove_device:
14069 	lpfc_unset_hba(phba);
14070 out_free_sysfs_attr:
14071 	lpfc_free_sysfs_attr(vport);
14072 out_destroy_shost:
14073 	lpfc_destroy_shost(phba);
14074 out_unset_driver_resource:
14075 	lpfc_unset_driver_resource_phase2(phba);
14076 out_free_iocb_list:
14077 	lpfc_free_iocb_list(phba);
14078 out_unset_driver_resource_s3:
14079 	lpfc_sli_driver_resource_unset(phba);
14080 out_unset_pci_mem_s3:
14081 	lpfc_sli_pci_mem_unset(phba);
14082 out_disable_pci_dev:
14083 	lpfc_disable_pci_dev(phba);
14084 	if (shost)
14085 		scsi_host_put(shost);
14086 out_free_phba:
14087 	lpfc_hba_free(phba);
14088 	return error;
14089 }
14090 
14091 /**
14092  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14093  * @pdev: pointer to PCI device
14094  *
14095  * This routine is to be called to disattach a device with SLI-3 interface
14096  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14097  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14098  * device to be removed from the PCI subsystem properly.
14099  **/
14100 static void
14101 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14102 {
14103 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14104 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14105 	struct lpfc_vport **vports;
14106 	struct lpfc_hba   *phba = vport->phba;
14107 	int i;
14108 
14109 	set_bit(FC_UNLOADING, &vport->load_flag);
14110 
14111 	lpfc_free_sysfs_attr(vport);
14112 
14113 	/* Release all the vports against this physical port */
14114 	vports = lpfc_create_vport_work_array(phba);
14115 	if (vports != NULL)
14116 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14117 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14118 				continue;
14119 			fc_vport_terminate(vports[i]->fc_vport);
14120 		}
14121 	lpfc_destroy_vport_work_array(phba, vports);
14122 
14123 	/* Remove FC host with the physical port */
14124 	fc_remove_host(shost);
14125 	scsi_remove_host(shost);
14126 
14127 	/* Clean up all nodes, mailboxes and IOs. */
14128 	lpfc_cleanup(vport);
14129 
14130 	/*
14131 	 * Bring down the SLI Layer. This step disable all interrupts,
14132 	 * clears the rings, discards all mailbox commands, and resets
14133 	 * the HBA.
14134 	 */
14135 
14136 	/* HBA interrupt will be disabled after this call */
14137 	lpfc_sli_hba_down(phba);
14138 	/* Stop kthread signal shall trigger work_done one more time */
14139 	kthread_stop(phba->worker_thread);
14140 	/* Final cleanup of txcmplq and reset the HBA */
14141 	lpfc_sli_brdrestart(phba);
14142 
14143 	kfree(phba->vpi_bmask);
14144 	kfree(phba->vpi_ids);
14145 
14146 	lpfc_stop_hba_timers(phba);
14147 	spin_lock_irq(&phba->port_list_lock);
14148 	list_del_init(&vport->listentry);
14149 	spin_unlock_irq(&phba->port_list_lock);
14150 
14151 	lpfc_debugfs_terminate(vport);
14152 
14153 	/* Disable SR-IOV if enabled */
14154 	if (phba->cfg_sriov_nr_virtfn)
14155 		pci_disable_sriov(pdev);
14156 
14157 	/* Disable interrupt */
14158 	lpfc_sli_disable_intr(phba);
14159 
14160 	scsi_host_put(shost);
14161 
14162 	/*
14163 	 * Call scsi_free before mem_free since scsi bufs are released to their
14164 	 * corresponding pools here.
14165 	 */
14166 	lpfc_scsi_free(phba);
14167 	lpfc_free_iocb_list(phba);
14168 
14169 	lpfc_mem_free_all(phba);
14170 
14171 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14172 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14173 
14174 	/* Free resources associated with SLI2 interface */
14175 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14176 			  phba->slim2p.virt, phba->slim2p.phys);
14177 
14178 	/* unmap adapter SLIM and Control Registers */
14179 	iounmap(phba->ctrl_regs_memmap_p);
14180 	iounmap(phba->slim_memmap_p);
14181 
14182 	lpfc_hba_free(phba);
14183 
14184 	pci_release_mem_regions(pdev);
14185 	pci_disable_device(pdev);
14186 }
14187 
14188 /**
14189  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14190  * @dev_d: pointer to device
14191  *
14192  * This routine is to be called from the kernel's PCI subsystem to support
14193  * system Power Management (PM) to device with SLI-3 interface spec. When
14194  * PM invokes this method, it quiesces the device by stopping the driver's
14195  * worker thread for the device, turning off device's interrupt and DMA,
14196  * and bring the device offline. Note that as the driver implements the
14197  * minimum PM requirements to a power-aware driver's PM support for the
14198  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14199  * to the suspend() method call will be treated as SUSPEND and the driver will
14200  * fully reinitialize its device during resume() method call, the driver will
14201  * set device to PCI_D3hot state in PCI config space instead of setting it
14202  * according to the @msg provided by the PM.
14203  *
14204  * Return code
14205  * 	0 - driver suspended the device
14206  * 	Error otherwise
14207  **/
14208 static int __maybe_unused
14209 lpfc_pci_suspend_one_s3(struct device *dev_d)
14210 {
14211 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14212 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14213 
14214 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14215 			"0473 PCI device Power Management suspend.\n");
14216 
14217 	/* Bring down the device */
14218 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14219 	lpfc_offline(phba);
14220 	kthread_stop(phba->worker_thread);
14221 
14222 	/* Disable interrupt from device */
14223 	lpfc_sli_disable_intr(phba);
14224 
14225 	return 0;
14226 }
14227 
14228 /**
14229  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14230  * @dev_d: pointer to device
14231  *
14232  * This routine is to be called from the kernel's PCI subsystem to support
14233  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14234  * invokes this method, it restores the device's PCI config space state and
14235  * fully reinitializes the device and brings it online. Note that as the
14236  * driver implements the minimum PM requirements to a power-aware driver's
14237  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14238  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14239  * driver will fully reinitialize its device during resume() method call,
14240  * the device will be set to PCI_D0 directly in PCI config space before
14241  * restoring the state.
14242  *
14243  * Return code
14244  * 	0 - driver suspended the device
14245  * 	Error otherwise
14246  **/
14247 static int __maybe_unused
14248 lpfc_pci_resume_one_s3(struct device *dev_d)
14249 {
14250 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14251 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14252 	uint32_t intr_mode;
14253 	int error;
14254 
14255 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14256 			"0452 PCI device Power Management resume.\n");
14257 
14258 	/* Startup the kernel thread for this host adapter. */
14259 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14260 					"lpfc_worker_%d", phba->brd_no);
14261 	if (IS_ERR(phba->worker_thread)) {
14262 		error = PTR_ERR(phba->worker_thread);
14263 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14264 				"0434 PM resume failed to start worker "
14265 				"thread: error=x%x.\n", error);
14266 		return error;
14267 	}
14268 
14269 	/* Init cpu_map array */
14270 	lpfc_cpu_map_array_init(phba);
14271 	/* Init hba_eq_hdl array */
14272 	lpfc_hba_eq_hdl_array_init(phba);
14273 	/* Configure and enable interrupt */
14274 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14275 	if (intr_mode == LPFC_INTR_ERROR) {
14276 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14277 				"0430 PM resume Failed to enable interrupt\n");
14278 		return -EIO;
14279 	} else
14280 		phba->intr_mode = intr_mode;
14281 
14282 	/* Restart HBA and bring it online */
14283 	lpfc_sli_brdrestart(phba);
14284 	lpfc_online(phba);
14285 
14286 	/* Log the current active interrupt mode */
14287 	lpfc_log_intr_mode(phba, phba->intr_mode);
14288 
14289 	return 0;
14290 }
14291 
14292 /**
14293  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14294  * @phba: pointer to lpfc hba data structure.
14295  *
14296  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14297  * aborts all the outstanding SCSI I/Os to the pci device.
14298  **/
14299 static void
14300 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14301 {
14302 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14303 			"2723 PCI channel I/O abort preparing for recovery\n");
14304 
14305 	/*
14306 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14307 	 * and let the SCSI mid-layer to retry them to recover.
14308 	 */
14309 	lpfc_sli_abort_fcp_rings(phba);
14310 }
14311 
14312 /**
14313  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14314  * @phba: pointer to lpfc hba data structure.
14315  *
14316  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14317  * disables the device interrupt and pci device, and aborts the internal FCP
14318  * pending I/Os.
14319  **/
14320 static void
14321 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14322 {
14323 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14324 			"2710 PCI channel disable preparing for reset\n");
14325 
14326 	/* Block any management I/Os to the device */
14327 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14328 
14329 	/* Block all SCSI devices' I/Os on the host */
14330 	lpfc_scsi_dev_block(phba);
14331 
14332 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14333 	lpfc_sli_flush_io_rings(phba);
14334 
14335 	/* stop all timers */
14336 	lpfc_stop_hba_timers(phba);
14337 
14338 	/* Disable interrupt and pci device */
14339 	lpfc_sli_disable_intr(phba);
14340 	pci_disable_device(phba->pcidev);
14341 }
14342 
14343 /**
14344  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14345  * @phba: pointer to lpfc hba data structure.
14346  *
14347  * This routine is called to prepare the SLI3 device for PCI slot permanently
14348  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14349  * pending I/Os.
14350  **/
14351 static void
14352 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14353 {
14354 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14355 			"2711 PCI channel permanent disable for failure\n");
14356 	/* Block all SCSI devices' I/Os on the host */
14357 	lpfc_scsi_dev_block(phba);
14358 	lpfc_sli4_prep_dev_for_reset(phba);
14359 
14360 	/* stop all timers */
14361 	lpfc_stop_hba_timers(phba);
14362 
14363 	/* Clean up all driver's outstanding SCSI I/Os */
14364 	lpfc_sli_flush_io_rings(phba);
14365 }
14366 
14367 /**
14368  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14369  * @pdev: pointer to PCI device.
14370  * @state: the current PCI connection state.
14371  *
14372  * This routine is called from the PCI subsystem for I/O error handling to
14373  * device with SLI-3 interface spec. This function is called by the PCI
14374  * subsystem after a PCI bus error affecting this device has been detected.
14375  * When this function is invoked, it will need to stop all the I/Os and
14376  * interrupt(s) to the device. Once that is done, it will return
14377  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14378  * as desired.
14379  *
14380  * Return codes
14381  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14382  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14383  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14384  **/
14385 static pci_ers_result_t
14386 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14387 {
14388 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14389 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14390 
14391 	switch (state) {
14392 	case pci_channel_io_normal:
14393 		/* Non-fatal error, prepare for recovery */
14394 		lpfc_sli_prep_dev_for_recover(phba);
14395 		return PCI_ERS_RESULT_CAN_RECOVER;
14396 	case pci_channel_io_frozen:
14397 		/* Fatal error, prepare for slot reset */
14398 		lpfc_sli_prep_dev_for_reset(phba);
14399 		return PCI_ERS_RESULT_NEED_RESET;
14400 	case pci_channel_io_perm_failure:
14401 		/* Permanent failure, prepare for device down */
14402 		lpfc_sli_prep_dev_for_perm_failure(phba);
14403 		return PCI_ERS_RESULT_DISCONNECT;
14404 	default:
14405 		/* Unknown state, prepare and request slot reset */
14406 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14407 				"0472 Unknown PCI error state: x%x\n", state);
14408 		lpfc_sli_prep_dev_for_reset(phba);
14409 		return PCI_ERS_RESULT_NEED_RESET;
14410 	}
14411 }
14412 
14413 /**
14414  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14415  * @pdev: pointer to PCI device.
14416  *
14417  * This routine is called from the PCI subsystem for error handling to
14418  * device with SLI-3 interface spec. This is called after PCI bus has been
14419  * reset to restart the PCI card from scratch, as if from a cold-boot.
14420  * During the PCI subsystem error recovery, after driver returns
14421  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14422  * recovery and then call this routine before calling the .resume method
14423  * to recover the device. This function will initialize the HBA device,
14424  * enable the interrupt, but it will just put the HBA to offline state
14425  * without passing any I/O traffic.
14426  *
14427  * Return codes
14428  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14429  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14430  */
14431 static pci_ers_result_t
14432 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14433 {
14434 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14435 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14436 	struct lpfc_sli *psli = &phba->sli;
14437 	uint32_t intr_mode;
14438 
14439 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14440 	if (pci_enable_device_mem(pdev)) {
14441 		printk(KERN_ERR "lpfc: Cannot re-enable "
14442 			"PCI device after reset.\n");
14443 		return PCI_ERS_RESULT_DISCONNECT;
14444 	}
14445 
14446 	pci_restore_state(pdev);
14447 
14448 	/*
14449 	 * As the new kernel behavior of pci_restore_state() API call clears
14450 	 * device saved_state flag, need to save the restored state again.
14451 	 */
14452 	pci_save_state(pdev);
14453 
14454 	if (pdev->is_busmaster)
14455 		pci_set_master(pdev);
14456 
14457 	spin_lock_irq(&phba->hbalock);
14458 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14459 	spin_unlock_irq(&phba->hbalock);
14460 
14461 	/* Configure and enable interrupt */
14462 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14463 	if (intr_mode == LPFC_INTR_ERROR) {
14464 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14465 				"0427 Cannot re-enable interrupt after "
14466 				"slot reset.\n");
14467 		return PCI_ERS_RESULT_DISCONNECT;
14468 	} else
14469 		phba->intr_mode = intr_mode;
14470 
14471 	/* Take device offline, it will perform cleanup */
14472 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14473 	lpfc_offline(phba);
14474 	lpfc_sli_brdrestart(phba);
14475 
14476 	/* Log the current active interrupt mode */
14477 	lpfc_log_intr_mode(phba, phba->intr_mode);
14478 
14479 	return PCI_ERS_RESULT_RECOVERED;
14480 }
14481 
14482 /**
14483  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14484  * @pdev: pointer to PCI device
14485  *
14486  * This routine is called from the PCI subsystem for error handling to device
14487  * with SLI-3 interface spec. It is called when kernel error recovery tells
14488  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14489  * error recovery. After this call, traffic can start to flow from this device
14490  * again.
14491  */
14492 static void
14493 lpfc_io_resume_s3(struct pci_dev *pdev)
14494 {
14495 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14496 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14497 
14498 	/* Bring device online, it will be no-op for non-fatal error resume */
14499 	lpfc_online(phba);
14500 }
14501 
14502 /**
14503  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14504  * @phba: pointer to lpfc hba data structure.
14505  *
14506  * returns the number of ELS/CT IOCBs to reserve
14507  **/
14508 int
14509 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14510 {
14511 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14512 
14513 	if (phba->sli_rev == LPFC_SLI_REV4) {
14514 		if (max_xri <= 100)
14515 			return 10;
14516 		else if (max_xri <= 256)
14517 			return 25;
14518 		else if (max_xri <= 512)
14519 			return 50;
14520 		else if (max_xri <= 1024)
14521 			return 100;
14522 		else if (max_xri <= 1536)
14523 			return 150;
14524 		else if (max_xri <= 2048)
14525 			return 200;
14526 		else
14527 			return 250;
14528 	} else
14529 		return 0;
14530 }
14531 
14532 /**
14533  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14534  * @phba: pointer to lpfc hba data structure.
14535  *
14536  * returns the number of ELS/CT + NVMET IOCBs to reserve
14537  **/
14538 int
14539 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14540 {
14541 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14542 
14543 	if (phba->nvmet_support)
14544 		max_xri += LPFC_NVMET_BUF_POST;
14545 	return max_xri;
14546 }
14547 
14548 
14549 static int
14550 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14551 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14552 	const struct firmware *fw)
14553 {
14554 	int rc;
14555 	u8 sli_family;
14556 
14557 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14558 	/* Three cases:  (1) FW was not supported on the detected adapter.
14559 	 * (2) FW update has been locked out administratively.
14560 	 * (3) Some other error during FW update.
14561 	 * In each case, an unmaskable message is written to the console
14562 	 * for admin diagnosis.
14563 	 */
14564 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14565 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14566 	     magic_number != MAGIC_NUMBER_G6) ||
14567 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14568 	     magic_number != MAGIC_NUMBER_G7) ||
14569 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14570 	     magic_number != MAGIC_NUMBER_G7P)) {
14571 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14572 				"3030 This firmware version is not supported on"
14573 				" this HBA model. Device:%x Magic:%x Type:%x "
14574 				"ID:%x Size %d %zd\n",
14575 				phba->pcidev->device, magic_number, ftype, fid,
14576 				fsize, fw->size);
14577 		rc = -EINVAL;
14578 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14579 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14580 				"3021 Firmware downloads have been prohibited "
14581 				"by a system configuration setting on "
14582 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14583 				"%zd\n",
14584 				phba->pcidev->device, magic_number, ftype, fid,
14585 				fsize, fw->size);
14586 		rc = -EACCES;
14587 	} else {
14588 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14589 				"3022 FW Download failed. Add Status x%x "
14590 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14591 				"%zd\n",
14592 				offset, phba->pcidev->device, magic_number,
14593 				ftype, fid, fsize, fw->size);
14594 		rc = -EIO;
14595 	}
14596 	return rc;
14597 }
14598 
14599 /**
14600  * lpfc_write_firmware - attempt to write a firmware image to the port
14601  * @fw: pointer to firmware image returned from request_firmware.
14602  * @context: pointer to firmware image returned from request_firmware.
14603  *
14604  **/
14605 static void
14606 lpfc_write_firmware(const struct firmware *fw, void *context)
14607 {
14608 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14609 	char fwrev[FW_REV_STR_SIZE];
14610 	struct lpfc_grp_hdr *image;
14611 	struct list_head dma_buffer_list;
14612 	int i, rc = 0;
14613 	struct lpfc_dmabuf *dmabuf, *next;
14614 	uint32_t offset = 0, temp_offset = 0;
14615 	uint32_t magic_number, ftype, fid, fsize;
14616 
14617 	/* It can be null in no-wait mode, sanity check */
14618 	if (!fw) {
14619 		rc = -ENXIO;
14620 		goto out;
14621 	}
14622 	image = (struct lpfc_grp_hdr *)fw->data;
14623 
14624 	magic_number = be32_to_cpu(image->magic_number);
14625 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14626 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14627 	fsize = be32_to_cpu(image->size);
14628 
14629 	INIT_LIST_HEAD(&dma_buffer_list);
14630 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14631 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14632 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14633 			     "3023 Updating Firmware, Current Version:%s "
14634 			     "New Version:%s\n",
14635 			     fwrev, image->revision);
14636 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14637 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14638 					 GFP_KERNEL);
14639 			if (!dmabuf) {
14640 				rc = -ENOMEM;
14641 				goto release_out;
14642 			}
14643 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14644 							  SLI4_PAGE_SIZE,
14645 							  &dmabuf->phys,
14646 							  GFP_KERNEL);
14647 			if (!dmabuf->virt) {
14648 				kfree(dmabuf);
14649 				rc = -ENOMEM;
14650 				goto release_out;
14651 			}
14652 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14653 		}
14654 		while (offset < fw->size) {
14655 			temp_offset = offset;
14656 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14657 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14658 					memcpy(dmabuf->virt,
14659 					       fw->data + temp_offset,
14660 					       fw->size - temp_offset);
14661 					temp_offset = fw->size;
14662 					break;
14663 				}
14664 				memcpy(dmabuf->virt, fw->data + temp_offset,
14665 				       SLI4_PAGE_SIZE);
14666 				temp_offset += SLI4_PAGE_SIZE;
14667 			}
14668 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14669 				    (fw->size - offset), &offset);
14670 			if (rc) {
14671 				rc = lpfc_log_write_firmware_error(phba, offset,
14672 								   magic_number,
14673 								   ftype,
14674 								   fid,
14675 								   fsize,
14676 								   fw);
14677 				goto release_out;
14678 			}
14679 		}
14680 		rc = offset;
14681 	} else
14682 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14683 			     "3029 Skipped Firmware update, Current "
14684 			     "Version:%s New Version:%s\n",
14685 			     fwrev, image->revision);
14686 
14687 release_out:
14688 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14689 		list_del(&dmabuf->list);
14690 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14691 				  dmabuf->virt, dmabuf->phys);
14692 		kfree(dmabuf);
14693 	}
14694 	release_firmware(fw);
14695 out:
14696 	if (rc < 0)
14697 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14698 			     "3062 Firmware update error, status %d.\n", rc);
14699 	else
14700 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14701 			     "3024 Firmware update success: size %d.\n", rc);
14702 }
14703 
14704 /**
14705  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14706  * @phba: pointer to lpfc hba data structure.
14707  * @fw_upgrade: which firmware to update.
14708  *
14709  * This routine is called to perform Linux generic firmware upgrade on device
14710  * that supports such feature.
14711  **/
14712 int
14713 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14714 {
14715 	char file_name[ELX_FW_NAME_SIZE] = {0};
14716 	int ret;
14717 	const struct firmware *fw;
14718 
14719 	/* Only supported on SLI4 interface type 2 for now */
14720 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14721 	    LPFC_SLI_INTF_IF_TYPE_2)
14722 		return -EPERM;
14723 
14724 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14725 
14726 	if (fw_upgrade == INT_FW_UPGRADE) {
14727 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14728 					file_name, &phba->pcidev->dev,
14729 					GFP_KERNEL, (void *)phba,
14730 					lpfc_write_firmware);
14731 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14732 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14733 		if (!ret)
14734 			lpfc_write_firmware(fw, (void *)phba);
14735 	} else {
14736 		ret = -EINVAL;
14737 	}
14738 
14739 	return ret;
14740 }
14741 
14742 /**
14743  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14744  * @pdev: pointer to PCI device
14745  * @pid: pointer to PCI device identifier
14746  *
14747  * This routine is called from the kernel's PCI subsystem to device with
14748  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14749  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14750  * information of the device and driver to see if the driver state that it
14751  * can support this kind of device. If the match is successful, the driver
14752  * core invokes this routine. If this routine determines it can claim the HBA,
14753  * it does all the initialization that it needs to do to handle the HBA
14754  * properly.
14755  *
14756  * Return code
14757  * 	0 - driver can claim the device
14758  * 	negative value - driver can not claim the device
14759  **/
14760 static int
14761 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14762 {
14763 	struct lpfc_hba   *phba;
14764 	struct lpfc_vport *vport = NULL;
14765 	struct Scsi_Host  *shost = NULL;
14766 	int error;
14767 	uint32_t cfg_mode, intr_mode;
14768 
14769 	/* Allocate memory for HBA structure */
14770 	phba = lpfc_hba_alloc(pdev);
14771 	if (!phba)
14772 		return -ENOMEM;
14773 
14774 	INIT_LIST_HEAD(&phba->poll_list);
14775 
14776 	/* Perform generic PCI device enabling operation */
14777 	error = lpfc_enable_pci_dev(phba);
14778 	if (error)
14779 		goto out_free_phba;
14780 
14781 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14782 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14783 	if (error)
14784 		goto out_disable_pci_dev;
14785 
14786 	/* Set up SLI-4 specific device PCI memory space */
14787 	error = lpfc_sli4_pci_mem_setup(phba);
14788 	if (error) {
14789 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14790 				"1410 Failed to set up pci memory space.\n");
14791 		goto out_disable_pci_dev;
14792 	}
14793 
14794 	/* Set up SLI-4 Specific device driver resources */
14795 	error = lpfc_sli4_driver_resource_setup(phba);
14796 	if (error) {
14797 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14798 				"1412 Failed to set up driver resource.\n");
14799 		goto out_unset_pci_mem_s4;
14800 	}
14801 
14802 	spin_lock_init(&phba->rrq_list_lock);
14803 	INIT_LIST_HEAD(&phba->active_rrq_list);
14804 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14805 
14806 	/* Set up common device driver resources */
14807 	error = lpfc_setup_driver_resource_phase2(phba);
14808 	if (error) {
14809 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14810 				"1414 Failed to set up driver resource.\n");
14811 		goto out_unset_driver_resource_s4;
14812 	}
14813 
14814 	/* Get the default values for Model Name and Description */
14815 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14816 
14817 	/* Now, trying to enable interrupt and bring up the device */
14818 	cfg_mode = phba->cfg_use_msi;
14819 
14820 	/* Put device to a known state before enabling interrupt */
14821 	phba->pport = NULL;
14822 	lpfc_stop_port(phba);
14823 
14824 	/* Init cpu_map array */
14825 	lpfc_cpu_map_array_init(phba);
14826 
14827 	/* Init hba_eq_hdl array */
14828 	lpfc_hba_eq_hdl_array_init(phba);
14829 
14830 	/* Configure and enable interrupt */
14831 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14832 	if (intr_mode == LPFC_INTR_ERROR) {
14833 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14834 				"0426 Failed to enable interrupt.\n");
14835 		error = -ENODEV;
14836 		goto out_unset_driver_resource;
14837 	}
14838 	/* Default to single EQ for non-MSI-X */
14839 	if (phba->intr_type != MSIX) {
14840 		phba->cfg_irq_chann = 1;
14841 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14842 			if (phba->nvmet_support)
14843 				phba->cfg_nvmet_mrq = 1;
14844 		}
14845 	}
14846 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14847 
14848 	/* Create SCSI host to the physical port */
14849 	error = lpfc_create_shost(phba);
14850 	if (error) {
14851 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14852 				"1415 Failed to create scsi host.\n");
14853 		goto out_disable_intr;
14854 	}
14855 	vport = phba->pport;
14856 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14857 
14858 	/* Configure sysfs attributes */
14859 	error = lpfc_alloc_sysfs_attr(vport);
14860 	if (error) {
14861 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14862 				"1416 Failed to allocate sysfs attr\n");
14863 		goto out_destroy_shost;
14864 	}
14865 
14866 	/* Set up SLI-4 HBA */
14867 	if (lpfc_sli4_hba_setup(phba)) {
14868 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14869 				"1421 Failed to set up hba\n");
14870 		error = -ENODEV;
14871 		goto out_free_sysfs_attr;
14872 	}
14873 
14874 	/* Log the current active interrupt mode */
14875 	phba->intr_mode = intr_mode;
14876 	lpfc_log_intr_mode(phba, intr_mode);
14877 
14878 	/* Perform post initialization setup */
14879 	lpfc_post_init_setup(phba);
14880 
14881 	/* NVME support in FW earlier in the driver load corrects the
14882 	 * FC4 type making a check for nvme_support unnecessary.
14883 	 */
14884 	if (phba->nvmet_support == 0) {
14885 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14886 			/* Create NVME binding with nvme_fc_transport. This
14887 			 * ensures the vport is initialized.  If the localport
14888 			 * create fails, it should not unload the driver to
14889 			 * support field issues.
14890 			 */
14891 			error = lpfc_nvme_create_localport(vport);
14892 			if (error) {
14893 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14894 						"6004 NVME registration "
14895 						"failed, error x%x\n",
14896 						error);
14897 			}
14898 		}
14899 	}
14900 
14901 	/* check for firmware upgrade or downgrade */
14902 	if (phba->cfg_request_firmware_upgrade)
14903 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14904 
14905 	/* Check if there are static vports to be created. */
14906 	lpfc_create_static_vport(phba);
14907 
14908 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14909 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14910 
14911 	return 0;
14912 
14913 out_free_sysfs_attr:
14914 	lpfc_free_sysfs_attr(vport);
14915 out_destroy_shost:
14916 	lpfc_destroy_shost(phba);
14917 out_disable_intr:
14918 	lpfc_sli4_disable_intr(phba);
14919 out_unset_driver_resource:
14920 	lpfc_unset_driver_resource_phase2(phba);
14921 out_unset_driver_resource_s4:
14922 	lpfc_sli4_driver_resource_unset(phba);
14923 out_unset_pci_mem_s4:
14924 	lpfc_sli4_pci_mem_unset(phba);
14925 out_disable_pci_dev:
14926 	lpfc_disable_pci_dev(phba);
14927 	if (shost)
14928 		scsi_host_put(shost);
14929 out_free_phba:
14930 	lpfc_hba_free(phba);
14931 	return error;
14932 }
14933 
14934 /**
14935  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14936  * @pdev: pointer to PCI device
14937  *
14938  * This routine is called from the kernel's PCI subsystem to device with
14939  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14940  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14941  * device to be removed from the PCI subsystem properly.
14942  **/
14943 static void
14944 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14945 {
14946 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14947 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14948 	struct lpfc_vport **vports;
14949 	struct lpfc_hba *phba = vport->phba;
14950 	int i;
14951 
14952 	/* Mark the device unloading flag */
14953 	set_bit(FC_UNLOADING, &vport->load_flag);
14954 	if (phba->cgn_i)
14955 		lpfc_unreg_congestion_buf(phba);
14956 
14957 	lpfc_free_sysfs_attr(vport);
14958 
14959 	/* Release all the vports against this physical port */
14960 	vports = lpfc_create_vport_work_array(phba);
14961 	if (vports != NULL)
14962 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14963 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14964 				continue;
14965 			fc_vport_terminate(vports[i]->fc_vport);
14966 		}
14967 	lpfc_destroy_vport_work_array(phba, vports);
14968 
14969 	/* Remove FC host with the physical port */
14970 	fc_remove_host(shost);
14971 	scsi_remove_host(shost);
14972 
14973 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14974 	 * localports are destroyed after to cleanup all transport memory.
14975 	 */
14976 	lpfc_cleanup(vport);
14977 	lpfc_nvmet_destroy_targetport(phba);
14978 	lpfc_nvme_destroy_localport(vport);
14979 
14980 	/* De-allocate multi-XRI pools */
14981 	if (phba->cfg_xri_rebalancing)
14982 		lpfc_destroy_multixri_pools(phba);
14983 
14984 	/*
14985 	 * Bring down the SLI Layer. This step disables all interrupts,
14986 	 * clears the rings, discards all mailbox commands, and resets
14987 	 * the HBA FCoE function.
14988 	 */
14989 	lpfc_debugfs_terminate(vport);
14990 
14991 	lpfc_stop_hba_timers(phba);
14992 	spin_lock_irq(&phba->port_list_lock);
14993 	list_del_init(&vport->listentry);
14994 	spin_unlock_irq(&phba->port_list_lock);
14995 
14996 	/* Perform scsi free before driver resource_unset since scsi
14997 	 * buffers are released to their corresponding pools here.
14998 	 */
14999 	lpfc_io_free(phba);
15000 	lpfc_free_iocb_list(phba);
15001 	lpfc_sli4_hba_unset(phba);
15002 
15003 	lpfc_unset_driver_resource_phase2(phba);
15004 	lpfc_sli4_driver_resource_unset(phba);
15005 
15006 	/* Unmap adapter Control and Doorbell registers */
15007 	lpfc_sli4_pci_mem_unset(phba);
15008 
15009 	/* Release PCI resources and disable device's PCI function */
15010 	scsi_host_put(shost);
15011 	lpfc_disable_pci_dev(phba);
15012 
15013 	/* Finally, free the driver's device data structure */
15014 	lpfc_hba_free(phba);
15015 
15016 	return;
15017 }
15018 
15019 /**
15020  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15021  * @dev_d: pointer to device
15022  *
15023  * This routine is called from the kernel's PCI subsystem to support system
15024  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15025  * this method, it quiesces the device by stopping the driver's worker
15026  * thread for the device, turning off device's interrupt and DMA, and bring
15027  * the device offline. Note that as the driver implements the minimum PM
15028  * requirements to a power-aware driver's PM support for suspend/resume -- all
15029  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15030  * method call will be treated as SUSPEND and the driver will fully
15031  * reinitialize its device during resume() method call, the driver will set
15032  * device to PCI_D3hot state in PCI config space instead of setting it
15033  * according to the @msg provided by the PM.
15034  *
15035  * Return code
15036  * 	0 - driver suspended the device
15037  * 	Error otherwise
15038  **/
15039 static int __maybe_unused
15040 lpfc_pci_suspend_one_s4(struct device *dev_d)
15041 {
15042 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15043 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15044 
15045 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15046 			"2843 PCI device Power Management suspend.\n");
15047 
15048 	/* Bring down the device */
15049 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15050 	lpfc_offline(phba);
15051 	kthread_stop(phba->worker_thread);
15052 
15053 	/* Disable interrupt from device */
15054 	lpfc_sli4_disable_intr(phba);
15055 	lpfc_sli4_queue_destroy(phba);
15056 
15057 	return 0;
15058 }
15059 
15060 /**
15061  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15062  * @dev_d: pointer to device
15063  *
15064  * This routine is called from the kernel's PCI subsystem to support system
15065  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15066  * this method, it restores the device's PCI config space state and fully
15067  * reinitializes the device and brings it online. Note that as the driver
15068  * implements the minimum PM requirements to a power-aware driver's PM for
15069  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15070  * to the suspend() method call will be treated as SUSPEND and the driver
15071  * will fully reinitialize its device during resume() method call, the device
15072  * will be set to PCI_D0 directly in PCI config space before restoring the
15073  * state.
15074  *
15075  * Return code
15076  * 	0 - driver suspended the device
15077  * 	Error otherwise
15078  **/
15079 static int __maybe_unused
15080 lpfc_pci_resume_one_s4(struct device *dev_d)
15081 {
15082 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15083 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15084 	uint32_t intr_mode;
15085 	int error;
15086 
15087 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15088 			"0292 PCI device Power Management resume.\n");
15089 
15090 	 /* Startup the kernel thread for this host adapter. */
15091 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15092 					"lpfc_worker_%d", phba->brd_no);
15093 	if (IS_ERR(phba->worker_thread)) {
15094 		error = PTR_ERR(phba->worker_thread);
15095 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15096 				"0293 PM resume failed to start worker "
15097 				"thread: error=x%x.\n", error);
15098 		return error;
15099 	}
15100 
15101 	/* Configure and enable interrupt */
15102 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15103 	if (intr_mode == LPFC_INTR_ERROR) {
15104 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15105 				"0294 PM resume Failed to enable interrupt\n");
15106 		return -EIO;
15107 	} else
15108 		phba->intr_mode = intr_mode;
15109 
15110 	/* Restart HBA and bring it online */
15111 	lpfc_sli_brdrestart(phba);
15112 	lpfc_online(phba);
15113 
15114 	/* Log the current active interrupt mode */
15115 	lpfc_log_intr_mode(phba, phba->intr_mode);
15116 
15117 	return 0;
15118 }
15119 
15120 /**
15121  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15122  * @phba: pointer to lpfc hba data structure.
15123  *
15124  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15125  * aborts all the outstanding SCSI I/Os to the pci device.
15126  **/
15127 static void
15128 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15129 {
15130 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15131 			"2828 PCI channel I/O abort preparing for recovery\n");
15132 	/*
15133 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15134 	 * and let the SCSI mid-layer to retry them to recover.
15135 	 */
15136 	lpfc_sli_abort_fcp_rings(phba);
15137 }
15138 
15139 /**
15140  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15141  * @phba: pointer to lpfc hba data structure.
15142  *
15143  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15144  * disables the device interrupt and pci device, and aborts the internal FCP
15145  * pending I/Os.
15146  **/
15147 static void
15148 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15149 {
15150 	int offline =  pci_channel_offline(phba->pcidev);
15151 
15152 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15153 			"2826 PCI channel disable preparing for reset offline"
15154 			" %d\n", offline);
15155 
15156 	/* Block any management I/Os to the device */
15157 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15158 
15159 
15160 	/* HBA_PCI_ERR was set in io_error_detect */
15161 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15162 	/* Flush all driver's outstanding I/Os as we are to reset */
15163 	lpfc_sli_flush_io_rings(phba);
15164 	lpfc_offline(phba);
15165 
15166 	/* stop all timers */
15167 	lpfc_stop_hba_timers(phba);
15168 
15169 	lpfc_sli4_queue_destroy(phba);
15170 	/* Disable interrupt and pci device */
15171 	lpfc_sli4_disable_intr(phba);
15172 	pci_disable_device(phba->pcidev);
15173 }
15174 
15175 /**
15176  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15177  * @phba: pointer to lpfc hba data structure.
15178  *
15179  * This routine is called to prepare the SLI4 device for PCI slot permanently
15180  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15181  * pending I/Os.
15182  **/
15183 static void
15184 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15185 {
15186 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15187 			"2827 PCI channel permanent disable for failure\n");
15188 
15189 	/* Block all SCSI devices' I/Os on the host */
15190 	lpfc_scsi_dev_block(phba);
15191 
15192 	/* stop all timers */
15193 	lpfc_stop_hba_timers(phba);
15194 
15195 	/* Clean up all driver's outstanding I/Os */
15196 	lpfc_sli_flush_io_rings(phba);
15197 }
15198 
15199 /**
15200  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15201  * @pdev: pointer to PCI device.
15202  * @state: the current PCI connection state.
15203  *
15204  * This routine is called from the PCI subsystem for error handling to device
15205  * with SLI-4 interface spec. This function is called by the PCI subsystem
15206  * after a PCI bus error affecting this device has been detected. When this
15207  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15208  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15209  * for the PCI subsystem to perform proper recovery as desired.
15210  *
15211  * Return codes
15212  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15213  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15214  **/
15215 static pci_ers_result_t
15216 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15217 {
15218 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15219 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15220 	bool hba_pci_err;
15221 
15222 	switch (state) {
15223 	case pci_channel_io_normal:
15224 		/* Non-fatal error, prepare for recovery */
15225 		lpfc_sli4_prep_dev_for_recover(phba);
15226 		return PCI_ERS_RESULT_CAN_RECOVER;
15227 	case pci_channel_io_frozen:
15228 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15229 		/* Fatal error, prepare for slot reset */
15230 		if (!hba_pci_err)
15231 			lpfc_sli4_prep_dev_for_reset(phba);
15232 		else
15233 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15234 					"2832  Already handling PCI error "
15235 					"state: x%x\n", state);
15236 		return PCI_ERS_RESULT_NEED_RESET;
15237 	case pci_channel_io_perm_failure:
15238 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15239 		/* Permanent failure, prepare for device down */
15240 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15241 		return PCI_ERS_RESULT_DISCONNECT;
15242 	default:
15243 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15244 		if (!hba_pci_err)
15245 			lpfc_sli4_prep_dev_for_reset(phba);
15246 		/* Unknown state, prepare and request slot reset */
15247 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15248 				"2825 Unknown PCI error state: x%x\n", state);
15249 		lpfc_sli4_prep_dev_for_reset(phba);
15250 		return PCI_ERS_RESULT_NEED_RESET;
15251 	}
15252 }
15253 
15254 /**
15255  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15256  * @pdev: pointer to PCI device.
15257  *
15258  * This routine is called from the PCI subsystem for error handling to device
15259  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15260  * restart the PCI card from scratch, as if from a cold-boot. During the
15261  * PCI subsystem error recovery, after the driver returns
15262  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15263  * recovery and then call this routine before calling the .resume method to
15264  * recover the device. This function will initialize the HBA device, enable
15265  * the interrupt, but it will just put the HBA to offline state without
15266  * passing any I/O traffic.
15267  *
15268  * Return codes
15269  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15270  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15271  */
15272 static pci_ers_result_t
15273 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15274 {
15275 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15276 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15277 	struct lpfc_sli *psli = &phba->sli;
15278 	uint32_t intr_mode;
15279 	bool hba_pci_err;
15280 
15281 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15282 	if (pci_enable_device_mem(pdev)) {
15283 		printk(KERN_ERR "lpfc: Cannot re-enable "
15284 		       "PCI device after reset.\n");
15285 		return PCI_ERS_RESULT_DISCONNECT;
15286 	}
15287 
15288 	pci_restore_state(pdev);
15289 
15290 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15291 	if (!hba_pci_err)
15292 		dev_info(&pdev->dev,
15293 			 "hba_pci_err was not set, recovering slot reset.\n");
15294 	/*
15295 	 * As the new kernel behavior of pci_restore_state() API call clears
15296 	 * device saved_state flag, need to save the restored state again.
15297 	 */
15298 	pci_save_state(pdev);
15299 
15300 	if (pdev->is_busmaster)
15301 		pci_set_master(pdev);
15302 
15303 	spin_lock_irq(&phba->hbalock);
15304 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15305 	spin_unlock_irq(&phba->hbalock);
15306 
15307 	/* Init cpu_map array */
15308 	lpfc_cpu_map_array_init(phba);
15309 	/* Configure and enable interrupt */
15310 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15311 	if (intr_mode == LPFC_INTR_ERROR) {
15312 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15313 				"2824 Cannot re-enable interrupt after "
15314 				"slot reset.\n");
15315 		return PCI_ERS_RESULT_DISCONNECT;
15316 	} else
15317 		phba->intr_mode = intr_mode;
15318 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15319 
15320 	/* Log the current active interrupt mode */
15321 	lpfc_log_intr_mode(phba, phba->intr_mode);
15322 
15323 	return PCI_ERS_RESULT_RECOVERED;
15324 }
15325 
15326 /**
15327  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15328  * @pdev: pointer to PCI device
15329  *
15330  * This routine is called from the PCI subsystem for error handling to device
15331  * with SLI-4 interface spec. It is called when kernel error recovery tells
15332  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15333  * error recovery. After this call, traffic can start to flow from this device
15334  * again.
15335  **/
15336 static void
15337 lpfc_io_resume_s4(struct pci_dev *pdev)
15338 {
15339 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15340 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15341 
15342 	/*
15343 	 * In case of slot reset, as function reset is performed through
15344 	 * mailbox command which needs DMA to be enabled, this operation
15345 	 * has to be moved to the io resume phase. Taking device offline
15346 	 * will perform the necessary cleanup.
15347 	 */
15348 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15349 		/* Perform device reset */
15350 		lpfc_sli_brdrestart(phba);
15351 		/* Bring the device back online */
15352 		lpfc_online(phba);
15353 	}
15354 }
15355 
15356 /**
15357  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15358  * @pdev: pointer to PCI device
15359  * @pid: pointer to PCI device identifier
15360  *
15361  * This routine is to be registered to the kernel's PCI subsystem. When an
15362  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15363  * at PCI device-specific information of the device and driver to see if the
15364  * driver state that it can support this kind of device. If the match is
15365  * successful, the driver core invokes this routine. This routine dispatches
15366  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15367  * do all the initialization that it needs to do to handle the HBA device
15368  * properly.
15369  *
15370  * Return code
15371  * 	0 - driver can claim the device
15372  * 	negative value - driver can not claim the device
15373  **/
15374 static int
15375 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15376 {
15377 	int rc;
15378 	struct lpfc_sli_intf intf;
15379 
15380 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15381 		return -ENODEV;
15382 
15383 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15384 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15385 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15386 	else
15387 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15388 
15389 	return rc;
15390 }
15391 
15392 /**
15393  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15394  * @pdev: pointer to PCI device
15395  *
15396  * This routine is to be registered to the kernel's PCI subsystem. When an
15397  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15398  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15399  * remove routine, which will perform all the necessary cleanup for the
15400  * device to be removed from the PCI subsystem properly.
15401  **/
15402 static void
15403 lpfc_pci_remove_one(struct pci_dev *pdev)
15404 {
15405 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15406 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15407 
15408 	switch (phba->pci_dev_grp) {
15409 	case LPFC_PCI_DEV_LP:
15410 		lpfc_pci_remove_one_s3(pdev);
15411 		break;
15412 	case LPFC_PCI_DEV_OC:
15413 		lpfc_pci_remove_one_s4(pdev);
15414 		break;
15415 	default:
15416 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15417 				"1424 Invalid PCI device group: 0x%x\n",
15418 				phba->pci_dev_grp);
15419 		break;
15420 	}
15421 	return;
15422 }
15423 
15424 /**
15425  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15426  * @dev: pointer to device
15427  *
15428  * This routine is to be registered to the kernel's PCI subsystem to support
15429  * system Power Management (PM). When PM invokes this method, it dispatches
15430  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15431  * suspend the device.
15432  *
15433  * Return code
15434  * 	0 - driver suspended the device
15435  * 	Error otherwise
15436  **/
15437 static int __maybe_unused
15438 lpfc_pci_suspend_one(struct device *dev)
15439 {
15440 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15441 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15442 	int rc = -ENODEV;
15443 
15444 	switch (phba->pci_dev_grp) {
15445 	case LPFC_PCI_DEV_LP:
15446 		rc = lpfc_pci_suspend_one_s3(dev);
15447 		break;
15448 	case LPFC_PCI_DEV_OC:
15449 		rc = lpfc_pci_suspend_one_s4(dev);
15450 		break;
15451 	default:
15452 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15453 				"1425 Invalid PCI device group: 0x%x\n",
15454 				phba->pci_dev_grp);
15455 		break;
15456 	}
15457 	return rc;
15458 }
15459 
15460 /**
15461  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15462  * @dev: pointer to device
15463  *
15464  * This routine is to be registered to the kernel's PCI subsystem to support
15465  * system Power Management (PM). When PM invokes this method, it dispatches
15466  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15467  * resume the device.
15468  *
15469  * Return code
15470  * 	0 - driver suspended the device
15471  * 	Error otherwise
15472  **/
15473 static int __maybe_unused
15474 lpfc_pci_resume_one(struct device *dev)
15475 {
15476 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15477 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15478 	int rc = -ENODEV;
15479 
15480 	switch (phba->pci_dev_grp) {
15481 	case LPFC_PCI_DEV_LP:
15482 		rc = lpfc_pci_resume_one_s3(dev);
15483 		break;
15484 	case LPFC_PCI_DEV_OC:
15485 		rc = lpfc_pci_resume_one_s4(dev);
15486 		break;
15487 	default:
15488 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15489 				"1426 Invalid PCI device group: 0x%x\n",
15490 				phba->pci_dev_grp);
15491 		break;
15492 	}
15493 	return rc;
15494 }
15495 
15496 /**
15497  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15498  * @pdev: pointer to PCI device.
15499  * @state: the current PCI connection state.
15500  *
15501  * This routine is registered to the PCI subsystem for error handling. This
15502  * function is called by the PCI subsystem after a PCI bus error affecting
15503  * this device has been detected. When this routine is invoked, it dispatches
15504  * the action to the proper SLI-3 or SLI-4 device error detected handling
15505  * routine, which will perform the proper error detected operation.
15506  *
15507  * Return codes
15508  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15509  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15510  **/
15511 static pci_ers_result_t
15512 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15513 {
15514 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15515 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15516 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15517 
15518 	if (phba->link_state == LPFC_HBA_ERROR &&
15519 	    test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
15520 		return PCI_ERS_RESULT_NEED_RESET;
15521 
15522 	switch (phba->pci_dev_grp) {
15523 	case LPFC_PCI_DEV_LP:
15524 		rc = lpfc_io_error_detected_s3(pdev, state);
15525 		break;
15526 	case LPFC_PCI_DEV_OC:
15527 		rc = lpfc_io_error_detected_s4(pdev, state);
15528 		break;
15529 	default:
15530 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15531 				"1427 Invalid PCI device group: 0x%x\n",
15532 				phba->pci_dev_grp);
15533 		break;
15534 	}
15535 	return rc;
15536 }
15537 
15538 /**
15539  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15540  * @pdev: pointer to PCI device.
15541  *
15542  * This routine is registered to the PCI subsystem for error handling. This
15543  * function is called after PCI bus has been reset to restart the PCI card
15544  * from scratch, as if from a cold-boot. When this routine is invoked, it
15545  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15546  * routine, which will perform the proper device reset.
15547  *
15548  * Return codes
15549  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15550  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15551  **/
15552 static pci_ers_result_t
15553 lpfc_io_slot_reset(struct pci_dev *pdev)
15554 {
15555 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15556 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15557 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15558 
15559 	switch (phba->pci_dev_grp) {
15560 	case LPFC_PCI_DEV_LP:
15561 		rc = lpfc_io_slot_reset_s3(pdev);
15562 		break;
15563 	case LPFC_PCI_DEV_OC:
15564 		rc = lpfc_io_slot_reset_s4(pdev);
15565 		break;
15566 	default:
15567 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15568 				"1428 Invalid PCI device group: 0x%x\n",
15569 				phba->pci_dev_grp);
15570 		break;
15571 	}
15572 	return rc;
15573 }
15574 
15575 /**
15576  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15577  * @pdev: pointer to PCI device
15578  *
15579  * This routine is registered to the PCI subsystem for error handling. It
15580  * is called when kernel error recovery tells the lpfc driver that it is
15581  * OK to resume normal PCI operation after PCI bus error recovery. When
15582  * this routine is invoked, it dispatches the action to the proper SLI-3
15583  * or SLI-4 device io_resume routine, which will resume the device operation.
15584  **/
15585 static void
15586 lpfc_io_resume(struct pci_dev *pdev)
15587 {
15588 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15589 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15590 
15591 	switch (phba->pci_dev_grp) {
15592 	case LPFC_PCI_DEV_LP:
15593 		lpfc_io_resume_s3(pdev);
15594 		break;
15595 	case LPFC_PCI_DEV_OC:
15596 		lpfc_io_resume_s4(pdev);
15597 		break;
15598 	default:
15599 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15600 				"1429 Invalid PCI device group: 0x%x\n",
15601 				phba->pci_dev_grp);
15602 		break;
15603 	}
15604 	return;
15605 }
15606 
15607 /**
15608  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15609  * @phba: pointer to lpfc hba data structure.
15610  *
15611  * This routine checks to see if OAS is supported for this adapter. If
15612  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15613  * the enable oas flag is cleared and the pool created for OAS device data
15614  * is destroyed.
15615  *
15616  **/
15617 static void
15618 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15619 {
15620 
15621 	if (!phba->cfg_EnableXLane)
15622 		return;
15623 
15624 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15625 		phba->cfg_fof = 1;
15626 	} else {
15627 		phba->cfg_fof = 0;
15628 		mempool_destroy(phba->device_data_mem_pool);
15629 		phba->device_data_mem_pool = NULL;
15630 	}
15631 
15632 	return;
15633 }
15634 
15635 /**
15636  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15637  * @phba: pointer to lpfc hba data structure.
15638  *
15639  * This routine checks to see if RAS is supported by the adapter. Check the
15640  * function through which RAS support enablement is to be done.
15641  **/
15642 void
15643 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15644 {
15645 	/* if ASIC_GEN_NUM >= 0xC) */
15646 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15647 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15648 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15649 		    LPFC_SLI_INTF_FAMILY_G6)) {
15650 		phba->ras_fwlog.ras_hwsupport = true;
15651 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15652 		    phba->cfg_ras_fwlog_buffsize)
15653 			phba->ras_fwlog.ras_enabled = true;
15654 		else
15655 			phba->ras_fwlog.ras_enabled = false;
15656 	} else {
15657 		phba->ras_fwlog.ras_hwsupport = false;
15658 	}
15659 }
15660 
15661 
15662 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15663 
15664 static const struct pci_error_handlers lpfc_err_handler = {
15665 	.error_detected = lpfc_io_error_detected,
15666 	.slot_reset = lpfc_io_slot_reset,
15667 	.resume = lpfc_io_resume,
15668 };
15669 
15670 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15671 			 lpfc_pci_suspend_one,
15672 			 lpfc_pci_resume_one);
15673 
15674 static struct pci_driver lpfc_driver = {
15675 	.name		= LPFC_DRIVER_NAME,
15676 	.id_table	= lpfc_id_table,
15677 	.probe		= lpfc_pci_probe_one,
15678 	.remove		= lpfc_pci_remove_one,
15679 	.shutdown	= lpfc_pci_remove_one,
15680 	.driver.pm	= &lpfc_pci_pm_ops_one,
15681 	.err_handler    = &lpfc_err_handler,
15682 };
15683 
15684 static const struct file_operations lpfc_mgmt_fop = {
15685 	.owner = THIS_MODULE,
15686 };
15687 
15688 static struct miscdevice lpfc_mgmt_dev = {
15689 	.minor = MISC_DYNAMIC_MINOR,
15690 	.name = "lpfcmgmt",
15691 	.fops = &lpfc_mgmt_fop,
15692 };
15693 
15694 /**
15695  * lpfc_init - lpfc module initialization routine
15696  *
15697  * This routine is to be invoked when the lpfc module is loaded into the
15698  * kernel. The special kernel macro module_init() is used to indicate the
15699  * role of this routine to the kernel as lpfc module entry point.
15700  *
15701  * Return codes
15702  *   0 - successful
15703  *   -ENOMEM - FC attach transport failed
15704  *   all others - failed
15705  */
15706 static int __init
15707 lpfc_init(void)
15708 {
15709 	int error = 0;
15710 
15711 	pr_info(LPFC_MODULE_DESC "\n");
15712 	pr_info(LPFC_COPYRIGHT "\n");
15713 
15714 	error = misc_register(&lpfc_mgmt_dev);
15715 	if (error)
15716 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15717 			"misc_register returned with status %d", error);
15718 
15719 	error = -ENOMEM;
15720 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15721 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15722 	lpfc_transport_template =
15723 				fc_attach_transport(&lpfc_transport_functions);
15724 	if (lpfc_transport_template == NULL)
15725 		goto unregister;
15726 	lpfc_vport_transport_template =
15727 		fc_attach_transport(&lpfc_vport_transport_functions);
15728 	if (lpfc_vport_transport_template == NULL) {
15729 		fc_release_transport(lpfc_transport_template);
15730 		goto unregister;
15731 	}
15732 	lpfc_wqe_cmd_template();
15733 	lpfc_nvmet_cmd_template();
15734 
15735 	/* Initialize in case vector mapping is needed */
15736 	lpfc_present_cpu = num_present_cpus();
15737 
15738 	lpfc_pldv_detect = false;
15739 
15740 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15741 					"lpfc/sli4:online",
15742 					lpfc_cpu_online, lpfc_cpu_offline);
15743 	if (error < 0)
15744 		goto cpuhp_failure;
15745 	lpfc_cpuhp_state = error;
15746 
15747 	error = pci_register_driver(&lpfc_driver);
15748 	if (error)
15749 		goto unwind;
15750 
15751 	return error;
15752 
15753 unwind:
15754 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15755 cpuhp_failure:
15756 	fc_release_transport(lpfc_transport_template);
15757 	fc_release_transport(lpfc_vport_transport_template);
15758 unregister:
15759 	misc_deregister(&lpfc_mgmt_dev);
15760 
15761 	return error;
15762 }
15763 
15764 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15765 {
15766 	unsigned int start_idx;
15767 	unsigned int dbg_cnt;
15768 	unsigned int temp_idx;
15769 	int i;
15770 	int j = 0;
15771 	unsigned long rem_nsec;
15772 
15773 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15774 		return;
15775 
15776 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15777 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15778 	if (!dbg_cnt)
15779 		goto out;
15780 	temp_idx = start_idx;
15781 	if (dbg_cnt >= DBG_LOG_SZ) {
15782 		dbg_cnt = DBG_LOG_SZ;
15783 		temp_idx -= 1;
15784 	} else {
15785 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15786 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15787 		} else {
15788 			if (start_idx < dbg_cnt)
15789 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15790 			else
15791 				start_idx -= dbg_cnt;
15792 		}
15793 	}
15794 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15795 		 start_idx, temp_idx, dbg_cnt);
15796 
15797 	for (i = 0; i < dbg_cnt; i++) {
15798 		if ((start_idx + i) < DBG_LOG_SZ)
15799 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15800 		else
15801 			temp_idx = j++;
15802 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15803 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15804 			 temp_idx,
15805 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15806 			 rem_nsec / 1000,
15807 			 phba->dbg_log[temp_idx].log);
15808 	}
15809 out:
15810 	atomic_set(&phba->dbg_log_cnt, 0);
15811 	atomic_set(&phba->dbg_log_dmping, 0);
15812 }
15813 
15814 __printf(2, 3)
15815 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15816 {
15817 	unsigned int idx;
15818 	va_list args;
15819 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15820 	struct va_format vaf;
15821 
15822 
15823 	va_start(args, fmt);
15824 	if (unlikely(dbg_dmping)) {
15825 		vaf.fmt = fmt;
15826 		vaf.va = &args;
15827 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15828 		va_end(args);
15829 		return;
15830 	}
15831 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15832 		DBG_LOG_SZ;
15833 
15834 	atomic_inc(&phba->dbg_log_cnt);
15835 
15836 	vscnprintf(phba->dbg_log[idx].log,
15837 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15838 	va_end(args);
15839 
15840 	phba->dbg_log[idx].t_ns = local_clock();
15841 }
15842 
15843 /**
15844  * lpfc_exit - lpfc module removal routine
15845  *
15846  * This routine is invoked when the lpfc module is removed from the kernel.
15847  * The special kernel macro module_exit() is used to indicate the role of
15848  * this routine to the kernel as lpfc module exit point.
15849  */
15850 static void __exit
15851 lpfc_exit(void)
15852 {
15853 	misc_deregister(&lpfc_mgmt_dev);
15854 	pci_unregister_driver(&lpfc_driver);
15855 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15856 	fc_release_transport(lpfc_transport_template);
15857 	fc_release_transport(lpfc_vport_transport_template);
15858 	idr_destroy(&lpfc_hba_index);
15859 }
15860 
15861 module_init(lpfc_init);
15862 module_exit(lpfc_exit);
15863 MODULE_LICENSE("GPL");
15864 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15865 MODULE_AUTHOR("Broadcom");
15866 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15867