1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2023
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/machine.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include <linux/atomic.h>
33 #include <asm/isc.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <asm/facility.h>
37 #include <linux/crypto.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/debugfs.h>
40 #include <linux/ctype.h>
41 #include <linux/module.h>
42 #include <asm/uv.h>
43 #include <asm/chsc.h>
44 #include <linux/mempool.h>
45 
46 #include "ap_bus.h"
47 #include "ap_debug.h"
48 
49 MODULE_AUTHOR("IBM Corporation");
50 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
51 MODULE_LICENSE("GPL");
52 
53 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
54 static DEFINE_SPINLOCK(ap_domain_lock);
55 module_param_named(domain, ap_domain_index, int, 0440);
56 MODULE_PARM_DESC(domain, "domain index for ap devices");
57 EXPORT_SYMBOL(ap_domain_index);
58 
59 static int ap_thread_flag;
60 module_param_named(poll_thread, ap_thread_flag, int, 0440);
61 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
62 
63 static char *apm_str;
64 module_param_named(apmask, apm_str, charp, 0440);
65 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
66 
67 static char *aqm_str;
68 module_param_named(aqmask, aqm_str, charp, 0440);
69 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
70 
71 static int ap_useirq = 1;
72 module_param_named(useirq, ap_useirq, int, 0440);
73 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
74 
75 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
76 EXPORT_SYMBOL(ap_max_msg_size);
77 
78 static struct device *ap_root_device;
79 
80 /* Hashtable of all queue devices on the AP bus */
81 DEFINE_HASHTABLE(ap_queues, 8);
82 /* lock used for the ap_queues hashtable */
83 DEFINE_SPINLOCK(ap_queues_lock);
84 
85 /* Default permissions (ioctl, card and domain masking) */
86 struct ap_perms ap_perms;
87 EXPORT_SYMBOL(ap_perms);
88 DEFINE_MUTEX(ap_perms_mutex);
89 EXPORT_SYMBOL(ap_perms_mutex);
90 
91 /* # of bindings complete since init */
92 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
93 
94 /* completion for APQN bindings complete */
95 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
96 
97 static struct ap_config_info qci[2];
98 static struct ap_config_info *const ap_qci_info = &qci[0];
99 static struct ap_config_info *const ap_qci_info_old = &qci[1];
100 
101 /*
102  * AP bus related debug feature things.
103  */
104 debug_info_t *ap_dbf_info;
105 
106 /*
107  * There is a need for a do-not-allocate-memory path through the AP bus
108  * layer. The pkey layer may be triggered via the in-kernel interface from
109  * a protected key crypto algorithm (namely PAES) to convert a secure key
110  * into a protected key. This happens in a workqueue context, so sleeping
111  * is allowed but memory allocations causing IO operations are not permitted.
112  * To accomplish this, an AP message memory pool with pre-allocated space
113  * is established. When ap_init_apmsg() with use_mempool set to true is
114  * called, instead of kmalloc() the ap message buffer is allocated from
115  * the ap_msg_pool. This pool only holds a limited amount of buffers:
116  * ap_msg_pool_min_items with the item size AP_DEFAULT_MAX_MSG_SIZE and
117  * exactly one of these items (if available) is returned if ap_init_apmsg()
118  * with the use_mempool arg set to true is called. When this pool is exhausted
119  * and use_mempool is set true, ap_init_apmsg() returns -ENOMEM without
120  * any attempt to allocate memory and the caller has to deal with that.
121  */
122 static mempool_t *ap_msg_pool;
123 static unsigned int ap_msg_pool_min_items = 8;
124 module_param_named(msgpool_min_items, ap_msg_pool_min_items, uint, 0440);
125 MODULE_PARM_DESC(msgpool_min_items, "AP message pool minimal items");
126 
127 /*
128  * AP bus rescan related things.
129  */
130 static bool ap_scan_bus(void);
131 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
132 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
133 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
134 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
135 static int ap_scan_bus_time = AP_CONFIG_TIME;
136 static struct timer_list ap_scan_bus_timer;
137 static void ap_scan_bus_wq_callback(struct work_struct *);
138 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
139 
140 /*
141  * Tasklet & timer for AP request polling and interrupts
142  */
143 static void ap_tasklet_fn(unsigned long);
144 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
145 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
146 static struct task_struct *ap_poll_kthread;
147 static DEFINE_MUTEX(ap_poll_thread_mutex);
148 static DEFINE_SPINLOCK(ap_poll_timer_lock);
149 static struct hrtimer ap_poll_timer;
150 /*
151  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
152  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
153  */
154 static unsigned long poll_high_timeout = 250000UL;
155 
156 /*
157  * Some state machine states only require a low frequency polling.
158  * We use 25 Hz frequency for these.
159  */
160 static unsigned long poll_low_timeout = 40000000UL;
161 
162 /* Maximum domain id, if not given via qci */
163 static int ap_max_domain_id = 15;
164 /* Maximum adapter id, if not given via qci */
165 static int ap_max_adapter_id = 63;
166 
167 static const struct bus_type ap_bus_type;
168 
169 /* Adapter interrupt definitions */
170 static void ap_interrupt_handler(struct airq_struct *airq,
171 				 struct tpi_info *tpi_info);
172 
173 static bool ap_irq_flag;
174 
175 static struct airq_struct ap_airq = {
176 	.handler = ap_interrupt_handler,
177 	.isc = AP_ISC,
178 };
179 
180 /**
181  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
182  *
183  * Returns the address of the local-summary-indicator of the adapter
184  * interrupt handler for AP, or NULL if adapter interrupts are not
185  * available.
186  */
187 void *ap_airq_ptr(void)
188 {
189 	if (ap_irq_flag)
190 		return ap_airq.lsi_ptr;
191 	return NULL;
192 }
193 
194 /**
195  * ap_interrupts_available(): Test if AP interrupts are available.
196  *
197  * Returns 1 if AP interrupts are available.
198  */
199 static int ap_interrupts_available(void)
200 {
201 	return test_facility(65);
202 }
203 
204 /**
205  * ap_qci_available(): Test if AP configuration
206  * information can be queried via QCI subfunction.
207  *
208  * Returns 1 if subfunction PQAP(QCI) is available.
209  */
210 static int ap_qci_available(void)
211 {
212 	return test_facility(12);
213 }
214 
215 /**
216  * ap_apft_available(): Test if AP facilities test (APFT)
217  * facility is available.
218  *
219  * Returns 1 if APFT is available.
220  */
221 static int ap_apft_available(void)
222 {
223 	return test_facility(15);
224 }
225 
226 /*
227  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
228  *
229  * Returns 1 if the QACT subfunction is available.
230  */
231 static inline int ap_qact_available(void)
232 {
233 	return ap_qci_info->qact;
234 }
235 
236 /*
237  * ap_sb_available(): Test if the AP secure binding facility is available.
238  *
239  * Returns 1 if secure binding facility is available.
240  */
241 int ap_sb_available(void)
242 {
243 	return ap_qci_info->apsb;
244 }
245 
246 /*
247  * ap_is_se_guest(): Check for SE guest with AP pass-through support.
248  */
249 bool ap_is_se_guest(void)
250 {
251 	return is_prot_virt_guest() && ap_sb_available();
252 }
253 EXPORT_SYMBOL(ap_is_se_guest);
254 
255 /**
256  * ap_init_qci_info(): Allocate and query qci config info.
257  * Does also update the static variables ap_max_domain_id
258  * and ap_max_adapter_id if this info is available.
259  */
260 static void __init ap_init_qci_info(void)
261 {
262 	if (!ap_qci_available() ||
263 	    ap_qci(ap_qci_info)) {
264 		AP_DBF_INFO("%s QCI not supported\n", __func__);
265 		return;
266 	}
267 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
268 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
269 
270 	if (ap_qci_info->apxa) {
271 		if (ap_qci_info->na) {
272 			ap_max_adapter_id = ap_qci_info->na;
273 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
274 				    __func__, ap_max_adapter_id);
275 		}
276 		if (ap_qci_info->nd) {
277 			ap_max_domain_id = ap_qci_info->nd;
278 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
279 				    __func__, ap_max_domain_id);
280 		}
281 	}
282 }
283 
284 /*
285  * ap_test_config(): helper function to extract the nrth bit
286  *		     within the unsigned int array field.
287  */
288 static inline int ap_test_config(unsigned int *field, unsigned int nr)
289 {
290 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
291 }
292 
293 /*
294  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
295  *
296  * Returns 0 if the card is not configured
297  *	   1 if the card is configured or
298  *	     if the configuration information is not available
299  */
300 static inline int ap_test_config_card_id(unsigned int id)
301 {
302 	if (id > ap_max_adapter_id)
303 		return 0;
304 	if (ap_qci_info->flags)
305 		return ap_test_config(ap_qci_info->apm, id);
306 	return 1;
307 }
308 
309 /*
310  * ap_test_config_usage_domain(): Test, whether an AP usage domain
311  * is configured.
312  *
313  * Returns 0 if the usage domain is not configured
314  *	   1 if the usage domain is configured or
315  *	     if the configuration information is not available
316  */
317 int ap_test_config_usage_domain(unsigned int domain)
318 {
319 	if (domain > ap_max_domain_id)
320 		return 0;
321 	if (ap_qci_info->flags)
322 		return ap_test_config(ap_qci_info->aqm, domain);
323 	return 1;
324 }
325 EXPORT_SYMBOL(ap_test_config_usage_domain);
326 
327 /*
328  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
329  * is configured.
330  * @domain AP control domain ID
331  *
332  * Returns 1 if the control domain is configured
333  *	   0 in all other cases
334  */
335 int ap_test_config_ctrl_domain(unsigned int domain)
336 {
337 	if (!ap_qci_info || domain > ap_max_domain_id)
338 		return 0;
339 	return ap_test_config(ap_qci_info->adm, domain);
340 }
341 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
342 
343 /*
344  * ap_queue_info(): Check and get AP queue info.
345  * Returns: 1 if APQN exists and info is filled,
346  *	    0 if APQN seems to exist but there is no info
347  *	      available (eg. caused by an asynch pending error)
348  *	   -1 invalid APQN, TAPQ error or AP queue status which
349  *	      indicates there is no APQN.
350  */
351 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
352 			 bool *decfg, bool *cstop)
353 {
354 	struct ap_queue_status status;
355 
356 	hwinfo->value = 0;
357 
358 	/* make sure we don't run into a specifiation exception */
359 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
360 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
361 		return -1;
362 
363 	/* call TAPQ on this APQN */
364 	status = ap_test_queue(qid, ap_apft_available(), hwinfo);
365 
366 	switch (status.response_code) {
367 	case AP_RESPONSE_NORMAL:
368 	case AP_RESPONSE_RESET_IN_PROGRESS:
369 	case AP_RESPONSE_DECONFIGURED:
370 	case AP_RESPONSE_CHECKSTOPPED:
371 	case AP_RESPONSE_BUSY:
372 		/* For all these RCs the tapq info should be available */
373 		break;
374 	default:
375 		/* On a pending async error the info should be available */
376 		if (!status.async)
377 			return -1;
378 		break;
379 	}
380 
381 	/* There should be at least one of the mode bits set */
382 	if (WARN_ON_ONCE(!hwinfo->value))
383 		return 0;
384 
385 	*decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
386 	*cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
387 
388 	return 1;
389 }
390 
391 void ap_wait(enum ap_sm_wait wait)
392 {
393 	ktime_t hr_time;
394 
395 	switch (wait) {
396 	case AP_SM_WAIT_AGAIN:
397 	case AP_SM_WAIT_INTERRUPT:
398 		if (ap_irq_flag)
399 			break;
400 		if (ap_poll_kthread) {
401 			wake_up(&ap_poll_wait);
402 			break;
403 		}
404 		fallthrough;
405 	case AP_SM_WAIT_LOW_TIMEOUT:
406 	case AP_SM_WAIT_HIGH_TIMEOUT:
407 		spin_lock_bh(&ap_poll_timer_lock);
408 		if (!hrtimer_is_queued(&ap_poll_timer)) {
409 			hr_time =
410 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
411 				poll_low_timeout : poll_high_timeout;
412 			hrtimer_forward_now(&ap_poll_timer, hr_time);
413 			hrtimer_restart(&ap_poll_timer);
414 		}
415 		spin_unlock_bh(&ap_poll_timer_lock);
416 		break;
417 	case AP_SM_WAIT_NONE:
418 	default:
419 		break;
420 	}
421 }
422 
423 /**
424  * ap_request_timeout(): Handling of request timeouts
425  * @t: timer making this callback
426  *
427  * Handles request timeouts.
428  */
429 void ap_request_timeout(struct timer_list *t)
430 {
431 	struct ap_queue *aq = from_timer(aq, t, timeout);
432 
433 	spin_lock_bh(&aq->lock);
434 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
435 	spin_unlock_bh(&aq->lock);
436 }
437 
438 /**
439  * ap_poll_timeout(): AP receive polling for finished AP requests.
440  * @unused: Unused pointer.
441  *
442  * Schedules the AP tasklet using a high resolution timer.
443  */
444 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
445 {
446 	tasklet_schedule(&ap_tasklet);
447 	return HRTIMER_NORESTART;
448 }
449 
450 /**
451  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
452  * @airq: pointer to adapter interrupt descriptor
453  * @tpi_info: ignored
454  */
455 static void ap_interrupt_handler(struct airq_struct *airq,
456 				 struct tpi_info *tpi_info)
457 {
458 	inc_irq_stat(IRQIO_APB);
459 	tasklet_schedule(&ap_tasklet);
460 }
461 
462 /**
463  * ap_tasklet_fn(): Tasklet to poll all AP devices.
464  * @dummy: Unused variable
465  *
466  * Poll all AP devices on the bus.
467  */
468 static void ap_tasklet_fn(unsigned long dummy)
469 {
470 	int bkt;
471 	struct ap_queue *aq;
472 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
473 
474 	/* Reset the indicator if interrupts are used. Thus new interrupts can
475 	 * be received. Doing it in the beginning of the tasklet is therefore
476 	 * important that no requests on any AP get lost.
477 	 */
478 	if (ap_irq_flag)
479 		WRITE_ONCE(*ap_airq.lsi_ptr, 0);
480 
481 	spin_lock_bh(&ap_queues_lock);
482 	hash_for_each(ap_queues, bkt, aq, hnode) {
483 		spin_lock_bh(&aq->lock);
484 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
485 		spin_unlock_bh(&aq->lock);
486 	}
487 	spin_unlock_bh(&ap_queues_lock);
488 
489 	ap_wait(wait);
490 }
491 
492 static int ap_pending_requests(void)
493 {
494 	int bkt;
495 	struct ap_queue *aq;
496 
497 	spin_lock_bh(&ap_queues_lock);
498 	hash_for_each(ap_queues, bkt, aq, hnode) {
499 		if (aq->queue_count == 0)
500 			continue;
501 		spin_unlock_bh(&ap_queues_lock);
502 		return 1;
503 	}
504 	spin_unlock_bh(&ap_queues_lock);
505 	return 0;
506 }
507 
508 /**
509  * ap_poll_thread(): Thread that polls for finished requests.
510  * @data: Unused pointer
511  *
512  * AP bus poll thread. The purpose of this thread is to poll for
513  * finished requests in a loop if there is a "free" cpu - that is
514  * a cpu that doesn't have anything better to do. The polling stops
515  * as soon as there is another task or if all messages have been
516  * delivered.
517  */
518 static int ap_poll_thread(void *data)
519 {
520 	DECLARE_WAITQUEUE(wait, current);
521 
522 	set_user_nice(current, MAX_NICE);
523 	set_freezable();
524 	while (!kthread_should_stop()) {
525 		add_wait_queue(&ap_poll_wait, &wait);
526 		set_current_state(TASK_INTERRUPTIBLE);
527 		if (!ap_pending_requests()) {
528 			schedule();
529 			try_to_freeze();
530 		}
531 		set_current_state(TASK_RUNNING);
532 		remove_wait_queue(&ap_poll_wait, &wait);
533 		if (need_resched()) {
534 			schedule();
535 			try_to_freeze();
536 			continue;
537 		}
538 		ap_tasklet_fn(0);
539 	}
540 
541 	return 0;
542 }
543 
544 static int ap_poll_thread_start(void)
545 {
546 	int rc;
547 
548 	if (ap_irq_flag || ap_poll_kthread)
549 		return 0;
550 	mutex_lock(&ap_poll_thread_mutex);
551 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
552 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
553 	if (rc)
554 		ap_poll_kthread = NULL;
555 	mutex_unlock(&ap_poll_thread_mutex);
556 	return rc;
557 }
558 
559 static void ap_poll_thread_stop(void)
560 {
561 	if (!ap_poll_kthread)
562 		return;
563 	mutex_lock(&ap_poll_thread_mutex);
564 	kthread_stop(ap_poll_kthread);
565 	ap_poll_kthread = NULL;
566 	mutex_unlock(&ap_poll_thread_mutex);
567 }
568 
569 #define is_card_dev(x) ((x)->parent == ap_root_device)
570 #define is_queue_dev(x) ((x)->parent != ap_root_device)
571 
572 /*
573  * ap_init_apmsg() - Initialize ap_message.
574  */
575 int ap_init_apmsg(struct ap_message *ap_msg, u32 flags)
576 {
577 	unsigned int maxmsgsize;
578 
579 	memset(ap_msg, 0, sizeof(*ap_msg));
580 	ap_msg->flags = flags;
581 
582 	if (flags & AP_MSG_FLAG_MEMPOOL) {
583 		ap_msg->msg = mempool_alloc_preallocated(ap_msg_pool);
584 		if (!ap_msg->msg)
585 			return -ENOMEM;
586 		ap_msg->bufsize = AP_DEFAULT_MAX_MSG_SIZE;
587 		return 0;
588 	}
589 
590 	maxmsgsize = atomic_read(&ap_max_msg_size);
591 	ap_msg->msg = kmalloc(maxmsgsize, GFP_KERNEL);
592 	if (!ap_msg->msg)
593 		return -ENOMEM;
594 	ap_msg->bufsize = maxmsgsize;
595 
596 	return 0;
597 }
598 EXPORT_SYMBOL(ap_init_apmsg);
599 
600 /*
601  * ap_release_apmsg() - Release ap_message.
602  */
603 void ap_release_apmsg(struct ap_message *ap_msg)
604 {
605 	if (ap_msg->flags & AP_MSG_FLAG_MEMPOOL) {
606 		memzero_explicit(ap_msg->msg, ap_msg->bufsize);
607 		mempool_free(ap_msg->msg, ap_msg_pool);
608 	} else {
609 		kfree_sensitive(ap_msg->msg);
610 	}
611 }
612 EXPORT_SYMBOL(ap_release_apmsg);
613 
614 /**
615  * ap_bus_match()
616  * @dev: Pointer to device
617  * @drv: Pointer to device_driver
618  *
619  * AP bus driver registration/unregistration.
620  */
621 static int ap_bus_match(struct device *dev, const struct device_driver *drv)
622 {
623 	const struct ap_driver *ap_drv = to_ap_drv(drv);
624 	struct ap_device_id *id;
625 
626 	/*
627 	 * Compare device type of the device with the list of
628 	 * supported types of the device_driver.
629 	 */
630 	for (id = ap_drv->ids; id->match_flags; id++) {
631 		if (is_card_dev(dev) &&
632 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
633 		    id->dev_type == to_ap_dev(dev)->device_type)
634 			return 1;
635 		if (is_queue_dev(dev) &&
636 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
637 		    id->dev_type == to_ap_dev(dev)->device_type)
638 			return 1;
639 	}
640 	return 0;
641 }
642 
643 /**
644  * ap_uevent(): Uevent function for AP devices.
645  * @dev: Pointer to device
646  * @env: Pointer to kobj_uevent_env
647  *
648  * It sets up a single environment variable DEV_TYPE which contains the
649  * hardware device type.
650  */
651 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
652 {
653 	int rc = 0;
654 	const struct ap_device *ap_dev = to_ap_dev(dev);
655 
656 	/* Uevents from ap bus core don't need extensions to the env */
657 	if (dev == ap_root_device)
658 		return 0;
659 
660 	if (is_card_dev(dev)) {
661 		struct ap_card *ac = to_ap_card(&ap_dev->device);
662 
663 		/* Set up DEV_TYPE environment variable. */
664 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
665 		if (rc)
666 			return rc;
667 		/* Add MODALIAS= */
668 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
669 		if (rc)
670 			return rc;
671 
672 		/* Add MODE=<accel|cca|ep11> */
673 		if (ac->hwinfo.accel)
674 			rc = add_uevent_var(env, "MODE=accel");
675 		else if (ac->hwinfo.cca)
676 			rc = add_uevent_var(env, "MODE=cca");
677 		else if (ac->hwinfo.ep11)
678 			rc = add_uevent_var(env, "MODE=ep11");
679 		if (rc)
680 			return rc;
681 	} else {
682 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
683 
684 		/* Add MODE=<accel|cca|ep11> */
685 		if (aq->card->hwinfo.accel)
686 			rc = add_uevent_var(env, "MODE=accel");
687 		else if (aq->card->hwinfo.cca)
688 			rc = add_uevent_var(env, "MODE=cca");
689 		else if (aq->card->hwinfo.ep11)
690 			rc = add_uevent_var(env, "MODE=ep11");
691 		if (rc)
692 			return rc;
693 	}
694 
695 	return 0;
696 }
697 
698 static void ap_send_init_scan_done_uevent(void)
699 {
700 	char *envp[] = { "INITSCAN=done", NULL };
701 
702 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
703 }
704 
705 static void ap_send_bindings_complete_uevent(void)
706 {
707 	char buf[32];
708 	char *envp[] = { "BINDINGS=complete", buf, NULL };
709 
710 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
711 		 atomic64_inc_return(&ap_bindings_complete_count));
712 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
713 }
714 
715 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
716 {
717 	char buf[16];
718 	char *envp[] = { buf, NULL };
719 
720 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
721 
722 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
723 }
724 EXPORT_SYMBOL(ap_send_config_uevent);
725 
726 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
727 {
728 	char buf[16];
729 	char *envp[] = { buf, NULL };
730 
731 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
732 
733 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
734 }
735 EXPORT_SYMBOL(ap_send_online_uevent);
736 
737 static void ap_send_mask_changed_uevent(unsigned long *newapm,
738 					unsigned long *newaqm)
739 {
740 	char buf[100];
741 	char *envp[] = { buf, NULL };
742 
743 	if (newapm)
744 		snprintf(buf, sizeof(buf),
745 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
746 			 newapm[0], newapm[1], newapm[2], newapm[3]);
747 	else
748 		snprintf(buf, sizeof(buf),
749 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
750 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
751 
752 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
753 }
754 
755 /*
756  * calc # of bound APQNs
757  */
758 
759 struct __ap_calc_ctrs {
760 	unsigned int apqns;
761 	unsigned int bound;
762 };
763 
764 static int __ap_calc_helper(struct device *dev, void *arg)
765 {
766 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
767 
768 	if (is_queue_dev(dev)) {
769 		pctrs->apqns++;
770 		if (dev->driver)
771 			pctrs->bound++;
772 	}
773 
774 	return 0;
775 }
776 
777 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
778 {
779 	struct __ap_calc_ctrs ctrs;
780 
781 	memset(&ctrs, 0, sizeof(ctrs));
782 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
783 
784 	*apqns = ctrs.apqns;
785 	*bound = ctrs.bound;
786 }
787 
788 /*
789  * After ap bus scan do check if all existing APQNs are
790  * bound to device drivers.
791  */
792 static void ap_check_bindings_complete(void)
793 {
794 	unsigned int apqns, bound;
795 
796 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
797 		ap_calc_bound_apqns(&apqns, &bound);
798 		if (bound == apqns) {
799 			if (!completion_done(&ap_apqn_bindings_complete)) {
800 				complete_all(&ap_apqn_bindings_complete);
801 				ap_send_bindings_complete_uevent();
802 				pr_debug("all apqn bindings complete\n");
803 			}
804 		}
805 	}
806 }
807 
808 /*
809  * Interface to wait for the AP bus to have done one initial ap bus
810  * scan and all detected APQNs have been bound to device drivers.
811  * If these both conditions are not fulfilled, this function blocks
812  * on a condition with wait_for_completion_interruptible_timeout().
813  * If these both conditions are fulfilled (before the timeout hits)
814  * the return value is 0. If the timeout (in jiffies) hits instead
815  * -ETIME is returned. On failures negative return values are
816  * returned to the caller.
817  */
818 int ap_wait_apqn_bindings_complete(unsigned long timeout)
819 {
820 	int rc = 0;
821 	long l;
822 
823 	if (completion_done(&ap_apqn_bindings_complete))
824 		return 0;
825 
826 	if (timeout)
827 		l = wait_for_completion_interruptible_timeout(
828 			&ap_apqn_bindings_complete, timeout);
829 	else
830 		l = wait_for_completion_interruptible(
831 			&ap_apqn_bindings_complete);
832 	if (l < 0)
833 		rc = l == -ERESTARTSYS ? -EINTR : l;
834 	else if (l == 0 && timeout)
835 		rc = -ETIME;
836 
837 	pr_debug("rc=%d\n", rc);
838 	return rc;
839 }
840 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
841 
842 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
843 {
844 	if (is_queue_dev(dev) &&
845 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
846 		device_unregister(dev);
847 	return 0;
848 }
849 
850 static int __ap_revise_reserved(struct device *dev, void *dummy)
851 {
852 	int rc, card, queue, devres, drvres;
853 
854 	if (is_queue_dev(dev)) {
855 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
856 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
857 		mutex_lock(&ap_perms_mutex);
858 		devres = test_bit_inv(card, ap_perms.apm) &&
859 			test_bit_inv(queue, ap_perms.aqm);
860 		mutex_unlock(&ap_perms_mutex);
861 		drvres = to_ap_drv(dev->driver)->flags
862 			& AP_DRIVER_FLAG_DEFAULT;
863 		if (!!devres != !!drvres) {
864 			pr_debug("reprobing queue=%02x.%04x\n", card, queue);
865 			rc = device_reprobe(dev);
866 			if (rc)
867 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
868 					    __func__, card, queue);
869 		}
870 	}
871 
872 	return 0;
873 }
874 
875 static void ap_bus_revise_bindings(void)
876 {
877 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
878 }
879 
880 /**
881  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
882  *			default host driver or not.
883  * @card: the APID of the adapter card to check
884  * @queue: the APQI of the queue to check
885  *
886  * Note: the ap_perms_mutex must be locked by the caller of this function.
887  *
888  * Return: an int specifying whether the AP adapter is reserved for the host (1)
889  *	   or not (0).
890  */
891 int ap_owned_by_def_drv(int card, int queue)
892 {
893 	int rc = 0;
894 
895 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
896 		return -EINVAL;
897 
898 	if (test_bit_inv(card, ap_perms.apm) &&
899 	    test_bit_inv(queue, ap_perms.aqm))
900 		rc = 1;
901 
902 	return rc;
903 }
904 EXPORT_SYMBOL(ap_owned_by_def_drv);
905 
906 /**
907  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
908  *				       a set is reserved for the host drivers
909  *				       or not.
910  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
911  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
912  *
913  * Note: the ap_perms_mutex must be locked by the caller of this function.
914  *
915  * Return: an int specifying whether each APQN is reserved for the host (1) or
916  *	   not (0)
917  */
918 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
919 				       unsigned long *aqm)
920 {
921 	int card, queue, rc = 0;
922 
923 	for (card = 0; !rc && card < AP_DEVICES; card++)
924 		if (test_bit_inv(card, apm) &&
925 		    test_bit_inv(card, ap_perms.apm))
926 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
927 				if (test_bit_inv(queue, aqm) &&
928 				    test_bit_inv(queue, ap_perms.aqm))
929 					rc = 1;
930 
931 	return rc;
932 }
933 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
934 
935 static int ap_device_probe(struct device *dev)
936 {
937 	struct ap_device *ap_dev = to_ap_dev(dev);
938 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
939 	int card, queue, devres, drvres, rc = -ENODEV;
940 
941 	if (!get_device(dev))
942 		return rc;
943 
944 	if (is_queue_dev(dev)) {
945 		/*
946 		 * If the apqn is marked as reserved/used by ap bus and
947 		 * default drivers, only probe with drivers with the default
948 		 * flag set. If it is not marked, only probe with drivers
949 		 * with the default flag not set.
950 		 */
951 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
952 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
953 		mutex_lock(&ap_perms_mutex);
954 		devres = test_bit_inv(card, ap_perms.apm) &&
955 			test_bit_inv(queue, ap_perms.aqm);
956 		mutex_unlock(&ap_perms_mutex);
957 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
958 		if (!!devres != !!drvres)
959 			goto out;
960 	}
961 
962 	/*
963 	 * Rearm the bindings complete completion to trigger
964 	 * bindings complete when all devices are bound again
965 	 */
966 	reinit_completion(&ap_apqn_bindings_complete);
967 
968 	/* Add queue/card to list of active queues/cards */
969 	spin_lock_bh(&ap_queues_lock);
970 	if (is_queue_dev(dev))
971 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
972 			 to_ap_queue(dev)->qid);
973 	spin_unlock_bh(&ap_queues_lock);
974 
975 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
976 
977 	if (rc) {
978 		spin_lock_bh(&ap_queues_lock);
979 		if (is_queue_dev(dev))
980 			hash_del(&to_ap_queue(dev)->hnode);
981 		spin_unlock_bh(&ap_queues_lock);
982 	}
983 
984 out:
985 	if (rc)
986 		put_device(dev);
987 	return rc;
988 }
989 
990 static void ap_device_remove(struct device *dev)
991 {
992 	struct ap_device *ap_dev = to_ap_dev(dev);
993 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
994 
995 	/* prepare ap queue device removal */
996 	if (is_queue_dev(dev))
997 		ap_queue_prepare_remove(to_ap_queue(dev));
998 
999 	/* driver's chance to clean up gracefully */
1000 	if (ap_drv->remove)
1001 		ap_drv->remove(ap_dev);
1002 
1003 	/* now do the ap queue device remove */
1004 	if (is_queue_dev(dev))
1005 		ap_queue_remove(to_ap_queue(dev));
1006 
1007 	/* Remove queue/card from list of active queues/cards */
1008 	spin_lock_bh(&ap_queues_lock);
1009 	if (is_queue_dev(dev))
1010 		hash_del(&to_ap_queue(dev)->hnode);
1011 	spin_unlock_bh(&ap_queues_lock);
1012 
1013 	put_device(dev);
1014 }
1015 
1016 struct ap_queue *ap_get_qdev(ap_qid_t qid)
1017 {
1018 	int bkt;
1019 	struct ap_queue *aq;
1020 
1021 	spin_lock_bh(&ap_queues_lock);
1022 	hash_for_each(ap_queues, bkt, aq, hnode) {
1023 		if (aq->qid == qid) {
1024 			get_device(&aq->ap_dev.device);
1025 			spin_unlock_bh(&ap_queues_lock);
1026 			return aq;
1027 		}
1028 	}
1029 	spin_unlock_bh(&ap_queues_lock);
1030 
1031 	return NULL;
1032 }
1033 EXPORT_SYMBOL(ap_get_qdev);
1034 
1035 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1036 		       char *name)
1037 {
1038 	struct device_driver *drv = &ap_drv->driver;
1039 	int rc;
1040 
1041 	drv->bus = &ap_bus_type;
1042 	drv->owner = owner;
1043 	drv->name = name;
1044 	rc = driver_register(drv);
1045 
1046 	ap_check_bindings_complete();
1047 
1048 	return rc;
1049 }
1050 EXPORT_SYMBOL(ap_driver_register);
1051 
1052 void ap_driver_unregister(struct ap_driver *ap_drv)
1053 {
1054 	driver_unregister(&ap_drv->driver);
1055 }
1056 EXPORT_SYMBOL(ap_driver_unregister);
1057 
1058 /*
1059  * Enforce a synchronous AP bus rescan.
1060  * Returns true if the bus scan finds a change in the AP configuration
1061  * and AP devices have been added or deleted when this function returns.
1062  */
1063 bool ap_bus_force_rescan(void)
1064 {
1065 	unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1066 	bool rc = false;
1067 
1068 	pr_debug("> scan counter=%lu\n", scan_counter);
1069 
1070 	/* Only trigger AP bus scans after the initial scan is done */
1071 	if (scan_counter <= 0)
1072 		goto out;
1073 
1074 	/*
1075 	 * There is one unlikely but nevertheless valid scenario where the
1076 	 * thread holding the mutex may try to send some crypto load but
1077 	 * all cards are offline so a rescan is triggered which causes
1078 	 * a recursive call of ap_bus_force_rescan(). A simple return if
1079 	 * the mutex is already locked by this thread solves this.
1080 	 */
1081 	if (mutex_is_locked(&ap_scan_bus_mutex)) {
1082 		if (ap_scan_bus_task == current)
1083 			goto out;
1084 	}
1085 
1086 	/* Try to acquire the AP scan bus mutex */
1087 	if (mutex_trylock(&ap_scan_bus_mutex)) {
1088 		/* mutex acquired, run the AP bus scan */
1089 		ap_scan_bus_task = current;
1090 		ap_scan_bus_result = ap_scan_bus();
1091 		rc = ap_scan_bus_result;
1092 		ap_scan_bus_task = NULL;
1093 		mutex_unlock(&ap_scan_bus_mutex);
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * Mutex acquire failed. So there is currently another task
1099 	 * already running the AP bus scan. Then let's simple wait
1100 	 * for the lock which means the other task has finished and
1101 	 * stored the result in ap_scan_bus_result.
1102 	 */
1103 	if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1104 		/* some error occurred, ignore and go out */
1105 		goto out;
1106 	}
1107 	rc = ap_scan_bus_result;
1108 	mutex_unlock(&ap_scan_bus_mutex);
1109 
1110 out:
1111 	pr_debug("rc=%d\n", rc);
1112 	return rc;
1113 }
1114 EXPORT_SYMBOL(ap_bus_force_rescan);
1115 
1116 /*
1117  * A config change has happened, force an ap bus rescan.
1118  */
1119 static int ap_bus_cfg_chg(struct notifier_block *nb,
1120 			  unsigned long action, void *data)
1121 {
1122 	if (action != CHSC_NOTIFY_AP_CFG)
1123 		return NOTIFY_DONE;
1124 
1125 	pr_debug("config change, forcing bus rescan\n");
1126 
1127 	ap_bus_force_rescan();
1128 
1129 	return NOTIFY_OK;
1130 }
1131 
1132 static struct notifier_block ap_bus_nb = {
1133 	.notifier_call = ap_bus_cfg_chg,
1134 };
1135 
1136 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1137 {
1138 	int i, n, b;
1139 
1140 	/* bits needs to be a multiple of 8 */
1141 	if (bits & 0x07)
1142 		return -EINVAL;
1143 
1144 	if (str[0] == '0' && str[1] == 'x')
1145 		str++;
1146 	if (*str == 'x')
1147 		str++;
1148 
1149 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1150 		b = hex_to_bin(*str);
1151 		for (n = 0; n < 4; n++)
1152 			if (b & (0x08 >> n))
1153 				set_bit_inv(i + n, bitmap);
1154 		i += 4;
1155 	}
1156 
1157 	if (*str == '\n')
1158 		str++;
1159 	if (*str)
1160 		return -EINVAL;
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(ap_hex2bitmap);
1164 
1165 /*
1166  * modify_bitmap() - parse bitmask argument and modify an existing
1167  * bit mask accordingly. A concatenation (done with ',') of these
1168  * terms is recognized:
1169  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1170  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1171  * 0...bits-1; the leading + or - is required. Here are some examples:
1172  *   +0-15,+32,-128,-0xFF
1173  *   -0-255,+1-16,+0x128
1174  *   +1,+2,+3,+4,-5,-7-10
1175  * Returns the new bitmap after all changes have been applied. Every
1176  * positive value in the string will set a bit and every negative value
1177  * in the string will clear a bit. As a bit may be touched more than once,
1178  * the last 'operation' wins:
1179  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1180  * cleared again. All other bits are unmodified.
1181  */
1182 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1183 {
1184 	unsigned long a, i, z;
1185 	char *np, sign;
1186 
1187 	/* bits needs to be a multiple of 8 */
1188 	if (bits & 0x07)
1189 		return -EINVAL;
1190 
1191 	while (*str) {
1192 		sign = *str++;
1193 		if (sign != '+' && sign != '-')
1194 			return -EINVAL;
1195 		a = z = simple_strtoul(str, &np, 0);
1196 		if (str == np || a >= bits)
1197 			return -EINVAL;
1198 		str = np;
1199 		if (*str == '-') {
1200 			z = simple_strtoul(++str, &np, 0);
1201 			if (str == np || a > z || z >= bits)
1202 				return -EINVAL;
1203 			str = np;
1204 		}
1205 		for (i = a; i <= z; i++)
1206 			if (sign == '+')
1207 				set_bit_inv(i, bitmap);
1208 			else
1209 				clear_bit_inv(i, bitmap);
1210 		while (*str == ',' || *str == '\n')
1211 			str++;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1218 			       unsigned long *newmap)
1219 {
1220 	unsigned long size;
1221 	int rc;
1222 
1223 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1224 	if (*str == '+' || *str == '-') {
1225 		memcpy(newmap, bitmap, size);
1226 		rc = modify_bitmap(str, newmap, bits);
1227 	} else {
1228 		memset(newmap, 0, size);
1229 		rc = ap_hex2bitmap(str, newmap, bits);
1230 	}
1231 	return rc;
1232 }
1233 
1234 int ap_parse_mask_str(const char *str,
1235 		      unsigned long *bitmap, int bits,
1236 		      struct mutex *lock)
1237 {
1238 	unsigned long *newmap, size;
1239 	int rc;
1240 
1241 	/* bits needs to be a multiple of 8 */
1242 	if (bits & 0x07)
1243 		return -EINVAL;
1244 
1245 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1246 	newmap = kmalloc(size, GFP_KERNEL);
1247 	if (!newmap)
1248 		return -ENOMEM;
1249 	if (mutex_lock_interruptible(lock)) {
1250 		kfree(newmap);
1251 		return -ERESTARTSYS;
1252 	}
1253 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1254 	if (rc == 0)
1255 		memcpy(bitmap, newmap, size);
1256 	mutex_unlock(lock);
1257 	kfree(newmap);
1258 	return rc;
1259 }
1260 EXPORT_SYMBOL(ap_parse_mask_str);
1261 
1262 /*
1263  * AP bus attributes.
1264  */
1265 
1266 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1267 {
1268 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1269 }
1270 
1271 static ssize_t ap_domain_store(const struct bus_type *bus,
1272 			       const char *buf, size_t count)
1273 {
1274 	int domain;
1275 
1276 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1277 	    domain < 0 || domain > ap_max_domain_id ||
1278 	    !test_bit_inv(domain, ap_perms.aqm))
1279 		return -EINVAL;
1280 
1281 	spin_lock_bh(&ap_domain_lock);
1282 	ap_domain_index = domain;
1283 	spin_unlock_bh(&ap_domain_lock);
1284 
1285 	AP_DBF_INFO("%s stored new default domain=%d\n",
1286 		    __func__, domain);
1287 
1288 	return count;
1289 }
1290 
1291 static BUS_ATTR_RW(ap_domain);
1292 
1293 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1294 {
1295 	if (!ap_qci_info->flags)	/* QCI not supported */
1296 		return sysfs_emit(buf, "not supported\n");
1297 
1298 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1299 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1300 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1301 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1302 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1303 }
1304 
1305 static BUS_ATTR_RO(ap_control_domain_mask);
1306 
1307 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1308 {
1309 	if (!ap_qci_info->flags)	/* QCI not supported */
1310 		return sysfs_emit(buf, "not supported\n");
1311 
1312 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1313 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1314 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1315 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1316 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1317 }
1318 
1319 static BUS_ATTR_RO(ap_usage_domain_mask);
1320 
1321 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1322 {
1323 	if (!ap_qci_info->flags)	/* QCI not supported */
1324 		return sysfs_emit(buf, "not supported\n");
1325 
1326 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1327 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1328 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1329 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1330 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1331 }
1332 
1333 static BUS_ATTR_RO(ap_adapter_mask);
1334 
1335 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1336 {
1337 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1338 }
1339 
1340 static BUS_ATTR_RO(ap_interrupts);
1341 
1342 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1343 {
1344 	return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1345 }
1346 
1347 static ssize_t config_time_store(const struct bus_type *bus,
1348 				 const char *buf, size_t count)
1349 {
1350 	int time;
1351 
1352 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1353 		return -EINVAL;
1354 	ap_scan_bus_time = time;
1355 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1356 	return count;
1357 }
1358 
1359 static BUS_ATTR_RW(config_time);
1360 
1361 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1362 {
1363 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1364 }
1365 
1366 static ssize_t poll_thread_store(const struct bus_type *bus,
1367 				 const char *buf, size_t count)
1368 {
1369 	bool value;
1370 	int rc;
1371 
1372 	rc = kstrtobool(buf, &value);
1373 	if (rc)
1374 		return rc;
1375 
1376 	if (value) {
1377 		rc = ap_poll_thread_start();
1378 		if (rc)
1379 			count = rc;
1380 	} else {
1381 		ap_poll_thread_stop();
1382 	}
1383 	return count;
1384 }
1385 
1386 static BUS_ATTR_RW(poll_thread);
1387 
1388 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1389 {
1390 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1391 }
1392 
1393 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1394 				  size_t count)
1395 {
1396 	unsigned long value;
1397 	ktime_t hr_time;
1398 	int rc;
1399 
1400 	rc = kstrtoul(buf, 0, &value);
1401 	if (rc)
1402 		return rc;
1403 
1404 	/* 120 seconds = maximum poll interval */
1405 	if (value > 120000000000UL)
1406 		return -EINVAL;
1407 	poll_high_timeout = value;
1408 	hr_time = poll_high_timeout;
1409 
1410 	spin_lock_bh(&ap_poll_timer_lock);
1411 	hrtimer_cancel(&ap_poll_timer);
1412 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1413 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1414 	spin_unlock_bh(&ap_poll_timer_lock);
1415 
1416 	return count;
1417 }
1418 
1419 static BUS_ATTR_RW(poll_timeout);
1420 
1421 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1422 {
1423 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1424 }
1425 
1426 static BUS_ATTR_RO(ap_max_domain_id);
1427 
1428 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1429 {
1430 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1431 }
1432 
1433 static BUS_ATTR_RO(ap_max_adapter_id);
1434 
1435 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1436 {
1437 	int rc;
1438 
1439 	if (mutex_lock_interruptible(&ap_perms_mutex))
1440 		return -ERESTARTSYS;
1441 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1442 			ap_perms.apm[0], ap_perms.apm[1],
1443 			ap_perms.apm[2], ap_perms.apm[3]);
1444 	mutex_unlock(&ap_perms_mutex);
1445 
1446 	return rc;
1447 }
1448 
1449 static int __verify_card_reservations(struct device_driver *drv, void *data)
1450 {
1451 	int rc = 0;
1452 	struct ap_driver *ap_drv = to_ap_drv(drv);
1453 	unsigned long *newapm = (unsigned long *)data;
1454 
1455 	/*
1456 	 * increase the driver's module refcounter to be sure it is not
1457 	 * going away when we invoke the callback function.
1458 	 */
1459 	if (!try_module_get(drv->owner))
1460 		return 0;
1461 
1462 	if (ap_drv->in_use) {
1463 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1464 		if (rc)
1465 			rc = -EBUSY;
1466 	}
1467 
1468 	/* release the driver's module */
1469 	module_put(drv->owner);
1470 
1471 	return rc;
1472 }
1473 
1474 static int apmask_commit(unsigned long *newapm)
1475 {
1476 	int rc;
1477 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1478 
1479 	/*
1480 	 * Check if any bits in the apmask have been set which will
1481 	 * result in queues being removed from non-default drivers
1482 	 */
1483 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1484 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1485 				      __verify_card_reservations);
1486 		if (rc)
1487 			return rc;
1488 	}
1489 
1490 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1491 
1492 	return 0;
1493 }
1494 
1495 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1496 			    size_t count)
1497 {
1498 	int rc, changes = 0;
1499 	DECLARE_BITMAP(newapm, AP_DEVICES);
1500 
1501 	if (mutex_lock_interruptible(&ap_perms_mutex))
1502 		return -ERESTARTSYS;
1503 
1504 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1505 	if (rc)
1506 		goto done;
1507 
1508 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1509 	if (changes)
1510 		rc = apmask_commit(newapm);
1511 
1512 done:
1513 	mutex_unlock(&ap_perms_mutex);
1514 	if (rc)
1515 		return rc;
1516 
1517 	if (changes) {
1518 		ap_bus_revise_bindings();
1519 		ap_send_mask_changed_uevent(newapm, NULL);
1520 	}
1521 
1522 	return count;
1523 }
1524 
1525 static BUS_ATTR_RW(apmask);
1526 
1527 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1528 {
1529 	int rc;
1530 
1531 	if (mutex_lock_interruptible(&ap_perms_mutex))
1532 		return -ERESTARTSYS;
1533 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1534 			ap_perms.aqm[0], ap_perms.aqm[1],
1535 			ap_perms.aqm[2], ap_perms.aqm[3]);
1536 	mutex_unlock(&ap_perms_mutex);
1537 
1538 	return rc;
1539 }
1540 
1541 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1542 {
1543 	int rc = 0;
1544 	struct ap_driver *ap_drv = to_ap_drv(drv);
1545 	unsigned long *newaqm = (unsigned long *)data;
1546 
1547 	/*
1548 	 * increase the driver's module refcounter to be sure it is not
1549 	 * going away when we invoke the callback function.
1550 	 */
1551 	if (!try_module_get(drv->owner))
1552 		return 0;
1553 
1554 	if (ap_drv->in_use) {
1555 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1556 		if (rc)
1557 			rc = -EBUSY;
1558 	}
1559 
1560 	/* release the driver's module */
1561 	module_put(drv->owner);
1562 
1563 	return rc;
1564 }
1565 
1566 static int aqmask_commit(unsigned long *newaqm)
1567 {
1568 	int rc;
1569 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1570 
1571 	/*
1572 	 * Check if any bits in the aqmask have been set which will
1573 	 * result in queues being removed from non-default drivers
1574 	 */
1575 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1576 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1577 				      __verify_queue_reservations);
1578 		if (rc)
1579 			return rc;
1580 	}
1581 
1582 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1583 
1584 	return 0;
1585 }
1586 
1587 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1588 			    size_t count)
1589 {
1590 	int rc, changes = 0;
1591 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1592 
1593 	if (mutex_lock_interruptible(&ap_perms_mutex))
1594 		return -ERESTARTSYS;
1595 
1596 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1597 	if (rc)
1598 		goto done;
1599 
1600 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1601 	if (changes)
1602 		rc = aqmask_commit(newaqm);
1603 
1604 done:
1605 	mutex_unlock(&ap_perms_mutex);
1606 	if (rc)
1607 		return rc;
1608 
1609 	if (changes) {
1610 		ap_bus_revise_bindings();
1611 		ap_send_mask_changed_uevent(NULL, newaqm);
1612 	}
1613 
1614 	return count;
1615 }
1616 
1617 static BUS_ATTR_RW(aqmask);
1618 
1619 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1620 {
1621 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1622 }
1623 
1624 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1625 			   size_t count)
1626 {
1627 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1628 
1629 	ap_bus_force_rescan();
1630 
1631 	return count;
1632 }
1633 
1634 static BUS_ATTR_RW(scans);
1635 
1636 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1637 {
1638 	int rc;
1639 	unsigned int apqns, n;
1640 
1641 	ap_calc_bound_apqns(&apqns, &n);
1642 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1643 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1644 	else
1645 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1646 
1647 	return rc;
1648 }
1649 
1650 static BUS_ATTR_RO(bindings);
1651 
1652 static ssize_t features_show(const struct bus_type *bus, char *buf)
1653 {
1654 	int n = 0;
1655 
1656 	if (!ap_qci_info->flags)	/* QCI not supported */
1657 		return sysfs_emit(buf, "-\n");
1658 
1659 	if (ap_qci_info->apsc)
1660 		n += sysfs_emit_at(buf, n, "APSC ");
1661 	if (ap_qci_info->apxa)
1662 		n += sysfs_emit_at(buf, n, "APXA ");
1663 	if (ap_qci_info->qact)
1664 		n += sysfs_emit_at(buf, n, "QACT ");
1665 	if (ap_qci_info->rc8a)
1666 		n += sysfs_emit_at(buf, n, "RC8A ");
1667 	if (ap_qci_info->apsb)
1668 		n += sysfs_emit_at(buf, n, "APSB ");
1669 
1670 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1671 
1672 	return n;
1673 }
1674 
1675 static BUS_ATTR_RO(features);
1676 
1677 static struct attribute *ap_bus_attrs[] = {
1678 	&bus_attr_ap_domain.attr,
1679 	&bus_attr_ap_control_domain_mask.attr,
1680 	&bus_attr_ap_usage_domain_mask.attr,
1681 	&bus_attr_ap_adapter_mask.attr,
1682 	&bus_attr_config_time.attr,
1683 	&bus_attr_poll_thread.attr,
1684 	&bus_attr_ap_interrupts.attr,
1685 	&bus_attr_poll_timeout.attr,
1686 	&bus_attr_ap_max_domain_id.attr,
1687 	&bus_attr_ap_max_adapter_id.attr,
1688 	&bus_attr_apmask.attr,
1689 	&bus_attr_aqmask.attr,
1690 	&bus_attr_scans.attr,
1691 	&bus_attr_bindings.attr,
1692 	&bus_attr_features.attr,
1693 	NULL,
1694 };
1695 ATTRIBUTE_GROUPS(ap_bus);
1696 
1697 static const struct bus_type ap_bus_type = {
1698 	.name = "ap",
1699 	.bus_groups = ap_bus_groups,
1700 	.match = &ap_bus_match,
1701 	.uevent = &ap_uevent,
1702 	.probe = ap_device_probe,
1703 	.remove = ap_device_remove,
1704 };
1705 
1706 /**
1707  * ap_select_domain(): Select an AP domain if possible and we haven't
1708  * already done so before.
1709  */
1710 static void ap_select_domain(void)
1711 {
1712 	struct ap_queue_status status;
1713 	int card, dom;
1714 
1715 	/*
1716 	 * Choose the default domain. Either the one specified with
1717 	 * the "domain=" parameter or the first domain with at least
1718 	 * one valid APQN.
1719 	 */
1720 	spin_lock_bh(&ap_domain_lock);
1721 	if (ap_domain_index >= 0) {
1722 		/* Domain has already been selected. */
1723 		goto out;
1724 	}
1725 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1726 		if (!ap_test_config_usage_domain(dom) ||
1727 		    !test_bit_inv(dom, ap_perms.aqm))
1728 			continue;
1729 		for (card = 0; card <= ap_max_adapter_id; card++) {
1730 			if (!ap_test_config_card_id(card) ||
1731 			    !test_bit_inv(card, ap_perms.apm))
1732 				continue;
1733 			status = ap_test_queue(AP_MKQID(card, dom),
1734 					       ap_apft_available(),
1735 					       NULL);
1736 			if (status.response_code == AP_RESPONSE_NORMAL)
1737 				break;
1738 		}
1739 		if (card <= ap_max_adapter_id)
1740 			break;
1741 	}
1742 	if (dom <= ap_max_domain_id) {
1743 		ap_domain_index = dom;
1744 		AP_DBF_INFO("%s new default domain is %d\n",
1745 			    __func__, ap_domain_index);
1746 	}
1747 out:
1748 	spin_unlock_bh(&ap_domain_lock);
1749 }
1750 
1751 /*
1752  * This function checks the type and returns either 0 for not
1753  * supported or the highest compatible type value (which may
1754  * include the input type value).
1755  */
1756 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1757 {
1758 	int comp_type = 0;
1759 
1760 	/* < CEX4 is not supported */
1761 	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1762 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1763 			    __func__, AP_QID_CARD(qid),
1764 			    AP_QID_QUEUE(qid), rawtype);
1765 		return 0;
1766 	}
1767 	/* up to CEX8 known and fully supported */
1768 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1769 		return rawtype;
1770 	/*
1771 	 * unknown new type > CEX8, check for compatibility
1772 	 * to the highest known and supported type which is
1773 	 * currently CEX8 with the help of the QACT function.
1774 	 */
1775 	if (ap_qact_available()) {
1776 		struct ap_queue_status status;
1777 		union ap_qact_ap_info apinfo = {0};
1778 
1779 		apinfo.mode = (func >> 26) & 0x07;
1780 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1781 		status = ap_qact(qid, 0, &apinfo);
1782 		if (status.response_code == AP_RESPONSE_NORMAL &&
1783 		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1784 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1785 			comp_type = apinfo.cat;
1786 	}
1787 	if (!comp_type)
1788 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1789 			    __func__, AP_QID_CARD(qid),
1790 			    AP_QID_QUEUE(qid), rawtype);
1791 	else if (comp_type != rawtype)
1792 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1793 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1794 			    rawtype, comp_type);
1795 	return comp_type;
1796 }
1797 
1798 /*
1799  * Helper function to be used with bus_find_dev
1800  * matches for the card device with the given id
1801  */
1802 static int __match_card_device_with_id(struct device *dev, const void *data)
1803 {
1804 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1805 }
1806 
1807 /*
1808  * Helper function to be used with bus_find_dev
1809  * matches for the queue device with a given qid
1810  */
1811 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1812 {
1813 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1814 }
1815 
1816 /*
1817  * Helper function to be used with bus_find_dev
1818  * matches any queue device with given queue id
1819  */
1820 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1821 {
1822 	return is_queue_dev(dev) &&
1823 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1824 }
1825 
1826 /* Helper function for notify_config_changed */
1827 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1828 {
1829 	struct ap_driver *ap_drv = to_ap_drv(drv);
1830 
1831 	if (try_module_get(drv->owner)) {
1832 		if (ap_drv->on_config_changed)
1833 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1834 		module_put(drv->owner);
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /* Notify all drivers about an qci config change */
1841 static inline void notify_config_changed(void)
1842 {
1843 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1844 			 __drv_notify_config_changed);
1845 }
1846 
1847 /* Helper function for notify_scan_complete */
1848 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1849 {
1850 	struct ap_driver *ap_drv = to_ap_drv(drv);
1851 
1852 	if (try_module_get(drv->owner)) {
1853 		if (ap_drv->on_scan_complete)
1854 			ap_drv->on_scan_complete(ap_qci_info,
1855 						 ap_qci_info_old);
1856 		module_put(drv->owner);
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /* Notify all drivers about bus scan complete */
1863 static inline void notify_scan_complete(void)
1864 {
1865 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1866 			 __drv_notify_scan_complete);
1867 }
1868 
1869 /*
1870  * Helper function for ap_scan_bus().
1871  * Remove card device and associated queue devices.
1872  */
1873 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1874 {
1875 	bus_for_each_dev(&ap_bus_type, NULL,
1876 			 (void *)(long)ac->id,
1877 			 __ap_queue_devices_with_id_unregister);
1878 	device_unregister(&ac->ap_dev.device);
1879 }
1880 
1881 /*
1882  * Helper function for ap_scan_bus().
1883  * Does the scan bus job for all the domains within
1884  * a valid adapter given by an ap_card ptr.
1885  */
1886 static inline void ap_scan_domains(struct ap_card *ac)
1887 {
1888 	struct ap_tapq_hwinfo hwinfo;
1889 	bool decfg, chkstop;
1890 	struct ap_queue *aq;
1891 	struct device *dev;
1892 	ap_qid_t qid;
1893 	int rc, dom;
1894 
1895 	/*
1896 	 * Go through the configuration for the domains and compare them
1897 	 * to the existing queue devices. Also take care of the config
1898 	 * and error state for the queue devices.
1899 	 */
1900 
1901 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1902 		qid = AP_MKQID(ac->id, dom);
1903 		dev = bus_find_device(&ap_bus_type, NULL,
1904 				      (void *)(long)qid,
1905 				      __match_queue_device_with_qid);
1906 		aq = dev ? to_ap_queue(dev) : NULL;
1907 		if (!ap_test_config_usage_domain(dom)) {
1908 			if (dev) {
1909 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1910 					    __func__, ac->id, dom);
1911 				device_unregister(dev);
1912 			}
1913 			goto put_dev_and_continue;
1914 		}
1915 		/* domain is valid, get info from this APQN */
1916 		rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1917 		switch (rc) {
1918 		case -1:
1919 			if (dev) {
1920 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1921 					    __func__, ac->id, dom);
1922 				device_unregister(dev);
1923 			}
1924 			fallthrough;
1925 		case 0:
1926 			goto put_dev_and_continue;
1927 		default:
1928 			break;
1929 		}
1930 		/* if no queue device exists, create a new one */
1931 		if (!aq) {
1932 			aq = ap_queue_create(qid, ac);
1933 			if (!aq) {
1934 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1935 					    __func__, ac->id, dom);
1936 				continue;
1937 			}
1938 			aq->config = !decfg;
1939 			aq->chkstop = chkstop;
1940 			aq->se_bstate = hwinfo.bs;
1941 			dev = &aq->ap_dev.device;
1942 			dev->bus = &ap_bus_type;
1943 			dev->parent = &ac->ap_dev.device;
1944 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1945 			/* register queue device */
1946 			rc = device_register(dev);
1947 			if (rc) {
1948 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1949 					    __func__, ac->id, dom);
1950 				goto put_dev_and_continue;
1951 			}
1952 			/* get it and thus adjust reference counter */
1953 			get_device(dev);
1954 			if (decfg) {
1955 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1956 					    __func__, ac->id, dom);
1957 			} else if (chkstop) {
1958 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1959 					    __func__, ac->id, dom);
1960 			} else {
1961 				/* nudge the queue's state machine */
1962 				ap_queue_init_state(aq);
1963 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1964 					    __func__, ac->id, dom);
1965 			}
1966 			goto put_dev_and_continue;
1967 		}
1968 		/* handle state changes on already existing queue device */
1969 		spin_lock_bh(&aq->lock);
1970 		/* SE bind state */
1971 		aq->se_bstate = hwinfo.bs;
1972 		/* checkstop state */
1973 		if (chkstop && !aq->chkstop) {
1974 			/* checkstop on */
1975 			aq->chkstop = true;
1976 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1977 				aq->dev_state = AP_DEV_STATE_ERROR;
1978 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1979 			}
1980 			spin_unlock_bh(&aq->lock);
1981 			pr_debug("(%d,%d) queue dev checkstop on\n",
1982 				 ac->id, dom);
1983 			/* 'receive' pending messages with -EAGAIN */
1984 			ap_flush_queue(aq);
1985 			goto put_dev_and_continue;
1986 		} else if (!chkstop && aq->chkstop) {
1987 			/* checkstop off */
1988 			aq->chkstop = false;
1989 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1990 				_ap_queue_init_state(aq);
1991 			spin_unlock_bh(&aq->lock);
1992 			pr_debug("(%d,%d) queue dev checkstop off\n",
1993 				 ac->id, dom);
1994 			goto put_dev_and_continue;
1995 		}
1996 		/* config state change */
1997 		if (decfg && aq->config) {
1998 			/* config off this queue device */
1999 			aq->config = false;
2000 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
2001 				aq->dev_state = AP_DEV_STATE_ERROR;
2002 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
2003 			}
2004 			spin_unlock_bh(&aq->lock);
2005 			pr_debug("(%d,%d) queue dev config off\n",
2006 				 ac->id, dom);
2007 			ap_send_config_uevent(&aq->ap_dev, aq->config);
2008 			/* 'receive' pending messages with -EAGAIN */
2009 			ap_flush_queue(aq);
2010 			goto put_dev_and_continue;
2011 		} else if (!decfg && !aq->config) {
2012 			/* config on this queue device */
2013 			aq->config = true;
2014 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
2015 				_ap_queue_init_state(aq);
2016 			spin_unlock_bh(&aq->lock);
2017 			pr_debug("(%d,%d) queue dev config on\n",
2018 				 ac->id, dom);
2019 			ap_send_config_uevent(&aq->ap_dev, aq->config);
2020 			goto put_dev_and_continue;
2021 		}
2022 		/* handle other error states */
2023 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
2024 			spin_unlock_bh(&aq->lock);
2025 			/* 'receive' pending messages with -EAGAIN */
2026 			ap_flush_queue(aq);
2027 			/* re-init (with reset) the queue device */
2028 			ap_queue_init_state(aq);
2029 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
2030 				    __func__, ac->id, dom);
2031 			goto put_dev_and_continue;
2032 		}
2033 		spin_unlock_bh(&aq->lock);
2034 put_dev_and_continue:
2035 		put_device(dev);
2036 	}
2037 }
2038 
2039 /*
2040  * Helper function for ap_scan_bus().
2041  * Does the scan bus job for the given adapter id.
2042  */
2043 static inline void ap_scan_adapter(int ap)
2044 {
2045 	struct ap_tapq_hwinfo hwinfo;
2046 	int rc, dom, comp_type;
2047 	bool decfg, chkstop;
2048 	struct ap_card *ac;
2049 	struct device *dev;
2050 	ap_qid_t qid;
2051 
2052 	/* Is there currently a card device for this adapter ? */
2053 	dev = bus_find_device(&ap_bus_type, NULL,
2054 			      (void *)(long)ap,
2055 			      __match_card_device_with_id);
2056 	ac = dev ? to_ap_card(dev) : NULL;
2057 
2058 	/* Adapter not in configuration ? */
2059 	if (!ap_test_config_card_id(ap)) {
2060 		if (ac) {
2061 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
2062 				    __func__, ap);
2063 			ap_scan_rm_card_dev_and_queue_devs(ac);
2064 			put_device(dev);
2065 		}
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * Adapter ap is valid in the current configuration. So do some checks:
2071 	 * If no card device exists, build one. If a card device exists, check
2072 	 * for type and functions changed. For all this we need to find a valid
2073 	 * APQN first.
2074 	 */
2075 
2076 	for (dom = 0; dom <= ap_max_domain_id; dom++)
2077 		if (ap_test_config_usage_domain(dom)) {
2078 			qid = AP_MKQID(ap, dom);
2079 			if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2080 				break;
2081 		}
2082 	if (dom > ap_max_domain_id) {
2083 		/* Could not find one valid APQN for this adapter */
2084 		if (ac) {
2085 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2086 				    __func__, ap);
2087 			ap_scan_rm_card_dev_and_queue_devs(ac);
2088 			put_device(dev);
2089 		} else {
2090 			pr_debug("(%d) no type info (no APQN found), ignored\n",
2091 				 ap);
2092 		}
2093 		return;
2094 	}
2095 	if (!hwinfo.at) {
2096 		/* No apdater type info available, an unusable adapter */
2097 		if (ac) {
2098 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2099 				    __func__, ap);
2100 			ap_scan_rm_card_dev_and_queue_devs(ac);
2101 			put_device(dev);
2102 		} else {
2103 			pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2104 		}
2105 		return;
2106 	}
2107 	hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2108 	if (ac) {
2109 		/* Check APQN against existing card device for changes */
2110 		if (ac->hwinfo.at != hwinfo.at) {
2111 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2112 				    __func__, ap, hwinfo.at);
2113 			ap_scan_rm_card_dev_and_queue_devs(ac);
2114 			put_device(dev);
2115 			ac = NULL;
2116 		} else if (ac->hwinfo.fac != hwinfo.fac) {
2117 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2118 				    __func__, ap, hwinfo.fac);
2119 			ap_scan_rm_card_dev_and_queue_devs(ac);
2120 			put_device(dev);
2121 			ac = NULL;
2122 		} else {
2123 			/* handle checkstop state change */
2124 			if (chkstop && !ac->chkstop) {
2125 				/* checkstop on */
2126 				ac->chkstop = true;
2127 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2128 					    __func__, ap);
2129 			} else if (!chkstop && ac->chkstop) {
2130 				/* checkstop off */
2131 				ac->chkstop = false;
2132 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2133 					    __func__, ap);
2134 			}
2135 			/* handle config state change */
2136 			if (decfg && ac->config) {
2137 				ac->config = false;
2138 				AP_DBF_INFO("%s(%d) card dev config off\n",
2139 					    __func__, ap);
2140 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2141 			} else if (!decfg && !ac->config) {
2142 				ac->config = true;
2143 				AP_DBF_INFO("%s(%d) card dev config on\n",
2144 					    __func__, ap);
2145 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2146 			}
2147 		}
2148 	}
2149 
2150 	if (!ac) {
2151 		/* Build a new card device */
2152 		comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2153 		if (!comp_type) {
2154 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2155 				    __func__, ap, hwinfo.at);
2156 			return;
2157 		}
2158 		ac = ap_card_create(ap, hwinfo, comp_type);
2159 		if (!ac) {
2160 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2161 				    __func__, ap);
2162 			return;
2163 		}
2164 		ac->config = !decfg;
2165 		ac->chkstop = chkstop;
2166 		dev = &ac->ap_dev.device;
2167 		dev->bus = &ap_bus_type;
2168 		dev->parent = ap_root_device;
2169 		dev_set_name(dev, "card%02x", ap);
2170 		/* maybe enlarge ap_max_msg_size to support this card */
2171 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2172 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2173 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2174 				    __func__, ap,
2175 				    atomic_read(&ap_max_msg_size));
2176 		}
2177 		/* Register the new card device with AP bus */
2178 		rc = device_register(dev);
2179 		if (rc) {
2180 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2181 				    __func__, ap);
2182 			put_device(dev);
2183 			return;
2184 		}
2185 		/* get it and thus adjust reference counter */
2186 		get_device(dev);
2187 		if (decfg)
2188 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2189 				    __func__, ap, hwinfo.at, hwinfo.fac);
2190 		else if (chkstop)
2191 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2192 				    __func__, ap, hwinfo.at, hwinfo.fac);
2193 		else
2194 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2195 				    __func__, ap, hwinfo.at, hwinfo.fac);
2196 	}
2197 
2198 	/* Verify the domains and the queue devices for this card */
2199 	ap_scan_domains(ac);
2200 
2201 	/* release the card device */
2202 	put_device(&ac->ap_dev.device);
2203 }
2204 
2205 /**
2206  * ap_get_configuration - get the host AP configuration
2207  *
2208  * Stores the host AP configuration information returned from the previous call
2209  * to Query Configuration Information (QCI), then retrieves and stores the
2210  * current AP configuration returned from QCI.
2211  *
2212  * Return: true if the host AP configuration changed between calls to QCI;
2213  * otherwise, return false.
2214  */
2215 static bool ap_get_configuration(void)
2216 {
2217 	if (!ap_qci_info->flags)	/* QCI not supported */
2218 		return false;
2219 
2220 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2221 	ap_qci(ap_qci_info);
2222 
2223 	return memcmp(ap_qci_info, ap_qci_info_old,
2224 		      sizeof(struct ap_config_info)) != 0;
2225 }
2226 
2227 /*
2228  * ap_config_has_new_aps - Check current against old qci info if
2229  * new adapters have appeared. Returns true if at least one new
2230  * adapter in the apm mask is showing up. Existing adapters or
2231  * receding adapters are not counted.
2232  */
2233 static bool ap_config_has_new_aps(void)
2234 {
2235 
2236 	unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2237 
2238 	if (!ap_qci_info->flags)
2239 		return false;
2240 
2241 	bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2242 		      (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2243 	if (!bitmap_empty(m, AP_DEVICES))
2244 		return true;
2245 
2246 	return false;
2247 }
2248 
2249 /*
2250  * ap_config_has_new_doms - Check current against old qci info if
2251  * new (usage) domains have appeared. Returns true if at least one
2252  * new domain in the aqm mask is showing up. Existing domains or
2253  * receding domains are not counted.
2254  */
2255 static bool ap_config_has_new_doms(void)
2256 {
2257 	unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2258 
2259 	if (!ap_qci_info->flags)
2260 		return false;
2261 
2262 	bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2263 		      (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2264 	if (!bitmap_empty(m, AP_DOMAINS))
2265 		return true;
2266 
2267 	return false;
2268 }
2269 
2270 /**
2271  * ap_scan_bus(): Scan the AP bus for new devices
2272  * Always run under mutex ap_scan_bus_mutex protection
2273  * which needs to get locked/unlocked by the caller!
2274  * Returns true if any config change has been detected
2275  * during the scan, otherwise false.
2276  */
2277 static bool ap_scan_bus(void)
2278 {
2279 	bool config_changed;
2280 	int ap;
2281 
2282 	pr_debug(">\n");
2283 
2284 	/* (re-)fetch configuration via QCI */
2285 	config_changed = ap_get_configuration();
2286 	if (config_changed) {
2287 		if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2288 			/*
2289 			 * Appearance of new adapters and/or domains need to
2290 			 * build new ap devices which need to get bound to an
2291 			 * device driver. Thus reset the APQN bindings complete
2292 			 * completion.
2293 			 */
2294 			reinit_completion(&ap_apqn_bindings_complete);
2295 		}
2296 		/* post a config change notify */
2297 		notify_config_changed();
2298 	}
2299 	ap_select_domain();
2300 
2301 	/* loop over all possible adapters */
2302 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2303 		ap_scan_adapter(ap);
2304 
2305 	/* scan complete notify */
2306 	if (config_changed)
2307 		notify_scan_complete();
2308 
2309 	/* check if there is at least one queue available with default domain */
2310 	if (ap_domain_index >= 0) {
2311 		struct device *dev =
2312 			bus_find_device(&ap_bus_type, NULL,
2313 					(void *)(long)ap_domain_index,
2314 					__match_queue_device_with_queue_id);
2315 		if (dev)
2316 			put_device(dev);
2317 		else
2318 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2319 				    __func__, ap_domain_index);
2320 	}
2321 
2322 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2323 		pr_debug("init scan complete\n");
2324 		ap_send_init_scan_done_uevent();
2325 	}
2326 
2327 	ap_check_bindings_complete();
2328 
2329 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2330 
2331 	pr_debug("< config_changed=%d\n", config_changed);
2332 
2333 	return config_changed;
2334 }
2335 
2336 /*
2337  * Callback for the ap_scan_bus_timer
2338  * Runs periodically, workqueue timer (ap_scan_bus_time)
2339  */
2340 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2341 {
2342 	/*
2343 	 * schedule work into the system long wq which when
2344 	 * the work is finally executed, calls the AP bus scan.
2345 	 */
2346 	queue_work(system_long_wq, &ap_scan_bus_work);
2347 }
2348 
2349 /*
2350  * Callback for the ap_scan_bus_work
2351  */
2352 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2353 {
2354 	/*
2355 	 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2356 	 * fails there is currently another task already running the
2357 	 * AP scan bus and there is no need to wait and re-trigger the
2358 	 * scan again. Please note at the end of the scan bus function
2359 	 * the AP scan bus timer is re-armed which triggers then the
2360 	 * ap_scan_bus_timer_callback which enqueues a work into the
2361 	 * system_long_wq which invokes this function here again.
2362 	 */
2363 	if (mutex_trylock(&ap_scan_bus_mutex)) {
2364 		ap_scan_bus_task = current;
2365 		ap_scan_bus_result = ap_scan_bus();
2366 		ap_scan_bus_task = NULL;
2367 		mutex_unlock(&ap_scan_bus_mutex);
2368 	}
2369 }
2370 
2371 static inline void __exit ap_async_exit(void)
2372 {
2373 	if (ap_thread_flag)
2374 		ap_poll_thread_stop();
2375 	chsc_notifier_unregister(&ap_bus_nb);
2376 	cancel_work(&ap_scan_bus_work);
2377 	hrtimer_cancel(&ap_poll_timer);
2378 	timer_delete(&ap_scan_bus_timer);
2379 }
2380 
2381 static inline int __init ap_async_init(void)
2382 {
2383 	int rc;
2384 
2385 	/* Setup the AP bus rescan timer. */
2386 	timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2387 
2388 	/*
2389 	 * Setup the high resolution poll timer.
2390 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2391 	 */
2392 	if (machine_is_vm())
2393 		poll_high_timeout = 1500000;
2394 	hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2395 
2396 	queue_work(system_long_wq, &ap_scan_bus_work);
2397 
2398 	rc = chsc_notifier_register(&ap_bus_nb);
2399 	if (rc)
2400 		goto out;
2401 
2402 	/* Start the low priority AP bus poll thread. */
2403 	if (!ap_thread_flag)
2404 		return 0;
2405 
2406 	rc = ap_poll_thread_start();
2407 	if (rc)
2408 		goto out_notifier;
2409 
2410 	return 0;
2411 
2412 out_notifier:
2413 	chsc_notifier_unregister(&ap_bus_nb);
2414 out:
2415 	cancel_work(&ap_scan_bus_work);
2416 	hrtimer_cancel(&ap_poll_timer);
2417 	timer_delete(&ap_scan_bus_timer);
2418 	return rc;
2419 }
2420 
2421 static inline void ap_irq_exit(void)
2422 {
2423 	if (ap_irq_flag)
2424 		unregister_adapter_interrupt(&ap_airq);
2425 }
2426 
2427 static inline int __init ap_irq_init(void)
2428 {
2429 	int rc;
2430 
2431 	if (!ap_interrupts_available() || !ap_useirq)
2432 		return 0;
2433 
2434 	rc = register_adapter_interrupt(&ap_airq);
2435 	ap_irq_flag = (rc == 0);
2436 
2437 	return rc;
2438 }
2439 
2440 static inline void ap_debug_exit(void)
2441 {
2442 	debug_unregister(ap_dbf_info);
2443 }
2444 
2445 static inline int __init ap_debug_init(void)
2446 {
2447 	ap_dbf_info = debug_register("ap", 2, 1,
2448 				     AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2449 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2450 	debug_set_level(ap_dbf_info, DBF_ERR);
2451 
2452 	return 0;
2453 }
2454 
2455 static void __init ap_perms_init(void)
2456 {
2457 	/* all resources usable if no kernel parameter string given */
2458 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2459 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2460 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2461 
2462 	/* apm kernel parameter string */
2463 	if (apm_str) {
2464 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2465 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2466 				  &ap_perms_mutex);
2467 	}
2468 
2469 	/* aqm kernel parameter string */
2470 	if (aqm_str) {
2471 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2472 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2473 				  &ap_perms_mutex);
2474 	}
2475 }
2476 
2477 /**
2478  * ap_module_init(): The module initialization code.
2479  *
2480  * Initializes the module.
2481  */
2482 static int __init ap_module_init(void)
2483 {
2484 	int rc;
2485 
2486 	rc = ap_debug_init();
2487 	if (rc)
2488 		return rc;
2489 
2490 	if (!ap_instructions_available()) {
2491 		pr_warn("The hardware system does not support AP instructions\n");
2492 		return -ENODEV;
2493 	}
2494 
2495 	/* init ap_queue hashtable */
2496 	hash_init(ap_queues);
2497 
2498 	/* create ap msg buffer memory pool */
2499 	ap_msg_pool = mempool_create_kmalloc_pool(ap_msg_pool_min_items,
2500 						  AP_DEFAULT_MAX_MSG_SIZE);
2501 	if (!ap_msg_pool) {
2502 		rc = -ENOMEM;
2503 		goto out;
2504 	}
2505 
2506 	/* set up the AP permissions (ioctls, ap and aq masks) */
2507 	ap_perms_init();
2508 
2509 	/* Get AP configuration data if available */
2510 	ap_init_qci_info();
2511 
2512 	/* check default domain setting */
2513 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2514 	    (ap_domain_index >= 0 &&
2515 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2516 		pr_warn("%d is not a valid cryptographic domain\n",
2517 			ap_domain_index);
2518 		ap_domain_index = -1;
2519 	}
2520 
2521 	/* Create /sys/bus/ap. */
2522 	rc = bus_register(&ap_bus_type);
2523 	if (rc)
2524 		goto out;
2525 
2526 	/* Create /sys/devices/ap. */
2527 	ap_root_device = root_device_register("ap");
2528 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2529 	if (rc)
2530 		goto out_bus;
2531 	ap_root_device->bus = &ap_bus_type;
2532 
2533 	/* enable interrupts if available */
2534 	rc = ap_irq_init();
2535 	if (rc)
2536 		goto out_device;
2537 
2538 	/* Setup asynchronous work (timers, workqueue, etc). */
2539 	rc = ap_async_init();
2540 	if (rc)
2541 		goto out_irq;
2542 
2543 	return 0;
2544 
2545 out_irq:
2546 	ap_irq_exit();
2547 out_device:
2548 	root_device_unregister(ap_root_device);
2549 out_bus:
2550 	bus_unregister(&ap_bus_type);
2551 out:
2552 	mempool_destroy(ap_msg_pool);
2553 	ap_debug_exit();
2554 	return rc;
2555 }
2556 
2557 static void __exit ap_module_exit(void)
2558 {
2559 	ap_async_exit();
2560 	ap_irq_exit();
2561 	root_device_unregister(ap_root_device);
2562 	bus_unregister(&ap_bus_type);
2563 	mempool_destroy(ap_msg_pool);
2564 	ap_debug_exit();
2565 }
2566 
2567 module_init(ap_module_init);
2568 module_exit(ap_module_exit);
2569