1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12 
13 #define DEFAULT_SYMBOL_NAMESPACE "PWM_LPSS"
14 
15 #include <linux/bits.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 #include <linux/time.h>
24 
25 #include "pwm-lpss.h"
26 
27 #define PWM				0x00000000
28 #define PWM_ENABLE			BIT(31)
29 #define PWM_SW_UPDATE			BIT(30)
30 #define PWM_BASE_UNIT_SHIFT		8
31 #define PWM_ON_TIME_DIV_MASK		GENMASK(7, 0)
32 
33 /* Size of each PWM register space if multiple */
34 #define PWM_SIZE			0x400
35 
36 /* BayTrail */
37 const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
38 	.clk_rate = 25000000,
39 	.npwm = 1,
40 	.base_unit_bits = 16,
41 };
42 EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
43 
44 /* Braswell */
45 const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
46 	.clk_rate = 19200000,
47 	.npwm = 1,
48 	.base_unit_bits = 16,
49 	.other_devices_aml_touches_pwm_regs = true,
50 };
51 EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
52 
53 /* Broxton */
54 const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
55 	.clk_rate = 19200000,
56 	.npwm = 4,
57 	.base_unit_bits = 22,
58 	.bypass = true,
59 };
60 EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
61 
62 /* Tangier */
63 const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
64 	.clk_rate = 19200000,
65 	.npwm = 4,
66 	.base_unit_bits = 22,
67 };
68 EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
69 
70 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
71 {
72 	return pwmchip_get_drvdata(chip);
73 }
74 
75 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
76 {
77 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
78 
79 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
80 }
81 
82 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
83 {
84 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
85 
86 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
87 }
88 
89 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
90 {
91 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
92 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
93 	const unsigned int ms = 500 * USEC_PER_MSEC;
94 	u32 val;
95 	int err;
96 
97 	/*
98 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
99 	 * configuration is written to the register. The bit is automatically
100 	 * cleared at the start of the next output cycle by the IP block.
101 	 *
102 	 * If one writes a new configuration to the register while it still has
103 	 * the bit enabled, PWM may freeze. That is, while one can still write
104 	 * to the register, it won't have an effect. Thus, we try to sleep long
105 	 * enough that the bit gets cleared and make sure the bit is not
106 	 * enabled while we update the configuration.
107 	 */
108 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
109 	if (err)
110 		dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE was not cleared\n");
111 
112 	return err;
113 }
114 
115 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
116 {
117 	if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
118 		dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE is still set, skipping update\n");
119 		return -EBUSY;
120 	}
121 
122 	return 0;
123 }
124 
125 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
126 			     int duty_ns, int period_ns)
127 {
128 	unsigned long long on_time_div;
129 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
130 	unsigned long long base_unit, freq = NSEC_PER_SEC;
131 	u32 ctrl;
132 
133 	do_div(freq, period_ns);
134 
135 	/*
136 	 * The equation is:
137 	 * base_unit = round(base_unit_range * freq / c)
138 	 */
139 	base_unit_range = BIT(lpwm->info->base_unit_bits);
140 	freq *= base_unit_range;
141 
142 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
143 	/* base_unit must not be 0 and we also want to avoid overflowing it */
144 	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
145 
146 	on_time_div = 255ULL * duty_ns;
147 	do_div(on_time_div, period_ns);
148 	on_time_div = 255ULL - on_time_div;
149 
150 	ctrl = pwm_lpss_read(pwm);
151 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
152 	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
153 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
154 	ctrl |= on_time_div;
155 
156 	pwm_lpss_write(pwm, ctrl);
157 	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
158 }
159 
160 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
161 {
162 	if (cond)
163 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
164 }
165 
166 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
167 				   struct pwm_device *pwm,
168 				   const struct pwm_state *state)
169 {
170 	int ret;
171 
172 	ret = pwm_lpss_is_updating(pwm);
173 	if (ret)
174 		return ret;
175 
176 	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
177 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
178 	ret = pwm_lpss_wait_for_update(pwm);
179 	if (ret)
180 		return ret;
181 
182 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
183 	return 0;
184 }
185 
186 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
187 			  const struct pwm_state *state)
188 {
189 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
190 	int ret = 0;
191 
192 	if (state->enabled) {
193 		if (!pwm_is_enabled(pwm)) {
194 			pm_runtime_get_sync(pwmchip_parent(chip));
195 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
196 			if (ret)
197 				pm_runtime_put(pwmchip_parent(chip));
198 		} else {
199 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
200 		}
201 	} else if (pwm_is_enabled(pwm)) {
202 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
203 		pm_runtime_put(pwmchip_parent(chip));
204 	}
205 
206 	return ret;
207 }
208 
209 static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
210 			      struct pwm_state *state)
211 {
212 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
213 	unsigned long base_unit_range;
214 	unsigned long long base_unit, freq, on_time_div;
215 	u32 ctrl;
216 
217 	pm_runtime_get_sync(pwmchip_parent(chip));
218 
219 	base_unit_range = BIT(lpwm->info->base_unit_bits);
220 
221 	ctrl = pwm_lpss_read(pwm);
222 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
223 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
224 
225 	freq = base_unit * lpwm->info->clk_rate;
226 	do_div(freq, base_unit_range);
227 	if (freq == 0)
228 		state->period = NSEC_PER_SEC;
229 	else
230 		state->period = NSEC_PER_SEC / (unsigned long)freq;
231 
232 	on_time_div *= state->period;
233 	do_div(on_time_div, 255);
234 	state->duty_cycle = on_time_div;
235 
236 	state->polarity = PWM_POLARITY_NORMAL;
237 	state->enabled = !!(ctrl & PWM_ENABLE);
238 
239 	pm_runtime_put(pwmchip_parent(chip));
240 
241 	return 0;
242 }
243 
244 static const struct pwm_ops pwm_lpss_ops = {
245 	.apply = pwm_lpss_apply,
246 	.get_state = pwm_lpss_get_state,
247 };
248 
249 struct pwm_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
250 				     const struct pwm_lpss_boardinfo *info)
251 {
252 	struct pwm_lpss_chip *lpwm;
253 	struct pwm_chip *chip;
254 	unsigned long c;
255 	int i, ret;
256 	u32 ctrl;
257 
258 	if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
259 		return ERR_PTR(-ENODEV);
260 
261 	chip = devm_pwmchip_alloc(dev, info->npwm, sizeof(*lpwm));
262 	if (IS_ERR(chip))
263 		return chip;
264 	lpwm = to_lpwm(chip);
265 
266 	lpwm->regs = base;
267 	lpwm->info = info;
268 
269 	c = lpwm->info->clk_rate;
270 	if (!c)
271 		return ERR_PTR(-EINVAL);
272 
273 	chip->ops = &pwm_lpss_ops;
274 
275 	ret = devm_pwmchip_add(dev, chip);
276 	if (ret) {
277 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
278 		return ERR_PTR(ret);
279 	}
280 
281 	for (i = 0; i < lpwm->info->npwm; i++) {
282 		ctrl = pwm_lpss_read(&chip->pwms[i]);
283 		if (ctrl & PWM_ENABLE)
284 			pm_runtime_get(dev);
285 	}
286 
287 	return chip;
288 }
289 EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
290 
291 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
292 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
293 MODULE_LICENSE("GPL v2");
294