1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #define DEFAULT_SYMBOL_NAMESPACE "PWM" 10 11 #include <linux/acpi.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/of.h> 15 #include <linux/pwm.h> 16 #include <linux/list.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include <dt-bindings/pwm/pwm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/pwm.h> 28 29 /* protects access to pwm_chips */ 30 static DEFINE_MUTEX(pwm_lock); 31 32 static DEFINE_IDR(pwm_chips); 33 34 static void pwmchip_lock(struct pwm_chip *chip) 35 { 36 if (chip->atomic) 37 spin_lock(&chip->atomic_lock); 38 else 39 mutex_lock(&chip->nonatomic_lock); 40 } 41 42 static void pwmchip_unlock(struct pwm_chip *chip) 43 { 44 if (chip->atomic) 45 spin_unlock(&chip->atomic_lock); 46 else 47 mutex_unlock(&chip->nonatomic_lock); 48 } 49 50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) 51 52 static bool pwm_wf_valid(const struct pwm_waveform *wf) 53 { 54 /* 55 * For now restrict waveforms to period_length_ns <= S64_MAX to provide 56 * some space for future extensions. One possibility is to simplify 57 * representing waveforms with inverted polarity using negative values 58 * somehow. 59 */ 60 if (wf->period_length_ns > S64_MAX) 61 return false; 62 63 if (wf->duty_length_ns > wf->period_length_ns) 64 return false; 65 66 /* 67 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart 68 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. 69 */ 70 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) 71 return false; 72 73 return true; 74 } 75 76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) 77 { 78 if (wf->period_length_ns) { 79 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) 80 *state = (struct pwm_state){ 81 .enabled = true, 82 .polarity = PWM_POLARITY_NORMAL, 83 .period = wf->period_length_ns, 84 .duty_cycle = wf->duty_length_ns, 85 }; 86 else 87 *state = (struct pwm_state){ 88 .enabled = true, 89 .polarity = PWM_POLARITY_INVERSED, 90 .period = wf->period_length_ns, 91 .duty_cycle = wf->period_length_ns - wf->duty_length_ns, 92 }; 93 } else { 94 *state = (struct pwm_state){ 95 .enabled = false, 96 }; 97 } 98 } 99 100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) 101 { 102 if (state->enabled) { 103 if (state->polarity == PWM_POLARITY_NORMAL) 104 *wf = (struct pwm_waveform){ 105 .period_length_ns = state->period, 106 .duty_length_ns = state->duty_cycle, 107 .duty_offset_ns = 0, 108 }; 109 else 110 *wf = (struct pwm_waveform){ 111 .period_length_ns = state->period, 112 .duty_length_ns = state->period - state->duty_cycle, 113 .duty_offset_ns = state->duty_cycle, 114 }; 115 } else { 116 *wf = (struct pwm_waveform){ 117 .period_length_ns = 0, 118 }; 119 } 120 } 121 122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) 123 { 124 if (a->period_length_ns > b->period_length_ns) 125 return 1; 126 127 if (a->period_length_ns < b->period_length_ns) 128 return -1; 129 130 if (a->duty_length_ns > b->duty_length_ns) 131 return 1; 132 133 if (a->duty_length_ns < b->duty_length_ns) 134 return -1; 135 136 if (a->duty_offset_ns > b->duty_offset_ns) 137 return 1; 138 139 if (a->duty_offset_ns < b->duty_offset_ns) 140 return -1; 141 142 return 0; 143 } 144 145 static bool pwm_check_rounding(const struct pwm_waveform *wf, 146 const struct pwm_waveform *wf_rounded) 147 { 148 if (!wf->period_length_ns) 149 return true; 150 151 if (wf->period_length_ns < wf_rounded->period_length_ns) 152 return false; 153 154 if (wf->duty_length_ns < wf_rounded->duty_length_ns) 155 return false; 156 157 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) 158 return false; 159 160 return true; 161 } 162 163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, 164 const struct pwm_waveform *wf, void *wfhw) 165 { 166 const struct pwm_ops *ops = chip->ops; 167 int ret; 168 169 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); 170 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); 171 172 return ret; 173 } 174 175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, 176 const void *wfhw, struct pwm_waveform *wf) 177 { 178 const struct pwm_ops *ops = chip->ops; 179 int ret; 180 181 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); 182 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); 183 184 return ret; 185 } 186 187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) 188 { 189 const struct pwm_ops *ops = chip->ops; 190 int ret; 191 192 ret = ops->read_waveform(chip, pwm, wfhw); 193 trace_pwm_read_waveform(pwm, wfhw, ret); 194 195 return ret; 196 } 197 198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) 199 { 200 const struct pwm_ops *ops = chip->ops; 201 int ret; 202 203 ret = ops->write_waveform(chip, pwm, wfhw); 204 trace_pwm_write_waveform(pwm, wfhw, ret); 205 206 return ret; 207 } 208 209 #define WFHWSIZE 20 210 211 /** 212 * pwm_round_waveform_might_sleep - Query hardware capabilities 213 * Cannot be used in atomic context. 214 * @pwm: PWM device 215 * @wf: waveform to round and output parameter 216 * 217 * Typically a given waveform cannot be implemented exactly by hardware, e.g. 218 * because hardware only supports coarse period resolution or no duty_offset. 219 * This function returns the actually implemented waveform if you pass @wf to 220 * pwm_set_waveform_might_sleep() now. 221 * 222 * Note however that the world doesn't stop turning when you call it, so when 223 * doing:: 224 * 225 * pwm_round_waveform_might_sleep(mypwm, &wf); 226 * pwm_set_waveform_might_sleep(mypwm, &wf, true); 227 * 228 * the latter might fail, e.g. because an input clock changed its rate between 229 * these two calls and the waveform determined by 230 * pwm_round_waveform_might_sleep() cannot be implemented any more. 231 * 232 * Usually all values passed in @wf are rounded down to the nearest possible 233 * value (in the order period_length_ns, duty_length_ns and then 234 * duty_offset_ns). Only if this isn't possible, a value might grow. See the 235 * documentation for pwm_set_waveform_might_sleep() for a more formal 236 * description. 237 * 238 * Returns: 0 on success, 1 if at least one value had to be rounded up or a 239 * negative errno. 240 * Context: May sleep. 241 */ 242 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 243 { 244 struct pwm_chip *chip = pwm->chip; 245 const struct pwm_ops *ops = chip->ops; 246 struct pwm_waveform wf_req = *wf; 247 char wfhw[WFHWSIZE]; 248 int ret_tohw, ret_fromhw; 249 250 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 251 252 if (!pwmchip_supports_waveform(chip)) 253 return -EOPNOTSUPP; 254 255 if (!pwm_wf_valid(wf)) 256 return -EINVAL; 257 258 guard(pwmchip)(chip); 259 260 if (!chip->operational) 261 return -ENODEV; 262 263 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); 264 if (ret_tohw < 0) 265 return ret_tohw; 266 267 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) 268 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", 269 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 270 271 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); 272 if (ret_fromhw < 0) 273 return ret_fromhw; 274 275 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) 276 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", 277 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 278 279 if (IS_ENABLED(CONFIG_PWM_DEBUG) && 280 (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf)) 281 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 282 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, 283 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw); 284 285 return ret_tohw; 286 } 287 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); 288 289 /** 290 * pwm_get_waveform_might_sleep - Query hardware about current configuration 291 * Cannot be used in atomic context. 292 * @pwm: PWM device 293 * @wf: output parameter 294 * 295 * Stores the current configuration of the PWM in @wf. Note this is the 296 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. 297 * 298 * Returns: 0 on success or a negative errno 299 * Context: May sleep. 300 */ 301 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 302 { 303 struct pwm_chip *chip = pwm->chip; 304 const struct pwm_ops *ops = chip->ops; 305 char wfhw[WFHWSIZE]; 306 int err; 307 308 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 309 310 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform) 311 return -EOPNOTSUPP; 312 313 guard(pwmchip)(chip); 314 315 if (!chip->operational) 316 return -ENODEV; 317 318 err = __pwm_read_waveform(chip, pwm, &wfhw); 319 if (err) 320 return err; 321 322 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); 323 } 324 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); 325 326 /* Called with the pwmchip lock held */ 327 static int __pwm_set_waveform(struct pwm_device *pwm, 328 const struct pwm_waveform *wf, 329 bool exact) 330 { 331 struct pwm_chip *chip = pwm->chip; 332 const struct pwm_ops *ops = chip->ops; 333 char wfhw[WFHWSIZE]; 334 struct pwm_waveform wf_rounded; 335 int err, ret_tohw; 336 337 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 338 339 if (!pwmchip_supports_waveform(chip)) 340 return -EOPNOTSUPP; 341 342 if (!pwm_wf_valid(wf)) 343 return -EINVAL; 344 345 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); 346 if (ret_tohw < 0) 347 return ret_tohw; 348 349 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { 350 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 351 if (err) 352 return err; 353 354 if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded)) 355 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 356 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 357 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw); 358 359 if (exact && pwmwfcmp(wf, &wf_rounded)) { 360 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", 361 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 362 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 363 364 return 1; 365 } 366 } 367 368 err = __pwm_write_waveform(chip, pwm, &wfhw); 369 if (err) 370 return err; 371 372 /* update .state */ 373 pwm_wf2state(wf, &pwm->state); 374 375 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { 376 struct pwm_waveform wf_set; 377 378 err = __pwm_read_waveform(chip, pwm, &wfhw); 379 if (err) 380 /* maybe ignore? */ 381 return err; 382 383 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); 384 if (err) 385 /* maybe ignore? */ 386 return err; 387 388 if (pwmwfcmp(&wf_set, &wf_rounded) != 0) 389 dev_err(&chip->dev, 390 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", 391 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 392 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, 393 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); 394 } 395 396 return ret_tohw; 397 } 398 399 /** 400 * pwm_set_waveform_might_sleep - Apply a new waveform 401 * Cannot be used in atomic context. 402 * @pwm: PWM device 403 * @wf: The waveform to apply 404 * @exact: If true no rounding is allowed 405 * 406 * Typically a requested waveform cannot be implemented exactly, e.g. because 407 * you requested .period_length_ns = 100 ns, but the hardware can only set 408 * periods that are a multiple of 8.5 ns. With that hardware passing @exact = 409 * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM. 410 * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not 411 * bigger than the requested value). 412 * Note that even with @exact = true, some rounding by less than 1 ns is 413 * possible/needed. In the above example requesting .period_length_ns = 94 and 414 * @exact = true, you get the hardware configured with period = 93.5 ns. 415 * 416 * Let C be the set of possible hardware configurations for a given PWM device, 417 * consisting of tuples (p, d, o) where p is the period length, d is the duty 418 * length and o the duty offset. 419 * 420 * The following algorithm is implemented to pick the hardware setting 421 * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false:: 422 * 423 * p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) }) 424 * d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) }) 425 * o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) }) 426 * 427 * In words: The chosen period length is the maximal possible period length not 428 * bigger than the requested period length and if that doesn't exist, the 429 * minimal period length. The chosen duty length is the maximal possible duty 430 * length that is compatible with the chosen period length and isn't bigger than 431 * the requested duty length. Again if such a value doesn't exist, the minimal 432 * duty length compatible with the chosen period is picked. After that the duty 433 * offset compatible with the chosen period and duty length is chosen in the 434 * same way. 435 * 436 * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not 437 * being possible (if @exact), or a different negative errno on failure. 438 * Context: May sleep. 439 */ 440 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, 441 const struct pwm_waveform *wf, bool exact) 442 { 443 struct pwm_chip *chip = pwm->chip; 444 int err; 445 446 might_sleep(); 447 448 guard(pwmchip)(chip); 449 450 if (!chip->operational) 451 return -ENODEV; 452 453 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 454 /* 455 * Catch any drivers that have been marked as atomic but 456 * that will sleep anyway. 457 */ 458 non_block_start(); 459 err = __pwm_set_waveform(pwm, wf, exact); 460 non_block_end(); 461 } else { 462 err = __pwm_set_waveform(pwm, wf, exact); 463 } 464 465 /* 466 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also 467 * make sure that -EDOM is only returned in exactly that case. Note that 468 * __pwm_set_waveform() should never return -EDOM which justifies the 469 * unlikely(). 470 */ 471 if (unlikely(err == -EDOM)) 472 err = -EINVAL; 473 else if (exact && err == 1) 474 err = -EDOM; 475 else if (err == 1) 476 err = 0; 477 478 return err; 479 } 480 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); 481 482 static void pwm_apply_debug(struct pwm_device *pwm, 483 const struct pwm_state *state) 484 { 485 struct pwm_state *last = &pwm->last; 486 struct pwm_chip *chip = pwm->chip; 487 struct pwm_state s1 = { 0 }, s2 = { 0 }; 488 int err; 489 490 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 491 return; 492 493 /* No reasonable diagnosis possible without .get_state() */ 494 if (!chip->ops->get_state) 495 return; 496 497 /* 498 * *state was just applied. Read out the hardware state and do some 499 * checks. 500 */ 501 502 err = chip->ops->get_state(chip, pwm, &s1); 503 trace_pwm_get(pwm, &s1, err); 504 if (err) 505 /* If that failed there isn't much to debug */ 506 return; 507 508 /* 509 * The lowlevel driver either ignored .polarity (which is a bug) or as 510 * best effort inverted .polarity and fixed .duty_cycle respectively. 511 * Undo this inversion and fixup for further tests. 512 */ 513 if (s1.enabled && s1.polarity != state->polarity) { 514 s2.polarity = state->polarity; 515 s2.duty_cycle = s1.period - s1.duty_cycle; 516 s2.period = s1.period; 517 s2.enabled = s1.enabled; 518 } else { 519 s2 = s1; 520 } 521 522 if (s2.polarity != state->polarity && 523 state->duty_cycle < state->period) 524 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); 525 526 if (state->enabled && s2.enabled && 527 last->polarity == state->polarity && 528 last->period > s2.period && 529 last->period <= state->period) 530 dev_warn(pwmchip_parent(chip), 531 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 532 state->period, s2.period, last->period); 533 534 /* 535 * Rounding period up is fine only if duty_cycle is 0 then, because a 536 * flat line doesn't have a characteristic period. 537 */ 538 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle) 539 dev_warn(pwmchip_parent(chip), 540 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 541 state->period, s2.period); 542 543 if (state->enabled && 544 last->polarity == state->polarity && 545 last->period == s2.period && 546 last->duty_cycle > s2.duty_cycle && 547 last->duty_cycle <= state->duty_cycle) 548 dev_warn(pwmchip_parent(chip), 549 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 550 state->duty_cycle, state->period, 551 s2.duty_cycle, s2.period, 552 last->duty_cycle, last->period); 553 554 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle) 555 dev_warn(pwmchip_parent(chip), 556 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 557 state->duty_cycle, state->period, 558 s2.duty_cycle, s2.period); 559 560 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 561 dev_warn(pwmchip_parent(chip), 562 "requested disabled, but yielded enabled with duty > 0\n"); 563 564 /* reapply the state that the driver reported being configured. */ 565 err = chip->ops->apply(chip, pwm, &s1); 566 trace_pwm_apply(pwm, &s1, err); 567 if (err) { 568 *last = s1; 569 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); 570 return; 571 } 572 573 *last = (struct pwm_state){ 0 }; 574 err = chip->ops->get_state(chip, pwm, last); 575 trace_pwm_get(pwm, last, err); 576 if (err) 577 return; 578 579 /* reapplication of the current state should give an exact match */ 580 if (s1.enabled != last->enabled || 581 s1.polarity != last->polarity || 582 (s1.enabled && s1.period != last->period) || 583 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 584 dev_err(pwmchip_parent(chip), 585 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 586 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 587 last->enabled, last->polarity, last->duty_cycle, 588 last->period); 589 } 590 } 591 592 static bool pwm_state_valid(const struct pwm_state *state) 593 { 594 /* 595 * For a disabled state all other state description is irrelevant and 596 * and supposed to be ignored. So also ignore any strange values and 597 * consider the state ok. 598 */ 599 if (state->enabled) 600 return true; 601 602 if (!state->period) 603 return false; 604 605 if (state->duty_cycle > state->period) 606 return false; 607 608 return true; 609 } 610 611 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 612 { 613 struct pwm_chip *chip; 614 const struct pwm_ops *ops; 615 int err; 616 617 if (!pwm || !state) 618 return -EINVAL; 619 620 if (!pwm_state_valid(state)) { 621 /* 622 * Allow to transition from one invalid state to another. 623 * This ensures that you can e.g. change the polarity while 624 * the period is zero. (This happens on stm32 when the hardware 625 * is in its poweron default state.) This greatly simplifies 626 * working with the sysfs API where you can only change one 627 * parameter at a time. 628 */ 629 if (!pwm_state_valid(&pwm->state)) { 630 pwm->state = *state; 631 return 0; 632 } 633 634 return -EINVAL; 635 } 636 637 chip = pwm->chip; 638 ops = chip->ops; 639 640 if (state->period == pwm->state.period && 641 state->duty_cycle == pwm->state.duty_cycle && 642 state->polarity == pwm->state.polarity && 643 state->enabled == pwm->state.enabled && 644 state->usage_power == pwm->state.usage_power) 645 return 0; 646 647 if (pwmchip_supports_waveform(chip)) { 648 struct pwm_waveform wf; 649 char wfhw[WFHWSIZE]; 650 651 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 652 653 pwm_state2wf(state, &wf); 654 655 /* 656 * The rounding is wrong here for states with inverted polarity. 657 * While .apply() rounds down duty_cycle (which represents the 658 * time from the start of the period to the inner edge), 659 * .round_waveform_tohw() rounds down the time the PWM is high. 660 * Can be fixed if the need arises, until reported otherwise 661 * let's assume that consumers don't care. 662 */ 663 664 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); 665 if (err) { 666 if (err > 0) 667 /* 668 * This signals an invalid request, typically 669 * the requested period (or duty_offset) is 670 * smaller than possible with the hardware. 671 */ 672 return -EINVAL; 673 674 return err; 675 } 676 677 if (IS_ENABLED(CONFIG_PWM_DEBUG)) { 678 struct pwm_waveform wf_rounded; 679 680 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 681 if (err) 682 return err; 683 684 if (!pwm_check_rounding(&wf, &wf_rounded)) 685 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 686 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, 687 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 688 } 689 690 err = __pwm_write_waveform(chip, pwm, &wfhw); 691 if (err) 692 return err; 693 694 pwm->state = *state; 695 696 } else { 697 err = ops->apply(chip, pwm, state); 698 trace_pwm_apply(pwm, state, err); 699 if (err) 700 return err; 701 702 pwm->state = *state; 703 704 /* 705 * only do this after pwm->state was applied as some 706 * implementations of .get_state() depend on this 707 */ 708 pwm_apply_debug(pwm, state); 709 } 710 711 return 0; 712 } 713 714 /** 715 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 716 * Cannot be used in atomic context. 717 * @pwm: PWM device 718 * @state: new state to apply 719 * 720 * Returns: 0 on success, or a negative errno 721 * Context: May sleep. 722 */ 723 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 724 { 725 int err; 726 struct pwm_chip *chip = pwm->chip; 727 728 /* 729 * Some lowlevel driver's implementations of .apply() make use of 730 * mutexes, also with some drivers only returning when the new 731 * configuration is active calling pwm_apply_might_sleep() from atomic context 732 * is a bad idea. So make it explicit that calling this function might 733 * sleep. 734 */ 735 might_sleep(); 736 737 guard(pwmchip)(chip); 738 739 if (!chip->operational) 740 return -ENODEV; 741 742 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 743 /* 744 * Catch any drivers that have been marked as atomic but 745 * that will sleep anyway. 746 */ 747 non_block_start(); 748 err = __pwm_apply(pwm, state); 749 non_block_end(); 750 } else { 751 err = __pwm_apply(pwm, state); 752 } 753 754 return err; 755 } 756 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 757 758 /** 759 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 760 * Not all PWM devices support this function, check with pwm_might_sleep(). 761 * @pwm: PWM device 762 * @state: new state to apply 763 * 764 * Returns: 0 on success, or a negative errno 765 * Context: Any 766 */ 767 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 768 { 769 struct pwm_chip *chip = pwm->chip; 770 771 WARN_ONCE(!chip->atomic, 772 "sleeping PWM driver used in atomic context\n"); 773 774 guard(pwmchip)(chip); 775 776 if (!chip->operational) 777 return -ENODEV; 778 779 return __pwm_apply(pwm, state); 780 } 781 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 782 783 /** 784 * pwm_get_state_hw() - get the current PWM state from hardware 785 * @pwm: PWM device 786 * @state: state to fill with the current PWM state 787 * 788 * Similar to pwm_get_state() but reads the current PWM state from hardware 789 * instead of the requested state. 790 * 791 * Returns: 0 on success or a negative error code on failure. 792 * Context: May sleep. 793 */ 794 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 795 { 796 struct pwm_chip *chip = pwm->chip; 797 const struct pwm_ops *ops = chip->ops; 798 int ret = -EOPNOTSUPP; 799 800 might_sleep(); 801 802 guard(pwmchip)(chip); 803 804 if (!chip->operational) 805 return -ENODEV; 806 807 if (pwmchip_supports_waveform(chip) && ops->read_waveform) { 808 char wfhw[WFHWSIZE]; 809 struct pwm_waveform wf; 810 811 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 812 813 ret = __pwm_read_waveform(chip, pwm, &wfhw); 814 if (ret) 815 return ret; 816 817 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); 818 if (ret) 819 return ret; 820 821 pwm_wf2state(&wf, state); 822 823 } else if (ops->get_state) { 824 ret = ops->get_state(chip, pwm, state); 825 trace_pwm_get(pwm, state, ret); 826 } 827 828 return ret; 829 } 830 EXPORT_SYMBOL_GPL(pwm_get_state_hw); 831 832 /** 833 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 834 * @pwm: PWM device 835 * 836 * This function will adjust the PWM config to the PWM arguments provided 837 * by the DT or PWM lookup table. This is particularly useful to adapt 838 * the bootloader config to the Linux one. 839 * 840 * Returns: 0 on success or a negative error code on failure. 841 * Context: May sleep. 842 */ 843 int pwm_adjust_config(struct pwm_device *pwm) 844 { 845 struct pwm_state state; 846 struct pwm_args pargs; 847 848 pwm_get_args(pwm, &pargs); 849 pwm_get_state(pwm, &state); 850 851 /* 852 * If the current period is zero it means that either the PWM driver 853 * does not support initial state retrieval or the PWM has not yet 854 * been configured. 855 * 856 * In either case, we setup the new period and polarity, and assign a 857 * duty cycle of 0. 858 */ 859 if (!state.period) { 860 state.duty_cycle = 0; 861 state.period = pargs.period; 862 state.polarity = pargs.polarity; 863 864 return pwm_apply_might_sleep(pwm, &state); 865 } 866 867 /* 868 * Adjust the PWM duty cycle/period based on the period value provided 869 * in PWM args. 870 */ 871 if (pargs.period != state.period) { 872 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 873 874 do_div(dutycycle, state.period); 875 state.duty_cycle = dutycycle; 876 state.period = pargs.period; 877 } 878 879 /* 880 * If the polarity changed, we should also change the duty cycle. 881 */ 882 if (pargs.polarity != state.polarity) { 883 state.polarity = pargs.polarity; 884 state.duty_cycle = state.period - state.duty_cycle; 885 } 886 887 return pwm_apply_might_sleep(pwm, &state); 888 } 889 EXPORT_SYMBOL_GPL(pwm_adjust_config); 890 891 /** 892 * pwm_capture() - capture and report a PWM signal 893 * @pwm: PWM device 894 * @result: structure to fill with capture result 895 * @timeout: time to wait, in milliseconds, before giving up on capture 896 * 897 * Returns: 0 on success or a negative error code on failure. 898 */ 899 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 900 unsigned long timeout) 901 { 902 struct pwm_chip *chip = pwm->chip; 903 const struct pwm_ops *ops = chip->ops; 904 905 if (!ops->capture) 906 return -ENOSYS; 907 908 /* 909 * Holding the pwm_lock is probably not needed. If you use pwm_capture() 910 * and you're interested to speed it up, please convince yourself it's 911 * really not needed, test and then suggest a patch on the mailing list. 912 */ 913 guard(mutex)(&pwm_lock); 914 915 guard(pwmchip)(chip); 916 917 if (!chip->operational) 918 return -ENODEV; 919 920 return ops->capture(chip, pwm, result, timeout); 921 } 922 923 static struct pwm_chip *pwmchip_find_by_name(const char *name) 924 { 925 struct pwm_chip *chip; 926 unsigned long id, tmp; 927 928 if (!name) 929 return NULL; 930 931 guard(mutex)(&pwm_lock); 932 933 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 934 if (device_match_name(pwmchip_parent(chip), name)) 935 return chip; 936 } 937 938 return NULL; 939 } 940 941 static int pwm_device_request(struct pwm_device *pwm, const char *label) 942 { 943 int err; 944 struct pwm_chip *chip = pwm->chip; 945 const struct pwm_ops *ops = chip->ops; 946 947 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 948 return -EBUSY; 949 950 /* 951 * This function is called while holding pwm_lock. As .operational only 952 * changes while holding this lock, checking it here without holding the 953 * chip lock is fine. 954 */ 955 if (!chip->operational) 956 return -ENODEV; 957 958 if (!try_module_get(chip->owner)) 959 return -ENODEV; 960 961 if (!get_device(&chip->dev)) { 962 err = -ENODEV; 963 goto err_get_device; 964 } 965 966 if (ops->request) { 967 err = ops->request(chip, pwm); 968 if (err) { 969 put_device(&chip->dev); 970 err_get_device: 971 module_put(chip->owner); 972 return err; 973 } 974 } 975 976 if (ops->read_waveform || ops->get_state) { 977 /* 978 * Zero-initialize state because most drivers are unaware of 979 * .usage_power. The other members of state are supposed to be 980 * set by lowlevel drivers. We still initialize the whole 981 * structure for simplicity even though this might paper over 982 * faulty implementations of .get_state(). 983 */ 984 struct pwm_state state = { 0, }; 985 986 err = pwm_get_state_hw(pwm, &state); 987 if (!err) 988 pwm->state = state; 989 990 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 991 pwm->last = pwm->state; 992 } 993 994 set_bit(PWMF_REQUESTED, &pwm->flags); 995 pwm->label = label; 996 997 return 0; 998 } 999 1000 /** 1001 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 1002 * @chip: PWM chip 1003 * @index: per-chip index of the PWM to request 1004 * @label: a literal description string of this PWM 1005 * 1006 * Returns: A pointer to the PWM device at the given index of the given PWM 1007 * chip. A negative error code is returned if the index is not valid for the 1008 * specified PWM chip or if the PWM device cannot be requested. 1009 */ 1010 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 1011 unsigned int index, 1012 const char *label) 1013 { 1014 struct pwm_device *pwm; 1015 int err; 1016 1017 if (!chip || index >= chip->npwm) 1018 return ERR_PTR(-EINVAL); 1019 1020 guard(mutex)(&pwm_lock); 1021 1022 pwm = &chip->pwms[index]; 1023 1024 err = pwm_device_request(pwm, label); 1025 if (err < 0) 1026 return ERR_PTR(err); 1027 1028 return pwm; 1029 } 1030 1031 struct pwm_device * 1032 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 1033 { 1034 struct pwm_device *pwm; 1035 1036 /* period in the second cell and flags in the third cell are optional */ 1037 if (args->args_count < 1) 1038 return ERR_PTR(-EINVAL); 1039 1040 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 1041 if (IS_ERR(pwm)) 1042 return pwm; 1043 1044 if (args->args_count > 1) 1045 pwm->args.period = args->args[1]; 1046 1047 pwm->args.polarity = PWM_POLARITY_NORMAL; 1048 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 1049 pwm->args.polarity = PWM_POLARITY_INVERSED; 1050 1051 return pwm; 1052 } 1053 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 1054 1055 /* 1056 * This callback is used for PXA PWM chips that only have a single PWM line. 1057 * For such chips you could argue that passing the line number (i.e. the first 1058 * parameter in the common case) is useless as it's always zero. So compared to 1059 * the default xlate function of_pwm_xlate_with_flags() the first parameter is 1060 * the default period and the second are flags. 1061 * 1062 * Note that if #pwm-cells = <3>, the semantic is the same as for 1063 * of_pwm_xlate_with_flags() to allow converting the affected driver to 1064 * #pwm-cells = <3> without breaking the legacy binding. 1065 * 1066 * Don't use for new drivers. 1067 */ 1068 struct pwm_device * 1069 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 1070 { 1071 struct pwm_device *pwm; 1072 1073 if (args->args_count >= 3) 1074 return of_pwm_xlate_with_flags(chip, args); 1075 1076 pwm = pwm_request_from_chip(chip, 0, NULL); 1077 if (IS_ERR(pwm)) 1078 return pwm; 1079 1080 if (args->args_count > 0) 1081 pwm->args.period = args->args[0]; 1082 1083 pwm->args.polarity = PWM_POLARITY_NORMAL; 1084 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) 1085 pwm->args.polarity = PWM_POLARITY_INVERSED; 1086 1087 return pwm; 1088 } 1089 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 1090 1091 struct pwm_export { 1092 struct device pwm_dev; 1093 struct pwm_device *pwm; 1094 struct mutex lock; 1095 struct pwm_state suspend; 1096 }; 1097 1098 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) 1099 { 1100 return container_of(pwmchip_dev, struct pwm_chip, dev); 1101 } 1102 1103 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) 1104 { 1105 return container_of(pwm_dev, struct pwm_export, pwm_dev); 1106 } 1107 1108 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) 1109 { 1110 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1111 1112 return export->pwm; 1113 } 1114 1115 static ssize_t period_show(struct device *pwm_dev, 1116 struct device_attribute *attr, 1117 char *buf) 1118 { 1119 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1120 struct pwm_state state; 1121 1122 pwm_get_state(pwm, &state); 1123 1124 return sysfs_emit(buf, "%llu\n", state.period); 1125 } 1126 1127 static ssize_t period_store(struct device *pwm_dev, 1128 struct device_attribute *attr, 1129 const char *buf, size_t size) 1130 { 1131 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1132 struct pwm_device *pwm = export->pwm; 1133 struct pwm_state state; 1134 u64 val; 1135 int ret; 1136 1137 ret = kstrtou64(buf, 0, &val); 1138 if (ret) 1139 return ret; 1140 1141 guard(mutex)(&export->lock); 1142 1143 pwm_get_state(pwm, &state); 1144 state.period = val; 1145 ret = pwm_apply_might_sleep(pwm, &state); 1146 1147 return ret ? : size; 1148 } 1149 1150 static ssize_t duty_cycle_show(struct device *pwm_dev, 1151 struct device_attribute *attr, 1152 char *buf) 1153 { 1154 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1155 struct pwm_state state; 1156 1157 pwm_get_state(pwm, &state); 1158 1159 return sysfs_emit(buf, "%llu\n", state.duty_cycle); 1160 } 1161 1162 static ssize_t duty_cycle_store(struct device *pwm_dev, 1163 struct device_attribute *attr, 1164 const char *buf, size_t size) 1165 { 1166 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1167 struct pwm_device *pwm = export->pwm; 1168 struct pwm_state state; 1169 u64 val; 1170 int ret; 1171 1172 ret = kstrtou64(buf, 0, &val); 1173 if (ret) 1174 return ret; 1175 1176 guard(mutex)(&export->lock); 1177 1178 pwm_get_state(pwm, &state); 1179 state.duty_cycle = val; 1180 ret = pwm_apply_might_sleep(pwm, &state); 1181 1182 return ret ? : size; 1183 } 1184 1185 static ssize_t enable_show(struct device *pwm_dev, 1186 struct device_attribute *attr, 1187 char *buf) 1188 { 1189 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1190 struct pwm_state state; 1191 1192 pwm_get_state(pwm, &state); 1193 1194 return sysfs_emit(buf, "%d\n", state.enabled); 1195 } 1196 1197 static ssize_t enable_store(struct device *pwm_dev, 1198 struct device_attribute *attr, 1199 const char *buf, size_t size) 1200 { 1201 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1202 struct pwm_device *pwm = export->pwm; 1203 struct pwm_state state; 1204 int val, ret; 1205 1206 ret = kstrtoint(buf, 0, &val); 1207 if (ret) 1208 return ret; 1209 1210 guard(mutex)(&export->lock); 1211 1212 pwm_get_state(pwm, &state); 1213 1214 switch (val) { 1215 case 0: 1216 state.enabled = false; 1217 break; 1218 case 1: 1219 state.enabled = true; 1220 break; 1221 default: 1222 return -EINVAL; 1223 } 1224 1225 ret = pwm_apply_might_sleep(pwm, &state); 1226 1227 return ret ? : size; 1228 } 1229 1230 static ssize_t polarity_show(struct device *pwm_dev, 1231 struct device_attribute *attr, 1232 char *buf) 1233 { 1234 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1235 const char *polarity = "unknown"; 1236 struct pwm_state state; 1237 1238 pwm_get_state(pwm, &state); 1239 1240 switch (state.polarity) { 1241 case PWM_POLARITY_NORMAL: 1242 polarity = "normal"; 1243 break; 1244 1245 case PWM_POLARITY_INVERSED: 1246 polarity = "inversed"; 1247 break; 1248 } 1249 1250 return sysfs_emit(buf, "%s\n", polarity); 1251 } 1252 1253 static ssize_t polarity_store(struct device *pwm_dev, 1254 struct device_attribute *attr, 1255 const char *buf, size_t size) 1256 { 1257 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1258 struct pwm_device *pwm = export->pwm; 1259 enum pwm_polarity polarity; 1260 struct pwm_state state; 1261 int ret; 1262 1263 if (sysfs_streq(buf, "normal")) 1264 polarity = PWM_POLARITY_NORMAL; 1265 else if (sysfs_streq(buf, "inversed")) 1266 polarity = PWM_POLARITY_INVERSED; 1267 else 1268 return -EINVAL; 1269 1270 guard(mutex)(&export->lock); 1271 1272 pwm_get_state(pwm, &state); 1273 state.polarity = polarity; 1274 ret = pwm_apply_might_sleep(pwm, &state); 1275 1276 return ret ? : size; 1277 } 1278 1279 static ssize_t capture_show(struct device *pwm_dev, 1280 struct device_attribute *attr, 1281 char *buf) 1282 { 1283 struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1284 struct pwm_capture result; 1285 int ret; 1286 1287 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); 1288 if (ret) 1289 return ret; 1290 1291 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); 1292 } 1293 1294 static DEVICE_ATTR_RW(period); 1295 static DEVICE_ATTR_RW(duty_cycle); 1296 static DEVICE_ATTR_RW(enable); 1297 static DEVICE_ATTR_RW(polarity); 1298 static DEVICE_ATTR_RO(capture); 1299 1300 static struct attribute *pwm_attrs[] = { 1301 &dev_attr_period.attr, 1302 &dev_attr_duty_cycle.attr, 1303 &dev_attr_enable.attr, 1304 &dev_attr_polarity.attr, 1305 &dev_attr_capture.attr, 1306 NULL 1307 }; 1308 ATTRIBUTE_GROUPS(pwm); 1309 1310 static void pwm_export_release(struct device *pwm_dev) 1311 { 1312 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1313 1314 kfree(export); 1315 } 1316 1317 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1318 { 1319 struct pwm_export *export; 1320 char *pwm_prop[2]; 1321 int ret; 1322 1323 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) 1324 return -EBUSY; 1325 1326 export = kzalloc(sizeof(*export), GFP_KERNEL); 1327 if (!export) { 1328 clear_bit(PWMF_EXPORTED, &pwm->flags); 1329 return -ENOMEM; 1330 } 1331 1332 export->pwm = pwm; 1333 mutex_init(&export->lock); 1334 1335 export->pwm_dev.release = pwm_export_release; 1336 export->pwm_dev.parent = pwmchip_dev; 1337 export->pwm_dev.devt = MKDEV(0, 0); 1338 export->pwm_dev.groups = pwm_groups; 1339 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); 1340 1341 ret = device_register(&export->pwm_dev); 1342 if (ret) { 1343 clear_bit(PWMF_EXPORTED, &pwm->flags); 1344 put_device(&export->pwm_dev); 1345 export = NULL; 1346 return ret; 1347 } 1348 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); 1349 pwm_prop[1] = NULL; 1350 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1351 kfree(pwm_prop[0]); 1352 1353 return 0; 1354 } 1355 1356 static int pwm_unexport_match(struct device *pwm_dev, const void *data) 1357 { 1358 return pwm_from_dev(pwm_dev) == data; 1359 } 1360 1361 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1362 { 1363 struct device *pwm_dev; 1364 char *pwm_prop[2]; 1365 1366 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) 1367 return -ENODEV; 1368 1369 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1370 if (!pwm_dev) 1371 return -ENODEV; 1372 1373 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); 1374 pwm_prop[1] = NULL; 1375 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1376 kfree(pwm_prop[0]); 1377 1378 /* for device_find_child() */ 1379 put_device(pwm_dev); 1380 device_unregister(pwm_dev); 1381 pwm_put(pwm); 1382 1383 return 0; 1384 } 1385 1386 static ssize_t export_store(struct device *pwmchip_dev, 1387 struct device_attribute *attr, 1388 const char *buf, size_t len) 1389 { 1390 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1391 struct pwm_device *pwm; 1392 unsigned int hwpwm; 1393 int ret; 1394 1395 ret = kstrtouint(buf, 0, &hwpwm); 1396 if (ret < 0) 1397 return ret; 1398 1399 if (hwpwm >= chip->npwm) 1400 return -ENODEV; 1401 1402 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); 1403 if (IS_ERR(pwm)) 1404 return PTR_ERR(pwm); 1405 1406 ret = pwm_export_child(pwmchip_dev, pwm); 1407 if (ret < 0) 1408 pwm_put(pwm); 1409 1410 return ret ? : len; 1411 } 1412 static DEVICE_ATTR_WO(export); 1413 1414 static ssize_t unexport_store(struct device *pwmchip_dev, 1415 struct device_attribute *attr, 1416 const char *buf, size_t len) 1417 { 1418 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1419 unsigned int hwpwm; 1420 int ret; 1421 1422 ret = kstrtouint(buf, 0, &hwpwm); 1423 if (ret < 0) 1424 return ret; 1425 1426 if (hwpwm >= chip->npwm) 1427 return -ENODEV; 1428 1429 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); 1430 1431 return ret ? : len; 1432 } 1433 static DEVICE_ATTR_WO(unexport); 1434 1435 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, 1436 char *buf) 1437 { 1438 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1439 1440 return sysfs_emit(buf, "%u\n", chip->npwm); 1441 } 1442 static DEVICE_ATTR_RO(npwm); 1443 1444 static struct attribute *pwm_chip_attrs[] = { 1445 &dev_attr_export.attr, 1446 &dev_attr_unexport.attr, 1447 &dev_attr_npwm.attr, 1448 NULL, 1449 }; 1450 ATTRIBUTE_GROUPS(pwm_chip); 1451 1452 /* takes export->lock on success */ 1453 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, 1454 struct pwm_device *pwm, 1455 struct pwm_state *state) 1456 { 1457 struct device *pwm_dev; 1458 struct pwm_export *export; 1459 1460 if (!test_bit(PWMF_EXPORTED, &pwm->flags)) 1461 return NULL; 1462 1463 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1464 if (!pwm_dev) 1465 return NULL; 1466 1467 export = pwmexport_from_dev(pwm_dev); 1468 put_device(pwm_dev); /* for device_find_child() */ 1469 1470 mutex_lock(&export->lock); 1471 pwm_get_state(pwm, state); 1472 1473 return export; 1474 } 1475 1476 static int pwm_class_apply_state(struct pwm_export *export, 1477 struct pwm_device *pwm, 1478 struct pwm_state *state) 1479 { 1480 int ret = pwm_apply_might_sleep(pwm, state); 1481 1482 /* release lock taken in pwm_class_get_state */ 1483 mutex_unlock(&export->lock); 1484 1485 return ret; 1486 } 1487 1488 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) 1489 { 1490 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1491 unsigned int i; 1492 int ret = 0; 1493 1494 for (i = 0; i < npwm; i++) { 1495 struct pwm_device *pwm = &chip->pwms[i]; 1496 struct pwm_state state; 1497 struct pwm_export *export; 1498 1499 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1500 if (!export) 1501 continue; 1502 1503 /* If pwmchip was not enabled before suspend, do nothing. */ 1504 if (!export->suspend.enabled) { 1505 /* release lock taken in pwm_class_get_state */ 1506 mutex_unlock(&export->lock); 1507 continue; 1508 } 1509 1510 state.enabled = export->suspend.enabled; 1511 ret = pwm_class_apply_state(export, pwm, &state); 1512 if (ret < 0) 1513 break; 1514 } 1515 1516 return ret; 1517 } 1518 1519 static int pwm_class_suspend(struct device *pwmchip_dev) 1520 { 1521 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1522 unsigned int i; 1523 int ret = 0; 1524 1525 for (i = 0; i < chip->npwm; i++) { 1526 struct pwm_device *pwm = &chip->pwms[i]; 1527 struct pwm_state state; 1528 struct pwm_export *export; 1529 1530 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1531 if (!export) 1532 continue; 1533 1534 /* 1535 * If pwmchip was not enabled before suspend, save 1536 * state for resume time and do nothing else. 1537 */ 1538 export->suspend = state; 1539 if (!state.enabled) { 1540 /* release lock taken in pwm_class_get_state */ 1541 mutex_unlock(&export->lock); 1542 continue; 1543 } 1544 1545 state.enabled = false; 1546 ret = pwm_class_apply_state(export, pwm, &state); 1547 if (ret < 0) { 1548 /* 1549 * roll back the PWM devices that were disabled by 1550 * this suspend function. 1551 */ 1552 pwm_class_resume_npwm(pwmchip_dev, i); 1553 break; 1554 } 1555 } 1556 1557 return ret; 1558 } 1559 1560 static int pwm_class_resume(struct device *pwmchip_dev) 1561 { 1562 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1563 1564 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); 1565 } 1566 1567 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); 1568 1569 static struct class pwm_class = { 1570 .name = "pwm", 1571 .dev_groups = pwm_chip_groups, 1572 .pm = pm_sleep_ptr(&pwm_class_pm_ops), 1573 }; 1574 1575 static void pwmchip_sysfs_unexport(struct pwm_chip *chip) 1576 { 1577 unsigned int i; 1578 1579 for (i = 0; i < chip->npwm; i++) { 1580 struct pwm_device *pwm = &chip->pwms[i]; 1581 1582 if (test_bit(PWMF_EXPORTED, &pwm->flags)) 1583 pwm_unexport_child(&chip->dev, pwm); 1584 } 1585 } 1586 1587 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN 1588 1589 static void *pwmchip_priv(struct pwm_chip *chip) 1590 { 1591 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); 1592 } 1593 1594 /* This is the counterpart to pwmchip_alloc() */ 1595 void pwmchip_put(struct pwm_chip *chip) 1596 { 1597 put_device(&chip->dev); 1598 } 1599 EXPORT_SYMBOL_GPL(pwmchip_put); 1600 1601 static void pwmchip_release(struct device *pwmchip_dev) 1602 { 1603 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1604 1605 kfree(chip); 1606 } 1607 1608 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1609 { 1610 struct pwm_chip *chip; 1611 struct device *pwmchip_dev; 1612 size_t alloc_size; 1613 unsigned int i; 1614 1615 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), 1616 sizeof_priv); 1617 1618 chip = kzalloc(alloc_size, GFP_KERNEL); 1619 if (!chip) 1620 return ERR_PTR(-ENOMEM); 1621 1622 chip->npwm = npwm; 1623 chip->uses_pwmchip_alloc = true; 1624 chip->operational = false; 1625 1626 pwmchip_dev = &chip->dev; 1627 device_initialize(pwmchip_dev); 1628 pwmchip_dev->class = &pwm_class; 1629 pwmchip_dev->parent = parent; 1630 pwmchip_dev->release = pwmchip_release; 1631 1632 pwmchip_set_drvdata(chip, pwmchip_priv(chip)); 1633 1634 for (i = 0; i < chip->npwm; i++) { 1635 struct pwm_device *pwm = &chip->pwms[i]; 1636 pwm->chip = chip; 1637 pwm->hwpwm = i; 1638 } 1639 1640 return chip; 1641 } 1642 EXPORT_SYMBOL_GPL(pwmchip_alloc); 1643 1644 static void devm_pwmchip_put(void *data) 1645 { 1646 struct pwm_chip *chip = data; 1647 1648 pwmchip_put(chip); 1649 } 1650 1651 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1652 { 1653 struct pwm_chip *chip; 1654 int ret; 1655 1656 chip = pwmchip_alloc(parent, npwm, sizeof_priv); 1657 if (IS_ERR(chip)) 1658 return chip; 1659 1660 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); 1661 if (ret) 1662 return ERR_PTR(ret); 1663 1664 return chip; 1665 } 1666 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); 1667 1668 static void of_pwmchip_add(struct pwm_chip *chip) 1669 { 1670 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) 1671 return; 1672 1673 if (!chip->of_xlate) 1674 chip->of_xlate = of_pwm_xlate_with_flags; 1675 1676 of_node_get(pwmchip_parent(chip)->of_node); 1677 } 1678 1679 static void of_pwmchip_remove(struct pwm_chip *chip) 1680 { 1681 if (pwmchip_parent(chip)) 1682 of_node_put(pwmchip_parent(chip)->of_node); 1683 } 1684 1685 static bool pwm_ops_check(const struct pwm_chip *chip) 1686 { 1687 const struct pwm_ops *ops = chip->ops; 1688 1689 if (ops->write_waveform) { 1690 if (!ops->round_waveform_tohw || 1691 !ops->round_waveform_fromhw || 1692 !ops->write_waveform) 1693 return false; 1694 1695 if (WFHWSIZE < ops->sizeof_wfhw) { 1696 dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw); 1697 return false; 1698 } 1699 } else { 1700 if (!ops->apply) 1701 return false; 1702 1703 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 1704 dev_warn(pwmchip_parent(chip), 1705 "Please implement the .get_state() callback\n"); 1706 } 1707 1708 return true; 1709 } 1710 1711 static struct device_link *pwm_device_link_add(struct device *dev, 1712 struct pwm_device *pwm) 1713 { 1714 struct device_link *dl; 1715 1716 if (!dev) { 1717 /* 1718 * No device for the PWM consumer has been provided. It may 1719 * impact the PM sequence ordering: the PWM supplier may get 1720 * suspended before the consumer. 1721 */ 1722 dev_warn(pwmchip_parent(pwm->chip), 1723 "No consumer device specified to create a link to\n"); 1724 return NULL; 1725 } 1726 1727 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); 1728 if (!dl) { 1729 dev_err(dev, "failed to create device link to %s\n", 1730 dev_name(pwmchip_parent(pwm->chip))); 1731 return ERR_PTR(-EINVAL); 1732 } 1733 1734 return dl; 1735 } 1736 1737 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 1738 { 1739 struct pwm_chip *chip; 1740 unsigned long id, tmp; 1741 1742 guard(mutex)(&pwm_lock); 1743 1744 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 1745 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) 1746 return chip; 1747 1748 return ERR_PTR(-EPROBE_DEFER); 1749 } 1750 1751 /** 1752 * of_pwm_get() - request a PWM via the PWM framework 1753 * @dev: device for PWM consumer 1754 * @np: device node to get the PWM from 1755 * @con_id: consumer name 1756 * 1757 * Returns the PWM device parsed from the phandle and index specified in the 1758 * "pwms" property of a device tree node or a negative error-code on failure. 1759 * Values parsed from the device tree are stored in the returned PWM device 1760 * object. 1761 * 1762 * If con_id is NULL, the first PWM device listed in the "pwms" property will 1763 * be requested. Otherwise the "pwm-names" property is used to do a reverse 1764 * lookup of the PWM index. This also means that the "pwm-names" property 1765 * becomes mandatory for devices that look up the PWM device via the con_id 1766 * parameter. 1767 * 1768 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1769 * error code on failure. 1770 */ 1771 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 1772 const char *con_id) 1773 { 1774 struct pwm_device *pwm = NULL; 1775 struct of_phandle_args args; 1776 struct device_link *dl; 1777 struct pwm_chip *chip; 1778 int index = 0; 1779 int err; 1780 1781 if (con_id) { 1782 index = of_property_match_string(np, "pwm-names", con_id); 1783 if (index < 0) 1784 return ERR_PTR(index); 1785 } 1786 1787 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args); 1788 if (err) { 1789 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 1790 return ERR_PTR(err); 1791 } 1792 1793 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 1794 if (IS_ERR(chip)) { 1795 if (PTR_ERR(chip) != -EPROBE_DEFER) 1796 pr_err("%s(): PWM chip not found\n", __func__); 1797 1798 pwm = ERR_CAST(chip); 1799 goto put; 1800 } 1801 1802 pwm = chip->of_xlate(chip, &args); 1803 if (IS_ERR(pwm)) 1804 goto put; 1805 1806 dl = pwm_device_link_add(dev, pwm); 1807 if (IS_ERR(dl)) { 1808 /* of_xlate ended up calling pwm_request_from_chip() */ 1809 pwm_put(pwm); 1810 pwm = ERR_CAST(dl); 1811 goto put; 1812 } 1813 1814 /* 1815 * If a consumer name was not given, try to look it up from the 1816 * "pwm-names" property if it exists. Otherwise use the name of 1817 * the user device node. 1818 */ 1819 if (!con_id) { 1820 err = of_property_read_string_index(np, "pwm-names", index, 1821 &con_id); 1822 if (err < 0) 1823 con_id = np->name; 1824 } 1825 1826 pwm->label = con_id; 1827 1828 put: 1829 of_node_put(args.np); 1830 1831 return pwm; 1832 } 1833 1834 /** 1835 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 1836 * @fwnode: firmware node to get the "pwms" property from 1837 * 1838 * Returns the PWM device parsed from the fwnode and index specified in the 1839 * "pwms" property or a negative error-code on failure. 1840 * Values parsed from the device tree are stored in the returned PWM device 1841 * object. 1842 * 1843 * This is analogous to of_pwm_get() except con_id is not yet supported. 1844 * ACPI entries must look like 1845 * Package () {"pwms", Package () 1846 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 1847 * 1848 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1849 * error code on failure. 1850 */ 1851 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 1852 { 1853 struct pwm_device *pwm; 1854 struct fwnode_reference_args args; 1855 struct pwm_chip *chip; 1856 int ret; 1857 1858 memset(&args, 0, sizeof(args)); 1859 1860 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 1861 if (ret < 0) 1862 return ERR_PTR(ret); 1863 1864 if (args.nargs < 2) 1865 return ERR_PTR(-EPROTO); 1866 1867 chip = fwnode_to_pwmchip(args.fwnode); 1868 if (IS_ERR(chip)) 1869 return ERR_CAST(chip); 1870 1871 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 1872 if (IS_ERR(pwm)) 1873 return pwm; 1874 1875 pwm->args.period = args.args[1]; 1876 pwm->args.polarity = PWM_POLARITY_NORMAL; 1877 1878 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 1879 pwm->args.polarity = PWM_POLARITY_INVERSED; 1880 1881 return pwm; 1882 } 1883 1884 static DEFINE_MUTEX(pwm_lookup_lock); 1885 static LIST_HEAD(pwm_lookup_list); 1886 1887 /** 1888 * pwm_get() - look up and request a PWM device 1889 * @dev: device for PWM consumer 1890 * @con_id: consumer name 1891 * 1892 * Lookup is first attempted using DT. If the device was not instantiated from 1893 * a device tree, a PWM chip and a relative index is looked up via a table 1894 * supplied by board setup code (see pwm_add_table()). 1895 * 1896 * Once a PWM chip has been found the specified PWM device will be requested 1897 * and is ready to be used. 1898 * 1899 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1900 * error code on failure. 1901 */ 1902 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 1903 { 1904 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 1905 const char *dev_id = dev ? dev_name(dev) : NULL; 1906 struct pwm_device *pwm; 1907 struct pwm_chip *chip; 1908 struct device_link *dl; 1909 unsigned int best = 0; 1910 struct pwm_lookup *p, *chosen = NULL; 1911 unsigned int match; 1912 int err; 1913 1914 /* look up via DT first */ 1915 if (is_of_node(fwnode)) 1916 return of_pwm_get(dev, to_of_node(fwnode), con_id); 1917 1918 /* then lookup via ACPI */ 1919 if (is_acpi_node(fwnode)) { 1920 pwm = acpi_pwm_get(fwnode); 1921 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1922 return pwm; 1923 } 1924 1925 /* 1926 * We look up the provider in the static table typically provided by 1927 * board setup code. We first try to lookup the consumer device by 1928 * name. If the consumer device was passed in as NULL or if no match 1929 * was found, we try to find the consumer by directly looking it up 1930 * by name. 1931 * 1932 * If a match is found, the provider PWM chip is looked up by name 1933 * and a PWM device is requested using the PWM device per-chip index. 1934 * 1935 * The lookup algorithm was shamelessly taken from the clock 1936 * framework: 1937 * 1938 * We do slightly fuzzy matching here: 1939 * An entry with a NULL ID is assumed to be a wildcard. 1940 * If an entry has a device ID, it must match 1941 * If an entry has a connection ID, it must match 1942 * Then we take the most specific entry - with the following order 1943 * of precedence: dev+con > dev only > con only. 1944 */ 1945 scoped_guard(mutex, &pwm_lookup_lock) 1946 list_for_each_entry(p, &pwm_lookup_list, list) { 1947 match = 0; 1948 1949 if (p->dev_id) { 1950 if (!dev_id || strcmp(p->dev_id, dev_id)) 1951 continue; 1952 1953 match += 2; 1954 } 1955 1956 if (p->con_id) { 1957 if (!con_id || strcmp(p->con_id, con_id)) 1958 continue; 1959 1960 match += 1; 1961 } 1962 1963 if (match > best) { 1964 chosen = p; 1965 1966 if (match != 3) 1967 best = match; 1968 else 1969 break; 1970 } 1971 } 1972 1973 if (!chosen) 1974 return ERR_PTR(-ENODEV); 1975 1976 chip = pwmchip_find_by_name(chosen->provider); 1977 1978 /* 1979 * If the lookup entry specifies a module, load the module and retry 1980 * the PWM chip lookup. This can be used to work around driver load 1981 * ordering issues if driver's can't be made to properly support the 1982 * deferred probe mechanism. 1983 */ 1984 if (!chip && chosen->module) { 1985 err = request_module(chosen->module); 1986 if (err == 0) 1987 chip = pwmchip_find_by_name(chosen->provider); 1988 } 1989 1990 if (!chip) 1991 return ERR_PTR(-EPROBE_DEFER); 1992 1993 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 1994 if (IS_ERR(pwm)) 1995 return pwm; 1996 1997 dl = pwm_device_link_add(dev, pwm); 1998 if (IS_ERR(dl)) { 1999 pwm_put(pwm); 2000 return ERR_CAST(dl); 2001 } 2002 2003 pwm->args.period = chosen->period; 2004 pwm->args.polarity = chosen->polarity; 2005 2006 return pwm; 2007 } 2008 EXPORT_SYMBOL_GPL(pwm_get); 2009 2010 /** 2011 * pwm_put() - release a PWM device 2012 * @pwm: PWM device 2013 */ 2014 void pwm_put(struct pwm_device *pwm) 2015 { 2016 struct pwm_chip *chip; 2017 2018 if (!pwm) 2019 return; 2020 2021 chip = pwm->chip; 2022 2023 guard(mutex)(&pwm_lock); 2024 2025 /* 2026 * Trigger a warning if a consumer called pwm_put() twice. 2027 * If the chip isn't operational, PWMF_REQUESTED was already cleared in 2028 * pwmchip_remove(). So don't warn in this case. 2029 */ 2030 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2031 pr_warn("PWM device already freed\n"); 2032 return; 2033 } 2034 2035 if (chip->operational && chip->ops->free) 2036 pwm->chip->ops->free(pwm->chip, pwm); 2037 2038 pwm->label = NULL; 2039 2040 put_device(&chip->dev); 2041 2042 module_put(chip->owner); 2043 } 2044 EXPORT_SYMBOL_GPL(pwm_put); 2045 2046 static void devm_pwm_release(void *pwm) 2047 { 2048 pwm_put(pwm); 2049 } 2050 2051 /** 2052 * devm_pwm_get() - resource managed pwm_get() 2053 * @dev: device for PWM consumer 2054 * @con_id: consumer name 2055 * 2056 * This function performs like pwm_get() but the acquired PWM device will 2057 * automatically be released on driver detach. 2058 * 2059 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2060 * error code on failure. 2061 */ 2062 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 2063 { 2064 struct pwm_device *pwm; 2065 int ret; 2066 2067 pwm = pwm_get(dev, con_id); 2068 if (IS_ERR(pwm)) 2069 return pwm; 2070 2071 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2072 if (ret) 2073 return ERR_PTR(ret); 2074 2075 return pwm; 2076 } 2077 EXPORT_SYMBOL_GPL(devm_pwm_get); 2078 2079 /** 2080 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 2081 * @dev: device for PWM consumer 2082 * @fwnode: firmware node to get the PWM from 2083 * @con_id: consumer name 2084 * 2085 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 2086 * acpi_pwm_get() for a detailed description. 2087 * 2088 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2089 * error code on failure. 2090 */ 2091 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 2092 struct fwnode_handle *fwnode, 2093 const char *con_id) 2094 { 2095 struct pwm_device *pwm = ERR_PTR(-ENODEV); 2096 int ret; 2097 2098 if (is_of_node(fwnode)) 2099 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 2100 else if (is_acpi_node(fwnode)) 2101 pwm = acpi_pwm_get(fwnode); 2102 if (IS_ERR(pwm)) 2103 return pwm; 2104 2105 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2106 if (ret) 2107 return ERR_PTR(ret); 2108 2109 return pwm; 2110 } 2111 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 2112 2113 /** 2114 * __pwmchip_add() - register a new PWM chip 2115 * @chip: the PWM chip to add 2116 * @owner: reference to the module providing the chip. 2117 * 2118 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 2119 * pwmchip_add wrapper to do this right. 2120 * 2121 * Returns: 0 on success or a negative error code on failure. 2122 */ 2123 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 2124 { 2125 int ret; 2126 2127 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) 2128 return -EINVAL; 2129 2130 /* 2131 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, 2132 * otherwise the embedded struct device might disappear too early 2133 * resulting in memory corruption. 2134 * Catch drivers that were not converted appropriately. 2135 */ 2136 if (!chip->uses_pwmchip_alloc) 2137 return -EINVAL; 2138 2139 if (!pwm_ops_check(chip)) 2140 return -EINVAL; 2141 2142 chip->owner = owner; 2143 2144 if (chip->atomic) 2145 spin_lock_init(&chip->atomic_lock); 2146 else 2147 mutex_init(&chip->nonatomic_lock); 2148 2149 guard(mutex)(&pwm_lock); 2150 2151 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 2152 if (ret < 0) 2153 return ret; 2154 2155 chip->id = ret; 2156 2157 dev_set_name(&chip->dev, "pwmchip%u", chip->id); 2158 2159 if (IS_ENABLED(CONFIG_OF)) 2160 of_pwmchip_add(chip); 2161 2162 scoped_guard(pwmchip, chip) 2163 chip->operational = true; 2164 2165 ret = device_add(&chip->dev); 2166 if (ret) 2167 goto err_device_add; 2168 2169 return 0; 2170 2171 err_device_add: 2172 scoped_guard(pwmchip, chip) 2173 chip->operational = false; 2174 2175 if (IS_ENABLED(CONFIG_OF)) 2176 of_pwmchip_remove(chip); 2177 2178 idr_remove(&pwm_chips, chip->id); 2179 2180 return ret; 2181 } 2182 EXPORT_SYMBOL_GPL(__pwmchip_add); 2183 2184 /** 2185 * pwmchip_remove() - remove a PWM chip 2186 * @chip: the PWM chip to remove 2187 * 2188 * Removes a PWM chip. 2189 */ 2190 void pwmchip_remove(struct pwm_chip *chip) 2191 { 2192 pwmchip_sysfs_unexport(chip); 2193 2194 scoped_guard(mutex, &pwm_lock) { 2195 unsigned int i; 2196 2197 scoped_guard(pwmchip, chip) 2198 chip->operational = false; 2199 2200 for (i = 0; i < chip->npwm; ++i) { 2201 struct pwm_device *pwm = &chip->pwms[i]; 2202 2203 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2204 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); 2205 if (pwm->chip->ops->free) 2206 pwm->chip->ops->free(pwm->chip, pwm); 2207 } 2208 } 2209 2210 if (IS_ENABLED(CONFIG_OF)) 2211 of_pwmchip_remove(chip); 2212 2213 idr_remove(&pwm_chips, chip->id); 2214 } 2215 2216 device_del(&chip->dev); 2217 } 2218 EXPORT_SYMBOL_GPL(pwmchip_remove); 2219 2220 static void devm_pwmchip_remove(void *data) 2221 { 2222 struct pwm_chip *chip = data; 2223 2224 pwmchip_remove(chip); 2225 } 2226 2227 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 2228 { 2229 int ret; 2230 2231 ret = __pwmchip_add(chip, owner); 2232 if (ret) 2233 return ret; 2234 2235 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 2236 } 2237 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 2238 2239 /** 2240 * pwm_add_table() - register PWM device consumers 2241 * @table: array of consumers to register 2242 * @num: number of consumers in table 2243 */ 2244 void pwm_add_table(struct pwm_lookup *table, size_t num) 2245 { 2246 guard(mutex)(&pwm_lookup_lock); 2247 2248 while (num--) { 2249 list_add_tail(&table->list, &pwm_lookup_list); 2250 table++; 2251 } 2252 } 2253 2254 /** 2255 * pwm_remove_table() - unregister PWM device consumers 2256 * @table: array of consumers to unregister 2257 * @num: number of consumers in table 2258 */ 2259 void pwm_remove_table(struct pwm_lookup *table, size_t num) 2260 { 2261 guard(mutex)(&pwm_lookup_lock); 2262 2263 while (num--) { 2264 list_del(&table->list); 2265 table++; 2266 } 2267 } 2268 2269 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 2270 { 2271 unsigned int i; 2272 2273 for (i = 0; i < chip->npwm; i++) { 2274 struct pwm_device *pwm = &chip->pwms[i]; 2275 struct pwm_state state, hwstate; 2276 2277 pwm_get_state(pwm, &state); 2278 pwm_get_state_hw(pwm, &hwstate); 2279 2280 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 2281 2282 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 2283 seq_puts(s, " requested"); 2284 2285 seq_puts(s, "\n"); 2286 2287 seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity", 2288 state.enabled ? "en" : "dis", state.duty_cycle, state.period, 2289 state.polarity ? "inverse" : "normal"); 2290 if (state.usage_power) 2291 seq_puts(s, ", usage_power"); 2292 seq_puts(s, "\n"); 2293 2294 seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity", 2295 hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period, 2296 hwstate.polarity ? "inverse" : "normal"); 2297 2298 seq_puts(s, "\n"); 2299 } 2300 } 2301 2302 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 2303 { 2304 unsigned long id = *pos; 2305 void *ret; 2306 2307 mutex_lock(&pwm_lock); 2308 s->private = ""; 2309 2310 ret = idr_get_next_ul(&pwm_chips, &id); 2311 *pos = id; 2312 return ret; 2313 } 2314 2315 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 2316 { 2317 unsigned long id = *pos + 1; 2318 void *ret; 2319 2320 s->private = "\n"; 2321 2322 ret = idr_get_next_ul(&pwm_chips, &id); 2323 *pos = id; 2324 return ret; 2325 } 2326 2327 static void pwm_seq_stop(struct seq_file *s, void *v) 2328 { 2329 mutex_unlock(&pwm_lock); 2330 } 2331 2332 static int pwm_seq_show(struct seq_file *s, void *v) 2333 { 2334 struct pwm_chip *chip = v; 2335 2336 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", 2337 (char *)s->private, chip->id, 2338 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", 2339 dev_name(pwmchip_parent(chip)), chip->npwm, 2340 (chip->npwm != 1) ? "s" : ""); 2341 2342 pwm_dbg_show(chip, s); 2343 2344 return 0; 2345 } 2346 2347 static const struct seq_operations pwm_debugfs_sops = { 2348 .start = pwm_seq_start, 2349 .next = pwm_seq_next, 2350 .stop = pwm_seq_stop, 2351 .show = pwm_seq_show, 2352 }; 2353 2354 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 2355 2356 static int __init pwm_init(void) 2357 { 2358 int ret; 2359 2360 ret = class_register(&pwm_class); 2361 if (ret) { 2362 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); 2363 return ret; 2364 } 2365 2366 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2367 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 2368 2369 return 0; 2370 } 2371 subsys_initcall(pwm_init); 2372