1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28 
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31 
32 static DEFINE_IDR(pwm_chips);
33 
34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 	if (chip->atomic)
37 		spin_lock(&chip->atomic_lock);
38 	else
39 		mutex_lock(&chip->nonatomic_lock);
40 }
41 
42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 	if (chip->atomic)
45 		spin_unlock(&chip->atomic_lock);
46 	else
47 		mutex_unlock(&chip->nonatomic_lock);
48 }
49 
50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51 
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 	/*
55 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 	 * some space for future extensions. One possibility is to simplify
57 	 * representing waveforms with inverted polarity using negative values
58 	 * somehow.
59 	 */
60 	if (wf->period_length_ns > S64_MAX)
61 		return false;
62 
63 	if (wf->duty_length_ns > wf->period_length_ns)
64 		return false;
65 
66 	/*
67 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 	 */
70 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 		return false;
72 
73 	return true;
74 }
75 
76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 	if (wf->period_length_ns) {
79 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 			*state = (struct pwm_state){
81 				.enabled = true,
82 				.polarity = PWM_POLARITY_NORMAL,
83 				.period = wf->period_length_ns,
84 				.duty_cycle = wf->duty_length_ns,
85 			};
86 		else
87 			*state = (struct pwm_state){
88 				.enabled = true,
89 				.polarity = PWM_POLARITY_INVERSED,
90 				.period = wf->period_length_ns,
91 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 			};
93 	} else {
94 		*state = (struct pwm_state){
95 			.enabled = false,
96 		};
97 	}
98 }
99 
100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 	if (state->enabled) {
103 		if (state->polarity == PWM_POLARITY_NORMAL)
104 			*wf = (struct pwm_waveform){
105 				.period_length_ns = state->period,
106 				.duty_length_ns = state->duty_cycle,
107 				.duty_offset_ns = 0,
108 			};
109 		else
110 			*wf = (struct pwm_waveform){
111 				.period_length_ns = state->period,
112 				.duty_length_ns = state->period - state->duty_cycle,
113 				.duty_offset_ns = state->duty_cycle,
114 			};
115 	} else {
116 		*wf = (struct pwm_waveform){
117 			.period_length_ns = 0,
118 		};
119 	}
120 }
121 
122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 	if (a->period_length_ns > b->period_length_ns)
125 		return 1;
126 
127 	if (a->period_length_ns < b->period_length_ns)
128 		return -1;
129 
130 	if (a->duty_length_ns > b->duty_length_ns)
131 		return 1;
132 
133 	if (a->duty_length_ns < b->duty_length_ns)
134 		return -1;
135 
136 	if (a->duty_offset_ns > b->duty_offset_ns)
137 		return 1;
138 
139 	if (a->duty_offset_ns < b->duty_offset_ns)
140 		return -1;
141 
142 	return 0;
143 }
144 
145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 			       const struct pwm_waveform *wf_rounded)
147 {
148 	if (!wf->period_length_ns)
149 		return true;
150 
151 	if (wf->period_length_ns < wf_rounded->period_length_ns)
152 		return false;
153 
154 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 		return false;
156 
157 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 		return false;
159 
160 	return true;
161 }
162 
163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 				     const struct pwm_waveform *wf, void *wfhw)
165 {
166 	const struct pwm_ops *ops = chip->ops;
167 	int ret;
168 
169 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171 
172 	return ret;
173 }
174 
175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 				       const void *wfhw, struct pwm_waveform *wf)
177 {
178 	const struct pwm_ops *ops = chip->ops;
179 	int ret;
180 
181 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183 
184 	return ret;
185 }
186 
187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 	int ret;
191 
192 	ret = ops->read_waveform(chip, pwm, wfhw);
193 	trace_pwm_read_waveform(pwm, wfhw, ret);
194 
195 	return ret;
196 }
197 
198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 	const struct pwm_ops *ops = chip->ops;
201 	int ret;
202 
203 	ret = ops->write_waveform(chip, pwm, wfhw);
204 	trace_pwm_write_waveform(pwm, wfhw, ret);
205 
206 	return ret;
207 }
208 
209 #define WFHWSIZE 20
210 
211 /**
212  * pwm_round_waveform_might_sleep - Query hardware capabilities
213  * Cannot be used in atomic context.
214  * @pwm: PWM device
215  * @wf: waveform to round and output parameter
216  *
217  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218  * because hardware only supports coarse period resolution or no duty_offset.
219  * This function returns the actually implemented waveform if you pass @wf to
220  * pwm_set_waveform_might_sleep() now.
221  *
222  * Note however that the world doesn't stop turning when you call it, so when
223  * doing::
224  *
225  *   pwm_round_waveform_might_sleep(mypwm, &wf);
226  *   pwm_set_waveform_might_sleep(mypwm, &wf, true);
227  *
228  * the latter might fail, e.g. because an input clock changed its rate between
229  * these two calls and the waveform determined by
230  * pwm_round_waveform_might_sleep() cannot be implemented any more.
231  *
232  * Usually all values passed in @wf are rounded down to the nearest possible
233  * value (in the order period_length_ns, duty_length_ns and then
234  * duty_offset_ns). Only if this isn't possible, a value might grow. See the
235  * documentation for pwm_set_waveform_might_sleep() for a more formal
236  * description.
237  *
238  * Returns: 0 on success, 1 if at least one value had to be rounded up or a
239  * negative errno.
240  * Context: May sleep.
241  */
242 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
243 {
244 	struct pwm_chip *chip = pwm->chip;
245 	const struct pwm_ops *ops = chip->ops;
246 	struct pwm_waveform wf_req = *wf;
247 	char wfhw[WFHWSIZE];
248 	int ret_tohw, ret_fromhw;
249 
250 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
251 
252 	if (!pwmchip_supports_waveform(chip))
253 		return -EOPNOTSUPP;
254 
255 	if (!pwm_wf_valid(wf))
256 		return -EINVAL;
257 
258 	guard(pwmchip)(chip);
259 
260 	if (!chip->operational)
261 		return -ENODEV;
262 
263 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
264 	if (ret_tohw < 0)
265 		return ret_tohw;
266 
267 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
268 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
269 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
270 
271 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
272 	if (ret_fromhw < 0)
273 		return ret_fromhw;
274 
275 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
276 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
277 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
278 
279 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
280 	    (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
281 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
282 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
283 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
284 
285 	return ret_tohw;
286 }
287 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
288 
289 /**
290  * pwm_get_waveform_might_sleep - Query hardware about current configuration
291  * Cannot be used in atomic context.
292  * @pwm: PWM device
293  * @wf: output parameter
294  *
295  * Stores the current configuration of the PWM in @wf. Note this is the
296  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
297  *
298  * Returns: 0 on success or a negative errno
299  * Context: May sleep.
300  */
301 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
302 {
303 	struct pwm_chip *chip = pwm->chip;
304 	const struct pwm_ops *ops = chip->ops;
305 	char wfhw[WFHWSIZE];
306 	int err;
307 
308 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
309 
310 	if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
311 		return -EOPNOTSUPP;
312 
313 	guard(pwmchip)(chip);
314 
315 	if (!chip->operational)
316 		return -ENODEV;
317 
318 	err = __pwm_read_waveform(chip, pwm, &wfhw);
319 	if (err)
320 		return err;
321 
322 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
323 }
324 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
325 
326 /* Called with the pwmchip lock held */
327 static int __pwm_set_waveform(struct pwm_device *pwm,
328 			      const struct pwm_waveform *wf,
329 			      bool exact)
330 {
331 	struct pwm_chip *chip = pwm->chip;
332 	const struct pwm_ops *ops = chip->ops;
333 	char wfhw[WFHWSIZE];
334 	struct pwm_waveform wf_rounded;
335 	int err, ret_tohw;
336 
337 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
338 
339 	if (!pwmchip_supports_waveform(chip))
340 		return -EOPNOTSUPP;
341 
342 	if (!pwm_wf_valid(wf))
343 		return -EINVAL;
344 
345 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
346 	if (ret_tohw < 0)
347 		return ret_tohw;
348 
349 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
350 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
351 		if (err)
352 			return err;
353 
354 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
355 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
356 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
357 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
358 
359 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
360 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
361 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
362 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
363 
364 			return 1;
365 		}
366 	}
367 
368 	err = __pwm_write_waveform(chip, pwm, &wfhw);
369 	if (err)
370 		return err;
371 
372 	/* update .state */
373 	pwm_wf2state(wf, &pwm->state);
374 
375 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
376 		struct pwm_waveform wf_set;
377 
378 		err = __pwm_read_waveform(chip, pwm, &wfhw);
379 		if (err)
380 			/* maybe ignore? */
381 			return err;
382 
383 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
384 		if (err)
385 			/* maybe ignore? */
386 			return err;
387 
388 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
389 			dev_err(&chip->dev,
390 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
391 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
392 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
393 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
394 	}
395 
396 	return ret_tohw;
397 }
398 
399 /**
400  * pwm_set_waveform_might_sleep - Apply a new waveform
401  * Cannot be used in atomic context.
402  * @pwm: PWM device
403  * @wf: The waveform to apply
404  * @exact: If true no rounding is allowed
405  *
406  * Typically a requested waveform cannot be implemented exactly, e.g. because
407  * you requested .period_length_ns = 100 ns, but the hardware can only set
408  * periods that are a multiple of 8.5 ns. With that hardware passing @exact =
409  * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
410  * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
411  * bigger than the requested value).
412  * Note that even with @exact = true, some rounding by less than 1 ns is
413  * possible/needed. In the above example requesting .period_length_ns = 94 and
414  * @exact = true, you get the hardware configured with period = 93.5 ns.
415  *
416  * Let C be the set of possible hardware configurations for a given PWM device,
417  * consisting of tuples (p, d, o) where p is the period length, d is the duty
418  * length and o the duty offset.
419  *
420  * The following algorithm is implemented to pick the hardware setting
421  * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
422  *
423  *   p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
424  *   d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
425  *   o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
426  *
427  * In words: The chosen period length is the maximal possible period length not
428  * bigger than the requested period length and if that doesn't exist, the
429  * minimal period length. The chosen duty length is the maximal possible duty
430  * length that is compatible with the chosen period length and isn't bigger than
431  * the requested duty length. Again if such a value doesn't exist, the minimal
432  * duty length compatible with the chosen period is picked. After that the duty
433  * offset compatible with the chosen period and duty length is chosen in the
434  * same way.
435  *
436  * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
437  * being possible (if @exact), or a different negative errno on failure.
438  * Context: May sleep.
439  */
440 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
441 				 const struct pwm_waveform *wf, bool exact)
442 {
443 	struct pwm_chip *chip = pwm->chip;
444 	int err;
445 
446 	might_sleep();
447 
448 	guard(pwmchip)(chip);
449 
450 	if (!chip->operational)
451 		return -ENODEV;
452 
453 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
454 		/*
455 		 * Catch any drivers that have been marked as atomic but
456 		 * that will sleep anyway.
457 		 */
458 		non_block_start();
459 		err = __pwm_set_waveform(pwm, wf, exact);
460 		non_block_end();
461 	} else {
462 		err = __pwm_set_waveform(pwm, wf, exact);
463 	}
464 
465 	/*
466 	 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
467 	 * make sure that -EDOM is only returned in exactly that case. Note that
468 	 * __pwm_set_waveform() should never return -EDOM which justifies the
469 	 * unlikely().
470 	 */
471 	if (unlikely(err == -EDOM))
472 		err = -EINVAL;
473 	else if (exact && err == 1)
474 		err = -EDOM;
475 	else if (err == 1)
476 		err = 0;
477 
478 	return err;
479 }
480 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
481 
482 static void pwm_apply_debug(struct pwm_device *pwm,
483 			    const struct pwm_state *state)
484 {
485 	struct pwm_state *last = &pwm->last;
486 	struct pwm_chip *chip = pwm->chip;
487 	struct pwm_state s1 = { 0 }, s2 = { 0 };
488 	int err;
489 
490 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
491 		return;
492 
493 	/* No reasonable diagnosis possible without .get_state() */
494 	if (!chip->ops->get_state)
495 		return;
496 
497 	/*
498 	 * *state was just applied. Read out the hardware state and do some
499 	 * checks.
500 	 */
501 
502 	err = chip->ops->get_state(chip, pwm, &s1);
503 	trace_pwm_get(pwm, &s1, err);
504 	if (err)
505 		/* If that failed there isn't much to debug */
506 		return;
507 
508 	/*
509 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
510 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
511 	 * Undo this inversion and fixup for further tests.
512 	 */
513 	if (s1.enabled && s1.polarity != state->polarity) {
514 		s2.polarity = state->polarity;
515 		s2.duty_cycle = s1.period - s1.duty_cycle;
516 		s2.period = s1.period;
517 		s2.enabled = s1.enabled;
518 	} else {
519 		s2 = s1;
520 	}
521 
522 	if (s2.polarity != state->polarity &&
523 	    state->duty_cycle < state->period)
524 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
525 
526 	if (state->enabled && s2.enabled &&
527 	    last->polarity == state->polarity &&
528 	    last->period > s2.period &&
529 	    last->period <= state->period)
530 		dev_warn(pwmchip_parent(chip),
531 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
532 			 state->period, s2.period, last->period);
533 
534 	/*
535 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
536 	 * flat line doesn't have a characteristic period.
537 	 */
538 	if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
539 		dev_warn(pwmchip_parent(chip),
540 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
541 			 state->period, s2.period);
542 
543 	if (state->enabled &&
544 	    last->polarity == state->polarity &&
545 	    last->period == s2.period &&
546 	    last->duty_cycle > s2.duty_cycle &&
547 	    last->duty_cycle <= state->duty_cycle)
548 		dev_warn(pwmchip_parent(chip),
549 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
550 			 state->duty_cycle, state->period,
551 			 s2.duty_cycle, s2.period,
552 			 last->duty_cycle, last->period);
553 
554 	if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
555 		dev_warn(pwmchip_parent(chip),
556 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
557 			 state->duty_cycle, state->period,
558 			 s2.duty_cycle, s2.period);
559 
560 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
561 		dev_warn(pwmchip_parent(chip),
562 			 "requested disabled, but yielded enabled with duty > 0\n");
563 
564 	/* reapply the state that the driver reported being configured. */
565 	err = chip->ops->apply(chip, pwm, &s1);
566 	trace_pwm_apply(pwm, &s1, err);
567 	if (err) {
568 		*last = s1;
569 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
570 		return;
571 	}
572 
573 	*last = (struct pwm_state){ 0 };
574 	err = chip->ops->get_state(chip, pwm, last);
575 	trace_pwm_get(pwm, last, err);
576 	if (err)
577 		return;
578 
579 	/* reapplication of the current state should give an exact match */
580 	if (s1.enabled != last->enabled ||
581 	    s1.polarity != last->polarity ||
582 	    (s1.enabled && s1.period != last->period) ||
583 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
584 		dev_err(pwmchip_parent(chip),
585 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
586 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
587 			last->enabled, last->polarity, last->duty_cycle,
588 			last->period);
589 	}
590 }
591 
592 static bool pwm_state_valid(const struct pwm_state *state)
593 {
594 	/*
595 	 * For a disabled state all other state description is irrelevant and
596 	 * and supposed to be ignored. So also ignore any strange values and
597 	 * consider the state ok.
598 	 */
599 	if (state->enabled)
600 		return true;
601 
602 	if (!state->period)
603 		return false;
604 
605 	if (state->duty_cycle > state->period)
606 		return false;
607 
608 	return true;
609 }
610 
611 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
612 {
613 	struct pwm_chip *chip;
614 	const struct pwm_ops *ops;
615 	int err;
616 
617 	if (!pwm || !state)
618 		return -EINVAL;
619 
620 	if (!pwm_state_valid(state)) {
621 		/*
622 		 * Allow to transition from one invalid state to another.
623 		 * This ensures that you can e.g. change the polarity while
624 		 * the period is zero. (This happens on stm32 when the hardware
625 		 * is in its poweron default state.) This greatly simplifies
626 		 * working with the sysfs API where you can only change one
627 		 * parameter at a time.
628 		 */
629 		if (!pwm_state_valid(&pwm->state)) {
630 			pwm->state = *state;
631 			return 0;
632 		}
633 
634 		return -EINVAL;
635 	}
636 
637 	chip = pwm->chip;
638 	ops = chip->ops;
639 
640 	if (state->period == pwm->state.period &&
641 	    state->duty_cycle == pwm->state.duty_cycle &&
642 	    state->polarity == pwm->state.polarity &&
643 	    state->enabled == pwm->state.enabled &&
644 	    state->usage_power == pwm->state.usage_power)
645 		return 0;
646 
647 	if (pwmchip_supports_waveform(chip)) {
648 		struct pwm_waveform wf;
649 		char wfhw[WFHWSIZE];
650 
651 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
652 
653 		pwm_state2wf(state, &wf);
654 
655 		/*
656 		 * The rounding is wrong here for states with inverted polarity.
657 		 * While .apply() rounds down duty_cycle (which represents the
658 		 * time from the start of the period to the inner edge),
659 		 * .round_waveform_tohw() rounds down the time the PWM is high.
660 		 * Can be fixed if the need arises, until reported otherwise
661 		 * let's assume that consumers don't care.
662 		 */
663 
664 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
665 		if (err) {
666 			if (err > 0)
667 				/*
668 				 * This signals an invalid request, typically
669 				 * the requested period (or duty_offset) is
670 				 * smaller than possible with the hardware.
671 				 */
672 				return -EINVAL;
673 
674 			return err;
675 		}
676 
677 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
678 			struct pwm_waveform wf_rounded;
679 
680 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
681 			if (err)
682 				return err;
683 
684 			if (!pwm_check_rounding(&wf, &wf_rounded))
685 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
686 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
687 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
688 		}
689 
690 		err = __pwm_write_waveform(chip, pwm, &wfhw);
691 		if (err)
692 			return err;
693 
694 		pwm->state = *state;
695 
696 	} else {
697 		err = ops->apply(chip, pwm, state);
698 		trace_pwm_apply(pwm, state, err);
699 		if (err)
700 			return err;
701 
702 		pwm->state = *state;
703 
704 		/*
705 		 * only do this after pwm->state was applied as some
706 		 * implementations of .get_state() depend on this
707 		 */
708 		pwm_apply_debug(pwm, state);
709 	}
710 
711 	return 0;
712 }
713 
714 /**
715  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
716  * Cannot be used in atomic context.
717  * @pwm: PWM device
718  * @state: new state to apply
719  *
720  * Returns: 0 on success, or a negative errno
721  * Context: May sleep.
722  */
723 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
724 {
725 	int err;
726 	struct pwm_chip *chip = pwm->chip;
727 
728 	/*
729 	 * Some lowlevel driver's implementations of .apply() make use of
730 	 * mutexes, also with some drivers only returning when the new
731 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
732 	 * is a bad idea. So make it explicit that calling this function might
733 	 * sleep.
734 	 */
735 	might_sleep();
736 
737 	guard(pwmchip)(chip);
738 
739 	if (!chip->operational)
740 		return -ENODEV;
741 
742 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
743 		/*
744 		 * Catch any drivers that have been marked as atomic but
745 		 * that will sleep anyway.
746 		 */
747 		non_block_start();
748 		err = __pwm_apply(pwm, state);
749 		non_block_end();
750 	} else {
751 		err = __pwm_apply(pwm, state);
752 	}
753 
754 	return err;
755 }
756 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
757 
758 /**
759  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
760  * Not all PWM devices support this function, check with pwm_might_sleep().
761  * @pwm: PWM device
762  * @state: new state to apply
763  *
764  * Returns: 0 on success, or a negative errno
765  * Context: Any
766  */
767 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
768 {
769 	struct pwm_chip *chip = pwm->chip;
770 
771 	WARN_ONCE(!chip->atomic,
772 		  "sleeping PWM driver used in atomic context\n");
773 
774 	guard(pwmchip)(chip);
775 
776 	if (!chip->operational)
777 		return -ENODEV;
778 
779 	return __pwm_apply(pwm, state);
780 }
781 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
782 
783 /**
784  * pwm_get_state_hw() - get the current PWM state from hardware
785  * @pwm: PWM device
786  * @state: state to fill with the current PWM state
787  *
788  * Similar to pwm_get_state() but reads the current PWM state from hardware
789  * instead of the requested state.
790  *
791  * Returns: 0 on success or a negative error code on failure.
792  * Context: May sleep.
793  */
794 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
795 {
796 	struct pwm_chip *chip = pwm->chip;
797 	const struct pwm_ops *ops = chip->ops;
798 	int ret = -EOPNOTSUPP;
799 
800 	might_sleep();
801 
802 	guard(pwmchip)(chip);
803 
804 	if (!chip->operational)
805 		return -ENODEV;
806 
807 	if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
808 		char wfhw[WFHWSIZE];
809 		struct pwm_waveform wf;
810 
811 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
812 
813 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
814 		if (ret)
815 			return ret;
816 
817 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
818 		if (ret)
819 			return ret;
820 
821 		pwm_wf2state(&wf, state);
822 
823 	} else if (ops->get_state) {
824 		ret = ops->get_state(chip, pwm, state);
825 		trace_pwm_get(pwm, state, ret);
826 	}
827 
828 	return ret;
829 }
830 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
831 
832 /**
833  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
834  * @pwm: PWM device
835  *
836  * This function will adjust the PWM config to the PWM arguments provided
837  * by the DT or PWM lookup table. This is particularly useful to adapt
838  * the bootloader config to the Linux one.
839  *
840  * Returns: 0 on success or a negative error code on failure.
841  * Context: May sleep.
842  */
843 int pwm_adjust_config(struct pwm_device *pwm)
844 {
845 	struct pwm_state state;
846 	struct pwm_args pargs;
847 
848 	pwm_get_args(pwm, &pargs);
849 	pwm_get_state(pwm, &state);
850 
851 	/*
852 	 * If the current period is zero it means that either the PWM driver
853 	 * does not support initial state retrieval or the PWM has not yet
854 	 * been configured.
855 	 *
856 	 * In either case, we setup the new period and polarity, and assign a
857 	 * duty cycle of 0.
858 	 */
859 	if (!state.period) {
860 		state.duty_cycle = 0;
861 		state.period = pargs.period;
862 		state.polarity = pargs.polarity;
863 
864 		return pwm_apply_might_sleep(pwm, &state);
865 	}
866 
867 	/*
868 	 * Adjust the PWM duty cycle/period based on the period value provided
869 	 * in PWM args.
870 	 */
871 	if (pargs.period != state.period) {
872 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
873 
874 		do_div(dutycycle, state.period);
875 		state.duty_cycle = dutycycle;
876 		state.period = pargs.period;
877 	}
878 
879 	/*
880 	 * If the polarity changed, we should also change the duty cycle.
881 	 */
882 	if (pargs.polarity != state.polarity) {
883 		state.polarity = pargs.polarity;
884 		state.duty_cycle = state.period - state.duty_cycle;
885 	}
886 
887 	return pwm_apply_might_sleep(pwm, &state);
888 }
889 EXPORT_SYMBOL_GPL(pwm_adjust_config);
890 
891 /**
892  * pwm_capture() - capture and report a PWM signal
893  * @pwm: PWM device
894  * @result: structure to fill with capture result
895  * @timeout: time to wait, in milliseconds, before giving up on capture
896  *
897  * Returns: 0 on success or a negative error code on failure.
898  */
899 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
900 		       unsigned long timeout)
901 {
902 	struct pwm_chip *chip = pwm->chip;
903 	const struct pwm_ops *ops = chip->ops;
904 
905 	if (!ops->capture)
906 		return -ENOSYS;
907 
908 	/*
909 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
910 	 * and you're interested to speed it up, please convince yourself it's
911 	 * really not needed, test and then suggest a patch on the mailing list.
912 	 */
913 	guard(mutex)(&pwm_lock);
914 
915 	guard(pwmchip)(chip);
916 
917 	if (!chip->operational)
918 		return -ENODEV;
919 
920 	return ops->capture(chip, pwm, result, timeout);
921 }
922 
923 static struct pwm_chip *pwmchip_find_by_name(const char *name)
924 {
925 	struct pwm_chip *chip;
926 	unsigned long id, tmp;
927 
928 	if (!name)
929 		return NULL;
930 
931 	guard(mutex)(&pwm_lock);
932 
933 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
934 		if (device_match_name(pwmchip_parent(chip), name))
935 			return chip;
936 	}
937 
938 	return NULL;
939 }
940 
941 static int pwm_device_request(struct pwm_device *pwm, const char *label)
942 {
943 	int err;
944 	struct pwm_chip *chip = pwm->chip;
945 	const struct pwm_ops *ops = chip->ops;
946 
947 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
948 		return -EBUSY;
949 
950 	/*
951 	 * This function is called while holding pwm_lock. As .operational only
952 	 * changes while holding this lock, checking it here without holding the
953 	 * chip lock is fine.
954 	 */
955 	if (!chip->operational)
956 		return -ENODEV;
957 
958 	if (!try_module_get(chip->owner))
959 		return -ENODEV;
960 
961 	if (!get_device(&chip->dev)) {
962 		err = -ENODEV;
963 		goto err_get_device;
964 	}
965 
966 	if (ops->request) {
967 		err = ops->request(chip, pwm);
968 		if (err) {
969 			put_device(&chip->dev);
970 err_get_device:
971 			module_put(chip->owner);
972 			return err;
973 		}
974 	}
975 
976 	if (ops->read_waveform || ops->get_state) {
977 		/*
978 		 * Zero-initialize state because most drivers are unaware of
979 		 * .usage_power. The other members of state are supposed to be
980 		 * set by lowlevel drivers. We still initialize the whole
981 		 * structure for simplicity even though this might paper over
982 		 * faulty implementations of .get_state().
983 		 */
984 		struct pwm_state state = { 0, };
985 
986 		err = pwm_get_state_hw(pwm, &state);
987 		if (!err)
988 			pwm->state = state;
989 
990 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
991 			pwm->last = pwm->state;
992 	}
993 
994 	set_bit(PWMF_REQUESTED, &pwm->flags);
995 	pwm->label = label;
996 
997 	return 0;
998 }
999 
1000 /**
1001  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
1002  * @chip: PWM chip
1003  * @index: per-chip index of the PWM to request
1004  * @label: a literal description string of this PWM
1005  *
1006  * Returns: A pointer to the PWM device at the given index of the given PWM
1007  * chip. A negative error code is returned if the index is not valid for the
1008  * specified PWM chip or if the PWM device cannot be requested.
1009  */
1010 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
1011 						unsigned int index,
1012 						const char *label)
1013 {
1014 	struct pwm_device *pwm;
1015 	int err;
1016 
1017 	if (!chip || index >= chip->npwm)
1018 		return ERR_PTR(-EINVAL);
1019 
1020 	guard(mutex)(&pwm_lock);
1021 
1022 	pwm = &chip->pwms[index];
1023 
1024 	err = pwm_device_request(pwm, label);
1025 	if (err < 0)
1026 		return ERR_PTR(err);
1027 
1028 	return pwm;
1029 }
1030 
1031 struct pwm_device *
1032 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
1033 {
1034 	struct pwm_device *pwm;
1035 
1036 	/* period in the second cell and flags in the third cell are optional */
1037 	if (args->args_count < 1)
1038 		return ERR_PTR(-EINVAL);
1039 
1040 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
1041 	if (IS_ERR(pwm))
1042 		return pwm;
1043 
1044 	if (args->args_count > 1)
1045 		pwm->args.period = args->args[1];
1046 
1047 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1048 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
1049 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1050 
1051 	return pwm;
1052 }
1053 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1054 
1055 /*
1056  * This callback is used for PXA PWM chips that only have a single PWM line.
1057  * For such chips you could argue that passing the line number (i.e. the first
1058  * parameter in the common case) is useless as it's always zero. So compared to
1059  * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1060  * the default period and the second are flags.
1061  *
1062  * Note that if #pwm-cells = <3>, the semantic is the same as for
1063  * of_pwm_xlate_with_flags() to allow converting the affected driver to
1064  * #pwm-cells = <3> without breaking the legacy binding.
1065  *
1066  * Don't use for new drivers.
1067  */
1068 struct pwm_device *
1069 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1070 {
1071 	struct pwm_device *pwm;
1072 
1073 	if (args->args_count >= 3)
1074 		return of_pwm_xlate_with_flags(chip, args);
1075 
1076 	pwm = pwm_request_from_chip(chip, 0, NULL);
1077 	if (IS_ERR(pwm))
1078 		return pwm;
1079 
1080 	if (args->args_count > 0)
1081 		pwm->args.period = args->args[0];
1082 
1083 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1084 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1085 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1086 
1087 	return pwm;
1088 }
1089 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1090 
1091 struct pwm_export {
1092 	struct device pwm_dev;
1093 	struct pwm_device *pwm;
1094 	struct mutex lock;
1095 	struct pwm_state suspend;
1096 };
1097 
1098 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1099 {
1100 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1101 }
1102 
1103 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1104 {
1105 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1106 }
1107 
1108 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1109 {
1110 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1111 
1112 	return export->pwm;
1113 }
1114 
1115 static ssize_t period_show(struct device *pwm_dev,
1116 			   struct device_attribute *attr,
1117 			   char *buf)
1118 {
1119 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1120 	struct pwm_state state;
1121 
1122 	pwm_get_state(pwm, &state);
1123 
1124 	return sysfs_emit(buf, "%llu\n", state.period);
1125 }
1126 
1127 static ssize_t period_store(struct device *pwm_dev,
1128 			    struct device_attribute *attr,
1129 			    const char *buf, size_t size)
1130 {
1131 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1132 	struct pwm_device *pwm = export->pwm;
1133 	struct pwm_state state;
1134 	u64 val;
1135 	int ret;
1136 
1137 	ret = kstrtou64(buf, 0, &val);
1138 	if (ret)
1139 		return ret;
1140 
1141 	guard(mutex)(&export->lock);
1142 
1143 	pwm_get_state(pwm, &state);
1144 	state.period = val;
1145 	ret = pwm_apply_might_sleep(pwm, &state);
1146 
1147 	return ret ? : size;
1148 }
1149 
1150 static ssize_t duty_cycle_show(struct device *pwm_dev,
1151 			       struct device_attribute *attr,
1152 			       char *buf)
1153 {
1154 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1155 	struct pwm_state state;
1156 
1157 	pwm_get_state(pwm, &state);
1158 
1159 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1160 }
1161 
1162 static ssize_t duty_cycle_store(struct device *pwm_dev,
1163 				struct device_attribute *attr,
1164 				const char *buf, size_t size)
1165 {
1166 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1167 	struct pwm_device *pwm = export->pwm;
1168 	struct pwm_state state;
1169 	u64 val;
1170 	int ret;
1171 
1172 	ret = kstrtou64(buf, 0, &val);
1173 	if (ret)
1174 		return ret;
1175 
1176 	guard(mutex)(&export->lock);
1177 
1178 	pwm_get_state(pwm, &state);
1179 	state.duty_cycle = val;
1180 	ret = pwm_apply_might_sleep(pwm, &state);
1181 
1182 	return ret ? : size;
1183 }
1184 
1185 static ssize_t enable_show(struct device *pwm_dev,
1186 			   struct device_attribute *attr,
1187 			   char *buf)
1188 {
1189 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1190 	struct pwm_state state;
1191 
1192 	pwm_get_state(pwm, &state);
1193 
1194 	return sysfs_emit(buf, "%d\n", state.enabled);
1195 }
1196 
1197 static ssize_t enable_store(struct device *pwm_dev,
1198 			    struct device_attribute *attr,
1199 			    const char *buf, size_t size)
1200 {
1201 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1202 	struct pwm_device *pwm = export->pwm;
1203 	struct pwm_state state;
1204 	int val, ret;
1205 
1206 	ret = kstrtoint(buf, 0, &val);
1207 	if (ret)
1208 		return ret;
1209 
1210 	guard(mutex)(&export->lock);
1211 
1212 	pwm_get_state(pwm, &state);
1213 
1214 	switch (val) {
1215 	case 0:
1216 		state.enabled = false;
1217 		break;
1218 	case 1:
1219 		state.enabled = true;
1220 		break;
1221 	default:
1222 		return -EINVAL;
1223 	}
1224 
1225 	ret = pwm_apply_might_sleep(pwm, &state);
1226 
1227 	return ret ? : size;
1228 }
1229 
1230 static ssize_t polarity_show(struct device *pwm_dev,
1231 			     struct device_attribute *attr,
1232 			     char *buf)
1233 {
1234 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1235 	const char *polarity = "unknown";
1236 	struct pwm_state state;
1237 
1238 	pwm_get_state(pwm, &state);
1239 
1240 	switch (state.polarity) {
1241 	case PWM_POLARITY_NORMAL:
1242 		polarity = "normal";
1243 		break;
1244 
1245 	case PWM_POLARITY_INVERSED:
1246 		polarity = "inversed";
1247 		break;
1248 	}
1249 
1250 	return sysfs_emit(buf, "%s\n", polarity);
1251 }
1252 
1253 static ssize_t polarity_store(struct device *pwm_dev,
1254 			      struct device_attribute *attr,
1255 			      const char *buf, size_t size)
1256 {
1257 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1258 	struct pwm_device *pwm = export->pwm;
1259 	enum pwm_polarity polarity;
1260 	struct pwm_state state;
1261 	int ret;
1262 
1263 	if (sysfs_streq(buf, "normal"))
1264 		polarity = PWM_POLARITY_NORMAL;
1265 	else if (sysfs_streq(buf, "inversed"))
1266 		polarity = PWM_POLARITY_INVERSED;
1267 	else
1268 		return -EINVAL;
1269 
1270 	guard(mutex)(&export->lock);
1271 
1272 	pwm_get_state(pwm, &state);
1273 	state.polarity = polarity;
1274 	ret = pwm_apply_might_sleep(pwm, &state);
1275 
1276 	return ret ? : size;
1277 }
1278 
1279 static ssize_t capture_show(struct device *pwm_dev,
1280 			    struct device_attribute *attr,
1281 			    char *buf)
1282 {
1283 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1284 	struct pwm_capture result;
1285 	int ret;
1286 
1287 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1288 	if (ret)
1289 		return ret;
1290 
1291 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1292 }
1293 
1294 static DEVICE_ATTR_RW(period);
1295 static DEVICE_ATTR_RW(duty_cycle);
1296 static DEVICE_ATTR_RW(enable);
1297 static DEVICE_ATTR_RW(polarity);
1298 static DEVICE_ATTR_RO(capture);
1299 
1300 static struct attribute *pwm_attrs[] = {
1301 	&dev_attr_period.attr,
1302 	&dev_attr_duty_cycle.attr,
1303 	&dev_attr_enable.attr,
1304 	&dev_attr_polarity.attr,
1305 	&dev_attr_capture.attr,
1306 	NULL
1307 };
1308 ATTRIBUTE_GROUPS(pwm);
1309 
1310 static void pwm_export_release(struct device *pwm_dev)
1311 {
1312 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1313 
1314 	kfree(export);
1315 }
1316 
1317 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1318 {
1319 	struct pwm_export *export;
1320 	char *pwm_prop[2];
1321 	int ret;
1322 
1323 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1324 		return -EBUSY;
1325 
1326 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1327 	if (!export) {
1328 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	export->pwm = pwm;
1333 	mutex_init(&export->lock);
1334 
1335 	export->pwm_dev.release = pwm_export_release;
1336 	export->pwm_dev.parent = pwmchip_dev;
1337 	export->pwm_dev.devt = MKDEV(0, 0);
1338 	export->pwm_dev.groups = pwm_groups;
1339 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1340 
1341 	ret = device_register(&export->pwm_dev);
1342 	if (ret) {
1343 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1344 		put_device(&export->pwm_dev);
1345 		export = NULL;
1346 		return ret;
1347 	}
1348 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1349 	pwm_prop[1] = NULL;
1350 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1351 	kfree(pwm_prop[0]);
1352 
1353 	return 0;
1354 }
1355 
1356 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1357 {
1358 	return pwm_from_dev(pwm_dev) == data;
1359 }
1360 
1361 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1362 {
1363 	struct device *pwm_dev;
1364 	char *pwm_prop[2];
1365 
1366 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1367 		return -ENODEV;
1368 
1369 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1370 	if (!pwm_dev)
1371 		return -ENODEV;
1372 
1373 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1374 	pwm_prop[1] = NULL;
1375 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1376 	kfree(pwm_prop[0]);
1377 
1378 	/* for device_find_child() */
1379 	put_device(pwm_dev);
1380 	device_unregister(pwm_dev);
1381 	pwm_put(pwm);
1382 
1383 	return 0;
1384 }
1385 
1386 static ssize_t export_store(struct device *pwmchip_dev,
1387 			    struct device_attribute *attr,
1388 			    const char *buf, size_t len)
1389 {
1390 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1391 	struct pwm_device *pwm;
1392 	unsigned int hwpwm;
1393 	int ret;
1394 
1395 	ret = kstrtouint(buf, 0, &hwpwm);
1396 	if (ret < 0)
1397 		return ret;
1398 
1399 	if (hwpwm >= chip->npwm)
1400 		return -ENODEV;
1401 
1402 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1403 	if (IS_ERR(pwm))
1404 		return PTR_ERR(pwm);
1405 
1406 	ret = pwm_export_child(pwmchip_dev, pwm);
1407 	if (ret < 0)
1408 		pwm_put(pwm);
1409 
1410 	return ret ? : len;
1411 }
1412 static DEVICE_ATTR_WO(export);
1413 
1414 static ssize_t unexport_store(struct device *pwmchip_dev,
1415 			      struct device_attribute *attr,
1416 			      const char *buf, size_t len)
1417 {
1418 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1419 	unsigned int hwpwm;
1420 	int ret;
1421 
1422 	ret = kstrtouint(buf, 0, &hwpwm);
1423 	if (ret < 0)
1424 		return ret;
1425 
1426 	if (hwpwm >= chip->npwm)
1427 		return -ENODEV;
1428 
1429 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1430 
1431 	return ret ? : len;
1432 }
1433 static DEVICE_ATTR_WO(unexport);
1434 
1435 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1436 			 char *buf)
1437 {
1438 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1439 
1440 	return sysfs_emit(buf, "%u\n", chip->npwm);
1441 }
1442 static DEVICE_ATTR_RO(npwm);
1443 
1444 static struct attribute *pwm_chip_attrs[] = {
1445 	&dev_attr_export.attr,
1446 	&dev_attr_unexport.attr,
1447 	&dev_attr_npwm.attr,
1448 	NULL,
1449 };
1450 ATTRIBUTE_GROUPS(pwm_chip);
1451 
1452 /* takes export->lock on success */
1453 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1454 					      struct pwm_device *pwm,
1455 					      struct pwm_state *state)
1456 {
1457 	struct device *pwm_dev;
1458 	struct pwm_export *export;
1459 
1460 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1461 		return NULL;
1462 
1463 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1464 	if (!pwm_dev)
1465 		return NULL;
1466 
1467 	export = pwmexport_from_dev(pwm_dev);
1468 	put_device(pwm_dev);	/* for device_find_child() */
1469 
1470 	mutex_lock(&export->lock);
1471 	pwm_get_state(pwm, state);
1472 
1473 	return export;
1474 }
1475 
1476 static int pwm_class_apply_state(struct pwm_export *export,
1477 				 struct pwm_device *pwm,
1478 				 struct pwm_state *state)
1479 {
1480 	int ret = pwm_apply_might_sleep(pwm, state);
1481 
1482 	/* release lock taken in pwm_class_get_state */
1483 	mutex_unlock(&export->lock);
1484 
1485 	return ret;
1486 }
1487 
1488 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1489 {
1490 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1491 	unsigned int i;
1492 	int ret = 0;
1493 
1494 	for (i = 0; i < npwm; i++) {
1495 		struct pwm_device *pwm = &chip->pwms[i];
1496 		struct pwm_state state;
1497 		struct pwm_export *export;
1498 
1499 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1500 		if (!export)
1501 			continue;
1502 
1503 		/* If pwmchip was not enabled before suspend, do nothing. */
1504 		if (!export->suspend.enabled) {
1505 			/* release lock taken in pwm_class_get_state */
1506 			mutex_unlock(&export->lock);
1507 			continue;
1508 		}
1509 
1510 		state.enabled = export->suspend.enabled;
1511 		ret = pwm_class_apply_state(export, pwm, &state);
1512 		if (ret < 0)
1513 			break;
1514 	}
1515 
1516 	return ret;
1517 }
1518 
1519 static int pwm_class_suspend(struct device *pwmchip_dev)
1520 {
1521 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1522 	unsigned int i;
1523 	int ret = 0;
1524 
1525 	for (i = 0; i < chip->npwm; i++) {
1526 		struct pwm_device *pwm = &chip->pwms[i];
1527 		struct pwm_state state;
1528 		struct pwm_export *export;
1529 
1530 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1531 		if (!export)
1532 			continue;
1533 
1534 		/*
1535 		 * If pwmchip was not enabled before suspend, save
1536 		 * state for resume time and do nothing else.
1537 		 */
1538 		export->suspend = state;
1539 		if (!state.enabled) {
1540 			/* release lock taken in pwm_class_get_state */
1541 			mutex_unlock(&export->lock);
1542 			continue;
1543 		}
1544 
1545 		state.enabled = false;
1546 		ret = pwm_class_apply_state(export, pwm, &state);
1547 		if (ret < 0) {
1548 			/*
1549 			 * roll back the PWM devices that were disabled by
1550 			 * this suspend function.
1551 			 */
1552 			pwm_class_resume_npwm(pwmchip_dev, i);
1553 			break;
1554 		}
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int pwm_class_resume(struct device *pwmchip_dev)
1561 {
1562 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1563 
1564 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1565 }
1566 
1567 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1568 
1569 static struct class pwm_class = {
1570 	.name = "pwm",
1571 	.dev_groups = pwm_chip_groups,
1572 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1573 };
1574 
1575 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1576 {
1577 	unsigned int i;
1578 
1579 	for (i = 0; i < chip->npwm; i++) {
1580 		struct pwm_device *pwm = &chip->pwms[i];
1581 
1582 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1583 			pwm_unexport_child(&chip->dev, pwm);
1584 	}
1585 }
1586 
1587 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1588 
1589 static void *pwmchip_priv(struct pwm_chip *chip)
1590 {
1591 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1592 }
1593 
1594 /* This is the counterpart to pwmchip_alloc() */
1595 void pwmchip_put(struct pwm_chip *chip)
1596 {
1597 	put_device(&chip->dev);
1598 }
1599 EXPORT_SYMBOL_GPL(pwmchip_put);
1600 
1601 static void pwmchip_release(struct device *pwmchip_dev)
1602 {
1603 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1604 
1605 	kfree(chip);
1606 }
1607 
1608 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1609 {
1610 	struct pwm_chip *chip;
1611 	struct device *pwmchip_dev;
1612 	size_t alloc_size;
1613 	unsigned int i;
1614 
1615 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1616 			      sizeof_priv);
1617 
1618 	chip = kzalloc(alloc_size, GFP_KERNEL);
1619 	if (!chip)
1620 		return ERR_PTR(-ENOMEM);
1621 
1622 	chip->npwm = npwm;
1623 	chip->uses_pwmchip_alloc = true;
1624 	chip->operational = false;
1625 
1626 	pwmchip_dev = &chip->dev;
1627 	device_initialize(pwmchip_dev);
1628 	pwmchip_dev->class = &pwm_class;
1629 	pwmchip_dev->parent = parent;
1630 	pwmchip_dev->release = pwmchip_release;
1631 
1632 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1633 
1634 	for (i = 0; i < chip->npwm; i++) {
1635 		struct pwm_device *pwm = &chip->pwms[i];
1636 		pwm->chip = chip;
1637 		pwm->hwpwm = i;
1638 	}
1639 
1640 	return chip;
1641 }
1642 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1643 
1644 static void devm_pwmchip_put(void *data)
1645 {
1646 	struct pwm_chip *chip = data;
1647 
1648 	pwmchip_put(chip);
1649 }
1650 
1651 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1652 {
1653 	struct pwm_chip *chip;
1654 	int ret;
1655 
1656 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1657 	if (IS_ERR(chip))
1658 		return chip;
1659 
1660 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1661 	if (ret)
1662 		return ERR_PTR(ret);
1663 
1664 	return chip;
1665 }
1666 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1667 
1668 static void of_pwmchip_add(struct pwm_chip *chip)
1669 {
1670 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1671 		return;
1672 
1673 	if (!chip->of_xlate)
1674 		chip->of_xlate = of_pwm_xlate_with_flags;
1675 
1676 	of_node_get(pwmchip_parent(chip)->of_node);
1677 }
1678 
1679 static void of_pwmchip_remove(struct pwm_chip *chip)
1680 {
1681 	if (pwmchip_parent(chip))
1682 		of_node_put(pwmchip_parent(chip)->of_node);
1683 }
1684 
1685 static bool pwm_ops_check(const struct pwm_chip *chip)
1686 {
1687 	const struct pwm_ops *ops = chip->ops;
1688 
1689 	if (ops->write_waveform) {
1690 		if (!ops->round_waveform_tohw ||
1691 		    !ops->round_waveform_fromhw ||
1692 		    !ops->write_waveform)
1693 			return false;
1694 
1695 		if (WFHWSIZE < ops->sizeof_wfhw) {
1696 			dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1697 			return false;
1698 		}
1699 	} else {
1700 		if (!ops->apply)
1701 			return false;
1702 
1703 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1704 			dev_warn(pwmchip_parent(chip),
1705 				 "Please implement the .get_state() callback\n");
1706 	}
1707 
1708 	return true;
1709 }
1710 
1711 static struct device_link *pwm_device_link_add(struct device *dev,
1712 					       struct pwm_device *pwm)
1713 {
1714 	struct device_link *dl;
1715 
1716 	if (!dev) {
1717 		/*
1718 		 * No device for the PWM consumer has been provided. It may
1719 		 * impact the PM sequence ordering: the PWM supplier may get
1720 		 * suspended before the consumer.
1721 		 */
1722 		dev_warn(pwmchip_parent(pwm->chip),
1723 			 "No consumer device specified to create a link to\n");
1724 		return NULL;
1725 	}
1726 
1727 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1728 	if (!dl) {
1729 		dev_err(dev, "failed to create device link to %s\n",
1730 			dev_name(pwmchip_parent(pwm->chip)));
1731 		return ERR_PTR(-EINVAL);
1732 	}
1733 
1734 	return dl;
1735 }
1736 
1737 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1738 {
1739 	struct pwm_chip *chip;
1740 	unsigned long id, tmp;
1741 
1742 	guard(mutex)(&pwm_lock);
1743 
1744 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1745 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1746 			return chip;
1747 
1748 	return ERR_PTR(-EPROBE_DEFER);
1749 }
1750 
1751 /**
1752  * of_pwm_get() - request a PWM via the PWM framework
1753  * @dev: device for PWM consumer
1754  * @np: device node to get the PWM from
1755  * @con_id: consumer name
1756  *
1757  * Returns the PWM device parsed from the phandle and index specified in the
1758  * "pwms" property of a device tree node or a negative error-code on failure.
1759  * Values parsed from the device tree are stored in the returned PWM device
1760  * object.
1761  *
1762  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1763  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1764  * lookup of the PWM index. This also means that the "pwm-names" property
1765  * becomes mandatory for devices that look up the PWM device via the con_id
1766  * parameter.
1767  *
1768  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1769  * error code on failure.
1770  */
1771 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1772 				     const char *con_id)
1773 {
1774 	struct pwm_device *pwm = NULL;
1775 	struct of_phandle_args args;
1776 	struct device_link *dl;
1777 	struct pwm_chip *chip;
1778 	int index = 0;
1779 	int err;
1780 
1781 	if (con_id) {
1782 		index = of_property_match_string(np, "pwm-names", con_id);
1783 		if (index < 0)
1784 			return ERR_PTR(index);
1785 	}
1786 
1787 	err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1788 	if (err) {
1789 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1790 		return ERR_PTR(err);
1791 	}
1792 
1793 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1794 	if (IS_ERR(chip)) {
1795 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1796 			pr_err("%s(): PWM chip not found\n", __func__);
1797 
1798 		pwm = ERR_CAST(chip);
1799 		goto put;
1800 	}
1801 
1802 	pwm = chip->of_xlate(chip, &args);
1803 	if (IS_ERR(pwm))
1804 		goto put;
1805 
1806 	dl = pwm_device_link_add(dev, pwm);
1807 	if (IS_ERR(dl)) {
1808 		/* of_xlate ended up calling pwm_request_from_chip() */
1809 		pwm_put(pwm);
1810 		pwm = ERR_CAST(dl);
1811 		goto put;
1812 	}
1813 
1814 	/*
1815 	 * If a consumer name was not given, try to look it up from the
1816 	 * "pwm-names" property if it exists. Otherwise use the name of
1817 	 * the user device node.
1818 	 */
1819 	if (!con_id) {
1820 		err = of_property_read_string_index(np, "pwm-names", index,
1821 						    &con_id);
1822 		if (err < 0)
1823 			con_id = np->name;
1824 	}
1825 
1826 	pwm->label = con_id;
1827 
1828 put:
1829 	of_node_put(args.np);
1830 
1831 	return pwm;
1832 }
1833 
1834 /**
1835  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1836  * @fwnode: firmware node to get the "pwms" property from
1837  *
1838  * Returns the PWM device parsed from the fwnode and index specified in the
1839  * "pwms" property or a negative error-code on failure.
1840  * Values parsed from the device tree are stored in the returned PWM device
1841  * object.
1842  *
1843  * This is analogous to of_pwm_get() except con_id is not yet supported.
1844  * ACPI entries must look like
1845  * Package () {"pwms", Package ()
1846  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1847  *
1848  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1849  * error code on failure.
1850  */
1851 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1852 {
1853 	struct pwm_device *pwm;
1854 	struct fwnode_reference_args args;
1855 	struct pwm_chip *chip;
1856 	int ret;
1857 
1858 	memset(&args, 0, sizeof(args));
1859 
1860 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1861 	if (ret < 0)
1862 		return ERR_PTR(ret);
1863 
1864 	if (args.nargs < 2)
1865 		return ERR_PTR(-EPROTO);
1866 
1867 	chip = fwnode_to_pwmchip(args.fwnode);
1868 	if (IS_ERR(chip))
1869 		return ERR_CAST(chip);
1870 
1871 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1872 	if (IS_ERR(pwm))
1873 		return pwm;
1874 
1875 	pwm->args.period = args.args[1];
1876 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1877 
1878 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1879 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1880 
1881 	return pwm;
1882 }
1883 
1884 static DEFINE_MUTEX(pwm_lookup_lock);
1885 static LIST_HEAD(pwm_lookup_list);
1886 
1887 /**
1888  * pwm_get() - look up and request a PWM device
1889  * @dev: device for PWM consumer
1890  * @con_id: consumer name
1891  *
1892  * Lookup is first attempted using DT. If the device was not instantiated from
1893  * a device tree, a PWM chip and a relative index is looked up via a table
1894  * supplied by board setup code (see pwm_add_table()).
1895  *
1896  * Once a PWM chip has been found the specified PWM device will be requested
1897  * and is ready to be used.
1898  *
1899  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1900  * error code on failure.
1901  */
1902 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1903 {
1904 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1905 	const char *dev_id = dev ? dev_name(dev) : NULL;
1906 	struct pwm_device *pwm;
1907 	struct pwm_chip *chip;
1908 	struct device_link *dl;
1909 	unsigned int best = 0;
1910 	struct pwm_lookup *p, *chosen = NULL;
1911 	unsigned int match;
1912 	int err;
1913 
1914 	/* look up via DT first */
1915 	if (is_of_node(fwnode))
1916 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1917 
1918 	/* then lookup via ACPI */
1919 	if (is_acpi_node(fwnode)) {
1920 		pwm = acpi_pwm_get(fwnode);
1921 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1922 			return pwm;
1923 	}
1924 
1925 	/*
1926 	 * We look up the provider in the static table typically provided by
1927 	 * board setup code. We first try to lookup the consumer device by
1928 	 * name. If the consumer device was passed in as NULL or if no match
1929 	 * was found, we try to find the consumer by directly looking it up
1930 	 * by name.
1931 	 *
1932 	 * If a match is found, the provider PWM chip is looked up by name
1933 	 * and a PWM device is requested using the PWM device per-chip index.
1934 	 *
1935 	 * The lookup algorithm was shamelessly taken from the clock
1936 	 * framework:
1937 	 *
1938 	 * We do slightly fuzzy matching here:
1939 	 *  An entry with a NULL ID is assumed to be a wildcard.
1940 	 *  If an entry has a device ID, it must match
1941 	 *  If an entry has a connection ID, it must match
1942 	 * Then we take the most specific entry - with the following order
1943 	 * of precedence: dev+con > dev only > con only.
1944 	 */
1945 	scoped_guard(mutex, &pwm_lookup_lock)
1946 		list_for_each_entry(p, &pwm_lookup_list, list) {
1947 			match = 0;
1948 
1949 			if (p->dev_id) {
1950 				if (!dev_id || strcmp(p->dev_id, dev_id))
1951 					continue;
1952 
1953 				match += 2;
1954 			}
1955 
1956 			if (p->con_id) {
1957 				if (!con_id || strcmp(p->con_id, con_id))
1958 					continue;
1959 
1960 				match += 1;
1961 			}
1962 
1963 			if (match > best) {
1964 				chosen = p;
1965 
1966 				if (match != 3)
1967 					best = match;
1968 				else
1969 					break;
1970 			}
1971 		}
1972 
1973 	if (!chosen)
1974 		return ERR_PTR(-ENODEV);
1975 
1976 	chip = pwmchip_find_by_name(chosen->provider);
1977 
1978 	/*
1979 	 * If the lookup entry specifies a module, load the module and retry
1980 	 * the PWM chip lookup. This can be used to work around driver load
1981 	 * ordering issues if driver's can't be made to properly support the
1982 	 * deferred probe mechanism.
1983 	 */
1984 	if (!chip && chosen->module) {
1985 		err = request_module(chosen->module);
1986 		if (err == 0)
1987 			chip = pwmchip_find_by_name(chosen->provider);
1988 	}
1989 
1990 	if (!chip)
1991 		return ERR_PTR(-EPROBE_DEFER);
1992 
1993 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1994 	if (IS_ERR(pwm))
1995 		return pwm;
1996 
1997 	dl = pwm_device_link_add(dev, pwm);
1998 	if (IS_ERR(dl)) {
1999 		pwm_put(pwm);
2000 		return ERR_CAST(dl);
2001 	}
2002 
2003 	pwm->args.period = chosen->period;
2004 	pwm->args.polarity = chosen->polarity;
2005 
2006 	return pwm;
2007 }
2008 EXPORT_SYMBOL_GPL(pwm_get);
2009 
2010 /**
2011  * pwm_put() - release a PWM device
2012  * @pwm: PWM device
2013  */
2014 void pwm_put(struct pwm_device *pwm)
2015 {
2016 	struct pwm_chip *chip;
2017 
2018 	if (!pwm)
2019 		return;
2020 
2021 	chip = pwm->chip;
2022 
2023 	guard(mutex)(&pwm_lock);
2024 
2025 	/*
2026 	 * Trigger a warning if a consumer called pwm_put() twice.
2027 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
2028 	 * pwmchip_remove(). So don't warn in this case.
2029 	 */
2030 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2031 		pr_warn("PWM device already freed\n");
2032 		return;
2033 	}
2034 
2035 	if (chip->operational && chip->ops->free)
2036 		pwm->chip->ops->free(pwm->chip, pwm);
2037 
2038 	pwm->label = NULL;
2039 
2040 	put_device(&chip->dev);
2041 
2042 	module_put(chip->owner);
2043 }
2044 EXPORT_SYMBOL_GPL(pwm_put);
2045 
2046 static void devm_pwm_release(void *pwm)
2047 {
2048 	pwm_put(pwm);
2049 }
2050 
2051 /**
2052  * devm_pwm_get() - resource managed pwm_get()
2053  * @dev: device for PWM consumer
2054  * @con_id: consumer name
2055  *
2056  * This function performs like pwm_get() but the acquired PWM device will
2057  * automatically be released on driver detach.
2058  *
2059  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2060  * error code on failure.
2061  */
2062 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2063 {
2064 	struct pwm_device *pwm;
2065 	int ret;
2066 
2067 	pwm = pwm_get(dev, con_id);
2068 	if (IS_ERR(pwm))
2069 		return pwm;
2070 
2071 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2072 	if (ret)
2073 		return ERR_PTR(ret);
2074 
2075 	return pwm;
2076 }
2077 EXPORT_SYMBOL_GPL(devm_pwm_get);
2078 
2079 /**
2080  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2081  * @dev: device for PWM consumer
2082  * @fwnode: firmware node to get the PWM from
2083  * @con_id: consumer name
2084  *
2085  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2086  * acpi_pwm_get() for a detailed description.
2087  *
2088  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2089  * error code on failure.
2090  */
2091 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2092 				       struct fwnode_handle *fwnode,
2093 				       const char *con_id)
2094 {
2095 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2096 	int ret;
2097 
2098 	if (is_of_node(fwnode))
2099 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2100 	else if (is_acpi_node(fwnode))
2101 		pwm = acpi_pwm_get(fwnode);
2102 	if (IS_ERR(pwm))
2103 		return pwm;
2104 
2105 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2106 	if (ret)
2107 		return ERR_PTR(ret);
2108 
2109 	return pwm;
2110 }
2111 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2112 
2113 /**
2114  * __pwmchip_add() - register a new PWM chip
2115  * @chip: the PWM chip to add
2116  * @owner: reference to the module providing the chip.
2117  *
2118  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2119  * pwmchip_add wrapper to do this right.
2120  *
2121  * Returns: 0 on success or a negative error code on failure.
2122  */
2123 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2124 {
2125 	int ret;
2126 
2127 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2128 		return -EINVAL;
2129 
2130 	/*
2131 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2132 	 * otherwise the embedded struct device might disappear too early
2133 	 * resulting in memory corruption.
2134 	 * Catch drivers that were not converted appropriately.
2135 	 */
2136 	if (!chip->uses_pwmchip_alloc)
2137 		return -EINVAL;
2138 
2139 	if (!pwm_ops_check(chip))
2140 		return -EINVAL;
2141 
2142 	chip->owner = owner;
2143 
2144 	if (chip->atomic)
2145 		spin_lock_init(&chip->atomic_lock);
2146 	else
2147 		mutex_init(&chip->nonatomic_lock);
2148 
2149 	guard(mutex)(&pwm_lock);
2150 
2151 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2152 	if (ret < 0)
2153 		return ret;
2154 
2155 	chip->id = ret;
2156 
2157 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2158 
2159 	if (IS_ENABLED(CONFIG_OF))
2160 		of_pwmchip_add(chip);
2161 
2162 	scoped_guard(pwmchip, chip)
2163 		chip->operational = true;
2164 
2165 	ret = device_add(&chip->dev);
2166 	if (ret)
2167 		goto err_device_add;
2168 
2169 	return 0;
2170 
2171 err_device_add:
2172 	scoped_guard(pwmchip, chip)
2173 		chip->operational = false;
2174 
2175 	if (IS_ENABLED(CONFIG_OF))
2176 		of_pwmchip_remove(chip);
2177 
2178 	idr_remove(&pwm_chips, chip->id);
2179 
2180 	return ret;
2181 }
2182 EXPORT_SYMBOL_GPL(__pwmchip_add);
2183 
2184 /**
2185  * pwmchip_remove() - remove a PWM chip
2186  * @chip: the PWM chip to remove
2187  *
2188  * Removes a PWM chip.
2189  */
2190 void pwmchip_remove(struct pwm_chip *chip)
2191 {
2192 	pwmchip_sysfs_unexport(chip);
2193 
2194 	scoped_guard(mutex, &pwm_lock) {
2195 		unsigned int i;
2196 
2197 		scoped_guard(pwmchip, chip)
2198 			chip->operational = false;
2199 
2200 		for (i = 0; i < chip->npwm; ++i) {
2201 			struct pwm_device *pwm = &chip->pwms[i];
2202 
2203 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2204 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2205 				if (pwm->chip->ops->free)
2206 					pwm->chip->ops->free(pwm->chip, pwm);
2207 			}
2208 		}
2209 
2210 		if (IS_ENABLED(CONFIG_OF))
2211 			of_pwmchip_remove(chip);
2212 
2213 		idr_remove(&pwm_chips, chip->id);
2214 	}
2215 
2216 	device_del(&chip->dev);
2217 }
2218 EXPORT_SYMBOL_GPL(pwmchip_remove);
2219 
2220 static void devm_pwmchip_remove(void *data)
2221 {
2222 	struct pwm_chip *chip = data;
2223 
2224 	pwmchip_remove(chip);
2225 }
2226 
2227 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2228 {
2229 	int ret;
2230 
2231 	ret = __pwmchip_add(chip, owner);
2232 	if (ret)
2233 		return ret;
2234 
2235 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2236 }
2237 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2238 
2239 /**
2240  * pwm_add_table() - register PWM device consumers
2241  * @table: array of consumers to register
2242  * @num: number of consumers in table
2243  */
2244 void pwm_add_table(struct pwm_lookup *table, size_t num)
2245 {
2246 	guard(mutex)(&pwm_lookup_lock);
2247 
2248 	while (num--) {
2249 		list_add_tail(&table->list, &pwm_lookup_list);
2250 		table++;
2251 	}
2252 }
2253 
2254 /**
2255  * pwm_remove_table() - unregister PWM device consumers
2256  * @table: array of consumers to unregister
2257  * @num: number of consumers in table
2258  */
2259 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2260 {
2261 	guard(mutex)(&pwm_lookup_lock);
2262 
2263 	while (num--) {
2264 		list_del(&table->list);
2265 		table++;
2266 	}
2267 }
2268 
2269 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2270 {
2271 	unsigned int i;
2272 
2273 	for (i = 0; i < chip->npwm; i++) {
2274 		struct pwm_device *pwm = &chip->pwms[i];
2275 		struct pwm_state state, hwstate;
2276 
2277 		pwm_get_state(pwm, &state);
2278 		pwm_get_state_hw(pwm, &hwstate);
2279 
2280 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2281 
2282 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2283 			seq_puts(s, " requested");
2284 
2285 		seq_puts(s, "\n");
2286 
2287 		seq_printf(s, "  requested configuration: %3sabled, %llu/%llu ns, %s polarity",
2288 			   state.enabled ? "en" : "dis", state.duty_cycle, state.period,
2289 			   state.polarity ? "inverse" : "normal");
2290 		if (state.usage_power)
2291 			seq_puts(s, ", usage_power");
2292 		seq_puts(s, "\n");
2293 
2294 		seq_printf(s, "  actual configuration:    %3sabled, %llu/%llu ns, %s polarity",
2295 			   hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
2296 			   hwstate.polarity ? "inverse" : "normal");
2297 
2298 		seq_puts(s, "\n");
2299 	}
2300 }
2301 
2302 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2303 {
2304 	unsigned long id = *pos;
2305 	void *ret;
2306 
2307 	mutex_lock(&pwm_lock);
2308 	s->private = "";
2309 
2310 	ret = idr_get_next_ul(&pwm_chips, &id);
2311 	*pos = id;
2312 	return ret;
2313 }
2314 
2315 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2316 {
2317 	unsigned long id = *pos + 1;
2318 	void *ret;
2319 
2320 	s->private = "\n";
2321 
2322 	ret = idr_get_next_ul(&pwm_chips, &id);
2323 	*pos = id;
2324 	return ret;
2325 }
2326 
2327 static void pwm_seq_stop(struct seq_file *s, void *v)
2328 {
2329 	mutex_unlock(&pwm_lock);
2330 }
2331 
2332 static int pwm_seq_show(struct seq_file *s, void *v)
2333 {
2334 	struct pwm_chip *chip = v;
2335 
2336 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2337 		   (char *)s->private, chip->id,
2338 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2339 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2340 		   (chip->npwm != 1) ? "s" : "");
2341 
2342 	pwm_dbg_show(chip, s);
2343 
2344 	return 0;
2345 }
2346 
2347 static const struct seq_operations pwm_debugfs_sops = {
2348 	.start = pwm_seq_start,
2349 	.next = pwm_seq_next,
2350 	.stop = pwm_seq_stop,
2351 	.show = pwm_seq_show,
2352 };
2353 
2354 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2355 
2356 static int __init pwm_init(void)
2357 {
2358 	int ret;
2359 
2360 	ret = class_register(&pwm_class);
2361 	if (ret) {
2362 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2363 		return ret;
2364 	}
2365 
2366 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2367 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2368 
2369 	return 0;
2370 }
2371 subsys_initcall(pwm_init);
2372