1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 #define PCI_VENDOR_ID_ADVA			0xad5a
38 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
39 
40 static struct class timecard_class = {
41 	.name		= "timecard",
42 };
43 
44 struct ocp_reg {
45 	u32	ctrl;
46 	u32	status;
47 	u32	select;
48 	u32	version;
49 	u32	time_ns;
50 	u32	time_sec;
51 	u32	__pad0[2];
52 	u32	adjust_ns;
53 	u32	adjust_sec;
54 	u32	__pad1[2];
55 	u32	offset_ns;
56 	u32	offset_window_ns;
57 	u32	__pad2[2];
58 	u32	drift_ns;
59 	u32	drift_window_ns;
60 	u32	__pad3[6];
61 	u32	servo_offset_p;
62 	u32	servo_offset_i;
63 	u32	servo_drift_p;
64 	u32	servo_drift_i;
65 	u32	status_offset;
66 	u32	status_drift;
67 };
68 
69 struct ptp_ocp_servo_conf {
70 	u32	servo_offset_p;
71 	u32	servo_offset_i;
72 	u32	servo_drift_p;
73 	u32	servo_drift_i;
74 };
75 
76 #define OCP_CTRL_ENABLE		BIT(0)
77 #define OCP_CTRL_ADJUST_TIME	BIT(1)
78 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
79 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
80 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
81 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
82 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
83 
84 #define OCP_STATUS_IN_SYNC	BIT(0)
85 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
86 
87 #define OCP_SELECT_CLK_NONE	0
88 #define OCP_SELECT_CLK_REG	0xfe
89 
90 struct tod_reg {
91 	u32	ctrl;
92 	u32	status;
93 	u32	uart_polarity;
94 	u32	version;
95 	u32	adj_sec;
96 	u32	__pad0[3];
97 	u32	uart_baud;
98 	u32	__pad1[3];
99 	u32	utc_status;
100 	u32	leap;
101 };
102 
103 #define TOD_CTRL_PROTOCOL	BIT(28)
104 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
105 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
106 #define TOD_CTRL_ENABLE		BIT(0)
107 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
108 #define TOD_CTRL_GNSS_SHIFT	24
109 
110 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
111 #define TOD_STATUS_UTC_VALID		BIT(8)
112 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
113 #define TOD_STATUS_LEAP_VALID		BIT(16)
114 
115 struct ts_reg {
116 	u32	enable;
117 	u32	error;
118 	u32	polarity;
119 	u32	version;
120 	u32	__pad0[4];
121 	u32	cable_delay;
122 	u32	__pad1[3];
123 	u32	intr;
124 	u32	intr_mask;
125 	u32	event_count;
126 	u32	__pad2[1];
127 	u32	ts_count;
128 	u32	time_ns;
129 	u32	time_sec;
130 	u32	data_width;
131 	u32	data;
132 };
133 
134 struct pps_reg {
135 	u32	ctrl;
136 	u32	status;
137 	u32	__pad0[6];
138 	u32	cable_delay;
139 };
140 
141 #define PPS_STATUS_FILTER_ERR	BIT(0)
142 #define PPS_STATUS_SUPERV_ERR	BIT(1)
143 
144 struct img_reg {
145 	u32	version;
146 };
147 
148 struct gpio_reg {
149 	u32	gpio1;
150 	u32	__pad0;
151 	u32	gpio2;
152 	u32	__pad1;
153 };
154 
155 struct irig_master_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_M_CTRL_ENABLE	BIT(0)
165 
166 struct irig_slave_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 	u32	mode_ctrl;
173 };
174 
175 #define IRIG_S_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_master_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_M_CTRL_ENABLE	BIT(0)
186 
187 struct dcf_slave_reg {
188 	u32	ctrl;
189 	u32	status;
190 	u32	__pad0;
191 	u32	version;
192 	u32	adj_sec;
193 };
194 
195 #define DCF_S_CTRL_ENABLE	BIT(0)
196 
197 struct signal_reg {
198 	u32	enable;
199 	u32	status;
200 	u32	polarity;
201 	u32	version;
202 	u32	__pad0[4];
203 	u32	cable_delay;
204 	u32	__pad1[3];
205 	u32	intr;
206 	u32	intr_mask;
207 	u32	__pad2[2];
208 	u32	start_ns;
209 	u32	start_sec;
210 	u32	pulse_ns;
211 	u32	pulse_sec;
212 	u32	period_ns;
213 	u32	period_sec;
214 	u32	repeat_count;
215 };
216 
217 struct frequency_reg {
218 	u32	ctrl;
219 	u32	status;
220 };
221 
222 struct board_config_reg {
223 	u32 mro50_serial_activate;
224 };
225 
226 #define FREQ_STATUS_VALID	BIT(31)
227 #define FREQ_STATUS_ERROR	BIT(30)
228 #define FREQ_STATUS_OVERRUN	BIT(29)
229 #define FREQ_STATUS_MASK	GENMASK(23, 0)
230 
231 struct ptp_ocp_flash_info {
232 	const char *name;
233 	int pci_offset;
234 	int data_size;
235 	void *data;
236 };
237 
238 struct ptp_ocp_firmware_header {
239 	char magic[4];
240 	__be16 pci_vendor_id;
241 	__be16 pci_device_id;
242 	__be32 image_size;
243 	__be16 hw_revision;
244 	__be16 crc;
245 };
246 
247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
248 
249 struct ptp_ocp_i2c_info {
250 	const char *name;
251 	unsigned long fixed_rate;
252 	size_t data_size;
253 	void *data;
254 };
255 
256 struct ptp_ocp_ext_info {
257 	int index;
258 	irqreturn_t (*irq_fcn)(int irq, void *priv);
259 	int (*enable)(void *priv, u32 req, bool enable);
260 };
261 
262 struct ptp_ocp_ext_src {
263 	void __iomem		*mem;
264 	struct ptp_ocp		*bp;
265 	struct ptp_ocp_ext_info	*info;
266 	int			irq_vec;
267 };
268 
269 enum ptp_ocp_sma_mode {
270 	SMA_MODE_IN,
271 	SMA_MODE_OUT,
272 };
273 
274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
275 	DPLL_PIN_FREQUENCY_1PPS,
276 	DPLL_PIN_FREQUENCY_10MHZ,
277 	DPLL_PIN_FREQUENCY_IRIG_B,
278 	DPLL_PIN_FREQUENCY_DCF77,
279 };
280 
281 struct ptp_ocp_sma_connector {
282 	enum	ptp_ocp_sma_mode mode;
283 	bool	fixed_fcn;
284 	bool	fixed_dir;
285 	bool	disabled;
286 	u8	default_fcn;
287 	struct dpll_pin		   *dpll_pin;
288 	struct dpll_pin_properties dpll_prop;
289 };
290 
291 struct ocp_attr_group {
292 	u64 cap;
293 	const struct attribute_group *group;
294 };
295 
296 #define OCP_CAP_BASIC	BIT(0)
297 #define OCP_CAP_SIGNAL	BIT(1)
298 #define OCP_CAP_FREQ	BIT(2)
299 
300 struct ptp_ocp_signal {
301 	ktime_t		period;
302 	ktime_t		pulse;
303 	ktime_t		phase;
304 	ktime_t		start;
305 	int		duty;
306 	bool		polarity;
307 	bool		running;
308 };
309 
310 struct ptp_ocp_serial_port {
311 	int line;
312 	int baud;
313 };
314 
315 #define OCP_BOARD_ID_LEN		13
316 #define OCP_SERIAL_LEN			6
317 #define OCP_SMA_NUM			4
318 #define OCP_SIGNAL_NUM			4
319 #define OCP_FREQ_NUM			4
320 
321 enum {
322 	PORT_GNSS,
323 	PORT_GNSS2,
324 	PORT_MAC, /* miniature atomic clock */
325 	PORT_NMEA,
326 
327 	__PORT_COUNT,
328 };
329 
330 struct ptp_ocp {
331 	struct pci_dev		*pdev;
332 	struct device		dev;
333 	spinlock_t		lock;
334 	struct ocp_reg __iomem	*reg;
335 	struct tod_reg __iomem	*tod;
336 	struct pps_reg __iomem	*pps_to_ext;
337 	struct pps_reg __iomem	*pps_to_clk;
338 	struct board_config_reg __iomem	*board_config;
339 	struct gpio_reg __iomem	*pps_select;
340 	struct gpio_reg __iomem	*sma_map1;
341 	struct gpio_reg __iomem	*sma_map2;
342 	struct irig_master_reg	__iomem *irig_out;
343 	struct irig_slave_reg	__iomem *irig_in;
344 	struct dcf_master_reg	__iomem *dcf_out;
345 	struct dcf_slave_reg	__iomem *dcf_in;
346 	struct tod_reg		__iomem *nmea_out;
347 	struct frequency_reg	__iomem *freq_in[OCP_FREQ_NUM];
348 	struct ptp_ocp_ext_src	*signal_out[OCP_SIGNAL_NUM];
349 	struct ptp_ocp_ext_src	*pps;
350 	struct ptp_ocp_ext_src	*ts0;
351 	struct ptp_ocp_ext_src	*ts1;
352 	struct ptp_ocp_ext_src	*ts2;
353 	struct ptp_ocp_ext_src	*ts3;
354 	struct ptp_ocp_ext_src	*ts4;
355 	struct ocp_art_gpio_reg __iomem *art_sma;
356 	struct img_reg __iomem	*image;
357 	struct ptp_clock	*ptp;
358 	struct ptp_clock_info	ptp_info;
359 	struct platform_device	*i2c_ctrl;
360 	struct platform_device	*spi_flash;
361 	struct clk_hw		*i2c_clk;
362 	struct timer_list	watchdog;
363 	const struct attribute_group **attr_group;
364 	const struct ptp_ocp_eeprom_map *eeprom_map;
365 	struct dentry		*debug_root;
366 	bool			sync;
367 	time64_t		gnss_lost;
368 	struct delayed_work	sync_work;
369 	int			id;
370 	int			n_irqs;
371 	struct ptp_ocp_serial_port	port[__PORT_COUNT];
372 	bool			fw_loader;
373 	u8			fw_tag;
374 	u16			fw_version;
375 	u8			board_id[OCP_BOARD_ID_LEN];
376 	u8			serial[OCP_SERIAL_LEN];
377 	bool			has_eeprom_data;
378 	u32			pps_req_map;
379 	int			flash_start;
380 	u32			utc_tai_offset;
381 	u32			ts_window_adjust;
382 	u64			fw_cap;
383 	struct ptp_ocp_signal	signal[OCP_SIGNAL_NUM];
384 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
385 	const struct ocp_sma_op *sma_op;
386 	struct dpll_device *dpll;
387 	int signals_nr;
388 	int freq_in_nr;
389 };
390 
391 #define OCP_REQ_TIMESTAMP	BIT(0)
392 #define OCP_REQ_PPS		BIT(1)
393 
394 struct ocp_resource {
395 	unsigned long offset;
396 	int size;
397 	int irq_vec;
398 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
399 	void *extra;
400 	unsigned long bp_offset;
401 	const char * const name;
402 };
403 
404 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
406 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
407 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
408 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
409 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
410 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
411 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
412 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
413 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
414 				      struct ptp_perout_request *req);
415 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
416 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
417 
418 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
419 
420 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
421 
422 static const struct ocp_attr_group fb_timecard_groups[];
423 
424 static const struct ocp_attr_group art_timecard_groups[];
425 
426 static const struct ocp_attr_group adva_timecard_groups[];
427 
428 struct ptp_ocp_eeprom_map {
429 	u16	off;
430 	u16	len;
431 	u32	bp_offset;
432 	const void * const tag;
433 };
434 
435 #define EEPROM_ENTRY(addr, member)				\
436 	.off = addr,						\
437 	.len = sizeof_field(struct ptp_ocp, member),		\
438 	.bp_offset = offsetof(struct ptp_ocp, member)
439 
440 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
441 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
442 })
443 
444 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
445 	{ EEPROM_ENTRY(0x43, board_id) },
446 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
447 	{ }
448 };
449 
450 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
451 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
452 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
453 	{ }
454 };
455 
456 #define bp_assign_entry(bp, res, val) ({				\
457 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
458 	*(typeof(val) *)addr = val;					\
459 })
460 
461 #define OCP_RES_LOCATION(member) \
462 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
463 
464 #define OCP_MEM_RESOURCE(member) \
465 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
466 
467 #define OCP_SERIAL_RESOURCE(member) \
468 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
469 
470 #define OCP_I2C_RESOURCE(member) \
471 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
472 
473 #define OCP_SPI_RESOURCE(member) \
474 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
475 
476 #define OCP_EXT_RESOURCE(member) \
477 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
478 
479 /* This is the MSI vector mapping used.
480  * 0: PPS (TS5)
481  * 1: TS0
482  * 2: TS1
483  * 3: GNSS1
484  * 4: GNSS2
485  * 5: MAC
486  * 6: TS2
487  * 7: I2C controller
488  * 8: HWICAP (notused)
489  * 9: SPI Flash
490  * 10: NMEA
491  * 11: Signal Generator 1
492  * 12: Signal Generator 2
493  * 13: Signal Generator 3
494  * 14: Signal Generator 4
495  * 15: TS3
496  * 16: TS4
497  --
498  * 8: Orolia TS1
499  * 10: Orolia TS2
500  * 11: Orolia TS0 (GNSS)
501  * 12: Orolia PPS
502  * 14: Orolia TS3
503  * 15: Orolia TS4
504  */
505 
506 static struct ocp_resource ocp_fb_resource[] = {
507 	{
508 		OCP_MEM_RESOURCE(reg),
509 		.offset = 0x01000000, .size = 0x10000,
510 	},
511 	{
512 		OCP_EXT_RESOURCE(ts0),
513 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
514 		.extra = &(struct ptp_ocp_ext_info) {
515 			.index = 0,
516 			.irq_fcn = ptp_ocp_ts_irq,
517 			.enable = ptp_ocp_ts_enable,
518 		},
519 	},
520 	{
521 		OCP_EXT_RESOURCE(ts1),
522 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
523 		.extra = &(struct ptp_ocp_ext_info) {
524 			.index = 1,
525 			.irq_fcn = ptp_ocp_ts_irq,
526 			.enable = ptp_ocp_ts_enable,
527 		},
528 	},
529 	{
530 		OCP_EXT_RESOURCE(ts2),
531 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
532 		.extra = &(struct ptp_ocp_ext_info) {
533 			.index = 2,
534 			.irq_fcn = ptp_ocp_ts_irq,
535 			.enable = ptp_ocp_ts_enable,
536 		},
537 	},
538 	{
539 		OCP_EXT_RESOURCE(ts3),
540 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
541 		.extra = &(struct ptp_ocp_ext_info) {
542 			.index = 3,
543 			.irq_fcn = ptp_ocp_ts_irq,
544 			.enable = ptp_ocp_ts_enable,
545 		},
546 	},
547 	{
548 		OCP_EXT_RESOURCE(ts4),
549 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
550 		.extra = &(struct ptp_ocp_ext_info) {
551 			.index = 4,
552 			.irq_fcn = ptp_ocp_ts_irq,
553 			.enable = ptp_ocp_ts_enable,
554 		},
555 	},
556 	/* Timestamp for PHC and/or PPS generator */
557 	{
558 		OCP_EXT_RESOURCE(pps),
559 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
560 		.extra = &(struct ptp_ocp_ext_info) {
561 			.index = 5,
562 			.irq_fcn = ptp_ocp_ts_irq,
563 			.enable = ptp_ocp_ts_enable,
564 		},
565 	},
566 	{
567 		OCP_EXT_RESOURCE(signal_out[0]),
568 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
569 		.extra = &(struct ptp_ocp_ext_info) {
570 			.index = 1,
571 			.irq_fcn = ptp_ocp_signal_irq,
572 			.enable = ptp_ocp_signal_enable,
573 		},
574 	},
575 	{
576 		OCP_EXT_RESOURCE(signal_out[1]),
577 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
578 		.extra = &(struct ptp_ocp_ext_info) {
579 			.index = 2,
580 			.irq_fcn = ptp_ocp_signal_irq,
581 			.enable = ptp_ocp_signal_enable,
582 		},
583 	},
584 	{
585 		OCP_EXT_RESOURCE(signal_out[2]),
586 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
587 		.extra = &(struct ptp_ocp_ext_info) {
588 			.index = 3,
589 			.irq_fcn = ptp_ocp_signal_irq,
590 			.enable = ptp_ocp_signal_enable,
591 		},
592 	},
593 	{
594 		OCP_EXT_RESOURCE(signal_out[3]),
595 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
596 		.extra = &(struct ptp_ocp_ext_info) {
597 			.index = 4,
598 			.irq_fcn = ptp_ocp_signal_irq,
599 			.enable = ptp_ocp_signal_enable,
600 		},
601 	},
602 	{
603 		OCP_MEM_RESOURCE(pps_to_ext),
604 		.offset = 0x01030000, .size = 0x10000,
605 	},
606 	{
607 		OCP_MEM_RESOURCE(pps_to_clk),
608 		.offset = 0x01040000, .size = 0x10000,
609 	},
610 	{
611 		OCP_MEM_RESOURCE(tod),
612 		.offset = 0x01050000, .size = 0x10000,
613 	},
614 	{
615 		OCP_MEM_RESOURCE(irig_in),
616 		.offset = 0x01070000, .size = 0x10000,
617 	},
618 	{
619 		OCP_MEM_RESOURCE(irig_out),
620 		.offset = 0x01080000, .size = 0x10000,
621 	},
622 	{
623 		OCP_MEM_RESOURCE(dcf_in),
624 		.offset = 0x01090000, .size = 0x10000,
625 	},
626 	{
627 		OCP_MEM_RESOURCE(dcf_out),
628 		.offset = 0x010A0000, .size = 0x10000,
629 	},
630 	{
631 		OCP_MEM_RESOURCE(nmea_out),
632 		.offset = 0x010B0000, .size = 0x10000,
633 	},
634 	{
635 		OCP_MEM_RESOURCE(image),
636 		.offset = 0x00020000, .size = 0x1000,
637 	},
638 	{
639 		OCP_MEM_RESOURCE(pps_select),
640 		.offset = 0x00130000, .size = 0x1000,
641 	},
642 	{
643 		OCP_MEM_RESOURCE(sma_map1),
644 		.offset = 0x00140000, .size = 0x1000,
645 	},
646 	{
647 		OCP_MEM_RESOURCE(sma_map2),
648 		.offset = 0x00220000, .size = 0x1000,
649 	},
650 	{
651 		OCP_I2C_RESOURCE(i2c_ctrl),
652 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
653 		.extra = &(struct ptp_ocp_i2c_info) {
654 			.name = "xiic-i2c",
655 			.fixed_rate = 50000000,
656 			.data_size = sizeof(struct xiic_i2c_platform_data),
657 			.data = &(struct xiic_i2c_platform_data) {
658 				.num_devices = 2,
659 				.devices = (struct i2c_board_info[]) {
660 					{ I2C_BOARD_INFO("24c02", 0x50) },
661 					{ I2C_BOARD_INFO("24mac402", 0x58),
662 					  .platform_data = "mac" },
663 				},
664 			},
665 		},
666 	},
667 	{
668 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
669 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
670 		.extra = &(struct ptp_ocp_serial_port) {
671 			.baud = 115200,
672 		},
673 	},
674 	{
675 		OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
676 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
677 		.extra = &(struct ptp_ocp_serial_port) {
678 			.baud = 115200,
679 		},
680 	},
681 	{
682 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
683 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
684 		.extra = &(struct ptp_ocp_serial_port) {
685 			.baud = 57600,
686 		},
687 	},
688 	{
689 		OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
690 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
691 	},
692 	{
693 		OCP_SPI_RESOURCE(spi_flash),
694 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
695 		.extra = &(struct ptp_ocp_flash_info) {
696 			.name = "xilinx_spi", .pci_offset = 0,
697 			.data_size = sizeof(struct xspi_platform_data),
698 			.data = &(struct xspi_platform_data) {
699 				.num_chipselect = 1,
700 				.bits_per_word = 8,
701 				.num_devices = 1,
702 				.force_irq = true,
703 				.devices = &(struct spi_board_info) {
704 					.modalias = "spi-nor",
705 				},
706 			},
707 		},
708 	},
709 	{
710 		OCP_MEM_RESOURCE(freq_in[0]),
711 		.offset = 0x01200000, .size = 0x10000,
712 	},
713 	{
714 		OCP_MEM_RESOURCE(freq_in[1]),
715 		.offset = 0x01210000, .size = 0x10000,
716 	},
717 	{
718 		OCP_MEM_RESOURCE(freq_in[2]),
719 		.offset = 0x01220000, .size = 0x10000,
720 	},
721 	{
722 		OCP_MEM_RESOURCE(freq_in[3]),
723 		.offset = 0x01230000, .size = 0x10000,
724 	},
725 	{
726 		.setup = ptp_ocp_fb_board_init,
727 		.extra = &(struct ptp_ocp_servo_conf) {
728 			.servo_offset_p = 0x2000,
729 			.servo_offset_i = 0x1000,
730 			.servo_drift_p = 0,
731 			.servo_drift_i = 0,
732 		},
733 	},
734 	{ }
735 };
736 
737 #define OCP_ART_CONFIG_SIZE		144
738 #define OCP_ART_TEMP_TABLE_SIZE		368
739 
740 struct ocp_art_gpio_reg {
741 	struct {
742 		u32	gpio;
743 		u32	__pad[3];
744 	} map[4];
745 };
746 
747 static struct ocp_resource ocp_art_resource[] = {
748 	{
749 		OCP_MEM_RESOURCE(reg),
750 		.offset = 0x01000000, .size = 0x10000,
751 	},
752 	{
753 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
754 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
755 		.extra = &(struct ptp_ocp_serial_port) {
756 			.baud = 115200,
757 		},
758 	},
759 	{
760 		OCP_MEM_RESOURCE(art_sma),
761 		.offset = 0x003C0000, .size = 0x1000,
762 	},
763 	/* Timestamp associated with GNSS1 receiver PPS */
764 	{
765 		OCP_EXT_RESOURCE(ts0),
766 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
767 		.extra = &(struct ptp_ocp_ext_info) {
768 			.index = 0,
769 			.irq_fcn = ptp_ocp_ts_irq,
770 			.enable = ptp_ocp_ts_enable,
771 		},
772 	},
773 	{
774 		OCP_EXT_RESOURCE(ts1),
775 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
776 		.extra = &(struct ptp_ocp_ext_info) {
777 			.index = 1,
778 			.irq_fcn = ptp_ocp_ts_irq,
779 			.enable = ptp_ocp_ts_enable,
780 		},
781 	},
782 	{
783 		OCP_EXT_RESOURCE(ts2),
784 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
785 		.extra = &(struct ptp_ocp_ext_info) {
786 			.index = 2,
787 			.irq_fcn = ptp_ocp_ts_irq,
788 			.enable = ptp_ocp_ts_enable,
789 		},
790 	},
791 	{
792 		OCP_EXT_RESOURCE(ts3),
793 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
794 		.extra = &(struct ptp_ocp_ext_info) {
795 			.index = 3,
796 			.irq_fcn = ptp_ocp_ts_irq,
797 			.enable = ptp_ocp_ts_enable,
798 		},
799 	},
800 	{
801 		OCP_EXT_RESOURCE(ts4),
802 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
803 		.extra = &(struct ptp_ocp_ext_info) {
804 			.index = 4,
805 			.irq_fcn = ptp_ocp_ts_irq,
806 			.enable = ptp_ocp_ts_enable,
807 		},
808 	},
809 	/* Timestamp associated with Internal PPS of the card */
810 	{
811 		OCP_EXT_RESOURCE(pps),
812 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
813 		.extra = &(struct ptp_ocp_ext_info) {
814 			.index = 5,
815 			.irq_fcn = ptp_ocp_ts_irq,
816 			.enable = ptp_ocp_ts_enable,
817 		},
818 	},
819 	{
820 		OCP_SPI_RESOURCE(spi_flash),
821 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
822 		.extra = &(struct ptp_ocp_flash_info) {
823 			.name = "spi_altera", .pci_offset = 0,
824 			.data_size = sizeof(struct altera_spi_platform_data),
825 			.data = &(struct altera_spi_platform_data) {
826 				.num_chipselect = 1,
827 				.num_devices = 1,
828 				.devices = &(struct spi_board_info) {
829 					.modalias = "spi-nor",
830 				},
831 			},
832 		},
833 	},
834 	{
835 		OCP_I2C_RESOURCE(i2c_ctrl),
836 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
837 		.extra = &(struct ptp_ocp_i2c_info) {
838 			.name = "ocores-i2c",
839 			.fixed_rate = 400000,
840 			.data_size = sizeof(struct ocores_i2c_platform_data),
841 			.data = &(struct ocores_i2c_platform_data) {
842 				.clock_khz = 125000,
843 				.bus_khz = 400,
844 				.num_devices = 1,
845 				.devices = &(struct i2c_board_info) {
846 					I2C_BOARD_INFO("24c08", 0x50),
847 				},
848 			},
849 		},
850 	},
851 	{
852 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
853 		.offset = 0x00190000, .irq_vec = 7,
854 		.extra = &(struct ptp_ocp_serial_port) {
855 			.baud = 9600,
856 		},
857 	},
858 	{
859 		OCP_MEM_RESOURCE(board_config),
860 		.offset = 0x210000, .size = 0x1000,
861 	},
862 	{
863 		.setup = ptp_ocp_art_board_init,
864 		.extra = &(struct ptp_ocp_servo_conf) {
865 			.servo_offset_p = 0x2000,
866 			.servo_offset_i = 0x1000,
867 			.servo_drift_p = 0,
868 			.servo_drift_i = 0,
869 		},
870 	},
871 	{ }
872 };
873 
874 static struct ocp_resource ocp_adva_resource[] = {
875 	{
876 		OCP_MEM_RESOURCE(reg),
877 		.offset = 0x01000000, .size = 0x10000,
878 	},
879 	{
880 		OCP_EXT_RESOURCE(ts0),
881 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
882 		.extra = &(struct ptp_ocp_ext_info) {
883 			.index = 0,
884 			.irq_fcn = ptp_ocp_ts_irq,
885 			.enable = ptp_ocp_ts_enable,
886 		},
887 	},
888 	{
889 		OCP_EXT_RESOURCE(ts1),
890 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
891 		.extra = &(struct ptp_ocp_ext_info) {
892 			.index = 1,
893 			.irq_fcn = ptp_ocp_ts_irq,
894 			.enable = ptp_ocp_ts_enable,
895 		},
896 	},
897 	{
898 		OCP_EXT_RESOURCE(ts2),
899 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
900 		.extra = &(struct ptp_ocp_ext_info) {
901 			.index = 2,
902 			.irq_fcn = ptp_ocp_ts_irq,
903 			.enable = ptp_ocp_ts_enable,
904 		},
905 	},
906 	/* Timestamp for PHC and/or PPS generator */
907 	{
908 		OCP_EXT_RESOURCE(pps),
909 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
910 		.extra = &(struct ptp_ocp_ext_info) {
911 			.index = 5,
912 			.irq_fcn = ptp_ocp_ts_irq,
913 			.enable = ptp_ocp_ts_enable,
914 		},
915 	},
916 	{
917 		OCP_EXT_RESOURCE(signal_out[0]),
918 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
919 		.extra = &(struct ptp_ocp_ext_info) {
920 			.index = 1,
921 			.irq_fcn = ptp_ocp_signal_irq,
922 			.enable = ptp_ocp_signal_enable,
923 		},
924 	},
925 	{
926 		OCP_EXT_RESOURCE(signal_out[1]),
927 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
928 		.extra = &(struct ptp_ocp_ext_info) {
929 			.index = 2,
930 			.irq_fcn = ptp_ocp_signal_irq,
931 			.enable = ptp_ocp_signal_enable,
932 		},
933 	},
934 	{
935 		OCP_MEM_RESOURCE(pps_to_ext),
936 		.offset = 0x01030000, .size = 0x10000,
937 	},
938 	{
939 		OCP_MEM_RESOURCE(pps_to_clk),
940 		.offset = 0x01040000, .size = 0x10000,
941 	},
942 	{
943 		OCP_MEM_RESOURCE(tod),
944 		.offset = 0x01050000, .size = 0x10000,
945 	},
946 	{
947 		OCP_MEM_RESOURCE(image),
948 		.offset = 0x00020000, .size = 0x1000,
949 	},
950 	{
951 		OCP_MEM_RESOURCE(pps_select),
952 		.offset = 0x00130000, .size = 0x1000,
953 	},
954 	{
955 		OCP_MEM_RESOURCE(sma_map1),
956 		.offset = 0x00140000, .size = 0x1000,
957 	},
958 	{
959 		OCP_MEM_RESOURCE(sma_map2),
960 		.offset = 0x00220000, .size = 0x1000,
961 	},
962 	{
963 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
964 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
965 		.extra = &(struct ptp_ocp_serial_port) {
966 			.baud = 9600,
967 		},
968 	},
969 	{
970 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
971 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
972 		.extra = &(struct ptp_ocp_serial_port) {
973 			.baud = 115200,
974 		},
975 	},
976 	{
977 		OCP_MEM_RESOURCE(freq_in[0]),
978 		.offset = 0x01200000, .size = 0x10000,
979 	},
980 	{
981 		OCP_MEM_RESOURCE(freq_in[1]),
982 		.offset = 0x01210000, .size = 0x10000,
983 	},
984 	{
985 		OCP_SPI_RESOURCE(spi_flash),
986 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
987 		.extra = &(struct ptp_ocp_flash_info) {
988 			.name = "spi_altera", .pci_offset = 0,
989 			.data_size = sizeof(struct altera_spi_platform_data),
990 			.data = &(struct altera_spi_platform_data) {
991 				.num_chipselect = 1,
992 				.num_devices = 1,
993 				.devices = &(struct spi_board_info) {
994 					.modalias = "spi-nor",
995 				},
996 			},
997 		},
998 	},
999 	{
1000 		OCP_I2C_RESOURCE(i2c_ctrl),
1001 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
1002 		.extra = &(struct ptp_ocp_i2c_info) {
1003 			.name = "ocores-i2c",
1004 			.fixed_rate = 50000000,
1005 			.data_size = sizeof(struct ocores_i2c_platform_data),
1006 			.data = &(struct ocores_i2c_platform_data) {
1007 				.clock_khz = 50000,
1008 				.bus_khz = 100,
1009 				.reg_io_width = 4, // 32-bit/4-byte
1010 				.reg_shift = 2, // 32-bit addressing
1011 				.num_devices = 2,
1012 				.devices = (struct i2c_board_info[]) {
1013 					{ I2C_BOARD_INFO("24c02", 0x50) },
1014 					{ I2C_BOARD_INFO("24mac402", 0x58),
1015 					 .platform_data = "mac" },
1016 				},
1017 			},
1018 		},
1019 	},
1020 	{
1021 		.setup = ptp_ocp_adva_board_init,
1022 		.extra = &(struct ptp_ocp_servo_conf) {
1023 			.servo_offset_p = 0xc000,
1024 			.servo_offset_i = 0x1000,
1025 			.servo_drift_p = 0,
1026 			.servo_drift_i = 0,
1027 		},
1028 	},
1029 	{ }
1030 };
1031 
1032 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1033 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
1034 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1035 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1036 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1037 	{ }
1038 };
1039 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1040 
1041 static DEFINE_MUTEX(ptp_ocp_lock);
1042 static DEFINE_IDR(ptp_ocp_idr);
1043 
1044 struct ocp_selector {
1045 	const char *name;
1046 	int value;
1047 	u64 frequency;
1048 };
1049 
1050 static const struct ocp_selector ptp_ocp_clock[] = {
1051 	{ .name = "NONE",	.value = 0 },
1052 	{ .name = "TOD",	.value = 1 },
1053 	{ .name = "IRIG",	.value = 2 },
1054 	{ .name = "PPS",	.value = 3 },
1055 	{ .name = "PTP",	.value = 4 },
1056 	{ .name = "RTC",	.value = 5 },
1057 	{ .name = "DCF",	.value = 6 },
1058 	{ .name = "REGS",	.value = 0xfe },
1059 	{ .name = "EXT",	.value = 0xff },
1060 	{ }
1061 };
1062 
1063 #define SMA_DISABLE		BIT(16)
1064 #define SMA_ENABLE		BIT(15)
1065 #define SMA_SELECT_MASK		GENMASK(14, 0)
1066 
1067 static const struct ocp_selector ptp_ocp_sma_in[] = {
1068 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1069 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1070 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1071 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1072 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1073 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1074 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1075 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1076 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1077 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1078 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1079 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1080 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1081 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1082 	{ }
1083 };
1084 
1085 static const struct ocp_selector ptp_ocp_sma_out[] = {
1086 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1087 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1088 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1089 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1090 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1091 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1092 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1093 	{ .name = "GEN1",	.value = 0x0040 },
1094 	{ .name = "GEN2",	.value = 0x0080 },
1095 	{ .name = "GEN3",	.value = 0x0100 },
1096 	{ .name = "GEN4",	.value = 0x0200 },
1097 	{ .name = "GND",	.value = 0x2000 },
1098 	{ .name = "VCC",	.value = 0x4000 },
1099 	{ }
1100 };
1101 
1102 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1103 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1104 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1105 	{ }
1106 };
1107 
1108 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1109 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1110 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1111 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1112 	{ }
1113 };
1114 
1115 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1116 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1117 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1118 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1119 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1120 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1121 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1122 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1123 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1124 	{ }
1125 };
1126 
1127 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1128 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1129 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1130 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1131 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1132 	{ .name = "GEN1",	.value = 0x0040 },
1133 	{ .name = "GEN2",	.value = 0x0080 },
1134 	{ .name = "GND",	.value = 0x2000 },
1135 	{ .name = "VCC",	.value = 0x4000 },
1136 	{ }
1137 };
1138 
1139 struct ocp_sma_op {
1140 	const struct ocp_selector *tbl[2];
1141 	void (*init)(struct ptp_ocp *bp);
1142 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1143 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1144 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1145 };
1146 
1147 static void
1148 ptp_ocp_sma_init(struct ptp_ocp *bp)
1149 {
1150 	return bp->sma_op->init(bp);
1151 }
1152 
1153 static u32
1154 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1155 {
1156 	return bp->sma_op->get(bp, sma_nr);
1157 }
1158 
1159 static int
1160 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1161 {
1162 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1163 }
1164 
1165 static int
1166 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1167 {
1168 	return bp->sma_op->set_output(bp, sma_nr, val);
1169 }
1170 
1171 static const char *
1172 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1173 {
1174 	int i;
1175 
1176 	for (i = 0; tbl[i].name; i++)
1177 		if (tbl[i].value == val)
1178 			return tbl[i].name;
1179 	return NULL;
1180 }
1181 
1182 static int
1183 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1184 {
1185 	const char *select;
1186 	int i;
1187 
1188 	for (i = 0; tbl[i].name; i++) {
1189 		select = tbl[i].name;
1190 		if (!strncasecmp(name, select, strlen(select)))
1191 			return tbl[i].value;
1192 	}
1193 	return -EINVAL;
1194 }
1195 
1196 static ssize_t
1197 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1198 {
1199 	ssize_t count;
1200 	int i;
1201 
1202 	count = 0;
1203 	for (i = 0; tbl[i].name; i++)
1204 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1205 	if (count)
1206 		count--;
1207 	count += sysfs_emit_at(buf, count, "\n");
1208 	return count;
1209 }
1210 
1211 static int
1212 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1213 			 struct ptp_system_timestamp *sts)
1214 {
1215 	u32 ctrl, time_sec, time_ns;
1216 	int i;
1217 
1218 	ptp_read_system_prets(sts);
1219 
1220 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1221 	iowrite32(ctrl, &bp->reg->ctrl);
1222 
1223 	for (i = 0; i < 100; i++) {
1224 		ctrl = ioread32(&bp->reg->ctrl);
1225 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1226 			break;
1227 	}
1228 	ptp_read_system_postts(sts);
1229 
1230 	if (sts && bp->ts_window_adjust) {
1231 		s64 ns = timespec64_to_ns(&sts->post_ts);
1232 
1233 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1234 	}
1235 
1236 	time_ns = ioread32(&bp->reg->time_ns);
1237 	time_sec = ioread32(&bp->reg->time_sec);
1238 
1239 	ts->tv_sec = time_sec;
1240 	ts->tv_nsec = time_ns;
1241 
1242 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1243 }
1244 
1245 static int
1246 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1247 		 struct ptp_system_timestamp *sts)
1248 {
1249 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1250 	unsigned long flags;
1251 	int err;
1252 
1253 	spin_lock_irqsave(&bp->lock, flags);
1254 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1255 	spin_unlock_irqrestore(&bp->lock, flags);
1256 
1257 	return err;
1258 }
1259 
1260 static void
1261 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1262 {
1263 	u32 ctrl, time_sec, time_ns;
1264 	u32 select;
1265 
1266 	time_ns = ts->tv_nsec;
1267 	time_sec = ts->tv_sec;
1268 
1269 	select = ioread32(&bp->reg->select);
1270 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1271 
1272 	iowrite32(time_ns, &bp->reg->adjust_ns);
1273 	iowrite32(time_sec, &bp->reg->adjust_sec);
1274 
1275 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1276 	iowrite32(ctrl, &bp->reg->ctrl);
1277 
1278 	/* restore clock selection */
1279 	iowrite32(select >> 16, &bp->reg->select);
1280 }
1281 
1282 static int
1283 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1284 {
1285 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&bp->lock, flags);
1289 	__ptp_ocp_settime_locked(bp, ts);
1290 	spin_unlock_irqrestore(&bp->lock, flags);
1291 
1292 	return 0;
1293 }
1294 
1295 static void
1296 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1297 {
1298 	u32 select, ctrl;
1299 
1300 	select = ioread32(&bp->reg->select);
1301 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1302 
1303 	iowrite32(adj_val, &bp->reg->offset_ns);
1304 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1305 
1306 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1307 	iowrite32(ctrl, &bp->reg->ctrl);
1308 
1309 	/* restore clock selection */
1310 	iowrite32(select >> 16, &bp->reg->select);
1311 }
1312 
1313 static void
1314 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1315 {
1316 	struct timespec64 ts;
1317 	unsigned long flags;
1318 	int err;
1319 
1320 	spin_lock_irqsave(&bp->lock, flags);
1321 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1322 	if (likely(!err)) {
1323 		set_normalized_timespec64(&ts, ts.tv_sec,
1324 					  ts.tv_nsec + delta_ns);
1325 		__ptp_ocp_settime_locked(bp, &ts);
1326 	}
1327 	spin_unlock_irqrestore(&bp->lock, flags);
1328 }
1329 
1330 static int
1331 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1332 {
1333 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1334 	unsigned long flags;
1335 	u32 adj_ns, sign;
1336 
1337 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1338 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1339 		return 0;
1340 	}
1341 
1342 	sign = delta_ns < 0 ? BIT(31) : 0;
1343 	adj_ns = sign ? -delta_ns : delta_ns;
1344 
1345 	spin_lock_irqsave(&bp->lock, flags);
1346 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1347 	spin_unlock_irqrestore(&bp->lock, flags);
1348 
1349 	return 0;
1350 }
1351 
1352 static int
1353 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1354 {
1355 	if (scaled_ppm == 0)
1356 		return 0;
1357 
1358 	return -EOPNOTSUPP;
1359 }
1360 
1361 static s32
1362 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1363 {
1364 	return 0;
1365 }
1366 
1367 static int
1368 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1369 {
1370 	return -EOPNOTSUPP;
1371 }
1372 
1373 static int
1374 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1375 	       int on)
1376 {
1377 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1378 	struct ptp_ocp_ext_src *ext = NULL;
1379 	u32 req;
1380 	int err;
1381 
1382 	switch (rq->type) {
1383 	case PTP_CLK_REQ_EXTTS:
1384 		req = OCP_REQ_TIMESTAMP;
1385 		switch (rq->extts.index) {
1386 		case 0:
1387 			ext = bp->ts0;
1388 			break;
1389 		case 1:
1390 			ext = bp->ts1;
1391 			break;
1392 		case 2:
1393 			ext = bp->ts2;
1394 			break;
1395 		case 3:
1396 			ext = bp->ts3;
1397 			break;
1398 		case 4:
1399 			ext = bp->ts4;
1400 			break;
1401 		case 5:
1402 			ext = bp->pps;
1403 			break;
1404 		}
1405 		break;
1406 	case PTP_CLK_REQ_PPS:
1407 		req = OCP_REQ_PPS;
1408 		ext = bp->pps;
1409 		break;
1410 	case PTP_CLK_REQ_PEROUT:
1411 		switch (rq->perout.index) {
1412 		case 0:
1413 			/* This is a request for 1PPS on an output SMA.
1414 			 * Allow, but assume manual configuration.
1415 			 */
1416 			if (on && (rq->perout.period.sec != 1 ||
1417 				   rq->perout.period.nsec != 0))
1418 				return -EINVAL;
1419 			return 0;
1420 		case 1:
1421 		case 2:
1422 		case 3:
1423 		case 4:
1424 			req = rq->perout.index - 1;
1425 			ext = bp->signal_out[req];
1426 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1427 			if (err)
1428 				return err;
1429 			break;
1430 		}
1431 		break;
1432 	default:
1433 		return -EOPNOTSUPP;
1434 	}
1435 
1436 	err = -ENXIO;
1437 	if (ext)
1438 		err = ext->info->enable(ext, req, on);
1439 
1440 	return err;
1441 }
1442 
1443 static int
1444 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1445 	       enum ptp_pin_function func, unsigned chan)
1446 {
1447 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1448 	char buf[16];
1449 
1450 	switch (func) {
1451 	case PTP_PF_NONE:
1452 		snprintf(buf, sizeof(buf), "IN: None");
1453 		break;
1454 	case PTP_PF_EXTTS:
1455 		/* Allow timestamps, but require sysfs configuration. */
1456 		return 0;
1457 	case PTP_PF_PEROUT:
1458 		/* channel 0 is 1PPS from PHC.
1459 		 * channels 1..4 are the frequency generators.
1460 		 */
1461 		if (chan)
1462 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1463 		else
1464 			snprintf(buf, sizeof(buf), "OUT: PHC");
1465 		break;
1466 	default:
1467 		return -EOPNOTSUPP;
1468 	}
1469 
1470 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1471 }
1472 
1473 static const struct ptp_clock_info ptp_ocp_clock_info = {
1474 	.owner		= THIS_MODULE,
1475 	.name		= KBUILD_MODNAME,
1476 	.max_adj	= 100000000,
1477 	.gettimex64	= ptp_ocp_gettimex,
1478 	.settime64	= ptp_ocp_settime,
1479 	.adjtime	= ptp_ocp_adjtime,
1480 	.adjfine	= ptp_ocp_null_adjfine,
1481 	.adjphase	= ptp_ocp_null_adjphase,
1482 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1483 	.enable		= ptp_ocp_enable,
1484 	.verify		= ptp_ocp_verify,
1485 	.pps		= true,
1486 	.n_ext_ts	= 6,
1487 	.n_per_out	= 5,
1488 };
1489 
1490 static void
1491 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1492 {
1493 	u32 ctrl, select;
1494 
1495 	select = ioread32(&bp->reg->select);
1496 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1497 
1498 	iowrite32(0, &bp->reg->drift_ns);
1499 
1500 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1501 	iowrite32(ctrl, &bp->reg->ctrl);
1502 
1503 	/* restore clock selection */
1504 	iowrite32(select >> 16, &bp->reg->select);
1505 }
1506 
1507 static void
1508 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1509 {
1510 	unsigned long flags;
1511 
1512 	spin_lock_irqsave(&bp->lock, flags);
1513 
1514 	bp->utc_tai_offset = val;
1515 
1516 	if (bp->irig_out)
1517 		iowrite32(val, &bp->irig_out->adj_sec);
1518 	if (bp->dcf_out)
1519 		iowrite32(val, &bp->dcf_out->adj_sec);
1520 	if (bp->nmea_out)
1521 		iowrite32(val, &bp->nmea_out->adj_sec);
1522 
1523 	spin_unlock_irqrestore(&bp->lock, flags);
1524 }
1525 
1526 static void
1527 ptp_ocp_watchdog(struct timer_list *t)
1528 {
1529 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1530 	unsigned long flags;
1531 	u32 status, utc_offset;
1532 
1533 	status = ioread32(&bp->pps_to_clk->status);
1534 
1535 	if (status & PPS_STATUS_SUPERV_ERR) {
1536 		iowrite32(status, &bp->pps_to_clk->status);
1537 		if (!bp->gnss_lost) {
1538 			spin_lock_irqsave(&bp->lock, flags);
1539 			__ptp_ocp_clear_drift_locked(bp);
1540 			spin_unlock_irqrestore(&bp->lock, flags);
1541 			bp->gnss_lost = ktime_get_real_seconds();
1542 		}
1543 
1544 	} else if (bp->gnss_lost) {
1545 		bp->gnss_lost = 0;
1546 	}
1547 
1548 	/* if GNSS provides correct data we can rely on
1549 	 * it to get leap second information
1550 	 */
1551 	if (bp->tod) {
1552 		status = ioread32(&bp->tod->utc_status);
1553 		utc_offset = status & TOD_STATUS_UTC_MASK;
1554 		if (status & TOD_STATUS_UTC_VALID &&
1555 		    utc_offset != bp->utc_tai_offset)
1556 			ptp_ocp_utc_distribute(bp, utc_offset);
1557 	}
1558 
1559 	mod_timer(&bp->watchdog, jiffies + HZ);
1560 }
1561 
1562 static void
1563 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1564 {
1565 	ktime_t start, end, delay = U64_MAX;
1566 	u32 ctrl;
1567 	int i;
1568 
1569 	for (i = 0; i < 3; i++) {
1570 		ctrl = ioread32(&bp->reg->ctrl);
1571 		ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1572 
1573 		iowrite32(ctrl, &bp->reg->ctrl);
1574 
1575 		start = ktime_get_raw_ns();
1576 
1577 		ctrl = ioread32(&bp->reg->ctrl);
1578 
1579 		end = ktime_get_raw_ns();
1580 
1581 		delay = min(delay, end - start);
1582 	}
1583 	bp->ts_window_adjust = (delay >> 5) * 3;
1584 }
1585 
1586 static int
1587 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1588 {
1589 	struct timespec64 ts;
1590 	u32 ctrl;
1591 
1592 	ctrl = OCP_CTRL_ENABLE;
1593 	iowrite32(ctrl, &bp->reg->ctrl);
1594 
1595 	/* servo configuration */
1596 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1597 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1598 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1599 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1600 
1601 	/* latch servo values */
1602 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1603 	iowrite32(ctrl, &bp->reg->ctrl);
1604 
1605 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1606 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1607 		return -ENODEV;
1608 	}
1609 
1610 	ptp_ocp_estimate_pci_timing(bp);
1611 
1612 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1613 	if (!bp->sync) {
1614 		ktime_get_clocktai_ts64(&ts);
1615 		ptp_ocp_settime(&bp->ptp_info, &ts);
1616 	}
1617 
1618 	/* If there is a clock supervisor, then enable the watchdog */
1619 	if (bp->pps_to_clk) {
1620 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1621 		mod_timer(&bp->watchdog, jiffies + HZ);
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static void
1628 ptp_ocp_tod_init(struct ptp_ocp *bp)
1629 {
1630 	u32 ctrl, reg;
1631 
1632 	ctrl = ioread32(&bp->tod->ctrl);
1633 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1634 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1635 	iowrite32(ctrl, &bp->tod->ctrl);
1636 
1637 	reg = ioread32(&bp->tod->utc_status);
1638 	if (reg & TOD_STATUS_UTC_VALID)
1639 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1640 }
1641 
1642 static const char *
1643 ptp_ocp_tod_proto_name(const int idx)
1644 {
1645 	static const char * const proto_name[] = {
1646 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1647 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1648 	};
1649 	return proto_name[idx];
1650 }
1651 
1652 static const char *
1653 ptp_ocp_tod_gnss_name(int idx)
1654 {
1655 	static const char * const gnss_name[] = {
1656 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1657 		"Unknown"
1658 	};
1659 	if (idx >= ARRAY_SIZE(gnss_name))
1660 		idx = ARRAY_SIZE(gnss_name) - 1;
1661 	return gnss_name[idx];
1662 }
1663 
1664 static const char *
1665 ptp_ocp_tty_port_name(int idx)
1666 {
1667 	static const char * const tty_name[] = {
1668 		"GNSS", "GNSS2", "MAC", "NMEA"
1669 	};
1670 	return tty_name[idx];
1671 }
1672 
1673 struct ptp_ocp_nvmem_match_info {
1674 	struct ptp_ocp *bp;
1675 	const void * const tag;
1676 };
1677 
1678 static int
1679 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1680 {
1681 	const struct ptp_ocp_nvmem_match_info *info = data;
1682 
1683 	dev = dev->parent;
1684 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1685 		return 0;
1686 
1687 	while ((dev = dev->parent))
1688 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1689 			return info->bp == dev_get_drvdata(dev);
1690 	return 0;
1691 }
1692 
1693 static inline struct nvmem_device *
1694 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1695 {
1696 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1697 
1698 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1699 }
1700 
1701 static inline void
1702 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1703 {
1704 	if (!IS_ERR_OR_NULL(*nvmemp))
1705 		nvmem_device_put(*nvmemp);
1706 	*nvmemp = NULL;
1707 }
1708 
1709 static void
1710 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1711 {
1712 	const struct ptp_ocp_eeprom_map *map;
1713 	struct nvmem_device *nvmem;
1714 	const void *tag;
1715 	int ret;
1716 
1717 	if (!bp->i2c_ctrl)
1718 		return;
1719 
1720 	tag = NULL;
1721 	nvmem = NULL;
1722 
1723 	for (map = bp->eeprom_map; map->len; map++) {
1724 		if (map->tag != tag) {
1725 			tag = map->tag;
1726 			ptp_ocp_nvmem_device_put(&nvmem);
1727 		}
1728 		if (!nvmem) {
1729 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1730 			if (IS_ERR(nvmem)) {
1731 				ret = PTR_ERR(nvmem);
1732 				goto fail;
1733 			}
1734 		}
1735 		ret = nvmem_device_read(nvmem, map->off, map->len,
1736 					BP_MAP_ENTRY_ADDR(bp, map));
1737 		if (ret != map->len)
1738 			goto fail;
1739 	}
1740 
1741 	bp->has_eeprom_data = true;
1742 
1743 out:
1744 	ptp_ocp_nvmem_device_put(&nvmem);
1745 	return;
1746 
1747 fail:
1748 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1749 	goto out;
1750 }
1751 
1752 static struct device *
1753 ptp_ocp_find_flash(struct ptp_ocp *bp)
1754 {
1755 	struct device *dev, *last;
1756 
1757 	last = NULL;
1758 	dev = &bp->spi_flash->dev;
1759 
1760 	while ((dev = device_find_any_child(dev))) {
1761 		if (!strcmp("mtd", dev_bus_name(dev)))
1762 			break;
1763 		put_device(last);
1764 		last = dev;
1765 	}
1766 	put_device(last);
1767 
1768 	return dev;
1769 }
1770 
1771 static int
1772 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1773 			 const u8 **data, size_t *size)
1774 {
1775 	struct ptp_ocp *bp = devlink_priv(devlink);
1776 	const struct ptp_ocp_firmware_header *hdr;
1777 	size_t offset, length;
1778 	u16 crc;
1779 
1780 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1781 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1782 		devlink_flash_update_status_notify(devlink,
1783 			"No firmware header found, cancel firmware upgrade",
1784 			NULL, 0, 0);
1785 		return -EINVAL;
1786 	}
1787 
1788 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1789 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1790 		devlink_flash_update_status_notify(devlink,
1791 			"Firmware image compatibility check failed",
1792 			NULL, 0, 0);
1793 		return -EINVAL;
1794 	}
1795 
1796 	offset = sizeof(*hdr);
1797 	length = be32_to_cpu(hdr->image_size);
1798 	if (length != (fw->size - offset)) {
1799 		devlink_flash_update_status_notify(devlink,
1800 			"Firmware image size check failed",
1801 			NULL, 0, 0);
1802 		return -EINVAL;
1803 	}
1804 
1805 	crc = crc16(0xffff, &fw->data[offset], length);
1806 	if (be16_to_cpu(hdr->crc) != crc) {
1807 		devlink_flash_update_status_notify(devlink,
1808 			"Firmware image CRC check failed",
1809 			NULL, 0, 0);
1810 		return -EINVAL;
1811 	}
1812 
1813 	*data = &fw->data[offset];
1814 	*size = length;
1815 
1816 	return 0;
1817 }
1818 
1819 static int
1820 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1821 		      const struct firmware *fw)
1822 {
1823 	struct mtd_info *mtd = dev_get_drvdata(dev);
1824 	struct ptp_ocp *bp = devlink_priv(devlink);
1825 	size_t off, len, size, resid, wrote;
1826 	struct erase_info erase;
1827 	size_t base, blksz;
1828 	const u8 *data;
1829 	int err;
1830 
1831 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1832 	if (err)
1833 		goto out;
1834 
1835 	off = 0;
1836 	base = bp->flash_start;
1837 	blksz = 4096;
1838 	resid = size;
1839 
1840 	while (resid) {
1841 		devlink_flash_update_status_notify(devlink, "Flashing",
1842 						   NULL, off, size);
1843 
1844 		len = min_t(size_t, resid, blksz);
1845 		erase.addr = base + off;
1846 		erase.len = blksz;
1847 
1848 		err = mtd_erase(mtd, &erase);
1849 		if (err)
1850 			goto out;
1851 
1852 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1853 		if (err)
1854 			goto out;
1855 
1856 		off += blksz;
1857 		resid -= len;
1858 	}
1859 out:
1860 	return err;
1861 }
1862 
1863 static int
1864 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1865 			     struct devlink_flash_update_params *params,
1866 			     struct netlink_ext_ack *extack)
1867 {
1868 	struct ptp_ocp *bp = devlink_priv(devlink);
1869 	struct device *dev;
1870 	const char *msg;
1871 	int err;
1872 
1873 	dev = ptp_ocp_find_flash(bp);
1874 	if (!dev) {
1875 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1876 		return -ENODEV;
1877 	}
1878 
1879 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1880 					   NULL, 0, 0);
1881 
1882 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1883 
1884 	msg = err ? "Flash error" : "Flash complete";
1885 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1886 
1887 	put_device(dev);
1888 	return err;
1889 }
1890 
1891 static int
1892 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1893 			 struct netlink_ext_ack *extack)
1894 {
1895 	struct ptp_ocp *bp = devlink_priv(devlink);
1896 	const char *fw_image;
1897 	char buf[32];
1898 	int err;
1899 
1900 	fw_image = bp->fw_loader ? "loader" : "fw";
1901 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1902 	err = devlink_info_version_running_put(req, fw_image, buf);
1903 	if (err)
1904 		return err;
1905 
1906 	if (!bp->has_eeprom_data) {
1907 		ptp_ocp_read_eeprom(bp);
1908 		if (!bp->has_eeprom_data)
1909 			return 0;
1910 	}
1911 
1912 	sprintf(buf, "%pM", bp->serial);
1913 	err = devlink_info_serial_number_put(req, buf);
1914 	if (err)
1915 		return err;
1916 
1917 	err = devlink_info_version_fixed_put(req,
1918 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1919 			bp->board_id);
1920 	if (err)
1921 		return err;
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct devlink_ops ptp_ocp_devlink_ops = {
1927 	.flash_update = ptp_ocp_devlink_flash_update,
1928 	.info_get = ptp_ocp_devlink_info_get,
1929 };
1930 
1931 static void __iomem *
1932 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1933 {
1934 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1935 
1936 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1937 }
1938 
1939 static void __iomem *
1940 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1941 {
1942 	resource_size_t start;
1943 
1944 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1945 	return __ptp_ocp_get_mem(bp, start, r->size);
1946 }
1947 
1948 static int
1949 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1950 {
1951 	struct ptp_ocp_flash_info *info;
1952 	struct pci_dev *pdev = bp->pdev;
1953 	struct platform_device *p;
1954 	struct resource res[2];
1955 	resource_size_t start;
1956 	int id;
1957 
1958 	start = pci_resource_start(pdev, 0) + r->offset;
1959 	res[0] = DEFINE_RES_MEM(start, r->size);
1960 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1961 
1962 	info = r->extra;
1963 	id = pci_dev_id(pdev) << 1;
1964 	id += info->pci_offset;
1965 
1966 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1967 					      res, ARRAY_SIZE(res), info->data,
1968 					      info->data_size);
1969 	if (IS_ERR(p))
1970 		return PTR_ERR(p);
1971 
1972 	bp_assign_entry(bp, r, p);
1973 
1974 	return 0;
1975 }
1976 
1977 static struct platform_device *
1978 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1979 {
1980 	struct ptp_ocp_i2c_info *info;
1981 	struct resource res[2];
1982 	resource_size_t start;
1983 
1984 	info = r->extra;
1985 	start = pci_resource_start(pdev, 0) + r->offset;
1986 	res[0] = DEFINE_RES_MEM(start, r->size);
1987 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1988 
1989 	return platform_device_register_resndata(&pdev->dev, info->name,
1990 						 id, res, ARRAY_SIZE(res),
1991 						 info->data, info->data_size);
1992 }
1993 
1994 static int
1995 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1996 {
1997 	struct pci_dev *pdev = bp->pdev;
1998 	struct ptp_ocp_i2c_info *info;
1999 	struct platform_device *p;
2000 	struct clk_hw *clk;
2001 	char buf[32];
2002 	int id;
2003 
2004 	info = r->extra;
2005 	id = pci_dev_id(bp->pdev);
2006 
2007 	sprintf(buf, "AXI.%d", id);
2008 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2009 					 info->fixed_rate);
2010 	if (IS_ERR(clk))
2011 		return PTR_ERR(clk);
2012 	bp->i2c_clk = clk;
2013 
2014 	sprintf(buf, "%s.%d", info->name, id);
2015 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2016 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2017 	if (IS_ERR(p))
2018 		return PTR_ERR(p);
2019 
2020 	bp_assign_entry(bp, r, p);
2021 
2022 	return 0;
2023 }
2024 
2025 /* The expectation is that this is triggered only on error. */
2026 static irqreturn_t
2027 ptp_ocp_signal_irq(int irq, void *priv)
2028 {
2029 	struct ptp_ocp_ext_src *ext = priv;
2030 	struct signal_reg __iomem *reg = ext->mem;
2031 	struct ptp_ocp *bp = ext->bp;
2032 	u32 enable, status;
2033 	int gen;
2034 
2035 	gen = ext->info->index - 1;
2036 
2037 	enable = ioread32(&reg->enable);
2038 	status = ioread32(&reg->status);
2039 
2040 	/* disable generator on error */
2041 	if (status || !enable) {
2042 		iowrite32(0, &reg->intr_mask);
2043 		iowrite32(0, &reg->enable);
2044 		bp->signal[gen].running = false;
2045 	}
2046 
2047 	iowrite32(0, &reg->intr);	/* ack interrupt */
2048 
2049 	return IRQ_HANDLED;
2050 }
2051 
2052 static int
2053 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2054 {
2055 	struct ptp_system_timestamp sts;
2056 	struct timespec64 ts;
2057 	ktime_t start_ns;
2058 	int err;
2059 
2060 	if (!s->period)
2061 		return 0;
2062 
2063 	if (!s->pulse)
2064 		s->pulse = ktime_divns(s->period * s->duty, 100);
2065 
2066 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2067 	if (err)
2068 		return err;
2069 
2070 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2071 	if (!s->start) {
2072 		/* roundup() does not work on 32-bit systems */
2073 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2074 		s->start *= s->period;
2075 		s->start = ktime_add(s->start, s->phase);
2076 	}
2077 
2078 	if (s->duty < 1 || s->duty > 99)
2079 		return -EINVAL;
2080 
2081 	if (s->pulse < 1 || s->pulse > s->period)
2082 		return -EINVAL;
2083 
2084 	if (s->start < start_ns)
2085 		return -EINVAL;
2086 
2087 	bp->signal[gen] = *s;
2088 
2089 	return 0;
2090 }
2091 
2092 static int
2093 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2094 			   struct ptp_perout_request *req)
2095 {
2096 	struct ptp_ocp_signal s = { };
2097 
2098 	if (req->flags & ~(PTP_PEROUT_DUTY_CYCLE |
2099 			   PTP_PEROUT_PHASE))
2100 		return -EOPNOTSUPP;
2101 
2102 	s.polarity = bp->signal[gen].polarity;
2103 	s.period = ktime_set(req->period.sec, req->period.nsec);
2104 	if (!s.period)
2105 		return 0;
2106 
2107 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2108 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2109 		s.duty = ktime_divns(s.pulse * 100, s.period);
2110 	}
2111 
2112 	if (req->flags & PTP_PEROUT_PHASE)
2113 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2114 	else
2115 		s.start = ktime_set(req->start.sec, req->start.nsec);
2116 
2117 	return ptp_ocp_signal_set(bp, gen, &s);
2118 }
2119 
2120 static int
2121 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2122 {
2123 	struct ptp_ocp_ext_src *ext = priv;
2124 	struct signal_reg __iomem *reg = ext->mem;
2125 	struct ptp_ocp *bp = ext->bp;
2126 	struct timespec64 ts;
2127 	int gen;
2128 
2129 	gen = ext->info->index - 1;
2130 
2131 	iowrite32(0, &reg->intr_mask);
2132 	iowrite32(0, &reg->enable);
2133 	bp->signal[gen].running = false;
2134 	if (!enable)
2135 		return 0;
2136 
2137 	ts = ktime_to_timespec64(bp->signal[gen].start);
2138 	iowrite32(ts.tv_sec, &reg->start_sec);
2139 	iowrite32(ts.tv_nsec, &reg->start_ns);
2140 
2141 	ts = ktime_to_timespec64(bp->signal[gen].period);
2142 	iowrite32(ts.tv_sec, &reg->period_sec);
2143 	iowrite32(ts.tv_nsec, &reg->period_ns);
2144 
2145 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2146 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2147 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2148 
2149 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2150 	iowrite32(0, &reg->repeat_count);
2151 
2152 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2153 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2154 	iowrite32(3, &reg->enable);		/* valid & enable */
2155 
2156 	bp->signal[gen].running = true;
2157 
2158 	return 0;
2159 }
2160 
2161 static irqreturn_t
2162 ptp_ocp_ts_irq(int irq, void *priv)
2163 {
2164 	struct ptp_ocp_ext_src *ext = priv;
2165 	struct ts_reg __iomem *reg = ext->mem;
2166 	struct ptp_clock_event ev;
2167 	u32 sec, nsec;
2168 
2169 	if (ext == ext->bp->pps) {
2170 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2171 			ev.type = PTP_CLOCK_PPS;
2172 			ptp_clock_event(ext->bp->ptp, &ev);
2173 		}
2174 
2175 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2176 			goto out;
2177 	}
2178 
2179 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2180 	sec = ioread32(&reg->time_sec);
2181 	nsec = ioread32(&reg->time_ns);
2182 
2183 	ev.type = PTP_CLOCK_EXTTS;
2184 	ev.index = ext->info->index;
2185 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2186 
2187 	ptp_clock_event(ext->bp->ptp, &ev);
2188 
2189 out:
2190 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2191 
2192 	return IRQ_HANDLED;
2193 }
2194 
2195 static int
2196 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2197 {
2198 	struct ptp_ocp_ext_src *ext = priv;
2199 	struct ts_reg __iomem *reg = ext->mem;
2200 	struct ptp_ocp *bp = ext->bp;
2201 
2202 	if (ext == bp->pps) {
2203 		u32 old_map = bp->pps_req_map;
2204 
2205 		if (enable)
2206 			bp->pps_req_map |= req;
2207 		else
2208 			bp->pps_req_map &= ~req;
2209 
2210 		/* if no state change, just return */
2211 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2212 			return 0;
2213 	}
2214 
2215 	if (enable) {
2216 		iowrite32(1, &reg->enable);
2217 		iowrite32(1, &reg->intr_mask);
2218 		iowrite32(1, &reg->intr);
2219 	} else {
2220 		iowrite32(0, &reg->intr_mask);
2221 		iowrite32(0, &reg->enable);
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static void
2228 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2229 {
2230 	ext->info->enable(ext, ~0, false);
2231 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2232 	kfree(ext);
2233 }
2234 
2235 static int
2236 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2237 {
2238 	struct pci_dev *pdev = bp->pdev;
2239 	struct ptp_ocp_ext_src *ext;
2240 	int err;
2241 
2242 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2243 	if (!ext)
2244 		return -ENOMEM;
2245 
2246 	ext->mem = ptp_ocp_get_mem(bp, r);
2247 	if (IS_ERR(ext->mem)) {
2248 		err = PTR_ERR(ext->mem);
2249 		goto out;
2250 	}
2251 
2252 	ext->bp = bp;
2253 	ext->info = r->extra;
2254 	ext->irq_vec = r->irq_vec;
2255 
2256 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2257 			      ext, "ocp%d.%s", bp->id, r->name);
2258 	if (err) {
2259 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2260 		goto out;
2261 	}
2262 
2263 	bp_assign_entry(bp, r, ext);
2264 
2265 	return 0;
2266 
2267 out:
2268 	kfree(ext);
2269 	return err;
2270 }
2271 
2272 static int
2273 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2274 {
2275 	struct pci_dev *pdev = bp->pdev;
2276 	struct uart_8250_port uart;
2277 
2278 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2279 	 * the serial port device claim and release the pci resource.
2280 	 */
2281 	memset(&uart, 0, sizeof(uart));
2282 	uart.port.dev = &pdev->dev;
2283 	uart.port.iotype = UPIO_MEM;
2284 	uart.port.regshift = 2;
2285 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2286 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2287 	uart.port.uartclk = 50000000;
2288 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2289 	uart.port.type = PORT_16550A;
2290 
2291 	return serial8250_register_8250_port(&uart);
2292 }
2293 
2294 static int
2295 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2296 {
2297 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2298 	struct ptp_ocp_serial_port port = {};
2299 
2300 	port.line = ptp_ocp_serial_line(bp, r);
2301 	if (port.line < 0)
2302 		return port.line;
2303 
2304 	if (p)
2305 		port.baud = p->baud;
2306 
2307 	bp_assign_entry(bp, r, port);
2308 
2309 	return 0;
2310 }
2311 
2312 static int
2313 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2314 {
2315 	void __iomem *mem;
2316 
2317 	mem = ptp_ocp_get_mem(bp, r);
2318 	if (IS_ERR(mem))
2319 		return PTR_ERR(mem);
2320 
2321 	bp_assign_entry(bp, r, mem);
2322 
2323 	return 0;
2324 }
2325 
2326 static void
2327 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2328 {
2329 	if (!bp->nmea_out)
2330 		return;
2331 
2332 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2333 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2334 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2335 }
2336 
2337 static void
2338 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2339 {
2340 	u32 val;
2341 
2342 	iowrite32(0, &reg->enable);		/* disable */
2343 
2344 	val = ioread32(&reg->polarity);
2345 	s->polarity = val ? true : false;
2346 	s->duty = 50;
2347 }
2348 
2349 static void
2350 ptp_ocp_signal_init(struct ptp_ocp *bp)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < 4; i++)
2355 		if (bp->signal_out[i])
2356 			_ptp_ocp_signal_init(&bp->signal[i],
2357 					     bp->signal_out[i]->mem);
2358 }
2359 
2360 static void
2361 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2362 {
2363 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2364 	kfree(bp->attr_group);
2365 }
2366 
2367 static int
2368 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2369 		       const struct ocp_attr_group *attr_tbl)
2370 {
2371 	int count, i;
2372 	int err;
2373 
2374 	count = 0;
2375 	for (i = 0; attr_tbl[i].cap; i++)
2376 		if (attr_tbl[i].cap & bp->fw_cap)
2377 			count++;
2378 
2379 	bp->attr_group = kcalloc(count + 1, sizeof(*bp->attr_group),
2380 				 GFP_KERNEL);
2381 	if (!bp->attr_group)
2382 		return -ENOMEM;
2383 
2384 	count = 0;
2385 	for (i = 0; attr_tbl[i].cap; i++)
2386 		if (attr_tbl[i].cap & bp->fw_cap)
2387 			bp->attr_group[count++] = attr_tbl[i].group;
2388 
2389 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2390 	if (err)
2391 		bp->attr_group[0] = NULL;
2392 
2393 	return err;
2394 }
2395 
2396 static void
2397 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2398 {
2399 	u32 ctrl;
2400 	bool on;
2401 
2402 	ctrl = ioread32(reg);
2403 	on = ctrl & bit;
2404 	if (on ^ enable) {
2405 		ctrl &= ~bit;
2406 		ctrl |= enable ? bit : 0;
2407 		iowrite32(ctrl, reg);
2408 	}
2409 }
2410 
2411 static void
2412 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2413 {
2414 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2415 				   IRIG_M_CTRL_ENABLE, enable);
2416 }
2417 
2418 static void
2419 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2420 {
2421 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2422 				   IRIG_S_CTRL_ENABLE, enable);
2423 }
2424 
2425 static void
2426 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2427 {
2428 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2429 				   DCF_M_CTRL_ENABLE, enable);
2430 }
2431 
2432 static void
2433 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2434 {
2435 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2436 				   DCF_S_CTRL_ENABLE, enable);
2437 }
2438 
2439 static void
2440 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2441 {
2442 	ptp_ocp_irig_out(bp, val & 0x00100010);
2443 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2444 }
2445 
2446 static void
2447 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2448 {
2449 	ptp_ocp_irig_in(bp, val & 0x00100010);
2450 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2451 }
2452 
2453 static u32
2454 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2455 {
2456 	u32 __iomem *gpio;
2457 	u32 shift;
2458 
2459 	if (bp->sma[sma_nr - 1].fixed_fcn)
2460 		return (sma_nr - 1) & 1;
2461 
2462 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2463 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2464 	else
2465 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2466 	shift = sma_nr & 1 ? 0 : 16;
2467 
2468 	return (ioread32(gpio) >> shift) & 0xffff;
2469 }
2470 
2471 static int
2472 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2473 {
2474 	u32 reg, mask, shift;
2475 	unsigned long flags;
2476 	u32 __iomem *gpio;
2477 
2478 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2479 	shift = sma_nr & 1 ? 0 : 16;
2480 
2481 	mask = 0xffff << (16 - shift);
2482 
2483 	spin_lock_irqsave(&bp->lock, flags);
2484 
2485 	reg = ioread32(gpio);
2486 	reg = (reg & mask) | (val << shift);
2487 
2488 	__handle_signal_outputs(bp, reg);
2489 
2490 	iowrite32(reg, gpio);
2491 
2492 	spin_unlock_irqrestore(&bp->lock, flags);
2493 
2494 	return 0;
2495 }
2496 
2497 static int
2498 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2499 {
2500 	u32 reg, mask, shift;
2501 	unsigned long flags;
2502 	u32 __iomem *gpio;
2503 
2504 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2505 	shift = sma_nr & 1 ? 0 : 16;
2506 
2507 	mask = 0xffff << (16 - shift);
2508 
2509 	spin_lock_irqsave(&bp->lock, flags);
2510 
2511 	reg = ioread32(gpio);
2512 	reg = (reg & mask) | (val << shift);
2513 
2514 	__handle_signal_inputs(bp, reg);
2515 
2516 	iowrite32(reg, gpio);
2517 
2518 	spin_unlock_irqrestore(&bp->lock, flags);
2519 
2520 	return 0;
2521 }
2522 
2523 static void
2524 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2525 {
2526 	struct dpll_pin_properties prop = {
2527 		.board_label = NULL,
2528 		.type = DPLL_PIN_TYPE_EXT,
2529 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2530 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2531 		.freq_supported = ptp_ocp_sma_freq,
2532 
2533 	};
2534 	u32 reg;
2535 	int i;
2536 
2537 	/* defaults */
2538 	for (i = 0; i < OCP_SMA_NUM; i++) {
2539 		bp->sma[i].default_fcn = i & 1;
2540 		bp->sma[i].dpll_prop = prop;
2541 		bp->sma[i].dpll_prop.board_label =
2542 			bp->ptp_info.pin_config[i].name;
2543 	}
2544 	bp->sma[0].mode = SMA_MODE_IN;
2545 	bp->sma[1].mode = SMA_MODE_IN;
2546 	bp->sma[2].mode = SMA_MODE_OUT;
2547 	bp->sma[3].mode = SMA_MODE_OUT;
2548 	/* If no SMA1 map, the pin functions and directions are fixed. */
2549 	if (!bp->sma_map1) {
2550 		for (i = 0; i < OCP_SMA_NUM; i++) {
2551 			bp->sma[i].fixed_fcn = true;
2552 			bp->sma[i].fixed_dir = true;
2553 			bp->sma[1].dpll_prop.capabilities &=
2554 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2555 		}
2556 		return;
2557 	}
2558 
2559 	/* If SMA2 GPIO output map is all 1, it is not present.
2560 	 * This indicates the firmware has fixed direction SMA pins.
2561 	 */
2562 	reg = ioread32(&bp->sma_map2->gpio2);
2563 	if (reg == 0xffffffff) {
2564 		for (i = 0; i < OCP_SMA_NUM; i++)
2565 			bp->sma[i].fixed_dir = true;
2566 	} else {
2567 		reg = ioread32(&bp->sma_map1->gpio1);
2568 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2569 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2570 
2571 		reg = ioread32(&bp->sma_map1->gpio2);
2572 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2573 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2574 	}
2575 }
2576 
2577 static const struct ocp_sma_op ocp_fb_sma_op = {
2578 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2579 	.init		= ptp_ocp_sma_fb_init,
2580 	.get		= ptp_ocp_sma_fb_get,
2581 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2582 	.set_output	= ptp_ocp_sma_fb_set_output,
2583 };
2584 
2585 static int
2586 ptp_ocp_sma_adva_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2587 {
2588 	u32 reg, mask, shift;
2589 	unsigned long flags;
2590 	u32 __iomem *gpio;
2591 
2592 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2593 	shift = sma_nr & 1 ? 0 : 16;
2594 
2595 	mask = 0xffff << (16 - shift);
2596 
2597 	spin_lock_irqsave(&bp->lock, flags);
2598 
2599 	reg = ioread32(gpio);
2600 	reg = (reg & mask) | (val << shift);
2601 
2602 	iowrite32(reg, gpio);
2603 
2604 	spin_unlock_irqrestore(&bp->lock, flags);
2605 
2606 	return 0;
2607 }
2608 
2609 static int
2610 ptp_ocp_sma_adva_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2611 {
2612 	u32 reg, mask, shift;
2613 	unsigned long flags;
2614 	u32 __iomem *gpio;
2615 
2616 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2617 	shift = sma_nr & 1 ? 0 : 16;
2618 
2619 	mask = 0xffff << (16 - shift);
2620 
2621 	spin_lock_irqsave(&bp->lock, flags);
2622 
2623 	reg = ioread32(gpio);
2624 	reg = (reg & mask) | (val << shift);
2625 
2626 	iowrite32(reg, gpio);
2627 
2628 	spin_unlock_irqrestore(&bp->lock, flags);
2629 
2630 	return 0;
2631 }
2632 
2633 static const struct ocp_sma_op ocp_adva_sma_op = {
2634 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2635 	.init		= ptp_ocp_sma_fb_init,
2636 	.get		= ptp_ocp_sma_fb_get,
2637 	.set_inputs	= ptp_ocp_sma_adva_set_inputs,
2638 	.set_output	= ptp_ocp_sma_adva_set_output,
2639 };
2640 
2641 static int
2642 ptp_ocp_set_pins(struct ptp_ocp *bp)
2643 {
2644 	struct ptp_pin_desc *config;
2645 	int i;
2646 
2647 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2648 	if (!config)
2649 		return -ENOMEM;
2650 
2651 	for (i = 0; i < 4; i++) {
2652 		sprintf(config[i].name, "sma%d", i + 1);
2653 		config[i].index = i;
2654 	}
2655 
2656 	bp->ptp_info.n_pins = 4;
2657 	bp->ptp_info.pin_config = config;
2658 
2659 	return 0;
2660 }
2661 
2662 static void
2663 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2664 {
2665 	u64 cap = OCP_CAP_BASIC;
2666 	u32 version;
2667 
2668 	version = ioread32(&bp->image->version);
2669 
2670 	/* if lower 16 bits are empty, this is the fw loader. */
2671 	if ((version & 0xffff) == 0) {
2672 		version = version >> 16;
2673 		bp->fw_loader = true;
2674 	}
2675 
2676 	bp->fw_tag = version >> 15;
2677 	bp->fw_version = version & 0x7fff;
2678 
2679 	if (bp->fw_tag) {
2680 		/* FPGA firmware */
2681 		if (version >= 5)
2682 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2683 	} else {
2684 		/* SOM firmware */
2685 		if (version >= 19)
2686 			cap |= OCP_CAP_SIGNAL;
2687 		if (version >= 20)
2688 			cap |= OCP_CAP_FREQ;
2689 	}
2690 
2691 	bp->fw_cap = cap;
2692 }
2693 
2694 /* FB specific board initializers; last "resource" registered. */
2695 static int
2696 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2697 {
2698 	int err;
2699 
2700 	bp->flash_start = 1024 * 4096;
2701 	bp->eeprom_map = fb_eeprom_map;
2702 	bp->fw_version = ioread32(&bp->image->version);
2703 	bp->sma_op = &ocp_fb_sma_op;
2704 	bp->signals_nr = 4;
2705 	bp->freq_in_nr = 4;
2706 
2707 	ptp_ocp_fb_set_version(bp);
2708 
2709 	ptp_ocp_tod_init(bp);
2710 	ptp_ocp_nmea_out_init(bp);
2711 	ptp_ocp_signal_init(bp);
2712 
2713 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2714 	if (err)
2715 		return err;
2716 
2717 	err = ptp_ocp_set_pins(bp);
2718 	if (err)
2719 		return err;
2720 	ptp_ocp_sma_init(bp);
2721 
2722 	return ptp_ocp_init_clock(bp, r->extra);
2723 }
2724 
2725 static bool
2726 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2727 {
2728 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2729 
2730 	if (!allow)
2731 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2732 			r->irq_vec, r->name);
2733 	return allow;
2734 }
2735 
2736 static int
2737 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2738 {
2739 	struct ocp_resource *r, *table;
2740 	int err = 0;
2741 
2742 	table = (struct ocp_resource *)driver_data;
2743 	for (r = table; r->setup; r++) {
2744 		if (!ptp_ocp_allow_irq(bp, r))
2745 			continue;
2746 		err = r->setup(bp, r);
2747 		if (err) {
2748 			dev_err(&bp->pdev->dev,
2749 				"Could not register %s: err %d\n",
2750 				r->name, err);
2751 			break;
2752 		}
2753 	}
2754 	return err;
2755 }
2756 
2757 static void
2758 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2759 {
2760 	struct dpll_pin_properties prop = {
2761 		.board_label = NULL,
2762 		.type = DPLL_PIN_TYPE_EXT,
2763 		.capabilities = 0,
2764 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2765 		.freq_supported = ptp_ocp_sma_freq,
2766 
2767 	};
2768 	u32 reg;
2769 	int i;
2770 
2771 	/* defaults */
2772 	bp->sma[0].mode = SMA_MODE_IN;
2773 	bp->sma[1].mode = SMA_MODE_IN;
2774 	bp->sma[2].mode = SMA_MODE_OUT;
2775 	bp->sma[3].mode = SMA_MODE_OUT;
2776 
2777 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2778 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2779 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2780 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2781 
2782 	for (i = 0; i < OCP_SMA_NUM; i++) {
2783 		/* If no SMA map, the pin functions and directions are fixed. */
2784 		bp->sma[i].dpll_prop = prop;
2785 		bp->sma[i].dpll_prop.board_label =
2786 			bp->ptp_info.pin_config[i].name;
2787 		if (!bp->art_sma) {
2788 			bp->sma[i].fixed_fcn = true;
2789 			bp->sma[i].fixed_dir = true;
2790 			continue;
2791 		}
2792 		reg = ioread32(&bp->art_sma->map[i].gpio);
2793 
2794 		switch (reg & 0xff) {
2795 		case 0:
2796 			bp->sma[i].fixed_fcn = true;
2797 			bp->sma[i].fixed_dir = true;
2798 			break;
2799 		case 1:
2800 		case 8:
2801 			bp->sma[i].mode = SMA_MODE_IN;
2802 			bp->sma[i].dpll_prop.capabilities =
2803 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2804 			break;
2805 		default:
2806 			bp->sma[i].mode = SMA_MODE_OUT;
2807 			bp->sma[i].dpll_prop.capabilities =
2808 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2809 			break;
2810 		}
2811 	}
2812 }
2813 
2814 static u32
2815 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2816 {
2817 	if (bp->sma[sma_nr - 1].fixed_fcn)
2818 		return bp->sma[sma_nr - 1].default_fcn;
2819 
2820 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2821 }
2822 
2823 /* note: store 0 is considered invalid. */
2824 static int
2825 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2826 {
2827 	unsigned long flags;
2828 	u32 __iomem *gpio;
2829 	int err = 0;
2830 	u32 reg;
2831 
2832 	val &= SMA_SELECT_MASK;
2833 	if (hweight32(val) > 1)
2834 		return -EINVAL;
2835 
2836 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2837 
2838 	spin_lock_irqsave(&bp->lock, flags);
2839 	reg = ioread32(gpio);
2840 	if (((reg >> 16) & val) == 0) {
2841 		err = -EOPNOTSUPP;
2842 	} else {
2843 		reg = (reg & 0xff00) | (val & 0xff);
2844 		iowrite32(reg, gpio);
2845 	}
2846 	spin_unlock_irqrestore(&bp->lock, flags);
2847 
2848 	return err;
2849 }
2850 
2851 static const struct ocp_sma_op ocp_art_sma_op = {
2852 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2853 	.init		= ptp_ocp_art_sma_init,
2854 	.get		= ptp_ocp_art_sma_get,
2855 	.set_inputs	= ptp_ocp_art_sma_set,
2856 	.set_output	= ptp_ocp_art_sma_set,
2857 };
2858 
2859 /* ART specific board initializers; last "resource" registered. */
2860 static int
2861 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2862 {
2863 	int err;
2864 
2865 	bp->flash_start = 0x1000000;
2866 	bp->eeprom_map = art_eeprom_map;
2867 	bp->fw_cap = OCP_CAP_BASIC;
2868 	bp->fw_version = ioread32(&bp->reg->version);
2869 	bp->fw_tag = 2;
2870 	bp->sma_op = &ocp_art_sma_op;
2871 	bp->signals_nr = 4;
2872 	bp->freq_in_nr = 4;
2873 
2874 	/* Enable MAC serial port during initialisation */
2875 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2876 
2877 	err = ptp_ocp_set_pins(bp);
2878 	if (err)
2879 		return err;
2880 	ptp_ocp_sma_init(bp);
2881 
2882 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2883 	if (err)
2884 		return err;
2885 
2886 	return ptp_ocp_init_clock(bp, r->extra);
2887 }
2888 
2889 /* ADVA specific board initializers; last "resource" registered. */
2890 static int
2891 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2892 {
2893 	int err;
2894 	u32 version;
2895 
2896 	bp->flash_start = 0xA00000;
2897 	bp->eeprom_map = fb_eeprom_map;
2898 	bp->sma_op = &ocp_adva_sma_op;
2899 	bp->signals_nr = 2;
2900 	bp->freq_in_nr = 2;
2901 
2902 	version = ioread32(&bp->image->version);
2903 	/* if lower 16 bits are empty, this is the fw loader. */
2904 	if ((version & 0xffff) == 0) {
2905 		version = version >> 16;
2906 		bp->fw_loader = true;
2907 	}
2908 	bp->fw_tag = 3;
2909 	bp->fw_version = version & 0xffff;
2910 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2911 
2912 	ptp_ocp_tod_init(bp);
2913 	ptp_ocp_nmea_out_init(bp);
2914 	ptp_ocp_signal_init(bp);
2915 
2916 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2917 	if (err)
2918 		return err;
2919 
2920 	err = ptp_ocp_set_pins(bp);
2921 	if (err)
2922 		return err;
2923 	ptp_ocp_sma_init(bp);
2924 
2925 	return ptp_ocp_init_clock(bp, r->extra);
2926 }
2927 
2928 static ssize_t
2929 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2930 		    int def_val)
2931 {
2932 	const char *name;
2933 	ssize_t count;
2934 
2935 	count = sysfs_emit(buf, "OUT: ");
2936 	name = ptp_ocp_select_name_from_val(tbl, val);
2937 	if (!name)
2938 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2939 	count += sysfs_emit_at(buf, count, "%s\n", name);
2940 	return count;
2941 }
2942 
2943 static ssize_t
2944 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2945 		    int def_val)
2946 {
2947 	const char *name;
2948 	ssize_t count;
2949 	int i;
2950 
2951 	count = sysfs_emit(buf, "IN: ");
2952 	for (i = 0; tbl[i].name; i++) {
2953 		if (val & tbl[i].value) {
2954 			name = tbl[i].name;
2955 			count += sysfs_emit_at(buf, count, "%s ", name);
2956 		}
2957 	}
2958 	if (!val && def_val >= 0) {
2959 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2960 		count += sysfs_emit_at(buf, count, "%s ", name);
2961 	}
2962 	if (count)
2963 		count--;
2964 	count += sysfs_emit_at(buf, count, "\n");
2965 	return count;
2966 }
2967 
2968 static int
2969 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2970 		 enum ptp_ocp_sma_mode *mode)
2971 {
2972 	int idx, count, dir;
2973 	char **argv;
2974 	int ret;
2975 
2976 	argv = argv_split(GFP_KERNEL, buf, &count);
2977 	if (!argv)
2978 		return -ENOMEM;
2979 
2980 	ret = -EINVAL;
2981 	if (!count)
2982 		goto out;
2983 
2984 	idx = 0;
2985 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2986 	if (!strcasecmp("IN:", argv[0])) {
2987 		dir = 0;
2988 		idx++;
2989 	}
2990 	if (!strcasecmp("OUT:", argv[0])) {
2991 		dir = 1;
2992 		idx++;
2993 	}
2994 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2995 
2996 	ret = 0;
2997 	for (; idx < count; idx++)
2998 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2999 	if (ret < 0)
3000 		ret = -EINVAL;
3001 
3002 out:
3003 	argv_free(argv);
3004 	return ret;
3005 }
3006 
3007 static ssize_t
3008 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
3009 		 int default_in_val, int default_out_val)
3010 {
3011 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3012 	const struct ocp_selector * const *tbl;
3013 	u32 val;
3014 
3015 	tbl = bp->sma_op->tbl;
3016 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
3017 
3018 	if (sma->mode == SMA_MODE_IN) {
3019 		if (sma->disabled)
3020 			val = SMA_DISABLE;
3021 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
3022 	}
3023 
3024 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
3025 }
3026 
3027 static ssize_t
3028 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
3029 {
3030 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3031 
3032 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
3033 }
3034 
3035 static ssize_t
3036 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3039 
3040 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
3041 }
3042 
3043 static ssize_t
3044 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
3045 {
3046 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3047 
3048 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
3049 }
3050 
3051 static ssize_t
3052 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
3053 {
3054 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3055 
3056 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
3057 }
3058 
3059 static int
3060 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
3061 {
3062 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3063 
3064 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3065 		return -EOPNOTSUPP;
3066 
3067 	if (sma->fixed_fcn) {
3068 		if (val != sma->default_fcn)
3069 			return -EOPNOTSUPP;
3070 		return 0;
3071 	}
3072 
3073 	sma->disabled = !!(val & SMA_DISABLE);
3074 
3075 	if (mode != sma->mode) {
3076 		if (mode == SMA_MODE_IN)
3077 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
3078 		else
3079 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3080 		sma->mode = mode;
3081 	}
3082 
3083 	if (!sma->fixed_dir)
3084 		val |= SMA_ENABLE;		/* add enable bit */
3085 
3086 	if (sma->disabled)
3087 		val = 0;
3088 
3089 	if (mode == SMA_MODE_IN)
3090 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3091 	else
3092 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3093 
3094 	return val;
3095 }
3096 
3097 static int
3098 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3099 {
3100 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3101 	enum ptp_ocp_sma_mode mode;
3102 	int val;
3103 
3104 	mode = sma->mode;
3105 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3106 	if (val < 0)
3107 		return val;
3108 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3109 }
3110 
3111 static ssize_t
3112 sma1_store(struct device *dev, struct device_attribute *attr,
3113 	   const char *buf, size_t count)
3114 {
3115 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3116 	int err;
3117 
3118 	err = ptp_ocp_sma_store(bp, buf, 1);
3119 	return err ? err : count;
3120 }
3121 
3122 static ssize_t
3123 sma2_store(struct device *dev, struct device_attribute *attr,
3124 	   const char *buf, size_t count)
3125 {
3126 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3127 	int err;
3128 
3129 	err = ptp_ocp_sma_store(bp, buf, 2);
3130 	return err ? err : count;
3131 }
3132 
3133 static ssize_t
3134 sma3_store(struct device *dev, struct device_attribute *attr,
3135 	   const char *buf, size_t count)
3136 {
3137 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3138 	int err;
3139 
3140 	err = ptp_ocp_sma_store(bp, buf, 3);
3141 	return err ? err : count;
3142 }
3143 
3144 static ssize_t
3145 sma4_store(struct device *dev, struct device_attribute *attr,
3146 	   const char *buf, size_t count)
3147 {
3148 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3149 	int err;
3150 
3151 	err = ptp_ocp_sma_store(bp, buf, 4);
3152 	return err ? err : count;
3153 }
3154 static DEVICE_ATTR_RW(sma1);
3155 static DEVICE_ATTR_RW(sma2);
3156 static DEVICE_ATTR_RW(sma3);
3157 static DEVICE_ATTR_RW(sma4);
3158 
3159 static ssize_t
3160 available_sma_inputs_show(struct device *dev,
3161 			  struct device_attribute *attr, char *buf)
3162 {
3163 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3164 
3165 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3166 }
3167 static DEVICE_ATTR_RO(available_sma_inputs);
3168 
3169 static ssize_t
3170 available_sma_outputs_show(struct device *dev,
3171 			   struct device_attribute *attr, char *buf)
3172 {
3173 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3174 
3175 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3176 }
3177 static DEVICE_ATTR_RO(available_sma_outputs);
3178 
3179 #define EXT_ATTR_RO(_group, _name, _val)				\
3180 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3181 		{ __ATTR_RO(_name), (void *)_val }
3182 #define EXT_ATTR_RW(_group, _name, _val)				\
3183 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3184 		{ __ATTR_RW(_name), (void *)_val }
3185 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3186 
3187 /* period [duty [phase [polarity]]] */
3188 static ssize_t
3189 signal_store(struct device *dev, struct device_attribute *attr,
3190 	     const char *buf, size_t count)
3191 {
3192 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3193 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3194 	struct ptp_ocp_signal s = { };
3195 	int gen = (uintptr_t)ea->var;
3196 	int argc, err;
3197 	char **argv;
3198 
3199 	argv = argv_split(GFP_KERNEL, buf, &argc);
3200 	if (!argv)
3201 		return -ENOMEM;
3202 
3203 	err = -EINVAL;
3204 	s.duty = bp->signal[gen].duty;
3205 	s.phase = bp->signal[gen].phase;
3206 	s.period = bp->signal[gen].period;
3207 	s.polarity = bp->signal[gen].polarity;
3208 
3209 	switch (argc) {
3210 	case 4:
3211 		argc--;
3212 		err = kstrtobool(argv[argc], &s.polarity);
3213 		if (err)
3214 			goto out;
3215 		fallthrough;
3216 	case 3:
3217 		argc--;
3218 		err = kstrtou64(argv[argc], 0, &s.phase);
3219 		if (err)
3220 			goto out;
3221 		fallthrough;
3222 	case 2:
3223 		argc--;
3224 		err = kstrtoint(argv[argc], 0, &s.duty);
3225 		if (err)
3226 			goto out;
3227 		fallthrough;
3228 	case 1:
3229 		argc--;
3230 		err = kstrtou64(argv[argc], 0, &s.period);
3231 		if (err)
3232 			goto out;
3233 		break;
3234 	default:
3235 		goto out;
3236 	}
3237 
3238 	err = ptp_ocp_signal_set(bp, gen, &s);
3239 	if (err)
3240 		goto out;
3241 
3242 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3243 
3244 out:
3245 	argv_free(argv);
3246 	return err ? err : count;
3247 }
3248 
3249 static ssize_t
3250 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3251 {
3252 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3253 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3254 	struct ptp_ocp_signal *signal;
3255 	struct timespec64 ts;
3256 	ssize_t count;
3257 	int i;
3258 
3259 	i = (uintptr_t)ea->var;
3260 	signal = &bp->signal[i];
3261 
3262 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
3263 			   signal->duty, signal->phase, signal->polarity);
3264 
3265 	ts = ktime_to_timespec64(signal->start);
3266 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
3267 
3268 	return count;
3269 }
3270 static EXT_ATTR_RW(signal, signal, 0);
3271 static EXT_ATTR_RW(signal, signal, 1);
3272 static EXT_ATTR_RW(signal, signal, 2);
3273 static EXT_ATTR_RW(signal, signal, 3);
3274 
3275 static ssize_t
3276 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3277 {
3278 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3279 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3280 	int i = (uintptr_t)ea->var;
3281 
3282 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3283 }
3284 static EXT_ATTR_RO(signal, duty, 0);
3285 static EXT_ATTR_RO(signal, duty, 1);
3286 static EXT_ATTR_RO(signal, duty, 2);
3287 static EXT_ATTR_RO(signal, duty, 3);
3288 
3289 static ssize_t
3290 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3291 {
3292 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3293 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3294 	int i = (uintptr_t)ea->var;
3295 
3296 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3297 }
3298 static EXT_ATTR_RO(signal, period, 0);
3299 static EXT_ATTR_RO(signal, period, 1);
3300 static EXT_ATTR_RO(signal, period, 2);
3301 static EXT_ATTR_RO(signal, period, 3);
3302 
3303 static ssize_t
3304 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3305 {
3306 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3307 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3308 	int i = (uintptr_t)ea->var;
3309 
3310 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3311 }
3312 static EXT_ATTR_RO(signal, phase, 0);
3313 static EXT_ATTR_RO(signal, phase, 1);
3314 static EXT_ATTR_RO(signal, phase, 2);
3315 static EXT_ATTR_RO(signal, phase, 3);
3316 
3317 static ssize_t
3318 polarity_show(struct device *dev, struct device_attribute *attr,
3319 	      char *buf)
3320 {
3321 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3322 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3323 	int i = (uintptr_t)ea->var;
3324 
3325 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3326 }
3327 static EXT_ATTR_RO(signal, polarity, 0);
3328 static EXT_ATTR_RO(signal, polarity, 1);
3329 static EXT_ATTR_RO(signal, polarity, 2);
3330 static EXT_ATTR_RO(signal, polarity, 3);
3331 
3332 static ssize_t
3333 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3334 {
3335 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3336 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3337 	int i = (uintptr_t)ea->var;
3338 
3339 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3340 }
3341 static EXT_ATTR_RO(signal, running, 0);
3342 static EXT_ATTR_RO(signal, running, 1);
3343 static EXT_ATTR_RO(signal, running, 2);
3344 static EXT_ATTR_RO(signal, running, 3);
3345 
3346 static ssize_t
3347 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3348 {
3349 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3350 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3351 	int i = (uintptr_t)ea->var;
3352 	struct timespec64 ts;
3353 
3354 	ts = ktime_to_timespec64(bp->signal[i].start);
3355 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3356 }
3357 static EXT_ATTR_RO(signal, start, 0);
3358 static EXT_ATTR_RO(signal, start, 1);
3359 static EXT_ATTR_RO(signal, start, 2);
3360 static EXT_ATTR_RO(signal, start, 3);
3361 
3362 static ssize_t
3363 seconds_store(struct device *dev, struct device_attribute *attr,
3364 	      const char *buf, size_t count)
3365 {
3366 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3367 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3368 	int idx = (uintptr_t)ea->var;
3369 	u32 val;
3370 	int err;
3371 
3372 	err = kstrtou32(buf, 0, &val);
3373 	if (err)
3374 		return err;
3375 	if (val > 0xff)
3376 		return -EINVAL;
3377 
3378 	if (val)
3379 		val = (val << 8) | 0x1;
3380 
3381 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3382 
3383 	return count;
3384 }
3385 
3386 static ssize_t
3387 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3388 {
3389 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3390 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3391 	int idx = (uintptr_t)ea->var;
3392 	u32 val;
3393 
3394 	val = ioread32(&bp->freq_in[idx]->ctrl);
3395 	if (val & 1)
3396 		val = (val >> 8) & 0xff;
3397 	else
3398 		val = 0;
3399 
3400 	return sysfs_emit(buf, "%u\n", val);
3401 }
3402 static EXT_ATTR_RW(freq, seconds, 0);
3403 static EXT_ATTR_RW(freq, seconds, 1);
3404 static EXT_ATTR_RW(freq, seconds, 2);
3405 static EXT_ATTR_RW(freq, seconds, 3);
3406 
3407 static ssize_t
3408 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3409 {
3410 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3411 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3412 	int idx = (uintptr_t)ea->var;
3413 	u32 val;
3414 
3415 	val = ioread32(&bp->freq_in[idx]->status);
3416 	if (val & FREQ_STATUS_ERROR)
3417 		return sysfs_emit(buf, "error\n");
3418 	if (val & FREQ_STATUS_OVERRUN)
3419 		return sysfs_emit(buf, "overrun\n");
3420 	if (val & FREQ_STATUS_VALID)
3421 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3422 	return 0;
3423 }
3424 static EXT_ATTR_RO(freq, frequency, 0);
3425 static EXT_ATTR_RO(freq, frequency, 1);
3426 static EXT_ATTR_RO(freq, frequency, 2);
3427 static EXT_ATTR_RO(freq, frequency, 3);
3428 
3429 static ssize_t
3430 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3431 {
3432 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3433 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3434 
3435 	return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3436 }
3437 
3438 static umode_t
3439 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3440 {
3441 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3442 	struct ptp_ocp_serial_port *port;
3443 	struct device_attribute *dattr;
3444 	struct dev_ext_attribute *ea;
3445 
3446 	if (strncmp(attr->name, "tty", 3))
3447 		return attr->mode;
3448 
3449 	dattr = container_of(attr, struct device_attribute, attr);
3450 	ea = container_of(dattr, struct dev_ext_attribute, attr);
3451 	port = &bp->port[(uintptr_t)ea->var];
3452 	return port->line == -1 ? 0 : 0444;
3453 }
3454 
3455 #define EXT_TTY_ATTR_RO(_name, _val)			\
3456 	struct dev_ext_attribute dev_attr_tty##_name =	\
3457 		{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3458 
3459 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3460 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3461 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3462 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3463 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3464 	&dev_attr_ttyGNSS.attr.attr,
3465 	&dev_attr_ttyGNSS2.attr.attr,
3466 	&dev_attr_ttyMAC.attr.attr,
3467 	&dev_attr_ttyNMEA.attr.attr,
3468 	NULL,
3469 };
3470 
3471 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3472 	.name = "tty",
3473 	.attrs = ptp_ocp_timecard_tty_attrs,
3474 	.is_visible = ptp_ocp_timecard_tty_is_visible,
3475 };
3476 
3477 static ssize_t
3478 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3479 {
3480 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3481 
3482 	if (!bp->has_eeprom_data)
3483 		ptp_ocp_read_eeprom(bp);
3484 
3485 	return sysfs_emit(buf, "%pM\n", bp->serial);
3486 }
3487 static DEVICE_ATTR_RO(serialnum);
3488 
3489 static ssize_t
3490 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3491 {
3492 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3493 	ssize_t ret;
3494 
3495 	if (bp->gnss_lost)
3496 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3497 	else
3498 		ret = sysfs_emit(buf, "SYNC\n");
3499 
3500 	return ret;
3501 }
3502 static DEVICE_ATTR_RO(gnss_sync);
3503 
3504 static ssize_t
3505 utc_tai_offset_show(struct device *dev,
3506 		    struct device_attribute *attr, char *buf)
3507 {
3508 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3509 
3510 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3511 }
3512 
3513 static ssize_t
3514 utc_tai_offset_store(struct device *dev,
3515 		     struct device_attribute *attr,
3516 		     const char *buf, size_t count)
3517 {
3518 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3519 	int err;
3520 	u32 val;
3521 
3522 	err = kstrtou32(buf, 0, &val);
3523 	if (err)
3524 		return err;
3525 
3526 	ptp_ocp_utc_distribute(bp, val);
3527 
3528 	return count;
3529 }
3530 static DEVICE_ATTR_RW(utc_tai_offset);
3531 
3532 static ssize_t
3533 ts_window_adjust_show(struct device *dev,
3534 		      struct device_attribute *attr, char *buf)
3535 {
3536 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3537 
3538 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3539 }
3540 
3541 static ssize_t
3542 ts_window_adjust_store(struct device *dev,
3543 		       struct device_attribute *attr,
3544 		       const char *buf, size_t count)
3545 {
3546 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3547 	int err;
3548 	u32 val;
3549 
3550 	err = kstrtou32(buf, 0, &val);
3551 	if (err)
3552 		return err;
3553 
3554 	bp->ts_window_adjust = val;
3555 
3556 	return count;
3557 }
3558 static DEVICE_ATTR_RW(ts_window_adjust);
3559 
3560 static ssize_t
3561 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3562 {
3563 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3564 	u32 val;
3565 
3566 	val = ioread32(&bp->irig_out->ctrl);
3567 	val = (val >> 16) & 0x07;
3568 	return sysfs_emit(buf, "%d\n", val);
3569 }
3570 
3571 static ssize_t
3572 irig_b_mode_store(struct device *dev,
3573 		  struct device_attribute *attr,
3574 		  const char *buf, size_t count)
3575 {
3576 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3577 	unsigned long flags;
3578 	int err;
3579 	u32 reg;
3580 	u8 val;
3581 
3582 	err = kstrtou8(buf, 0, &val);
3583 	if (err)
3584 		return err;
3585 	if (val > 7)
3586 		return -EINVAL;
3587 
3588 	reg = ((val & 0x7) << 16);
3589 
3590 	spin_lock_irqsave(&bp->lock, flags);
3591 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3592 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3593 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3594 	spin_unlock_irqrestore(&bp->lock, flags);
3595 
3596 	return count;
3597 }
3598 static DEVICE_ATTR_RW(irig_b_mode);
3599 
3600 static ssize_t
3601 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3602 {
3603 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3604 	const char *p;
3605 	u32 select;
3606 
3607 	select = ioread32(&bp->reg->select);
3608 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3609 
3610 	return sysfs_emit(buf, "%s\n", p);
3611 }
3612 
3613 static ssize_t
3614 clock_source_store(struct device *dev, struct device_attribute *attr,
3615 		   const char *buf, size_t count)
3616 {
3617 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3618 	unsigned long flags;
3619 	int val;
3620 
3621 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3622 	if (val < 0)
3623 		return val;
3624 
3625 	spin_lock_irqsave(&bp->lock, flags);
3626 	iowrite32(val, &bp->reg->select);
3627 	spin_unlock_irqrestore(&bp->lock, flags);
3628 
3629 	return count;
3630 }
3631 static DEVICE_ATTR_RW(clock_source);
3632 
3633 static ssize_t
3634 available_clock_sources_show(struct device *dev,
3635 			     struct device_attribute *attr, char *buf)
3636 {
3637 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3638 }
3639 static DEVICE_ATTR_RO(available_clock_sources);
3640 
3641 static ssize_t
3642 clock_status_drift_show(struct device *dev,
3643 			struct device_attribute *attr, char *buf)
3644 {
3645 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3646 	u32 val;
3647 	int res;
3648 
3649 	val = ioread32(&bp->reg->status_drift);
3650 	res = (val & ~INT_MAX) ? -1 : 1;
3651 	res *= (val & INT_MAX);
3652 	return sysfs_emit(buf, "%d\n", res);
3653 }
3654 static DEVICE_ATTR_RO(clock_status_drift);
3655 
3656 static ssize_t
3657 clock_status_offset_show(struct device *dev,
3658 			 struct device_attribute *attr, char *buf)
3659 {
3660 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3661 	u32 val;
3662 	int res;
3663 
3664 	val = ioread32(&bp->reg->status_offset);
3665 	res = (val & ~INT_MAX) ? -1 : 1;
3666 	res *= (val & INT_MAX);
3667 	return sysfs_emit(buf, "%d\n", res);
3668 }
3669 static DEVICE_ATTR_RO(clock_status_offset);
3670 
3671 static ssize_t
3672 tod_correction_show(struct device *dev,
3673 		    struct device_attribute *attr, char *buf)
3674 {
3675 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3676 	u32 val;
3677 	int res;
3678 
3679 	val = ioread32(&bp->tod->adj_sec);
3680 	res = (val & ~INT_MAX) ? -1 : 1;
3681 	res *= (val & INT_MAX);
3682 	return sysfs_emit(buf, "%d\n", res);
3683 }
3684 
3685 static ssize_t
3686 tod_correction_store(struct device *dev, struct device_attribute *attr,
3687 		     const char *buf, size_t count)
3688 {
3689 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3690 	unsigned long flags;
3691 	int err, res;
3692 	u32 val = 0;
3693 
3694 	err = kstrtos32(buf, 0, &res);
3695 	if (err)
3696 		return err;
3697 	if (res < 0) {
3698 		res *= -1;
3699 		val |= BIT(31);
3700 	}
3701 	val |= res;
3702 
3703 	spin_lock_irqsave(&bp->lock, flags);
3704 	iowrite32(val, &bp->tod->adj_sec);
3705 	spin_unlock_irqrestore(&bp->lock, flags);
3706 
3707 	return count;
3708 }
3709 static DEVICE_ATTR_RW(tod_correction);
3710 
3711 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3712 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3713 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3714 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3715 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3716 		&dev_attr_signal##_nr##_period.attr.attr,		\
3717 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3718 		&dev_attr_signal##_nr##_running.attr.attr,		\
3719 		&dev_attr_signal##_nr##_start.attr.attr,		\
3720 		NULL,							\
3721 	}
3722 
3723 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3724 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3725 	static const struct attribute_group				\
3726 			fb_timecard_signal##_nr##_group = {		\
3727 		.name = #_name,						\
3728 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3729 }
3730 
3731 DEVICE_SIGNAL_GROUP(gen1, 0);
3732 DEVICE_SIGNAL_GROUP(gen2, 1);
3733 DEVICE_SIGNAL_GROUP(gen3, 2);
3734 DEVICE_SIGNAL_GROUP(gen4, 3);
3735 
3736 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3737 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3738 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3739 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3740 		NULL,							\
3741 	}
3742 
3743 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3744 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3745 	static const struct attribute_group				\
3746 			fb_timecard_freq##_nr##_group = {		\
3747 		.name = #_name,						\
3748 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3749 }
3750 
3751 DEVICE_FREQ_GROUP(freq1, 0);
3752 DEVICE_FREQ_GROUP(freq2, 1);
3753 DEVICE_FREQ_GROUP(freq3, 2);
3754 DEVICE_FREQ_GROUP(freq4, 3);
3755 
3756 static ssize_t
3757 disciplining_config_read(struct file *filp, struct kobject *kobj,
3758 			 const struct bin_attribute *bin_attr, char *buf,
3759 			 loff_t off, size_t count)
3760 {
3761 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3762 	size_t size = OCP_ART_CONFIG_SIZE;
3763 	struct nvmem_device *nvmem;
3764 	ssize_t err;
3765 
3766 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3767 	if (IS_ERR(nvmem))
3768 		return PTR_ERR(nvmem);
3769 
3770 	if (off > size) {
3771 		err = 0;
3772 		goto out;
3773 	}
3774 
3775 	if (off + count > size)
3776 		count = size - off;
3777 
3778 	// the configuration is in the very beginning of the EEPROM
3779 	err = nvmem_device_read(nvmem, off, count, buf);
3780 	if (err != count) {
3781 		err = -EFAULT;
3782 		goto out;
3783 	}
3784 
3785 out:
3786 	ptp_ocp_nvmem_device_put(&nvmem);
3787 
3788 	return err;
3789 }
3790 
3791 static ssize_t
3792 disciplining_config_write(struct file *filp, struct kobject *kobj,
3793 			  const struct bin_attribute *bin_attr, char *buf,
3794 			  loff_t off, size_t count)
3795 {
3796 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3797 	struct nvmem_device *nvmem;
3798 	ssize_t err;
3799 
3800 	/* Allow write of the whole area only */
3801 	if (off || count != OCP_ART_CONFIG_SIZE)
3802 		return -EFAULT;
3803 
3804 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3805 	if (IS_ERR(nvmem))
3806 		return PTR_ERR(nvmem);
3807 
3808 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3809 	if (err != count)
3810 		err = -EFAULT;
3811 
3812 	ptp_ocp_nvmem_device_put(&nvmem);
3813 
3814 	return err;
3815 }
3816 static const BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3817 
3818 static ssize_t
3819 temperature_table_read(struct file *filp, struct kobject *kobj,
3820 		       const struct bin_attribute *bin_attr, char *buf,
3821 		       loff_t off, size_t count)
3822 {
3823 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3824 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3825 	struct nvmem_device *nvmem;
3826 	ssize_t err;
3827 
3828 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3829 	if (IS_ERR(nvmem))
3830 		return PTR_ERR(nvmem);
3831 
3832 	if (off > size) {
3833 		err = 0;
3834 		goto out;
3835 	}
3836 
3837 	if (off + count > size)
3838 		count = size - off;
3839 
3840 	// the configuration is in the very beginning of the EEPROM
3841 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3842 	if (err != count) {
3843 		err = -EFAULT;
3844 		goto out;
3845 	}
3846 
3847 out:
3848 	ptp_ocp_nvmem_device_put(&nvmem);
3849 
3850 	return err;
3851 }
3852 
3853 static ssize_t
3854 temperature_table_write(struct file *filp, struct kobject *kobj,
3855 			const struct bin_attribute *bin_attr, char *buf,
3856 			loff_t off, size_t count)
3857 {
3858 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3859 	struct nvmem_device *nvmem;
3860 	ssize_t err;
3861 
3862 	/* Allow write of the whole area only */
3863 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3864 		return -EFAULT;
3865 
3866 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3867 	if (IS_ERR(nvmem))
3868 		return PTR_ERR(nvmem);
3869 
3870 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3871 	if (err != count)
3872 		err = -EFAULT;
3873 
3874 	ptp_ocp_nvmem_device_put(&nvmem);
3875 
3876 	return err;
3877 }
3878 static const BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3879 
3880 static struct attribute *fb_timecard_attrs[] = {
3881 	&dev_attr_serialnum.attr,
3882 	&dev_attr_gnss_sync.attr,
3883 	&dev_attr_clock_source.attr,
3884 	&dev_attr_available_clock_sources.attr,
3885 	&dev_attr_sma1.attr,
3886 	&dev_attr_sma2.attr,
3887 	&dev_attr_sma3.attr,
3888 	&dev_attr_sma4.attr,
3889 	&dev_attr_available_sma_inputs.attr,
3890 	&dev_attr_available_sma_outputs.attr,
3891 	&dev_attr_clock_status_drift.attr,
3892 	&dev_attr_clock_status_offset.attr,
3893 	&dev_attr_irig_b_mode.attr,
3894 	&dev_attr_utc_tai_offset.attr,
3895 	&dev_attr_ts_window_adjust.attr,
3896 	&dev_attr_tod_correction.attr,
3897 	NULL,
3898 };
3899 
3900 static const struct attribute_group fb_timecard_group = {
3901 	.attrs = fb_timecard_attrs,
3902 };
3903 
3904 static const struct ocp_attr_group fb_timecard_groups[] = {
3905 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3906 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3907 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3908 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3909 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3910 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3911 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3912 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3913 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3914 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3915 	{ },
3916 };
3917 
3918 static struct attribute *art_timecard_attrs[] = {
3919 	&dev_attr_serialnum.attr,
3920 	&dev_attr_clock_source.attr,
3921 	&dev_attr_available_clock_sources.attr,
3922 	&dev_attr_utc_tai_offset.attr,
3923 	&dev_attr_ts_window_adjust.attr,
3924 	&dev_attr_sma1.attr,
3925 	&dev_attr_sma2.attr,
3926 	&dev_attr_sma3.attr,
3927 	&dev_attr_sma4.attr,
3928 	&dev_attr_available_sma_inputs.attr,
3929 	&dev_attr_available_sma_outputs.attr,
3930 	NULL,
3931 };
3932 
3933 static const struct bin_attribute *const bin_art_timecard_attrs[] = {
3934 	&bin_attr_disciplining_config,
3935 	&bin_attr_temperature_table,
3936 	NULL,
3937 };
3938 
3939 static const struct attribute_group art_timecard_group = {
3940 	.attrs = art_timecard_attrs,
3941 	.bin_attrs_new = bin_art_timecard_attrs,
3942 };
3943 
3944 static const struct ocp_attr_group art_timecard_groups[] = {
3945 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3946 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3947 	{ },
3948 };
3949 
3950 static struct attribute *adva_timecard_attrs[] = {
3951 	&dev_attr_serialnum.attr,
3952 	&dev_attr_gnss_sync.attr,
3953 	&dev_attr_clock_source.attr,
3954 	&dev_attr_available_clock_sources.attr,
3955 	&dev_attr_sma1.attr,
3956 	&dev_attr_sma2.attr,
3957 	&dev_attr_sma3.attr,
3958 	&dev_attr_sma4.attr,
3959 	&dev_attr_available_sma_inputs.attr,
3960 	&dev_attr_available_sma_outputs.attr,
3961 	&dev_attr_clock_status_drift.attr,
3962 	&dev_attr_clock_status_offset.attr,
3963 	&dev_attr_ts_window_adjust.attr,
3964 	&dev_attr_tod_correction.attr,
3965 	NULL,
3966 };
3967 
3968 static const struct attribute_group adva_timecard_group = {
3969 	.attrs = adva_timecard_attrs,
3970 };
3971 
3972 static const struct ocp_attr_group adva_timecard_groups[] = {
3973 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3974 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3975 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3976 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3977 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3978 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3979 	{ },
3980 };
3981 
3982 static void
3983 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3984 	       const char *def)
3985 {
3986 	int i;
3987 
3988 	for (i = 0; i < 4; i++) {
3989 		if (bp->sma[i].mode != SMA_MODE_IN)
3990 			continue;
3991 		if (map[i][0] & (1 << bit)) {
3992 			sprintf(buf, "sma%d", i + 1);
3993 			return;
3994 		}
3995 	}
3996 	if (!def)
3997 		def = "----";
3998 	strcpy(buf, def);
3999 }
4000 
4001 static void
4002 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
4003 {
4004 	char *ans = buf;
4005 	int i;
4006 
4007 	strcpy(ans, "----");
4008 	for (i = 0; i < 4; i++) {
4009 		if (bp->sma[i].mode != SMA_MODE_OUT)
4010 			continue;
4011 		if (map[i][1] & (1 << bit))
4012 			ans += sprintf(ans, "sma%d ", i + 1);
4013 	}
4014 }
4015 
4016 static void
4017 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
4018 {
4019 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
4020 	struct ptp_ocp_signal *signal = &bp->signal[nr];
4021 	char label[16];
4022 	bool on;
4023 	u32 val;
4024 
4025 	on = signal->running;
4026 	sprintf(label, "GEN%d", nr + 1);
4027 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
4028 		   label, on ? " ON" : "OFF",
4029 		   signal->period, signal->duty, signal->phase,
4030 		   signal->polarity);
4031 
4032 	val = ioread32(&reg->enable);
4033 	seq_printf(s, " [%x", val);
4034 	val = ioread32(&reg->status);
4035 	seq_printf(s, " %x]", val);
4036 
4037 	seq_printf(s, " start:%llu\n", signal->start);
4038 }
4039 
4040 static void
4041 _frequency_summary_show(struct seq_file *s, int nr,
4042 			struct frequency_reg __iomem *reg)
4043 {
4044 	char label[16];
4045 	bool on;
4046 	u32 val;
4047 
4048 	if (!reg)
4049 		return;
4050 
4051 	sprintf(label, "FREQ%d", nr + 1);
4052 	val = ioread32(&reg->ctrl);
4053 	on = val & 1;
4054 	val = (val >> 8) & 0xff;
4055 	seq_printf(s, "%7s: %s, sec:%u",
4056 		   label,
4057 		   on ? " ON" : "OFF",
4058 		   val);
4059 
4060 	val = ioread32(&reg->status);
4061 	if (val & FREQ_STATUS_ERROR)
4062 		seq_printf(s, ", error");
4063 	if (val & FREQ_STATUS_OVERRUN)
4064 		seq_printf(s, ", overrun");
4065 	if (val & FREQ_STATUS_VALID)
4066 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4067 	seq_printf(s, "  reg:%x\n", val);
4068 }
4069 
4070 static int
4071 ptp_ocp_summary_show(struct seq_file *s, void *data)
4072 {
4073 	struct device *dev = s->private;
4074 	struct ptp_system_timestamp sts;
4075 	struct ts_reg __iomem *ts_reg;
4076 	char *buf, *src, *mac_src;
4077 	struct timespec64 ts;
4078 	struct ptp_ocp *bp;
4079 	u16 sma_val[4][2];
4080 	u32 ctrl, val;
4081 	bool on, map;
4082 	int i;
4083 
4084 	buf = (char *)__get_free_page(GFP_KERNEL);
4085 	if (!buf)
4086 		return -ENOMEM;
4087 
4088 	bp = dev_get_drvdata(dev);
4089 
4090 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4091 	for (i = 0; i < __PORT_COUNT; i++) {
4092 		if (bp->port[i].line != -1)
4093 			seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4094 				   bp->port[i].line);
4095 	}
4096 
4097 	memset(sma_val, 0xff, sizeof(sma_val));
4098 	if (bp->sma_map1) {
4099 		u32 reg;
4100 
4101 		reg = ioread32(&bp->sma_map1->gpio1);
4102 		sma_val[0][0] = reg & 0xffff;
4103 		sma_val[1][0] = reg >> 16;
4104 
4105 		reg = ioread32(&bp->sma_map1->gpio2);
4106 		sma_val[2][1] = reg & 0xffff;
4107 		sma_val[3][1] = reg >> 16;
4108 
4109 		reg = ioread32(&bp->sma_map2->gpio1);
4110 		sma_val[2][0] = reg & 0xffff;
4111 		sma_val[3][0] = reg >> 16;
4112 
4113 		reg = ioread32(&bp->sma_map2->gpio2);
4114 		sma_val[0][1] = reg & 0xffff;
4115 		sma_val[1][1] = reg >> 16;
4116 	}
4117 
4118 	sma1_show(dev, NULL, buf);
4119 	seq_printf(s, "   sma1: %04x,%04x %s",
4120 		   sma_val[0][0], sma_val[0][1], buf);
4121 
4122 	sma2_show(dev, NULL, buf);
4123 	seq_printf(s, "   sma2: %04x,%04x %s",
4124 		   sma_val[1][0], sma_val[1][1], buf);
4125 
4126 	sma3_show(dev, NULL, buf);
4127 	seq_printf(s, "   sma3: %04x,%04x %s",
4128 		   sma_val[2][0], sma_val[2][1], buf);
4129 
4130 	sma4_show(dev, NULL, buf);
4131 	seq_printf(s, "   sma4: %04x,%04x %s",
4132 		   sma_val[3][0], sma_val[3][1], buf);
4133 
4134 	if (bp->ts0) {
4135 		ts_reg = bp->ts0->mem;
4136 		on = ioread32(&ts_reg->enable);
4137 		src = "GNSS1";
4138 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4139 			   on ? " ON" : "OFF", src);
4140 	}
4141 
4142 	if (bp->ts1) {
4143 		ts_reg = bp->ts1->mem;
4144 		on = ioread32(&ts_reg->enable);
4145 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4146 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4147 			   on ? " ON" : "OFF", buf);
4148 	}
4149 
4150 	if (bp->ts2) {
4151 		ts_reg = bp->ts2->mem;
4152 		on = ioread32(&ts_reg->enable);
4153 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4154 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4155 			   on ? " ON" : "OFF", buf);
4156 	}
4157 
4158 	if (bp->ts3) {
4159 		ts_reg = bp->ts3->mem;
4160 		on = ioread32(&ts_reg->enable);
4161 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4162 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4163 			   on ? " ON" : "OFF", buf);
4164 	}
4165 
4166 	if (bp->ts4) {
4167 		ts_reg = bp->ts4->mem;
4168 		on = ioread32(&ts_reg->enable);
4169 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4170 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4171 			   on ? " ON" : "OFF", buf);
4172 	}
4173 
4174 	if (bp->pps) {
4175 		ts_reg = bp->pps->mem;
4176 		src = "PHC";
4177 		on = ioread32(&ts_reg->enable);
4178 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4179 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4180 			   on && map ? " ON" : "OFF", src);
4181 
4182 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4183 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4184 			   on && map ? " ON" : "OFF", src);
4185 	}
4186 
4187 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4188 		for (i = 0; i < bp->signals_nr; i++)
4189 			_signal_summary_show(s, bp, i);
4190 
4191 	if (bp->fw_cap & OCP_CAP_FREQ)
4192 		for (i = 0; i < bp->freq_in_nr; i++)
4193 			_frequency_summary_show(s, i, bp->freq_in[i]);
4194 
4195 	if (bp->irig_out) {
4196 		ctrl = ioread32(&bp->irig_out->ctrl);
4197 		on = ctrl & IRIG_M_CTRL_ENABLE;
4198 		val = ioread32(&bp->irig_out->status);
4199 		gpio_output_map(buf, bp, sma_val, 4);
4200 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4201 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4202 	}
4203 
4204 	if (bp->irig_in) {
4205 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4206 		val = ioread32(&bp->irig_in->status);
4207 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4208 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4209 			   on ? " ON" : "OFF", val, buf);
4210 	}
4211 
4212 	if (bp->dcf_out) {
4213 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4214 		val = ioread32(&bp->dcf_out->status);
4215 		gpio_output_map(buf, bp, sma_val, 5);
4216 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4217 			   on ? " ON" : "OFF", val, buf);
4218 	}
4219 
4220 	if (bp->dcf_in) {
4221 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4222 		val = ioread32(&bp->dcf_in->status);
4223 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4224 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4225 			   on ? " ON" : "OFF", val, buf);
4226 	}
4227 
4228 	if (bp->nmea_out) {
4229 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4230 		val = ioread32(&bp->nmea_out->status);
4231 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4232 			   on ? " ON" : "OFF", val);
4233 	}
4234 
4235 	/* compute src for PPS1, used below. */
4236 	if (bp->pps_select) {
4237 		val = ioread32(&bp->pps_select->gpio1);
4238 		src = &buf[80];
4239 		mac_src = "GNSS1";
4240 		if (val & 0x01) {
4241 			gpio_input_map(src, bp, sma_val, 0, NULL);
4242 			mac_src = src;
4243 		} else if (val & 0x02) {
4244 			src = "MAC";
4245 		} else if (val & 0x04) {
4246 			src = "GNSS1";
4247 		} else {
4248 			src = "----";
4249 			mac_src = src;
4250 		}
4251 	} else {
4252 		src = "?";
4253 		mac_src = src;
4254 	}
4255 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4256 
4257 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4258 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4259 
4260 	/* assumes automatic switchover/selection */
4261 	val = ioread32(&bp->reg->select);
4262 	switch (val >> 16) {
4263 	case 0:
4264 		sprintf(buf, "----");
4265 		break;
4266 	case 2:
4267 		sprintf(buf, "IRIG");
4268 		break;
4269 	case 3:
4270 		sprintf(buf, "%s via PPS1", src);
4271 		break;
4272 	case 6:
4273 		sprintf(buf, "DCF");
4274 		break;
4275 	default:
4276 		strcpy(buf, "unknown");
4277 		break;
4278 	}
4279 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4280 		   bp->sync ? "sync" : "unsynced");
4281 
4282 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4283 		struct timespec64 sys_ts;
4284 		s64 pre_ns, post_ns, ns;
4285 
4286 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4287 		post_ns = timespec64_to_ns(&sts.post_ts);
4288 		ns = (pre_ns + post_ns) / 2;
4289 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4290 		sys_ts = ns_to_timespec64(ns);
4291 
4292 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
4293 			   ts.tv_sec, ts.tv_nsec, &ts);
4294 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
4295 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
4296 			   bp->utc_tai_offset);
4297 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4298 			   timespec64_to_ns(&ts) - ns,
4299 			   post_ns - pre_ns);
4300 	}
4301 
4302 	free_page((unsigned long)buf);
4303 	return 0;
4304 }
4305 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4306 
4307 static int
4308 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4309 {
4310 	struct device *dev = s->private;
4311 	struct ptp_ocp *bp;
4312 	u32 val;
4313 	int idx;
4314 
4315 	bp = dev_get_drvdata(dev);
4316 
4317 	val = ioread32(&bp->tod->ctrl);
4318 	if (!(val & TOD_CTRL_ENABLE)) {
4319 		seq_printf(s, "TOD Slave disabled\n");
4320 		return 0;
4321 	}
4322 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4323 
4324 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4325 	idx += (val >> 16) & 3;
4326 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4327 
4328 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4329 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4330 
4331 	val = ioread32(&bp->tod->version);
4332 	seq_printf(s, "TOD Version %d.%d.%d\n",
4333 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4334 
4335 	val = ioread32(&bp->tod->status);
4336 	seq_printf(s, "Status register: 0x%08X\n", val);
4337 
4338 	val = ioread32(&bp->tod->adj_sec);
4339 	idx = (val & ~INT_MAX) ? -1 : 1;
4340 	idx *= (val & INT_MAX);
4341 	seq_printf(s, "Correction seconds: %d\n", idx);
4342 
4343 	val = ioread32(&bp->tod->utc_status);
4344 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4345 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4346 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4347 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4348 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4349 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4350 
4351 	val = ioread32(&bp->tod->leap);
4352 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4353 
4354 	return 0;
4355 }
4356 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4357 
4358 static struct dentry *ptp_ocp_debugfs_root;
4359 
4360 static void
4361 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4362 {
4363 	struct dentry *d;
4364 
4365 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4366 	bp->debug_root = d;
4367 	debugfs_create_file("summary", 0444, bp->debug_root,
4368 			    &bp->dev, &ptp_ocp_summary_fops);
4369 	if (bp->tod)
4370 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4371 				    &bp->dev, &ptp_ocp_tod_status_fops);
4372 }
4373 
4374 static void
4375 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4376 {
4377 	debugfs_remove_recursive(bp->debug_root);
4378 }
4379 
4380 static void
4381 ptp_ocp_debugfs_init(void)
4382 {
4383 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4384 }
4385 
4386 static void
4387 ptp_ocp_debugfs_fini(void)
4388 {
4389 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4390 }
4391 
4392 static void
4393 ptp_ocp_dev_release(struct device *dev)
4394 {
4395 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4396 
4397 	mutex_lock(&ptp_ocp_lock);
4398 	idr_remove(&ptp_ocp_idr, bp->id);
4399 	mutex_unlock(&ptp_ocp_lock);
4400 }
4401 
4402 static int
4403 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4404 {
4405 	int i, err;
4406 
4407 	mutex_lock(&ptp_ocp_lock);
4408 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4409 	mutex_unlock(&ptp_ocp_lock);
4410 	if (err < 0) {
4411 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4412 		return err;
4413 	}
4414 	bp->id = err;
4415 
4416 	bp->ptp_info = ptp_ocp_clock_info;
4417 	spin_lock_init(&bp->lock);
4418 
4419 	for (i = 0; i < __PORT_COUNT; i++)
4420 		bp->port[i].line = -1;
4421 
4422 	bp->pdev = pdev;
4423 
4424 	device_initialize(&bp->dev);
4425 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4426 	bp->dev.class = &timecard_class;
4427 	bp->dev.parent = &pdev->dev;
4428 	bp->dev.release = ptp_ocp_dev_release;
4429 	dev_set_drvdata(&bp->dev, bp);
4430 
4431 	err = device_add(&bp->dev);
4432 	if (err) {
4433 		dev_err(&bp->dev, "device add failed: %d\n", err);
4434 		goto out;
4435 	}
4436 
4437 	pci_set_drvdata(pdev, bp);
4438 
4439 	return 0;
4440 
4441 out:
4442 	put_device(&bp->dev);
4443 	return err;
4444 }
4445 
4446 static void
4447 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4448 {
4449 	struct device *dev = &bp->dev;
4450 
4451 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4452 		dev_err(dev, "%s symlink failed\n", link);
4453 }
4454 
4455 static void
4456 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4457 {
4458 	struct device *dev, *child;
4459 
4460 	dev = &bp->pdev->dev;
4461 
4462 	child = device_find_child_by_name(dev, name);
4463 	if (!child) {
4464 		dev_err(dev, "Could not find device %s\n", name);
4465 		return;
4466 	}
4467 
4468 	ptp_ocp_symlink(bp, child, link);
4469 	put_device(child);
4470 }
4471 
4472 static int
4473 ptp_ocp_complete(struct ptp_ocp *bp)
4474 {
4475 	struct pps_device *pps;
4476 	char buf[32];
4477 
4478 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4479 	ptp_ocp_link_child(bp, buf, "ptp");
4480 
4481 	pps = pps_lookup_dev(bp->ptp);
4482 	if (pps)
4483 		ptp_ocp_symlink(bp, &pps->dev, "pps");
4484 
4485 	ptp_ocp_debugfs_add_device(bp);
4486 
4487 	return 0;
4488 }
4489 
4490 static void
4491 ptp_ocp_phc_info(struct ptp_ocp *bp)
4492 {
4493 	struct timespec64 ts;
4494 	u32 version, select;
4495 
4496 	version = ioread32(&bp->reg->version);
4497 	select = ioread32(&bp->reg->select);
4498 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4499 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4500 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4501 		 ptp_clock_index(bp->ptp));
4502 
4503 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4504 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4505 			 ts.tv_sec, ts.tv_nsec,
4506 			 bp->sync ? "in-sync" : "UNSYNCED");
4507 }
4508 
4509 static void
4510 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4511 {
4512 	if (port != -1)
4513 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4514 }
4515 
4516 static void
4517 ptp_ocp_info(struct ptp_ocp *bp)
4518 {
4519 	static int nmea_baud[] = {
4520 		1200, 2400, 4800, 9600, 19200, 38400,
4521 		57600, 115200, 230400, 460800, 921600,
4522 		1000000, 2000000
4523 	};
4524 	struct device *dev = &bp->pdev->dev;
4525 	u32 reg;
4526 	int i;
4527 
4528 	ptp_ocp_phc_info(bp);
4529 
4530 	for (i = 0; i < __PORT_COUNT; i++) {
4531 		if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4532 			bp->port[PORT_NMEA].baud = -1;
4533 
4534 			reg = ioread32(&bp->nmea_out->uart_baud);
4535 			if (reg < ARRAY_SIZE(nmea_baud))
4536 				bp->port[PORT_NMEA].baud = nmea_baud[reg];
4537 		}
4538 		ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4539 				    bp->port[i].baud);
4540 	}
4541 }
4542 
4543 static void
4544 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4545 {
4546 	struct device *dev = &bp->dev;
4547 
4548 	sysfs_remove_link(&dev->kobj, "ptp");
4549 	sysfs_remove_link(&dev->kobj, "pps");
4550 }
4551 
4552 static void
4553 ptp_ocp_detach(struct ptp_ocp *bp)
4554 {
4555 	int i;
4556 
4557 	ptp_ocp_debugfs_remove_device(bp);
4558 	ptp_ocp_detach_sysfs(bp);
4559 	ptp_ocp_attr_group_del(bp);
4560 	if (timer_pending(&bp->watchdog))
4561 		timer_delete_sync(&bp->watchdog);
4562 	if (bp->ts0)
4563 		ptp_ocp_unregister_ext(bp->ts0);
4564 	if (bp->ts1)
4565 		ptp_ocp_unregister_ext(bp->ts1);
4566 	if (bp->ts2)
4567 		ptp_ocp_unregister_ext(bp->ts2);
4568 	if (bp->ts3)
4569 		ptp_ocp_unregister_ext(bp->ts3);
4570 	if (bp->ts4)
4571 		ptp_ocp_unregister_ext(bp->ts4);
4572 	if (bp->pps)
4573 		ptp_ocp_unregister_ext(bp->pps);
4574 	for (i = 0; i < 4; i++)
4575 		if (bp->signal_out[i])
4576 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4577 	for (i = 0; i < __PORT_COUNT; i++)
4578 		if (bp->port[i].line != -1)
4579 			serial8250_unregister_port(bp->port[i].line);
4580 	platform_device_unregister(bp->spi_flash);
4581 	platform_device_unregister(bp->i2c_ctrl);
4582 	if (bp->i2c_clk)
4583 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4584 	if (bp->n_irqs)
4585 		pci_free_irq_vectors(bp->pdev);
4586 	if (bp->ptp)
4587 		ptp_clock_unregister(bp->ptp);
4588 	kfree(bp->ptp_info.pin_config);
4589 	device_unregister(&bp->dev);
4590 }
4591 
4592 static int
4593 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4594 			     enum dpll_lock_status *status,
4595 			     enum dpll_lock_status_error *status_error,
4596 			     struct netlink_ext_ack *extack)
4597 {
4598 	struct ptp_ocp *bp = priv;
4599 
4600 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4601 
4602 	return 0;
4603 }
4604 
4605 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4606 				  const struct dpll_device *dpll, void *priv,
4607 				  enum dpll_pin_state *state,
4608 				  struct netlink_ext_ack *extack)
4609 {
4610 	struct ptp_ocp *bp = priv;
4611 	int idx;
4612 
4613 	if (bp->pps_select) {
4614 		idx = ioread32(&bp->pps_select->gpio1);
4615 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4616 						      DPLL_PIN_STATE_SELECTABLE;
4617 		return 0;
4618 	}
4619 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4620 	return -EINVAL;
4621 }
4622 
4623 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4624 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4625 {
4626 	*mode = DPLL_MODE_AUTOMATIC;
4627 	return 0;
4628 }
4629 
4630 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4631 				      void *pin_priv,
4632 				      const struct dpll_device *dpll,
4633 				      void *priv,
4634 				      enum dpll_pin_direction *direction,
4635 				      struct netlink_ext_ack *extack)
4636 {
4637 	struct ptp_ocp_sma_connector *sma = pin_priv;
4638 
4639 	*direction = sma->mode == SMA_MODE_IN ?
4640 				  DPLL_PIN_DIRECTION_INPUT :
4641 				  DPLL_PIN_DIRECTION_OUTPUT;
4642 	return 0;
4643 }
4644 
4645 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4646 				      void *pin_priv,
4647 				      const struct dpll_device *dpll,
4648 				      void *dpll_priv,
4649 				      enum dpll_pin_direction direction,
4650 				      struct netlink_ext_ack *extack)
4651 {
4652 	struct ptp_ocp_sma_connector *sma = pin_priv;
4653 	struct ptp_ocp *bp = dpll_priv;
4654 	enum ptp_ocp_sma_mode mode;
4655 	int sma_nr = (sma - bp->sma);
4656 
4657 	if (sma->fixed_dir)
4658 		return -EOPNOTSUPP;
4659 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4660 			    SMA_MODE_IN : SMA_MODE_OUT;
4661 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4662 }
4663 
4664 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4665 				      void *pin_priv,
4666 				      const struct dpll_device *dpll,
4667 				      void *dpll_priv, u64 frequency,
4668 				      struct netlink_ext_ack *extack)
4669 {
4670 	struct ptp_ocp_sma_connector *sma = pin_priv;
4671 	struct ptp_ocp *bp = dpll_priv;
4672 	const struct ocp_selector *tbl;
4673 	int sma_nr = (sma - bp->sma);
4674 	int i;
4675 
4676 	if (sma->fixed_fcn)
4677 		return -EOPNOTSUPP;
4678 
4679 	tbl = bp->sma_op->tbl[sma->mode];
4680 	for (i = 0; tbl[i].name; i++)
4681 		if (tbl[i].frequency == frequency)
4682 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4683 	return -EINVAL;
4684 }
4685 
4686 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4687 				      void *pin_priv,
4688 				      const struct dpll_device *dpll,
4689 				      void *dpll_priv, u64 *frequency,
4690 				      struct netlink_ext_ack *extack)
4691 {
4692 	struct ptp_ocp_sma_connector *sma = pin_priv;
4693 	struct ptp_ocp *bp = dpll_priv;
4694 	const struct ocp_selector *tbl;
4695 	int sma_nr = (sma - bp->sma);
4696 	u32 val;
4697 	int i;
4698 
4699 	val = bp->sma_op->get(bp, sma_nr + 1);
4700 	tbl = bp->sma_op->tbl[sma->mode];
4701 	for (i = 0; tbl[i].name; i++)
4702 		if (val == tbl[i].value) {
4703 			*frequency = tbl[i].frequency;
4704 			return 0;
4705 		}
4706 
4707 	return -EINVAL;
4708 }
4709 
4710 static const struct dpll_device_ops dpll_ops = {
4711 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4712 	.mode_get = ptp_ocp_dpll_mode_get,
4713 };
4714 
4715 static const struct dpll_pin_ops dpll_pins_ops = {
4716 	.frequency_get = ptp_ocp_dpll_frequency_get,
4717 	.frequency_set = ptp_ocp_dpll_frequency_set,
4718 	.direction_get = ptp_ocp_dpll_direction_get,
4719 	.direction_set = ptp_ocp_dpll_direction_set,
4720 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4721 };
4722 
4723 static void
4724 ptp_ocp_sync_work(struct work_struct *work)
4725 {
4726 	struct ptp_ocp *bp;
4727 	bool sync;
4728 
4729 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4730 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4731 
4732 	if (bp->sync != sync)
4733 		dpll_device_change_ntf(bp->dpll);
4734 
4735 	bp->sync = sync;
4736 
4737 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4738 }
4739 
4740 static int
4741 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4742 {
4743 	struct devlink *devlink;
4744 	struct ptp_ocp *bp;
4745 	int err, i;
4746 	u64 clkid;
4747 
4748 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4749 	if (!devlink) {
4750 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4751 		return -ENOMEM;
4752 	}
4753 
4754 	err = pci_enable_device(pdev);
4755 	if (err) {
4756 		dev_err(&pdev->dev, "pci_enable_device\n");
4757 		goto out_free;
4758 	}
4759 
4760 	bp = devlink_priv(devlink);
4761 	err = ptp_ocp_device_init(bp, pdev);
4762 	if (err)
4763 		goto out_disable;
4764 
4765 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4766 
4767 	/* compat mode.
4768 	 * Older FPGA firmware only returns 2 irq's.
4769 	 * allow this - if not all of the IRQ's are returned, skip the
4770 	 * extra devices and just register the clock.
4771 	 */
4772 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4773 	if (err < 0) {
4774 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4775 		goto out;
4776 	}
4777 	bp->n_irqs = err;
4778 	pci_set_master(pdev);
4779 
4780 	err = ptp_ocp_register_resources(bp, id->driver_data);
4781 	if (err)
4782 		goto out;
4783 
4784 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4785 	if (IS_ERR(bp->ptp)) {
4786 		err = PTR_ERR(bp->ptp);
4787 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4788 		bp->ptp = NULL;
4789 		goto out;
4790 	}
4791 
4792 	err = ptp_ocp_complete(bp);
4793 	if (err)
4794 		goto out;
4795 
4796 	ptp_ocp_info(bp);
4797 	devlink_register(devlink);
4798 
4799 	clkid = pci_get_dsn(pdev);
4800 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4801 	if (IS_ERR(bp->dpll)) {
4802 		err = PTR_ERR(bp->dpll);
4803 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4804 		goto out;
4805 	}
4806 
4807 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4808 	if (err)
4809 		goto out;
4810 
4811 	for (i = 0; i < OCP_SMA_NUM; i++) {
4812 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4813 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4814 			err = PTR_ERR(bp->sma[i].dpll_pin);
4815 			goto out_dpll;
4816 		}
4817 
4818 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4819 					&bp->sma[i]);
4820 		if (err) {
4821 			dpll_pin_put(bp->sma[i].dpll_pin);
4822 			goto out_dpll;
4823 		}
4824 	}
4825 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4826 
4827 	return 0;
4828 out_dpll:
4829 	while (i) {
4830 		--i;
4831 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4832 		dpll_pin_put(bp->sma[i].dpll_pin);
4833 	}
4834 	dpll_device_put(bp->dpll);
4835 out:
4836 	ptp_ocp_detach(bp);
4837 out_disable:
4838 	pci_disable_device(pdev);
4839 out_free:
4840 	devlink_free(devlink);
4841 	return err;
4842 }
4843 
4844 static void
4845 ptp_ocp_remove(struct pci_dev *pdev)
4846 {
4847 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4848 	struct devlink *devlink = priv_to_devlink(bp);
4849 	int i;
4850 
4851 	cancel_delayed_work_sync(&bp->sync_work);
4852 	for (i = 0; i < OCP_SMA_NUM; i++) {
4853 		if (bp->sma[i].dpll_pin) {
4854 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4855 			dpll_pin_put(bp->sma[i].dpll_pin);
4856 		}
4857 	}
4858 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4859 	dpll_device_put(bp->dpll);
4860 	devlink_unregister(devlink);
4861 	ptp_ocp_detach(bp);
4862 	pci_disable_device(pdev);
4863 
4864 	devlink_free(devlink);
4865 }
4866 
4867 static struct pci_driver ptp_ocp_driver = {
4868 	.name		= KBUILD_MODNAME,
4869 	.id_table	= ptp_ocp_pcidev_id,
4870 	.probe		= ptp_ocp_probe,
4871 	.remove		= ptp_ocp_remove,
4872 };
4873 
4874 static int
4875 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4876 			  unsigned long action, void *data)
4877 {
4878 	struct device *dev, *child = data;
4879 	struct ptp_ocp *bp;
4880 	bool add;
4881 
4882 	switch (action) {
4883 	case BUS_NOTIFY_ADD_DEVICE:
4884 	case BUS_NOTIFY_DEL_DEVICE:
4885 		add = action == BUS_NOTIFY_ADD_DEVICE;
4886 		break;
4887 	default:
4888 		return 0;
4889 	}
4890 
4891 	if (!i2c_verify_adapter(child))
4892 		return 0;
4893 
4894 	dev = child;
4895 	while ((dev = dev->parent))
4896 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4897 			goto found;
4898 	return 0;
4899 
4900 found:
4901 	bp = dev_get_drvdata(dev);
4902 	if (add)
4903 		ptp_ocp_symlink(bp, child, "i2c");
4904 	else
4905 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4906 
4907 	return 0;
4908 }
4909 
4910 static struct notifier_block ptp_ocp_i2c_notifier = {
4911 	.notifier_call = ptp_ocp_i2c_notifier_call,
4912 };
4913 
4914 static int __init
4915 ptp_ocp_init(void)
4916 {
4917 	const char *what;
4918 	int err;
4919 
4920 	ptp_ocp_debugfs_init();
4921 
4922 	what = "timecard class";
4923 	err = class_register(&timecard_class);
4924 	if (err)
4925 		goto out;
4926 
4927 	what = "i2c notifier";
4928 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4929 	if (err)
4930 		goto out_notifier;
4931 
4932 	what = "ptp_ocp driver";
4933 	err = pci_register_driver(&ptp_ocp_driver);
4934 	if (err)
4935 		goto out_register;
4936 
4937 	return 0;
4938 
4939 out_register:
4940 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4941 out_notifier:
4942 	class_unregister(&timecard_class);
4943 out:
4944 	ptp_ocp_debugfs_fini();
4945 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4946 	return err;
4947 }
4948 
4949 static void __exit
4950 ptp_ocp_fini(void)
4951 {
4952 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4953 	pci_unregister_driver(&ptp_ocp_driver);
4954 	class_unregister(&timecard_class);
4955 	ptp_ocp_debugfs_fini();
4956 }
4957 
4958 module_init(ptp_ocp_init);
4959 module_exit(ptp_ocp_fini);
4960 
4961 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4962 MODULE_LICENSE("GPL v2");
4963