1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27 
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 #include <asm/msr.h>
32 
33 /* bitmasks for RAPL MSRs, used by primitive access functions */
34 #define ENERGY_STATUS_MASK      0xffffffff
35 
36 #define POWER_LIMIT1_MASK       0x7FFF
37 #define POWER_LIMIT1_ENABLE     BIT(15)
38 #define POWER_LIMIT1_CLAMP      BIT(16)
39 
40 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
41 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
42 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
43 #define POWER_HIGH_LOCK         BIT_ULL(63)
44 #define POWER_LOW_LOCK          BIT(31)
45 
46 #define POWER_LIMIT4_MASK		0x1FFF
47 
48 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
49 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
50 
51 #define POWER_UNIT_OFFSET	0
52 #define POWER_UNIT_MASK		0x0F
53 
54 #define ENERGY_UNIT_OFFSET	0x08
55 #define ENERGY_UNIT_MASK	0x1F00
56 
57 #define TIME_UNIT_OFFSET	0x10
58 #define TIME_UNIT_MASK		0xF0000
59 
60 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
61 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
62 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
63 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
64 
65 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
66 #define PP_POLICY_MASK         0x1F
67 
68 /*
69  * SPR has different layout for Psys Domain PowerLimit registers.
70  * There are 17 bits of PL1 and PL2 instead of 15 bits.
71  * The Enable bits and TimeWindow bits are also shifted as a result.
72  */
73 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
74 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
75 
76 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
77 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
78 
79 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
80 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
81 
82 /* bitmasks for RAPL TPMI, used by primitive access functions */
83 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
84 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
85 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
86 #define TPMI_INFO_SPEC_MASK	0x3FFFF
87 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
88 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
89 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
90 
91 /* Non HW constants */
92 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
93 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
94 
95 #define TIME_WINDOW_MAX_MSEC 40000
96 #define TIME_WINDOW_MIN_MSEC 250
97 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
98 enum unit_type {
99 	ARBITRARY_UNIT,		/* no translation */
100 	POWER_UNIT,
101 	ENERGY_UNIT,
102 	TIME_UNIT,
103 };
104 
105 /* per domain data, some are optional */
106 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
107 
108 #define	DOMAIN_STATE_INACTIVE           BIT(0)
109 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
110 
111 static const char *pl_names[NR_POWER_LIMITS] = {
112 	[POWER_LIMIT1] = "long_term",
113 	[POWER_LIMIT2] = "short_term",
114 	[POWER_LIMIT4] = "peak_power",
115 };
116 
117 enum pl_prims {
118 	PL_ENABLE,
119 	PL_CLAMP,
120 	PL_LIMIT,
121 	PL_TIME_WINDOW,
122 	PL_MAX_POWER,
123 	PL_LOCK,
124 };
125 
126 static bool is_pl_valid(struct rapl_domain *rd, int pl)
127 {
128 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
129 		return false;
130 	return rd->rpl[pl].name ? true : false;
131 }
132 
133 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
134 {
135 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
136 		if (pl == POWER_LIMIT1)
137 			return PL1_LOCK;
138 		if (pl == POWER_LIMIT2)
139 			return PL2_LOCK;
140 		if (pl == POWER_LIMIT4)
141 			return PL4_LOCK;
142 	}
143 
144 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
145 	if (pl == POWER_LIMIT4)
146 		return -EINVAL;
147 
148 	/*
149 	 * Power Limit register that supports two power limits has a different
150 	 * bit position for the Lock bit.
151 	 */
152 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
153 		return FW_HIGH_LOCK;
154 	return FW_LOCK;
155 }
156 
157 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
158 {
159 	switch (pl) {
160 	case POWER_LIMIT1:
161 		if (prim == PL_ENABLE)
162 			return PL1_ENABLE;
163 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
164 			return PL1_CLAMP;
165 		if (prim == PL_LIMIT)
166 			return POWER_LIMIT1;
167 		if (prim == PL_TIME_WINDOW)
168 			return TIME_WINDOW1;
169 		if (prim == PL_MAX_POWER)
170 			return THERMAL_SPEC_POWER;
171 		if (prim == PL_LOCK)
172 			return get_pl_lock_prim(rd, pl);
173 		return -EINVAL;
174 	case POWER_LIMIT2:
175 		if (prim == PL_ENABLE)
176 			return PL2_ENABLE;
177 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
178 			return PL2_CLAMP;
179 		if (prim == PL_LIMIT)
180 			return POWER_LIMIT2;
181 		if (prim == PL_TIME_WINDOW)
182 			return TIME_WINDOW2;
183 		if (prim == PL_MAX_POWER)
184 			return MAX_POWER;
185 		if (prim == PL_LOCK)
186 			return get_pl_lock_prim(rd, pl);
187 		return -EINVAL;
188 	case POWER_LIMIT4:
189 		if (prim == PL_LIMIT)
190 			return POWER_LIMIT4;
191 		if (prim == PL_ENABLE)
192 			return PL4_ENABLE;
193 		/* PL4 would be around two times PL2, use same prim as PL2. */
194 		if (prim == PL_MAX_POWER)
195 			return MAX_POWER;
196 		if (prim == PL_LOCK)
197 			return get_pl_lock_prim(rd, pl);
198 		return -EINVAL;
199 	default:
200 		return -EINVAL;
201 	}
202 }
203 
204 #define power_zone_to_rapl_domain(_zone) \
205 	container_of(_zone, struct rapl_domain, power_zone)
206 
207 struct rapl_defaults {
208 	u8 floor_freq_reg_addr;
209 	int (*check_unit)(struct rapl_domain *rd);
210 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
211 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
212 				    bool to_raw);
213 	unsigned int dram_domain_energy_unit;
214 	unsigned int psys_domain_energy_unit;
215 	bool spr_psys_bits;
216 };
217 static struct rapl_defaults *defaults_msr;
218 static const struct rapl_defaults defaults_tpmi;
219 
220 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
221 {
222 	return rp->priv->defaults;
223 }
224 
225 /* Sideband MBI registers */
226 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
227 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
228 
229 #define PACKAGE_PLN_INT_SAVED   BIT(0)
230 #define MAX_PRIM_NAME (32)
231 
232 /* per domain data. used to describe individual knobs such that access function
233  * can be consolidated into one instead of many inline functions.
234  */
235 struct rapl_primitive_info {
236 	const char *name;
237 	u64 mask;
238 	int shift;
239 	enum rapl_domain_reg_id id;
240 	enum unit_type unit;
241 	u32 flag;
242 };
243 
244 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
245 		.name = #p,			\
246 		.mask = m,			\
247 		.shift = s,			\
248 		.id = i,			\
249 		.unit = u,			\
250 		.flag = f			\
251 	}
252 
253 static void rapl_init_domains(struct rapl_package *rp);
254 static int rapl_read_data_raw(struct rapl_domain *rd,
255 			      enum rapl_primitives prim,
256 			      bool xlate, u64 *data);
257 static int rapl_write_data_raw(struct rapl_domain *rd,
258 			       enum rapl_primitives prim,
259 			       unsigned long long value);
260 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
261 			      enum pl_prims pl_prim,
262 			      bool xlate, u64 *data);
263 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
264 			       enum pl_prims pl_prim,
265 			       unsigned long long value);
266 static u64 rapl_unit_xlate(struct rapl_domain *rd,
267 			   enum unit_type type, u64 value, int to_raw);
268 static void package_power_limit_irq_save(struct rapl_package *rp);
269 
270 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
271 
272 static const char *const rapl_domain_names[] = {
273 	"package",
274 	"core",
275 	"uncore",
276 	"dram",
277 	"psys",
278 };
279 
280 static int get_energy_counter(struct powercap_zone *power_zone,
281 			      u64 *energy_raw)
282 {
283 	struct rapl_domain *rd;
284 	u64 energy_now;
285 
286 	/* prevent CPU hotplug, make sure the RAPL domain does not go
287 	 * away while reading the counter.
288 	 */
289 	cpus_read_lock();
290 	rd = power_zone_to_rapl_domain(power_zone);
291 
292 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
293 		*energy_raw = energy_now;
294 		cpus_read_unlock();
295 
296 		return 0;
297 	}
298 	cpus_read_unlock();
299 
300 	return -EIO;
301 }
302 
303 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
304 {
305 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
306 
307 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
308 	return 0;
309 }
310 
311 static int release_zone(struct powercap_zone *power_zone)
312 {
313 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
314 	struct rapl_package *rp = rd->rp;
315 
316 	/* package zone is the last zone of a package, we can free
317 	 * memory here since all children has been unregistered.
318 	 */
319 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
320 		kfree(rd);
321 		rp->domains = NULL;
322 	}
323 
324 	return 0;
325 
326 }
327 
328 static int find_nr_power_limit(struct rapl_domain *rd)
329 {
330 	int i, nr_pl = 0;
331 
332 	for (i = 0; i < NR_POWER_LIMITS; i++) {
333 		if (is_pl_valid(rd, i))
334 			nr_pl++;
335 	}
336 
337 	return nr_pl;
338 }
339 
340 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
341 {
342 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
343 	struct rapl_defaults *defaults = get_defaults(rd->rp);
344 	int ret;
345 
346 	cpus_read_lock();
347 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
348 	if (!ret && defaults->set_floor_freq)
349 		defaults->set_floor_freq(rd, mode);
350 	cpus_read_unlock();
351 
352 	return ret;
353 }
354 
355 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
356 {
357 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
358 	u64 val;
359 	int ret;
360 
361 	if (rd->rpl[POWER_LIMIT1].locked) {
362 		*mode = false;
363 		return 0;
364 	}
365 	cpus_read_lock();
366 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
367 	if (!ret)
368 		*mode = val;
369 	cpus_read_unlock();
370 
371 	return ret;
372 }
373 
374 /* per RAPL domain ops, in the order of rapl_domain_type */
375 static const struct powercap_zone_ops zone_ops[] = {
376 	/* RAPL_DOMAIN_PACKAGE */
377 	{
378 	 .get_energy_uj = get_energy_counter,
379 	 .get_max_energy_range_uj = get_max_energy_counter,
380 	 .release = release_zone,
381 	 .set_enable = set_domain_enable,
382 	 .get_enable = get_domain_enable,
383 	 },
384 	/* RAPL_DOMAIN_PP0 */
385 	{
386 	 .get_energy_uj = get_energy_counter,
387 	 .get_max_energy_range_uj = get_max_energy_counter,
388 	 .release = release_zone,
389 	 .set_enable = set_domain_enable,
390 	 .get_enable = get_domain_enable,
391 	 },
392 	/* RAPL_DOMAIN_PP1 */
393 	{
394 	 .get_energy_uj = get_energy_counter,
395 	 .get_max_energy_range_uj = get_max_energy_counter,
396 	 .release = release_zone,
397 	 .set_enable = set_domain_enable,
398 	 .get_enable = get_domain_enable,
399 	 },
400 	/* RAPL_DOMAIN_DRAM */
401 	{
402 	 .get_energy_uj = get_energy_counter,
403 	 .get_max_energy_range_uj = get_max_energy_counter,
404 	 .release = release_zone,
405 	 .set_enable = set_domain_enable,
406 	 .get_enable = get_domain_enable,
407 	 },
408 	/* RAPL_DOMAIN_PLATFORM */
409 	{
410 	 .get_energy_uj = get_energy_counter,
411 	 .get_max_energy_range_uj = get_max_energy_counter,
412 	 .release = release_zone,
413 	 .set_enable = set_domain_enable,
414 	 .get_enable = get_domain_enable,
415 	 },
416 };
417 
418 /*
419  * Constraint index used by powercap can be different than power limit (PL)
420  * index in that some  PLs maybe missing due to non-existent MSRs. So we
421  * need to convert here by finding the valid PLs only (name populated).
422  */
423 static int contraint_to_pl(struct rapl_domain *rd, int cid)
424 {
425 	int i, j;
426 
427 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
428 		if (is_pl_valid(rd, i) && j++ == cid) {
429 			pr_debug("%s: index %d\n", __func__, i);
430 			return i;
431 		}
432 	}
433 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
434 
435 	return -EINVAL;
436 }
437 
438 static int set_power_limit(struct powercap_zone *power_zone, int cid,
439 			   u64 power_limit)
440 {
441 	struct rapl_domain *rd;
442 	struct rapl_package *rp;
443 	int ret = 0;
444 	int id;
445 
446 	cpus_read_lock();
447 	rd = power_zone_to_rapl_domain(power_zone);
448 	id = contraint_to_pl(rd, cid);
449 	rp = rd->rp;
450 
451 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
452 	if (!ret)
453 		package_power_limit_irq_save(rp);
454 	cpus_read_unlock();
455 	return ret;
456 }
457 
458 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
459 				   u64 *data)
460 {
461 	struct rapl_domain *rd;
462 	u64 val;
463 	int ret = 0;
464 	int id;
465 
466 	cpus_read_lock();
467 	rd = power_zone_to_rapl_domain(power_zone);
468 	id = contraint_to_pl(rd, cid);
469 
470 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
471 	if (!ret)
472 		*data = val;
473 
474 	cpus_read_unlock();
475 
476 	return ret;
477 }
478 
479 static int set_time_window(struct powercap_zone *power_zone, int cid,
480 			   u64 window)
481 {
482 	struct rapl_domain *rd;
483 	int ret = 0;
484 	int id;
485 
486 	cpus_read_lock();
487 	rd = power_zone_to_rapl_domain(power_zone);
488 	id = contraint_to_pl(rd, cid);
489 
490 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
491 
492 	cpus_read_unlock();
493 	return ret;
494 }
495 
496 static int get_time_window(struct powercap_zone *power_zone, int cid,
497 			   u64 *data)
498 {
499 	struct rapl_domain *rd;
500 	u64 val;
501 	int ret = 0;
502 	int id;
503 
504 	cpus_read_lock();
505 	rd = power_zone_to_rapl_domain(power_zone);
506 	id = contraint_to_pl(rd, cid);
507 
508 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
509 	if (!ret)
510 		*data = val;
511 
512 	cpus_read_unlock();
513 
514 	return ret;
515 }
516 
517 static const char *get_constraint_name(struct powercap_zone *power_zone,
518 				       int cid)
519 {
520 	struct rapl_domain *rd;
521 	int id;
522 
523 	rd = power_zone_to_rapl_domain(power_zone);
524 	id = contraint_to_pl(rd, cid);
525 	if (id >= 0)
526 		return rd->rpl[id].name;
527 
528 	return NULL;
529 }
530 
531 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
532 {
533 	struct rapl_domain *rd;
534 	u64 val;
535 	int ret = 0;
536 	int id;
537 
538 	cpus_read_lock();
539 	rd = power_zone_to_rapl_domain(power_zone);
540 	id = contraint_to_pl(rd, cid);
541 
542 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
543 	if (!ret)
544 		*data = val;
545 
546 	/* As a generalization rule, PL4 would be around two times PL2. */
547 	if (id == POWER_LIMIT4)
548 		*data = *data * 2;
549 
550 	cpus_read_unlock();
551 
552 	return ret;
553 }
554 
555 static const struct powercap_zone_constraint_ops constraint_ops = {
556 	.set_power_limit_uw = set_power_limit,
557 	.get_power_limit_uw = get_current_power_limit,
558 	.set_time_window_us = set_time_window,
559 	.get_time_window_us = get_time_window,
560 	.get_max_power_uw = get_max_power,
561 	.get_name = get_constraint_name,
562 };
563 
564 /* Return the id used for read_raw/write_raw callback */
565 static int get_rid(struct rapl_package *rp)
566 {
567 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
568 }
569 
570 /* called after domain detection and package level data are set */
571 static void rapl_init_domains(struct rapl_package *rp)
572 {
573 	enum rapl_domain_type i;
574 	enum rapl_domain_reg_id j;
575 	struct rapl_domain *rd = rp->domains;
576 
577 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
578 		unsigned int mask = rp->domain_map & (1 << i);
579 		int t;
580 
581 		if (!mask)
582 			continue;
583 
584 		rd->rp = rp;
585 
586 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
587 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
588 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
589 				rp->id);
590 		} else {
591 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
592 				rapl_domain_names[i]);
593 		}
594 
595 		rd->id = i;
596 
597 		/* PL1 is supported by default */
598 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
599 
600 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
601 			if (rp->priv->limits[i] & BIT(t))
602 				rd->rpl[t].name = pl_names[t];
603 		}
604 
605 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
606 			rd->regs[j] = rp->priv->regs[i][j];
607 
608 		rd++;
609 	}
610 }
611 
612 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
613 			   u64 value, int to_raw)
614 {
615 	u64 units = 1;
616 	struct rapl_defaults *defaults = get_defaults(rd->rp);
617 	u64 scale = 1;
618 
619 	switch (type) {
620 	case POWER_UNIT:
621 		units = rd->power_unit;
622 		break;
623 	case ENERGY_UNIT:
624 		scale = ENERGY_UNIT_SCALE;
625 		units = rd->energy_unit;
626 		break;
627 	case TIME_UNIT:
628 		return defaults->compute_time_window(rd, value, to_raw);
629 	case ARBITRARY_UNIT:
630 	default:
631 		return value;
632 	}
633 
634 	if (to_raw)
635 		return div64_u64(value, units) * scale;
636 
637 	value *= units;
638 
639 	return div64_u64(value, scale);
640 }
641 
642 /* RAPL primitives for MSR and MMIO I/F */
643 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
644 	/* name, mask, shift, msr index, unit divisor */
645 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
646 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
647 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
648 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
649 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
650 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
651 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
652 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
653 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
654 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
655 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
656 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
657 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
658 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
659 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
660 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
661 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
662 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
663 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
664 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
665 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
666 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
667 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
668 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
669 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
670 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
671 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
672 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
673 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
674 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
675 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
676 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
677 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
678 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
679 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
680 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
681 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
682 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
683 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
684 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
685 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
686 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
687 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
688 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
689 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
690 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
691 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
692 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
693 	/* non-hardware */
694 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
695 			    RAPL_PRIMITIVE_DERIVED),
696 };
697 
698 /* RAPL primitives for TPMI I/F */
699 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
700 	/* name, mask, shift, msr index, unit divisor */
701 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
702 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
703 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
704 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
705 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
706 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
707 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
708 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
709 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
710 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
711 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
712 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
713 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
714 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
715 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
716 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
717 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
718 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
719 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
720 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
721 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
722 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
723 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
724 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
725 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
726 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
727 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
728 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
729 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
730 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
731 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
732 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
733 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
734 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
735 	/* non-hardware */
736 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
737 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
738 };
739 
740 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
741 {
742 	struct rapl_primitive_info *rpi = rp->priv->rpi;
743 
744 	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
745 		return NULL;
746 
747 	return &rpi[prim];
748 }
749 
750 static int rapl_config(struct rapl_package *rp)
751 {
752 	switch (rp->priv->type) {
753 	/* MMIO I/F shares the same register layout as MSR registers */
754 	case RAPL_IF_MMIO:
755 	case RAPL_IF_MSR:
756 		rp->priv->defaults = (void *)defaults_msr;
757 		rp->priv->rpi = (void *)rpi_msr;
758 		break;
759 	case RAPL_IF_TPMI:
760 		rp->priv->defaults = (void *)&defaults_tpmi;
761 		rp->priv->rpi = (void *)rpi_tpmi;
762 		break;
763 	default:
764 		return -EINVAL;
765 	}
766 
767 	/* defaults_msr can be NULL on unsupported platforms */
768 	if (!rp->priv->defaults || !rp->priv->rpi)
769 		return -ENODEV;
770 
771 	return 0;
772 }
773 
774 static enum rapl_primitives
775 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
776 {
777 	struct rapl_defaults *defaults = get_defaults(rd->rp);
778 
779 	if (!defaults->spr_psys_bits)
780 		return prim;
781 
782 	if (rd->id != RAPL_DOMAIN_PLATFORM)
783 		return prim;
784 
785 	switch (prim) {
786 	case POWER_LIMIT1:
787 		return PSYS_POWER_LIMIT1;
788 	case POWER_LIMIT2:
789 		return PSYS_POWER_LIMIT2;
790 	case PL1_ENABLE:
791 		return PSYS_PL1_ENABLE;
792 	case PL2_ENABLE:
793 		return PSYS_PL2_ENABLE;
794 	case TIME_WINDOW1:
795 		return PSYS_TIME_WINDOW1;
796 	case TIME_WINDOW2:
797 		return PSYS_TIME_WINDOW2;
798 	default:
799 		return prim;
800 	}
801 }
802 
803 /* Read primitive data based on its related struct rapl_primitive_info.
804  * if xlate flag is set, return translated data based on data units, i.e.
805  * time, energy, and power.
806  * RAPL MSRs are non-architectual and are laid out not consistently across
807  * domains. Here we use primitive info to allow writing consolidated access
808  * functions.
809  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
810  * is pre-assigned based on RAPL unit MSRs read at init time.
811  * 63-------------------------- 31--------------------------- 0
812  * |                           xxxxx (mask)                   |
813  * |                                |<- shift ----------------|
814  * 63-------------------------- 31--------------------------- 0
815  */
816 static int rapl_read_data_raw(struct rapl_domain *rd,
817 			      enum rapl_primitives prim, bool xlate, u64 *data)
818 {
819 	u64 value;
820 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
821 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
822 	struct reg_action ra;
823 
824 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
825 		return -EINVAL;
826 
827 	ra.reg = rd->regs[rpi->id];
828 	if (!ra.reg.val)
829 		return -EINVAL;
830 
831 	/* non-hardware data are collected by the polling thread */
832 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
833 		*data = rd->rdd.primitives[prim];
834 		return 0;
835 	}
836 
837 	ra.mask = rpi->mask;
838 
839 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
840 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
841 		return -EIO;
842 	}
843 
844 	value = ra.value >> rpi->shift;
845 
846 	if (xlate)
847 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
848 	else
849 		*data = value;
850 
851 	return 0;
852 }
853 
854 /* Similar use of primitive info in the read counterpart */
855 static int rapl_write_data_raw(struct rapl_domain *rd,
856 			       enum rapl_primitives prim,
857 			       unsigned long long value)
858 {
859 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
860 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
861 	u64 bits;
862 	struct reg_action ra;
863 	int ret;
864 
865 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
866 		return -EINVAL;
867 
868 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
869 	bits <<= rpi->shift;
870 	bits &= rpi->mask;
871 
872 	memset(&ra, 0, sizeof(ra));
873 
874 	ra.reg = rd->regs[rpi->id];
875 	ra.mask = rpi->mask;
876 	ra.value = bits;
877 
878 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
879 
880 	return ret;
881 }
882 
883 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
884 			      enum pl_prims pl_prim, bool xlate, u64 *data)
885 {
886 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
887 
888 	if (!is_pl_valid(rd, pl))
889 		return -EINVAL;
890 
891 	return rapl_read_data_raw(rd, prim, xlate, data);
892 }
893 
894 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
895 			       enum pl_prims pl_prim,
896 			       unsigned long long value)
897 {
898 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
899 
900 	if (!is_pl_valid(rd, pl))
901 		return -EINVAL;
902 
903 	if (rd->rpl[pl].locked) {
904 		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
905 		return -EACCES;
906 	}
907 
908 	return rapl_write_data_raw(rd, prim, value);
909 }
910 /*
911  * Raw RAPL data stored in MSRs are in certain scales. We need to
912  * convert them into standard units based on the units reported in
913  * the RAPL unit MSRs. This is specific to CPUs as the method to
914  * calculate units differ on different CPUs.
915  * We convert the units to below format based on CPUs.
916  * i.e.
917  * energy unit: picoJoules  : Represented in picoJoules by default
918  * power unit : microWatts  : Represented in milliWatts by default
919  * time unit  : microseconds: Represented in seconds by default
920  */
921 static int rapl_check_unit_core(struct rapl_domain *rd)
922 {
923 	struct reg_action ra;
924 	u32 value;
925 
926 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
927 	ra.mask = ~0;
928 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
929 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
930 			ra.reg.val, rd->rp->name, rd->name);
931 		return -ENODEV;
932 	}
933 
934 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
935 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
936 
937 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
938 	rd->power_unit = 1000000 / (1 << value);
939 
940 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
941 	rd->time_unit = 1000000 / (1 << value);
942 
943 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
944 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
945 
946 	return 0;
947 }
948 
949 static int rapl_check_unit_atom(struct rapl_domain *rd)
950 {
951 	struct reg_action ra;
952 	u32 value;
953 
954 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
955 	ra.mask = ~0;
956 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
957 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
958 			ra.reg.val, rd->rp->name, rd->name);
959 		return -ENODEV;
960 	}
961 
962 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
963 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
964 
965 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
966 	rd->power_unit = (1 << value) * 1000;
967 
968 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
969 	rd->time_unit = 1000000 / (1 << value);
970 
971 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
972 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
973 
974 	return 0;
975 }
976 
977 static void power_limit_irq_save_cpu(void *info)
978 {
979 	u32 l, h = 0;
980 	struct rapl_package *rp = (struct rapl_package *)info;
981 
982 	/* save the state of PLN irq mask bit before disabling it */
983 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
984 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
985 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
986 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
987 	}
988 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
989 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
990 }
991 
992 /* REVISIT:
993  * When package power limit is set artificially low by RAPL, LVT
994  * thermal interrupt for package power limit should be ignored
995  * since we are not really exceeding the real limit. The intention
996  * is to avoid excessive interrupts while we are trying to save power.
997  * A useful feature might be routing the package_power_limit interrupt
998  * to userspace via eventfd. once we have a usecase, this is simple
999  * to do by adding an atomic notifier.
1000  */
1001 
1002 static void package_power_limit_irq_save(struct rapl_package *rp)
1003 {
1004 	if (rp->lead_cpu < 0)
1005 		return;
1006 
1007 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1008 		return;
1009 
1010 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1011 }
1012 
1013 /*
1014  * Restore per package power limit interrupt enable state. Called from cpu
1015  * hotplug code on package removal.
1016  */
1017 static void package_power_limit_irq_restore(struct rapl_package *rp)
1018 {
1019 	u32 l, h;
1020 
1021 	if (rp->lead_cpu < 0)
1022 		return;
1023 
1024 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1025 		return;
1026 
1027 	/* irq enable state not saved, nothing to restore */
1028 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1029 		return;
1030 
1031 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1032 
1033 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1034 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1035 	else
1036 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1037 
1038 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1039 }
1040 
1041 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1042 {
1043 	int i;
1044 
1045 	/* always enable clamp such that p-state can go below OS requested
1046 	 * range. power capping priority over guranteed frequency.
1047 	 */
1048 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1049 
1050 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1051 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1052 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1053 	}
1054 }
1055 
1056 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1057 {
1058 	static u32 power_ctrl_orig_val;
1059 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1060 	u32 mdata;
1061 
1062 	if (!defaults->floor_freq_reg_addr) {
1063 		pr_err("Invalid floor frequency config register\n");
1064 		return;
1065 	}
1066 
1067 	if (!power_ctrl_orig_val)
1068 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1069 			      defaults->floor_freq_reg_addr,
1070 			      &power_ctrl_orig_val);
1071 	mdata = power_ctrl_orig_val;
1072 	if (enable) {
1073 		mdata &= ~(0x7f << 8);
1074 		mdata |= 1 << 8;
1075 	}
1076 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1077 		       defaults->floor_freq_reg_addr, mdata);
1078 }
1079 
1080 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1081 					 bool to_raw)
1082 {
1083 	u64 f, y;		/* fraction and exp. used for time unit */
1084 
1085 	/*
1086 	 * Special processing based on 2^Y*(1+F/4), refer
1087 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1088 	 */
1089 	if (!to_raw) {
1090 		f = (value & 0x60) >> 5;
1091 		y = value & 0x1f;
1092 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1093 	} else {
1094 		if (value < rd->time_unit)
1095 			return 0;
1096 
1097 		do_div(value, rd->time_unit);
1098 		y = ilog2(value);
1099 
1100 		/*
1101 		 * The target hardware field is 7 bits wide, so return all ones
1102 		 * if the exponent is too large.
1103 		 */
1104 		if (y > 0x1f)
1105 			return 0x7f;
1106 
1107 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1108 		value = (y & 0x1f) | ((f & 0x3) << 5);
1109 	}
1110 	return value;
1111 }
1112 
1113 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1114 					 bool to_raw)
1115 {
1116 	/*
1117 	 * Atom time unit encoding is straight forward val * time_unit,
1118 	 * where time_unit is default to 1 sec. Never 0.
1119 	 */
1120 	if (!to_raw)
1121 		return (value) ? value * rd->time_unit : rd->time_unit;
1122 
1123 	value = div64_u64(value, rd->time_unit);
1124 
1125 	return value;
1126 }
1127 
1128 /* TPMI Unit register has different layout */
1129 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1130 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1131 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1132 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1133 #define TPMI_TIME_UNIT_OFFSET	0x0C
1134 #define TPMI_TIME_UNIT_MASK	0xF000
1135 
1136 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1137 {
1138 	struct reg_action ra;
1139 	u32 value;
1140 
1141 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1142 	ra.mask = ~0;
1143 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1144 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1145 			ra.reg.val, rd->rp->name, rd->name);
1146 		return -ENODEV;
1147 	}
1148 
1149 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1150 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1151 
1152 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1153 	rd->power_unit = 1000000 / (1 << value);
1154 
1155 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1156 	rd->time_unit = 1000000 / (1 << value);
1157 
1158 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1159 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1160 
1161 	return 0;
1162 }
1163 
1164 static const struct rapl_defaults defaults_tpmi = {
1165 	.check_unit = rapl_check_unit_tpmi,
1166 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1167 	.set_floor_freq = set_floor_freq_default,
1168 	.compute_time_window = rapl_compute_time_window_core,
1169 };
1170 
1171 static const struct rapl_defaults rapl_defaults_core = {
1172 	.floor_freq_reg_addr = 0,
1173 	.check_unit = rapl_check_unit_core,
1174 	.set_floor_freq = set_floor_freq_default,
1175 	.compute_time_window = rapl_compute_time_window_core,
1176 };
1177 
1178 static const struct rapl_defaults rapl_defaults_hsw_server = {
1179 	.check_unit = rapl_check_unit_core,
1180 	.set_floor_freq = set_floor_freq_default,
1181 	.compute_time_window = rapl_compute_time_window_core,
1182 	.dram_domain_energy_unit = 15300,
1183 };
1184 
1185 static const struct rapl_defaults rapl_defaults_spr_server = {
1186 	.check_unit = rapl_check_unit_core,
1187 	.set_floor_freq = set_floor_freq_default,
1188 	.compute_time_window = rapl_compute_time_window_core,
1189 	.psys_domain_energy_unit = 1000000000,
1190 	.spr_psys_bits = true,
1191 };
1192 
1193 static const struct rapl_defaults rapl_defaults_byt = {
1194 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1195 	.check_unit = rapl_check_unit_atom,
1196 	.set_floor_freq = set_floor_freq_atom,
1197 	.compute_time_window = rapl_compute_time_window_atom,
1198 };
1199 
1200 static const struct rapl_defaults rapl_defaults_tng = {
1201 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1202 	.check_unit = rapl_check_unit_atom,
1203 	.set_floor_freq = set_floor_freq_atom,
1204 	.compute_time_window = rapl_compute_time_window_atom,
1205 };
1206 
1207 static const struct rapl_defaults rapl_defaults_ann = {
1208 	.floor_freq_reg_addr = 0,
1209 	.check_unit = rapl_check_unit_atom,
1210 	.set_floor_freq = NULL,
1211 	.compute_time_window = rapl_compute_time_window_atom,
1212 };
1213 
1214 static const struct rapl_defaults rapl_defaults_cht = {
1215 	.floor_freq_reg_addr = 0,
1216 	.check_unit = rapl_check_unit_atom,
1217 	.set_floor_freq = NULL,
1218 	.compute_time_window = rapl_compute_time_window_atom,
1219 };
1220 
1221 static const struct rapl_defaults rapl_defaults_amd = {
1222 	.check_unit = rapl_check_unit_core,
1223 };
1224 
1225 static const struct x86_cpu_id rapl_ids[] __initconst = {
1226 	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1227 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1228 
1229 	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1230 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1231 
1232 	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1233 	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1234 	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1235 	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1236 
1237 	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1238 	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1239 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1240 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1241 
1242 	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1243 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1244 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1245 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1246 	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1247 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1248 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1249 	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1250 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1251 	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1252 	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1253 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1254 	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1255 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1256 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1257 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1258 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1259 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1260 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1261 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1262 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1263 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1264 	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1265 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1266 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1267 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1268 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1269 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&rapl_defaults_core),
1270 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1271 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1272 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1273 	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1274 
1275 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1276 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1277 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1278 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID2,&rapl_defaults_ann),
1279 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1280 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1281 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1282 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1283 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1284 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1285 
1286 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1287 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1288 
1289 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1290 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1291 	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1292 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1293 	{}
1294 };
1295 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1296 
1297 /* Read once for all raw primitive data for domains */
1298 static void rapl_update_domain_data(struct rapl_package *rp)
1299 {
1300 	int dmn, prim;
1301 	u64 val;
1302 
1303 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1304 		pr_debug("update %s domain %s data\n", rp->name,
1305 			 rp->domains[dmn].name);
1306 		/* exclude non-raw primitives */
1307 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1308 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1309 
1310 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1311 						rpi->unit, &val))
1312 				rp->domains[dmn].rdd.primitives[prim] = val;
1313 		}
1314 	}
1315 
1316 }
1317 
1318 static int rapl_package_register_powercap(struct rapl_package *rp)
1319 {
1320 	struct rapl_domain *rd;
1321 	struct powercap_zone *power_zone = NULL;
1322 	int nr_pl, ret;
1323 
1324 	/* Update the domain data of the new package */
1325 	rapl_update_domain_data(rp);
1326 
1327 	/* first we register package domain as the parent zone */
1328 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1329 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1330 			nr_pl = find_nr_power_limit(rd);
1331 			pr_debug("register package domain %s\n", rp->name);
1332 			power_zone = powercap_register_zone(&rd->power_zone,
1333 					    rp->priv->control_type, rp->name,
1334 					    NULL, &zone_ops[rd->id], nr_pl,
1335 					    &constraint_ops);
1336 			if (IS_ERR(power_zone)) {
1337 				pr_debug("failed to register power zone %s\n",
1338 					 rp->name);
1339 				return PTR_ERR(power_zone);
1340 			}
1341 			/* track parent zone in per package/socket data */
1342 			rp->power_zone = power_zone;
1343 			/* done, only one package domain per socket */
1344 			break;
1345 		}
1346 	}
1347 	if (!power_zone) {
1348 		pr_err("no package domain found, unknown topology!\n");
1349 		return -ENODEV;
1350 	}
1351 	/* now register domains as children of the socket/package */
1352 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1353 		struct powercap_zone *parent = rp->power_zone;
1354 
1355 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1356 			continue;
1357 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1358 			parent = NULL;
1359 		/* number of power limits per domain varies */
1360 		nr_pl = find_nr_power_limit(rd);
1361 		power_zone = powercap_register_zone(&rd->power_zone,
1362 						    rp->priv->control_type,
1363 						    rd->name, parent,
1364 						    &zone_ops[rd->id], nr_pl,
1365 						    &constraint_ops);
1366 
1367 		if (IS_ERR(power_zone)) {
1368 			pr_debug("failed to register power_zone, %s:%s\n",
1369 				 rp->name, rd->name);
1370 			ret = PTR_ERR(power_zone);
1371 			goto err_cleanup;
1372 		}
1373 	}
1374 	return 0;
1375 
1376 err_cleanup:
1377 	/*
1378 	 * Clean up previously initialized domains within the package if we
1379 	 * failed after the first domain setup.
1380 	 */
1381 	while (--rd >= rp->domains) {
1382 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1383 		powercap_unregister_zone(rp->priv->control_type,
1384 					 &rd->power_zone);
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 static int rapl_check_domain(int domain, struct rapl_package *rp)
1391 {
1392 	struct reg_action ra;
1393 
1394 	switch (domain) {
1395 	case RAPL_DOMAIN_PACKAGE:
1396 	case RAPL_DOMAIN_PP0:
1397 	case RAPL_DOMAIN_PP1:
1398 	case RAPL_DOMAIN_DRAM:
1399 	case RAPL_DOMAIN_PLATFORM:
1400 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1401 		break;
1402 	default:
1403 		pr_err("invalid domain id %d\n", domain);
1404 		return -EINVAL;
1405 	}
1406 	/* make sure domain counters are available and contains non-zero
1407 	 * values, otherwise skip it.
1408 	 */
1409 
1410 	ra.mask = ENERGY_STATUS_MASK;
1411 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1412 		return -ENODEV;
1413 
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Get per domain energy/power/time unit.
1419  * RAPL Interfaces without per domain unit register will use the package
1420  * scope unit register to set per domain units.
1421  */
1422 static int rapl_get_domain_unit(struct rapl_domain *rd)
1423 {
1424 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1425 	int ret;
1426 
1427 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1428 		if (!rd->rp->priv->reg_unit.val) {
1429 			pr_err("No valid Unit register found\n");
1430 			return -ENODEV;
1431 		}
1432 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1433 	}
1434 
1435 	if (!defaults->check_unit) {
1436 		pr_err("missing .check_unit() callback\n");
1437 		return -ENODEV;
1438 	}
1439 
1440 	ret = defaults->check_unit(rd);
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1445 		rd->energy_unit = defaults->dram_domain_energy_unit;
1446 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1447 		rd->energy_unit = defaults->psys_domain_energy_unit;
1448 	return 0;
1449 }
1450 
1451 /*
1452  * Check if power limits are available. Two cases when they are not available:
1453  * 1. Locked by BIOS, in this case we still provide read-only access so that
1454  *    users can see what limit is set by the BIOS.
1455  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1456  *    exist at all. In this case, we do not show the constraints in powercap.
1457  *
1458  * Called after domains are detected and initialized.
1459  */
1460 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1461 {
1462 	u64 val64;
1463 	int i;
1464 
1465 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1466 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1467 			if (val64) {
1468 				rd->rpl[i].locked = true;
1469 				pr_info("%s:%s:%s locked by BIOS\n",
1470 					rd->rp->name, rd->name, pl_names[i]);
1471 			}
1472 		}
1473 
1474 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1475 			rd->rpl[i].name = NULL;
1476 	}
1477 }
1478 
1479 /* Detect active and valid domains for the given CPU, caller must
1480  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1481  */
1482 static int rapl_detect_domains(struct rapl_package *rp)
1483 {
1484 	struct rapl_domain *rd;
1485 	int i;
1486 
1487 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1488 		/* use physical package id to read counters */
1489 		if (!rapl_check_domain(i, rp)) {
1490 			rp->domain_map |= 1 << i;
1491 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1492 		}
1493 	}
1494 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1495 	if (!rp->nr_domains) {
1496 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1497 		return -ENODEV;
1498 	}
1499 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1500 
1501 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1502 			      GFP_KERNEL);
1503 	if (!rp->domains)
1504 		return -ENOMEM;
1505 
1506 	rapl_init_domains(rp);
1507 
1508 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1509 		rapl_get_domain_unit(rd);
1510 		rapl_detect_powerlimit(rd);
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 #ifdef CONFIG_PERF_EVENTS
1517 
1518 /*
1519  * Support for RAPL PMU
1520  *
1521  * Register a PMU if any of the registered RAPL Packages have the requirement
1522  * of exposing its energy counters via Perf PMU.
1523  *
1524  * PMU Name:
1525  *	power
1526  *
1527  * Events:
1528  *	Name		Event id	RAPL Domain
1529  *	energy_cores	0x01		RAPL_DOMAIN_PP0
1530  *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1531  *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1532  *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1533  *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1534  *
1535  * Unit:
1536  *	Joules
1537  *
1538  * Scale:
1539  *	2.3283064365386962890625e-10
1540  *	The same RAPL domain in different RAPL Packages may have different
1541  *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1542  *	the fixed unit for all energy counters, and covert each hardware
1543  *	counter increase to N times of PMU event counter increases.
1544  *
1545  * This is fully compatible with the current MSR RAPL PMU. This means that
1546  * userspace programs like turbostat can use the same code to handle RAPL Perf
1547  * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1548  * underlying on the platform.
1549  *
1550  * Note that RAPL Packages can be probed/removed dynamically, and the events
1551  * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1552  * support is done on demand, which means
1553  * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1554  *    unsupported counters are not exposed.
1555  * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1556  *    supports new counters that are not supported by current PMU.
1557  * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1558  */
1559 
1560 struct rapl_pmu {
1561 	struct pmu pmu;			/* Perf PMU structure */
1562 	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1563 	unsigned long domain_map;	/* Events supported by current registered PMU */
1564 	bool registered;		/* Whether the PMU has been registered or not */
1565 };
1566 
1567 static struct rapl_pmu rapl_pmu;
1568 
1569 /* PMU helpers */
1570 
1571 static int get_pmu_cpu(struct rapl_package *rp)
1572 {
1573 	int cpu;
1574 
1575 	if (!rp->has_pmu)
1576 		return nr_cpu_ids;
1577 
1578 	/* Only TPMI RAPL is supported for now */
1579 	if (rp->priv->type != RAPL_IF_TPMI)
1580 		return nr_cpu_ids;
1581 
1582 	/* TPMI RAPL uses any CPU in the package for PMU */
1583 	for_each_online_cpu(cpu)
1584 		if (topology_physical_package_id(cpu) == rp->id)
1585 			return cpu;
1586 
1587 	return nr_cpu_ids;
1588 }
1589 
1590 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1591 {
1592 	if (!rp->has_pmu)
1593 		return false;
1594 
1595 	/* Only TPMI RAPL is supported for now */
1596 	if (rp->priv->type != RAPL_IF_TPMI)
1597 		return false;
1598 
1599 	/* TPMI RAPL uses any CPU in the package for PMU */
1600 	return topology_physical_package_id(cpu) == rp->id;
1601 }
1602 
1603 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1604 {
1605 	struct rapl_package *rp = event->pmu_private;
1606 
1607 	return &rp->pmu_data;
1608 }
1609 
1610 /* PMU event callbacks */
1611 
1612 static u64 event_read_counter(struct perf_event *event)
1613 {
1614 	struct rapl_package *rp = event->pmu_private;
1615 	u64 val;
1616 	int ret;
1617 
1618 	/* Return 0 for unsupported events */
1619 	if (event->hw.idx < 0)
1620 		return 0;
1621 
1622 	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1623 
1624 	/* Return 0 for failed read */
1625 	if (ret)
1626 		return 0;
1627 
1628 	return val;
1629 }
1630 
1631 static void __rapl_pmu_event_start(struct perf_event *event)
1632 {
1633 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1634 
1635 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1636 		return;
1637 
1638 	event->hw.state = 0;
1639 
1640 	list_add_tail(&event->active_entry, &data->active_list);
1641 
1642 	local64_set(&event->hw.prev_count, event_read_counter(event));
1643 	if (++data->n_active == 1)
1644 		hrtimer_start(&data->hrtimer, data->timer_interval,
1645 			      HRTIMER_MODE_REL_PINNED);
1646 }
1647 
1648 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1649 {
1650 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1651 	unsigned long flags;
1652 
1653 	raw_spin_lock_irqsave(&data->lock, flags);
1654 	__rapl_pmu_event_start(event);
1655 	raw_spin_unlock_irqrestore(&data->lock, flags);
1656 }
1657 
1658 static u64 rapl_event_update(struct perf_event *event)
1659 {
1660 	struct hw_perf_event *hwc = &event->hw;
1661 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1662 	u64 prev_raw_count, new_raw_count;
1663 	s64 delta, sdelta;
1664 
1665 	/*
1666 	 * Follow the generic code to drain hwc->prev_count.
1667 	 * The loop is not expected to run for multiple times.
1668 	 */
1669 	prev_raw_count = local64_read(&hwc->prev_count);
1670 	do {
1671 		new_raw_count = event_read_counter(event);
1672 	} while (!local64_try_cmpxchg(&hwc->prev_count,
1673 		&prev_raw_count, new_raw_count));
1674 
1675 
1676 	/*
1677 	 * Now we have the new raw value and have updated the prev
1678 	 * timestamp already. We can now calculate the elapsed delta
1679 	 * (event-)time and add that to the generic event.
1680 	 */
1681 	delta = new_raw_count - prev_raw_count;
1682 
1683 	/*
1684 	 * Scale delta to smallest unit (2^-32)
1685 	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1686 	 * or use ldexp(count, -32).
1687 	 * Watts = Joules/Time delta
1688 	 */
1689 	sdelta = delta * data->scale[event->hw.flags];
1690 
1691 	local64_add(sdelta, &event->count);
1692 
1693 	return new_raw_count;
1694 }
1695 
1696 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1697 {
1698 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1699 	struct hw_perf_event *hwc = &event->hw;
1700 	unsigned long flags;
1701 
1702 	raw_spin_lock_irqsave(&data->lock, flags);
1703 
1704 	/* Mark event as deactivated and stopped */
1705 	if (!(hwc->state & PERF_HES_STOPPED)) {
1706 		WARN_ON_ONCE(data->n_active <= 0);
1707 		if (--data->n_active == 0)
1708 			hrtimer_cancel(&data->hrtimer);
1709 
1710 		list_del(&event->active_entry);
1711 
1712 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1713 		hwc->state |= PERF_HES_STOPPED;
1714 	}
1715 
1716 	/* Check if update of sw counter is necessary */
1717 	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1718 		/*
1719 		 * Drain the remaining delta count out of a event
1720 		 * that we are disabling:
1721 		 */
1722 		rapl_event_update(event);
1723 		hwc->state |= PERF_HES_UPTODATE;
1724 	}
1725 
1726 	raw_spin_unlock_irqrestore(&data->lock, flags);
1727 }
1728 
1729 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1730 {
1731 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1732 	struct hw_perf_event *hwc = &event->hw;
1733 	unsigned long flags;
1734 
1735 	raw_spin_lock_irqsave(&data->lock, flags);
1736 
1737 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1738 
1739 	if (mode & PERF_EF_START)
1740 		__rapl_pmu_event_start(event);
1741 
1742 	raw_spin_unlock_irqrestore(&data->lock, flags);
1743 
1744 	return 0;
1745 }
1746 
1747 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1748 {
1749 	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1750 }
1751 
1752 /* RAPL PMU event ids, same as shown in sysfs */
1753 enum perf_rapl_events {
1754 	PERF_RAPL_PP0 = 1,	/* all cores */
1755 	PERF_RAPL_PKG,		/* entire package */
1756 	PERF_RAPL_RAM,		/* DRAM */
1757 	PERF_RAPL_PP1,		/* gpu */
1758 	PERF_RAPL_PSYS,		/* psys */
1759 	PERF_RAPL_MAX
1760 };
1761 #define RAPL_EVENT_MASK GENMASK(7, 0)
1762 
1763 static const int event_to_domain[PERF_RAPL_MAX] = {
1764 	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1765 	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1766 	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1767 	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1768 	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1769 };
1770 
1771 static int rapl_pmu_event_init(struct perf_event *event)
1772 {
1773 	struct rapl_package *pos, *rp = NULL;
1774 	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1775 	int domain, idx;
1776 
1777 	/* Only look at RAPL events */
1778 	if (event->attr.type != event->pmu->type)
1779 		return -ENOENT;
1780 
1781 	/* Check for supported events only */
1782 	if (!cfg || cfg >= PERF_RAPL_MAX)
1783 		return -EINVAL;
1784 
1785 	if (event->cpu < 0)
1786 		return -EINVAL;
1787 
1788 	/* Find out which Package the event belongs to */
1789 	list_for_each_entry(pos, &rapl_packages, plist) {
1790 		if (is_rp_pmu_cpu(pos, event->cpu)) {
1791 			rp = pos;
1792 			break;
1793 		}
1794 	}
1795 	if (!rp)
1796 		return -ENODEV;
1797 
1798 	/* Find out which RAPL Domain the event belongs to */
1799 	domain = event_to_domain[cfg];
1800 
1801 	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1802 	event->pmu_private = rp;	/* Which package */
1803 	event->hw.flags = domain;	/* Which domain */
1804 
1805 	event->hw.idx = -1;
1806 	/* Find out the index in rp->domains[] to get domain pointer */
1807 	for (idx = 0; idx < rp->nr_domains; idx++) {
1808 		if (rp->domains[idx].id == domain) {
1809 			event->hw.idx = idx;
1810 			break;
1811 		}
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static void rapl_pmu_event_read(struct perf_event *event)
1818 {
1819 	rapl_event_update(event);
1820 }
1821 
1822 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1823 {
1824 	struct rapl_package_pmu_data *data =
1825 		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1826 	struct perf_event *event;
1827 	unsigned long flags;
1828 
1829 	if (!data->n_active)
1830 		return HRTIMER_NORESTART;
1831 
1832 	raw_spin_lock_irqsave(&data->lock, flags);
1833 
1834 	list_for_each_entry(event, &data->active_list, active_entry)
1835 		rapl_event_update(event);
1836 
1837 	raw_spin_unlock_irqrestore(&data->lock, flags);
1838 
1839 	hrtimer_forward_now(hrtimer, data->timer_interval);
1840 
1841 	return HRTIMER_RESTART;
1842 }
1843 
1844 /* PMU sysfs attributes */
1845 
1846 /*
1847  * There are no default events, but we need to create "events" group (with
1848  * empty attrs) before updating it with detected events.
1849  */
1850 static struct attribute *attrs_empty[] = {
1851 	NULL,
1852 };
1853 
1854 static struct attribute_group pmu_events_group = {
1855 	.name = "events",
1856 	.attrs = attrs_empty,
1857 };
1858 
1859 static ssize_t cpumask_show(struct device *dev,
1860 			    struct device_attribute *attr, char *buf)
1861 {
1862 	struct rapl_package *rp;
1863 	cpumask_var_t cpu_mask;
1864 	int cpu;
1865 	int ret;
1866 
1867 	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1868 		return -ENOMEM;
1869 
1870 	cpus_read_lock();
1871 
1872 	cpumask_clear(cpu_mask);
1873 
1874 	/* Choose a cpu for each RAPL Package */
1875 	list_for_each_entry(rp, &rapl_packages, plist) {
1876 		cpu = get_pmu_cpu(rp);
1877 		if (cpu < nr_cpu_ids)
1878 			cpumask_set_cpu(cpu, cpu_mask);
1879 	}
1880 	cpus_read_unlock();
1881 
1882 	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1883 
1884 	free_cpumask_var(cpu_mask);
1885 
1886 	return ret;
1887 }
1888 
1889 static DEVICE_ATTR_RO(cpumask);
1890 
1891 static struct attribute *pmu_cpumask_attrs[] = {
1892 	&dev_attr_cpumask.attr,
1893 	NULL
1894 };
1895 
1896 static struct attribute_group pmu_cpumask_group = {
1897 	.attrs = pmu_cpumask_attrs,
1898 };
1899 
1900 PMU_FORMAT_ATTR(event, "config:0-7");
1901 static struct attribute *pmu_format_attr[] = {
1902 	&format_attr_event.attr,
1903 	NULL
1904 };
1905 
1906 static struct attribute_group pmu_format_group = {
1907 	.name = "format",
1908 	.attrs = pmu_format_attr,
1909 };
1910 
1911 static const struct attribute_group *pmu_attr_groups[] = {
1912 	&pmu_events_group,
1913 	&pmu_cpumask_group,
1914 	&pmu_format_group,
1915 	NULL
1916 };
1917 
1918 #define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1919 static struct perf_pmu_events_attr event_attr_##v = {				\
1920 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1921 	.event_str	= str,							\
1922 }
1923 
1924 RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1925 RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1926 RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1927 RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1928 RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1929 
1930 RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1931 RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1932 RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1933 RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1934 RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1935 
1936 RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1937 RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1938 RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1939 RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1940 RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1941 
1942 #define RAPL_EVENT_GROUP(_name, domain)			\
1943 static struct attribute *pmu_attr_##_name[] = {		\
1944 	&event_attr_rapl_##_name.attr.attr,		\
1945 	&event_attr_rapl_unit_##_name.attr.attr,	\
1946 	&event_attr_rapl_scale_##_name.attr.attr,	\
1947 	NULL						\
1948 };							\
1949 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1950 {											\
1951 	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1952 }							\
1953 static struct attribute_group pmu_group_##_name = {	\
1954 	.name  = "events",				\
1955 	.attrs = pmu_attr_##_name,			\
1956 	.is_visible = is_visible_##_name,		\
1957 }
1958 
1959 RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1960 RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1961 RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1962 RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1963 RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1964 
1965 static const struct attribute_group *pmu_attr_update[] = {
1966 	&pmu_group_cores,
1967 	&pmu_group_pkg,
1968 	&pmu_group_ram,
1969 	&pmu_group_gpu,
1970 	&pmu_group_psys,
1971 	NULL
1972 };
1973 
1974 static int rapl_pmu_update(struct rapl_package *rp)
1975 {
1976 	int ret = 0;
1977 
1978 	/* Return if PMU already covers all events supported by current RAPL Package */
1979 	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1980 		goto end;
1981 
1982 	/* Unregister previous registered PMU */
1983 	if (rapl_pmu.registered)
1984 		perf_pmu_unregister(&rapl_pmu.pmu);
1985 
1986 	rapl_pmu.registered = false;
1987 	rapl_pmu.domain_map |= rp->domain_map;
1988 
1989 	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
1990 	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
1991 	rapl_pmu.pmu.attr_update = pmu_attr_update;
1992 	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
1993 	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
1994 	rapl_pmu.pmu.add = rapl_pmu_event_add;
1995 	rapl_pmu.pmu.del = rapl_pmu_event_del;
1996 	rapl_pmu.pmu.start = rapl_pmu_event_start;
1997 	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
1998 	rapl_pmu.pmu.read = rapl_pmu_event_read;
1999 	rapl_pmu.pmu.module = THIS_MODULE;
2000 	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
2001 	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2002 	if (ret) {
2003 		pr_info("Failed to register PMU\n");
2004 		return ret;
2005 	}
2006 
2007 	rapl_pmu.registered = true;
2008 end:
2009 	rp->has_pmu = true;
2010 	return ret;
2011 }
2012 
2013 int rapl_package_add_pmu(struct rapl_package *rp)
2014 {
2015 	struct rapl_package_pmu_data *data = &rp->pmu_data;
2016 	int idx;
2017 
2018 	if (rp->has_pmu)
2019 		return -EEXIST;
2020 
2021 	guard(cpus_read_lock)();
2022 
2023 	for (idx = 0; idx < rp->nr_domains; idx++) {
2024 		struct rapl_domain *rd = &rp->domains[idx];
2025 		int domain = rd->id;
2026 		u64 val;
2027 
2028 		if (!test_bit(domain, &rp->domain_map))
2029 			continue;
2030 
2031 		/*
2032 		 * The RAPL PMU granularity is 2^-32 Joules
2033 		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2034 		 */
2035 		val = rd->energy_unit * (1ULL << 32);
2036 		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2037 		data->scale[domain] = val;
2038 
2039 		if (!rapl_pmu.timer_ms) {
2040 			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2041 
2042 			/*
2043 			 * Calculate the timer rate:
2044 			 * Use reference of 200W for scaling the timeout to avoid counter
2045 			 * overflows.
2046 			 *
2047 			 * max_count = rpi->mask >> rpi->shift + 1
2048 			 * max_energy_pj = max_count * rd->energy_unit
2049 			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2050 			 *
2051 			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2052 			 */
2053 			val = (rpi->mask >> rpi->shift) + 1;
2054 			val *= rd->energy_unit;
2055 			do_div(val, 1000000 * 200 * 2);
2056 			rapl_pmu.timer_ms = val;
2057 
2058 			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2059 		}
2060 
2061 		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2062 	}
2063 
2064 	/* Initialize per package PMU data */
2065 	raw_spin_lock_init(&data->lock);
2066 	INIT_LIST_HEAD(&data->active_list);
2067 	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2068 	hrtimer_setup(&data->hrtimer, rapl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2069 
2070 	return rapl_pmu_update(rp);
2071 }
2072 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2073 
2074 void rapl_package_remove_pmu(struct rapl_package *rp)
2075 {
2076 	struct rapl_package *pos;
2077 
2078 	if (!rp->has_pmu)
2079 		return;
2080 
2081 	guard(cpus_read_lock)();
2082 
2083 	list_for_each_entry(pos, &rapl_packages, plist) {
2084 		/* PMU is still needed */
2085 		if (pos->has_pmu && pos != rp)
2086 			return;
2087 	}
2088 
2089 	perf_pmu_unregister(&rapl_pmu.pmu);
2090 	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2091 }
2092 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2093 #endif
2094 
2095 /* called from CPU hotplug notifier, hotplug lock held */
2096 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2097 {
2098 	struct rapl_domain *rd, *rd_package = NULL;
2099 
2100 	package_power_limit_irq_restore(rp);
2101 
2102 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2103 		int i;
2104 
2105 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2106 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2107 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2108 		}
2109 
2110 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2111 			rd_package = rd;
2112 			continue;
2113 		}
2114 		pr_debug("remove package, undo power limit on %s: %s\n",
2115 			 rp->name, rd->name);
2116 		powercap_unregister_zone(rp->priv->control_type,
2117 					 &rd->power_zone);
2118 	}
2119 	/* do parent zone last */
2120 	powercap_unregister_zone(rp->priv->control_type,
2121 				 &rd_package->power_zone);
2122 	list_del(&rp->plist);
2123 	kfree(rp);
2124 }
2125 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2126 
2127 void rapl_remove_package(struct rapl_package *rp)
2128 {
2129 	guard(cpus_read_lock)();
2130 	rapl_remove_package_cpuslocked(rp);
2131 }
2132 EXPORT_SYMBOL_GPL(rapl_remove_package);
2133 
2134 /*
2135  * RAPL Package energy counter scope:
2136  * 1. AMD/HYGON platforms use per-PKG package energy counter
2137  * 2. For Intel platforms
2138  *	2.1 CLX-AP platform has per-DIE package energy counter
2139  *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2140  *          package energy counter can be considered as per-PKG/per-DIE,
2141  *          here it is considered as per-DIE.
2142  *	2.3 New platforms that use TPMI RAPL doesn't care about the
2143  *	    scope because they are not MSR/CPU based.
2144  */
2145 #define rapl_msrs_are_pkg_scope()				\
2146 	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2147 	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2148 
2149 /* caller to ensure CPU hotplug lock is held */
2150 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2151 							 bool id_is_cpu)
2152 {
2153 	struct rapl_package *rp;
2154 	int uid;
2155 
2156 	if (id_is_cpu) {
2157 		uid = rapl_msrs_are_pkg_scope() ?
2158 		      topology_physical_package_id(id) : topology_logical_die_id(id);
2159 		if (uid < 0) {
2160 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2161 			return NULL;
2162 		}
2163 	}
2164 	else
2165 		uid = id;
2166 
2167 	list_for_each_entry(rp, &rapl_packages, plist) {
2168 		if (rp->id == uid
2169 		    && rp->priv->control_type == priv->control_type)
2170 			return rp;
2171 	}
2172 
2173 	return NULL;
2174 }
2175 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2176 
2177 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2178 {
2179 	guard(cpus_read_lock)();
2180 	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2181 }
2182 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2183 
2184 /* called from CPU hotplug notifier, hotplug lock held */
2185 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2186 {
2187 	struct rapl_package *rp;
2188 	int ret;
2189 
2190 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2191 	if (!rp)
2192 		return ERR_PTR(-ENOMEM);
2193 
2194 	if (id_is_cpu) {
2195 		rp->id = rapl_msrs_are_pkg_scope() ?
2196 			 topology_physical_package_id(id) : topology_logical_die_id(id);
2197 		if ((int)(rp->id) < 0) {
2198 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2199 			return ERR_PTR(-EINVAL);
2200 		}
2201 		rp->lead_cpu = id;
2202 		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2203 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2204 				 topology_physical_package_id(id), topology_die_id(id));
2205 		else
2206 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2207 				 topology_physical_package_id(id));
2208 	} else {
2209 		rp->id = id;
2210 		rp->lead_cpu = -1;
2211 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2212 	}
2213 
2214 	rp->priv = priv;
2215 	ret = rapl_config(rp);
2216 	if (ret)
2217 		goto err_free_package;
2218 
2219 	/* check if the package contains valid domains */
2220 	if (rapl_detect_domains(rp)) {
2221 		ret = -ENODEV;
2222 		goto err_free_package;
2223 	}
2224 	ret = rapl_package_register_powercap(rp);
2225 	if (!ret) {
2226 		INIT_LIST_HEAD(&rp->plist);
2227 		list_add(&rp->plist, &rapl_packages);
2228 		return rp;
2229 	}
2230 
2231 err_free_package:
2232 	kfree(rp->domains);
2233 	kfree(rp);
2234 	return ERR_PTR(ret);
2235 }
2236 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2237 
2238 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2239 {
2240 	guard(cpus_read_lock)();
2241 	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2242 }
2243 EXPORT_SYMBOL_GPL(rapl_add_package);
2244 
2245 static void power_limit_state_save(void)
2246 {
2247 	struct rapl_package *rp;
2248 	struct rapl_domain *rd;
2249 	int ret, i;
2250 
2251 	cpus_read_lock();
2252 	list_for_each_entry(rp, &rapl_packages, plist) {
2253 		if (!rp->power_zone)
2254 			continue;
2255 		rd = power_zone_to_rapl_domain(rp->power_zone);
2256 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2257 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2258 						 &rd->rpl[i].last_power_limit);
2259 			if (ret)
2260 				rd->rpl[i].last_power_limit = 0;
2261 		}
2262 	}
2263 	cpus_read_unlock();
2264 }
2265 
2266 static void power_limit_state_restore(void)
2267 {
2268 	struct rapl_package *rp;
2269 	struct rapl_domain *rd;
2270 	int i;
2271 
2272 	cpus_read_lock();
2273 	list_for_each_entry(rp, &rapl_packages, plist) {
2274 		if (!rp->power_zone)
2275 			continue;
2276 		rd = power_zone_to_rapl_domain(rp->power_zone);
2277 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2278 			if (rd->rpl[i].last_power_limit)
2279 				rapl_write_pl_data(rd, i, PL_LIMIT,
2280 					       rd->rpl[i].last_power_limit);
2281 	}
2282 	cpus_read_unlock();
2283 }
2284 
2285 static int rapl_pm_callback(struct notifier_block *nb,
2286 			    unsigned long mode, void *_unused)
2287 {
2288 	switch (mode) {
2289 	case PM_SUSPEND_PREPARE:
2290 		power_limit_state_save();
2291 		break;
2292 	case PM_POST_SUSPEND:
2293 		power_limit_state_restore();
2294 		break;
2295 	}
2296 	return NOTIFY_OK;
2297 }
2298 
2299 static struct notifier_block rapl_pm_notifier = {
2300 	.notifier_call = rapl_pm_callback,
2301 };
2302 
2303 static struct platform_device *rapl_msr_platdev;
2304 
2305 static int __init rapl_init(void)
2306 {
2307 	const struct x86_cpu_id *id;
2308 	int ret;
2309 
2310 	id = x86_match_cpu(rapl_ids);
2311 	if (id) {
2312 		defaults_msr = (struct rapl_defaults *)id->driver_data;
2313 
2314 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2315 		if (!rapl_msr_platdev)
2316 			return -ENOMEM;
2317 
2318 		ret = platform_device_add(rapl_msr_platdev);
2319 		if (ret) {
2320 			platform_device_put(rapl_msr_platdev);
2321 			return ret;
2322 		}
2323 	}
2324 
2325 	ret = register_pm_notifier(&rapl_pm_notifier);
2326 	if (ret && rapl_msr_platdev) {
2327 		platform_device_del(rapl_msr_platdev);
2328 		platform_device_put(rapl_msr_platdev);
2329 	}
2330 
2331 	return ret;
2332 }
2333 
2334 static void __exit rapl_exit(void)
2335 {
2336 	platform_device_unregister(rapl_msr_platdev);
2337 	unregister_pm_notifier(&rapl_pm_notifier);
2338 }
2339 
2340 fs_initcall(rapl_init);
2341 module_exit(rapl_exit);
2342 
2343 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2344 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2345 MODULE_LICENSE("GPL v2");
2346