1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * asus-laptop.c - Asus Laptop Support 4 * 5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor 6 * Copyright (C) 2006-2007 Corentin Chary 7 * Copyright (C) 2011 Wind River Systems 8 * 9 * The development page for this driver is located at 10 * http://sourceforge.net/projects/acpi4asus/ 11 * 12 * Credits: 13 * Pontus Fuchs - Helper functions, cleanup 14 * Johann Wiesner - Small compile fixes 15 * John Belmonte - ACPI code for Toshiba laptop was a good starting point. 16 * Eric Burghard - LED display support for W1N 17 * Josh Green - Light Sens support 18 * Thomas Tuttle - His first patch for led support was very helpful 19 * Sam Lin - GPS support 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/init.h> 27 #include <linux/types.h> 28 #include <linux/err.h> 29 #include <linux/proc_fs.h> 30 #include <linux/backlight.h> 31 #include <linux/leds.h> 32 #include <linux/platform_device.h> 33 #include <linux/uaccess.h> 34 #include <linux/input.h> 35 #include <linux/input/sparse-keymap.h> 36 #include <linux/rfkill.h> 37 #include <linux/slab.h> 38 #include <linux/dmi.h> 39 #include <linux/acpi.h> 40 #include <acpi/video.h> 41 42 #define ASUS_LAPTOP_VERSION "0.42" 43 44 #define ASUS_LAPTOP_NAME "Asus Laptop Support" 45 #define ASUS_LAPTOP_CLASS "hotkey" 46 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" 47 #define ASUS_LAPTOP_FILE KBUILD_MODNAME 48 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." 49 50 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); 51 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); 52 MODULE_LICENSE("GPL"); 53 54 /* 55 * WAPF defines the behavior of the Fn+Fx wlan key 56 * The significance of values is yet to be found, but 57 * most of the time: 58 * Bit | Bluetooth | WLAN 59 * 0 | Hardware | Hardware 60 * 1 | Hardware | Software 61 * 4 | Software | Software 62 */ 63 static uint wapf = 1; 64 module_param(wapf, uint, 0444); 65 MODULE_PARM_DESC(wapf, "WAPF value"); 66 67 static char *wled_type = "unknown"; 68 static char *bled_type = "unknown"; 69 70 module_param(wled_type, charp, 0444); 71 MODULE_PARM_DESC(wled_type, "Set the wled type on boot " 72 "(unknown, led or rfkill). " 73 "default is unknown"); 74 75 module_param(bled_type, charp, 0444); 76 MODULE_PARM_DESC(bled_type, "Set the bled type on boot " 77 "(unknown, led or rfkill). " 78 "default is unknown"); 79 80 static int wlan_status = 1; 81 static int bluetooth_status = 1; 82 static int wimax_status = -1; 83 static int wwan_status = -1; 84 static int als_status; 85 86 module_param(wlan_status, int, 0444); 87 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " 88 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 89 "default is -1"); 90 91 module_param(bluetooth_status, int, 0444); 92 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " 93 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 94 "default is -1"); 95 96 module_param(wimax_status, int, 0444); 97 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " 98 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 99 "default is -1"); 100 101 module_param(wwan_status, int, 0444); 102 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " 103 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 104 "default is -1"); 105 106 module_param(als_status, int, 0444); 107 MODULE_PARM_DESC(als_status, "Set the ALS status on boot " 108 "(0 = disabled, 1 = enabled). " 109 "default is 0"); 110 111 /* 112 * Some events we use, same for all Asus 113 */ 114 #define ATKD_BRNUP_MIN 0x10 115 #define ATKD_BRNUP_MAX 0x1f 116 #define ATKD_BRNDOWN_MIN 0x20 117 #define ATKD_BRNDOWN_MAX 0x2f 118 #define ATKD_BRNDOWN 0x20 119 #define ATKD_BRNUP 0x2f 120 #define ATKD_LCD_ON 0x33 121 #define ATKD_LCD_OFF 0x34 122 123 /* 124 * Known bits returned by \_SB.ATKD.HWRS 125 */ 126 #define WL_HWRS 0x80 127 #define BT_HWRS 0x100 128 129 /* 130 * Flags for hotk status 131 * WL_ON and BT_ON are also used for wireless_status() 132 */ 133 #define WL_RSTS 0x01 /* internal Wifi */ 134 #define BT_RSTS 0x02 /* internal Bluetooth */ 135 #define WM_RSTS 0x08 /* internal wimax */ 136 #define WW_RSTS 0x20 /* internal wwan */ 137 138 /* WLED and BLED type */ 139 #define TYPE_UNKNOWN 0 140 #define TYPE_LED 1 141 #define TYPE_RFKILL 2 142 143 /* LED */ 144 #define METHOD_MLED "MLED" 145 #define METHOD_TLED "TLED" 146 #define METHOD_RLED "RLED" /* W1JC */ 147 #define METHOD_PLED "PLED" /* A7J */ 148 #define METHOD_GLED "GLED" /* G1, G2 (probably) */ 149 150 /* LEDD */ 151 #define METHOD_LEDD "SLCM" 152 153 /* 154 * Bluetooth and WLAN 155 * WLED and BLED are not handled like other XLED, because in some dsdt 156 * they also control the WLAN/Bluetooth device. 157 */ 158 #define METHOD_WLAN "WLED" 159 #define METHOD_BLUETOOTH "BLED" 160 161 /* WWAN and WIMAX */ 162 #define METHOD_WWAN "GSMC" 163 #define METHOD_WIMAX "WMXC" 164 165 #define METHOD_WL_STATUS "RSTS" 166 167 /* Brightness */ 168 #define METHOD_BRIGHTNESS_SET "SPLV" 169 #define METHOD_BRIGHTNESS_GET "GPLV" 170 171 /* Display */ 172 #define METHOD_SWITCH_DISPLAY "SDSP" 173 174 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ 175 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ 176 177 /* GPS */ 178 /* R2H use different handle for GPS on/off */ 179 #define METHOD_GPS_ON "SDON" 180 #define METHOD_GPS_OFF "SDOF" 181 #define METHOD_GPS_STATUS "GPST" 182 183 /* Keyboard light */ 184 #define METHOD_KBD_LIGHT_SET "SLKB" 185 #define METHOD_KBD_LIGHT_GET "GLKB" 186 187 /* For Pegatron Lucid tablet */ 188 #define DEVICE_NAME_PEGA "Lucid" 189 190 #define METHOD_PEGA_ENABLE "ENPR" 191 #define METHOD_PEGA_DISABLE "DAPR" 192 #define PEGA_WLAN 0x00 193 #define PEGA_BLUETOOTH 0x01 194 #define PEGA_WWAN 0x02 195 #define PEGA_ALS 0x04 196 #define PEGA_ALS_POWER 0x05 197 198 #define METHOD_PEGA_READ "RDLN" 199 #define PEGA_READ_ALS_H 0x02 200 #define PEGA_READ_ALS_L 0x03 201 202 #define PEGA_ACCEL_NAME "pega_accel" 203 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" 204 #define METHOD_XLRX "XLRX" 205 #define METHOD_XLRY "XLRY" 206 #define METHOD_XLRZ "XLRZ" 207 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ 208 #define PEGA_ACC_RETRIES 3 209 210 /* 211 * Define a specific led structure to keep the main structure clean 212 */ 213 struct asus_led { 214 int wk; 215 struct work_struct work; 216 struct led_classdev led; 217 struct asus_laptop *asus; 218 const char *method; 219 }; 220 221 /* 222 * Same thing for rfkill 223 */ 224 struct asus_rfkill { 225 /* type of control. Maps to PEGA_* values or *_RSTS */ 226 int control_id; 227 struct rfkill *rfkill; 228 struct asus_laptop *asus; 229 }; 230 231 /* 232 * This is the main structure, we can use it to store anything interesting 233 * about the hotk device 234 */ 235 struct asus_laptop { 236 char *name; /* laptop name */ 237 238 struct acpi_table_header *dsdt_info; 239 struct platform_device *platform_device; 240 struct acpi_device *device; /* the device we are in */ 241 struct backlight_device *backlight_device; 242 243 struct input_dev *inputdev; 244 struct key_entry *keymap; 245 struct input_dev *pega_accel_poll; 246 247 struct asus_led wled; 248 struct asus_led bled; 249 struct asus_led mled; 250 struct asus_led tled; 251 struct asus_led rled; 252 struct asus_led pled; 253 struct asus_led gled; 254 struct asus_led kled; 255 struct workqueue_struct *led_workqueue; 256 257 int wled_type; 258 int bled_type; 259 int wireless_status; 260 bool have_rsts; 261 bool is_pega_lucid; 262 bool pega_acc_live; 263 int pega_acc_x; 264 int pega_acc_y; 265 int pega_acc_z; 266 267 struct asus_rfkill wlan; 268 struct asus_rfkill bluetooth; 269 struct asus_rfkill wwan; 270 struct asus_rfkill wimax; 271 struct asus_rfkill gps; 272 273 acpi_handle handle; /* the handle of the hotk device */ 274 u32 ledd_status; /* status of the LED display */ 275 u8 light_level; /* light sensor level */ 276 u8 light_switch; /* light sensor switch value */ 277 u16 event_count[128]; /* count for each event TODO make this better */ 278 }; 279 280 static const struct key_entry asus_keymap[] = { 281 /* Lenovo SL Specific keycodes */ 282 {KE_KEY, 0x02, { KEY_SCREENLOCK } }, 283 {KE_KEY, 0x05, { KEY_WLAN } }, 284 {KE_KEY, 0x08, { KEY_F13 } }, 285 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */ 286 {KE_KEY, 0x17, { KEY_ZOOM } }, 287 {KE_KEY, 0x1f, { KEY_BATTERY } }, 288 /* End of Lenovo SL Specific keycodes */ 289 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } }, 290 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } }, 291 {KE_KEY, 0x30, { KEY_VOLUMEUP } }, 292 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, 293 {KE_KEY, 0x32, { KEY_MUTE } }, 294 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */ 295 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */ 296 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, 297 {KE_KEY, 0x41, { KEY_NEXTSONG } }, 298 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */ 299 {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, 300 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */ 301 {KE_KEY, 0x50, { KEY_EMAIL } }, 302 {KE_KEY, 0x51, { KEY_WWW } }, 303 {KE_KEY, 0x55, { KEY_CALC } }, 304 {KE_IGNORE, 0x57, }, /* Battery mode */ 305 {KE_IGNORE, 0x58, }, /* AC mode */ 306 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ 307 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */ 308 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */ 309 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */ 310 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } }, 311 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */ 312 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */ 313 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */ 314 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */ 315 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */ 316 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */ 317 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */ 318 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */ 319 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */ 320 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */ 321 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */ 322 {KE_IGNORE, 0x6E, }, /* Low Battery notification */ 323 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */ 324 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */ 325 {KE_KEY, 0x82, { KEY_CAMERA } }, 326 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */ 327 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */ 328 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */ 329 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */ 330 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */ 331 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */ 332 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */ 333 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */ 334 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */ 335 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */ 336 {KE_KEY, 0x95, { KEY_MEDIA } }, 337 {KE_KEY, 0x99, { KEY_PHONE } }, 338 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */ 339 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */ 340 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */ 341 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */ 342 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */ 343 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */ 344 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */ 345 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */ 346 {KE_KEY, 0xB5, { KEY_CALC } }, 347 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } }, 348 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } }, 349 {KE_END, 0}, 350 }; 351 352 353 /* 354 * This function evaluates an ACPI method, given an int as parameter, the 355 * method is searched within the scope of the handle, can be NULL. The output 356 * of the method is written is output, which can also be NULL 357 * 358 * returns 0 if write is successful, -1 else. 359 */ 360 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, 361 struct acpi_buffer *output) 362 { 363 struct acpi_object_list params; /* list of input parameters (an int) */ 364 union acpi_object in_obj; /* the only param we use */ 365 acpi_status status; 366 367 if (!handle) 368 return -1; 369 370 params.count = 1; 371 params.pointer = &in_obj; 372 in_obj.type = ACPI_TYPE_INTEGER; 373 in_obj.integer.value = val; 374 375 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); 376 if (status == AE_OK) 377 return 0; 378 else 379 return -1; 380 } 381 382 static int write_acpi_int(acpi_handle handle, const char *method, int val) 383 { 384 return write_acpi_int_ret(handle, method, val, NULL); 385 } 386 387 static int acpi_check_handle(acpi_handle handle, const char *method, 388 acpi_handle *ret) 389 { 390 acpi_status status; 391 392 if (method == NULL) 393 return -ENODEV; 394 395 if (ret) 396 status = acpi_get_handle(handle, (char *)method, 397 ret); 398 else { 399 acpi_handle dummy; 400 401 status = acpi_get_handle(handle, (char *)method, 402 &dummy); 403 } 404 405 if (status != AE_OK) { 406 if (ret) 407 pr_warn("Error finding %s\n", method); 408 return -ENODEV; 409 } 410 return 0; 411 } 412 413 static bool asus_check_pega_lucid(struct asus_laptop *asus) 414 { 415 return !strcmp(asus->name, DEVICE_NAME_PEGA) && 416 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && 417 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && 418 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); 419 } 420 421 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) 422 { 423 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; 424 return write_acpi_int(asus->handle, method, unit); 425 } 426 427 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) 428 { 429 unsigned long long val = (unsigned long long)curr; 430 acpi_status status; 431 int i, delta; 432 433 for (i = 0; i < PEGA_ACC_RETRIES; i++) { 434 status = acpi_evaluate_integer(asus->handle, method, NULL, &val); 435 if (ACPI_FAILURE(status)) 436 continue; 437 /* The output is noisy. From reading the ASL 438 * dissassembly, timeout errors are returned with 1's 439 * in the high word, and the lack of locking around 440 * thei hi/lo byte reads means that a transition 441 * between (for example) -1 and 0 could be read as 442 * 0xff00 or 0x00ff. */ 443 delta = abs(curr - (short)val); 444 if (delta < 128 && !(val & ~0xffff)) 445 break; 446 } 447 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); 448 } 449 450 static void pega_accel_poll(struct input_dev *input) 451 { 452 struct device *parent = input->dev.parent; 453 struct asus_laptop *asus = dev_get_drvdata(parent); 454 455 /* In some cases, the very first call to poll causes a 456 * recursive fault under the polldev worker. This is 457 * apparently related to very early userspace access to the 458 * device, and perhaps a firmware bug. Fake the first report. */ 459 if (!asus->pega_acc_live) { 460 asus->pega_acc_live = true; 461 input_report_abs(input, ABS_X, 0); 462 input_report_abs(input, ABS_Y, 0); 463 input_report_abs(input, ABS_Z, 0); 464 input_sync(input); 465 return; 466 } 467 468 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); 469 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); 470 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); 471 472 /* Note transform, convert to "right/up/out" in the native 473 * landscape orientation (i.e. the vector is the direction of 474 * "real up" in the device's cartiesian coordinates). */ 475 input_report_abs(input, ABS_X, -asus->pega_acc_x); 476 input_report_abs(input, ABS_Y, -asus->pega_acc_y); 477 input_report_abs(input, ABS_Z, asus->pega_acc_z); 478 input_sync(input); 479 } 480 481 static void pega_accel_exit(struct asus_laptop *asus) 482 { 483 if (asus->pega_accel_poll) { 484 input_unregister_device(asus->pega_accel_poll); 485 asus->pega_accel_poll = NULL; 486 } 487 } 488 489 static int pega_accel_init(struct asus_laptop *asus) 490 { 491 int err; 492 struct input_dev *input; 493 494 if (!asus->is_pega_lucid) 495 return -ENODEV; 496 497 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || 498 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || 499 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) 500 return -ENODEV; 501 502 input = input_allocate_device(); 503 if (!input) 504 return -ENOMEM; 505 506 input->name = PEGA_ACCEL_DESC; 507 input->phys = PEGA_ACCEL_NAME "/input0"; 508 input->dev.parent = &asus->platform_device->dev; 509 input->id.bustype = BUS_HOST; 510 511 input_set_abs_params(input, ABS_X, 512 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 513 input_set_abs_params(input, ABS_Y, 514 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 515 input_set_abs_params(input, ABS_Z, 516 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 517 518 err = input_setup_polling(input, pega_accel_poll); 519 if (err) 520 goto exit; 521 522 input_set_poll_interval(input, 125); 523 input_set_min_poll_interval(input, 50); 524 input_set_max_poll_interval(input, 2000); 525 526 err = input_register_device(input); 527 if (err) 528 goto exit; 529 530 asus->pega_accel_poll = input; 531 return 0; 532 533 exit: 534 input_free_device(input); 535 return err; 536 } 537 538 /* Generic LED function */ 539 static int asus_led_set(struct asus_laptop *asus, const char *method, 540 int value) 541 { 542 if (!strcmp(method, METHOD_MLED)) 543 value = !value; 544 else if (!strcmp(method, METHOD_GLED)) 545 value = !value + 1; 546 else 547 value = !!value; 548 549 return write_acpi_int(asus->handle, method, value); 550 } 551 552 /* 553 * LEDs 554 */ 555 /* /sys/class/led handlers */ 556 static void asus_led_cdev_set(struct led_classdev *led_cdev, 557 enum led_brightness value) 558 { 559 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 560 struct asus_laptop *asus = led->asus; 561 562 led->wk = !!value; 563 queue_work(asus->led_workqueue, &led->work); 564 } 565 566 static void asus_led_cdev_update(struct work_struct *work) 567 { 568 struct asus_led *led = container_of(work, struct asus_led, work); 569 struct asus_laptop *asus = led->asus; 570 571 asus_led_set(asus, led->method, led->wk); 572 } 573 574 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) 575 { 576 return led_cdev->brightness; 577 } 578 579 /* 580 * Keyboard backlight (also a LED) 581 */ 582 static int asus_kled_lvl(struct asus_laptop *asus) 583 { 584 unsigned long long kblv; 585 struct acpi_object_list params; 586 union acpi_object in_obj; 587 acpi_status rv; 588 589 params.count = 1; 590 params.pointer = &in_obj; 591 in_obj.type = ACPI_TYPE_INTEGER; 592 in_obj.integer.value = 2; 593 594 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, 595 ¶ms, &kblv); 596 if (ACPI_FAILURE(rv)) { 597 pr_warn("Error reading kled level\n"); 598 return -ENODEV; 599 } 600 return kblv; 601 } 602 603 static int asus_kled_set(struct asus_laptop *asus, int kblv) 604 { 605 if (kblv > 0) 606 kblv = (1 << 7) | (kblv & 0x7F); 607 else 608 kblv = 0; 609 610 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { 611 pr_warn("Keyboard LED display write failed\n"); 612 return -EINVAL; 613 } 614 return 0; 615 } 616 617 static void asus_kled_cdev_set(struct led_classdev *led_cdev, 618 enum led_brightness value) 619 { 620 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 621 struct asus_laptop *asus = led->asus; 622 623 led->wk = value; 624 queue_work(asus->led_workqueue, &led->work); 625 } 626 627 static void asus_kled_cdev_update(struct work_struct *work) 628 { 629 struct asus_led *led = container_of(work, struct asus_led, work); 630 struct asus_laptop *asus = led->asus; 631 632 asus_kled_set(asus, led->wk); 633 } 634 635 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) 636 { 637 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 638 struct asus_laptop *asus = led->asus; 639 640 return asus_kled_lvl(asus); 641 } 642 643 static void asus_led_exit(struct asus_laptop *asus) 644 { 645 led_classdev_unregister(&asus->wled.led); 646 led_classdev_unregister(&asus->bled.led); 647 led_classdev_unregister(&asus->mled.led); 648 led_classdev_unregister(&asus->tled.led); 649 led_classdev_unregister(&asus->pled.led); 650 led_classdev_unregister(&asus->rled.led); 651 led_classdev_unregister(&asus->gled.led); 652 led_classdev_unregister(&asus->kled.led); 653 654 if (asus->led_workqueue) { 655 destroy_workqueue(asus->led_workqueue); 656 asus->led_workqueue = NULL; 657 } 658 } 659 660 /* Ugly macro, need to fix that later */ 661 static int asus_led_register(struct asus_laptop *asus, 662 struct asus_led *led, 663 const char *name, const char *method) 664 { 665 struct led_classdev *led_cdev = &led->led; 666 667 if (!method || acpi_check_handle(asus->handle, method, NULL)) 668 return 0; /* Led not present */ 669 670 led->asus = asus; 671 led->method = method; 672 673 INIT_WORK(&led->work, asus_led_cdev_update); 674 led_cdev->name = name; 675 led_cdev->brightness_set = asus_led_cdev_set; 676 led_cdev->brightness_get = asus_led_cdev_get; 677 led_cdev->max_brightness = 1; 678 return led_classdev_register(&asus->platform_device->dev, led_cdev); 679 } 680 681 static int asus_led_init(struct asus_laptop *asus) 682 { 683 int r = 0; 684 685 /* 686 * The Pegatron Lucid has no physical leds, but all methods are 687 * available in the DSDT... 688 */ 689 if (asus->is_pega_lucid) 690 return 0; 691 692 /* 693 * Functions that actually update the LED's are called from a 694 * workqueue. By doing this as separate work rather than when the LED 695 * subsystem asks, we avoid messing with the Asus ACPI stuff during a 696 * potentially bad time, such as a timer interrupt. 697 */ 698 asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); 699 if (!asus->led_workqueue) 700 return -ENOMEM; 701 702 if (asus->wled_type == TYPE_LED) 703 r = asus_led_register(asus, &asus->wled, "asus::wlan", 704 METHOD_WLAN); 705 if (r) 706 goto error; 707 if (asus->bled_type == TYPE_LED) 708 r = asus_led_register(asus, &asus->bled, "asus::bluetooth", 709 METHOD_BLUETOOTH); 710 if (r) 711 goto error; 712 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); 713 if (r) 714 goto error; 715 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); 716 if (r) 717 goto error; 718 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); 719 if (r) 720 goto error; 721 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); 722 if (r) 723 goto error; 724 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); 725 if (r) 726 goto error; 727 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && 728 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { 729 struct asus_led *led = &asus->kled; 730 struct led_classdev *cdev = &led->led; 731 732 led->asus = asus; 733 734 INIT_WORK(&led->work, asus_kled_cdev_update); 735 cdev->name = "asus::kbd_backlight"; 736 cdev->brightness_set = asus_kled_cdev_set; 737 cdev->brightness_get = asus_kled_cdev_get; 738 cdev->max_brightness = 3; 739 r = led_classdev_register(&asus->platform_device->dev, cdev); 740 } 741 error: 742 if (r) 743 asus_led_exit(asus); 744 return r; 745 } 746 747 /* 748 * Backlight device 749 */ 750 static int asus_read_brightness(struct backlight_device *bd) 751 { 752 struct asus_laptop *asus = bl_get_data(bd); 753 unsigned long long value; 754 acpi_status rv; 755 756 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, 757 NULL, &value); 758 if (ACPI_FAILURE(rv)) { 759 pr_warn("Error reading brightness\n"); 760 return 0; 761 } 762 763 return value; 764 } 765 766 static int asus_set_brightness(struct backlight_device *bd, int value) 767 { 768 struct asus_laptop *asus = bl_get_data(bd); 769 770 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { 771 pr_warn("Error changing brightness\n"); 772 return -EIO; 773 } 774 return 0; 775 } 776 777 static int update_bl_status(struct backlight_device *bd) 778 { 779 int value = bd->props.brightness; 780 781 return asus_set_brightness(bd, value); 782 } 783 784 static const struct backlight_ops asusbl_ops = { 785 .get_brightness = asus_read_brightness, 786 .update_status = update_bl_status, 787 }; 788 789 static int asus_backlight_notify(struct asus_laptop *asus) 790 { 791 struct backlight_device *bd = asus->backlight_device; 792 int old = bd->props.brightness; 793 794 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); 795 796 return old; 797 } 798 799 static int asus_backlight_init(struct asus_laptop *asus) 800 { 801 struct backlight_device *bd; 802 struct backlight_properties props; 803 804 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || 805 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) 806 return 0; 807 808 memset(&props, 0, sizeof(struct backlight_properties)); 809 props.max_brightness = 15; 810 props.type = BACKLIGHT_PLATFORM; 811 812 bd = backlight_device_register(ASUS_LAPTOP_FILE, 813 &asus->platform_device->dev, asus, 814 &asusbl_ops, &props); 815 if (IS_ERR(bd)) { 816 pr_err("Could not register asus backlight device\n"); 817 asus->backlight_device = NULL; 818 return PTR_ERR(bd); 819 } 820 821 asus->backlight_device = bd; 822 bd->props.brightness = asus_read_brightness(bd); 823 bd->props.power = BACKLIGHT_POWER_ON; 824 backlight_update_status(bd); 825 return 0; 826 } 827 828 static void asus_backlight_exit(struct asus_laptop *asus) 829 { 830 backlight_device_unregister(asus->backlight_device); 831 asus->backlight_device = NULL; 832 } 833 834 /* 835 * Platform device handlers 836 */ 837 838 /* 839 * We write our info in page, we begin at offset off and cannot write more 840 * than count bytes. We set eof to 1 if we handle those 2 values. We return the 841 * number of bytes written in page 842 */ 843 static ssize_t infos_show(struct device *dev, struct device_attribute *attr, 844 char *page) 845 { 846 struct asus_laptop *asus = dev_get_drvdata(dev); 847 int len = 0; 848 unsigned long long temp; 849 char buf[16]; /* enough for all info */ 850 acpi_status rv; 851 852 /* 853 * We use the easy way, we don't care of off and count, 854 * so we don't set eof to 1 855 */ 856 857 len += sysfs_emit_at(page, len, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); 858 len += sysfs_emit_at(page, len, "Model reference : %s\n", asus->name); 859 /* 860 * The SFUN method probably allows the original driver to get the list 861 * of features supported by a given model. For now, 0x0100 or 0x0800 862 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. 863 * The significance of others is yet to be found. 864 */ 865 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); 866 if (ACPI_SUCCESS(rv)) 867 len += sysfs_emit_at(page, len, "SFUN value : %#x\n", 868 (uint) temp); 869 /* 870 * The HWRS method return informations about the hardware. 871 * 0x80 bit is for WLAN, 0x100 for Bluetooth. 872 * 0x40 for WWAN, 0x10 for WIMAX. 873 * The significance of others is yet to be found. 874 * We don't currently use this for device detection, and it 875 * takes several seconds to run on some systems. 876 */ 877 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp); 878 if (ACPI_SUCCESS(rv)) 879 len += sysfs_emit_at(page, len, "HWRS value : %#x\n", 880 (uint) temp); 881 /* 882 * Another value for userspace: the ASYM method returns 0x02 for 883 * battery low and 0x04 for battery critical, its readings tend to be 884 * more accurate than those provided by _BST. 885 * Note: since not all the laptops provide this method, errors are 886 * silently ignored. 887 */ 888 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); 889 if (ACPI_SUCCESS(rv)) 890 len += sysfs_emit_at(page, len, "ASYM value : %#x\n", 891 (uint) temp); 892 if (asus->dsdt_info) { 893 snprintf(buf, 16, "%d", asus->dsdt_info->length); 894 len += sysfs_emit_at(page, len, "DSDT length : %s\n", buf); 895 snprintf(buf, 16, "%d", asus->dsdt_info->checksum); 896 len += sysfs_emit_at(page, len, "DSDT checksum : %s\n", buf); 897 snprintf(buf, 16, "%d", asus->dsdt_info->revision); 898 len += sysfs_emit_at(page, len, "DSDT revision : %s\n", buf); 899 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); 900 len += sysfs_emit_at(page, len, "OEM id : %s\n", buf); 901 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); 902 len += sysfs_emit_at(page, len, "OEM table id : %s\n", buf); 903 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); 904 len += sysfs_emit_at(page, len, "OEM revision : 0x%s\n", buf); 905 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); 906 len += sysfs_emit_at(page, len, "ASL comp vendor id : %s\n", buf); 907 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); 908 len += sysfs_emit_at(page, len, "ASL comp revision : 0x%s\n", buf); 909 } 910 911 return len; 912 } 913 static DEVICE_ATTR_RO(infos); 914 915 static ssize_t sysfs_acpi_set(struct asus_laptop *asus, 916 const char *buf, size_t count, 917 const char *method) 918 { 919 int rv, value; 920 921 rv = kstrtoint(buf, 0, &value); 922 if (rv < 0) 923 return rv; 924 925 if (write_acpi_int(asus->handle, method, value)) 926 return -ENODEV; 927 return count; 928 } 929 930 /* 931 * LEDD display 932 */ 933 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr, 934 char *buf) 935 { 936 struct asus_laptop *asus = dev_get_drvdata(dev); 937 938 return sysfs_emit(buf, "0x%08x\n", asus->ledd_status); 939 } 940 941 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr, 942 const char *buf, size_t count) 943 { 944 struct asus_laptop *asus = dev_get_drvdata(dev); 945 int rv, value; 946 947 rv = kstrtoint(buf, 0, &value); 948 if (rv < 0) 949 return rv; 950 951 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { 952 pr_warn("LED display write failed\n"); 953 return -ENODEV; 954 } 955 956 asus->ledd_status = (u32) value; 957 return count; 958 } 959 static DEVICE_ATTR_RW(ledd); 960 961 /* 962 * Wireless 963 */ 964 static int asus_wireless_status(struct asus_laptop *asus, int mask) 965 { 966 unsigned long long status; 967 acpi_status rv = AE_OK; 968 969 if (!asus->have_rsts) 970 return (asus->wireless_status & mask) ? 1 : 0; 971 972 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, 973 NULL, &status); 974 if (ACPI_FAILURE(rv)) { 975 pr_warn("Error reading Wireless status\n"); 976 return -EINVAL; 977 } 978 return !!(status & mask); 979 } 980 981 /* 982 * WLAN 983 */ 984 static int asus_wlan_set(struct asus_laptop *asus, int status) 985 { 986 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { 987 pr_warn("Error setting wlan status to %d\n", status); 988 return -EIO; 989 } 990 return 0; 991 } 992 993 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr, 994 char *buf) 995 { 996 struct asus_laptop *asus = dev_get_drvdata(dev); 997 998 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); 999 } 1000 1001 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr, 1002 const char *buf, size_t count) 1003 { 1004 struct asus_laptop *asus = dev_get_drvdata(dev); 1005 1006 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); 1007 } 1008 static DEVICE_ATTR_RW(wlan); 1009 1010 /*e 1011 * Bluetooth 1012 */ 1013 static int asus_bluetooth_set(struct asus_laptop *asus, int status) 1014 { 1015 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { 1016 pr_warn("Error setting bluetooth status to %d\n", status); 1017 return -EIO; 1018 } 1019 return 0; 1020 } 1021 1022 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr, 1023 char *buf) 1024 { 1025 struct asus_laptop *asus = dev_get_drvdata(dev); 1026 1027 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); 1028 } 1029 1030 static ssize_t bluetooth_store(struct device *dev, 1031 struct device_attribute *attr, const char *buf, 1032 size_t count) 1033 { 1034 struct asus_laptop *asus = dev_get_drvdata(dev); 1035 1036 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); 1037 } 1038 static DEVICE_ATTR_RW(bluetooth); 1039 1040 /* 1041 * Wimax 1042 */ 1043 static int asus_wimax_set(struct asus_laptop *asus, int status) 1044 { 1045 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { 1046 pr_warn("Error setting wimax status to %d\n", status); 1047 return -EIO; 1048 } 1049 return 0; 1050 } 1051 1052 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr, 1053 char *buf) 1054 { 1055 struct asus_laptop *asus = dev_get_drvdata(dev); 1056 1057 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); 1058 } 1059 1060 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr, 1061 const char *buf, size_t count) 1062 { 1063 struct asus_laptop *asus = dev_get_drvdata(dev); 1064 1065 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); 1066 } 1067 static DEVICE_ATTR_RW(wimax); 1068 1069 /* 1070 * Wwan 1071 */ 1072 static int asus_wwan_set(struct asus_laptop *asus, int status) 1073 { 1074 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { 1075 pr_warn("Error setting wwan status to %d\n", status); 1076 return -EIO; 1077 } 1078 return 0; 1079 } 1080 1081 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr, 1082 char *buf) 1083 { 1084 struct asus_laptop *asus = dev_get_drvdata(dev); 1085 1086 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); 1087 } 1088 1089 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr, 1090 const char *buf, size_t count) 1091 { 1092 struct asus_laptop *asus = dev_get_drvdata(dev); 1093 1094 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); 1095 } 1096 static DEVICE_ATTR_RW(wwan); 1097 1098 /* 1099 * Display 1100 */ 1101 static void asus_set_display(struct asus_laptop *asus, int value) 1102 { 1103 /* no sanity check needed for now */ 1104 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) 1105 pr_warn("Error setting display\n"); 1106 return; 1107 } 1108 1109 /* 1110 * Experimental support for display switching. As of now: 1 should activate 1111 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. 1112 * Any combination (bitwise) of these will suffice. I never actually tested 4 1113 * displays hooked up simultaneously, so be warned. See the acpi4asus README 1114 * for more info. 1115 */ 1116 static ssize_t display_store(struct device *dev, struct device_attribute *attr, 1117 const char *buf, size_t count) 1118 { 1119 struct asus_laptop *asus = dev_get_drvdata(dev); 1120 int rv, value; 1121 1122 rv = kstrtoint(buf, 0, &value); 1123 if (rv < 0) 1124 return rv; 1125 1126 asus_set_display(asus, value); 1127 return count; 1128 } 1129 static DEVICE_ATTR_WO(display); 1130 1131 /* 1132 * Light Sens 1133 */ 1134 static void asus_als_switch(struct asus_laptop *asus, int value) 1135 { 1136 int ret; 1137 1138 if (asus->is_pega_lucid) { 1139 ret = asus_pega_lucid_set(asus, PEGA_ALS, value); 1140 if (!ret) 1141 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); 1142 } else { 1143 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); 1144 } 1145 if (ret) 1146 pr_warn("Error setting light sensor switch\n"); 1147 1148 asus->light_switch = value; 1149 } 1150 1151 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr, 1152 char *buf) 1153 { 1154 struct asus_laptop *asus = dev_get_drvdata(dev); 1155 1156 return sysfs_emit(buf, "%d\n", asus->light_switch); 1157 } 1158 1159 static ssize_t ls_switch_store(struct device *dev, 1160 struct device_attribute *attr, const char *buf, 1161 size_t count) 1162 { 1163 struct asus_laptop *asus = dev_get_drvdata(dev); 1164 int rv, value; 1165 1166 rv = kstrtoint(buf, 0, &value); 1167 if (rv < 0) 1168 return rv; 1169 1170 asus_als_switch(asus, value ? 1 : 0); 1171 return count; 1172 } 1173 static DEVICE_ATTR_RW(ls_switch); 1174 1175 static void asus_als_level(struct asus_laptop *asus, int value) 1176 { 1177 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) 1178 pr_warn("Error setting light sensor level\n"); 1179 asus->light_level = value; 1180 } 1181 1182 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr, 1183 char *buf) 1184 { 1185 struct asus_laptop *asus = dev_get_drvdata(dev); 1186 1187 return sysfs_emit(buf, "%d\n", asus->light_level); 1188 } 1189 1190 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr, 1191 const char *buf, size_t count) 1192 { 1193 struct asus_laptop *asus = dev_get_drvdata(dev); 1194 int rv, value; 1195 1196 rv = kstrtoint(buf, 0, &value); 1197 if (rv < 0) 1198 return rv; 1199 1200 value = (0 < value) ? ((15 < value) ? 15 : value) : 0; 1201 /* 0 <= value <= 15 */ 1202 asus_als_level(asus, value); 1203 1204 return count; 1205 } 1206 static DEVICE_ATTR_RW(ls_level); 1207 1208 static int pega_int_read(struct asus_laptop *asus, int arg, int *result) 1209 { 1210 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1211 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, 1212 &buffer); 1213 if (!err) { 1214 union acpi_object *obj = buffer.pointer; 1215 if (obj && obj->type == ACPI_TYPE_INTEGER) 1216 *result = obj->integer.value; 1217 else 1218 err = -EIO; 1219 } 1220 return err; 1221 } 1222 1223 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr, 1224 char *buf) 1225 { 1226 struct asus_laptop *asus = dev_get_drvdata(dev); 1227 int err, hi, lo; 1228 1229 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); 1230 if (!err) 1231 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); 1232 if (!err) 1233 return sysfs_emit(buf, "%d\n", 10 * hi + lo); 1234 return err; 1235 } 1236 static DEVICE_ATTR_RO(ls_value); 1237 1238 /* 1239 * GPS 1240 */ 1241 static int asus_gps_status(struct asus_laptop *asus) 1242 { 1243 unsigned long long status; 1244 acpi_status rv; 1245 1246 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, 1247 NULL, &status); 1248 if (ACPI_FAILURE(rv)) { 1249 pr_warn("Error reading GPS status\n"); 1250 return -ENODEV; 1251 } 1252 return !!status; 1253 } 1254 1255 static int asus_gps_switch(struct asus_laptop *asus, int status) 1256 { 1257 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; 1258 1259 if (write_acpi_int(asus->handle, meth, 0x02)) 1260 return -ENODEV; 1261 return 0; 1262 } 1263 1264 static ssize_t gps_show(struct device *dev, struct device_attribute *attr, 1265 char *buf) 1266 { 1267 struct asus_laptop *asus = dev_get_drvdata(dev); 1268 1269 return sysfs_emit(buf, "%d\n", asus_gps_status(asus)); 1270 } 1271 1272 static ssize_t gps_store(struct device *dev, struct device_attribute *attr, 1273 const char *buf, size_t count) 1274 { 1275 struct asus_laptop *asus = dev_get_drvdata(dev); 1276 int rv, value; 1277 int ret; 1278 1279 rv = kstrtoint(buf, 0, &value); 1280 if (rv < 0) 1281 return rv; 1282 ret = asus_gps_switch(asus, !!value); 1283 if (ret) 1284 return ret; 1285 rfkill_set_sw_state(asus->gps.rfkill, !value); 1286 return count; 1287 } 1288 static DEVICE_ATTR_RW(gps); 1289 1290 /* 1291 * rfkill 1292 */ 1293 static int asus_gps_rfkill_set(void *data, bool blocked) 1294 { 1295 struct asus_laptop *asus = data; 1296 1297 return asus_gps_switch(asus, !blocked); 1298 } 1299 1300 static const struct rfkill_ops asus_gps_rfkill_ops = { 1301 .set_block = asus_gps_rfkill_set, 1302 }; 1303 1304 static int asus_rfkill_set(void *data, bool blocked) 1305 { 1306 struct asus_rfkill *rfk = data; 1307 struct asus_laptop *asus = rfk->asus; 1308 1309 if (rfk->control_id == WL_RSTS) 1310 return asus_wlan_set(asus, !blocked); 1311 else if (rfk->control_id == BT_RSTS) 1312 return asus_bluetooth_set(asus, !blocked); 1313 else if (rfk->control_id == WM_RSTS) 1314 return asus_wimax_set(asus, !blocked); 1315 else if (rfk->control_id == WW_RSTS) 1316 return asus_wwan_set(asus, !blocked); 1317 1318 return -EINVAL; 1319 } 1320 1321 static const struct rfkill_ops asus_rfkill_ops = { 1322 .set_block = asus_rfkill_set, 1323 }; 1324 1325 static void asus_rfkill_terminate(struct asus_rfkill *rfk) 1326 { 1327 if (!rfk->rfkill) 1328 return ; 1329 1330 rfkill_unregister(rfk->rfkill); 1331 rfkill_destroy(rfk->rfkill); 1332 rfk->rfkill = NULL; 1333 } 1334 1335 static void asus_rfkill_exit(struct asus_laptop *asus) 1336 { 1337 asus_rfkill_terminate(&asus->wwan); 1338 asus_rfkill_terminate(&asus->bluetooth); 1339 asus_rfkill_terminate(&asus->wlan); 1340 asus_rfkill_terminate(&asus->gps); 1341 } 1342 1343 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1344 const char *name, int control_id, int type, 1345 const struct rfkill_ops *ops) 1346 { 1347 int result; 1348 1349 rfk->control_id = control_id; 1350 rfk->asus = asus; 1351 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, 1352 type, ops, rfk); 1353 if (!rfk->rfkill) 1354 return -EINVAL; 1355 1356 result = rfkill_register(rfk->rfkill); 1357 if (result) { 1358 rfkill_destroy(rfk->rfkill); 1359 rfk->rfkill = NULL; 1360 } 1361 1362 return result; 1363 } 1364 1365 static int asus_rfkill_init(struct asus_laptop *asus) 1366 { 1367 int result = 0; 1368 1369 if (asus->is_pega_lucid) 1370 return -ENODEV; 1371 1372 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && 1373 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && 1374 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) 1375 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", 1376 -1, RFKILL_TYPE_GPS, 1377 &asus_gps_rfkill_ops); 1378 if (result) 1379 goto exit; 1380 1381 1382 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) && 1383 asus->wled_type == TYPE_RFKILL) 1384 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", 1385 WL_RSTS, RFKILL_TYPE_WLAN, 1386 &asus_rfkill_ops); 1387 if (result) 1388 goto exit; 1389 1390 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) && 1391 asus->bled_type == TYPE_RFKILL) 1392 result = asus_rfkill_setup(asus, &asus->bluetooth, 1393 "asus-bluetooth", BT_RSTS, 1394 RFKILL_TYPE_BLUETOOTH, 1395 &asus_rfkill_ops); 1396 if (result) 1397 goto exit; 1398 1399 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL)) 1400 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan", 1401 WW_RSTS, RFKILL_TYPE_WWAN, 1402 &asus_rfkill_ops); 1403 if (result) 1404 goto exit; 1405 1406 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL)) 1407 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax", 1408 WM_RSTS, RFKILL_TYPE_WIMAX, 1409 &asus_rfkill_ops); 1410 if (result) 1411 goto exit; 1412 1413 exit: 1414 if (result) 1415 asus_rfkill_exit(asus); 1416 1417 return result; 1418 } 1419 1420 static int pega_rfkill_set(void *data, bool blocked) 1421 { 1422 struct asus_rfkill *rfk = data; 1423 1424 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); 1425 return ret; 1426 } 1427 1428 static const struct rfkill_ops pega_rfkill_ops = { 1429 .set_block = pega_rfkill_set, 1430 }; 1431 1432 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1433 const char *name, int controlid, int rfkill_type) 1434 { 1435 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, 1436 &pega_rfkill_ops); 1437 } 1438 1439 static int pega_rfkill_init(struct asus_laptop *asus) 1440 { 1441 int ret = 0; 1442 1443 if(!asus->is_pega_lucid) 1444 return -ENODEV; 1445 1446 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", 1447 PEGA_WLAN, RFKILL_TYPE_WLAN); 1448 if(ret) 1449 goto exit; 1450 1451 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", 1452 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); 1453 if(ret) 1454 goto exit; 1455 1456 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", 1457 PEGA_WWAN, RFKILL_TYPE_WWAN); 1458 1459 exit: 1460 if (ret) 1461 asus_rfkill_exit(asus); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * Input device (i.e. hotkeys) 1468 */ 1469 static void asus_input_notify(struct asus_laptop *asus, int event) 1470 { 1471 if (!asus->inputdev) 1472 return ; 1473 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) 1474 pr_info("Unknown key %x pressed\n", event); 1475 } 1476 1477 static int asus_input_init(struct asus_laptop *asus) 1478 { 1479 struct input_dev *input; 1480 int error; 1481 1482 input = input_allocate_device(); 1483 if (!input) 1484 return -ENOMEM; 1485 1486 input->name = "Asus Laptop extra buttons"; 1487 input->phys = ASUS_LAPTOP_FILE "/input0"; 1488 input->id.bustype = BUS_HOST; 1489 input->dev.parent = &asus->platform_device->dev; 1490 1491 error = sparse_keymap_setup(input, asus_keymap, NULL); 1492 if (error) { 1493 pr_err("Unable to setup input device keymap\n"); 1494 goto err_free_dev; 1495 } 1496 error = input_register_device(input); 1497 if (error) { 1498 pr_warn("Unable to register input device\n"); 1499 goto err_free_dev; 1500 } 1501 1502 asus->inputdev = input; 1503 return 0; 1504 1505 err_free_dev: 1506 input_free_device(input); 1507 return error; 1508 } 1509 1510 static void asus_input_exit(struct asus_laptop *asus) 1511 { 1512 if (asus->inputdev) 1513 input_unregister_device(asus->inputdev); 1514 asus->inputdev = NULL; 1515 } 1516 1517 /* 1518 * ACPI driver 1519 */ 1520 static void asus_acpi_notify(struct acpi_device *device, u32 event) 1521 { 1522 struct asus_laptop *asus = acpi_driver_data(device); 1523 u16 count; 1524 1525 /* TODO Find a better way to handle events count. */ 1526 count = asus->event_count[event % 128]++; 1527 acpi_bus_generate_netlink_event(asus->device->pnp.device_class, 1528 dev_name(&asus->device->dev), event, 1529 count); 1530 1531 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX) 1532 event = ATKD_BRNUP; 1533 else if (event >= ATKD_BRNDOWN_MIN && 1534 event <= ATKD_BRNDOWN_MAX) 1535 event = ATKD_BRNDOWN; 1536 1537 /* Brightness events are special */ 1538 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) { 1539 if (asus->backlight_device != NULL) { 1540 /* Update the backlight device. */ 1541 asus_backlight_notify(asus); 1542 return ; 1543 } 1544 } 1545 1546 /* Accelerometer "coarse orientation change" event */ 1547 if (asus->pega_accel_poll && event == 0xEA) { 1548 kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE); 1549 return ; 1550 } 1551 1552 asus_input_notify(asus, event); 1553 } 1554 1555 static struct attribute *asus_attributes[] = { 1556 &dev_attr_infos.attr, 1557 &dev_attr_wlan.attr, 1558 &dev_attr_bluetooth.attr, 1559 &dev_attr_wimax.attr, 1560 &dev_attr_wwan.attr, 1561 &dev_attr_display.attr, 1562 &dev_attr_ledd.attr, 1563 &dev_attr_ls_value.attr, 1564 &dev_attr_ls_level.attr, 1565 &dev_attr_ls_switch.attr, 1566 &dev_attr_gps.attr, 1567 NULL 1568 }; 1569 1570 static umode_t asus_sysfs_is_visible(struct kobject *kobj, 1571 struct attribute *attr, 1572 int idx) 1573 { 1574 struct device *dev = kobj_to_dev(kobj); 1575 struct asus_laptop *asus = dev_get_drvdata(dev); 1576 acpi_handle handle = asus->handle; 1577 bool supported; 1578 1579 if (asus->is_pega_lucid) { 1580 /* no ls_level interface on the Lucid */ 1581 if (attr == &dev_attr_ls_switch.attr) 1582 supported = true; 1583 else if (attr == &dev_attr_ls_level.attr) 1584 supported = false; 1585 else 1586 goto normal; 1587 1588 return supported ? attr->mode : 0; 1589 } 1590 1591 normal: 1592 if (attr == &dev_attr_wlan.attr) { 1593 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); 1594 1595 } else if (attr == &dev_attr_bluetooth.attr) { 1596 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); 1597 1598 } else if (attr == &dev_attr_display.attr) { 1599 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); 1600 1601 } else if (attr == &dev_attr_wimax.attr) { 1602 supported = 1603 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); 1604 1605 } else if (attr == &dev_attr_wwan.attr) { 1606 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); 1607 1608 } else if (attr == &dev_attr_ledd.attr) { 1609 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); 1610 1611 } else if (attr == &dev_attr_ls_switch.attr || 1612 attr == &dev_attr_ls_level.attr) { 1613 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && 1614 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); 1615 } else if (attr == &dev_attr_ls_value.attr) { 1616 supported = asus->is_pega_lucid; 1617 } else if (attr == &dev_attr_gps.attr) { 1618 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && 1619 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && 1620 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); 1621 } else { 1622 supported = true; 1623 } 1624 1625 return supported ? attr->mode : 0; 1626 } 1627 1628 1629 static const struct attribute_group asus_attr_group = { 1630 .is_visible = asus_sysfs_is_visible, 1631 .attrs = asus_attributes, 1632 }; 1633 1634 static int asus_platform_init(struct asus_laptop *asus) 1635 { 1636 int result; 1637 1638 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, PLATFORM_DEVID_NONE); 1639 if (!asus->platform_device) 1640 return -ENOMEM; 1641 platform_set_drvdata(asus->platform_device, asus); 1642 1643 result = platform_device_add(asus->platform_device); 1644 if (result) 1645 goto fail_platform_device; 1646 1647 result = sysfs_create_group(&asus->platform_device->dev.kobj, 1648 &asus_attr_group); 1649 if (result) 1650 goto fail_sysfs; 1651 1652 return 0; 1653 1654 fail_sysfs: 1655 platform_device_del(asus->platform_device); 1656 fail_platform_device: 1657 platform_device_put(asus->platform_device); 1658 return result; 1659 } 1660 1661 static void asus_platform_exit(struct asus_laptop *asus) 1662 { 1663 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); 1664 platform_device_unregister(asus->platform_device); 1665 } 1666 1667 static struct platform_driver platform_driver = { 1668 .driver = { 1669 .name = ASUS_LAPTOP_FILE, 1670 }, 1671 }; 1672 1673 /* 1674 * This function is used to initialize the context with right values. In this 1675 * method, we can make all the detection we want, and modify the asus_laptop 1676 * struct 1677 */ 1678 static int asus_laptop_get_info(struct asus_laptop *asus) 1679 { 1680 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1681 union acpi_object *model = NULL; 1682 unsigned long long bsts_result; 1683 char *string = NULL; 1684 acpi_status status; 1685 1686 /* 1687 * Get DSDT headers early enough to allow for differentiating between 1688 * models, but late enough to allow acpi_bus_register_driver() to fail 1689 * before doing anything ACPI-specific. Should we encounter a machine, 1690 * which needs special handling (i.e. its hotkey device has a different 1691 * HID), this bit will be moved. 1692 */ 1693 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); 1694 if (ACPI_FAILURE(status)) 1695 pr_warn("Couldn't get the DSDT table header\n"); 1696 1697 /* We have to write 0 on init this far for all ASUS models */ 1698 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { 1699 pr_err("Hotkey initialization failed\n"); 1700 return -ENODEV; 1701 } 1702 1703 /* This needs to be called for some laptops to init properly */ 1704 status = 1705 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); 1706 if (ACPI_FAILURE(status)) 1707 pr_warn("Error calling BSTS\n"); 1708 else if (bsts_result) 1709 pr_notice("BSTS called, 0x%02x returned\n", 1710 (uint) bsts_result); 1711 1712 /* This too ... */ 1713 if (write_acpi_int(asus->handle, "CWAP", wapf)) 1714 pr_err("Error calling CWAP(%d)\n", wapf); 1715 /* 1716 * Try to match the object returned by INIT to the specific model. 1717 * Handle every possible object (or the lack of thereof) the DSDT 1718 * writers might throw at us. When in trouble, we pass NULL to 1719 * asus_model_match() and try something completely different. 1720 */ 1721 if (buffer.pointer) { 1722 model = buffer.pointer; 1723 switch (model->type) { 1724 case ACPI_TYPE_STRING: 1725 string = model->string.pointer; 1726 break; 1727 case ACPI_TYPE_BUFFER: 1728 string = model->buffer.pointer; 1729 break; 1730 default: 1731 string = ""; 1732 break; 1733 } 1734 } 1735 asus->name = kstrdup(string, GFP_KERNEL); 1736 if (!asus->name) { 1737 kfree(buffer.pointer); 1738 return -ENOMEM; 1739 } 1740 1741 if (string) 1742 pr_notice(" %s model detected\n", string); 1743 1744 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) 1745 asus->have_rsts = true; 1746 1747 kfree(model); 1748 1749 return AE_OK; 1750 } 1751 1752 static int asus_acpi_init(struct asus_laptop *asus) 1753 { 1754 int result = 0; 1755 1756 result = acpi_bus_get_status(asus->device); 1757 if (result) 1758 return result; 1759 if (!asus->device->status.present) { 1760 pr_err("Hotkey device not present, aborting\n"); 1761 return -ENODEV; 1762 } 1763 1764 result = asus_laptop_get_info(asus); 1765 if (result) 1766 return result; 1767 1768 if (!strcmp(bled_type, "led")) 1769 asus->bled_type = TYPE_LED; 1770 else if (!strcmp(bled_type, "rfkill")) 1771 asus->bled_type = TYPE_RFKILL; 1772 1773 if (!strcmp(wled_type, "led")) 1774 asus->wled_type = TYPE_LED; 1775 else if (!strcmp(wled_type, "rfkill")) 1776 asus->wled_type = TYPE_RFKILL; 1777 1778 if (bluetooth_status >= 0) 1779 asus_bluetooth_set(asus, !!bluetooth_status); 1780 1781 if (wlan_status >= 0) 1782 asus_wlan_set(asus, !!wlan_status); 1783 1784 if (wimax_status >= 0) 1785 asus_wimax_set(asus, !!wimax_status); 1786 1787 if (wwan_status >= 0) 1788 asus_wwan_set(asus, !!wwan_status); 1789 1790 /* Keyboard Backlight is on by default */ 1791 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) 1792 asus_kled_set(asus, 1); 1793 1794 /* LED display is off by default */ 1795 asus->ledd_status = 0xFFF; 1796 1797 /* Set initial values of light sensor and level */ 1798 asus->light_switch = !!als_status; 1799 asus->light_level = 5; /* level 5 for sensor sensitivity */ 1800 1801 if (asus->is_pega_lucid) { 1802 asus_als_switch(asus, asus->light_switch); 1803 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && 1804 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { 1805 asus_als_switch(asus, asus->light_switch); 1806 asus_als_level(asus, asus->light_level); 1807 } 1808 1809 return result; 1810 } 1811 1812 static void asus_dmi_check(void) 1813 { 1814 const char *model; 1815 1816 model = dmi_get_system_info(DMI_PRODUCT_NAME); 1817 if (!model) 1818 return; 1819 1820 /* On L1400B WLED control the sound card, don't mess with it ... */ 1821 if (strncmp(model, "L1400B", 6) == 0) 1822 wlan_status = -1; 1823 } 1824 1825 static bool asus_device_present; 1826 1827 static int asus_acpi_add(struct acpi_device *device) 1828 { 1829 struct asus_laptop *asus; 1830 int result; 1831 1832 pr_notice("Asus Laptop Support version %s\n", 1833 ASUS_LAPTOP_VERSION); 1834 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); 1835 if (!asus) 1836 return -ENOMEM; 1837 asus->handle = device->handle; 1838 strscpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); 1839 strscpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); 1840 device->driver_data = asus; 1841 asus->device = device; 1842 1843 asus_dmi_check(); 1844 1845 result = asus_acpi_init(asus); 1846 if (result) 1847 goto fail_platform; 1848 1849 /* 1850 * Need platform type detection first, then the platform 1851 * device. It is used as a parent for the sub-devices below. 1852 */ 1853 asus->is_pega_lucid = asus_check_pega_lucid(asus); 1854 result = asus_platform_init(asus); 1855 if (result) 1856 goto fail_platform; 1857 1858 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { 1859 result = asus_backlight_init(asus); 1860 if (result) 1861 goto fail_backlight; 1862 } 1863 1864 result = asus_input_init(asus); 1865 if (result) 1866 goto fail_input; 1867 1868 result = asus_led_init(asus); 1869 if (result) 1870 goto fail_led; 1871 1872 result = asus_rfkill_init(asus); 1873 if (result && result != -ENODEV) 1874 goto fail_rfkill; 1875 1876 result = pega_accel_init(asus); 1877 if (result && result != -ENODEV) 1878 goto fail_pega_accel; 1879 1880 result = pega_rfkill_init(asus); 1881 if (result && result != -ENODEV) 1882 goto fail_pega_rfkill; 1883 1884 asus_device_present = true; 1885 return 0; 1886 1887 fail_pega_rfkill: 1888 pega_accel_exit(asus); 1889 fail_pega_accel: 1890 asus_rfkill_exit(asus); 1891 fail_rfkill: 1892 asus_led_exit(asus); 1893 fail_led: 1894 asus_input_exit(asus); 1895 fail_input: 1896 asus_backlight_exit(asus); 1897 fail_backlight: 1898 asus_platform_exit(asus); 1899 fail_platform: 1900 kfree(asus); 1901 1902 return result; 1903 } 1904 1905 static void asus_acpi_remove(struct acpi_device *device) 1906 { 1907 struct asus_laptop *asus = acpi_driver_data(device); 1908 1909 asus_backlight_exit(asus); 1910 asus_rfkill_exit(asus); 1911 asus_led_exit(asus); 1912 asus_input_exit(asus); 1913 pega_accel_exit(asus); 1914 asus_platform_exit(asus); 1915 1916 kfree(asus->name); 1917 kfree(asus); 1918 } 1919 1920 static const struct acpi_device_id asus_device_ids[] = { 1921 {"ATK0100", 0}, 1922 {"ATK0101", 0}, 1923 {"", 0}, 1924 }; 1925 MODULE_DEVICE_TABLE(acpi, asus_device_ids); 1926 1927 static struct acpi_driver asus_acpi_driver = { 1928 .name = ASUS_LAPTOP_NAME, 1929 .class = ASUS_LAPTOP_CLASS, 1930 .ids = asus_device_ids, 1931 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, 1932 .ops = { 1933 .add = asus_acpi_add, 1934 .remove = asus_acpi_remove, 1935 .notify = asus_acpi_notify, 1936 }, 1937 }; 1938 1939 static int __init asus_laptop_init(void) 1940 { 1941 int result; 1942 1943 result = platform_driver_register(&platform_driver); 1944 if (result < 0) 1945 return result; 1946 1947 result = acpi_bus_register_driver(&asus_acpi_driver); 1948 if (result < 0) 1949 goto fail_acpi_driver; 1950 if (!asus_device_present) { 1951 result = -ENODEV; 1952 goto fail_no_device; 1953 } 1954 return 0; 1955 1956 fail_no_device: 1957 acpi_bus_unregister_driver(&asus_acpi_driver); 1958 fail_acpi_driver: 1959 platform_driver_unregister(&platform_driver); 1960 return result; 1961 } 1962 1963 static void __exit asus_laptop_exit(void) 1964 { 1965 acpi_bus_unregister_driver(&asus_acpi_driver); 1966 platform_driver_unregister(&platform_driver); 1967 } 1968 1969 module_init(asus_laptop_init); 1970 module_exit(asus_laptop_exit); 1971