1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
31 #include <linux/perf_event.h>
32 #include <linux/platform_device.h>
33 
34 #include "arm_cspmu.h"
35 
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38 
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
40 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
41 				(unsigned long)_config)
42 
43 /* Each SET/CLR register supports up to 32 counters. */
44 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
45 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
46 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
47 
48 /* Convert counter idx into SET/CLR register number. */
49 #define COUNTER_TO_SET_CLR_ID(idx)			\
50 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
51 
52 /* Convert counter idx into SET/CLR register bit. */
53 #define COUNTER_TO_SET_CLR_BIT(idx)			\
54 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
55 
56 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
57 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
58 
59 /*
60  * Maximum poll count for reading counter value using high-low-high sequence.
61  */
62 #define HILOHI_MAX_POLL	1000
63 
64 static unsigned long arm_cspmu_cpuhp_state;
65 
66 static DEFINE_MUTEX(arm_cspmu_lock);
67 
68 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
69 				    const struct perf_event *event);
70 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
71 				    const struct perf_event *event);
72 
73 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
74 {
75 	struct acpi_apmt_node **ptr = dev_get_platdata(dev);
76 
77 	return ptr ? *ptr : NULL;
78 }
79 
80 /*
81  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
82  * counter register. The counter register can be implemented as 32-bit or 64-bit
83  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
84  * single-copy 64-bit atomic support is implementation defined. APMT node flag
85  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
86  * single copy atomic is not supported, the driver treats the register as a pair
87  * of 32-bit register.
88  */
89 
90 /*
91  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
92  */
93 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
94 {
95 	u32 val_lo, val_hi;
96 	u64 val;
97 
98 	/* Use high-low-high sequence to avoid tearing */
99 	do {
100 		if (max_poll_count-- == 0) {
101 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
102 			return 0;
103 		}
104 
105 		val_hi = readl(addr + 4);
106 		val_lo = readl(addr);
107 	} while (val_hi != readl(addr + 4));
108 
109 	val = (((u64)val_hi << 32) | val_lo);
110 
111 	return val;
112 }
113 
114 /* Check if cycle counter is supported. */
115 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
116 {
117 	return (cspmu->pmcfgr & PMCFGR_CC);
118 }
119 
120 /* Get counter size, which is (PMCFGR_SIZE + 1). */
121 static inline u32 counter_size(const struct arm_cspmu *cspmu)
122 {
123 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
124 }
125 
126 /* Get counter mask. */
127 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
128 {
129 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
130 }
131 
132 /* Check if counter is implemented as 64-bit register. */
133 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
134 {
135 	return (counter_size(cspmu) > 32);
136 }
137 
138 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
139 				struct device_attribute *attr, char *buf)
140 {
141 	struct perf_pmu_events_attr *pmu_attr;
142 
143 	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
144 	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
145 }
146 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
147 
148 /* Default event list. */
149 static struct attribute *arm_cspmu_event_attrs[] = {
150 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
151 	NULL,
152 };
153 
154 static struct attribute **
155 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
156 {
157 	struct attribute **attrs;
158 
159 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
160 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
161 
162 	return attrs;
163 }
164 
165 static umode_t
166 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
167 				struct attribute *attr, int unused)
168 {
169 	struct device *dev = kobj_to_dev(kobj);
170 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
171 	struct perf_pmu_events_attr *eattr;
172 
173 	eattr = container_of(attr, typeof(*eattr), attr.attr);
174 
175 	/* Hide cycle event if not supported */
176 	if (!supports_cycle_counter(cspmu) &&
177 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
178 		return 0;
179 
180 	return attr->mode;
181 }
182 
183 static struct attribute *arm_cspmu_format_attrs[] = {
184 	ARM_CSPMU_FORMAT_EVENT_ATTR,
185 	ARM_CSPMU_FORMAT_FILTER_ATTR,
186 	ARM_CSPMU_FORMAT_FILTER2_ATTR,
187 	NULL,
188 };
189 
190 static struct attribute **
191 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
192 {
193 	struct attribute **attrs;
194 
195 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
196 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
197 
198 	return attrs;
199 }
200 
201 static u32 arm_cspmu_event_type(const struct perf_event *event)
202 {
203 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
204 }
205 
206 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
207 {
208 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
209 }
210 
211 static ssize_t arm_cspmu_identifier_show(struct device *dev,
212 					 struct device_attribute *attr,
213 					 char *page)
214 {
215 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
216 
217 	return sysfs_emit(page, "%s\n", cspmu->identifier);
218 }
219 
220 static struct device_attribute arm_cspmu_identifier_attr =
221 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
222 
223 static struct attribute *arm_cspmu_identifier_attrs[] = {
224 	&arm_cspmu_identifier_attr.attr,
225 	NULL,
226 };
227 
228 static struct attribute_group arm_cspmu_identifier_attr_group = {
229 	.attrs = arm_cspmu_identifier_attrs,
230 };
231 
232 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
233 {
234 	const char *identifier =
235 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
236 			       cspmu->impl.pmiidr);
237 	return identifier;
238 }
239 
240 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
241 	"mc",
242 	"smmu",
243 	"pcie",
244 	"acpi",
245 	"cache",
246 };
247 
248 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
249 {
250 	struct device *dev;
251 	struct acpi_apmt_node *apmt_node;
252 	u8 pmu_type;
253 	char *name;
254 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
255 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
256 
257 	dev = cspmu->dev;
258 	apmt_node = arm_cspmu_apmt_node(dev);
259 	if (!apmt_node)
260 		return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
261 				      atomic_fetch_inc(&pmu_idx[0]));
262 
263 	pmu_type = apmt_node->type;
264 
265 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
266 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
267 		return NULL;
268 	}
269 
270 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
271 		memcpy(acpi_hid_string,
272 			&apmt_node->inst_primary,
273 			sizeof(apmt_node->inst_primary));
274 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
275 				      arm_cspmu_type_str[pmu_type],
276 				      acpi_hid_string,
277 				      apmt_node->inst_secondary);
278 	} else {
279 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
280 				      arm_cspmu_type_str[pmu_type],
281 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
282 	}
283 
284 	return name;
285 }
286 
287 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
288 				      struct device_attribute *attr,
289 				      char *buf)
290 {
291 	struct pmu *pmu = dev_get_drvdata(dev);
292 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
293 	struct dev_ext_attribute *eattr =
294 		container_of(attr, struct dev_ext_attribute, attr);
295 	unsigned long mask_id = (unsigned long)eattr->var;
296 	const cpumask_t *cpumask;
297 
298 	switch (mask_id) {
299 	case ARM_CSPMU_ACTIVE_CPU_MASK:
300 		cpumask = &cspmu->active_cpu;
301 		break;
302 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
303 		cpumask = &cspmu->associated_cpus;
304 		break;
305 	default:
306 		return 0;
307 	}
308 	return cpumap_print_to_pagebuf(true, buf, cpumask);
309 }
310 
311 static struct attribute *arm_cspmu_cpumask_attrs[] = {
312 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
313 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
314 	NULL,
315 };
316 
317 static struct attribute_group arm_cspmu_cpumask_attr_group = {
318 	.attrs = arm_cspmu_cpumask_attrs,
319 };
320 
321 static struct arm_cspmu_impl_match impl_match[] = {
322 	{
323 		.module_name	= "nvidia_cspmu",
324 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
325 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
326 		.module		= NULL,
327 		.impl_init_ops	= NULL,
328 	},
329 	{
330 		.module_name	= "ampere_cspmu",
331 		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
332 		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
333 		.module		= NULL,
334 		.impl_init_ops	= NULL,
335 	},
336 
337 	{0}
338 };
339 
340 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
341 {
342 	struct arm_cspmu_impl_match *match = impl_match;
343 
344 	for (; match->pmiidr_val; match++) {
345 		u32 mask = match->pmiidr_mask;
346 
347 		if ((match->pmiidr_val & mask) == (pmiidr & mask))
348 			return match;
349 	}
350 
351 	return NULL;
352 }
353 
354 #define DEFAULT_IMPL_OP(name)	.name = arm_cspmu_##name
355 
356 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
357 {
358 	int ret = 0;
359 	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
360 	struct arm_cspmu_impl_match *match;
361 
362 	/* Start with a default PMU implementation */
363 	cspmu->impl.module = THIS_MODULE;
364 	cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
365 	cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
366 		DEFAULT_IMPL_OP(get_event_attrs),
367 		DEFAULT_IMPL_OP(get_format_attrs),
368 		DEFAULT_IMPL_OP(get_identifier),
369 		DEFAULT_IMPL_OP(get_name),
370 		DEFAULT_IMPL_OP(is_cycle_counter_event),
371 		DEFAULT_IMPL_OP(event_type),
372 		DEFAULT_IMPL_OP(set_cc_filter),
373 		DEFAULT_IMPL_OP(set_ev_filter),
374 		DEFAULT_IMPL_OP(event_attr_is_visible),
375 	};
376 
377 	/* Firmware may override implementer/product ID from PMIIDR */
378 	if (apmt_node && apmt_node->impl_id)
379 		cspmu->impl.pmiidr = apmt_node->impl_id;
380 
381 	/* Find implementer specific attribute ops. */
382 	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
383 
384 	/* Load implementer module and initialize the callbacks. */
385 	if (match) {
386 		mutex_lock(&arm_cspmu_lock);
387 
388 		if (match->impl_init_ops) {
389 			/* Prevent unload until PMU registration is done. */
390 			if (try_module_get(match->module)) {
391 				cspmu->impl.module = match->module;
392 				cspmu->impl.match = match;
393 				ret = match->impl_init_ops(cspmu);
394 				if (ret)
395 					module_put(match->module);
396 			} else {
397 				WARN(1, "arm_cspmu failed to get module: %s\n",
398 					match->module_name);
399 				ret = -EINVAL;
400 			}
401 		} else {
402 			request_module_nowait(match->module_name);
403 			ret = -EPROBE_DEFER;
404 		}
405 
406 		mutex_unlock(&arm_cspmu_lock);
407 	}
408 
409 	return ret;
410 }
411 
412 static struct attribute_group *
413 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
414 {
415 	struct attribute_group *event_group;
416 	struct device *dev = cspmu->dev;
417 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
418 
419 	event_group =
420 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
421 	if (!event_group)
422 		return NULL;
423 
424 	event_group->name = "events";
425 	event_group->is_visible = impl_ops->event_attr_is_visible;
426 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
427 
428 	if (!event_group->attrs)
429 		return NULL;
430 
431 	return event_group;
432 }
433 
434 static struct attribute_group *
435 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
436 {
437 	struct attribute_group *format_group;
438 	struct device *dev = cspmu->dev;
439 
440 	format_group =
441 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
442 	if (!format_group)
443 		return NULL;
444 
445 	format_group->name = "format";
446 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
447 
448 	if (!format_group->attrs)
449 		return NULL;
450 
451 	return format_group;
452 }
453 
454 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
455 {
456 	const struct attribute_group **attr_groups = cspmu->attr_groups;
457 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
458 
459 	cspmu->identifier = impl_ops->get_identifier(cspmu);
460 	cspmu->name = impl_ops->get_name(cspmu);
461 
462 	if (!cspmu->identifier || !cspmu->name)
463 		return -ENOMEM;
464 
465 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
466 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
467 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
468 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
469 
470 	if (!attr_groups[0] || !attr_groups[1])
471 		return -ENOMEM;
472 
473 	return 0;
474 }
475 
476 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
477 {
478 	writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
479 }
480 
481 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
482 {
483 	writel(PMCR_E, cspmu->base0 + PMCR);
484 }
485 
486 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
487 {
488 	writel(0, cspmu->base0 + PMCR);
489 }
490 
491 static void arm_cspmu_enable(struct pmu *pmu)
492 {
493 	bool disabled;
494 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
495 
496 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
497 				cspmu->num_logical_ctrs);
498 
499 	if (disabled)
500 		return;
501 
502 	arm_cspmu_start_counters(cspmu);
503 }
504 
505 static void arm_cspmu_disable(struct pmu *pmu)
506 {
507 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
508 
509 	arm_cspmu_stop_counters(cspmu);
510 }
511 
512 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
513 				struct perf_event *event)
514 {
515 	int idx, ret;
516 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
517 
518 	if (supports_cycle_counter(cspmu)) {
519 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
520 			/* Search for available cycle counter. */
521 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
522 					     hw_events->used_ctrs))
523 				return -EAGAIN;
524 
525 			return cspmu->cycle_counter_logical_idx;
526 		}
527 
528 		/*
529 		 * Search a regular counter from the used counter bitmap.
530 		 * The cycle counter divides the bitmap into two parts. Search
531 		 * the first then second half to exclude the cycle counter bit.
532 		 */
533 		idx = find_first_zero_bit(hw_events->used_ctrs,
534 					  cspmu->cycle_counter_logical_idx);
535 		if (idx >= cspmu->cycle_counter_logical_idx) {
536 			idx = find_next_zero_bit(
537 				hw_events->used_ctrs,
538 				cspmu->num_logical_ctrs,
539 				cspmu->cycle_counter_logical_idx + 1);
540 		}
541 	} else {
542 		idx = find_first_zero_bit(hw_events->used_ctrs,
543 					  cspmu->num_logical_ctrs);
544 	}
545 
546 	if (idx >= cspmu->num_logical_ctrs)
547 		return -EAGAIN;
548 
549 	if (cspmu->impl.ops.validate_event) {
550 		ret = cspmu->impl.ops.validate_event(cspmu, event);
551 		if (ret)
552 			return ret;
553 	}
554 
555 	set_bit(idx, hw_events->used_ctrs);
556 
557 	return idx;
558 }
559 
560 static bool arm_cspmu_validate_event(struct pmu *pmu,
561 				 struct arm_cspmu_hw_events *hw_events,
562 				 struct perf_event *event)
563 {
564 	if (is_software_event(event))
565 		return true;
566 
567 	/* Reject groups spanning multiple HW PMUs. */
568 	if (event->pmu != pmu)
569 		return false;
570 
571 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
572 }
573 
574 /*
575  * Make sure the group of events can be scheduled at once
576  * on the PMU.
577  */
578 static bool arm_cspmu_validate_group(struct perf_event *event)
579 {
580 	struct perf_event *sibling, *leader = event->group_leader;
581 	struct arm_cspmu_hw_events fake_hw_events;
582 
583 	if (event->group_leader == event)
584 		return true;
585 
586 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
587 
588 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
589 		return false;
590 
591 	for_each_sibling_event(sibling, leader) {
592 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
593 						  sibling))
594 			return false;
595 	}
596 
597 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
598 }
599 
600 static int arm_cspmu_event_init(struct perf_event *event)
601 {
602 	struct arm_cspmu *cspmu;
603 	struct hw_perf_event *hwc = &event->hw;
604 
605 	cspmu = to_arm_cspmu(event->pmu);
606 
607 	if (event->attr.type != event->pmu->type)
608 		return -ENOENT;
609 
610 	/*
611 	 * Following other "uncore" PMUs, we do not support sampling mode or
612 	 * attach to a task (per-process mode).
613 	 */
614 	if (is_sampling_event(event)) {
615 		dev_dbg(cspmu->pmu.dev,
616 			"Can't support sampling events\n");
617 		return -EOPNOTSUPP;
618 	}
619 
620 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
621 		dev_dbg(cspmu->pmu.dev,
622 			"Can't support per-task counters\n");
623 		return -EINVAL;
624 	}
625 
626 	/*
627 	 * Make sure the CPU assignment is on one of the CPUs associated with
628 	 * this PMU.
629 	 */
630 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
631 		dev_dbg(cspmu->pmu.dev,
632 			"Requested cpu is not associated with the PMU\n");
633 		return -EINVAL;
634 	}
635 
636 	/* Enforce the current active CPU to handle the events in this PMU. */
637 	event->cpu = cpumask_first(&cspmu->active_cpu);
638 	if (event->cpu >= nr_cpu_ids)
639 		return -EINVAL;
640 
641 	if (!arm_cspmu_validate_group(event))
642 		return -EINVAL;
643 
644 	/*
645 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
646 	 * The physical counter id is tracked with hw_perf_event.idx.
647 	 * We don't assign an index until we actually place the event onto
648 	 * hardware. Use -1 to signify that we haven't decided where to put it
649 	 * yet.
650 	 */
651 	hwc->idx = -1;
652 	hwc->extra_reg.idx = -1;
653 	hwc->config = cspmu->impl.ops.event_type(event);
654 
655 	return 0;
656 }
657 
658 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
659 {
660 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
661 }
662 
663 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
664 {
665 	u32 offset;
666 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
667 
668 	if (use_64b_counter_reg(cspmu)) {
669 		offset = counter_offset(sizeof(u64), event->hw.idx);
670 
671 		if (cspmu->has_atomic_dword)
672 			writeq(val, cspmu->base1 + offset);
673 		else
674 			lo_hi_writeq(val, cspmu->base1 + offset);
675 	} else {
676 		offset = counter_offset(sizeof(u32), event->hw.idx);
677 
678 		writel(lower_32_bits(val), cspmu->base1 + offset);
679 	}
680 }
681 
682 static u64 arm_cspmu_read_counter(struct perf_event *event)
683 {
684 	u32 offset;
685 	const void __iomem *counter_addr;
686 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
687 
688 	if (use_64b_counter_reg(cspmu)) {
689 		offset = counter_offset(sizeof(u64), event->hw.idx);
690 		counter_addr = cspmu->base1 + offset;
691 
692 		return cspmu->has_atomic_dword ?
693 			       readq(counter_addr) :
694 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
695 	}
696 
697 	offset = counter_offset(sizeof(u32), event->hw.idx);
698 	return readl(cspmu->base1 + offset);
699 }
700 
701 /*
702  * arm_cspmu_set_event_period: Set the period for the counter.
703  *
704  * To handle cases of extreme interrupt latency, we program
705  * the counter with half of the max count for the counters.
706  */
707 static void arm_cspmu_set_event_period(struct perf_event *event)
708 {
709 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
710 	u64 val = counter_mask(cspmu) >> 1ULL;
711 
712 	local64_set(&event->hw.prev_count, val);
713 	arm_cspmu_write_counter(event, val);
714 }
715 
716 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
717 {
718 	u32 reg_id, reg_bit, inten_off, cnten_off;
719 
720 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
721 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
722 
723 	inten_off = PMINTENSET + (4 * reg_id);
724 	cnten_off = PMCNTENSET + (4 * reg_id);
725 
726 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
727 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
728 }
729 
730 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
731 {
732 	u32 reg_id, reg_bit, inten_off, cnten_off;
733 
734 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
735 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
736 
737 	inten_off = PMINTENCLR + (4 * reg_id);
738 	cnten_off = PMCNTENCLR + (4 * reg_id);
739 
740 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
741 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
742 }
743 
744 static void arm_cspmu_event_update(struct perf_event *event)
745 {
746 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
747 	struct hw_perf_event *hwc = &event->hw;
748 	u64 delta, prev, now;
749 
750 	do {
751 		prev = local64_read(&hwc->prev_count);
752 		now = arm_cspmu_read_counter(event);
753 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
754 
755 	delta = (now - prev) & counter_mask(cspmu);
756 	local64_add(delta, &event->count);
757 }
758 
759 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
760 					struct hw_perf_event *hwc)
761 {
762 	u32 offset = PMEVTYPER + (4 * hwc->idx);
763 
764 	writel(hwc->config, cspmu->base0 + offset);
765 }
766 
767 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
768 				    const struct perf_event *event)
769 {
770 	u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
771 	u32 filter2 = event->attr.config2 & ARM_CSPMU_FILTER_MASK;
772 	u32 offset = 4 * event->hw.idx;
773 
774 	writel(filter, cspmu->base0 + PMEVFILTR + offset);
775 	writel(filter2, cspmu->base0 + PMEVFILT2R + offset);
776 }
777 
778 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
779 				    const struct perf_event *event)
780 {
781 	u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
782 
783 	writel(filter, cspmu->base0 + PMCCFILTR);
784 }
785 
786 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
787 {
788 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
789 	struct hw_perf_event *hwc = &event->hw;
790 
791 	/* We always reprogram the counter */
792 	if (pmu_flags & PERF_EF_RELOAD)
793 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
794 
795 	arm_cspmu_set_event_period(event);
796 
797 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
798 		cspmu->impl.ops.set_cc_filter(cspmu, event);
799 	} else {
800 		arm_cspmu_set_event(cspmu, hwc);
801 		cspmu->impl.ops.set_ev_filter(cspmu, event);
802 	}
803 
804 	hwc->state = 0;
805 
806 	arm_cspmu_enable_counter(cspmu, hwc->idx);
807 }
808 
809 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
810 {
811 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
812 	struct hw_perf_event *hwc = &event->hw;
813 
814 	if (hwc->state & PERF_HES_STOPPED)
815 		return;
816 
817 	arm_cspmu_disable_counter(cspmu, hwc->idx);
818 	arm_cspmu_event_update(event);
819 
820 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
821 }
822 
823 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
824 {
825 	return (idx == cspmu->cycle_counter_logical_idx) ?
826 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
827 }
828 
829 static int arm_cspmu_add(struct perf_event *event, int flags)
830 {
831 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
832 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
833 	struct hw_perf_event *hwc = &event->hw;
834 	int idx;
835 
836 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
837 					   &cspmu->associated_cpus)))
838 		return -ENOENT;
839 
840 	idx = arm_cspmu_get_event_idx(hw_events, event);
841 	if (idx < 0)
842 		return idx;
843 
844 	hw_events->events[idx] = event;
845 	hwc->idx = to_phys_idx(cspmu, idx);
846 	hwc->extra_reg.idx = idx;
847 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
848 
849 	if (flags & PERF_EF_START)
850 		arm_cspmu_start(event, PERF_EF_RELOAD);
851 
852 	/* Propagate changes to the userspace mapping. */
853 	perf_event_update_userpage(event);
854 
855 	return 0;
856 }
857 
858 static void arm_cspmu_del(struct perf_event *event, int flags)
859 {
860 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
861 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
862 	struct hw_perf_event *hwc = &event->hw;
863 	int idx = hwc->extra_reg.idx;
864 
865 	arm_cspmu_stop(event, PERF_EF_UPDATE);
866 
867 	hw_events->events[idx] = NULL;
868 
869 	clear_bit(idx, hw_events->used_ctrs);
870 
871 	perf_event_update_userpage(event);
872 }
873 
874 static void arm_cspmu_read(struct perf_event *event)
875 {
876 	arm_cspmu_event_update(event);
877 }
878 
879 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
880 {
881 	struct acpi_apmt_node *apmt_node;
882 	struct arm_cspmu *cspmu;
883 	struct device *dev = &pdev->dev;
884 
885 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
886 	if (!cspmu)
887 		return NULL;
888 
889 	cspmu->dev = dev;
890 	platform_set_drvdata(pdev, cspmu);
891 
892 	apmt_node = arm_cspmu_apmt_node(dev);
893 	if (apmt_node) {
894 		cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
895 	} else {
896 		u32 width = 0;
897 
898 		device_property_read_u32(dev, "reg-io-width", &width);
899 		cspmu->has_atomic_dword = (width == 8);
900 	}
901 
902 	return cspmu;
903 }
904 
905 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
906 {
907 	struct device *dev;
908 	struct platform_device *pdev;
909 
910 	dev = cspmu->dev;
911 	pdev = to_platform_device(dev);
912 
913 	/* Base address for page 0. */
914 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
915 	if (IS_ERR(cspmu->base0)) {
916 		dev_err(dev, "ioremap failed for page-0 resource\n");
917 		return PTR_ERR(cspmu->base0);
918 	}
919 
920 	/* Base address for page 1 if supported. Otherwise point to page 0. */
921 	cspmu->base1 = cspmu->base0;
922 	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
923 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
924 		if (IS_ERR(cspmu->base1)) {
925 			dev_err(dev, "ioremap failed for page-1 resource\n");
926 			return PTR_ERR(cspmu->base1);
927 		}
928 	}
929 
930 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
931 
932 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
933 
934 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
935 
936 	if (supports_cycle_counter(cspmu)) {
937 		/*
938 		 * The last logical counter is mapped to cycle counter if
939 		 * there is a gap between regular and cycle counter. Otherwise,
940 		 * logical and physical have 1-to-1 mapping.
941 		 */
942 		cspmu->cycle_counter_logical_idx =
943 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
944 				cspmu->num_logical_ctrs - 1 :
945 				ARM_CSPMU_CYCLE_CNTR_IDX;
946 	}
947 
948 	cspmu->num_set_clr_reg =
949 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
950 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
951 
952 	cspmu->hw_events.events =
953 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
954 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
955 
956 	if (!cspmu->hw_events.events)
957 		return -ENOMEM;
958 
959 	return 0;
960 }
961 
962 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
963 					       u32 *pmovs)
964 {
965 	int i;
966 	u32 pmovclr_offset = PMOVSCLR;
967 	u32 has_overflowed = 0;
968 
969 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
970 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
971 		has_overflowed |= pmovs[i];
972 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
973 		pmovclr_offset += sizeof(u32);
974 	}
975 
976 	return has_overflowed != 0;
977 }
978 
979 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
980 {
981 	int idx, has_overflowed;
982 	struct perf_event *event;
983 	struct arm_cspmu *cspmu = dev;
984 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
985 	bool handled = false;
986 
987 	arm_cspmu_stop_counters(cspmu);
988 
989 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
990 	if (!has_overflowed)
991 		goto done;
992 
993 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
994 			cspmu->num_logical_ctrs) {
995 		event = cspmu->hw_events.events[idx];
996 
997 		if (!event)
998 			continue;
999 
1000 		if (!test_bit(event->hw.idx, pmovs))
1001 			continue;
1002 
1003 		arm_cspmu_event_update(event);
1004 		arm_cspmu_set_event_period(event);
1005 
1006 		handled = true;
1007 	}
1008 
1009 done:
1010 	arm_cspmu_start_counters(cspmu);
1011 	return IRQ_RETVAL(handled);
1012 }
1013 
1014 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1015 {
1016 	int irq, ret;
1017 	struct device *dev;
1018 	struct platform_device *pdev;
1019 
1020 	dev = cspmu->dev;
1021 	pdev = to_platform_device(dev);
1022 
1023 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1024 	irq = platform_get_irq_optional(pdev, 0);
1025 	if (irq < 0)
1026 		return irq == -ENXIO ? 0 : irq;
1027 
1028 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1029 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1030 			       cspmu);
1031 	if (ret) {
1032 		dev_err(dev, "Could not request IRQ %d\n", irq);
1033 		return ret;
1034 	}
1035 
1036 	cspmu->irq = irq;
1037 
1038 	return 0;
1039 }
1040 
1041 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1042 #include <acpi/processor.h>
1043 
1044 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1045 {
1046 	struct device *cpu_dev;
1047 	struct acpi_device *acpi_dev;
1048 
1049 	cpu_dev = get_cpu_device(cpu);
1050 	if (!cpu_dev)
1051 		return -ENODEV;
1052 
1053 	acpi_dev = ACPI_COMPANION(cpu_dev);
1054 	while (acpi_dev) {
1055 		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1056 			return 0;
1057 
1058 		acpi_dev = acpi_dev_parent(acpi_dev);
1059 	}
1060 
1061 	return -ENODEV;
1062 }
1063 
1064 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1065 {
1066 	struct acpi_apmt_node *apmt_node;
1067 	int affinity_flag;
1068 	int cpu;
1069 
1070 	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1071 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1072 
1073 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1074 		for_each_possible_cpu(cpu) {
1075 			if (apmt_node->proc_affinity ==
1076 			    get_acpi_id_for_cpu(cpu)) {
1077 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1078 				break;
1079 			}
1080 		}
1081 	} else {
1082 		for_each_possible_cpu(cpu) {
1083 			if (arm_cspmu_find_cpu_container(
1084 				    cpu, apmt_node->proc_affinity))
1085 				continue;
1086 
1087 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1088 		}
1089 	}
1090 
1091 	return 0;
1092 }
1093 #else
1094 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1095 {
1096 	return -ENODEV;
1097 }
1098 #endif
1099 
1100 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1101 {
1102 	struct of_phandle_iterator it;
1103 	int ret, cpu;
1104 
1105 	of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1106 		cpu = of_cpu_node_to_id(it.node);
1107 		if (cpu < 0)
1108 			continue;
1109 		cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1110 	}
1111 	return ret == -ENOENT ? 0 : ret;
1112 }
1113 
1114 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1115 {
1116 	int ret = 0;
1117 
1118 	if (arm_cspmu_apmt_node(cspmu->dev))
1119 		ret = arm_cspmu_acpi_get_cpus(cspmu);
1120 	else if (device_property_present(cspmu->dev, "cpus"))
1121 		ret = arm_cspmu_of_get_cpus(cspmu);
1122 	else
1123 		cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1124 
1125 	if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1126 		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1127 		ret = -ENODEV;
1128 	}
1129 	return ret;
1130 }
1131 
1132 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1133 {
1134 	int ret, capabilities;
1135 
1136 	ret = arm_cspmu_alloc_attr_groups(cspmu);
1137 	if (ret)
1138 		return ret;
1139 
1140 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1141 				       &cspmu->cpuhp_node);
1142 	if (ret)
1143 		return ret;
1144 
1145 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1146 	if (cspmu->irq == 0)
1147 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1148 
1149 	cspmu->pmu = (struct pmu){
1150 		.task_ctx_nr	= perf_invalid_context,
1151 		.module		= cspmu->impl.module,
1152 		.parent		= cspmu->dev,
1153 		.pmu_enable	= arm_cspmu_enable,
1154 		.pmu_disable	= arm_cspmu_disable,
1155 		.event_init	= arm_cspmu_event_init,
1156 		.add		= arm_cspmu_add,
1157 		.del		= arm_cspmu_del,
1158 		.start		= arm_cspmu_start,
1159 		.stop		= arm_cspmu_stop,
1160 		.read		= arm_cspmu_read,
1161 		.attr_groups	= cspmu->attr_groups,
1162 		.capabilities	= capabilities,
1163 	};
1164 
1165 	/* Hardware counter init */
1166 	arm_cspmu_reset_counters(cspmu);
1167 
1168 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1169 	if (ret) {
1170 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1171 					    &cspmu->cpuhp_node);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 static int arm_cspmu_device_probe(struct platform_device *pdev)
1178 {
1179 	int ret;
1180 	struct arm_cspmu *cspmu;
1181 
1182 	cspmu = arm_cspmu_alloc(pdev);
1183 	if (!cspmu)
1184 		return -ENOMEM;
1185 
1186 	ret = arm_cspmu_init_mmio(cspmu);
1187 	if (ret)
1188 		return ret;
1189 
1190 	ret = arm_cspmu_request_irq(cspmu);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = arm_cspmu_get_cpus(cspmu);
1195 	if (ret)
1196 		return ret;
1197 
1198 	ret = arm_cspmu_init_impl_ops(cspmu);
1199 	if (ret)
1200 		return ret;
1201 
1202 	ret = arm_cspmu_register_pmu(cspmu);
1203 
1204 	/* Matches arm_cspmu_init_impl_ops() above. */
1205 	if (cspmu->impl.module != THIS_MODULE)
1206 		module_put(cspmu->impl.module);
1207 
1208 	return ret;
1209 }
1210 
1211 static void arm_cspmu_device_remove(struct platform_device *pdev)
1212 {
1213 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1214 
1215 	perf_pmu_unregister(&cspmu->pmu);
1216 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1217 }
1218 
1219 static const struct platform_device_id arm_cspmu_id[] = {
1220 	{DRVNAME, 0},
1221 	{ },
1222 };
1223 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1224 
1225 static const struct of_device_id arm_cspmu_of_match[] = {
1226 	{ .compatible = "arm,coresight-pmu" },
1227 	{}
1228 };
1229 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1230 
1231 static struct platform_driver arm_cspmu_driver = {
1232 	.driver = {
1233 		.name = DRVNAME,
1234 		.of_match_table = arm_cspmu_of_match,
1235 		.suppress_bind_attrs = true,
1236 	},
1237 	.probe = arm_cspmu_device_probe,
1238 	.remove = arm_cspmu_device_remove,
1239 	.id_table = arm_cspmu_id,
1240 };
1241 
1242 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1243 {
1244 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1245 	if (cspmu->irq)
1246 		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1247 }
1248 
1249 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1250 {
1251 	struct arm_cspmu *cspmu =
1252 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1253 
1254 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1255 		return 0;
1256 
1257 	/* If the PMU is already managed, there is nothing to do */
1258 	if (!cpumask_empty(&cspmu->active_cpu))
1259 		return 0;
1260 
1261 	/* Use this CPU for event counting */
1262 	arm_cspmu_set_active_cpu(cpu, cspmu);
1263 
1264 	return 0;
1265 }
1266 
1267 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1268 {
1269 	unsigned int dst;
1270 
1271 	struct arm_cspmu *cspmu =
1272 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1273 
1274 	/* Nothing to do if this CPU doesn't own the PMU */
1275 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1276 		return 0;
1277 
1278 	/* Choose a new CPU to migrate ownership of the PMU to */
1279 	dst = cpumask_any_and_but(&cspmu->associated_cpus,
1280 				  cpu_online_mask, cpu);
1281 	if (dst >= nr_cpu_ids)
1282 		return 0;
1283 
1284 	/* Use this CPU for event counting */
1285 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1286 	arm_cspmu_set_active_cpu(dst, cspmu);
1287 
1288 	return 0;
1289 }
1290 
1291 static int __init arm_cspmu_init(void)
1292 {
1293 	int ret;
1294 
1295 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1296 					"perf/arm/cspmu:online",
1297 					arm_cspmu_cpu_online,
1298 					arm_cspmu_cpu_teardown);
1299 	if (ret < 0)
1300 		return ret;
1301 	arm_cspmu_cpuhp_state = ret;
1302 	return platform_driver_register(&arm_cspmu_driver);
1303 }
1304 
1305 static void __exit arm_cspmu_exit(void)
1306 {
1307 	platform_driver_unregister(&arm_cspmu_driver);
1308 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1309 }
1310 
1311 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1312 {
1313 	struct arm_cspmu_impl_match *match;
1314 	int ret = 0;
1315 
1316 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1317 
1318 	if (match) {
1319 		mutex_lock(&arm_cspmu_lock);
1320 
1321 		if (!match->impl_init_ops) {
1322 			match->module = impl_match->module;
1323 			match->impl_init_ops = impl_match->impl_init_ops;
1324 		} else {
1325 			/* Broken match table may contain non-unique entries */
1326 			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1327 				match->module_name,
1328 				match->pmiidr_val,
1329 				match->pmiidr_mask);
1330 
1331 			ret = -EINVAL;
1332 		}
1333 
1334 		mutex_unlock(&arm_cspmu_lock);
1335 
1336 		if (!ret)
1337 			ret = driver_attach(&arm_cspmu_driver.driver);
1338 	} else {
1339 		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1340 			impl_match->pmiidr_val);
1341 
1342 		ret = -EINVAL;
1343 	}
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1348 
1349 static int arm_cspmu_match_device(struct device *dev, const void *match)
1350 {
1351 	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1352 
1353 	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1354 }
1355 
1356 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1357 {
1358 	struct device *dev;
1359 	struct arm_cspmu_impl_match *match;
1360 
1361 	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1362 
1363 	if (WARN_ON(!match))
1364 		return;
1365 
1366 	/* Unbind the driver from all matching backend devices. */
1367 	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1368 			match, arm_cspmu_match_device)))
1369 		device_release_driver(dev);
1370 
1371 	mutex_lock(&arm_cspmu_lock);
1372 
1373 	match->module = NULL;
1374 	match->impl_init_ops = NULL;
1375 
1376 	mutex_unlock(&arm_cspmu_lock);
1377 }
1378 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1379 
1380 module_init(arm_cspmu_init);
1381 module_exit(arm_cspmu_exit);
1382 
1383 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1384 MODULE_LICENSE("GPL v2");
1385