1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Controller* (EPC) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 13 #include <linux/pci-epc.h> 14 #include <linux/pci-epf.h> 15 #include <linux/pci-ep-cfs.h> 16 17 static const struct class pci_epc_class = { 18 .name = "pci_epc", 19 }; 20 21 static void devm_pci_epc_release(struct device *dev, void *res) 22 { 23 struct pci_epc *epc = *(struct pci_epc **)res; 24 25 pci_epc_destroy(epc); 26 } 27 28 /** 29 * pci_epc_put() - release the PCI endpoint controller 30 * @epc: epc returned by pci_epc_get() 31 * 32 * release the refcount the caller obtained by invoking pci_epc_get() 33 */ 34 void pci_epc_put(struct pci_epc *epc) 35 { 36 if (IS_ERR_OR_NULL(epc)) 37 return; 38 39 module_put(epc->ops->owner); 40 put_device(&epc->dev); 41 } 42 EXPORT_SYMBOL_GPL(pci_epc_put); 43 44 /** 45 * pci_epc_get() - get the PCI endpoint controller 46 * @epc_name: device name of the endpoint controller 47 * 48 * Invoke to get struct pci_epc * corresponding to the device name of the 49 * endpoint controller 50 */ 51 struct pci_epc *pci_epc_get(const char *epc_name) 52 { 53 int ret = -EINVAL; 54 struct pci_epc *epc; 55 struct device *dev; 56 57 dev = class_find_device_by_name(&pci_epc_class, epc_name); 58 if (!dev) 59 goto err; 60 61 epc = to_pci_epc(dev); 62 if (try_module_get(epc->ops->owner)) 63 return epc; 64 65 err: 66 put_device(dev); 67 return ERR_PTR(ret); 68 } 69 EXPORT_SYMBOL_GPL(pci_epc_get); 70 71 /** 72 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR 73 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap 74 * 75 * Invoke to get the first unreserved BAR that can be used by the endpoint 76 * function. 77 */ 78 enum pci_barno 79 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) 80 { 81 return pci_epc_get_next_free_bar(epc_features, BAR_0); 82 } 83 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); 84 85 /** 86 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar 87 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap 88 * @bar: the starting BAR number from where unreserved BAR should be searched 89 * 90 * Invoke to get the next unreserved BAR starting from @bar that can be used 91 * for endpoint function. 92 */ 93 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features 94 *epc_features, enum pci_barno bar) 95 { 96 int i; 97 98 if (!epc_features) 99 return BAR_0; 100 101 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ 102 if (bar > 0 && epc_features->bar[bar - 1].only_64bit) 103 bar++; 104 105 for (i = bar; i < PCI_STD_NUM_BARS; i++) { 106 /* If the BAR is not reserved, return it. */ 107 if (epc_features->bar[i].type != BAR_RESERVED) 108 return i; 109 } 110 111 return NO_BAR; 112 } 113 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); 114 115 static bool pci_epc_function_is_valid(struct pci_epc *epc, 116 u8 func_no, u8 vfunc_no) 117 { 118 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 119 return false; 120 121 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) 122 return false; 123 124 return true; 125 } 126 127 /** 128 * pci_epc_get_features() - get the features supported by EPC 129 * @epc: the features supported by *this* EPC device will be returned 130 * @func_no: the features supported by the EPC device specific to the 131 * endpoint function with func_no will be returned 132 * @vfunc_no: the features supported by the EPC device specific to the 133 * virtual endpoint function with vfunc_no will be returned 134 * 135 * Invoke to get the features provided by the EPC which may be 136 * specific to an endpoint function. Returns pci_epc_features on success 137 * and NULL for any failures. 138 */ 139 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, 140 u8 func_no, u8 vfunc_no) 141 { 142 const struct pci_epc_features *epc_features; 143 144 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 145 return NULL; 146 147 if (!epc->ops->get_features) 148 return NULL; 149 150 mutex_lock(&epc->lock); 151 epc_features = epc->ops->get_features(epc, func_no, vfunc_no); 152 mutex_unlock(&epc->lock); 153 154 return epc_features; 155 } 156 EXPORT_SYMBOL_GPL(pci_epc_get_features); 157 158 /** 159 * pci_epc_stop() - stop the PCI link 160 * @epc: the link of the EPC device that has to be stopped 161 * 162 * Invoke to stop the PCI link 163 */ 164 void pci_epc_stop(struct pci_epc *epc) 165 { 166 if (IS_ERR(epc) || !epc->ops->stop) 167 return; 168 169 mutex_lock(&epc->lock); 170 epc->ops->stop(epc); 171 mutex_unlock(&epc->lock); 172 } 173 EXPORT_SYMBOL_GPL(pci_epc_stop); 174 175 /** 176 * pci_epc_start() - start the PCI link 177 * @epc: the link of *this* EPC device has to be started 178 * 179 * Invoke to start the PCI link 180 */ 181 int pci_epc_start(struct pci_epc *epc) 182 { 183 int ret; 184 185 if (IS_ERR(epc)) 186 return -EINVAL; 187 188 if (!epc->ops->start) 189 return 0; 190 191 mutex_lock(&epc->lock); 192 ret = epc->ops->start(epc); 193 mutex_unlock(&epc->lock); 194 195 return ret; 196 } 197 EXPORT_SYMBOL_GPL(pci_epc_start); 198 199 /** 200 * pci_epc_raise_irq() - interrupt the host system 201 * @epc: the EPC device which has to interrupt the host 202 * @func_no: the physical endpoint function number in the EPC device 203 * @vfunc_no: the virtual endpoint function number in the physical function 204 * @type: specify the type of interrupt; INTX, MSI or MSI-X 205 * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N) 206 * 207 * Invoke to raise an INTX, MSI or MSI-X interrupt 208 */ 209 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 210 unsigned int type, u16 interrupt_num) 211 { 212 int ret; 213 214 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 215 return -EINVAL; 216 217 if (!epc->ops->raise_irq) 218 return 0; 219 220 mutex_lock(&epc->lock); 221 ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num); 222 mutex_unlock(&epc->lock); 223 224 return ret; 225 } 226 EXPORT_SYMBOL_GPL(pci_epc_raise_irq); 227 228 /** 229 * pci_epc_map_msi_irq() - Map physical address to MSI address and return 230 * MSI data 231 * @epc: the EPC device which has the MSI capability 232 * @func_no: the physical endpoint function number in the EPC device 233 * @vfunc_no: the virtual endpoint function number in the physical function 234 * @phys_addr: the physical address of the outbound region 235 * @interrupt_num: the MSI interrupt number with range (1-N) 236 * @entry_size: Size of Outbound address region for each interrupt 237 * @msi_data: the data that should be written in order to raise MSI interrupt 238 * with interrupt number as 'interrupt num' 239 * @msi_addr_offset: Offset of MSI address from the aligned outbound address 240 * to which the MSI address is mapped 241 * 242 * Invoke to map physical address to MSI address and return MSI data. The 243 * physical address should be an address in the outbound region. This is 244 * required to implement doorbell functionality of NTB wherein EPC on either 245 * side of the interface (primary and secondary) can directly write to the 246 * physical address (in outbound region) of the other interface to ring 247 * doorbell. 248 */ 249 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 250 phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size, 251 u32 *msi_data, u32 *msi_addr_offset) 252 { 253 int ret; 254 255 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 256 return -EINVAL; 257 258 if (!epc->ops->map_msi_irq) 259 return -EINVAL; 260 261 mutex_lock(&epc->lock); 262 ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr, 263 interrupt_num, entry_size, msi_data, 264 msi_addr_offset); 265 mutex_unlock(&epc->lock); 266 267 return ret; 268 } 269 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); 270 271 /** 272 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated 273 * @epc: the EPC device to which MSI interrupts was requested 274 * @func_no: the physical endpoint function number in the EPC device 275 * @vfunc_no: the virtual endpoint function number in the physical function 276 * 277 * Invoke to get the number of MSI interrupts allocated by the RC 278 */ 279 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no) 280 { 281 int interrupt; 282 283 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 284 return 0; 285 286 if (!epc->ops->get_msi) 287 return 0; 288 289 mutex_lock(&epc->lock); 290 interrupt = epc->ops->get_msi(epc, func_no, vfunc_no); 291 mutex_unlock(&epc->lock); 292 293 if (interrupt < 0) 294 return 0; 295 296 return interrupt; 297 } 298 EXPORT_SYMBOL_GPL(pci_epc_get_msi); 299 300 /** 301 * pci_epc_set_msi() - set the number of MSI interrupt numbers required 302 * @epc: the EPC device on which MSI has to be configured 303 * @func_no: the physical endpoint function number in the EPC device 304 * @vfunc_no: the virtual endpoint function number in the physical function 305 * @nr_irqs: number of MSI interrupts required by the EPF 306 * 307 * Invoke to set the required number of MSI interrupts. 308 */ 309 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 nr_irqs) 310 { 311 int ret; 312 313 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 314 return -EINVAL; 315 316 if (nr_irqs < 1 || nr_irqs > 32) 317 return -EINVAL; 318 319 if (!epc->ops->set_msi) 320 return 0; 321 322 mutex_lock(&epc->lock); 323 ret = epc->ops->set_msi(epc, func_no, vfunc_no, nr_irqs); 324 mutex_unlock(&epc->lock); 325 326 return ret; 327 } 328 EXPORT_SYMBOL_GPL(pci_epc_set_msi); 329 330 /** 331 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated 332 * @epc: the EPC device to which MSI-X interrupts was requested 333 * @func_no: the physical endpoint function number in the EPC device 334 * @vfunc_no: the virtual endpoint function number in the physical function 335 * 336 * Invoke to get the number of MSI-X interrupts allocated by the RC 337 */ 338 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no) 339 { 340 int interrupt; 341 342 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 343 return 0; 344 345 if (!epc->ops->get_msix) 346 return 0; 347 348 mutex_lock(&epc->lock); 349 interrupt = epc->ops->get_msix(epc, func_no, vfunc_no); 350 mutex_unlock(&epc->lock); 351 352 if (interrupt < 0) 353 return 0; 354 355 return interrupt; 356 } 357 EXPORT_SYMBOL_GPL(pci_epc_get_msix); 358 359 /** 360 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required 361 * @epc: the EPC device on which MSI-X has to be configured 362 * @func_no: the physical endpoint function number in the EPC device 363 * @vfunc_no: the virtual endpoint function number in the physical function 364 * @nr_irqs: number of MSI-X interrupts required by the EPF 365 * @bir: BAR where the MSI-X table resides 366 * @offset: Offset pointing to the start of MSI-X table 367 * 368 * Invoke to set the required number of MSI-X interrupts. 369 */ 370 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u16 nr_irqs, 371 enum pci_barno bir, u32 offset) 372 { 373 int ret; 374 375 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 376 return -EINVAL; 377 378 if (nr_irqs < 1 || nr_irqs > 2048) 379 return -EINVAL; 380 381 if (!epc->ops->set_msix) 382 return 0; 383 384 mutex_lock(&epc->lock); 385 ret = epc->ops->set_msix(epc, func_no, vfunc_no, nr_irqs, bir, offset); 386 mutex_unlock(&epc->lock); 387 388 return ret; 389 } 390 EXPORT_SYMBOL_GPL(pci_epc_set_msix); 391 392 /** 393 * pci_epc_unmap_addr() - unmap CPU address from PCI address 394 * @epc: the EPC device on which address is allocated 395 * @func_no: the physical endpoint function number in the EPC device 396 * @vfunc_no: the virtual endpoint function number in the physical function 397 * @phys_addr: physical address of the local system 398 * 399 * Invoke to unmap the CPU address from PCI address. 400 */ 401 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 402 phys_addr_t phys_addr) 403 { 404 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 405 return; 406 407 if (!epc->ops->unmap_addr) 408 return; 409 410 mutex_lock(&epc->lock); 411 epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr); 412 mutex_unlock(&epc->lock); 413 } 414 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); 415 416 /** 417 * pci_epc_map_addr() - map CPU address to PCI address 418 * @epc: the EPC device on which address is allocated 419 * @func_no: the physical endpoint function number in the EPC device 420 * @vfunc_no: the virtual endpoint function number in the physical function 421 * @phys_addr: physical address of the local system 422 * @pci_addr: PCI address to which the physical address should be mapped 423 * @size: the size of the allocation 424 * 425 * Invoke to map CPU address with PCI address. 426 */ 427 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 428 phys_addr_t phys_addr, u64 pci_addr, size_t size) 429 { 430 int ret; 431 432 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 433 return -EINVAL; 434 435 if (!epc->ops->map_addr) 436 return 0; 437 438 mutex_lock(&epc->lock); 439 ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr, 440 size); 441 mutex_unlock(&epc->lock); 442 443 return ret; 444 } 445 EXPORT_SYMBOL_GPL(pci_epc_map_addr); 446 447 /** 448 * pci_epc_mem_map() - allocate and map a PCI address to a CPU address 449 * @epc: the EPC device on which the CPU address is to be allocated and mapped 450 * @func_no: the physical endpoint function number in the EPC device 451 * @vfunc_no: the virtual endpoint function number in the physical function 452 * @pci_addr: PCI address to which the CPU address should be mapped 453 * @pci_size: the number of bytes to map starting from @pci_addr 454 * @map: where to return the mapping information 455 * 456 * Allocate a controller memory address region and map it to a RC PCI address 457 * region, taking into account the controller physical address mapping 458 * constraints using the controller operation align_addr(). If this operation is 459 * not defined, we assume that there are no alignment constraints for the 460 * mapping. 461 * 462 * The effective size of the PCI address range mapped from @pci_addr is 463 * indicated by @map->pci_size. This size may be less than the requested 464 * @pci_size. The local virtual CPU address for the mapping is indicated by 465 * @map->virt_addr (@map->phys_addr indicates the physical address). 466 * The size and CPU address of the controller memory allocated and mapped are 467 * respectively indicated by @map->map_size and @map->virt_base (and 468 * @map->phys_base for the physical address of @map->virt_base). 469 * 470 * Returns 0 on success and a negative error code in case of error. 471 */ 472 int pci_epc_mem_map(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 473 u64 pci_addr, size_t pci_size, struct pci_epc_map *map) 474 { 475 size_t map_size = pci_size; 476 size_t map_offset = 0; 477 int ret; 478 479 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 480 return -EINVAL; 481 482 if (!pci_size || !map) 483 return -EINVAL; 484 485 /* 486 * Align the PCI address to map. If the controller defines the 487 * .align_addr() operation, use it to determine the PCI address to map 488 * and the size of the mapping. Otherwise, assume that the controller 489 * has no alignment constraint. 490 */ 491 memset(map, 0, sizeof(*map)); 492 map->pci_addr = pci_addr; 493 if (epc->ops->align_addr) 494 map->map_pci_addr = 495 epc->ops->align_addr(epc, pci_addr, 496 &map_size, &map_offset); 497 else 498 map->map_pci_addr = pci_addr; 499 map->map_size = map_size; 500 if (map->map_pci_addr + map->map_size < pci_addr + pci_size) 501 map->pci_size = map->map_pci_addr + map->map_size - pci_addr; 502 else 503 map->pci_size = pci_size; 504 505 map->virt_base = pci_epc_mem_alloc_addr(epc, &map->phys_base, 506 map->map_size); 507 if (!map->virt_base) 508 return -ENOMEM; 509 510 map->phys_addr = map->phys_base + map_offset; 511 map->virt_addr = map->virt_base + map_offset; 512 513 ret = pci_epc_map_addr(epc, func_no, vfunc_no, map->phys_base, 514 map->map_pci_addr, map->map_size); 515 if (ret) { 516 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base, 517 map->map_size); 518 return ret; 519 } 520 521 return 0; 522 } 523 EXPORT_SYMBOL_GPL(pci_epc_mem_map); 524 525 /** 526 * pci_epc_mem_unmap() - unmap and free a CPU address region 527 * @epc: the EPC device on which the CPU address is allocated and mapped 528 * @func_no: the physical endpoint function number in the EPC device 529 * @vfunc_no: the virtual endpoint function number in the physical function 530 * @map: the mapping information 531 * 532 * Unmap and free a CPU address region that was allocated and mapped with 533 * pci_epc_mem_map(). 534 */ 535 void pci_epc_mem_unmap(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 536 struct pci_epc_map *map) 537 { 538 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 539 return; 540 541 if (!map || !map->virt_base) 542 return; 543 544 pci_epc_unmap_addr(epc, func_no, vfunc_no, map->phys_base); 545 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base, 546 map->map_size); 547 } 548 EXPORT_SYMBOL_GPL(pci_epc_mem_unmap); 549 550 /** 551 * pci_epc_clear_bar() - reset the BAR 552 * @epc: the EPC device for which the BAR has to be cleared 553 * @func_no: the physical endpoint function number in the EPC device 554 * @vfunc_no: the virtual endpoint function number in the physical function 555 * @epf_bar: the struct epf_bar that contains the BAR information 556 * 557 * Invoke to reset the BAR of the endpoint device. 558 */ 559 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 560 struct pci_epf_bar *epf_bar) 561 { 562 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 563 return; 564 565 if (epf_bar->barno == BAR_5 && 566 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) 567 return; 568 569 if (!epc->ops->clear_bar) 570 return; 571 572 mutex_lock(&epc->lock); 573 epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar); 574 mutex_unlock(&epc->lock); 575 } 576 EXPORT_SYMBOL_GPL(pci_epc_clear_bar); 577 578 /** 579 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space 580 * @epc: the EPC device on which BAR has to be configured 581 * @func_no: the physical endpoint function number in the EPC device 582 * @vfunc_no: the virtual endpoint function number in the physical function 583 * @epf_bar: the struct epf_bar that contains the BAR information 584 * 585 * Invoke to configure the BAR of the endpoint device. 586 */ 587 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 588 struct pci_epf_bar *epf_bar) 589 { 590 const struct pci_epc_features *epc_features; 591 enum pci_barno bar = epf_bar->barno; 592 int flags = epf_bar->flags; 593 int ret; 594 595 epc_features = pci_epc_get_features(epc, func_no, vfunc_no); 596 if (!epc_features) 597 return -EINVAL; 598 599 if (epc_features->bar[bar].type == BAR_RESIZABLE && 600 (epf_bar->size < SZ_1M || (u64)epf_bar->size > (SZ_128G * 1024))) 601 return -EINVAL; 602 603 if (epc_features->bar[bar].type == BAR_FIXED && 604 (epc_features->bar[bar].fixed_size != epf_bar->size)) 605 return -EINVAL; 606 607 if (!is_power_of_2(epf_bar->size)) 608 return -EINVAL; 609 610 if ((epf_bar->barno == BAR_5 && flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || 611 (flags & PCI_BASE_ADDRESS_SPACE_IO && 612 flags & PCI_BASE_ADDRESS_IO_MASK) || 613 (upper_32_bits(epf_bar->size) && 614 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) 615 return -EINVAL; 616 617 if (!epc->ops->set_bar) 618 return 0; 619 620 mutex_lock(&epc->lock); 621 ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar); 622 mutex_unlock(&epc->lock); 623 624 return ret; 625 } 626 EXPORT_SYMBOL_GPL(pci_epc_set_bar); 627 628 /** 629 * pci_epc_bar_size_to_rebar_cap() - convert a size to the representation used 630 * by the Resizable BAR Capability Register 631 * @size: the size to convert 632 * @cap: where to store the result 633 * 634 * Returns 0 on success and a negative error code in case of error. 635 */ 636 int pci_epc_bar_size_to_rebar_cap(size_t size, u32 *cap) 637 { 638 /* 639 * As per PCIe r6.0, sec 7.8.6.2, min size for a resizable BAR is 1 MB, 640 * thus disallow a requested BAR size smaller than 1 MB. 641 * Disallow a requested BAR size larger than 128 TB. 642 */ 643 if (size < SZ_1M || (u64)size > (SZ_128G * 1024)) 644 return -EINVAL; 645 646 *cap = ilog2(size) - ilog2(SZ_1M); 647 648 /* Sizes in REBAR_CAP start at BIT(4). */ 649 *cap = BIT(*cap + 4); 650 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(pci_epc_bar_size_to_rebar_cap); 654 655 /** 656 * pci_epc_write_header() - write standard configuration header 657 * @epc: the EPC device to which the configuration header should be written 658 * @func_no: the physical endpoint function number in the EPC device 659 * @vfunc_no: the virtual endpoint function number in the physical function 660 * @header: standard configuration header fields 661 * 662 * Invoke to write the configuration header to the endpoint controller. Every 663 * endpoint controller will have a dedicated location to which the standard 664 * configuration header would be written. The callback function should write 665 * the header fields to this dedicated location. 666 */ 667 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no, 668 struct pci_epf_header *header) 669 { 670 int ret; 671 672 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) 673 return -EINVAL; 674 675 /* Only Virtual Function #1 has deviceID */ 676 if (vfunc_no > 1) 677 return -EINVAL; 678 679 if (!epc->ops->write_header) 680 return 0; 681 682 mutex_lock(&epc->lock); 683 ret = epc->ops->write_header(epc, func_no, vfunc_no, header); 684 mutex_unlock(&epc->lock); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(pci_epc_write_header); 689 690 /** 691 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller 692 * @epc: the EPC device to which the endpoint function should be added 693 * @epf: the endpoint function to be added 694 * @type: Identifies if the EPC is connected to the primary or secondary 695 * interface of EPF 696 * 697 * A PCI endpoint device can have one or more functions. In the case of PCIe, 698 * the specification allows up to 8 PCIe endpoint functions. Invoke 699 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. 700 */ 701 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, 702 enum pci_epc_interface_type type) 703 { 704 struct list_head *list; 705 u32 func_no; 706 int ret = 0; 707 708 if (IS_ERR_OR_NULL(epc) || epf->is_vf) 709 return -EINVAL; 710 711 if (type == PRIMARY_INTERFACE && epf->epc) 712 return -EBUSY; 713 714 if (type == SECONDARY_INTERFACE && epf->sec_epc) 715 return -EBUSY; 716 717 mutex_lock(&epc->list_lock); 718 func_no = find_first_zero_bit(&epc->function_num_map, 719 BITS_PER_LONG); 720 if (func_no >= BITS_PER_LONG) { 721 ret = -EINVAL; 722 goto ret; 723 } 724 725 if (func_no > epc->max_functions - 1) { 726 dev_err(&epc->dev, "Exceeding max supported Function Number\n"); 727 ret = -EINVAL; 728 goto ret; 729 } 730 731 set_bit(func_no, &epc->function_num_map); 732 if (type == PRIMARY_INTERFACE) { 733 epf->func_no = func_no; 734 epf->epc = epc; 735 list = &epf->list; 736 } else { 737 epf->sec_epc_func_no = func_no; 738 epf->sec_epc = epc; 739 list = &epf->sec_epc_list; 740 } 741 742 list_add_tail(list, &epc->pci_epf); 743 ret: 744 mutex_unlock(&epc->list_lock); 745 746 return ret; 747 } 748 EXPORT_SYMBOL_GPL(pci_epc_add_epf); 749 750 /** 751 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller 752 * @epc: the EPC device from which the endpoint function should be removed 753 * @epf: the endpoint function to be removed 754 * @type: identifies if the EPC is connected to the primary or secondary 755 * interface of EPF 756 * 757 * Invoke to remove PCI endpoint function from the endpoint controller. 758 */ 759 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, 760 enum pci_epc_interface_type type) 761 { 762 struct list_head *list; 763 u32 func_no = 0; 764 765 if (IS_ERR_OR_NULL(epc) || !epf) 766 return; 767 768 mutex_lock(&epc->list_lock); 769 if (type == PRIMARY_INTERFACE) { 770 func_no = epf->func_no; 771 list = &epf->list; 772 epf->epc = NULL; 773 } else { 774 func_no = epf->sec_epc_func_no; 775 list = &epf->sec_epc_list; 776 epf->sec_epc = NULL; 777 } 778 clear_bit(func_no, &epc->function_num_map); 779 list_del(list); 780 mutex_unlock(&epc->list_lock); 781 } 782 EXPORT_SYMBOL_GPL(pci_epc_remove_epf); 783 784 /** 785 * pci_epc_linkup() - Notify the EPF device that EPC device has established a 786 * connection with the Root Complex. 787 * @epc: the EPC device which has established link with the host 788 * 789 * Invoke to Notify the EPF device that the EPC device has established a 790 * connection with the Root Complex. 791 */ 792 void pci_epc_linkup(struct pci_epc *epc) 793 { 794 struct pci_epf *epf; 795 796 if (IS_ERR_OR_NULL(epc)) 797 return; 798 799 mutex_lock(&epc->list_lock); 800 list_for_each_entry(epf, &epc->pci_epf, list) { 801 mutex_lock(&epf->lock); 802 if (epf->event_ops && epf->event_ops->link_up) 803 epf->event_ops->link_up(epf); 804 mutex_unlock(&epf->lock); 805 } 806 mutex_unlock(&epc->list_lock); 807 } 808 EXPORT_SYMBOL_GPL(pci_epc_linkup); 809 810 /** 811 * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the 812 * connection with the Root Complex. 813 * @epc: the EPC device which has dropped the link with the host 814 * 815 * Invoke to Notify the EPF device that the EPC device has dropped the 816 * connection with the Root Complex. 817 */ 818 void pci_epc_linkdown(struct pci_epc *epc) 819 { 820 struct pci_epf *epf; 821 822 if (IS_ERR_OR_NULL(epc)) 823 return; 824 825 mutex_lock(&epc->list_lock); 826 list_for_each_entry(epf, &epc->pci_epf, list) { 827 mutex_lock(&epf->lock); 828 if (epf->event_ops && epf->event_ops->link_down) 829 epf->event_ops->link_down(epf); 830 mutex_unlock(&epf->lock); 831 } 832 mutex_unlock(&epc->list_lock); 833 } 834 EXPORT_SYMBOL_GPL(pci_epc_linkdown); 835 836 /** 837 * pci_epc_init_notify() - Notify the EPF device that EPC device initialization 838 * is completed. 839 * @epc: the EPC device whose initialization is completed 840 * 841 * Invoke to Notify the EPF device that the EPC device's initialization 842 * is completed. 843 */ 844 void pci_epc_init_notify(struct pci_epc *epc) 845 { 846 struct pci_epf *epf; 847 848 if (IS_ERR_OR_NULL(epc)) 849 return; 850 851 mutex_lock(&epc->list_lock); 852 list_for_each_entry(epf, &epc->pci_epf, list) { 853 mutex_lock(&epf->lock); 854 if (epf->event_ops && epf->event_ops->epc_init) 855 epf->event_ops->epc_init(epf); 856 mutex_unlock(&epf->lock); 857 } 858 epc->init_complete = true; 859 mutex_unlock(&epc->list_lock); 860 } 861 EXPORT_SYMBOL_GPL(pci_epc_init_notify); 862 863 /** 864 * pci_epc_notify_pending_init() - Notify the pending EPC device initialization 865 * complete to the EPF device 866 * @epc: the EPC device whose initialization is pending to be notified 867 * @epf: the EPF device to be notified 868 * 869 * Invoke to notify the pending EPC device initialization complete to the EPF 870 * device. This is used to deliver the notification if the EPC initialization 871 * got completed before the EPF driver bind. 872 */ 873 void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf) 874 { 875 if (epc->init_complete) { 876 mutex_lock(&epf->lock); 877 if (epf->event_ops && epf->event_ops->epc_init) 878 epf->event_ops->epc_init(epf); 879 mutex_unlock(&epf->lock); 880 } 881 } 882 EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init); 883 884 /** 885 * pci_epc_deinit_notify() - Notify the EPF device about EPC deinitialization 886 * @epc: the EPC device whose deinitialization is completed 887 * 888 * Invoke to notify the EPF device that the EPC deinitialization is completed. 889 */ 890 void pci_epc_deinit_notify(struct pci_epc *epc) 891 { 892 struct pci_epf *epf; 893 894 if (IS_ERR_OR_NULL(epc)) 895 return; 896 897 mutex_lock(&epc->list_lock); 898 list_for_each_entry(epf, &epc->pci_epf, list) { 899 mutex_lock(&epf->lock); 900 if (epf->event_ops && epf->event_ops->epc_deinit) 901 epf->event_ops->epc_deinit(epf); 902 mutex_unlock(&epf->lock); 903 } 904 epc->init_complete = false; 905 mutex_unlock(&epc->list_lock); 906 } 907 EXPORT_SYMBOL_GPL(pci_epc_deinit_notify); 908 909 /** 910 * pci_epc_bus_master_enable_notify() - Notify the EPF device that the EPC 911 * device has received the Bus Master 912 * Enable event from the Root complex 913 * @epc: the EPC device that received the Bus Master Enable event 914 * 915 * Notify the EPF device that the EPC device has generated the Bus Master Enable 916 * event due to host setting the Bus Master Enable bit in the Command register. 917 */ 918 void pci_epc_bus_master_enable_notify(struct pci_epc *epc) 919 { 920 struct pci_epf *epf; 921 922 if (IS_ERR_OR_NULL(epc)) 923 return; 924 925 mutex_lock(&epc->list_lock); 926 list_for_each_entry(epf, &epc->pci_epf, list) { 927 mutex_lock(&epf->lock); 928 if (epf->event_ops && epf->event_ops->bus_master_enable) 929 epf->event_ops->bus_master_enable(epf); 930 mutex_unlock(&epf->lock); 931 } 932 mutex_unlock(&epc->list_lock); 933 } 934 EXPORT_SYMBOL_GPL(pci_epc_bus_master_enable_notify); 935 936 /** 937 * pci_epc_destroy() - destroy the EPC device 938 * @epc: the EPC device that has to be destroyed 939 * 940 * Invoke to destroy the PCI EPC device 941 */ 942 void pci_epc_destroy(struct pci_epc *epc) 943 { 944 pci_ep_cfs_remove_epc_group(epc->group); 945 #ifdef CONFIG_PCI_DOMAINS_GENERIC 946 pci_bus_release_domain_nr(epc->dev.parent, epc->domain_nr); 947 #endif 948 device_unregister(&epc->dev); 949 } 950 EXPORT_SYMBOL_GPL(pci_epc_destroy); 951 952 static void pci_epc_release(struct device *dev) 953 { 954 kfree(to_pci_epc(dev)); 955 } 956 957 /** 958 * __pci_epc_create() - create a new endpoint controller (EPC) device 959 * @dev: device that is creating the new EPC 960 * @ops: function pointers for performing EPC operations 961 * @owner: the owner of the module that creates the EPC device 962 * 963 * Invoke to create a new EPC device and add it to pci_epc class. 964 */ 965 struct pci_epc * 966 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, 967 struct module *owner) 968 { 969 int ret; 970 struct pci_epc *epc; 971 972 if (WARN_ON(!dev)) { 973 ret = -EINVAL; 974 goto err_ret; 975 } 976 977 epc = kzalloc(sizeof(*epc), GFP_KERNEL); 978 if (!epc) { 979 ret = -ENOMEM; 980 goto err_ret; 981 } 982 983 mutex_init(&epc->lock); 984 mutex_init(&epc->list_lock); 985 INIT_LIST_HEAD(&epc->pci_epf); 986 987 device_initialize(&epc->dev); 988 epc->dev.class = &pci_epc_class; 989 epc->dev.parent = dev; 990 epc->dev.release = pci_epc_release; 991 epc->ops = ops; 992 993 #ifdef CONFIG_PCI_DOMAINS_GENERIC 994 epc->domain_nr = pci_bus_find_domain_nr(NULL, dev); 995 #else 996 /* 997 * TODO: If the architecture doesn't support generic PCI 998 * domains, then a custom implementation has to be used. 999 */ 1000 WARN_ONCE(1, "This architecture doesn't support generic PCI domains\n"); 1001 #endif 1002 1003 ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); 1004 if (ret) 1005 goto put_dev; 1006 1007 ret = device_add(&epc->dev); 1008 if (ret) 1009 goto put_dev; 1010 1011 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); 1012 1013 return epc; 1014 1015 put_dev: 1016 put_device(&epc->dev); 1017 1018 err_ret: 1019 return ERR_PTR(ret); 1020 } 1021 EXPORT_SYMBOL_GPL(__pci_epc_create); 1022 1023 /** 1024 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device 1025 * @dev: device that is creating the new EPC 1026 * @ops: function pointers for performing EPC operations 1027 * @owner: the owner of the module that creates the EPC device 1028 * 1029 * Invoke to create a new EPC device and add it to pci_epc class. 1030 * While at that, it also associates the device with the pci_epc using devres. 1031 * On driver detach, release function is invoked on the devres data, 1032 * then, devres data is freed. 1033 */ 1034 struct pci_epc * 1035 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, 1036 struct module *owner) 1037 { 1038 struct pci_epc **ptr, *epc; 1039 1040 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); 1041 if (!ptr) 1042 return ERR_PTR(-ENOMEM); 1043 1044 epc = __pci_epc_create(dev, ops, owner); 1045 if (!IS_ERR(epc)) { 1046 *ptr = epc; 1047 devres_add(dev, ptr); 1048 } else { 1049 devres_free(ptr); 1050 } 1051 1052 return epc; 1053 } 1054 EXPORT_SYMBOL_GPL(__devm_pci_epc_create); 1055 1056 static int __init pci_epc_init(void) 1057 { 1058 return class_register(&pci_epc_class); 1059 } 1060 module_init(pci_epc_init); 1061 1062 static void __exit pci_epc_exit(void) 1063 { 1064 class_unregister(&pci_epc_class); 1065 } 1066 module_exit(pci_epc_exit); 1067 1068 MODULE_DESCRIPTION("PCI EPC Library"); 1069 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 1070