1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/pci-acpi.h> 15 #include <linux/pci-ecam.h> 16 #include <linux/srcu.h> 17 #include <linux/rculist.h> 18 #include <linux/rcupdate.h> 19 20 #include <xen/xen.h> 21 22 #include <asm/irqdomain.h> 23 24 #define VMD_CFGBAR 0 25 #define VMD_MEMBAR1 2 26 #define VMD_MEMBAR2 4 27 28 #define PCI_REG_VMCAP 0x40 29 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 30 #define PCI_REG_VMCONFIG 0x44 31 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 32 #define VMCONFIG_MSI_REMAP 0x2 33 #define PCI_REG_VMLOCK 0x70 34 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 35 36 #define MB2_SHADOW_OFFSET 0x2000 37 #define MB2_SHADOW_SIZE 16 38 39 enum vmd_features { 40 /* 41 * Device may contain registers which hint the physical location of the 42 * membars, in order to allow proper address translation during 43 * resource assignment to enable guest virtualization 44 */ 45 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 46 47 /* 48 * Device may provide root port configuration information which limits 49 * bus numbering 50 */ 51 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 52 53 /* 54 * Device contains physical location shadow registers in 55 * vendor-specific capability space 56 */ 57 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 58 59 /* 60 * Device may use MSI-X vector 0 for software triggering and will not 61 * be used for MSI remapping 62 */ 63 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 64 65 /* 66 * Device can bypass remapping MSI-X transactions into its MSI-X table, 67 * avoiding the requirement of a VMD MSI domain for child device 68 * interrupt handling. 69 */ 70 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 71 72 /* 73 * Enable ASPM on the PCIE root ports and set the default LTR of the 74 * storage devices on platforms where these values are not configured by 75 * BIOS. This is needed for laptops, which require these settings for 76 * proper power management of the SoC. 77 */ 78 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5), 79 }; 80 81 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */ 82 83 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \ 84 VMD_FEAT_HAS_BUS_RESTRICTIONS | \ 85 VMD_FEAT_OFFSET_FIRST_VECTOR | \ 86 VMD_FEAT_BIOS_PM_QUIRK) 87 88 static DEFINE_IDA(vmd_instance_ida); 89 90 /* 91 * Lock for manipulating VMD IRQ lists. 92 */ 93 static DEFINE_RAW_SPINLOCK(list_lock); 94 95 /** 96 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 97 * @node: list item for parent traversal. 98 * @irq: back pointer to parent. 99 * @enabled: true if driver enabled IRQ 100 * @virq: the virtual IRQ value provided to the requesting driver. 101 * 102 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 103 * a VMD IRQ using this structure. 104 */ 105 struct vmd_irq { 106 struct list_head node; 107 struct vmd_irq_list *irq; 108 bool enabled; 109 unsigned int virq; 110 }; 111 112 /** 113 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 114 * @irq_list: the list of irq's the VMD one demuxes to. 115 * @srcu: SRCU struct for local synchronization. 116 * @count: number of child IRQs assigned to this vector; used to track 117 * sharing. 118 * @virq: The underlying VMD Linux interrupt number 119 */ 120 struct vmd_irq_list { 121 struct list_head irq_list; 122 struct srcu_struct srcu; 123 unsigned int count; 124 unsigned int virq; 125 }; 126 127 struct vmd_dev { 128 struct pci_dev *dev; 129 130 raw_spinlock_t cfg_lock; 131 void __iomem *cfgbar; 132 133 int msix_count; 134 struct vmd_irq_list *irqs; 135 136 struct pci_sysdata sysdata; 137 struct resource resources[3]; 138 struct irq_domain *irq_domain; 139 struct pci_bus *bus; 140 u8 busn_start; 141 u8 first_vec; 142 char *name; 143 int instance; 144 }; 145 146 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 147 { 148 return container_of(bus->sysdata, struct vmd_dev, sysdata); 149 } 150 151 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 152 struct vmd_irq_list *irqs) 153 { 154 return irqs - vmd->irqs; 155 } 156 157 /* 158 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 159 * but the MSI entry for the hardware it's driving will be programmed with a 160 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 161 * domain into one of its own, and the VMD driver de-muxes these for the 162 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 163 * and irq_chip to set this up. 164 */ 165 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 166 { 167 struct vmd_irq *vmdirq = data->chip_data; 168 struct vmd_irq_list *irq = vmdirq->irq; 169 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 170 171 memset(msg, 0, sizeof(*msg)); 172 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 173 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 174 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 175 } 176 177 /* 178 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 179 */ 180 static void vmd_irq_enable(struct irq_data *data) 181 { 182 struct vmd_irq *vmdirq = data->chip_data; 183 unsigned long flags; 184 185 raw_spin_lock_irqsave(&list_lock, flags); 186 WARN_ON(vmdirq->enabled); 187 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 188 vmdirq->enabled = true; 189 raw_spin_unlock_irqrestore(&list_lock, flags); 190 191 data->chip->irq_unmask(data); 192 } 193 194 static void vmd_irq_disable(struct irq_data *data) 195 { 196 struct vmd_irq *vmdirq = data->chip_data; 197 unsigned long flags; 198 199 data->chip->irq_mask(data); 200 201 raw_spin_lock_irqsave(&list_lock, flags); 202 if (vmdirq->enabled) { 203 list_del_rcu(&vmdirq->node); 204 vmdirq->enabled = false; 205 } 206 raw_spin_unlock_irqrestore(&list_lock, flags); 207 } 208 209 static struct irq_chip vmd_msi_controller = { 210 .name = "VMD-MSI", 211 .irq_enable = vmd_irq_enable, 212 .irq_disable = vmd_irq_disable, 213 .irq_compose_msi_msg = vmd_compose_msi_msg, 214 }; 215 216 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 217 msi_alloc_info_t *arg) 218 { 219 return 0; 220 } 221 222 /* 223 * XXX: We can be even smarter selecting the best IRQ once we solve the 224 * affinity problem. 225 */ 226 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 227 { 228 unsigned long flags; 229 int i, best; 230 231 if (vmd->msix_count == 1 + vmd->first_vec) 232 return &vmd->irqs[vmd->first_vec]; 233 234 /* 235 * White list for fast-interrupt handlers. All others will share the 236 * "slow" interrupt vector. 237 */ 238 switch (msi_desc_to_pci_dev(desc)->class) { 239 case PCI_CLASS_STORAGE_EXPRESS: 240 break; 241 default: 242 return &vmd->irqs[vmd->first_vec]; 243 } 244 245 raw_spin_lock_irqsave(&list_lock, flags); 246 best = vmd->first_vec + 1; 247 for (i = best; i < vmd->msix_count; i++) 248 if (vmd->irqs[i].count < vmd->irqs[best].count) 249 best = i; 250 vmd->irqs[best].count++; 251 raw_spin_unlock_irqrestore(&list_lock, flags); 252 253 return &vmd->irqs[best]; 254 } 255 256 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 257 unsigned int virq, irq_hw_number_t hwirq, 258 msi_alloc_info_t *arg) 259 { 260 struct msi_desc *desc = arg->desc; 261 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 262 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 263 264 if (!vmdirq) 265 return -ENOMEM; 266 267 INIT_LIST_HEAD(&vmdirq->node); 268 vmdirq->irq = vmd_next_irq(vmd, desc); 269 vmdirq->virq = virq; 270 271 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq, 272 handle_untracked_irq, vmd, NULL); 273 return 0; 274 } 275 276 static void vmd_msi_free(struct irq_domain *domain, 277 struct msi_domain_info *info, unsigned int virq) 278 { 279 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 280 unsigned long flags; 281 282 synchronize_srcu(&vmdirq->irq->srcu); 283 284 /* XXX: Potential optimization to rebalance */ 285 raw_spin_lock_irqsave(&list_lock, flags); 286 vmdirq->irq->count--; 287 raw_spin_unlock_irqrestore(&list_lock, flags); 288 289 kfree(vmdirq); 290 } 291 292 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 293 int nvec, msi_alloc_info_t *arg) 294 { 295 struct pci_dev *pdev = to_pci_dev(dev); 296 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 297 298 if (nvec > vmd->msix_count) 299 return vmd->msix_count; 300 301 memset(arg, 0, sizeof(*arg)); 302 return 0; 303 } 304 305 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 306 { 307 arg->desc = desc; 308 } 309 310 static struct msi_domain_ops vmd_msi_domain_ops = { 311 .get_hwirq = vmd_get_hwirq, 312 .msi_init = vmd_msi_init, 313 .msi_free = vmd_msi_free, 314 .msi_prepare = vmd_msi_prepare, 315 .set_desc = vmd_set_desc, 316 }; 317 318 static struct msi_domain_info vmd_msi_domain_info = { 319 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 320 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX, 321 .ops = &vmd_msi_domain_ops, 322 .chip = &vmd_msi_controller, 323 }; 324 325 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 326 { 327 u16 reg; 328 329 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 330 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 331 (reg | VMCONFIG_MSI_REMAP); 332 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 333 } 334 335 static int vmd_create_irq_domain(struct vmd_dev *vmd) 336 { 337 struct fwnode_handle *fn; 338 339 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 340 if (!fn) 341 return -ENODEV; 342 343 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 344 if (!vmd->irq_domain) { 345 irq_domain_free_fwnode(fn); 346 return -ENODEV; 347 } 348 349 return 0; 350 } 351 352 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 353 { 354 /* 355 * Some production BIOS won't enable remapping between soft reboots. 356 * Ensure remapping is restored before unloading the driver. 357 */ 358 if (!vmd->msix_count) 359 vmd_set_msi_remapping(vmd, true); 360 361 if (vmd->irq_domain) { 362 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 363 364 irq_domain_remove(vmd->irq_domain); 365 irq_domain_free_fwnode(fn); 366 } 367 } 368 369 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 370 unsigned int devfn, int reg, int len) 371 { 372 unsigned int busnr_ecam = bus->number - vmd->busn_start; 373 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 374 375 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 376 return NULL; 377 378 return vmd->cfgbar + offset; 379 } 380 381 /* 382 * CPU may deadlock if config space is not serialized on some versions of this 383 * hardware, so all config space access is done under a spinlock. 384 */ 385 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 386 int len, u32 *value) 387 { 388 struct vmd_dev *vmd = vmd_from_bus(bus); 389 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 390 unsigned long flags; 391 int ret = 0; 392 393 if (!addr) 394 return -EFAULT; 395 396 raw_spin_lock_irqsave(&vmd->cfg_lock, flags); 397 switch (len) { 398 case 1: 399 *value = readb(addr); 400 break; 401 case 2: 402 *value = readw(addr); 403 break; 404 case 4: 405 *value = readl(addr); 406 break; 407 default: 408 ret = -EINVAL; 409 break; 410 } 411 raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags); 412 return ret; 413 } 414 415 /* 416 * VMD h/w converts non-posted config writes to posted memory writes. The 417 * read-back in this function forces the completion so it returns only after 418 * the config space was written, as expected. 419 */ 420 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 421 int len, u32 value) 422 { 423 struct vmd_dev *vmd = vmd_from_bus(bus); 424 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 425 unsigned long flags; 426 int ret = 0; 427 428 if (!addr) 429 return -EFAULT; 430 431 raw_spin_lock_irqsave(&vmd->cfg_lock, flags); 432 switch (len) { 433 case 1: 434 writeb(value, addr); 435 readb(addr); 436 break; 437 case 2: 438 writew(value, addr); 439 readw(addr); 440 break; 441 case 4: 442 writel(value, addr); 443 readl(addr); 444 break; 445 default: 446 ret = -EINVAL; 447 break; 448 } 449 raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags); 450 return ret; 451 } 452 453 static struct pci_ops vmd_ops = { 454 .read = vmd_pci_read, 455 .write = vmd_pci_write, 456 }; 457 458 #ifdef CONFIG_ACPI 459 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 460 { 461 struct pci_host_bridge *bridge; 462 u32 busnr, addr; 463 464 if (pci_dev->bus->ops != &vmd_ops) 465 return NULL; 466 467 bridge = pci_find_host_bridge(pci_dev->bus); 468 busnr = pci_dev->bus->number - bridge->bus->number; 469 /* 470 * The address computation below is only applicable to relative bus 471 * numbers below 32. 472 */ 473 if (busnr > 31) 474 return NULL; 475 476 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 477 478 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 479 addr); 480 481 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 482 false); 483 } 484 485 static bool hook_installed; 486 487 static void vmd_acpi_begin(void) 488 { 489 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 490 return; 491 492 hook_installed = true; 493 } 494 495 static void vmd_acpi_end(void) 496 { 497 if (!hook_installed) 498 return; 499 500 pci_acpi_clear_companion_lookup_hook(); 501 hook_installed = false; 502 } 503 #else 504 static inline void vmd_acpi_begin(void) { } 505 static inline void vmd_acpi_end(void) { } 506 #endif /* CONFIG_ACPI */ 507 508 static void vmd_domain_reset(struct vmd_dev *vmd) 509 { 510 u16 bus, max_buses = resource_size(&vmd->resources[0]); 511 u8 dev, functions, fn, hdr_type; 512 char __iomem *base; 513 514 for (bus = 0; bus < max_buses; bus++) { 515 for (dev = 0; dev < 32; dev++) { 516 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 517 PCI_DEVFN(dev, 0), 0); 518 519 hdr_type = readb(base + PCI_HEADER_TYPE); 520 521 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1; 522 for (fn = 0; fn < functions; fn++) { 523 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 524 PCI_DEVFN(dev, fn), 0); 525 526 hdr_type = readb(base + PCI_HEADER_TYPE) & 527 PCI_HEADER_TYPE_MASK; 528 529 if (hdr_type != PCI_HEADER_TYPE_BRIDGE || 530 (readw(base + PCI_CLASS_DEVICE) != 531 PCI_CLASS_BRIDGE_PCI)) 532 continue; 533 534 /* 535 * Temporarily disable the I/O range before updating 536 * PCI_IO_BASE. 537 */ 538 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16); 539 /* Update lower 16 bits of I/O base/limit */ 540 writew(0x00f0, base + PCI_IO_BASE); 541 /* Update upper 16 bits of I/O base/limit */ 542 writel(0, base + PCI_IO_BASE_UPPER16); 543 544 /* MMIO Base/Limit */ 545 writel(0x0000fff0, base + PCI_MEMORY_BASE); 546 547 /* Prefetchable MMIO Base/Limit */ 548 writel(0, base + PCI_PREF_LIMIT_UPPER32); 549 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE); 550 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32); 551 } 552 } 553 } 554 } 555 556 static void vmd_attach_resources(struct vmd_dev *vmd) 557 { 558 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 559 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 560 } 561 562 static void vmd_detach_resources(struct vmd_dev *vmd) 563 { 564 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 565 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 566 } 567 568 /* 569 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 570 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 571 * 16 bits are the PCI Segment Group (domain) number. Other bits are 572 * currently reserved. 573 */ 574 static int vmd_find_free_domain(void) 575 { 576 int domain = 0xffff; 577 struct pci_bus *bus = NULL; 578 579 while ((bus = pci_find_next_bus(bus)) != NULL) 580 domain = max_t(int, domain, pci_domain_nr(bus)); 581 return domain + 1; 582 } 583 584 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 585 resource_size_t *offset1, 586 resource_size_t *offset2) 587 { 588 struct pci_dev *dev = vmd->dev; 589 u64 phys1, phys2; 590 591 if (native_hint) { 592 u32 vmlock; 593 int ret; 594 595 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 596 if (ret || PCI_POSSIBLE_ERROR(vmlock)) 597 return -ENODEV; 598 599 if (MB2_SHADOW_EN(vmlock)) { 600 void __iomem *membar2; 601 602 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 603 if (!membar2) 604 return -ENOMEM; 605 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 606 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 607 pci_iounmap(dev, membar2); 608 } else 609 return 0; 610 } else { 611 /* Hypervisor-Emulated Vendor-Specific Capability */ 612 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 613 u32 reg, regu; 614 615 pci_read_config_dword(dev, pos + 4, ®); 616 617 /* "SHDW" */ 618 if (pos && reg == 0x53484457) { 619 pci_read_config_dword(dev, pos + 8, ®); 620 pci_read_config_dword(dev, pos + 12, ®u); 621 phys1 = (u64) regu << 32 | reg; 622 623 pci_read_config_dword(dev, pos + 16, ®); 624 pci_read_config_dword(dev, pos + 20, ®u); 625 phys2 = (u64) regu << 32 | reg; 626 } else 627 return 0; 628 } 629 630 *offset1 = dev->resource[VMD_MEMBAR1].start - 631 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 632 *offset2 = dev->resource[VMD_MEMBAR2].start - 633 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 634 635 return 0; 636 } 637 638 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 639 { 640 struct pci_dev *dev = vmd->dev; 641 u16 reg; 642 643 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 644 if (BUS_RESTRICT_CAP(reg)) { 645 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 646 647 switch (BUS_RESTRICT_CFG(reg)) { 648 case 0: 649 vmd->busn_start = 0; 650 break; 651 case 1: 652 vmd->busn_start = 128; 653 break; 654 case 2: 655 vmd->busn_start = 224; 656 break; 657 default: 658 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 659 BUS_RESTRICT_CFG(reg)); 660 return -ENODEV; 661 } 662 } 663 664 return 0; 665 } 666 667 static irqreturn_t vmd_irq(int irq, void *data) 668 { 669 struct vmd_irq_list *irqs = data; 670 struct vmd_irq *vmdirq; 671 int idx; 672 673 idx = srcu_read_lock(&irqs->srcu); 674 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 675 generic_handle_irq(vmdirq->virq); 676 srcu_read_unlock(&irqs->srcu, idx); 677 678 return IRQ_HANDLED; 679 } 680 681 static int vmd_alloc_irqs(struct vmd_dev *vmd) 682 { 683 struct pci_dev *dev = vmd->dev; 684 int i, err; 685 686 vmd->msix_count = pci_msix_vec_count(dev); 687 if (vmd->msix_count < 0) 688 return -ENODEV; 689 690 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 691 vmd->msix_count, PCI_IRQ_MSIX); 692 if (vmd->msix_count < 0) 693 return vmd->msix_count; 694 695 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 696 GFP_KERNEL); 697 if (!vmd->irqs) 698 return -ENOMEM; 699 700 for (i = 0; i < vmd->msix_count; i++) { 701 err = init_srcu_struct(&vmd->irqs[i].srcu); 702 if (err) 703 return err; 704 705 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 706 vmd->irqs[i].virq = pci_irq_vector(dev, i); 707 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, 708 vmd_irq, IRQF_NO_THREAD, 709 vmd->name, &vmd->irqs[i]); 710 if (err) 711 return err; 712 } 713 714 return 0; 715 } 716 717 /* 718 * Since VMD is an aperture to regular PCIe root ports, only allow it to 719 * control features that the OS is allowed to control on the physical PCI bus. 720 */ 721 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, 722 struct pci_host_bridge *vmd_bridge) 723 { 724 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; 725 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; 726 vmd_bridge->native_aer = root_bridge->native_aer; 727 vmd_bridge->native_pme = root_bridge->native_pme; 728 vmd_bridge->native_ltr = root_bridge->native_ltr; 729 vmd_bridge->native_dpc = root_bridge->native_dpc; 730 } 731 732 /* 733 * Enable ASPM and LTR settings on devices that aren't configured by BIOS. 734 */ 735 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata) 736 { 737 unsigned long features = *(unsigned long *)userdata; 738 u16 ltr = VMD_BIOS_PM_QUIRK_LTR; 739 u32 ltr_reg; 740 int pos; 741 742 if (!(features & VMD_FEAT_BIOS_PM_QUIRK)) 743 return 0; 744 745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR); 746 if (!pos) 747 goto out_state_change; 748 749 /* 750 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it 751 * so the LTR quirk is not needed. 752 */ 753 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg); 754 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK))) 755 goto out_state_change; 756 757 /* 758 * Set the default values to the maximum required by the platform to 759 * allow the deepest power management savings. Write as a DWORD where 760 * the lower word is the max snoop latency and the upper word is the 761 * max non-snoop latency. 762 */ 763 ltr_reg = (ltr << 16) | ltr; 764 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg); 765 pci_info(pdev, "VMD: Default LTR value set by driver\n"); 766 767 out_state_change: 768 /* 769 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per 770 * PCIe r6.0, sec 5.5.4. 771 */ 772 pci_set_power_state_locked(pdev, PCI_D0); 773 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL); 774 return 0; 775 } 776 777 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 778 { 779 struct pci_sysdata *sd = &vmd->sysdata; 780 struct resource *res; 781 u32 upper_bits; 782 unsigned long flags; 783 LIST_HEAD(resources); 784 resource_size_t offset[2] = {0}; 785 resource_size_t membar2_offset = 0x2000; 786 struct pci_bus *child; 787 struct pci_dev *dev; 788 int ret; 789 790 /* 791 * Shadow registers may exist in certain VMD device ids which allow 792 * guests to correctly assign host physical addresses to the root ports 793 * and child devices. These registers will either return the host value 794 * or 0, depending on an enable bit in the VMD device. 795 */ 796 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 797 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 798 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 799 if (ret) 800 return ret; 801 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 802 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 803 if (ret) 804 return ret; 805 } 806 807 /* 808 * Certain VMD devices may have a root port configuration option which 809 * limits the bus range to between 0-127, 128-255, or 224-255 810 */ 811 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 812 ret = vmd_get_bus_number_start(vmd); 813 if (ret) 814 return ret; 815 } 816 817 res = &vmd->dev->resource[VMD_CFGBAR]; 818 vmd->resources[0] = (struct resource) { 819 .name = "VMD CFGBAR", 820 .start = vmd->busn_start, 821 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 822 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 823 }; 824 825 /* 826 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 827 * put 32-bit resources in the window. 828 * 829 * There's no hardware reason why a 64-bit window *couldn't* 830 * contain a 32-bit resource, but pbus_size_mem() computes the 831 * bridge window size assuming a 64-bit window will contain no 832 * 32-bit resources. __pci_assign_resource() enforces that 833 * artificial restriction to make sure everything will fit. 834 * 835 * The only way we could use a 64-bit non-prefetchable MEMBAR is 836 * if its address is <4GB so that we can convert it to a 32-bit 837 * resource. To be visible to the host OS, all VMD endpoints must 838 * be initially configured by platform BIOS, which includes setting 839 * up these resources. We can assume the device is configured 840 * according to the platform needs. 841 */ 842 res = &vmd->dev->resource[VMD_MEMBAR1]; 843 upper_bits = upper_32_bits(res->end); 844 flags = res->flags & ~IORESOURCE_SIZEALIGN; 845 if (!upper_bits) 846 flags &= ~IORESOURCE_MEM_64; 847 vmd->resources[1] = (struct resource) { 848 .name = "VMD MEMBAR1", 849 .start = res->start, 850 .end = res->end, 851 .flags = flags, 852 .parent = res, 853 }; 854 855 res = &vmd->dev->resource[VMD_MEMBAR2]; 856 upper_bits = upper_32_bits(res->end); 857 flags = res->flags & ~IORESOURCE_SIZEALIGN; 858 if (!upper_bits) 859 flags &= ~IORESOURCE_MEM_64; 860 vmd->resources[2] = (struct resource) { 861 .name = "VMD MEMBAR2", 862 .start = res->start + membar2_offset, 863 .end = res->end, 864 .flags = flags, 865 .parent = res, 866 }; 867 868 sd->vmd_dev = vmd->dev; 869 sd->domain = vmd_find_free_domain(); 870 if (sd->domain < 0) 871 return sd->domain; 872 873 sd->node = pcibus_to_node(vmd->dev->bus); 874 875 /* 876 * Currently MSI remapping must be enabled in guest passthrough mode 877 * due to some missing interrupt remapping plumbing. This is probably 878 * acceptable because the guest is usually CPU-limited and MSI 879 * remapping doesn't become a performance bottleneck. 880 */ 881 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 882 offset[0] || offset[1]) { 883 ret = vmd_alloc_irqs(vmd); 884 if (ret) 885 return ret; 886 887 vmd_set_msi_remapping(vmd, true); 888 889 ret = vmd_create_irq_domain(vmd); 890 if (ret) 891 return ret; 892 893 /* 894 * Override the IRQ domain bus token so the domain can be 895 * distinguished from a regular PCI/MSI domain. 896 */ 897 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 898 } else { 899 vmd_set_msi_remapping(vmd, false); 900 } 901 902 pci_add_resource(&resources, &vmd->resources[0]); 903 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 904 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 905 906 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 907 &vmd_ops, sd, &resources); 908 if (!vmd->bus) { 909 pci_free_resource_list(&resources); 910 vmd_remove_irq_domain(vmd); 911 return -ENODEV; 912 } 913 914 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), 915 to_pci_host_bridge(vmd->bus->bridge)); 916 917 vmd_attach_resources(vmd); 918 if (vmd->irq_domain) 919 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 920 else 921 dev_set_msi_domain(&vmd->bus->dev, 922 dev_get_msi_domain(&vmd->dev->dev)); 923 924 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 925 "domain"), "Can't create symlink to domain\n"); 926 927 vmd_acpi_begin(); 928 929 pci_scan_child_bus(vmd->bus); 930 vmd_domain_reset(vmd); 931 932 /* When Intel VMD is enabled, the OS does not discover the Root Ports 933 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies 934 * a reset to the parent of the PCI device supplied as argument. This 935 * is why we pass a child device, so the reset can be triggered at 936 * the Intel bridge level and propagated to all the children in the 937 * hierarchy. 938 */ 939 list_for_each_entry(child, &vmd->bus->children, node) { 940 if (!list_empty(&child->devices)) { 941 dev = list_first_entry(&child->devices, 942 struct pci_dev, bus_list); 943 ret = pci_reset_bus(dev); 944 if (ret) 945 pci_warn(dev, "can't reset device: %d\n", ret); 946 947 break; 948 } 949 } 950 951 pci_assign_unassigned_bus_resources(vmd->bus); 952 953 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features); 954 955 /* 956 * VMD root buses are virtual and don't return true on pci_is_pcie() 957 * and will fail pcie_bus_configure_settings() early. It can instead be 958 * run on each of the real root ports. 959 */ 960 list_for_each_entry(child, &vmd->bus->children, node) 961 pcie_bus_configure_settings(child); 962 963 pci_bus_add_devices(vmd->bus); 964 965 vmd_acpi_end(); 966 return 0; 967 } 968 969 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 970 { 971 unsigned long features = (unsigned long) id->driver_data; 972 struct vmd_dev *vmd; 973 int err; 974 975 if (xen_domain()) { 976 /* 977 * Xen doesn't have knowledge about devices in the VMD bus 978 * because the config space of devices behind the VMD bridge is 979 * not known to Xen, and hence Xen cannot discover or configure 980 * them in any way. 981 * 982 * Bypass of MSI remapping won't work in that case as direct 983 * write by Linux to the MSI entries won't result in functional 984 * interrupts, as Xen is the entity that manages the host 985 * interrupt controller and must configure interrupts. However 986 * multiplexing of interrupts by the VMD bridge will work under 987 * Xen, so force the usage of that mode which must always be 988 * supported by VMD bridges. 989 */ 990 features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP; 991 } 992 993 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 994 return -ENOMEM; 995 996 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 997 if (!vmd) 998 return -ENOMEM; 999 1000 vmd->dev = dev; 1001 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL); 1002 if (vmd->instance < 0) 1003 return vmd->instance; 1004 1005 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", 1006 vmd->instance); 1007 if (!vmd->name) { 1008 err = -ENOMEM; 1009 goto out_release_instance; 1010 } 1011 1012 err = pcim_enable_device(dev); 1013 if (err < 0) 1014 goto out_release_instance; 1015 1016 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 1017 if (!vmd->cfgbar) { 1018 err = -ENOMEM; 1019 goto out_release_instance; 1020 } 1021 1022 pci_set_master(dev); 1023 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 1024 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 1025 err = -ENODEV; 1026 goto out_release_instance; 1027 } 1028 1029 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 1030 vmd->first_vec = 1; 1031 1032 raw_spin_lock_init(&vmd->cfg_lock); 1033 pci_set_drvdata(dev, vmd); 1034 err = vmd_enable_domain(vmd, features); 1035 if (err) 1036 goto out_release_instance; 1037 1038 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 1039 vmd->sysdata.domain); 1040 return 0; 1041 1042 out_release_instance: 1043 ida_free(&vmd_instance_ida, vmd->instance); 1044 return err; 1045 } 1046 1047 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 1048 { 1049 int i; 1050 1051 for (i = 0; i < vmd->msix_count; i++) 1052 cleanup_srcu_struct(&vmd->irqs[i].srcu); 1053 } 1054 1055 static void vmd_remove(struct pci_dev *dev) 1056 { 1057 struct vmd_dev *vmd = pci_get_drvdata(dev); 1058 1059 pci_stop_root_bus(vmd->bus); 1060 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 1061 pci_remove_root_bus(vmd->bus); 1062 vmd_cleanup_srcu(vmd); 1063 vmd_detach_resources(vmd); 1064 vmd_remove_irq_domain(vmd); 1065 ida_free(&vmd_instance_ida, vmd->instance); 1066 } 1067 1068 static void vmd_shutdown(struct pci_dev *dev) 1069 { 1070 struct vmd_dev *vmd = pci_get_drvdata(dev); 1071 1072 vmd_remove_irq_domain(vmd); 1073 } 1074 1075 #ifdef CONFIG_PM_SLEEP 1076 static int vmd_suspend(struct device *dev) 1077 { 1078 struct pci_dev *pdev = to_pci_dev(dev); 1079 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1080 int i; 1081 1082 for (i = 0; i < vmd->msix_count; i++) 1083 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); 1084 1085 return 0; 1086 } 1087 1088 static int vmd_resume(struct device *dev) 1089 { 1090 struct pci_dev *pdev = to_pci_dev(dev); 1091 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1092 int err, i; 1093 1094 vmd_set_msi_remapping(vmd, !!vmd->irq_domain); 1095 1096 for (i = 0; i < vmd->msix_count; i++) { 1097 err = devm_request_irq(dev, vmd->irqs[i].virq, 1098 vmd_irq, IRQF_NO_THREAD, 1099 vmd->name, &vmd->irqs[i]); 1100 if (err) 1101 return err; 1102 } 1103 1104 return 0; 1105 } 1106 #endif 1107 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 1108 1109 static const struct pci_device_id vmd_ids[] = { 1110 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 1111 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 1112 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 1113 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 1114 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1115 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 1116 {PCI_VDEVICE(INTEL, 0x467f), 1117 .driver_data = VMD_FEATS_CLIENT,}, 1118 {PCI_VDEVICE(INTEL, 0x4c3d), 1119 .driver_data = VMD_FEATS_CLIENT,}, 1120 {PCI_VDEVICE(INTEL, 0xa77f), 1121 .driver_data = VMD_FEATS_CLIENT,}, 1122 {PCI_VDEVICE(INTEL, 0x7d0b), 1123 .driver_data = VMD_FEATS_CLIENT,}, 1124 {PCI_VDEVICE(INTEL, 0xad0b), 1125 .driver_data = VMD_FEATS_CLIENT,}, 1126 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 1127 .driver_data = VMD_FEATS_CLIENT,}, 1128 {PCI_VDEVICE(INTEL, 0xb60b), 1129 .driver_data = VMD_FEATS_CLIENT,}, 1130 {PCI_VDEVICE(INTEL, 0xb06f), 1131 .driver_data = VMD_FEATS_CLIENT,}, 1132 {0,} 1133 }; 1134 MODULE_DEVICE_TABLE(pci, vmd_ids); 1135 1136 static struct pci_driver vmd_drv = { 1137 .name = "vmd", 1138 .id_table = vmd_ids, 1139 .probe = vmd_probe, 1140 .remove = vmd_remove, 1141 .shutdown = vmd_shutdown, 1142 .driver = { 1143 .pm = &vmd_dev_pm_ops, 1144 }, 1145 }; 1146 module_pci_driver(vmd_drv); 1147 1148 MODULE_AUTHOR("Intel Corporation"); 1149 MODULE_DESCRIPTION("Volume Management Device driver"); 1150 MODULE_LICENSE("GPL v2"); 1151 MODULE_VERSION("0.6"); 1152