1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * APM X-Gene MSI Driver
4  *
5  * Copyright (c) 2014, Applied Micro Circuits Corporation
6  * Author: Tanmay Inamdar <tinamdar@apm.com>
7  *	   Duc Dang <dhdang@apm.com>
8  */
9 #include <linux/cpu.h>
10 #include <linux/interrupt.h>
11 #include <linux/irqdomain.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/irqchip/chained_irq.h>
15 #include <linux/irqchip/irq-msi-lib.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_pci.h>
19 
20 #define MSI_IR0			0x000000
21 #define MSI_INT0		0x800000
22 #define IDX_PER_GROUP		8
23 #define IRQS_PER_IDX		16
24 #define NR_HW_IRQS		16
25 #define NR_MSI_VEC		(IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
26 
27 struct xgene_msi_group {
28 	struct xgene_msi	*msi;
29 	int			gic_irq;
30 	u32			msi_grp;
31 };
32 
33 struct xgene_msi {
34 	struct device_node	*node;
35 	struct irq_domain	*inner_domain;
36 	u64			msi_addr;
37 	void __iomem		*msi_regs;
38 	unsigned long		*bitmap;
39 	struct mutex		bitmap_lock;
40 	struct xgene_msi_group	*msi_groups;
41 	int			num_cpus;
42 };
43 
44 /* Global data */
45 static struct xgene_msi xgene_msi_ctrl;
46 
47 /*
48  * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
49  * n is group number (0..F), x is index of registers in each group (0..7)
50  * The register layout is as follows:
51  * MSI0IR0			base_addr
52  * MSI0IR1			base_addr +  0x10000
53  * ...				...
54  * MSI0IR6			base_addr +  0x60000
55  * MSI0IR7			base_addr +  0x70000
56  * MSI1IR0			base_addr +  0x80000
57  * MSI1IR1			base_addr +  0x90000
58  * ...				...
59  * MSI1IR7			base_addr +  0xF0000
60  * MSI2IR0			base_addr + 0x100000
61  * ...				...
62  * MSIFIR0			base_addr + 0x780000
63  * MSIFIR1			base_addr + 0x790000
64  * ...				...
65  * MSIFIR7			base_addr + 0x7F0000
66  * MSIINT0			base_addr + 0x800000
67  * MSIINT1			base_addr + 0x810000
68  * ...				...
69  * MSIINTF			base_addr + 0x8F0000
70  *
71  * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
72  * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
73  * registers.
74  *
75  * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
76  * the MSI pending status caused by 1 of its 8 index registers.
77  */
78 
79 /* MSInIRx read helper */
80 static u32 xgene_msi_ir_read(struct xgene_msi *msi,
81 				    u32 msi_grp, u32 msir_idx)
82 {
83 	return readl_relaxed(msi->msi_regs + MSI_IR0 +
84 			      (msi_grp << 19) + (msir_idx << 16));
85 }
86 
87 /* MSIINTn read helper */
88 static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
89 {
90 	return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
91 }
92 
93 /*
94  * With 2048 MSI vectors supported, the MSI message can be constructed using
95  * following scheme:
96  * - Divide into 8 256-vector groups
97  *		Group 0: 0-255
98  *		Group 1: 256-511
99  *		Group 2: 512-767
100  *		...
101  *		Group 7: 1792-2047
102  * - Each 256-vector group is divided into 16 16-vector groups
103  *	As an example: 16 16-vector groups for 256-vector group 0-255 is
104  *		Group 0: 0-15
105  *		Group 1: 16-32
106  *		...
107  *		Group 15: 240-255
108  * - The termination address of MSI vector in 256-vector group n and 16-vector
109  *   group x is the address of MSIxIRn
110  * - The data for MSI vector in 16-vector group x is x
111  */
112 static u32 hwirq_to_reg_set(unsigned long hwirq)
113 {
114 	return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
115 }
116 
117 static u32 hwirq_to_group(unsigned long hwirq)
118 {
119 	return (hwirq % NR_HW_IRQS);
120 }
121 
122 static u32 hwirq_to_msi_data(unsigned long hwirq)
123 {
124 	return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
125 }
126 
127 static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
128 {
129 	struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
130 	u32 reg_set = hwirq_to_reg_set(data->hwirq);
131 	u32 group = hwirq_to_group(data->hwirq);
132 	u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
133 
134 	msg->address_hi = upper_32_bits(target_addr);
135 	msg->address_lo = lower_32_bits(target_addr);
136 	msg->data = hwirq_to_msi_data(data->hwirq);
137 }
138 
139 /*
140  * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors.  To maintain
141  * the expected behaviour of .set_affinity for each MSI interrupt, the 16
142  * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
143  * for each core).  The MSI vector is moved from 1 MSI GIC IRQ to another
144  * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core.  As a
145  * consequence, the total MSI vectors that X-Gene v1 supports will be
146  * reduced to 256 (2048/8) vectors.
147  */
148 static int hwirq_to_cpu(unsigned long hwirq)
149 {
150 	return (hwirq % xgene_msi_ctrl.num_cpus);
151 }
152 
153 static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
154 {
155 	return (hwirq - hwirq_to_cpu(hwirq));
156 }
157 
158 static int xgene_msi_set_affinity(struct irq_data *irqdata,
159 				  const struct cpumask *mask, bool force)
160 {
161 	int target_cpu = cpumask_first(mask);
162 	int curr_cpu;
163 
164 	curr_cpu = hwirq_to_cpu(irqdata->hwirq);
165 	if (curr_cpu == target_cpu)
166 		return IRQ_SET_MASK_OK_DONE;
167 
168 	/* Update MSI number to target the new CPU */
169 	irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
170 
171 	return IRQ_SET_MASK_OK;
172 }
173 
174 static struct irq_chip xgene_msi_bottom_irq_chip = {
175 	.name			= "MSI",
176 	.irq_set_affinity       = xgene_msi_set_affinity,
177 	.irq_compose_msi_msg	= xgene_compose_msi_msg,
178 };
179 
180 static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
181 				  unsigned int nr_irqs, void *args)
182 {
183 	struct xgene_msi *msi = domain->host_data;
184 	int msi_irq;
185 
186 	mutex_lock(&msi->bitmap_lock);
187 
188 	msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
189 					     msi->num_cpus, 0);
190 	if (msi_irq < NR_MSI_VEC)
191 		bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
192 	else
193 		msi_irq = -ENOSPC;
194 
195 	mutex_unlock(&msi->bitmap_lock);
196 
197 	if (msi_irq < 0)
198 		return msi_irq;
199 
200 	irq_domain_set_info(domain, virq, msi_irq,
201 			    &xgene_msi_bottom_irq_chip, domain->host_data,
202 			    handle_simple_irq, NULL, NULL);
203 
204 	return 0;
205 }
206 
207 static void xgene_irq_domain_free(struct irq_domain *domain,
208 				  unsigned int virq, unsigned int nr_irqs)
209 {
210 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
211 	struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
212 	u32 hwirq;
213 
214 	mutex_lock(&msi->bitmap_lock);
215 
216 	hwirq = hwirq_to_canonical_hwirq(d->hwirq);
217 	bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
218 
219 	mutex_unlock(&msi->bitmap_lock);
220 
221 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
222 }
223 
224 static const struct irq_domain_ops xgene_msi_domain_ops = {
225 	.alloc  = xgene_irq_domain_alloc,
226 	.free   = xgene_irq_domain_free,
227 };
228 
229 static const struct msi_parent_ops xgene_msi_parent_ops = {
230 	.supported_flags	= (MSI_GENERIC_FLAGS_MASK	|
231 				   MSI_FLAG_PCI_MSIX),
232 	.required_flags		= (MSI_FLAG_USE_DEF_DOM_OPS	|
233 				   MSI_FLAG_USE_DEF_CHIP_OPS),
234 	.bus_select_token	= DOMAIN_BUS_PCI_MSI,
235 	.init_dev_msi_info	= msi_lib_init_dev_msi_info,
236 };
237 
238 static int xgene_allocate_domains(struct xgene_msi *msi)
239 {
240 	struct irq_domain_info info = {
241 		.fwnode		= of_fwnode_handle(msi->node),
242 		.ops		= &xgene_msi_domain_ops,
243 		.size		= NR_MSI_VEC,
244 		.host_data	= msi,
245 	};
246 
247 	msi->inner_domain = msi_create_parent_irq_domain(&info, &xgene_msi_parent_ops);
248 	return msi->inner_domain ? 0 : -ENOMEM;
249 }
250 
251 static void xgene_free_domains(struct xgene_msi *msi)
252 {
253 	if (msi->inner_domain)
254 		irq_domain_remove(msi->inner_domain);
255 }
256 
257 static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
258 {
259 	xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
260 	if (!xgene_msi->bitmap)
261 		return -ENOMEM;
262 
263 	mutex_init(&xgene_msi->bitmap_lock);
264 
265 	xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
266 					sizeof(struct xgene_msi_group),
267 					GFP_KERNEL);
268 	if (!xgene_msi->msi_groups)
269 		return -ENOMEM;
270 
271 	return 0;
272 }
273 
274 static void xgene_msi_isr(struct irq_desc *desc)
275 {
276 	struct irq_chip *chip = irq_desc_get_chip(desc);
277 	struct xgene_msi_group *msi_groups;
278 	struct xgene_msi *xgene_msi;
279 	int msir_index, msir_val, hw_irq, ret;
280 	u32 intr_index, grp_select, msi_grp;
281 
282 	chained_irq_enter(chip, desc);
283 
284 	msi_groups = irq_desc_get_handler_data(desc);
285 	xgene_msi = msi_groups->msi;
286 	msi_grp = msi_groups->msi_grp;
287 
288 	/*
289 	 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
290 	 * If bit x of this register is set (x is 0..7), one or more interrupts
291 	 * corresponding to MSInIRx is set.
292 	 */
293 	grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
294 	while (grp_select) {
295 		msir_index = ffs(grp_select) - 1;
296 		/*
297 		 * Calculate MSInIRx address to read to check for interrupts
298 		 * (refer to termination address and data assignment
299 		 * described in xgene_compose_msi_msg() )
300 		 */
301 		msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
302 		while (msir_val) {
303 			intr_index = ffs(msir_val) - 1;
304 			/*
305 			 * Calculate MSI vector number (refer to the termination
306 			 * address and data assignment described in
307 			 * xgene_compose_msi_msg function)
308 			 */
309 			hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
310 				 NR_HW_IRQS) + msi_grp;
311 			/*
312 			 * As we have multiple hw_irq that maps to single MSI,
313 			 * always look up the virq using the hw_irq as seen from
314 			 * CPU0
315 			 */
316 			hw_irq = hwirq_to_canonical_hwirq(hw_irq);
317 			ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
318 			WARN_ON_ONCE(ret);
319 			msir_val &= ~(1 << intr_index);
320 		}
321 		grp_select &= ~(1 << msir_index);
322 
323 		if (!grp_select) {
324 			/*
325 			 * We handled all interrupts happened in this group,
326 			 * resample this group MSI_INTx register in case
327 			 * something else has been made pending in the meantime
328 			 */
329 			grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
330 		}
331 	}
332 
333 	chained_irq_exit(chip, desc);
334 }
335 
336 static enum cpuhp_state pci_xgene_online;
337 
338 static void xgene_msi_remove(struct platform_device *pdev)
339 {
340 	struct xgene_msi *msi = platform_get_drvdata(pdev);
341 
342 	if (pci_xgene_online)
343 		cpuhp_remove_state(pci_xgene_online);
344 	cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
345 
346 	kfree(msi->msi_groups);
347 
348 	bitmap_free(msi->bitmap);
349 	msi->bitmap = NULL;
350 
351 	xgene_free_domains(msi);
352 }
353 
354 static int xgene_msi_hwirq_alloc(unsigned int cpu)
355 {
356 	struct xgene_msi *msi = &xgene_msi_ctrl;
357 	struct xgene_msi_group *msi_group;
358 	cpumask_var_t mask;
359 	int i;
360 	int err;
361 
362 	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
363 		msi_group = &msi->msi_groups[i];
364 		if (!msi_group->gic_irq)
365 			continue;
366 
367 		irq_set_chained_handler_and_data(msi_group->gic_irq,
368 			xgene_msi_isr, msi_group);
369 
370 		/*
371 		 * Statically allocate MSI GIC IRQs to each CPU core.
372 		 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
373 		 * to each core.
374 		 */
375 		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
376 			cpumask_clear(mask);
377 			cpumask_set_cpu(cpu, mask);
378 			err = irq_set_affinity(msi_group->gic_irq, mask);
379 			if (err)
380 				pr_err("failed to set affinity for GIC IRQ");
381 			free_cpumask_var(mask);
382 		} else {
383 			pr_err("failed to alloc CPU mask for affinity\n");
384 			err = -EINVAL;
385 		}
386 
387 		if (err) {
388 			irq_set_chained_handler_and_data(msi_group->gic_irq,
389 							 NULL, NULL);
390 			return err;
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 static int xgene_msi_hwirq_free(unsigned int cpu)
398 {
399 	struct xgene_msi *msi = &xgene_msi_ctrl;
400 	struct xgene_msi_group *msi_group;
401 	int i;
402 
403 	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
404 		msi_group = &msi->msi_groups[i];
405 		if (!msi_group->gic_irq)
406 			continue;
407 
408 		irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
409 						 NULL);
410 	}
411 	return 0;
412 }
413 
414 static const struct of_device_id xgene_msi_match_table[] = {
415 	{.compatible = "apm,xgene1-msi"},
416 	{},
417 };
418 
419 static int xgene_msi_probe(struct platform_device *pdev)
420 {
421 	struct resource *res;
422 	int rc, irq_index;
423 	struct xgene_msi *xgene_msi;
424 	int virt_msir;
425 	u32 msi_val, msi_idx;
426 
427 	xgene_msi = &xgene_msi_ctrl;
428 
429 	platform_set_drvdata(pdev, xgene_msi);
430 
431 	xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
432 	if (IS_ERR(xgene_msi->msi_regs)) {
433 		rc = PTR_ERR(xgene_msi->msi_regs);
434 		goto error;
435 	}
436 	xgene_msi->msi_addr = res->start;
437 	xgene_msi->node = pdev->dev.of_node;
438 	xgene_msi->num_cpus = num_possible_cpus();
439 
440 	rc = xgene_msi_init_allocator(xgene_msi);
441 	if (rc) {
442 		dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
443 		goto error;
444 	}
445 
446 	rc = xgene_allocate_domains(xgene_msi);
447 	if (rc) {
448 		dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
449 		goto error;
450 	}
451 
452 	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
453 		virt_msir = platform_get_irq(pdev, irq_index);
454 		if (virt_msir < 0) {
455 			rc = virt_msir;
456 			goto error;
457 		}
458 		xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
459 		xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
460 		xgene_msi->msi_groups[irq_index].msi = xgene_msi;
461 	}
462 
463 	/*
464 	 * MSInIRx registers are read-to-clear; before registering
465 	 * interrupt handlers, read all of them to clear spurious
466 	 * interrupts that may occur before the driver is probed.
467 	 */
468 	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
469 		for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
470 			xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
471 
472 		/* Read MSIINTn to confirm */
473 		msi_val = xgene_msi_int_read(xgene_msi, irq_index);
474 		if (msi_val) {
475 			dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
476 			rc = -EINVAL;
477 			goto error;
478 		}
479 	}
480 
481 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
482 			       xgene_msi_hwirq_alloc, NULL);
483 	if (rc < 0)
484 		goto err_cpuhp;
485 	pci_xgene_online = rc;
486 	rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
487 			       xgene_msi_hwirq_free);
488 	if (rc)
489 		goto err_cpuhp;
490 
491 	dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
492 
493 	return 0;
494 
495 err_cpuhp:
496 	dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
497 error:
498 	xgene_msi_remove(pdev);
499 	return rc;
500 }
501 
502 static struct platform_driver xgene_msi_driver = {
503 	.driver = {
504 		.name = "xgene-msi",
505 		.of_match_table = xgene_msi_match_table,
506 	},
507 	.probe = xgene_msi_probe,
508 	.remove = xgene_msi_remove,
509 };
510 
511 static int __init xgene_pcie_msi_init(void)
512 {
513 	return platform_driver_register(&xgene_msi_driver);
514 }
515 subsys_initcall(xgene_pcie_msi_init);
516