1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <linux/sizes.h> 53 #include <linux/of_irq.h> 54 #include <asm/mshyperv.h> 55 56 /* 57 * Protocol versions. The low word is the minor version, the high word the 58 * major version. 59 */ 60 61 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 62 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 63 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 64 65 enum pci_protocol_version_t { 66 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 67 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 68 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 69 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 70 }; 71 72 #define CPU_AFFINITY_ALL -1ULL 73 74 /* 75 * Supported protocol versions in the order of probing - highest go 76 * first. 77 */ 78 static enum pci_protocol_version_t pci_protocol_versions[] = { 79 PCI_PROTOCOL_VERSION_1_4, 80 PCI_PROTOCOL_VERSION_1_3, 81 PCI_PROTOCOL_VERSION_1_2, 82 PCI_PROTOCOL_VERSION_1_1, 83 }; 84 85 #define PCI_CONFIG_MMIO_LENGTH 0x2000 86 #define CFG_PAGE_OFFSET 0x1000 87 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 88 89 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 90 91 #define STATUS_REVISION_MISMATCH 0xC0000059 92 93 /* space for 32bit serial number as string */ 94 #define SLOT_NAME_SIZE 11 95 96 /* 97 * Size of requestor for VMbus; the value is based on the observation 98 * that having more than one request outstanding is 'rare', and so 64 99 * should be generous in ensuring that we don't ever run out. 100 */ 101 #define HV_PCI_RQSTOR_SIZE 64 102 103 /* 104 * Message Types 105 */ 106 107 enum pci_message_type { 108 /* 109 * Version 1.1 110 */ 111 PCI_MESSAGE_BASE = 0x42490000, 112 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 113 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 114 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 115 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 116 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 117 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 118 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 119 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 120 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 121 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 122 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 123 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 124 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 125 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 126 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 127 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 128 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 129 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 130 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 131 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 132 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 133 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 134 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 135 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 136 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 137 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 138 PCI_MESSAGE_MAXIMUM 139 }; 140 141 /* 142 * Structures defining the virtual PCI Express protocol. 143 */ 144 145 union pci_version { 146 struct { 147 u16 minor_version; 148 u16 major_version; 149 } parts; 150 u32 version; 151 } __packed; 152 153 /* 154 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 155 * which is all this driver does. This representation is the one used in 156 * Windows, which is what is expected when sending this back and forth with 157 * the Hyper-V parent partition. 158 */ 159 union win_slot_encoding { 160 struct { 161 u32 dev:5; 162 u32 func:3; 163 u32 reserved:24; 164 } bits; 165 u32 slot; 166 } __packed; 167 168 /* 169 * Pretty much as defined in the PCI Specifications. 170 */ 171 struct pci_function_description { 172 u16 v_id; /* vendor ID */ 173 u16 d_id; /* device ID */ 174 u8 rev; 175 u8 prog_intf; 176 u8 subclass; 177 u8 base_class; 178 u32 subsystem_id; 179 union win_slot_encoding win_slot; 180 u32 ser; /* serial number */ 181 } __packed; 182 183 enum pci_device_description_flags { 184 HV_PCI_DEVICE_FLAG_NONE = 0x0, 185 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 186 }; 187 188 struct pci_function_description2 { 189 u16 v_id; /* vendor ID */ 190 u16 d_id; /* device ID */ 191 u8 rev; 192 u8 prog_intf; 193 u8 subclass; 194 u8 base_class; 195 u32 subsystem_id; 196 union win_slot_encoding win_slot; 197 u32 ser; /* serial number */ 198 u32 flags; 199 u16 virtual_numa_node; 200 u16 reserved; 201 } __packed; 202 203 /** 204 * struct hv_msi_desc 205 * @vector: IDT entry 206 * @delivery_mode: As defined in Intel's Programmer's 207 * Reference Manual, Volume 3, Chapter 8. 208 * @vector_count: Number of contiguous entries in the 209 * Interrupt Descriptor Table that are 210 * occupied by this Message-Signaled 211 * Interrupt. For "MSI", as first defined 212 * in PCI 2.2, this can be between 1 and 213 * 32. For "MSI-X," as first defined in PCI 214 * 3.0, this must be 1, as each MSI-X table 215 * entry would have its own descriptor. 216 * @reserved: Empty space 217 * @cpu_mask: All the target virtual processors. 218 */ 219 struct hv_msi_desc { 220 u8 vector; 221 u8 delivery_mode; 222 u16 vector_count; 223 u32 reserved; 224 u64 cpu_mask; 225 } __packed; 226 227 /** 228 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 229 * @vector: IDT entry 230 * @delivery_mode: As defined in Intel's Programmer's 231 * Reference Manual, Volume 3, Chapter 8. 232 * @vector_count: Number of contiguous entries in the 233 * Interrupt Descriptor Table that are 234 * occupied by this Message-Signaled 235 * Interrupt. For "MSI", as first defined 236 * in PCI 2.2, this can be between 1 and 237 * 32. For "MSI-X," as first defined in PCI 238 * 3.0, this must be 1, as each MSI-X table 239 * entry would have its own descriptor. 240 * @processor_count: number of bits enabled in array. 241 * @processor_array: All the target virtual processors. 242 */ 243 struct hv_msi_desc2 { 244 u8 vector; 245 u8 delivery_mode; 246 u16 vector_count; 247 u16 processor_count; 248 u16 processor_array[32]; 249 } __packed; 250 251 /* 252 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 253 * Everything is the same as in 'hv_msi_desc2' except that the size of the 254 * 'vector' field is larger to support bigger vector values. For ex: LPI 255 * vectors on ARM. 256 */ 257 struct hv_msi_desc3 { 258 u32 vector; 259 u8 delivery_mode; 260 u8 reserved; 261 u16 vector_count; 262 u16 processor_count; 263 u16 processor_array[32]; 264 } __packed; 265 266 /** 267 * struct tran_int_desc 268 * @reserved: unused, padding 269 * @vector_count: same as in hv_msi_desc 270 * @data: This is the "data payload" value that is 271 * written by the device when it generates 272 * a message-signaled interrupt, either MSI 273 * or MSI-X. 274 * @address: This is the address to which the data 275 * payload is written on interrupt 276 * generation. 277 */ 278 struct tran_int_desc { 279 u16 reserved; 280 u16 vector_count; 281 u32 data; 282 u64 address; 283 } __packed; 284 285 /* 286 * A generic message format for virtual PCI. 287 * Specific message formats are defined later in the file. 288 */ 289 290 struct pci_message { 291 u32 type; 292 } __packed; 293 294 struct pci_child_message { 295 struct pci_message message_type; 296 union win_slot_encoding wslot; 297 } __packed; 298 299 struct pci_incoming_message { 300 struct vmpacket_descriptor hdr; 301 struct pci_message message_type; 302 } __packed; 303 304 struct pci_response { 305 struct vmpacket_descriptor hdr; 306 s32 status; /* negative values are failures */ 307 } __packed; 308 309 struct pci_packet { 310 void (*completion_func)(void *context, struct pci_response *resp, 311 int resp_packet_size); 312 void *compl_ctxt; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 493 struct mutex state_lock; 494 enum hv_pcibus_state state; 495 496 struct hv_device *hdev; 497 resource_size_t low_mmio_space; 498 resource_size_t high_mmio_space; 499 struct resource *mem_config; 500 struct resource *low_mmio_res; 501 struct resource *high_mmio_res; 502 struct completion *survey_event; 503 struct pci_bus *pci_bus; 504 spinlock_t config_lock; /* Avoid two threads writing index page */ 505 spinlock_t device_list_lock; /* Protect lists below */ 506 void __iomem *cfg_addr; 507 508 struct list_head children; 509 struct list_head dr_list; 510 511 struct msi_domain_info msi_info; 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[] __counted_by(device_count); 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define FLOW_HANDLER handle_edge_irq 581 #define FLOW_NAME "edge" 582 583 static int hv_pci_irqchip_init(void) 584 { 585 return 0; 586 } 587 588 static struct irq_domain *hv_pci_get_root_domain(void) 589 { 590 return x86_vector_domain; 591 } 592 593 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 594 { 595 struct irq_cfg *cfg = irqd_cfg(data); 596 597 return cfg->vector; 598 } 599 600 #define hv_msi_prepare pci_msi_prepare 601 602 /** 603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 604 * affinity. 605 * @data: Describes the IRQ 606 * 607 * Build new a destination for the MSI and make a hypercall to 608 * update the Interrupt Redirection Table. "Device Logical ID" 609 * is built out of this PCI bus's instance GUID and the function 610 * number of the device. 611 */ 612 static void hv_arch_irq_unmask(struct irq_data *data) 613 { 614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 615 struct hv_retarget_device_interrupt *params; 616 struct tran_int_desc *int_desc; 617 struct hv_pcibus_device *hbus; 618 const struct cpumask *dest; 619 cpumask_var_t tmp; 620 struct pci_bus *pbus; 621 struct pci_dev *pdev; 622 unsigned long flags; 623 u32 var_size = 0; 624 int cpu, nr_bank; 625 u64 res; 626 627 dest = irq_data_get_effective_affinity_mask(data); 628 pdev = msi_desc_to_pci_dev(msi_desc); 629 pbus = pdev->bus; 630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 631 int_desc = data->chip_data; 632 if (!int_desc) { 633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 634 __func__, data->irq); 635 return; 636 } 637 638 local_irq_save(flags); 639 640 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 641 memset(params, 0, sizeof(*params)); 642 params->partition_id = HV_PARTITION_ID_SELF; 643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 647 (hbus->hdev->dev_instance.b[4] << 16) | 648 (hbus->hdev->dev_instance.b[7] << 8) | 649 (hbus->hdev->dev_instance.b[6] & 0xf8) | 650 PCI_FUNC(pdev->devfn); 651 params->int_target.vector = hv_msi_get_int_vector(data); 652 653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 654 /* 655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 657 * with >64 VP support. 658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 659 * is not sufficient for this hypercall. 660 */ 661 params->int_target.flags |= 662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 663 664 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 665 res = 1; 666 goto out; 667 } 668 669 cpumask_and(tmp, dest, cpu_online_mask); 670 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 671 free_cpumask_var(tmp); 672 673 if (nr_bank <= 0) { 674 res = 1; 675 goto out; 676 } 677 678 /* 679 * var-sized hypercall, var-size starts after vp_mask (thus 680 * vp_set.format does not count, but vp_set.valid_bank_mask 681 * does). 682 */ 683 var_size = 1 + nr_bank; 684 } else { 685 for_each_cpu_and(cpu, dest, cpu_online_mask) { 686 params->int_target.vp_mask |= 687 (1ULL << hv_cpu_number_to_vp_number(cpu)); 688 } 689 } 690 691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 692 params, NULL); 693 694 out: 695 local_irq_restore(flags); 696 697 /* 698 * During hibernation, when a CPU is offlined, the kernel tries 699 * to move the interrupt to the remaining CPUs that haven't 700 * been offlined yet. In this case, the below hv_do_hypercall() 701 * always fails since the vmbus channel has been closed: 702 * refer to cpu_disable_common() -> fixup_irqs() -> 703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 704 * 705 * Suppress the error message for hibernation because the failure 706 * during hibernation does not matter (at this time all the devices 707 * have been frozen). Note: the correct affinity info is still updated 708 * into the irqdata data structure in migrate_one_irq() -> 709 * irq_do_set_affinity(), so later when the VM resumes, 710 * hv_pci_restore_msi_state() is able to correctly restore the 711 * interrupt with the correct affinity. 712 */ 713 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 714 dev_err(&hbus->hdev->device, 715 "%s() failed: %#llx", __func__, res); 716 } 717 #elif defined(CONFIG_ARM64) 718 /* 719 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 720 * of room at the start to allow for SPIs to be specified through ACPI and 721 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 722 */ 723 #define HV_PCI_MSI_SPI_START 64 724 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 725 #define DELIVERY_MODE 0 726 #define FLOW_HANDLER NULL 727 #define FLOW_NAME NULL 728 #define hv_msi_prepare NULL 729 730 struct hv_pci_chip_data { 731 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 732 struct mutex map_lock; 733 }; 734 735 /* Hyper-V vPCI MSI GIC IRQ domain */ 736 static struct irq_domain *hv_msi_gic_irq_domain; 737 738 /* Hyper-V PCI MSI IRQ chip */ 739 static struct irq_chip hv_arm64_msi_irq_chip = { 740 .name = "MSI", 741 .irq_set_affinity = irq_chip_set_affinity_parent, 742 .irq_eoi = irq_chip_eoi_parent, 743 .irq_mask = irq_chip_mask_parent, 744 .irq_unmask = irq_chip_unmask_parent 745 }; 746 747 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 748 { 749 return irqd->parent_data->hwirq; 750 } 751 752 /* 753 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 754 * the bitmap. 755 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 756 * the parent domain. 757 */ 758 static void hv_pci_vec_irq_free(struct irq_domain *domain, 759 unsigned int virq, 760 unsigned int nr_bm_irqs, 761 unsigned int nr_dom_irqs) 762 { 763 struct hv_pci_chip_data *chip_data = domain->host_data; 764 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 765 int first = d->hwirq - HV_PCI_MSI_SPI_START; 766 int i; 767 768 mutex_lock(&chip_data->map_lock); 769 bitmap_release_region(chip_data->spi_map, 770 first, 771 get_count_order(nr_bm_irqs)); 772 mutex_unlock(&chip_data->map_lock); 773 for (i = 0; i < nr_dom_irqs; i++) { 774 if (i) 775 d = irq_domain_get_irq_data(domain, virq + i); 776 irq_domain_reset_irq_data(d); 777 } 778 779 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 780 } 781 782 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 783 unsigned int virq, 784 unsigned int nr_irqs) 785 { 786 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 787 } 788 789 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 790 unsigned int nr_irqs, 791 irq_hw_number_t *hwirq) 792 { 793 struct hv_pci_chip_data *chip_data = domain->host_data; 794 int index; 795 796 /* Find and allocate region from the SPI bitmap */ 797 mutex_lock(&chip_data->map_lock); 798 index = bitmap_find_free_region(chip_data->spi_map, 799 HV_PCI_MSI_SPI_NR, 800 get_count_order(nr_irqs)); 801 mutex_unlock(&chip_data->map_lock); 802 if (index < 0) 803 return -ENOSPC; 804 805 *hwirq = index + HV_PCI_MSI_SPI_START; 806 807 return 0; 808 } 809 810 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 811 unsigned int virq, 812 irq_hw_number_t hwirq) 813 { 814 struct irq_fwspec fwspec; 815 struct irq_data *d; 816 int ret; 817 818 fwspec.fwnode = domain->parent->fwnode; 819 if (is_of_node(fwspec.fwnode)) { 820 /* SPI lines for OF translations start at offset 32 */ 821 fwspec.param_count = 3; 822 fwspec.param[0] = 0; 823 fwspec.param[1] = hwirq - 32; 824 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 825 } else { 826 fwspec.param_count = 2; 827 fwspec.param[0] = hwirq; 828 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 829 } 830 831 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 832 if (ret) 833 return ret; 834 835 /* 836 * Since the interrupt specifier is not coming from ACPI or DT, the 837 * trigger type will need to be set explicitly. Otherwise, it will be 838 * set to whatever is in the GIC configuration. 839 */ 840 d = irq_domain_get_irq_data(domain->parent, virq); 841 842 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 843 } 844 845 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 846 unsigned int virq, unsigned int nr_irqs, 847 void *args) 848 { 849 irq_hw_number_t hwirq; 850 unsigned int i; 851 int ret; 852 853 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 854 if (ret) 855 return ret; 856 857 for (i = 0; i < nr_irqs; i++) { 858 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 859 hwirq + i); 860 if (ret) { 861 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 862 return ret; 863 } 864 865 irq_domain_set_hwirq_and_chip(domain, virq + i, 866 hwirq + i, 867 &hv_arm64_msi_irq_chip, 868 domain->host_data); 869 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 870 } 871 872 return 0; 873 } 874 875 /* 876 * Pick the first cpu as the irq affinity that can be temporarily used for 877 * composing MSI from the hypervisor. GIC will eventually set the right 878 * affinity for the irq and the 'unmask' will retarget the interrupt to that 879 * cpu. 880 */ 881 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 882 struct irq_data *irqd, bool reserve) 883 { 884 int cpu = cpumask_first(cpu_present_mask); 885 886 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 887 888 return 0; 889 } 890 891 static const struct irq_domain_ops hv_pci_domain_ops = { 892 .alloc = hv_pci_vec_irq_domain_alloc, 893 .free = hv_pci_vec_irq_domain_free, 894 .activate = hv_pci_vec_irq_domain_activate, 895 }; 896 897 #ifdef CONFIG_OF 898 899 static struct irq_domain *hv_pci_of_irq_domain_parent(void) 900 { 901 struct device_node *parent; 902 struct irq_domain *domain; 903 904 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); 905 if (!parent) 906 return NULL; 907 domain = irq_find_host(parent); 908 of_node_put(parent); 909 910 return domain; 911 } 912 913 #endif 914 915 #ifdef CONFIG_ACPI 916 917 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) 918 { 919 acpi_gsi_domain_disp_fn gsi_domain_disp_fn; 920 921 gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); 922 if (!gsi_domain_disp_fn) 923 return NULL; 924 return irq_find_matching_fwnode(gsi_domain_disp_fn(0), 925 DOMAIN_BUS_ANY); 926 } 927 928 #endif 929 930 static int hv_pci_irqchip_init(void) 931 { 932 static struct hv_pci_chip_data *chip_data; 933 struct fwnode_handle *fn = NULL; 934 struct irq_domain *irq_domain_parent = NULL; 935 int ret = -ENOMEM; 936 937 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 938 if (!chip_data) 939 return ret; 940 941 mutex_init(&chip_data->map_lock); 942 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 943 if (!fn) 944 goto free_chip; 945 946 /* 947 * IRQ domain once enabled, should not be removed since there is no 948 * way to ensure that all the corresponding devices are also gone and 949 * no interrupts will be generated. 950 */ 951 #ifdef CONFIG_ACPI 952 if (!acpi_disabled) 953 irq_domain_parent = hv_pci_acpi_irq_domain_parent(); 954 #endif 955 #ifdef CONFIG_OF 956 if (!irq_domain_parent) 957 irq_domain_parent = hv_pci_of_irq_domain_parent(); 958 #endif 959 if (!irq_domain_parent) { 960 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); 961 ret = -EINVAL; 962 goto free_chip; 963 } 964 965 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, 966 HV_PCI_MSI_SPI_NR, 967 fn, &hv_pci_domain_ops, 968 chip_data); 969 970 if (!hv_msi_gic_irq_domain) { 971 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 972 goto free_chip; 973 } 974 975 return 0; 976 977 free_chip: 978 kfree(chip_data); 979 if (fn) 980 irq_domain_free_fwnode(fn); 981 982 return ret; 983 } 984 985 static struct irq_domain *hv_pci_get_root_domain(void) 986 { 987 return hv_msi_gic_irq_domain; 988 } 989 990 /* 991 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 992 * registers which Hyper-V already supports, so no hypercall needed. 993 */ 994 static void hv_arch_irq_unmask(struct irq_data *data) { } 995 #endif /* CONFIG_ARM64 */ 996 997 /** 998 * hv_pci_generic_compl() - Invoked for a completion packet 999 * @context: Set up by the sender of the packet. 1000 * @resp: The response packet 1001 * @resp_packet_size: Size in bytes of the packet 1002 * 1003 * This function is used to trigger an event and report status 1004 * for any message for which the completion packet contains a 1005 * status and nothing else. 1006 */ 1007 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 1008 int resp_packet_size) 1009 { 1010 struct hv_pci_compl *comp_pkt = context; 1011 1012 comp_pkt->completion_status = resp->status; 1013 complete(&comp_pkt->host_event); 1014 } 1015 1016 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1017 u32 wslot); 1018 1019 static void get_pcichild(struct hv_pci_dev *hpdev) 1020 { 1021 refcount_inc(&hpdev->refs); 1022 } 1023 1024 static void put_pcichild(struct hv_pci_dev *hpdev) 1025 { 1026 if (refcount_dec_and_test(&hpdev->refs)) 1027 kfree(hpdev); 1028 } 1029 1030 /* 1031 * There is no good way to get notified from vmbus_onoffer_rescind(), 1032 * so let's use polling here, since this is not a hot path. 1033 */ 1034 static int wait_for_response(struct hv_device *hdev, 1035 struct completion *comp) 1036 { 1037 while (true) { 1038 if (hdev->channel->rescind) { 1039 dev_warn_once(&hdev->device, "The device is gone.\n"); 1040 return -ENODEV; 1041 } 1042 1043 if (wait_for_completion_timeout(comp, HZ / 10)) 1044 break; 1045 } 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1052 * @devfn: The Linux representation of PCI slot 1053 * 1054 * Windows uses a slightly different representation of PCI slot. 1055 * 1056 * Return: The Windows representation 1057 */ 1058 static u32 devfn_to_wslot(int devfn) 1059 { 1060 union win_slot_encoding wslot; 1061 1062 wslot.slot = 0; 1063 wslot.bits.dev = PCI_SLOT(devfn); 1064 wslot.bits.func = PCI_FUNC(devfn); 1065 1066 return wslot.slot; 1067 } 1068 1069 /** 1070 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1071 * @wslot: The Windows representation of PCI slot 1072 * 1073 * Windows uses a slightly different representation of PCI slot. 1074 * 1075 * Return: The Linux representation 1076 */ 1077 static int wslot_to_devfn(u32 wslot) 1078 { 1079 union win_slot_encoding slot_no; 1080 1081 slot_no.slot = wslot; 1082 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1083 } 1084 1085 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1086 { 1087 struct hv_mmio_read_input *in; 1088 struct hv_mmio_read_output *out; 1089 u64 ret; 1090 1091 /* 1092 * Must be called with interrupts disabled so it is safe 1093 * to use the per-cpu input argument page. Use it for 1094 * both input and output. 1095 */ 1096 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1097 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1098 in->gpa = gpa; 1099 in->size = size; 1100 1101 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1102 if (hv_result_success(ret)) { 1103 switch (size) { 1104 case 1: 1105 *val = *(u8 *)(out->data); 1106 break; 1107 case 2: 1108 *val = *(u16 *)(out->data); 1109 break; 1110 default: 1111 *val = *(u32 *)(out->data); 1112 break; 1113 } 1114 } else 1115 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1116 ret, gpa, size); 1117 } 1118 1119 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1120 { 1121 struct hv_mmio_write_input *in; 1122 u64 ret; 1123 1124 /* 1125 * Must be called with interrupts disabled so it is safe 1126 * to use the per-cpu input argument memory. 1127 */ 1128 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1129 in->gpa = gpa; 1130 in->size = size; 1131 switch (size) { 1132 case 1: 1133 *(u8 *)(in->data) = val; 1134 break; 1135 case 2: 1136 *(u16 *)(in->data) = val; 1137 break; 1138 default: 1139 *(u32 *)(in->data) = val; 1140 break; 1141 } 1142 1143 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1144 if (!hv_result_success(ret)) 1145 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1146 ret, gpa, size); 1147 } 1148 1149 /* 1150 * PCI Configuration Space for these root PCI buses is implemented as a pair 1151 * of pages in memory-mapped I/O space. Writing to the first page chooses 1152 * the PCI function being written or read. Once the first page has been 1153 * written to, the following page maps in the entire configuration space of 1154 * the function. 1155 */ 1156 1157 /** 1158 * _hv_pcifront_read_config() - Internal PCI config read 1159 * @hpdev: The PCI driver's representation of the device 1160 * @where: Offset within config space 1161 * @size: Size of the transfer 1162 * @val: Pointer to the buffer receiving the data 1163 */ 1164 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1165 int size, u32 *val) 1166 { 1167 struct hv_pcibus_device *hbus = hpdev->hbus; 1168 struct device *dev = &hbus->hdev->device; 1169 int offset = where + CFG_PAGE_OFFSET; 1170 unsigned long flags; 1171 1172 /* 1173 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1174 */ 1175 if (where + size <= PCI_COMMAND) { 1176 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1177 } else if (where >= PCI_CLASS_REVISION && where + size <= 1178 PCI_CACHE_LINE_SIZE) { 1179 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1180 PCI_CLASS_REVISION, size); 1181 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1182 PCI_ROM_ADDRESS) { 1183 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1184 PCI_SUBSYSTEM_VENDOR_ID, size); 1185 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1186 PCI_CAPABILITY_LIST) { 1187 /* ROM BARs are unimplemented */ 1188 *val = 0; 1189 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || 1190 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { 1191 /* 1192 * Interrupt Line and Interrupt PIN are hard-wired to zero 1193 * because this front-end only supports message-signaled 1194 * interrupts. 1195 */ 1196 *val = 0; 1197 } else if (where + size <= CFG_PAGE_SIZE) { 1198 1199 spin_lock_irqsave(&hbus->config_lock, flags); 1200 if (hbus->use_calls) { 1201 phys_addr_t addr = hbus->mem_config->start + offset; 1202 1203 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1204 hpdev->desc.win_slot.slot); 1205 hv_pci_read_mmio(dev, addr, size, val); 1206 } else { 1207 void __iomem *addr = hbus->cfg_addr + offset; 1208 1209 /* Choose the function to be read. (See comment above) */ 1210 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1211 /* Make sure the function was chosen before reading. */ 1212 mb(); 1213 /* Read from that function's config space. */ 1214 switch (size) { 1215 case 1: 1216 *val = readb(addr); 1217 break; 1218 case 2: 1219 *val = readw(addr); 1220 break; 1221 default: 1222 *val = readl(addr); 1223 break; 1224 } 1225 /* 1226 * Make sure the read was done before we release the 1227 * spinlock allowing consecutive reads/writes. 1228 */ 1229 mb(); 1230 } 1231 spin_unlock_irqrestore(&hbus->config_lock, flags); 1232 } else { 1233 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1234 } 1235 } 1236 1237 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1238 { 1239 struct hv_pcibus_device *hbus = hpdev->hbus; 1240 struct device *dev = &hbus->hdev->device; 1241 u32 val; 1242 u16 ret; 1243 unsigned long flags; 1244 1245 spin_lock_irqsave(&hbus->config_lock, flags); 1246 1247 if (hbus->use_calls) { 1248 phys_addr_t addr = hbus->mem_config->start + 1249 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1250 1251 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1252 hpdev->desc.win_slot.slot); 1253 hv_pci_read_mmio(dev, addr, 2, &val); 1254 ret = val; /* Truncates to 16 bits */ 1255 } else { 1256 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1257 PCI_VENDOR_ID; 1258 /* Choose the function to be read. (See comment above) */ 1259 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1260 /* Make sure the function was chosen before we start reading. */ 1261 mb(); 1262 /* Read from that function's config space. */ 1263 ret = readw(addr); 1264 /* 1265 * mb() is not required here, because the 1266 * spin_unlock_irqrestore() is a barrier. 1267 */ 1268 } 1269 1270 spin_unlock_irqrestore(&hbus->config_lock, flags); 1271 1272 return ret; 1273 } 1274 1275 /** 1276 * _hv_pcifront_write_config() - Internal PCI config write 1277 * @hpdev: The PCI driver's representation of the device 1278 * @where: Offset within config space 1279 * @size: Size of the transfer 1280 * @val: The data being transferred 1281 */ 1282 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1283 int size, u32 val) 1284 { 1285 struct hv_pcibus_device *hbus = hpdev->hbus; 1286 struct device *dev = &hbus->hdev->device; 1287 int offset = where + CFG_PAGE_OFFSET; 1288 unsigned long flags; 1289 1290 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1291 where + size <= PCI_CAPABILITY_LIST) { 1292 /* SSIDs and ROM BARs are read-only */ 1293 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1294 spin_lock_irqsave(&hbus->config_lock, flags); 1295 1296 if (hbus->use_calls) { 1297 phys_addr_t addr = hbus->mem_config->start + offset; 1298 1299 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1300 hpdev->desc.win_slot.slot); 1301 hv_pci_write_mmio(dev, addr, size, val); 1302 } else { 1303 void __iomem *addr = hbus->cfg_addr + offset; 1304 1305 /* Choose the function to write. (See comment above) */ 1306 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1307 /* Make sure the function was chosen before writing. */ 1308 wmb(); 1309 /* Write to that function's config space. */ 1310 switch (size) { 1311 case 1: 1312 writeb(val, addr); 1313 break; 1314 case 2: 1315 writew(val, addr); 1316 break; 1317 default: 1318 writel(val, addr); 1319 break; 1320 } 1321 /* 1322 * Make sure the write was done before we release the 1323 * spinlock allowing consecutive reads/writes. 1324 */ 1325 mb(); 1326 } 1327 spin_unlock_irqrestore(&hbus->config_lock, flags); 1328 } else { 1329 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1330 } 1331 } 1332 1333 /** 1334 * hv_pcifront_read_config() - Read configuration space 1335 * @bus: PCI Bus structure 1336 * @devfn: Device/function 1337 * @where: Offset from base 1338 * @size: Byte/word/dword 1339 * @val: Value to be read 1340 * 1341 * Return: PCIBIOS_SUCCESSFUL on success 1342 * PCIBIOS_DEVICE_NOT_FOUND on failure 1343 */ 1344 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1345 int where, int size, u32 *val) 1346 { 1347 struct hv_pcibus_device *hbus = 1348 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1349 struct hv_pci_dev *hpdev; 1350 1351 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1352 if (!hpdev) 1353 return PCIBIOS_DEVICE_NOT_FOUND; 1354 1355 _hv_pcifront_read_config(hpdev, where, size, val); 1356 1357 put_pcichild(hpdev); 1358 return PCIBIOS_SUCCESSFUL; 1359 } 1360 1361 /** 1362 * hv_pcifront_write_config() - Write configuration space 1363 * @bus: PCI Bus structure 1364 * @devfn: Device/function 1365 * @where: Offset from base 1366 * @size: Byte/word/dword 1367 * @val: Value to be written to device 1368 * 1369 * Return: PCIBIOS_SUCCESSFUL on success 1370 * PCIBIOS_DEVICE_NOT_FOUND on failure 1371 */ 1372 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1373 int where, int size, u32 val) 1374 { 1375 struct hv_pcibus_device *hbus = 1376 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1377 struct hv_pci_dev *hpdev; 1378 1379 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1380 if (!hpdev) 1381 return PCIBIOS_DEVICE_NOT_FOUND; 1382 1383 _hv_pcifront_write_config(hpdev, where, size, val); 1384 1385 put_pcichild(hpdev); 1386 return PCIBIOS_SUCCESSFUL; 1387 } 1388 1389 /* PCIe operations */ 1390 static struct pci_ops hv_pcifront_ops = { 1391 .read = hv_pcifront_read_config, 1392 .write = hv_pcifront_write_config, 1393 }; 1394 1395 /* 1396 * Paravirtual backchannel 1397 * 1398 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1399 * communication between a VF driver and a PF driver. These 1400 * "configuration blocks" are similar in concept to PCI configuration space, 1401 * but instead of doing reads and writes in 32-bit chunks through a very slow 1402 * path, packets of up to 128 bytes can be sent or received asynchronously. 1403 * 1404 * Nearly every SR-IOV device contains just such a communications channel in 1405 * hardware, so using this one in software is usually optional. Using the 1406 * software channel, however, allows driver implementers to leverage software 1407 * tools that fuzz the communications channel looking for vulnerabilities. 1408 * 1409 * The usage model for these packets puts the responsibility for reading or 1410 * writing on the VF driver. The VF driver sends a read or a write packet, 1411 * indicating which "block" is being referred to by number. 1412 * 1413 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1414 * more of the first 64 blocks. This invalidation is delivered via a callback 1415 * supplied to the VF driver by this driver. 1416 * 1417 * No protocol is implied, except that supplied by the PF and VF drivers. 1418 */ 1419 1420 struct hv_read_config_compl { 1421 struct hv_pci_compl comp_pkt; 1422 void *buf; 1423 unsigned int len; 1424 unsigned int bytes_returned; 1425 }; 1426 1427 /** 1428 * hv_pci_read_config_compl() - Invoked when a response packet 1429 * for a read config block operation arrives. 1430 * @context: Identifies the read config operation 1431 * @resp: The response packet itself 1432 * @resp_packet_size: Size in bytes of the response packet 1433 */ 1434 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1435 int resp_packet_size) 1436 { 1437 struct hv_read_config_compl *comp = context; 1438 struct pci_read_block_response *read_resp = 1439 (struct pci_read_block_response *)resp; 1440 unsigned int data_len, hdr_len; 1441 1442 hdr_len = offsetof(struct pci_read_block_response, bytes); 1443 if (resp_packet_size < hdr_len) { 1444 comp->comp_pkt.completion_status = -1; 1445 goto out; 1446 } 1447 1448 data_len = resp_packet_size - hdr_len; 1449 if (data_len > 0 && read_resp->status == 0) { 1450 comp->bytes_returned = min(comp->len, data_len); 1451 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1452 } else { 1453 comp->bytes_returned = 0; 1454 } 1455 1456 comp->comp_pkt.completion_status = read_resp->status; 1457 out: 1458 complete(&comp->comp_pkt.host_event); 1459 } 1460 1461 /** 1462 * hv_read_config_block() - Sends a read config block request to 1463 * the back-end driver running in the Hyper-V parent partition. 1464 * @pdev: The PCI driver's representation for this device. 1465 * @buf: Buffer into which the config block will be copied. 1466 * @len: Size in bytes of buf. 1467 * @block_id: Identifies the config block which has been requested. 1468 * @bytes_returned: Size which came back from the back-end driver. 1469 * 1470 * Return: 0 on success, -errno on failure 1471 */ 1472 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1473 unsigned int len, unsigned int block_id, 1474 unsigned int *bytes_returned) 1475 { 1476 struct hv_pcibus_device *hbus = 1477 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1478 sysdata); 1479 struct { 1480 struct pci_packet pkt; 1481 char buf[sizeof(struct pci_read_block)]; 1482 } pkt; 1483 struct hv_read_config_compl comp_pkt; 1484 struct pci_read_block *read_blk; 1485 int ret; 1486 1487 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1488 return -EINVAL; 1489 1490 init_completion(&comp_pkt.comp_pkt.host_event); 1491 comp_pkt.buf = buf; 1492 comp_pkt.len = len; 1493 1494 memset(&pkt, 0, sizeof(pkt)); 1495 pkt.pkt.completion_func = hv_pci_read_config_compl; 1496 pkt.pkt.compl_ctxt = &comp_pkt; 1497 read_blk = (struct pci_read_block *)pkt.buf; 1498 read_blk->message_type.type = PCI_READ_BLOCK; 1499 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1500 read_blk->block_id = block_id; 1501 read_blk->bytes_requested = len; 1502 1503 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1504 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1505 VM_PKT_DATA_INBAND, 1506 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1507 if (ret) 1508 return ret; 1509 1510 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1511 if (ret) 1512 return ret; 1513 1514 if (comp_pkt.comp_pkt.completion_status != 0 || 1515 comp_pkt.bytes_returned == 0) { 1516 dev_err(&hbus->hdev->device, 1517 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1518 comp_pkt.comp_pkt.completion_status, 1519 comp_pkt.bytes_returned); 1520 return -EIO; 1521 } 1522 1523 *bytes_returned = comp_pkt.bytes_returned; 1524 return 0; 1525 } 1526 1527 /** 1528 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1529 * config block operation arrives. 1530 * @context: Identifies the write config operation 1531 * @resp: The response packet itself 1532 * @resp_packet_size: Size in bytes of the response packet 1533 */ 1534 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1535 int resp_packet_size) 1536 { 1537 struct hv_pci_compl *comp_pkt = context; 1538 1539 comp_pkt->completion_status = resp->status; 1540 complete(&comp_pkt->host_event); 1541 } 1542 1543 /** 1544 * hv_write_config_block() - Sends a write config block request to the 1545 * back-end driver running in the Hyper-V parent partition. 1546 * @pdev: The PCI driver's representation for this device. 1547 * @buf: Buffer from which the config block will be copied. 1548 * @len: Size in bytes of buf. 1549 * @block_id: Identifies the config block which is being written. 1550 * 1551 * Return: 0 on success, -errno on failure 1552 */ 1553 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1554 unsigned int len, unsigned int block_id) 1555 { 1556 struct hv_pcibus_device *hbus = 1557 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1558 sysdata); 1559 struct { 1560 struct pci_packet pkt; 1561 char buf[sizeof(struct pci_write_block)]; 1562 u32 reserved; 1563 } pkt; 1564 struct hv_pci_compl comp_pkt; 1565 struct pci_write_block *write_blk; 1566 u32 pkt_size; 1567 int ret; 1568 1569 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1570 return -EINVAL; 1571 1572 init_completion(&comp_pkt.host_event); 1573 1574 memset(&pkt, 0, sizeof(pkt)); 1575 pkt.pkt.completion_func = hv_pci_write_config_compl; 1576 pkt.pkt.compl_ctxt = &comp_pkt; 1577 write_blk = (struct pci_write_block *)pkt.buf; 1578 write_blk->message_type.type = PCI_WRITE_BLOCK; 1579 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1580 write_blk->block_id = block_id; 1581 write_blk->byte_count = len; 1582 memcpy(write_blk->bytes, buf, len); 1583 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1584 /* 1585 * This quirk is required on some hosts shipped around 2018, because 1586 * these hosts don't check the pkt_size correctly (new hosts have been 1587 * fixed since early 2019). The quirk is also safe on very old hosts 1588 * and new hosts, because, on them, what really matters is the length 1589 * specified in write_blk->byte_count. 1590 */ 1591 pkt_size += sizeof(pkt.reserved); 1592 1593 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1594 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1595 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1596 if (ret) 1597 return ret; 1598 1599 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1600 if (ret) 1601 return ret; 1602 1603 if (comp_pkt.completion_status != 0) { 1604 dev_err(&hbus->hdev->device, 1605 "Write Config Block failed: 0x%x\n", 1606 comp_pkt.completion_status); 1607 return -EIO; 1608 } 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * hv_register_block_invalidate() - Invoked when a config block invalidation 1615 * arrives from the back-end driver. 1616 * @pdev: The PCI driver's representation for this device. 1617 * @context: Identifies the device. 1618 * @block_invalidate: Identifies all of the blocks being invalidated. 1619 * 1620 * Return: 0 on success, -errno on failure 1621 */ 1622 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1623 void (*block_invalidate)(void *context, 1624 u64 block_mask)) 1625 { 1626 struct hv_pcibus_device *hbus = 1627 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1628 sysdata); 1629 struct hv_pci_dev *hpdev; 1630 1631 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1632 if (!hpdev) 1633 return -ENODEV; 1634 1635 hpdev->block_invalidate = block_invalidate; 1636 hpdev->invalidate_context = context; 1637 1638 put_pcichild(hpdev); 1639 return 0; 1640 1641 } 1642 1643 /* Interrupt management hooks */ 1644 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1645 struct tran_int_desc *int_desc) 1646 { 1647 struct pci_delete_interrupt *int_pkt; 1648 struct { 1649 struct pci_packet pkt; 1650 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1651 } ctxt; 1652 1653 if (!int_desc->vector_count) { 1654 kfree(int_desc); 1655 return; 1656 } 1657 memset(&ctxt, 0, sizeof(ctxt)); 1658 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; 1659 int_pkt->message_type.type = 1660 PCI_DELETE_INTERRUPT_MESSAGE; 1661 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1662 int_pkt->int_desc = *int_desc; 1663 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1664 0, VM_PKT_DATA_INBAND, 0); 1665 kfree(int_desc); 1666 } 1667 1668 /** 1669 * hv_msi_free() - Free the MSI. 1670 * @domain: The interrupt domain pointer 1671 * @info: Extra MSI-related context 1672 * @irq: Identifies the IRQ. 1673 * 1674 * The Hyper-V parent partition and hypervisor are tracking the 1675 * messages that are in use, keeping the interrupt redirection 1676 * table up to date. This callback sends a message that frees 1677 * the IRT entry and related tracking nonsense. 1678 */ 1679 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1680 unsigned int irq) 1681 { 1682 struct hv_pcibus_device *hbus; 1683 struct hv_pci_dev *hpdev; 1684 struct pci_dev *pdev; 1685 struct tran_int_desc *int_desc; 1686 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1687 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1688 1689 pdev = msi_desc_to_pci_dev(msi); 1690 hbus = info->data; 1691 int_desc = irq_data_get_irq_chip_data(irq_data); 1692 if (!int_desc) 1693 return; 1694 1695 irq_data->chip_data = NULL; 1696 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1697 if (!hpdev) { 1698 kfree(int_desc); 1699 return; 1700 } 1701 1702 hv_int_desc_free(hpdev, int_desc); 1703 put_pcichild(hpdev); 1704 } 1705 1706 static void hv_irq_mask(struct irq_data *data) 1707 { 1708 pci_msi_mask_irq(data); 1709 if (data->parent_data->chip->irq_mask) 1710 irq_chip_mask_parent(data); 1711 } 1712 1713 static void hv_irq_unmask(struct irq_data *data) 1714 { 1715 hv_arch_irq_unmask(data); 1716 1717 if (data->parent_data->chip->irq_unmask) 1718 irq_chip_unmask_parent(data); 1719 pci_msi_unmask_irq(data); 1720 } 1721 1722 struct compose_comp_ctxt { 1723 struct hv_pci_compl comp_pkt; 1724 struct tran_int_desc int_desc; 1725 }; 1726 1727 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1728 int resp_packet_size) 1729 { 1730 struct compose_comp_ctxt *comp_pkt = context; 1731 struct pci_create_int_response *int_resp = 1732 (struct pci_create_int_response *)resp; 1733 1734 if (resp_packet_size < sizeof(*int_resp)) { 1735 comp_pkt->comp_pkt.completion_status = -1; 1736 goto out; 1737 } 1738 comp_pkt->comp_pkt.completion_status = resp->status; 1739 comp_pkt->int_desc = int_resp->int_desc; 1740 out: 1741 complete(&comp_pkt->comp_pkt.host_event); 1742 } 1743 1744 static u32 hv_compose_msi_req_v1( 1745 struct pci_create_interrupt *int_pkt, 1746 u32 slot, u8 vector, u16 vector_count) 1747 { 1748 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1749 int_pkt->wslot.slot = slot; 1750 int_pkt->int_desc.vector = vector; 1751 int_pkt->int_desc.vector_count = vector_count; 1752 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1753 1754 /* 1755 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1756 * hv_irq_unmask(). 1757 */ 1758 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1759 1760 return sizeof(*int_pkt); 1761 } 1762 1763 /* 1764 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1765 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1766 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1767 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1768 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1769 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1770 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1771 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1772 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1773 * to spread out the pCPUs that it selects. 1774 * 1775 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1776 * to always return the same dummy vCPU, because a second call to 1777 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1778 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1779 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1780 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1781 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1782 * the same pCPU, even though the vCPUs will be spread out by later calls 1783 * to hv_irq_unmask(), but that is the best we can do now. 1784 * 1785 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1786 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1787 * enhancement is planned for a future version. With that enhancement, the 1788 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1789 * device will be spread across multiple pCPUs. 1790 */ 1791 1792 /* 1793 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1794 * by subsequent retarget in hv_irq_unmask(). 1795 */ 1796 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1797 { 1798 return cpumask_first_and(affinity, cpu_online_mask); 1799 } 1800 1801 /* 1802 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1803 */ 1804 static int hv_compose_multi_msi_req_get_cpu(void) 1805 { 1806 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1807 1808 /* -1 means starting with CPU 0 */ 1809 static int cpu_next = -1; 1810 1811 unsigned long flags; 1812 int cpu; 1813 1814 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1815 1816 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); 1817 cpu = cpu_next; 1818 1819 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1820 1821 return cpu; 1822 } 1823 1824 static u32 hv_compose_msi_req_v2( 1825 struct pci_create_interrupt2 *int_pkt, int cpu, 1826 u32 slot, u8 vector, u16 vector_count) 1827 { 1828 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1829 int_pkt->wslot.slot = slot; 1830 int_pkt->int_desc.vector = vector; 1831 int_pkt->int_desc.vector_count = vector_count; 1832 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1833 int_pkt->int_desc.processor_array[0] = 1834 hv_cpu_number_to_vp_number(cpu); 1835 int_pkt->int_desc.processor_count = 1; 1836 1837 return sizeof(*int_pkt); 1838 } 1839 1840 static u32 hv_compose_msi_req_v3( 1841 struct pci_create_interrupt3 *int_pkt, int cpu, 1842 u32 slot, u32 vector, u16 vector_count) 1843 { 1844 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1845 int_pkt->wslot.slot = slot; 1846 int_pkt->int_desc.vector = vector; 1847 int_pkt->int_desc.reserved = 0; 1848 int_pkt->int_desc.vector_count = vector_count; 1849 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1850 int_pkt->int_desc.processor_array[0] = 1851 hv_cpu_number_to_vp_number(cpu); 1852 int_pkt->int_desc.processor_count = 1; 1853 1854 return sizeof(*int_pkt); 1855 } 1856 1857 /** 1858 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1859 * @data: Everything about this MSI 1860 * @msg: Buffer that is filled in by this function 1861 * 1862 * This function unpacks the IRQ looking for target CPU set, IDT 1863 * vector and mode and sends a message to the parent partition 1864 * asking for a mapping for that tuple in this partition. The 1865 * response supplies a data value and address to which that data 1866 * should be written to trigger that interrupt. 1867 */ 1868 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1869 { 1870 struct hv_pcibus_device *hbus; 1871 struct vmbus_channel *channel; 1872 struct hv_pci_dev *hpdev; 1873 struct pci_bus *pbus; 1874 struct pci_dev *pdev; 1875 const struct cpumask *dest; 1876 struct compose_comp_ctxt comp; 1877 struct tran_int_desc *int_desc; 1878 struct msi_desc *msi_desc; 1879 /* 1880 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1881 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1882 */ 1883 u16 vector_count; 1884 u32 vector; 1885 struct { 1886 struct pci_packet pci_pkt; 1887 union { 1888 struct pci_create_interrupt v1; 1889 struct pci_create_interrupt2 v2; 1890 struct pci_create_interrupt3 v3; 1891 } int_pkts; 1892 } __packed ctxt; 1893 bool multi_msi; 1894 u64 trans_id; 1895 u32 size; 1896 int ret; 1897 int cpu; 1898 1899 msi_desc = irq_data_get_msi_desc(data); 1900 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1901 msi_desc->nvec_used > 1; 1902 1903 /* Reuse the previous allocation */ 1904 if (data->chip_data && multi_msi) { 1905 int_desc = data->chip_data; 1906 msg->address_hi = int_desc->address >> 32; 1907 msg->address_lo = int_desc->address & 0xffffffff; 1908 msg->data = int_desc->data; 1909 return; 1910 } 1911 1912 pdev = msi_desc_to_pci_dev(msi_desc); 1913 dest = irq_data_get_effective_affinity_mask(data); 1914 pbus = pdev->bus; 1915 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1916 channel = hbus->hdev->channel; 1917 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1918 if (!hpdev) 1919 goto return_null_message; 1920 1921 /* Free any previous message that might have already been composed. */ 1922 if (data->chip_data && !multi_msi) { 1923 int_desc = data->chip_data; 1924 data->chip_data = NULL; 1925 hv_int_desc_free(hpdev, int_desc); 1926 } 1927 1928 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1929 if (!int_desc) 1930 goto drop_reference; 1931 1932 if (multi_msi) { 1933 /* 1934 * If this is not the first MSI of Multi MSI, we already have 1935 * a mapping. Can exit early. 1936 */ 1937 if (msi_desc->irq != data->irq) { 1938 data->chip_data = int_desc; 1939 int_desc->address = msi_desc->msg.address_lo | 1940 (u64)msi_desc->msg.address_hi << 32; 1941 int_desc->data = msi_desc->msg.data + 1942 (data->irq - msi_desc->irq); 1943 msg->address_hi = msi_desc->msg.address_hi; 1944 msg->address_lo = msi_desc->msg.address_lo; 1945 msg->data = int_desc->data; 1946 put_pcichild(hpdev); 1947 return; 1948 } 1949 /* 1950 * The vector we select here is a dummy value. The correct 1951 * value gets sent to the hypervisor in unmask(). This needs 1952 * to be aligned with the count, and also not zero. Multi-msi 1953 * is powers of 2 up to 32, so 32 will always work here. 1954 */ 1955 vector = 32; 1956 vector_count = msi_desc->nvec_used; 1957 cpu = hv_compose_multi_msi_req_get_cpu(); 1958 } else { 1959 vector = hv_msi_get_int_vector(data); 1960 vector_count = 1; 1961 cpu = hv_compose_msi_req_get_cpu(dest); 1962 } 1963 1964 /* 1965 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1966 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1967 * for better readability. 1968 */ 1969 memset(&ctxt, 0, sizeof(ctxt)); 1970 init_completion(&comp.comp_pkt.host_event); 1971 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1972 ctxt.pci_pkt.compl_ctxt = ∁ 1973 1974 switch (hbus->protocol_version) { 1975 case PCI_PROTOCOL_VERSION_1_1: 1976 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1977 hpdev->desc.win_slot.slot, 1978 (u8)vector, 1979 vector_count); 1980 break; 1981 1982 case PCI_PROTOCOL_VERSION_1_2: 1983 case PCI_PROTOCOL_VERSION_1_3: 1984 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1985 cpu, 1986 hpdev->desc.win_slot.slot, 1987 (u8)vector, 1988 vector_count); 1989 break; 1990 1991 case PCI_PROTOCOL_VERSION_1_4: 1992 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1993 cpu, 1994 hpdev->desc.win_slot.slot, 1995 vector, 1996 vector_count); 1997 break; 1998 1999 default: 2000 /* As we only negotiate protocol versions known to this driver, 2001 * this path should never hit. However, this is it not a hot 2002 * path so we print a message to aid future updates. 2003 */ 2004 dev_err(&hbus->hdev->device, 2005 "Unexpected vPCI protocol, update driver."); 2006 goto free_int_desc; 2007 } 2008 2009 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 2010 size, (unsigned long)&ctxt.pci_pkt, 2011 &trans_id, VM_PKT_DATA_INBAND, 2012 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2013 if (ret) { 2014 dev_err(&hbus->hdev->device, 2015 "Sending request for interrupt failed: 0x%x", 2016 comp.comp_pkt.completion_status); 2017 goto free_int_desc; 2018 } 2019 2020 /* 2021 * Prevents hv_pci_onchannelcallback() from running concurrently 2022 * in the tasklet. 2023 */ 2024 tasklet_disable_in_atomic(&channel->callback_event); 2025 2026 /* 2027 * Since this function is called with IRQ locks held, can't 2028 * do normal wait for completion; instead poll. 2029 */ 2030 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 2031 unsigned long flags; 2032 2033 /* 0xFFFF means an invalid PCI VENDOR ID. */ 2034 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 2035 dev_err_once(&hbus->hdev->device, 2036 "the device has gone\n"); 2037 goto enable_tasklet; 2038 } 2039 2040 /* 2041 * Make sure that the ring buffer data structure doesn't get 2042 * freed while we dereference the ring buffer pointer. Test 2043 * for the channel's onchannel_callback being NULL within a 2044 * sched_lock critical section. See also the inline comments 2045 * in vmbus_reset_channel_cb(). 2046 */ 2047 spin_lock_irqsave(&channel->sched_lock, flags); 2048 if (unlikely(channel->onchannel_callback == NULL)) { 2049 spin_unlock_irqrestore(&channel->sched_lock, flags); 2050 goto enable_tasklet; 2051 } 2052 hv_pci_onchannelcallback(hbus); 2053 spin_unlock_irqrestore(&channel->sched_lock, flags); 2054 2055 udelay(100); 2056 } 2057 2058 tasklet_enable(&channel->callback_event); 2059 2060 if (comp.comp_pkt.completion_status < 0) { 2061 dev_err(&hbus->hdev->device, 2062 "Request for interrupt failed: 0x%x", 2063 comp.comp_pkt.completion_status); 2064 goto free_int_desc; 2065 } 2066 2067 /* 2068 * Record the assignment so that this can be unwound later. Using 2069 * irq_set_chip_data() here would be appropriate, but the lock it takes 2070 * is already held. 2071 */ 2072 *int_desc = comp.int_desc; 2073 data->chip_data = int_desc; 2074 2075 /* Pass up the result. */ 2076 msg->address_hi = comp.int_desc.address >> 32; 2077 msg->address_lo = comp.int_desc.address & 0xffffffff; 2078 msg->data = comp.int_desc.data; 2079 2080 put_pcichild(hpdev); 2081 return; 2082 2083 enable_tasklet: 2084 tasklet_enable(&channel->callback_event); 2085 /* 2086 * The completion packet on the stack becomes invalid after 'return'; 2087 * remove the ID from the VMbus requestor if the identifier is still 2088 * mapped to/associated with the packet. (The identifier could have 2089 * been 're-used', i.e., already removed and (re-)mapped.) 2090 * 2091 * Cf. hv_pci_onchannelcallback(). 2092 */ 2093 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2094 free_int_desc: 2095 kfree(int_desc); 2096 drop_reference: 2097 put_pcichild(hpdev); 2098 return_null_message: 2099 msg->address_hi = 0; 2100 msg->address_lo = 0; 2101 msg->data = 0; 2102 } 2103 2104 /* HW Interrupt Chip Descriptor */ 2105 static struct irq_chip hv_msi_irq_chip = { 2106 .name = "Hyper-V PCIe MSI", 2107 .irq_compose_msi_msg = hv_compose_msi_msg, 2108 .irq_set_affinity = irq_chip_set_affinity_parent, 2109 #ifdef CONFIG_X86 2110 .irq_ack = irq_chip_ack_parent, 2111 .flags = IRQCHIP_MOVE_DEFERRED, 2112 #elif defined(CONFIG_ARM64) 2113 .irq_eoi = irq_chip_eoi_parent, 2114 #endif 2115 .irq_mask = hv_irq_mask, 2116 .irq_unmask = hv_irq_unmask, 2117 }; 2118 2119 static struct msi_domain_ops hv_msi_ops = { 2120 .msi_prepare = hv_msi_prepare, 2121 .msi_free = hv_msi_free, 2122 }; 2123 2124 /** 2125 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2126 * @hbus: The root PCI bus 2127 * 2128 * This function creates an IRQ domain which will be used for 2129 * interrupts from devices that have been passed through. These 2130 * devices only support MSI and MSI-X, not line-based interrupts 2131 * or simulations of line-based interrupts through PCIe's 2132 * fabric-layer messages. Because interrupts are remapped, we 2133 * can support multi-message MSI here. 2134 * 2135 * Return: '0' on success and error value on failure 2136 */ 2137 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2138 { 2139 hbus->msi_info.chip = &hv_msi_irq_chip; 2140 hbus->msi_info.ops = &hv_msi_ops; 2141 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2142 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2143 MSI_FLAG_PCI_MSIX); 2144 hbus->msi_info.handler = FLOW_HANDLER; 2145 hbus->msi_info.handler_name = FLOW_NAME; 2146 hbus->msi_info.data = hbus; 2147 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2148 &hbus->msi_info, 2149 hv_pci_get_root_domain()); 2150 if (!hbus->irq_domain) { 2151 dev_err(&hbus->hdev->device, 2152 "Failed to build an MSI IRQ domain\n"); 2153 return -ENODEV; 2154 } 2155 2156 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2157 2158 return 0; 2159 } 2160 2161 /** 2162 * get_bar_size() - Get the address space consumed by a BAR 2163 * @bar_val: Value that a BAR returned after -1 was written 2164 * to it. 2165 * 2166 * This function returns the size of the BAR, rounded up to 1 2167 * page. It has to be rounded up because the hypervisor's page 2168 * table entry that maps the BAR into the VM can't specify an 2169 * offset within a page. The invariant is that the hypervisor 2170 * must place any BARs of smaller than page length at the 2171 * beginning of a page. 2172 * 2173 * Return: Size in bytes of the consumed MMIO space. 2174 */ 2175 static u64 get_bar_size(u64 bar_val) 2176 { 2177 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2178 PAGE_SIZE); 2179 } 2180 2181 /** 2182 * survey_child_resources() - Total all MMIO requirements 2183 * @hbus: Root PCI bus, as understood by this driver 2184 */ 2185 static void survey_child_resources(struct hv_pcibus_device *hbus) 2186 { 2187 struct hv_pci_dev *hpdev; 2188 resource_size_t bar_size = 0; 2189 unsigned long flags; 2190 struct completion *event; 2191 u64 bar_val; 2192 int i; 2193 2194 /* If nobody is waiting on the answer, don't compute it. */ 2195 event = xchg(&hbus->survey_event, NULL); 2196 if (!event) 2197 return; 2198 2199 /* If the answer has already been computed, go with it. */ 2200 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2201 complete(event); 2202 return; 2203 } 2204 2205 spin_lock_irqsave(&hbus->device_list_lock, flags); 2206 2207 /* 2208 * Due to an interesting quirk of the PCI spec, all memory regions 2209 * for a child device are a power of 2 in size and aligned in memory, 2210 * so it's sufficient to just add them up without tracking alignment. 2211 */ 2212 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2213 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2214 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2215 dev_err(&hbus->hdev->device, 2216 "There's an I/O BAR in this list!\n"); 2217 2218 if (hpdev->probed_bar[i] != 0) { 2219 /* 2220 * A probed BAR has all the upper bits set that 2221 * can be changed. 2222 */ 2223 2224 bar_val = hpdev->probed_bar[i]; 2225 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2226 bar_val |= 2227 ((u64)hpdev->probed_bar[++i] << 32); 2228 else 2229 bar_val |= 0xffffffff00000000ULL; 2230 2231 bar_size = get_bar_size(bar_val); 2232 2233 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2234 hbus->high_mmio_space += bar_size; 2235 else 2236 hbus->low_mmio_space += bar_size; 2237 } 2238 } 2239 } 2240 2241 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2242 complete(event); 2243 } 2244 2245 /** 2246 * prepopulate_bars() - Fill in BARs with defaults 2247 * @hbus: Root PCI bus, as understood by this driver 2248 * 2249 * The core PCI driver code seems much, much happier if the BARs 2250 * for a device have values upon first scan. So fill them in. 2251 * The algorithm below works down from large sizes to small, 2252 * attempting to pack the assignments optimally. The assumption, 2253 * enforced in other parts of the code, is that the beginning of 2254 * the memory-mapped I/O space will be aligned on the largest 2255 * BAR size. 2256 */ 2257 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2258 { 2259 resource_size_t high_size = 0; 2260 resource_size_t low_size = 0; 2261 resource_size_t high_base = 0; 2262 resource_size_t low_base = 0; 2263 resource_size_t bar_size; 2264 struct hv_pci_dev *hpdev; 2265 unsigned long flags; 2266 u64 bar_val; 2267 u32 command; 2268 bool high; 2269 int i; 2270 2271 if (hbus->low_mmio_space) { 2272 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2273 low_base = hbus->low_mmio_res->start; 2274 } 2275 2276 if (hbus->high_mmio_space) { 2277 high_size = 1ULL << 2278 (63 - __builtin_clzll(hbus->high_mmio_space)); 2279 high_base = hbus->high_mmio_res->start; 2280 } 2281 2282 spin_lock_irqsave(&hbus->device_list_lock, flags); 2283 2284 /* 2285 * Clear the memory enable bit, in case it's already set. This occurs 2286 * in the suspend path of hibernation, where the device is suspended, 2287 * resumed and suspended again: see hibernation_snapshot() and 2288 * hibernation_platform_enter(). 2289 * 2290 * If the memory enable bit is already set, Hyper-V silently ignores 2291 * the below BAR updates, and the related PCI device driver can not 2292 * work, because reading from the device register(s) always returns 2293 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2294 */ 2295 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2296 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2297 command &= ~PCI_COMMAND_MEMORY; 2298 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2299 } 2300 2301 /* Pick addresses for the BARs. */ 2302 do { 2303 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2304 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2305 bar_val = hpdev->probed_bar[i]; 2306 if (bar_val == 0) 2307 continue; 2308 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2309 if (high) { 2310 bar_val |= 2311 ((u64)hpdev->probed_bar[i + 1] 2312 << 32); 2313 } else { 2314 bar_val |= 0xffffffffULL << 32; 2315 } 2316 bar_size = get_bar_size(bar_val); 2317 if (high) { 2318 if (high_size != bar_size) { 2319 i++; 2320 continue; 2321 } 2322 _hv_pcifront_write_config(hpdev, 2323 PCI_BASE_ADDRESS_0 + (4 * i), 2324 4, 2325 (u32)(high_base & 0xffffff00)); 2326 i++; 2327 _hv_pcifront_write_config(hpdev, 2328 PCI_BASE_ADDRESS_0 + (4 * i), 2329 4, (u32)(high_base >> 32)); 2330 high_base += bar_size; 2331 } else { 2332 if (low_size != bar_size) 2333 continue; 2334 _hv_pcifront_write_config(hpdev, 2335 PCI_BASE_ADDRESS_0 + (4 * i), 2336 4, 2337 (u32)(low_base & 0xffffff00)); 2338 low_base += bar_size; 2339 } 2340 } 2341 if (high_size <= 1 && low_size <= 1) { 2342 /* 2343 * No need to set the PCI_COMMAND_MEMORY bit as 2344 * the core PCI driver doesn't require the bit 2345 * to be pre-set. Actually here we intentionally 2346 * keep the bit off so that the PCI BAR probing 2347 * in the core PCI driver doesn't cause Hyper-V 2348 * to unnecessarily unmap/map the virtual BARs 2349 * from/to the physical BARs multiple times. 2350 * This reduces the VM boot time significantly 2351 * if the BAR sizes are huge. 2352 */ 2353 break; 2354 } 2355 } 2356 2357 high_size >>= 1; 2358 low_size >>= 1; 2359 } while (high_size || low_size); 2360 2361 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2362 } 2363 2364 /* 2365 * Assign entries in sysfs pci slot directory. 2366 * 2367 * Note that this function does not need to lock the children list 2368 * because it is called from pci_devices_present_work which 2369 * is serialized with hv_eject_device_work because they are on the 2370 * same ordered workqueue. Therefore hbus->children list will not change 2371 * even when pci_create_slot sleeps. 2372 */ 2373 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2374 { 2375 struct hv_pci_dev *hpdev; 2376 char name[SLOT_NAME_SIZE]; 2377 int slot_nr; 2378 2379 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2380 if (hpdev->pci_slot) 2381 continue; 2382 2383 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2384 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2385 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2386 name, NULL); 2387 if (IS_ERR(hpdev->pci_slot)) { 2388 pr_warn("pci_create slot %s failed\n", name); 2389 hpdev->pci_slot = NULL; 2390 } 2391 } 2392 } 2393 2394 /* 2395 * Remove entries in sysfs pci slot directory. 2396 */ 2397 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2398 { 2399 struct hv_pci_dev *hpdev; 2400 2401 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2402 if (!hpdev->pci_slot) 2403 continue; 2404 pci_destroy_slot(hpdev->pci_slot); 2405 hpdev->pci_slot = NULL; 2406 } 2407 } 2408 2409 /* 2410 * Set NUMA node for the devices on the bus 2411 */ 2412 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2413 { 2414 struct pci_dev *dev; 2415 struct pci_bus *bus = hbus->bridge->bus; 2416 struct hv_pci_dev *hv_dev; 2417 2418 list_for_each_entry(dev, &bus->devices, bus_list) { 2419 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2420 if (!hv_dev) 2421 continue; 2422 2423 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2424 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2425 /* 2426 * The kernel may boot with some NUMA nodes offline 2427 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2428 * "numa=off". In those cases, adjust the host provided 2429 * NUMA node to a valid NUMA node used by the kernel. 2430 */ 2431 set_dev_node(&dev->dev, 2432 numa_map_to_online_node( 2433 hv_dev->desc.virtual_numa_node)); 2434 2435 put_pcichild(hv_dev); 2436 } 2437 } 2438 2439 /** 2440 * create_root_hv_pci_bus() - Expose a new root PCI bus 2441 * @hbus: Root PCI bus, as understood by this driver 2442 * 2443 * Return: 0 on success, -errno on failure 2444 */ 2445 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2446 { 2447 int error; 2448 struct pci_host_bridge *bridge = hbus->bridge; 2449 2450 bridge->dev.parent = &hbus->hdev->device; 2451 bridge->sysdata = &hbus->sysdata; 2452 bridge->ops = &hv_pcifront_ops; 2453 2454 error = pci_scan_root_bus_bridge(bridge); 2455 if (error) 2456 return error; 2457 2458 pci_lock_rescan_remove(); 2459 hv_pci_assign_numa_node(hbus); 2460 pci_bus_assign_resources(bridge->bus); 2461 hv_pci_assign_slots(hbus); 2462 pci_bus_add_devices(bridge->bus); 2463 pci_unlock_rescan_remove(); 2464 hbus->state = hv_pcibus_installed; 2465 return 0; 2466 } 2467 2468 struct q_res_req_compl { 2469 struct completion host_event; 2470 struct hv_pci_dev *hpdev; 2471 }; 2472 2473 /** 2474 * q_resource_requirements() - Query Resource Requirements 2475 * @context: The completion context. 2476 * @resp: The response that came from the host. 2477 * @resp_packet_size: The size in bytes of resp. 2478 * 2479 * This function is invoked on completion of a Query Resource 2480 * Requirements packet. 2481 */ 2482 static void q_resource_requirements(void *context, struct pci_response *resp, 2483 int resp_packet_size) 2484 { 2485 struct q_res_req_compl *completion = context; 2486 struct pci_q_res_req_response *q_res_req = 2487 (struct pci_q_res_req_response *)resp; 2488 s32 status; 2489 int i; 2490 2491 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2492 if (status < 0) { 2493 dev_err(&completion->hpdev->hbus->hdev->device, 2494 "query resource requirements failed: %x\n", 2495 status); 2496 } else { 2497 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2498 completion->hpdev->probed_bar[i] = 2499 q_res_req->probed_bar[i]; 2500 } 2501 } 2502 2503 complete(&completion->host_event); 2504 } 2505 2506 /** 2507 * new_pcichild_device() - Create a new child device 2508 * @hbus: The internal struct tracking this root PCI bus. 2509 * @desc: The information supplied so far from the host 2510 * about the device. 2511 * 2512 * This function creates the tracking structure for a new child 2513 * device and kicks off the process of figuring out what it is. 2514 * 2515 * Return: Pointer to the new tracking struct 2516 */ 2517 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2518 struct hv_pcidev_description *desc) 2519 { 2520 struct hv_pci_dev *hpdev; 2521 struct pci_child_message *res_req; 2522 struct q_res_req_compl comp_pkt; 2523 struct { 2524 struct pci_packet init_packet; 2525 u8 buffer[sizeof(struct pci_child_message)]; 2526 } pkt; 2527 unsigned long flags; 2528 int ret; 2529 2530 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2531 if (!hpdev) 2532 return NULL; 2533 2534 hpdev->hbus = hbus; 2535 2536 memset(&pkt, 0, sizeof(pkt)); 2537 init_completion(&comp_pkt.host_event); 2538 comp_pkt.hpdev = hpdev; 2539 pkt.init_packet.compl_ctxt = &comp_pkt; 2540 pkt.init_packet.completion_func = q_resource_requirements; 2541 res_req = (struct pci_child_message *)pkt.buffer; 2542 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2543 res_req->wslot.slot = desc->win_slot.slot; 2544 2545 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2546 sizeof(struct pci_child_message), 2547 (unsigned long)&pkt.init_packet, 2548 VM_PKT_DATA_INBAND, 2549 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2550 if (ret) 2551 goto error; 2552 2553 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2554 goto error; 2555 2556 hpdev->desc = *desc; 2557 refcount_set(&hpdev->refs, 1); 2558 get_pcichild(hpdev); 2559 spin_lock_irqsave(&hbus->device_list_lock, flags); 2560 2561 list_add_tail(&hpdev->list_entry, &hbus->children); 2562 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2563 return hpdev; 2564 2565 error: 2566 kfree(hpdev); 2567 return NULL; 2568 } 2569 2570 /** 2571 * get_pcichild_wslot() - Find device from slot 2572 * @hbus: Root PCI bus, as understood by this driver 2573 * @wslot: Location on the bus 2574 * 2575 * This function looks up a PCI device and returns the internal 2576 * representation of it. It acquires a reference on it, so that 2577 * the device won't be deleted while somebody is using it. The 2578 * caller is responsible for calling put_pcichild() to release 2579 * this reference. 2580 * 2581 * Return: Internal representation of a PCI device 2582 */ 2583 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2584 u32 wslot) 2585 { 2586 unsigned long flags; 2587 struct hv_pci_dev *iter, *hpdev = NULL; 2588 2589 spin_lock_irqsave(&hbus->device_list_lock, flags); 2590 list_for_each_entry(iter, &hbus->children, list_entry) { 2591 if (iter->desc.win_slot.slot == wslot) { 2592 hpdev = iter; 2593 get_pcichild(hpdev); 2594 break; 2595 } 2596 } 2597 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2598 2599 return hpdev; 2600 } 2601 2602 /** 2603 * pci_devices_present_work() - Handle new list of child devices 2604 * @work: Work struct embedded in struct hv_dr_work 2605 * 2606 * "Bus Relations" is the Windows term for "children of this 2607 * bus." The terminology is preserved here for people trying to 2608 * debug the interaction between Hyper-V and Linux. This 2609 * function is called when the parent partition reports a list 2610 * of functions that should be observed under this PCI Express 2611 * port (bus). 2612 * 2613 * This function updates the list, and must tolerate being 2614 * called multiple times with the same information. The typical 2615 * number of child devices is one, with very atypical cases 2616 * involving three or four, so the algorithms used here can be 2617 * simple and inefficient. 2618 * 2619 * It must also treat the omission of a previously observed device as 2620 * notification that the device no longer exists. 2621 * 2622 * Note that this function is serialized with hv_eject_device_work(), 2623 * because both are pushed to the ordered workqueue hbus->wq. 2624 */ 2625 static void pci_devices_present_work(struct work_struct *work) 2626 { 2627 u32 child_no; 2628 bool found; 2629 struct hv_pcidev_description *new_desc; 2630 struct hv_pci_dev *hpdev; 2631 struct hv_pcibus_device *hbus; 2632 struct list_head removed; 2633 struct hv_dr_work *dr_wrk; 2634 struct hv_dr_state *dr = NULL; 2635 unsigned long flags; 2636 2637 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2638 hbus = dr_wrk->bus; 2639 kfree(dr_wrk); 2640 2641 INIT_LIST_HEAD(&removed); 2642 2643 /* Pull this off the queue and process it if it was the last one. */ 2644 spin_lock_irqsave(&hbus->device_list_lock, flags); 2645 while (!list_empty(&hbus->dr_list)) { 2646 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2647 list_entry); 2648 list_del(&dr->list_entry); 2649 2650 /* Throw this away if the list still has stuff in it. */ 2651 if (!list_empty(&hbus->dr_list)) { 2652 kfree(dr); 2653 continue; 2654 } 2655 } 2656 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2657 2658 if (!dr) 2659 return; 2660 2661 mutex_lock(&hbus->state_lock); 2662 2663 /* First, mark all existing children as reported missing. */ 2664 spin_lock_irqsave(&hbus->device_list_lock, flags); 2665 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2666 hpdev->reported_missing = true; 2667 } 2668 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2669 2670 /* Next, add back any reported devices. */ 2671 for (child_no = 0; child_no < dr->device_count; child_no++) { 2672 found = false; 2673 new_desc = &dr->func[child_no]; 2674 2675 spin_lock_irqsave(&hbus->device_list_lock, flags); 2676 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2677 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2678 (hpdev->desc.v_id == new_desc->v_id) && 2679 (hpdev->desc.d_id == new_desc->d_id) && 2680 (hpdev->desc.ser == new_desc->ser)) { 2681 hpdev->reported_missing = false; 2682 found = true; 2683 } 2684 } 2685 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2686 2687 if (!found) { 2688 hpdev = new_pcichild_device(hbus, new_desc); 2689 if (!hpdev) 2690 dev_err(&hbus->hdev->device, 2691 "couldn't record a child device.\n"); 2692 } 2693 } 2694 2695 /* Move missing children to a list on the stack. */ 2696 spin_lock_irqsave(&hbus->device_list_lock, flags); 2697 do { 2698 found = false; 2699 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2700 if (hpdev->reported_missing) { 2701 found = true; 2702 put_pcichild(hpdev); 2703 list_move_tail(&hpdev->list_entry, &removed); 2704 break; 2705 } 2706 } 2707 } while (found); 2708 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2709 2710 /* Delete everything that should no longer exist. */ 2711 while (!list_empty(&removed)) { 2712 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2713 list_entry); 2714 list_del(&hpdev->list_entry); 2715 2716 if (hpdev->pci_slot) 2717 pci_destroy_slot(hpdev->pci_slot); 2718 2719 put_pcichild(hpdev); 2720 } 2721 2722 switch (hbus->state) { 2723 case hv_pcibus_installed: 2724 /* 2725 * Tell the core to rescan bus 2726 * because there may have been changes. 2727 */ 2728 pci_lock_rescan_remove(); 2729 pci_scan_child_bus(hbus->bridge->bus); 2730 hv_pci_assign_numa_node(hbus); 2731 hv_pci_assign_slots(hbus); 2732 pci_unlock_rescan_remove(); 2733 break; 2734 2735 case hv_pcibus_init: 2736 case hv_pcibus_probed: 2737 survey_child_resources(hbus); 2738 break; 2739 2740 default: 2741 break; 2742 } 2743 2744 mutex_unlock(&hbus->state_lock); 2745 2746 kfree(dr); 2747 } 2748 2749 /** 2750 * hv_pci_start_relations_work() - Queue work to start device discovery 2751 * @hbus: Root PCI bus, as understood by this driver 2752 * @dr: The list of children returned from host 2753 * 2754 * Return: 0 on success, -errno on failure 2755 */ 2756 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2757 struct hv_dr_state *dr) 2758 { 2759 struct hv_dr_work *dr_wrk; 2760 unsigned long flags; 2761 bool pending_dr; 2762 2763 if (hbus->state == hv_pcibus_removing) { 2764 dev_info(&hbus->hdev->device, 2765 "PCI VMBus BUS_RELATIONS: ignored\n"); 2766 return -ENOENT; 2767 } 2768 2769 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2770 if (!dr_wrk) 2771 return -ENOMEM; 2772 2773 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2774 dr_wrk->bus = hbus; 2775 2776 spin_lock_irqsave(&hbus->device_list_lock, flags); 2777 /* 2778 * If pending_dr is true, we have already queued a work, 2779 * which will see the new dr. Otherwise, we need to 2780 * queue a new work. 2781 */ 2782 pending_dr = !list_empty(&hbus->dr_list); 2783 list_add_tail(&dr->list_entry, &hbus->dr_list); 2784 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2785 2786 if (pending_dr) 2787 kfree(dr_wrk); 2788 else 2789 queue_work(hbus->wq, &dr_wrk->wrk); 2790 2791 return 0; 2792 } 2793 2794 /** 2795 * hv_pci_devices_present() - Handle list of new children 2796 * @hbus: Root PCI bus, as understood by this driver 2797 * @relations: Packet from host listing children 2798 * 2799 * Process a new list of devices on the bus. The list of devices is 2800 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2801 * whenever a new list of devices for this bus appears. 2802 */ 2803 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2804 struct pci_bus_relations *relations) 2805 { 2806 struct hv_dr_state *dr; 2807 int i; 2808 2809 dr = kzalloc(struct_size(dr, func, relations->device_count), 2810 GFP_NOWAIT); 2811 if (!dr) 2812 return; 2813 2814 dr->device_count = relations->device_count; 2815 for (i = 0; i < dr->device_count; i++) { 2816 dr->func[i].v_id = relations->func[i].v_id; 2817 dr->func[i].d_id = relations->func[i].d_id; 2818 dr->func[i].rev = relations->func[i].rev; 2819 dr->func[i].prog_intf = relations->func[i].prog_intf; 2820 dr->func[i].subclass = relations->func[i].subclass; 2821 dr->func[i].base_class = relations->func[i].base_class; 2822 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2823 dr->func[i].win_slot = relations->func[i].win_slot; 2824 dr->func[i].ser = relations->func[i].ser; 2825 } 2826 2827 if (hv_pci_start_relations_work(hbus, dr)) 2828 kfree(dr); 2829 } 2830 2831 /** 2832 * hv_pci_devices_present2() - Handle list of new children 2833 * @hbus: Root PCI bus, as understood by this driver 2834 * @relations: Packet from host listing children 2835 * 2836 * This function is the v2 version of hv_pci_devices_present() 2837 */ 2838 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2839 struct pci_bus_relations2 *relations) 2840 { 2841 struct hv_dr_state *dr; 2842 int i; 2843 2844 dr = kzalloc(struct_size(dr, func, relations->device_count), 2845 GFP_NOWAIT); 2846 if (!dr) 2847 return; 2848 2849 dr->device_count = relations->device_count; 2850 for (i = 0; i < dr->device_count; i++) { 2851 dr->func[i].v_id = relations->func[i].v_id; 2852 dr->func[i].d_id = relations->func[i].d_id; 2853 dr->func[i].rev = relations->func[i].rev; 2854 dr->func[i].prog_intf = relations->func[i].prog_intf; 2855 dr->func[i].subclass = relations->func[i].subclass; 2856 dr->func[i].base_class = relations->func[i].base_class; 2857 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2858 dr->func[i].win_slot = relations->func[i].win_slot; 2859 dr->func[i].ser = relations->func[i].ser; 2860 dr->func[i].flags = relations->func[i].flags; 2861 dr->func[i].virtual_numa_node = 2862 relations->func[i].virtual_numa_node; 2863 } 2864 2865 if (hv_pci_start_relations_work(hbus, dr)) 2866 kfree(dr); 2867 } 2868 2869 /** 2870 * hv_eject_device_work() - Asynchronously handles ejection 2871 * @work: Work struct embedded in internal device struct 2872 * 2873 * This function handles ejecting a device. Windows will 2874 * attempt to gracefully eject a device, waiting 60 seconds to 2875 * hear back from the guest OS that this completed successfully. 2876 * If this timer expires, the device will be forcibly removed. 2877 */ 2878 static void hv_eject_device_work(struct work_struct *work) 2879 { 2880 struct pci_eject_response *ejct_pkt; 2881 struct hv_pcibus_device *hbus; 2882 struct hv_pci_dev *hpdev; 2883 struct pci_dev *pdev; 2884 unsigned long flags; 2885 int wslot; 2886 struct { 2887 struct pci_packet pkt; 2888 u8 buffer[sizeof(struct pci_eject_response)]; 2889 } ctxt; 2890 2891 hpdev = container_of(work, struct hv_pci_dev, wrk); 2892 hbus = hpdev->hbus; 2893 2894 mutex_lock(&hbus->state_lock); 2895 2896 /* 2897 * Ejection can come before or after the PCI bus has been set up, so 2898 * attempt to find it and tear down the bus state, if it exists. This 2899 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2900 * because hbus->bridge->bus may not exist yet. 2901 */ 2902 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2903 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2904 if (pdev) { 2905 pci_lock_rescan_remove(); 2906 pci_stop_and_remove_bus_device(pdev); 2907 pci_dev_put(pdev); 2908 pci_unlock_rescan_remove(); 2909 } 2910 2911 spin_lock_irqsave(&hbus->device_list_lock, flags); 2912 list_del(&hpdev->list_entry); 2913 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2914 2915 if (hpdev->pci_slot) 2916 pci_destroy_slot(hpdev->pci_slot); 2917 2918 memset(&ctxt, 0, sizeof(ctxt)); 2919 ejct_pkt = (struct pci_eject_response *)ctxt.buffer; 2920 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2921 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2922 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2923 sizeof(*ejct_pkt), 0, 2924 VM_PKT_DATA_INBAND, 0); 2925 2926 /* For the get_pcichild() in hv_pci_eject_device() */ 2927 put_pcichild(hpdev); 2928 /* For the two refs got in new_pcichild_device() */ 2929 put_pcichild(hpdev); 2930 put_pcichild(hpdev); 2931 /* hpdev has been freed. Do not use it any more. */ 2932 2933 mutex_unlock(&hbus->state_lock); 2934 } 2935 2936 /** 2937 * hv_pci_eject_device() - Handles device ejection 2938 * @hpdev: Internal device tracking struct 2939 * 2940 * This function is invoked when an ejection packet arrives. It 2941 * just schedules work so that we don't re-enter the packet 2942 * delivery code handling the ejection. 2943 */ 2944 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2945 { 2946 struct hv_pcibus_device *hbus = hpdev->hbus; 2947 struct hv_device *hdev = hbus->hdev; 2948 2949 if (hbus->state == hv_pcibus_removing) { 2950 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2951 return; 2952 } 2953 2954 get_pcichild(hpdev); 2955 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2956 queue_work(hbus->wq, &hpdev->wrk); 2957 } 2958 2959 /** 2960 * hv_pci_onchannelcallback() - Handles incoming packets 2961 * @context: Internal bus tracking struct 2962 * 2963 * This function is invoked whenever the host sends a packet to 2964 * this channel (which is private to this root PCI bus). 2965 */ 2966 static void hv_pci_onchannelcallback(void *context) 2967 { 2968 const int packet_size = 0x100; 2969 int ret; 2970 struct hv_pcibus_device *hbus = context; 2971 struct vmbus_channel *chan = hbus->hdev->channel; 2972 u32 bytes_recvd; 2973 u64 req_id, req_addr; 2974 struct vmpacket_descriptor *desc; 2975 unsigned char *buffer; 2976 int bufferlen = packet_size; 2977 struct pci_packet *comp_packet; 2978 struct pci_response *response; 2979 struct pci_incoming_message *new_message; 2980 struct pci_bus_relations *bus_rel; 2981 struct pci_bus_relations2 *bus_rel2; 2982 struct pci_dev_inval_block *inval; 2983 struct pci_dev_incoming *dev_message; 2984 struct hv_pci_dev *hpdev; 2985 unsigned long flags; 2986 2987 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2988 if (!buffer) 2989 return; 2990 2991 while (1) { 2992 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2993 &bytes_recvd, &req_id); 2994 2995 if (ret == -ENOBUFS) { 2996 kfree(buffer); 2997 /* Handle large packet */ 2998 bufferlen = bytes_recvd; 2999 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 3000 if (!buffer) 3001 return; 3002 continue; 3003 } 3004 3005 /* Zero length indicates there are no more packets. */ 3006 if (ret || !bytes_recvd) 3007 break; 3008 3009 /* 3010 * All incoming packets must be at least as large as a 3011 * response. 3012 */ 3013 if (bytes_recvd <= sizeof(struct pci_response)) 3014 continue; 3015 desc = (struct vmpacket_descriptor *)buffer; 3016 3017 switch (desc->type) { 3018 case VM_PKT_COMP: 3019 3020 lock_requestor(chan, flags); 3021 req_addr = __vmbus_request_addr_match(chan, req_id, 3022 VMBUS_RQST_ADDR_ANY); 3023 if (req_addr == VMBUS_RQST_ERROR) { 3024 unlock_requestor(chan, flags); 3025 dev_err(&hbus->hdev->device, 3026 "Invalid transaction ID %llx\n", 3027 req_id); 3028 break; 3029 } 3030 comp_packet = (struct pci_packet *)req_addr; 3031 response = (struct pci_response *)buffer; 3032 /* 3033 * Call ->completion_func() within the critical section to make 3034 * sure that the packet pointer is still valid during the call: 3035 * here 'valid' means that there's a task still waiting for the 3036 * completion, and that the packet data is still on the waiting 3037 * task's stack. Cf. hv_compose_msi_msg(). 3038 */ 3039 comp_packet->completion_func(comp_packet->compl_ctxt, 3040 response, 3041 bytes_recvd); 3042 unlock_requestor(chan, flags); 3043 break; 3044 3045 case VM_PKT_DATA_INBAND: 3046 3047 new_message = (struct pci_incoming_message *)buffer; 3048 switch (new_message->message_type.type) { 3049 case PCI_BUS_RELATIONS: 3050 3051 bus_rel = (struct pci_bus_relations *)buffer; 3052 if (bytes_recvd < sizeof(*bus_rel) || 3053 bytes_recvd < 3054 struct_size(bus_rel, func, 3055 bus_rel->device_count)) { 3056 dev_err(&hbus->hdev->device, 3057 "bus relations too small\n"); 3058 break; 3059 } 3060 3061 hv_pci_devices_present(hbus, bus_rel); 3062 break; 3063 3064 case PCI_BUS_RELATIONS2: 3065 3066 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3067 if (bytes_recvd < sizeof(*bus_rel2) || 3068 bytes_recvd < 3069 struct_size(bus_rel2, func, 3070 bus_rel2->device_count)) { 3071 dev_err(&hbus->hdev->device, 3072 "bus relations v2 too small\n"); 3073 break; 3074 } 3075 3076 hv_pci_devices_present2(hbus, bus_rel2); 3077 break; 3078 3079 case PCI_EJECT: 3080 3081 dev_message = (struct pci_dev_incoming *)buffer; 3082 if (bytes_recvd < sizeof(*dev_message)) { 3083 dev_err(&hbus->hdev->device, 3084 "eject message too small\n"); 3085 break; 3086 } 3087 hpdev = get_pcichild_wslot(hbus, 3088 dev_message->wslot.slot); 3089 if (hpdev) { 3090 hv_pci_eject_device(hpdev); 3091 put_pcichild(hpdev); 3092 } 3093 break; 3094 3095 case PCI_INVALIDATE_BLOCK: 3096 3097 inval = (struct pci_dev_inval_block *)buffer; 3098 if (bytes_recvd < sizeof(*inval)) { 3099 dev_err(&hbus->hdev->device, 3100 "invalidate message too small\n"); 3101 break; 3102 } 3103 hpdev = get_pcichild_wslot(hbus, 3104 inval->wslot.slot); 3105 if (hpdev) { 3106 if (hpdev->block_invalidate) { 3107 hpdev->block_invalidate( 3108 hpdev->invalidate_context, 3109 inval->block_mask); 3110 } 3111 put_pcichild(hpdev); 3112 } 3113 break; 3114 3115 default: 3116 dev_warn(&hbus->hdev->device, 3117 "Unimplemented protocol message %x\n", 3118 new_message->message_type.type); 3119 break; 3120 } 3121 break; 3122 3123 default: 3124 dev_err(&hbus->hdev->device, 3125 "unhandled packet type %d, tid %llx len %d\n", 3126 desc->type, req_id, bytes_recvd); 3127 break; 3128 } 3129 } 3130 3131 kfree(buffer); 3132 } 3133 3134 /** 3135 * hv_pci_protocol_negotiation() - Set up protocol 3136 * @hdev: VMBus's tracking struct for this root PCI bus. 3137 * @version: Array of supported channel protocol versions in 3138 * the order of probing - highest go first. 3139 * @num_version: Number of elements in the version array. 3140 * 3141 * This driver is intended to support running on Windows 10 3142 * (server) and later versions. It will not run on earlier 3143 * versions, as they assume that many of the operations which 3144 * Linux needs accomplished with a spinlock held were done via 3145 * asynchronous messaging via VMBus. Windows 10 increases the 3146 * surface area of PCI emulation so that these actions can take 3147 * place by suspending a virtual processor for their duration. 3148 * 3149 * This function negotiates the channel protocol version, 3150 * failing if the host doesn't support the necessary protocol 3151 * level. 3152 */ 3153 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3154 enum pci_protocol_version_t version[], 3155 int num_version) 3156 { 3157 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3158 struct pci_version_request *version_req; 3159 struct hv_pci_compl comp_pkt; 3160 struct pci_packet *pkt; 3161 int ret; 3162 int i; 3163 3164 /* 3165 * Initiate the handshake with the host and negotiate 3166 * a version that the host can support. We start with the 3167 * highest version number and go down if the host cannot 3168 * support it. 3169 */ 3170 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3171 if (!pkt) 3172 return -ENOMEM; 3173 3174 init_completion(&comp_pkt.host_event); 3175 pkt->completion_func = hv_pci_generic_compl; 3176 pkt->compl_ctxt = &comp_pkt; 3177 version_req = (struct pci_version_request *)(pkt + 1); 3178 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3179 3180 for (i = 0; i < num_version; i++) { 3181 version_req->protocol_version = version[i]; 3182 ret = vmbus_sendpacket(hdev->channel, version_req, 3183 sizeof(struct pci_version_request), 3184 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3185 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3186 if (!ret) 3187 ret = wait_for_response(hdev, &comp_pkt.host_event); 3188 3189 if (ret) { 3190 dev_err(&hdev->device, 3191 "PCI Pass-through VSP failed to request version: %d", 3192 ret); 3193 goto exit; 3194 } 3195 3196 if (comp_pkt.completion_status >= 0) { 3197 hbus->protocol_version = version[i]; 3198 dev_info(&hdev->device, 3199 "PCI VMBus probing: Using version %#x\n", 3200 hbus->protocol_version); 3201 goto exit; 3202 } 3203 3204 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3205 dev_err(&hdev->device, 3206 "PCI Pass-through VSP failed version request: %#x", 3207 comp_pkt.completion_status); 3208 ret = -EPROTO; 3209 goto exit; 3210 } 3211 3212 reinit_completion(&comp_pkt.host_event); 3213 } 3214 3215 dev_err(&hdev->device, 3216 "PCI pass-through VSP failed to find supported version"); 3217 ret = -EPROTO; 3218 3219 exit: 3220 kfree(pkt); 3221 return ret; 3222 } 3223 3224 /** 3225 * hv_pci_free_bridge_windows() - Release memory regions for the 3226 * bus 3227 * @hbus: Root PCI bus, as understood by this driver 3228 */ 3229 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3230 { 3231 /* 3232 * Set the resources back to the way they looked when they 3233 * were allocated by setting IORESOURCE_BUSY again. 3234 */ 3235 3236 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3237 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3238 vmbus_free_mmio(hbus->low_mmio_res->start, 3239 resource_size(hbus->low_mmio_res)); 3240 } 3241 3242 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3243 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3244 vmbus_free_mmio(hbus->high_mmio_res->start, 3245 resource_size(hbus->high_mmio_res)); 3246 } 3247 } 3248 3249 /** 3250 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3251 * for the bus 3252 * @hbus: Root PCI bus, as understood by this driver 3253 * 3254 * This function calls vmbus_allocate_mmio(), which is itself a 3255 * bit of a compromise. Ideally, we might change the pnp layer 3256 * in the kernel such that it comprehends either PCI devices 3257 * which are "grandchildren of ACPI," with some intermediate bus 3258 * node (in this case, VMBus) or change it such that it 3259 * understands VMBus. The pnp layer, however, has been declared 3260 * deprecated, and not subject to change. 3261 * 3262 * The workaround, implemented here, is to ask VMBus to allocate 3263 * MMIO space for this bus. VMBus itself knows which ranges are 3264 * appropriate by looking at its own ACPI objects. Then, after 3265 * these ranges are claimed, they're modified to look like they 3266 * would have looked if the ACPI and pnp code had allocated 3267 * bridge windows. These descriptors have to exist in this form 3268 * in order to satisfy the code which will get invoked when the 3269 * endpoint PCI function driver calls request_mem_region() or 3270 * request_mem_region_exclusive(). 3271 * 3272 * Return: 0 on success, -errno on failure 3273 */ 3274 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3275 { 3276 resource_size_t align; 3277 int ret; 3278 3279 if (hbus->low_mmio_space) { 3280 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3281 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3282 (u64)(u32)0xffffffff, 3283 hbus->low_mmio_space, 3284 align, false); 3285 if (ret) { 3286 dev_err(&hbus->hdev->device, 3287 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3288 hbus->low_mmio_space); 3289 return ret; 3290 } 3291 3292 /* Modify this resource to become a bridge window. */ 3293 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3294 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3295 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3296 } 3297 3298 if (hbus->high_mmio_space) { 3299 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3300 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3301 0x100000000, -1, 3302 hbus->high_mmio_space, align, 3303 false); 3304 if (ret) { 3305 dev_err(&hbus->hdev->device, 3306 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3307 hbus->high_mmio_space); 3308 goto release_low_mmio; 3309 } 3310 3311 /* Modify this resource to become a bridge window. */ 3312 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3313 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3314 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3315 } 3316 3317 return 0; 3318 3319 release_low_mmio: 3320 if (hbus->low_mmio_res) { 3321 vmbus_free_mmio(hbus->low_mmio_res->start, 3322 resource_size(hbus->low_mmio_res)); 3323 } 3324 3325 return ret; 3326 } 3327 3328 /** 3329 * hv_allocate_config_window() - Find MMIO space for PCI Config 3330 * @hbus: Root PCI bus, as understood by this driver 3331 * 3332 * This function claims memory-mapped I/O space for accessing 3333 * configuration space for the functions on this bus. 3334 * 3335 * Return: 0 on success, -errno on failure 3336 */ 3337 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3338 { 3339 int ret; 3340 3341 /* 3342 * Set up a region of MMIO space to use for accessing configuration 3343 * space. 3344 */ 3345 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3346 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3347 if (ret) 3348 return ret; 3349 3350 /* 3351 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3352 * resource claims (those which cannot be overlapped) and the ranges 3353 * which are valid for the children of this bus, which are intended 3354 * to be overlapped by those children. Set the flag on this claim 3355 * meaning that this region can't be overlapped. 3356 */ 3357 3358 hbus->mem_config->flags |= IORESOURCE_BUSY; 3359 3360 return 0; 3361 } 3362 3363 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3364 { 3365 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3366 } 3367 3368 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3369 3370 /** 3371 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3372 * @hdev: VMBus's tracking struct for this root PCI bus 3373 * 3374 * Return: 0 on success, -errno on failure 3375 */ 3376 static int hv_pci_enter_d0(struct hv_device *hdev) 3377 { 3378 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3379 struct pci_bus_d0_entry *d0_entry; 3380 struct hv_pci_compl comp_pkt; 3381 struct pci_packet *pkt; 3382 bool retry = true; 3383 int ret; 3384 3385 enter_d0_retry: 3386 /* 3387 * Tell the host that the bus is ready to use, and moved into the 3388 * powered-on state. This includes telling the host which region 3389 * of memory-mapped I/O space has been chosen for configuration space 3390 * access. 3391 */ 3392 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3393 if (!pkt) 3394 return -ENOMEM; 3395 3396 init_completion(&comp_pkt.host_event); 3397 pkt->completion_func = hv_pci_generic_compl; 3398 pkt->compl_ctxt = &comp_pkt; 3399 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); 3400 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3401 d0_entry->mmio_base = hbus->mem_config->start; 3402 3403 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3404 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3405 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3406 if (!ret) 3407 ret = wait_for_response(hdev, &comp_pkt.host_event); 3408 3409 if (ret) 3410 goto exit; 3411 3412 /* 3413 * In certain case (Kdump) the pci device of interest was 3414 * not cleanly shut down and resource is still held on host 3415 * side, the host could return invalid device status. 3416 * We need to explicitly request host to release the resource 3417 * and try to enter D0 again. 3418 */ 3419 if (comp_pkt.completion_status < 0 && retry) { 3420 retry = false; 3421 3422 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3423 3424 /* 3425 * Hv_pci_bus_exit() calls hv_send_resource_released() 3426 * to free up resources of its child devices. 3427 * In the kdump kernel we need to set the 3428 * wslot_res_allocated to 255 so it scans all child 3429 * devices to release resources allocated in the 3430 * normal kernel before panic happened. 3431 */ 3432 hbus->wslot_res_allocated = 255; 3433 3434 ret = hv_pci_bus_exit(hdev, true); 3435 3436 if (ret == 0) { 3437 kfree(pkt); 3438 goto enter_d0_retry; 3439 } 3440 dev_err(&hdev->device, 3441 "Retrying D0 failed with ret %d\n", ret); 3442 } 3443 3444 if (comp_pkt.completion_status < 0) { 3445 dev_err(&hdev->device, 3446 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3447 comp_pkt.completion_status); 3448 ret = -EPROTO; 3449 goto exit; 3450 } 3451 3452 ret = 0; 3453 3454 exit: 3455 kfree(pkt); 3456 return ret; 3457 } 3458 3459 /** 3460 * hv_pci_query_relations() - Ask host to send list of child 3461 * devices 3462 * @hdev: VMBus's tracking struct for this root PCI bus 3463 * 3464 * Return: 0 on success, -errno on failure 3465 */ 3466 static int hv_pci_query_relations(struct hv_device *hdev) 3467 { 3468 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3469 struct pci_message message; 3470 struct completion comp; 3471 int ret; 3472 3473 /* Ask the host to send along the list of child devices */ 3474 init_completion(&comp); 3475 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3476 return -ENOTEMPTY; 3477 3478 memset(&message, 0, sizeof(message)); 3479 message.type = PCI_QUERY_BUS_RELATIONS; 3480 3481 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3482 0, VM_PKT_DATA_INBAND, 0); 3483 if (!ret) 3484 ret = wait_for_response(hdev, &comp); 3485 3486 /* 3487 * In the case of fast device addition/removal, it's possible that 3488 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3489 * already got a PCI_BUS_RELATIONS* message from the host and the 3490 * channel callback already scheduled a work to hbus->wq, which can be 3491 * running pci_devices_present_work() -> survey_child_resources() -> 3492 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3493 * exits and the stack variable 'comp' is no longer valid; as a result, 3494 * a hang or a page fault may happen when the complete() calls 3495 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3496 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3497 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3498 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3499 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3500 * channel->rescind = true. 3501 */ 3502 flush_workqueue(hbus->wq); 3503 3504 return ret; 3505 } 3506 3507 /** 3508 * hv_send_resources_allocated() - Report local resource choices 3509 * @hdev: VMBus's tracking struct for this root PCI bus 3510 * 3511 * The host OS is expecting to be sent a request as a message 3512 * which contains all the resources that the device will use. 3513 * The response contains those same resources, "translated" 3514 * which is to say, the values which should be used by the 3515 * hardware, when it delivers an interrupt. (MMIO resources are 3516 * used in local terms.) This is nice for Windows, and lines up 3517 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3518 * is deeply expecting to scan an emulated PCI configuration 3519 * space. So this message is sent here only to drive the state 3520 * machine on the host forward. 3521 * 3522 * Return: 0 on success, -errno on failure 3523 */ 3524 static int hv_send_resources_allocated(struct hv_device *hdev) 3525 { 3526 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3527 struct pci_resources_assigned *res_assigned; 3528 struct pci_resources_assigned2 *res_assigned2; 3529 struct hv_pci_compl comp_pkt; 3530 struct hv_pci_dev *hpdev; 3531 struct pci_packet *pkt; 3532 size_t size_res; 3533 int wslot; 3534 int ret; 3535 3536 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3537 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3538 3539 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3540 if (!pkt) 3541 return -ENOMEM; 3542 3543 ret = 0; 3544 3545 for (wslot = 0; wslot < 256; wslot++) { 3546 hpdev = get_pcichild_wslot(hbus, wslot); 3547 if (!hpdev) 3548 continue; 3549 3550 memset(pkt, 0, sizeof(*pkt) + size_res); 3551 init_completion(&comp_pkt.host_event); 3552 pkt->completion_func = hv_pci_generic_compl; 3553 pkt->compl_ctxt = &comp_pkt; 3554 3555 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3556 res_assigned = 3557 (struct pci_resources_assigned *)(pkt + 1); 3558 res_assigned->message_type.type = 3559 PCI_RESOURCES_ASSIGNED; 3560 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3561 } else { 3562 res_assigned2 = 3563 (struct pci_resources_assigned2 *)(pkt + 1); 3564 res_assigned2->message_type.type = 3565 PCI_RESOURCES_ASSIGNED2; 3566 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3567 } 3568 put_pcichild(hpdev); 3569 3570 ret = vmbus_sendpacket(hdev->channel, pkt + 1, 3571 size_res, (unsigned long)pkt, 3572 VM_PKT_DATA_INBAND, 3573 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3574 if (!ret) 3575 ret = wait_for_response(hdev, &comp_pkt.host_event); 3576 if (ret) 3577 break; 3578 3579 if (comp_pkt.completion_status < 0) { 3580 ret = -EPROTO; 3581 dev_err(&hdev->device, 3582 "resource allocated returned 0x%x", 3583 comp_pkt.completion_status); 3584 break; 3585 } 3586 3587 hbus->wslot_res_allocated = wslot; 3588 } 3589 3590 kfree(pkt); 3591 return ret; 3592 } 3593 3594 /** 3595 * hv_send_resources_released() - Report local resources 3596 * released 3597 * @hdev: VMBus's tracking struct for this root PCI bus 3598 * 3599 * Return: 0 on success, -errno on failure 3600 */ 3601 static int hv_send_resources_released(struct hv_device *hdev) 3602 { 3603 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3604 struct pci_child_message pkt; 3605 struct hv_pci_dev *hpdev; 3606 int wslot; 3607 int ret; 3608 3609 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3610 hpdev = get_pcichild_wslot(hbus, wslot); 3611 if (!hpdev) 3612 continue; 3613 3614 memset(&pkt, 0, sizeof(pkt)); 3615 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3616 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3617 3618 put_pcichild(hpdev); 3619 3620 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3621 VM_PKT_DATA_INBAND, 0); 3622 if (ret) 3623 return ret; 3624 3625 hbus->wslot_res_allocated = wslot - 1; 3626 } 3627 3628 hbus->wslot_res_allocated = -1; 3629 3630 return 0; 3631 } 3632 3633 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3634 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3635 3636 /* 3637 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3638 * as invalid for passthrough PCI devices of this driver. 3639 */ 3640 #define HVPCI_DOM_INVALID 0 3641 3642 /** 3643 * hv_get_dom_num() - Get a valid PCI domain number 3644 * Check if the PCI domain number is in use, and return another number if 3645 * it is in use. 3646 * 3647 * @dom: Requested domain number 3648 * 3649 * return: domain number on success, HVPCI_DOM_INVALID on failure 3650 */ 3651 static u16 hv_get_dom_num(u16 dom) 3652 { 3653 unsigned int i; 3654 3655 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3656 return dom; 3657 3658 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3659 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3660 return i; 3661 } 3662 3663 return HVPCI_DOM_INVALID; 3664 } 3665 3666 /** 3667 * hv_put_dom_num() - Mark the PCI domain number as free 3668 * @dom: Domain number to be freed 3669 */ 3670 static void hv_put_dom_num(u16 dom) 3671 { 3672 clear_bit(dom, hvpci_dom_map); 3673 } 3674 3675 /** 3676 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3677 * @hdev: VMBus's tracking struct for this root PCI bus 3678 * @dev_id: Identifies the device itself 3679 * 3680 * Return: 0 on success, -errno on failure 3681 */ 3682 static int hv_pci_probe(struct hv_device *hdev, 3683 const struct hv_vmbus_device_id *dev_id) 3684 { 3685 struct pci_host_bridge *bridge; 3686 struct hv_pcibus_device *hbus; 3687 u16 dom_req, dom; 3688 char *name; 3689 int ret; 3690 3691 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3692 if (!bridge) 3693 return -ENOMEM; 3694 3695 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3696 if (!hbus) 3697 return -ENOMEM; 3698 3699 hbus->bridge = bridge; 3700 mutex_init(&hbus->state_lock); 3701 hbus->state = hv_pcibus_init; 3702 hbus->wslot_res_allocated = -1; 3703 3704 /* 3705 * The PCI bus "domain" is what is called "segment" in ACPI and other 3706 * specs. Pull it from the instance ID, to get something usually 3707 * unique. In rare cases of collision, we will find out another number 3708 * not in use. 3709 * 3710 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3711 * together with this guest driver can guarantee that (1) The only 3712 * domain used by Gen1 VMs for something that looks like a physical 3713 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3714 * (2) There will be no overlap between domains (after fixing possible 3715 * collisions) in the same VM. 3716 */ 3717 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3718 dom = hv_get_dom_num(dom_req); 3719 3720 if (dom == HVPCI_DOM_INVALID) { 3721 dev_err(&hdev->device, 3722 "Unable to use dom# 0x%x or other numbers", dom_req); 3723 ret = -EINVAL; 3724 goto free_bus; 3725 } 3726 3727 if (dom != dom_req) 3728 dev_info(&hdev->device, 3729 "PCI dom# 0x%x has collision, using 0x%x", 3730 dom_req, dom); 3731 3732 hbus->bridge->domain_nr = dom; 3733 #ifdef CONFIG_X86 3734 hbus->sysdata.domain = dom; 3735 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3736 #elif defined(CONFIG_ARM64) 3737 /* 3738 * Set the PCI bus parent to be the corresponding VMbus 3739 * device. Then the VMbus device will be assigned as the 3740 * ACPI companion in pcibios_root_bridge_prepare() and 3741 * pci_dma_configure() will propagate device coherence 3742 * information to devices created on the bus. 3743 */ 3744 hbus->sysdata.parent = hdev->device.parent; 3745 hbus->use_calls = false; 3746 #endif 3747 3748 hbus->hdev = hdev; 3749 INIT_LIST_HEAD(&hbus->children); 3750 INIT_LIST_HEAD(&hbus->dr_list); 3751 spin_lock_init(&hbus->config_lock); 3752 spin_lock_init(&hbus->device_list_lock); 3753 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3754 hbus->bridge->domain_nr); 3755 if (!hbus->wq) { 3756 ret = -ENOMEM; 3757 goto free_dom; 3758 } 3759 3760 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3761 hdev->channel->request_addr_callback = vmbus_request_addr; 3762 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3763 3764 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3765 hv_pci_onchannelcallback, hbus); 3766 if (ret) 3767 goto destroy_wq; 3768 3769 hv_set_drvdata(hdev, hbus); 3770 3771 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3772 ARRAY_SIZE(pci_protocol_versions)); 3773 if (ret) 3774 goto close; 3775 3776 ret = hv_allocate_config_window(hbus); 3777 if (ret) 3778 goto close; 3779 3780 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3781 PCI_CONFIG_MMIO_LENGTH); 3782 if (!hbus->cfg_addr) { 3783 dev_err(&hdev->device, 3784 "Unable to map a virtual address for config space\n"); 3785 ret = -ENOMEM; 3786 goto free_config; 3787 } 3788 3789 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3790 if (!name) { 3791 ret = -ENOMEM; 3792 goto unmap; 3793 } 3794 3795 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3796 kfree(name); 3797 if (!hbus->fwnode) { 3798 ret = -ENOMEM; 3799 goto unmap; 3800 } 3801 3802 ret = hv_pcie_init_irq_domain(hbus); 3803 if (ret) 3804 goto free_fwnode; 3805 3806 ret = hv_pci_query_relations(hdev); 3807 if (ret) 3808 goto free_irq_domain; 3809 3810 mutex_lock(&hbus->state_lock); 3811 3812 ret = hv_pci_enter_d0(hdev); 3813 if (ret) 3814 goto release_state_lock; 3815 3816 ret = hv_pci_allocate_bridge_windows(hbus); 3817 if (ret) 3818 goto exit_d0; 3819 3820 ret = hv_send_resources_allocated(hdev); 3821 if (ret) 3822 goto free_windows; 3823 3824 prepopulate_bars(hbus); 3825 3826 hbus->state = hv_pcibus_probed; 3827 3828 ret = create_root_hv_pci_bus(hbus); 3829 if (ret) 3830 goto free_windows; 3831 3832 mutex_unlock(&hbus->state_lock); 3833 return 0; 3834 3835 free_windows: 3836 hv_pci_free_bridge_windows(hbus); 3837 exit_d0: 3838 (void) hv_pci_bus_exit(hdev, true); 3839 release_state_lock: 3840 mutex_unlock(&hbus->state_lock); 3841 free_irq_domain: 3842 irq_domain_remove(hbus->irq_domain); 3843 free_fwnode: 3844 irq_domain_free_fwnode(hbus->fwnode); 3845 unmap: 3846 iounmap(hbus->cfg_addr); 3847 free_config: 3848 hv_free_config_window(hbus); 3849 close: 3850 vmbus_close(hdev->channel); 3851 destroy_wq: 3852 destroy_workqueue(hbus->wq); 3853 free_dom: 3854 hv_put_dom_num(hbus->bridge->domain_nr); 3855 free_bus: 3856 kfree(hbus); 3857 return ret; 3858 } 3859 3860 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3861 { 3862 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3863 struct vmbus_channel *chan = hdev->channel; 3864 struct { 3865 struct pci_packet teardown_packet; 3866 u8 buffer[sizeof(struct pci_message)]; 3867 } pkt; 3868 struct pci_message *msg; 3869 struct hv_pci_compl comp_pkt; 3870 struct hv_pci_dev *hpdev, *tmp; 3871 unsigned long flags; 3872 u64 trans_id; 3873 int ret; 3874 3875 /* 3876 * After the host sends the RESCIND_CHANNEL message, it doesn't 3877 * access the per-channel ringbuffer any longer. 3878 */ 3879 if (chan->rescind) 3880 return 0; 3881 3882 if (!keep_devs) { 3883 struct list_head removed; 3884 3885 /* Move all present children to the list on stack */ 3886 INIT_LIST_HEAD(&removed); 3887 spin_lock_irqsave(&hbus->device_list_lock, flags); 3888 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3889 list_move_tail(&hpdev->list_entry, &removed); 3890 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3891 3892 /* Remove all children in the list */ 3893 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3894 list_del(&hpdev->list_entry); 3895 if (hpdev->pci_slot) 3896 pci_destroy_slot(hpdev->pci_slot); 3897 /* For the two refs got in new_pcichild_device() */ 3898 put_pcichild(hpdev); 3899 put_pcichild(hpdev); 3900 } 3901 } 3902 3903 ret = hv_send_resources_released(hdev); 3904 if (ret) { 3905 dev_err(&hdev->device, 3906 "Couldn't send resources released packet(s)\n"); 3907 return ret; 3908 } 3909 3910 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3911 init_completion(&comp_pkt.host_event); 3912 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3913 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3914 msg = (struct pci_message *)pkt.buffer; 3915 msg->type = PCI_BUS_D0EXIT; 3916 3917 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), 3918 (unsigned long)&pkt.teardown_packet, 3919 &trans_id, VM_PKT_DATA_INBAND, 3920 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3921 if (ret) 3922 return ret; 3923 3924 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3925 /* 3926 * The completion packet on the stack becomes invalid after 3927 * 'return'; remove the ID from the VMbus requestor if the 3928 * identifier is still mapped to/associated with the packet. 3929 * 3930 * Cf. hv_pci_onchannelcallback(). 3931 */ 3932 vmbus_request_addr_match(chan, trans_id, 3933 (unsigned long)&pkt.teardown_packet); 3934 return -ETIMEDOUT; 3935 } 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * hv_pci_remove() - Remove routine for this VMBus channel 3942 * @hdev: VMBus's tracking struct for this root PCI bus 3943 */ 3944 static void hv_pci_remove(struct hv_device *hdev) 3945 { 3946 struct hv_pcibus_device *hbus; 3947 3948 hbus = hv_get_drvdata(hdev); 3949 if (hbus->state == hv_pcibus_installed) { 3950 tasklet_disable(&hdev->channel->callback_event); 3951 hbus->state = hv_pcibus_removing; 3952 tasklet_enable(&hdev->channel->callback_event); 3953 destroy_workqueue(hbus->wq); 3954 hbus->wq = NULL; 3955 /* 3956 * At this point, no work is running or can be scheduled 3957 * on hbus-wq. We can't race with hv_pci_devices_present() 3958 * or hv_pci_eject_device(), it's safe to proceed. 3959 */ 3960 3961 /* Remove the bus from PCI's point of view. */ 3962 pci_lock_rescan_remove(); 3963 pci_stop_root_bus(hbus->bridge->bus); 3964 hv_pci_remove_slots(hbus); 3965 pci_remove_root_bus(hbus->bridge->bus); 3966 pci_unlock_rescan_remove(); 3967 } 3968 3969 hv_pci_bus_exit(hdev, false); 3970 3971 vmbus_close(hdev->channel); 3972 3973 iounmap(hbus->cfg_addr); 3974 hv_free_config_window(hbus); 3975 hv_pci_free_bridge_windows(hbus); 3976 irq_domain_remove(hbus->irq_domain); 3977 irq_domain_free_fwnode(hbus->fwnode); 3978 3979 hv_put_dom_num(hbus->bridge->domain_nr); 3980 3981 kfree(hbus); 3982 } 3983 3984 static int hv_pci_suspend(struct hv_device *hdev) 3985 { 3986 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3987 enum hv_pcibus_state old_state; 3988 int ret; 3989 3990 /* 3991 * hv_pci_suspend() must make sure there are no pending work items 3992 * before calling vmbus_close(), since it runs in a process context 3993 * as a callback in dpm_suspend(). When it starts to run, the channel 3994 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3995 * context, can be still running concurrently and scheduling new work 3996 * items onto hbus->wq in hv_pci_devices_present() and 3997 * hv_pci_eject_device(), and the work item handlers can access the 3998 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3999 * the work item handler pci_devices_present_work() -> 4000 * new_pcichild_device() writes to the vmbus channel. 4001 * 4002 * To eliminate the race, hv_pci_suspend() disables the channel 4003 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 4004 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 4005 * it knows that no new work item can be scheduled, and then it flushes 4006 * hbus->wq and safely closes the vmbus channel. 4007 */ 4008 tasklet_disable(&hdev->channel->callback_event); 4009 4010 /* Change the hbus state to prevent new work items. */ 4011 old_state = hbus->state; 4012 if (hbus->state == hv_pcibus_installed) 4013 hbus->state = hv_pcibus_removing; 4014 4015 tasklet_enable(&hdev->channel->callback_event); 4016 4017 if (old_state != hv_pcibus_installed) 4018 return -EINVAL; 4019 4020 flush_workqueue(hbus->wq); 4021 4022 ret = hv_pci_bus_exit(hdev, true); 4023 if (ret) 4024 return ret; 4025 4026 vmbus_close(hdev->channel); 4027 4028 return 0; 4029 } 4030 4031 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 4032 { 4033 struct irq_data *irq_data; 4034 struct msi_desc *entry; 4035 4036 if (!pdev->msi_enabled && !pdev->msix_enabled) 4037 return 0; 4038 4039 guard(msi_descs_lock)(&pdev->dev); 4040 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 4041 irq_data = irq_get_irq_data(entry->irq); 4042 if (WARN_ON_ONCE(!irq_data)) 4043 return -EINVAL; 4044 hv_compose_msi_msg(irq_data, &entry->msg); 4045 } 4046 return 0; 4047 } 4048 4049 /* 4050 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4051 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4052 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4053 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4054 * Table entries. 4055 */ 4056 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4057 { 4058 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4059 } 4060 4061 static int hv_pci_resume(struct hv_device *hdev) 4062 { 4063 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4064 enum pci_protocol_version_t version[1]; 4065 int ret; 4066 4067 hbus->state = hv_pcibus_init; 4068 4069 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4070 hdev->channel->request_addr_callback = vmbus_request_addr; 4071 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4072 4073 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4074 hv_pci_onchannelcallback, hbus); 4075 if (ret) 4076 return ret; 4077 4078 /* Only use the version that was in use before hibernation. */ 4079 version[0] = hbus->protocol_version; 4080 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4081 if (ret) 4082 goto out; 4083 4084 ret = hv_pci_query_relations(hdev); 4085 if (ret) 4086 goto out; 4087 4088 mutex_lock(&hbus->state_lock); 4089 4090 ret = hv_pci_enter_d0(hdev); 4091 if (ret) 4092 goto release_state_lock; 4093 4094 ret = hv_send_resources_allocated(hdev); 4095 if (ret) 4096 goto release_state_lock; 4097 4098 prepopulate_bars(hbus); 4099 4100 hv_pci_restore_msi_state(hbus); 4101 4102 hbus->state = hv_pcibus_installed; 4103 mutex_unlock(&hbus->state_lock); 4104 return 0; 4105 4106 release_state_lock: 4107 mutex_unlock(&hbus->state_lock); 4108 out: 4109 vmbus_close(hdev->channel); 4110 return ret; 4111 } 4112 4113 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4114 /* PCI Pass-through Class ID */ 4115 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4116 { HV_PCIE_GUID, }, 4117 { }, 4118 }; 4119 4120 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4121 4122 static struct hv_driver hv_pci_drv = { 4123 .name = "hv_pci", 4124 .id_table = hv_pci_id_table, 4125 .probe = hv_pci_probe, 4126 .remove = hv_pci_remove, 4127 .suspend = hv_pci_suspend, 4128 .resume = hv_pci_resume, 4129 }; 4130 4131 static void __exit exit_hv_pci_drv(void) 4132 { 4133 vmbus_driver_unregister(&hv_pci_drv); 4134 4135 hvpci_block_ops.read_block = NULL; 4136 hvpci_block_ops.write_block = NULL; 4137 hvpci_block_ops.reg_blk_invalidate = NULL; 4138 } 4139 4140 static int __init init_hv_pci_drv(void) 4141 { 4142 int ret; 4143 4144 if (!hv_is_hyperv_initialized()) 4145 return -ENODEV; 4146 4147 ret = hv_pci_irqchip_init(); 4148 if (ret) 4149 return ret; 4150 4151 /* Set the invalid domain number's bit, so it will not be used */ 4152 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4153 4154 /* Initialize PCI block r/w interface */ 4155 hvpci_block_ops.read_block = hv_read_config_block; 4156 hvpci_block_ops.write_block = hv_write_config_block; 4157 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4158 4159 return vmbus_driver_register(&hv_pci_drv); 4160 } 4161 4162 module_init(init_hv_pci_drv); 4163 module_exit(exit_hv_pci_drv); 4164 4165 MODULE_DESCRIPTION("Hyper-V PCI"); 4166 MODULE_LICENSE("GPL v2"); 4167