1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-integrity.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kstrtox.h> 17 #include <linux/memremap.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/once.h> 22 #include <linux/pci.h> 23 #include <linux/suspend.h> 24 #include <linux/t10-pi.h> 25 #include <linux/types.h> 26 #include <linux/io-64-nonatomic-lo-hi.h> 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 #include <linux/sed-opal.h> 29 #include <linux/pci-p2pdma.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 38 39 /* 40 * These can be higher, but we need to ensure that any command doesn't 41 * require an sg allocation that needs more than a page of data. 42 */ 43 #define NVME_MAX_KB_SZ 8192 44 #define NVME_MAX_SEGS 128 45 #define NVME_MAX_META_SEGS 15 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 struct sg_table *hmb_sgt; 145 146 mempool_t *iod_mempool; 147 mempool_t *iod_meta_mempool; 148 149 /* shadow doorbell buffer support: */ 150 __le32 *dbbuf_dbs; 151 dma_addr_t dbbuf_dbs_dma_addr; 152 __le32 *dbbuf_eis; 153 dma_addr_t dbbuf_eis_dma_addr; 154 155 /* host memory buffer support: */ 156 u64 host_mem_size; 157 u32 nr_host_mem_descs; 158 u32 host_mem_descs_size; 159 dma_addr_t host_mem_descs_dma; 160 struct nvme_host_mem_buf_desc *host_mem_descs; 161 void **host_mem_desc_bufs; 162 unsigned int nr_allocated_queues; 163 unsigned int nr_write_queues; 164 unsigned int nr_poll_queues; 165 }; 166 167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 168 { 169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 170 NVME_PCI_MAX_QUEUE_SIZE); 171 } 172 173 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 174 { 175 return qid * 2 * stride; 176 } 177 178 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 179 { 180 return (qid * 2 + 1) * stride; 181 } 182 183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_dev, ctrl); 186 } 187 188 /* 189 * An NVM Express queue. Each device has at least two (one for admin 190 * commands and one for I/O commands). 191 */ 192 struct nvme_queue { 193 struct nvme_dev *dev; 194 spinlock_t sq_lock; 195 void *sq_cmds; 196 /* only used for poll queues: */ 197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 198 struct nvme_completion *cqes; 199 dma_addr_t sq_dma_addr; 200 dma_addr_t cq_dma_addr; 201 u32 __iomem *q_db; 202 u32 q_depth; 203 u16 cq_vector; 204 u16 sq_tail; 205 u16 last_sq_tail; 206 u16 cq_head; 207 u16 qid; 208 u8 cq_phase; 209 u8 sqes; 210 unsigned long flags; 211 #define NVMEQ_ENABLED 0 212 #define NVMEQ_SQ_CMB 1 213 #define NVMEQ_DELETE_ERROR 2 214 #define NVMEQ_POLLED 3 215 __le32 *dbbuf_sq_db; 216 __le32 *dbbuf_cq_db; 217 __le32 *dbbuf_sq_ei; 218 __le32 *dbbuf_cq_ei; 219 struct completion delete_done; 220 }; 221 222 union nvme_descriptor { 223 struct nvme_sgl_desc *sg_list; 224 __le64 *prp_list; 225 }; 226 227 /* 228 * The nvme_iod describes the data in an I/O. 229 * 230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 231 * to the actual struct scatterlist. 232 */ 233 struct nvme_iod { 234 struct nvme_request req; 235 struct nvme_command cmd; 236 bool aborted; 237 s8 nr_allocations; /* PRP list pool allocations. 0 means small 238 pool in use */ 239 unsigned int dma_len; /* length of single DMA segment mapping */ 240 dma_addr_t first_dma; 241 dma_addr_t meta_dma; 242 struct sg_table sgt; 243 struct sg_table meta_sgt; 244 union nvme_descriptor meta_list; 245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 246 }; 247 248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 249 { 250 return dev->nr_allocated_queues * 8 * dev->db_stride; 251 } 252 253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev); 256 257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 258 return; 259 260 if (dev->dbbuf_dbs) { 261 /* 262 * Clear the dbbuf memory so the driver doesn't observe stale 263 * values from the previous instantiation. 264 */ 265 memset(dev->dbbuf_dbs, 0, mem_size); 266 memset(dev->dbbuf_eis, 0, mem_size); 267 return; 268 } 269 270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_dbs_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_dbs) 274 goto fail; 275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 276 &dev->dbbuf_eis_dma_addr, 277 GFP_KERNEL); 278 if (!dev->dbbuf_eis) 279 goto fail_free_dbbuf_dbs; 280 return; 281 282 fail_free_dbbuf_dbs: 283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 284 dev->dbbuf_dbs_dma_addr); 285 dev->dbbuf_dbs = NULL; 286 fail: 287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 288 } 289 290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 291 { 292 unsigned int mem_size = nvme_dbbuf_size(dev); 293 294 if (dev->dbbuf_dbs) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 297 dev->dbbuf_dbs = NULL; 298 } 299 if (dev->dbbuf_eis) { 300 dma_free_coherent(dev->dev, mem_size, 301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 302 dev->dbbuf_eis = NULL; 303 } 304 } 305 306 static void nvme_dbbuf_init(struct nvme_dev *dev, 307 struct nvme_queue *nvmeq, int qid) 308 { 309 if (!dev->dbbuf_dbs || !qid) 310 return; 311 312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 316 } 317 318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 319 { 320 if (!nvmeq->qid) 321 return; 322 323 nvmeq->dbbuf_sq_db = NULL; 324 nvmeq->dbbuf_cq_db = NULL; 325 nvmeq->dbbuf_sq_ei = NULL; 326 nvmeq->dbbuf_cq_ei = NULL; 327 } 328 329 static void nvme_dbbuf_set(struct nvme_dev *dev) 330 { 331 struct nvme_command c = { }; 332 unsigned int i; 333 334 if (!dev->dbbuf_dbs) 335 return; 336 337 c.dbbuf.opcode = nvme_admin_dbbuf; 338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 340 341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 343 /* Free memory and continue on */ 344 nvme_dbbuf_dma_free(dev); 345 346 for (i = 1; i <= dev->online_queues; i++) 347 nvme_dbbuf_free(&dev->queues[i]); 348 } 349 } 350 351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 352 { 353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 354 } 355 356 /* Update dbbuf and return true if an MMIO is required */ 357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 358 volatile __le32 *dbbuf_ei) 359 { 360 if (dbbuf_db) { 361 u16 old_value, event_idx; 362 363 /* 364 * Ensure that the queue is written before updating 365 * the doorbell in memory 366 */ 367 wmb(); 368 369 old_value = le32_to_cpu(*dbbuf_db); 370 *dbbuf_db = cpu_to_le32(value); 371 372 /* 373 * Ensure that the doorbell is updated before reading the event 374 * index from memory. The controller needs to provide similar 375 * ordering to ensure the event index is updated before reading 376 * the doorbell. 377 */ 378 mb(); 379 380 event_idx = le32_to_cpu(*dbbuf_ei); 381 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 382 return false; 383 } 384 385 return true; 386 } 387 388 /* 389 * Will slightly overestimate the number of pages needed. This is OK 390 * as it only leads to a small amount of wasted memory for the lifetime of 391 * the I/O. 392 */ 393 static int nvme_pci_npages_prp(void) 394 { 395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 398 } 399 400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 401 unsigned int hctx_idx) 402 { 403 struct nvme_dev *dev = to_nvme_dev(data); 404 struct nvme_queue *nvmeq = &dev->queues[0]; 405 406 WARN_ON(hctx_idx != 0); 407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 408 409 hctx->driver_data = nvmeq; 410 return 0; 411 } 412 413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 414 unsigned int hctx_idx) 415 { 416 struct nvme_dev *dev = to_nvme_dev(data); 417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 418 419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 420 hctx->driver_data = nvmeq; 421 return 0; 422 } 423 424 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 425 struct request *req, unsigned int hctx_idx, 426 unsigned int numa_node) 427 { 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 430 nvme_req(req)->ctrl = set->driver_data; 431 nvme_req(req)->cmd = &iod->cmd; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_map_hw_queues(map, dev->dev, offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 } 472 473 /* 474 * Write sq tail if we are asked to, or if the next command would wrap. 475 */ 476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 477 { 478 if (!write_sq) { 479 u16 next_tail = nvmeq->sq_tail + 1; 480 481 if (next_tail == nvmeq->q_depth) 482 next_tail = 0; 483 if (next_tail != nvmeq->last_sq_tail) 484 return; 485 } 486 487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 489 writel(nvmeq->sq_tail, nvmeq->q_db); 490 nvmeq->last_sq_tail = nvmeq->sq_tail; 491 } 492 493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 494 struct nvme_command *cmd) 495 { 496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 497 absolute_pointer(cmd), sizeof(*cmd)); 498 if (++nvmeq->sq_tail == nvmeq->q_depth) 499 nvmeq->sq_tail = 0; 500 } 501 502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 503 { 504 struct nvme_queue *nvmeq = hctx->driver_data; 505 506 spin_lock(&nvmeq->sq_lock); 507 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 508 nvme_write_sq_db(nvmeq, true); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev, 513 struct request *req) 514 { 515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 516 return false; 517 return req->nr_integrity_segments > 1 || 518 nvme_req(req)->flags & NVME_REQ_USERCMD; 519 } 520 521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 522 int nseg) 523 { 524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 525 unsigned int avg_seg_size; 526 527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 528 529 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 530 return false; 531 if (!nvmeq->qid) 532 return false; 533 if (nvme_pci_metadata_use_sgls(dev, req)) 534 return true; 535 if (!sgl_threshold || avg_seg_size < sgl_threshold) 536 return nvme_req(req)->flags & NVME_REQ_USERCMD; 537 return true; 538 } 539 540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 541 { 542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 544 dma_addr_t dma_addr = iod->first_dma; 545 int i; 546 547 for (i = 0; i < iod->nr_allocations; i++) { 548 __le64 *prp_list = iod->list[i].prp_list; 549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 550 551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 552 dma_addr = next_dma_addr; 553 } 554 } 555 556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 557 { 558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 559 560 if (iod->dma_len) { 561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 562 rq_dma_dir(req)); 563 return; 564 } 565 566 WARN_ON_ONCE(!iod->sgt.nents); 567 568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 569 570 if (iod->nr_allocations == 0) 571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 572 iod->first_dma); 573 else if (iod->nr_allocations == 1) 574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 575 iod->first_dma); 576 else 577 nvme_free_prps(dev, req); 578 mempool_free(iod->sgt.sgl, dev->iod_mempool); 579 } 580 581 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 582 { 583 int i; 584 struct scatterlist *sg; 585 586 for_each_sg(sgl, sg, nents, i) { 587 dma_addr_t phys = sg_phys(sg); 588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 589 "dma_address:%pad dma_length:%d\n", 590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 591 sg_dma_len(sg)); 592 } 593 } 594 595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 596 struct request *req, struct nvme_rw_command *cmnd) 597 { 598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 599 struct dma_pool *pool; 600 int length = blk_rq_payload_bytes(req); 601 struct scatterlist *sg = iod->sgt.sgl; 602 int dma_len = sg_dma_len(sg); 603 u64 dma_addr = sg_dma_address(sg); 604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 605 __le64 *prp_list; 606 dma_addr_t prp_dma; 607 int nprps, i; 608 609 length -= (NVME_CTRL_PAGE_SIZE - offset); 610 if (length <= 0) { 611 iod->first_dma = 0; 612 goto done; 613 } 614 615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 616 if (dma_len) { 617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 618 } else { 619 sg = sg_next(sg); 620 dma_addr = sg_dma_address(sg); 621 dma_len = sg_dma_len(sg); 622 } 623 624 if (length <= NVME_CTRL_PAGE_SIZE) { 625 iod->first_dma = dma_addr; 626 goto done; 627 } 628 629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 630 if (nprps <= (256 / 8)) { 631 pool = dev->prp_small_pool; 632 iod->nr_allocations = 0; 633 } else { 634 pool = dev->prp_page_pool; 635 iod->nr_allocations = 1; 636 } 637 638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 639 if (!prp_list) { 640 iod->nr_allocations = -1; 641 return BLK_STS_RESOURCE; 642 } 643 iod->list[0].prp_list = prp_list; 644 iod->first_dma = prp_dma; 645 i = 0; 646 for (;;) { 647 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 648 __le64 *old_prp_list = prp_list; 649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 650 if (!prp_list) 651 goto free_prps; 652 iod->list[iod->nr_allocations++].prp_list = prp_list; 653 prp_list[0] = old_prp_list[i - 1]; 654 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 655 i = 1; 656 } 657 prp_list[i++] = cpu_to_le64(dma_addr); 658 dma_len -= NVME_CTRL_PAGE_SIZE; 659 dma_addr += NVME_CTRL_PAGE_SIZE; 660 length -= NVME_CTRL_PAGE_SIZE; 661 if (length <= 0) 662 break; 663 if (dma_len > 0) 664 continue; 665 if (unlikely(dma_len < 0)) 666 goto bad_sgl; 667 sg = sg_next(sg); 668 dma_addr = sg_dma_address(sg); 669 dma_len = sg_dma_len(sg); 670 } 671 done: 672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 674 return BLK_STS_OK; 675 free_prps: 676 nvme_free_prps(dev, req); 677 return BLK_STS_RESOURCE; 678 bad_sgl: 679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 680 "Invalid SGL for payload:%d nents:%d\n", 681 blk_rq_payload_bytes(req), iod->sgt.nents); 682 return BLK_STS_IOERR; 683 } 684 685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 686 struct scatterlist *sg) 687 { 688 sge->addr = cpu_to_le64(sg_dma_address(sg)); 689 sge->length = cpu_to_le32(sg_dma_len(sg)); 690 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 691 } 692 693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 694 dma_addr_t dma_addr, int entries) 695 { 696 sge->addr = cpu_to_le64(dma_addr); 697 sge->length = cpu_to_le32(entries * sizeof(*sge)); 698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 699 } 700 701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 702 struct request *req, struct nvme_rw_command *cmd) 703 { 704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 705 struct dma_pool *pool; 706 struct nvme_sgl_desc *sg_list; 707 struct scatterlist *sg = iod->sgt.sgl; 708 unsigned int entries = iod->sgt.nents; 709 dma_addr_t sgl_dma; 710 int i = 0; 711 712 /* setting the transfer type as SGL */ 713 cmd->flags = NVME_CMD_SGL_METABUF; 714 715 if (entries == 1) { 716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 717 return BLK_STS_OK; 718 } 719 720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 721 pool = dev->prp_small_pool; 722 iod->nr_allocations = 0; 723 } else { 724 pool = dev->prp_page_pool; 725 iod->nr_allocations = 1; 726 } 727 728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 729 if (!sg_list) { 730 iod->nr_allocations = -1; 731 return BLK_STS_RESOURCE; 732 } 733 734 iod->list[0].sg_list = sg_list; 735 iod->first_dma = sgl_dma; 736 737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 738 do { 739 nvme_pci_sgl_set_data(&sg_list[i++], sg); 740 sg = sg_next(sg); 741 } while (--entries > 0); 742 743 return BLK_STS_OK; 744 } 745 746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 747 struct request *req, struct nvme_rw_command *cmnd, 748 struct bio_vec *bv) 749 { 750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 753 754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 755 if (dma_mapping_error(dev->dev, iod->first_dma)) 756 return BLK_STS_RESOURCE; 757 iod->dma_len = bv->bv_len; 758 759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 760 if (bv->bv_len > first_prp_len) 761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 762 else 763 cmnd->dptr.prp2 = 0; 764 return BLK_STS_OK; 765 } 766 767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 768 struct request *req, struct nvme_rw_command *cmnd, 769 struct bio_vec *bv) 770 { 771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 772 773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 774 if (dma_mapping_error(dev->dev, iod->first_dma)) 775 return BLK_STS_RESOURCE; 776 iod->dma_len = bv->bv_len; 777 778 cmnd->flags = NVME_CMD_SGL_METABUF; 779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 782 return BLK_STS_OK; 783 } 784 785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 786 struct nvme_command *cmnd) 787 { 788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 789 blk_status_t ret = BLK_STS_RESOURCE; 790 int rc; 791 792 if (blk_rq_nr_phys_segments(req) == 1) { 793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 794 struct bio_vec bv = req_bvec(req); 795 796 if (!is_pci_p2pdma_page(bv.bv_page)) { 797 if (!nvme_pci_metadata_use_sgls(dev, req) && 798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 800 return nvme_setup_prp_simple(dev, req, 801 &cmnd->rw, &bv); 802 803 if (nvmeq->qid && sgl_threshold && 804 nvme_ctrl_sgl_supported(&dev->ctrl)) 805 return nvme_setup_sgl_simple(dev, req, 806 &cmnd->rw, &bv); 807 } 808 } 809 810 iod->dma_len = 0; 811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 812 if (!iod->sgt.sgl) 813 return BLK_STS_RESOURCE; 814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 815 iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl); 816 if (!iod->sgt.orig_nents) 817 goto out_free_sg; 818 819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 820 DMA_ATTR_NO_WARN); 821 if (rc) { 822 if (rc == -EREMOTEIO) 823 ret = BLK_STS_TARGET; 824 goto out_free_sg; 825 } 826 827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 829 else 830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 831 if (ret != BLK_STS_OK) 832 goto out_unmap_sg; 833 return BLK_STS_OK; 834 835 out_unmap_sg: 836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 837 out_free_sg: 838 mempool_free(iod->sgt.sgl, dev->iod_mempool); 839 return ret; 840 } 841 842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev, 843 struct request *req) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 struct nvme_rw_command *cmnd = &iod->cmd.rw; 847 struct nvme_sgl_desc *sg_list; 848 struct scatterlist *sgl, *sg; 849 unsigned int entries; 850 dma_addr_t sgl_dma; 851 int rc, i; 852 853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC); 854 if (!iod->meta_sgt.sgl) 855 return BLK_STS_RESOURCE; 856 857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments); 858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req, 859 iod->meta_sgt.sgl); 860 if (!iod->meta_sgt.orig_nents) 861 goto out_free_sg; 862 863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 864 DMA_ATTR_NO_WARN); 865 if (rc) 866 goto out_free_sg; 867 868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma); 869 if (!sg_list) 870 goto out_unmap_sg; 871 872 entries = iod->meta_sgt.nents; 873 iod->meta_list.sg_list = sg_list; 874 iod->meta_dma = sgl_dma; 875 876 cmnd->flags = NVME_CMD_SGL_METASEG; 877 cmnd->metadata = cpu_to_le64(sgl_dma); 878 879 sgl = iod->meta_sgt.sgl; 880 if (entries == 1) { 881 nvme_pci_sgl_set_data(sg_list, sgl); 882 return BLK_STS_OK; 883 } 884 885 sgl_dma += sizeof(*sg_list); 886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries); 887 for_each_sg(sgl, sg, entries, i) 888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg); 889 890 return BLK_STS_OK; 891 892 out_unmap_sg: 893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 894 out_free_sg: 895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 896 return BLK_STS_RESOURCE; 897 } 898 899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev, 900 struct request *req) 901 { 902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 903 struct bio_vec bv = rq_integrity_vec(req); 904 struct nvme_command *cmnd = &iod->cmd; 905 906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 907 if (dma_mapping_error(dev->dev, iod->meta_dma)) 908 return BLK_STS_IOERR; 909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 910 return BLK_STS_OK; 911 } 912 913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req) 914 { 915 if (nvme_pci_metadata_use_sgls(dev, req)) 916 return nvme_pci_setup_meta_sgls(dev, req); 917 return nvme_pci_setup_meta_mptr(dev, req); 918 } 919 920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 921 { 922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 923 blk_status_t ret; 924 925 iod->aborted = false; 926 iod->nr_allocations = -1; 927 iod->sgt.nents = 0; 928 iod->meta_sgt.nents = 0; 929 930 ret = nvme_setup_cmd(req->q->queuedata, req); 931 if (ret) 932 return ret; 933 934 if (blk_rq_nr_phys_segments(req)) { 935 ret = nvme_map_data(dev, req, &iod->cmd); 936 if (ret) 937 goto out_free_cmd; 938 } 939 940 if (blk_integrity_rq(req)) { 941 ret = nvme_map_metadata(dev, req); 942 if (ret) 943 goto out_unmap_data; 944 } 945 946 nvme_start_request(req); 947 return BLK_STS_OK; 948 out_unmap_data: 949 if (blk_rq_nr_phys_segments(req)) 950 nvme_unmap_data(dev, req); 951 out_free_cmd: 952 nvme_cleanup_cmd(req); 953 return ret; 954 } 955 956 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 957 const struct blk_mq_queue_data *bd) 958 { 959 struct nvme_queue *nvmeq = hctx->driver_data; 960 struct nvme_dev *dev = nvmeq->dev; 961 struct request *req = bd->rq; 962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 963 blk_status_t ret; 964 965 /* 966 * We should not need to do this, but we're still using this to 967 * ensure we can drain requests on a dying queue. 968 */ 969 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 970 return BLK_STS_IOERR; 971 972 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 973 return nvme_fail_nonready_command(&dev->ctrl, req); 974 975 ret = nvme_prep_rq(dev, req); 976 if (unlikely(ret)) 977 return ret; 978 spin_lock(&nvmeq->sq_lock); 979 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 980 nvme_write_sq_db(nvmeq, bd->last); 981 spin_unlock(&nvmeq->sq_lock); 982 return BLK_STS_OK; 983 } 984 985 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 986 { 987 struct request *req; 988 989 if (rq_list_empty(rqlist)) 990 return; 991 992 spin_lock(&nvmeq->sq_lock); 993 while ((req = rq_list_pop(rqlist))) { 994 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 995 996 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 997 } 998 nvme_write_sq_db(nvmeq, true); 999 spin_unlock(&nvmeq->sq_lock); 1000 } 1001 1002 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1003 { 1004 /* 1005 * We should not need to do this, but we're still using this to 1006 * ensure we can drain requests on a dying queue. 1007 */ 1008 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1009 return false; 1010 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1011 return false; 1012 1013 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 1014 } 1015 1016 static void nvme_queue_rqs(struct rq_list *rqlist) 1017 { 1018 struct rq_list submit_list = { }; 1019 struct rq_list requeue_list = { }; 1020 struct nvme_queue *nvmeq = NULL; 1021 struct request *req; 1022 1023 while ((req = rq_list_pop(rqlist))) { 1024 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1025 nvme_submit_cmds(nvmeq, &submit_list); 1026 nvmeq = req->mq_hctx->driver_data; 1027 1028 if (nvme_prep_rq_batch(nvmeq, req)) 1029 rq_list_add_tail(&submit_list, req); 1030 else 1031 rq_list_add_tail(&requeue_list, req); 1032 } 1033 1034 if (nvmeq) 1035 nvme_submit_cmds(nvmeq, &submit_list); 1036 *rqlist = requeue_list; 1037 } 1038 1039 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev, 1040 struct request *req) 1041 { 1042 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1043 1044 if (!iod->meta_sgt.nents) { 1045 dma_unmap_page(dev->dev, iod->meta_dma, 1046 rq_integrity_vec(req).bv_len, 1047 rq_dma_dir(req)); 1048 return; 1049 } 1050 1051 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list, 1052 iod->meta_dma); 1053 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1054 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1055 } 1056 1057 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1058 { 1059 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1060 struct nvme_dev *dev = nvmeq->dev; 1061 1062 if (blk_integrity_rq(req)) 1063 nvme_unmap_metadata(dev, req); 1064 1065 if (blk_rq_nr_phys_segments(req)) 1066 nvme_unmap_data(dev, req); 1067 } 1068 1069 static void nvme_pci_complete_rq(struct request *req) 1070 { 1071 nvme_pci_unmap_rq(req); 1072 nvme_complete_rq(req); 1073 } 1074 1075 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1076 { 1077 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1078 } 1079 1080 /* We read the CQE phase first to check if the rest of the entry is valid */ 1081 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1082 { 1083 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1084 1085 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1086 } 1087 1088 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1089 { 1090 u16 head = nvmeq->cq_head; 1091 1092 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1093 nvmeq->dbbuf_cq_ei)) 1094 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1095 } 1096 1097 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1098 { 1099 if (!nvmeq->qid) 1100 return nvmeq->dev->admin_tagset.tags[0]; 1101 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1102 } 1103 1104 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1105 struct io_comp_batch *iob, u16 idx) 1106 { 1107 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1108 __u16 command_id = READ_ONCE(cqe->command_id); 1109 struct request *req; 1110 1111 /* 1112 * AEN requests are special as they don't time out and can 1113 * survive any kind of queue freeze and often don't respond to 1114 * aborts. We don't even bother to allocate a struct request 1115 * for them but rather special case them here. 1116 */ 1117 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1118 nvme_complete_async_event(&nvmeq->dev->ctrl, 1119 cqe->status, &cqe->result); 1120 return; 1121 } 1122 1123 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1124 if (unlikely(!req)) { 1125 dev_warn(nvmeq->dev->ctrl.device, 1126 "invalid id %d completed on queue %d\n", 1127 command_id, le16_to_cpu(cqe->sq_id)); 1128 return; 1129 } 1130 1131 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1132 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1133 !blk_mq_add_to_batch(req, iob, 1134 nvme_req(req)->status != NVME_SC_SUCCESS, 1135 nvme_pci_complete_batch)) 1136 nvme_pci_complete_rq(req); 1137 } 1138 1139 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1140 { 1141 u32 tmp = nvmeq->cq_head + 1; 1142 1143 if (tmp == nvmeq->q_depth) { 1144 nvmeq->cq_head = 0; 1145 nvmeq->cq_phase ^= 1; 1146 } else { 1147 nvmeq->cq_head = tmp; 1148 } 1149 } 1150 1151 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, 1152 struct io_comp_batch *iob) 1153 { 1154 bool found = false; 1155 1156 while (nvme_cqe_pending(nvmeq)) { 1157 found = true; 1158 /* 1159 * load-load control dependency between phase and the rest of 1160 * the cqe requires a full read memory barrier 1161 */ 1162 dma_rmb(); 1163 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1164 nvme_update_cq_head(nvmeq); 1165 } 1166 1167 if (found) 1168 nvme_ring_cq_doorbell(nvmeq); 1169 return found; 1170 } 1171 1172 static irqreturn_t nvme_irq(int irq, void *data) 1173 { 1174 struct nvme_queue *nvmeq = data; 1175 DEFINE_IO_COMP_BATCH(iob); 1176 1177 if (nvme_poll_cq(nvmeq, &iob)) { 1178 if (!rq_list_empty(&iob.req_list)) 1179 nvme_pci_complete_batch(&iob); 1180 return IRQ_HANDLED; 1181 } 1182 return IRQ_NONE; 1183 } 1184 1185 static irqreturn_t nvme_irq_check(int irq, void *data) 1186 { 1187 struct nvme_queue *nvmeq = data; 1188 1189 if (nvme_cqe_pending(nvmeq)) 1190 return IRQ_WAKE_THREAD; 1191 return IRQ_NONE; 1192 } 1193 1194 /* 1195 * Poll for completions for any interrupt driven queue 1196 * Can be called from any context. 1197 */ 1198 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1199 { 1200 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1201 1202 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1203 1204 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1205 nvme_poll_cq(nvmeq, NULL); 1206 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1207 } 1208 1209 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1210 { 1211 struct nvme_queue *nvmeq = hctx->driver_data; 1212 bool found; 1213 1214 if (!nvme_cqe_pending(nvmeq)) 1215 return 0; 1216 1217 spin_lock(&nvmeq->cq_poll_lock); 1218 found = nvme_poll_cq(nvmeq, iob); 1219 spin_unlock(&nvmeq->cq_poll_lock); 1220 1221 return found; 1222 } 1223 1224 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1225 { 1226 struct nvme_dev *dev = to_nvme_dev(ctrl); 1227 struct nvme_queue *nvmeq = &dev->queues[0]; 1228 struct nvme_command c = { }; 1229 1230 c.common.opcode = nvme_admin_async_event; 1231 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1232 1233 spin_lock(&nvmeq->sq_lock); 1234 nvme_sq_copy_cmd(nvmeq, &c); 1235 nvme_write_sq_db(nvmeq, true); 1236 spin_unlock(&nvmeq->sq_lock); 1237 } 1238 1239 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1240 { 1241 struct nvme_dev *dev = to_nvme_dev(ctrl); 1242 int ret = 0; 1243 1244 /* 1245 * Taking the shutdown_lock ensures the BAR mapping is not being 1246 * altered by reset_work. Holding this lock before the RESETTING state 1247 * change, if successful, also ensures nvme_remove won't be able to 1248 * proceed to iounmap until we're done. 1249 */ 1250 mutex_lock(&dev->shutdown_lock); 1251 if (!dev->bar_mapped_size) { 1252 ret = -ENODEV; 1253 goto unlock; 1254 } 1255 1256 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1257 ret = -EBUSY; 1258 goto unlock; 1259 } 1260 1261 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1262 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1263 1264 /* 1265 * Read controller status to flush the previous write and trigger a 1266 * pcie read error. 1267 */ 1268 readl(dev->bar + NVME_REG_CSTS); 1269 unlock: 1270 mutex_unlock(&dev->shutdown_lock); 1271 return ret; 1272 } 1273 1274 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1275 { 1276 struct nvme_command c = { }; 1277 1278 c.delete_queue.opcode = opcode; 1279 c.delete_queue.qid = cpu_to_le16(id); 1280 1281 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1282 } 1283 1284 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1285 struct nvme_queue *nvmeq, s16 vector) 1286 { 1287 struct nvme_command c = { }; 1288 int flags = NVME_QUEUE_PHYS_CONTIG; 1289 1290 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1291 flags |= NVME_CQ_IRQ_ENABLED; 1292 1293 /* 1294 * Note: we (ab)use the fact that the prp fields survive if no data 1295 * is attached to the request. 1296 */ 1297 c.create_cq.opcode = nvme_admin_create_cq; 1298 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1299 c.create_cq.cqid = cpu_to_le16(qid); 1300 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1301 c.create_cq.cq_flags = cpu_to_le16(flags); 1302 c.create_cq.irq_vector = cpu_to_le16(vector); 1303 1304 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1305 } 1306 1307 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1308 struct nvme_queue *nvmeq) 1309 { 1310 struct nvme_ctrl *ctrl = &dev->ctrl; 1311 struct nvme_command c = { }; 1312 int flags = NVME_QUEUE_PHYS_CONTIG; 1313 1314 /* 1315 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1316 * set. Since URGENT priority is zeroes, it makes all queues 1317 * URGENT. 1318 */ 1319 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1320 flags |= NVME_SQ_PRIO_MEDIUM; 1321 1322 /* 1323 * Note: we (ab)use the fact that the prp fields survive if no data 1324 * is attached to the request. 1325 */ 1326 c.create_sq.opcode = nvme_admin_create_sq; 1327 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1328 c.create_sq.sqid = cpu_to_le16(qid); 1329 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1330 c.create_sq.sq_flags = cpu_to_le16(flags); 1331 c.create_sq.cqid = cpu_to_le16(qid); 1332 1333 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1334 } 1335 1336 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1337 { 1338 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1339 } 1340 1341 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1342 { 1343 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1344 } 1345 1346 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1347 { 1348 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1349 1350 dev_warn(nvmeq->dev->ctrl.device, 1351 "Abort status: 0x%x", nvme_req(req)->status); 1352 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1353 blk_mq_free_request(req); 1354 return RQ_END_IO_NONE; 1355 } 1356 1357 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1358 { 1359 /* If true, indicates loss of adapter communication, possibly by a 1360 * NVMe Subsystem reset. 1361 */ 1362 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1363 1364 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1365 switch (nvme_ctrl_state(&dev->ctrl)) { 1366 case NVME_CTRL_RESETTING: 1367 case NVME_CTRL_CONNECTING: 1368 return false; 1369 default: 1370 break; 1371 } 1372 1373 /* We shouldn't reset unless the controller is on fatal error state 1374 * _or_ if we lost the communication with it. 1375 */ 1376 if (!(csts & NVME_CSTS_CFS) && !nssro) 1377 return false; 1378 1379 return true; 1380 } 1381 1382 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1383 { 1384 /* Read a config register to help see what died. */ 1385 u16 pci_status; 1386 int result; 1387 1388 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1389 &pci_status); 1390 if (result == PCIBIOS_SUCCESSFUL) 1391 dev_warn(dev->ctrl.device, 1392 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1393 csts, pci_status); 1394 else 1395 dev_warn(dev->ctrl.device, 1396 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1397 csts, result); 1398 1399 if (csts != ~0) 1400 return; 1401 1402 dev_warn(dev->ctrl.device, 1403 "Does your device have a faulty power saving mode enabled?\n"); 1404 dev_warn(dev->ctrl.device, 1405 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1406 } 1407 1408 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1409 { 1410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1411 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1412 struct nvme_dev *dev = nvmeq->dev; 1413 struct request *abort_req; 1414 struct nvme_command cmd = { }; 1415 struct pci_dev *pdev = to_pci_dev(dev->dev); 1416 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1417 u8 opcode; 1418 1419 /* 1420 * Shutdown the device immediately if we see it is disconnected. This 1421 * unblocks PCIe error handling if the nvme driver is waiting in 1422 * error_resume for a device that has been removed. We can't unbind the 1423 * driver while the driver's error callback is waiting to complete, so 1424 * we're relying on a timeout to break that deadlock if a removal 1425 * occurs while reset work is running. 1426 */ 1427 if (pci_dev_is_disconnected(pdev)) 1428 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1429 if (nvme_state_terminal(&dev->ctrl)) 1430 goto disable; 1431 1432 /* If PCI error recovery process is happening, we cannot reset or 1433 * the recovery mechanism will surely fail. 1434 */ 1435 mb(); 1436 if (pci_channel_offline(pdev)) 1437 return BLK_EH_RESET_TIMER; 1438 1439 /* 1440 * Reset immediately if the controller is failed 1441 */ 1442 if (nvme_should_reset(dev, csts)) { 1443 nvme_warn_reset(dev, csts); 1444 goto disable; 1445 } 1446 1447 /* 1448 * Did we miss an interrupt? 1449 */ 1450 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1451 nvme_poll(req->mq_hctx, NULL); 1452 else 1453 nvme_poll_irqdisable(nvmeq); 1454 1455 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1456 dev_warn(dev->ctrl.device, 1457 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1458 req->tag, nvme_cid(req), nvmeq->qid); 1459 return BLK_EH_DONE; 1460 } 1461 1462 /* 1463 * Shutdown immediately if controller times out while starting. The 1464 * reset work will see the pci device disabled when it gets the forced 1465 * cancellation error. All outstanding requests are completed on 1466 * shutdown, so we return BLK_EH_DONE. 1467 */ 1468 switch (nvme_ctrl_state(&dev->ctrl)) { 1469 case NVME_CTRL_CONNECTING: 1470 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1471 fallthrough; 1472 case NVME_CTRL_DELETING: 1473 dev_warn_ratelimited(dev->ctrl.device, 1474 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1475 req->tag, nvme_cid(req), nvmeq->qid); 1476 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1477 nvme_dev_disable(dev, true); 1478 return BLK_EH_DONE; 1479 case NVME_CTRL_RESETTING: 1480 return BLK_EH_RESET_TIMER; 1481 default: 1482 break; 1483 } 1484 1485 /* 1486 * Shutdown the controller immediately and schedule a reset if the 1487 * command was already aborted once before and still hasn't been 1488 * returned to the driver, or if this is the admin queue. 1489 */ 1490 opcode = nvme_req(req)->cmd->common.opcode; 1491 if (!nvmeq->qid || iod->aborted) { 1492 dev_warn(dev->ctrl.device, 1493 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1494 req->tag, nvme_cid(req), opcode, 1495 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1496 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1497 goto disable; 1498 } 1499 1500 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1501 atomic_inc(&dev->ctrl.abort_limit); 1502 return BLK_EH_RESET_TIMER; 1503 } 1504 iod->aborted = true; 1505 1506 cmd.abort.opcode = nvme_admin_abort_cmd; 1507 cmd.abort.cid = nvme_cid(req); 1508 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1509 1510 dev_warn(nvmeq->dev->ctrl.device, 1511 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1512 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1513 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1514 blk_rq_bytes(req)); 1515 1516 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1517 BLK_MQ_REQ_NOWAIT); 1518 if (IS_ERR(abort_req)) { 1519 atomic_inc(&dev->ctrl.abort_limit); 1520 return BLK_EH_RESET_TIMER; 1521 } 1522 nvme_init_request(abort_req, &cmd); 1523 1524 abort_req->end_io = abort_endio; 1525 abort_req->end_io_data = NULL; 1526 blk_execute_rq_nowait(abort_req, false); 1527 1528 /* 1529 * The aborted req will be completed on receiving the abort req. 1530 * We enable the timer again. If hit twice, it'll cause a device reset, 1531 * as the device then is in a faulty state. 1532 */ 1533 return BLK_EH_RESET_TIMER; 1534 1535 disable: 1536 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1537 if (nvme_state_terminal(&dev->ctrl)) 1538 nvme_dev_disable(dev, true); 1539 return BLK_EH_DONE; 1540 } 1541 1542 nvme_dev_disable(dev, false); 1543 if (nvme_try_sched_reset(&dev->ctrl)) 1544 nvme_unquiesce_io_queues(&dev->ctrl); 1545 return BLK_EH_DONE; 1546 } 1547 1548 static void nvme_free_queue(struct nvme_queue *nvmeq) 1549 { 1550 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1551 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1552 if (!nvmeq->sq_cmds) 1553 return; 1554 1555 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1556 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1557 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1558 } else { 1559 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1560 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1561 } 1562 } 1563 1564 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1565 { 1566 int i; 1567 1568 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1569 dev->ctrl.queue_count--; 1570 nvme_free_queue(&dev->queues[i]); 1571 } 1572 } 1573 1574 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1575 { 1576 struct nvme_queue *nvmeq = &dev->queues[qid]; 1577 1578 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1579 return; 1580 1581 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1582 mb(); 1583 1584 nvmeq->dev->online_queues--; 1585 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1586 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1587 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1588 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1589 } 1590 1591 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1592 { 1593 int i; 1594 1595 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1596 nvme_suspend_queue(dev, i); 1597 } 1598 1599 /* 1600 * Called only on a device that has been disabled and after all other threads 1601 * that can check this device's completion queues have synced, except 1602 * nvme_poll(). This is the last chance for the driver to see a natural 1603 * completion before nvme_cancel_request() terminates all incomplete requests. 1604 */ 1605 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1606 { 1607 int i; 1608 1609 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1610 spin_lock(&dev->queues[i].cq_poll_lock); 1611 nvme_poll_cq(&dev->queues[i], NULL); 1612 spin_unlock(&dev->queues[i].cq_poll_lock); 1613 } 1614 } 1615 1616 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1617 int entry_size) 1618 { 1619 int q_depth = dev->q_depth; 1620 unsigned q_size_aligned = roundup(q_depth * entry_size, 1621 NVME_CTRL_PAGE_SIZE); 1622 1623 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1624 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1625 1626 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1627 q_depth = div_u64(mem_per_q, entry_size); 1628 1629 /* 1630 * Ensure the reduced q_depth is above some threshold where it 1631 * would be better to map queues in system memory with the 1632 * original depth 1633 */ 1634 if (q_depth < 64) 1635 return -ENOMEM; 1636 } 1637 1638 return q_depth; 1639 } 1640 1641 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1642 int qid) 1643 { 1644 struct pci_dev *pdev = to_pci_dev(dev->dev); 1645 1646 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1647 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1648 if (nvmeq->sq_cmds) { 1649 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1650 nvmeq->sq_cmds); 1651 if (nvmeq->sq_dma_addr) { 1652 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1653 return 0; 1654 } 1655 1656 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1657 } 1658 } 1659 1660 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1661 &nvmeq->sq_dma_addr, GFP_KERNEL); 1662 if (!nvmeq->sq_cmds) 1663 return -ENOMEM; 1664 return 0; 1665 } 1666 1667 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1668 { 1669 struct nvme_queue *nvmeq = &dev->queues[qid]; 1670 1671 if (dev->ctrl.queue_count > qid) 1672 return 0; 1673 1674 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1675 nvmeq->q_depth = depth; 1676 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1677 &nvmeq->cq_dma_addr, GFP_KERNEL); 1678 if (!nvmeq->cqes) 1679 goto free_nvmeq; 1680 1681 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1682 goto free_cqdma; 1683 1684 nvmeq->dev = dev; 1685 spin_lock_init(&nvmeq->sq_lock); 1686 spin_lock_init(&nvmeq->cq_poll_lock); 1687 nvmeq->cq_head = 0; 1688 nvmeq->cq_phase = 1; 1689 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1690 nvmeq->qid = qid; 1691 dev->ctrl.queue_count++; 1692 1693 return 0; 1694 1695 free_cqdma: 1696 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1697 nvmeq->cq_dma_addr); 1698 free_nvmeq: 1699 return -ENOMEM; 1700 } 1701 1702 static int queue_request_irq(struct nvme_queue *nvmeq) 1703 { 1704 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1705 int nr = nvmeq->dev->ctrl.instance; 1706 1707 if (use_threaded_interrupts) { 1708 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1709 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1710 } else { 1711 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1712 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1713 } 1714 } 1715 1716 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1717 { 1718 struct nvme_dev *dev = nvmeq->dev; 1719 1720 nvmeq->sq_tail = 0; 1721 nvmeq->last_sq_tail = 0; 1722 nvmeq->cq_head = 0; 1723 nvmeq->cq_phase = 1; 1724 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1725 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1726 nvme_dbbuf_init(dev, nvmeq, qid); 1727 dev->online_queues++; 1728 wmb(); /* ensure the first interrupt sees the initialization */ 1729 } 1730 1731 /* 1732 * Try getting shutdown_lock while setting up IO queues. 1733 */ 1734 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1735 { 1736 /* 1737 * Give up if the lock is being held by nvme_dev_disable. 1738 */ 1739 if (!mutex_trylock(&dev->shutdown_lock)) 1740 return -ENODEV; 1741 1742 /* 1743 * Controller is in wrong state, fail early. 1744 */ 1745 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1746 mutex_unlock(&dev->shutdown_lock); 1747 return -ENODEV; 1748 } 1749 1750 return 0; 1751 } 1752 1753 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1754 { 1755 struct nvme_dev *dev = nvmeq->dev; 1756 int result; 1757 u16 vector = 0; 1758 1759 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1760 1761 /* 1762 * A queue's vector matches the queue identifier unless the controller 1763 * has only one vector available. 1764 */ 1765 if (!polled) 1766 vector = dev->num_vecs == 1 ? 0 : qid; 1767 else 1768 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1769 1770 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1771 if (result) 1772 return result; 1773 1774 result = adapter_alloc_sq(dev, qid, nvmeq); 1775 if (result < 0) 1776 return result; 1777 if (result) 1778 goto release_cq; 1779 1780 nvmeq->cq_vector = vector; 1781 1782 result = nvme_setup_io_queues_trylock(dev); 1783 if (result) 1784 return result; 1785 nvme_init_queue(nvmeq, qid); 1786 if (!polled) { 1787 result = queue_request_irq(nvmeq); 1788 if (result < 0) 1789 goto release_sq; 1790 } 1791 1792 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1793 mutex_unlock(&dev->shutdown_lock); 1794 return result; 1795 1796 release_sq: 1797 dev->online_queues--; 1798 mutex_unlock(&dev->shutdown_lock); 1799 adapter_delete_sq(dev, qid); 1800 release_cq: 1801 adapter_delete_cq(dev, qid); 1802 return result; 1803 } 1804 1805 static const struct blk_mq_ops nvme_mq_admin_ops = { 1806 .queue_rq = nvme_queue_rq, 1807 .complete = nvme_pci_complete_rq, 1808 .init_hctx = nvme_admin_init_hctx, 1809 .init_request = nvme_pci_init_request, 1810 .timeout = nvme_timeout, 1811 }; 1812 1813 static const struct blk_mq_ops nvme_mq_ops = { 1814 .queue_rq = nvme_queue_rq, 1815 .queue_rqs = nvme_queue_rqs, 1816 .complete = nvme_pci_complete_rq, 1817 .commit_rqs = nvme_commit_rqs, 1818 .init_hctx = nvme_init_hctx, 1819 .init_request = nvme_pci_init_request, 1820 .map_queues = nvme_pci_map_queues, 1821 .timeout = nvme_timeout, 1822 .poll = nvme_poll, 1823 }; 1824 1825 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1826 { 1827 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1828 /* 1829 * If the controller was reset during removal, it's possible 1830 * user requests may be waiting on a stopped queue. Start the 1831 * queue to flush these to completion. 1832 */ 1833 nvme_unquiesce_admin_queue(&dev->ctrl); 1834 nvme_remove_admin_tag_set(&dev->ctrl); 1835 } 1836 } 1837 1838 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1839 { 1840 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1841 } 1842 1843 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1844 { 1845 struct pci_dev *pdev = to_pci_dev(dev->dev); 1846 1847 if (size <= dev->bar_mapped_size) 1848 return 0; 1849 if (size > pci_resource_len(pdev, 0)) 1850 return -ENOMEM; 1851 if (dev->bar) 1852 iounmap(dev->bar); 1853 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1854 if (!dev->bar) { 1855 dev->bar_mapped_size = 0; 1856 return -ENOMEM; 1857 } 1858 dev->bar_mapped_size = size; 1859 dev->dbs = dev->bar + NVME_REG_DBS; 1860 1861 return 0; 1862 } 1863 1864 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1865 { 1866 int result; 1867 u32 aqa; 1868 struct nvme_queue *nvmeq; 1869 1870 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1871 if (result < 0) 1872 return result; 1873 1874 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1875 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1876 1877 if (dev->subsystem && 1878 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1879 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1880 1881 /* 1882 * If the device has been passed off to us in an enabled state, just 1883 * clear the enabled bit. The spec says we should set the 'shutdown 1884 * notification bits', but doing so may cause the device to complete 1885 * commands to the admin queue ... and we don't know what memory that 1886 * might be pointing at! 1887 */ 1888 result = nvme_disable_ctrl(&dev->ctrl, false); 1889 if (result < 0) 1890 return result; 1891 1892 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1893 if (result) 1894 return result; 1895 1896 dev->ctrl.numa_node = dev_to_node(dev->dev); 1897 1898 nvmeq = &dev->queues[0]; 1899 aqa = nvmeq->q_depth - 1; 1900 aqa |= aqa << 16; 1901 1902 writel(aqa, dev->bar + NVME_REG_AQA); 1903 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1904 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1905 1906 result = nvme_enable_ctrl(&dev->ctrl); 1907 if (result) 1908 return result; 1909 1910 nvmeq->cq_vector = 0; 1911 nvme_init_queue(nvmeq, 0); 1912 result = queue_request_irq(nvmeq); 1913 if (result) { 1914 dev->online_queues--; 1915 return result; 1916 } 1917 1918 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1919 return result; 1920 } 1921 1922 static int nvme_create_io_queues(struct nvme_dev *dev) 1923 { 1924 unsigned i, max, rw_queues; 1925 int ret = 0; 1926 1927 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1928 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1929 ret = -ENOMEM; 1930 break; 1931 } 1932 } 1933 1934 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1935 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1936 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1937 dev->io_queues[HCTX_TYPE_READ]; 1938 } else { 1939 rw_queues = max; 1940 } 1941 1942 for (i = dev->online_queues; i <= max; i++) { 1943 bool polled = i > rw_queues; 1944 1945 ret = nvme_create_queue(&dev->queues[i], i, polled); 1946 if (ret) 1947 break; 1948 } 1949 1950 /* 1951 * Ignore failing Create SQ/CQ commands, we can continue with less 1952 * than the desired amount of queues, and even a controller without 1953 * I/O queues can still be used to issue admin commands. This might 1954 * be useful to upgrade a buggy firmware for example. 1955 */ 1956 return ret >= 0 ? 0 : ret; 1957 } 1958 1959 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1960 { 1961 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1962 1963 return 1ULL << (12 + 4 * szu); 1964 } 1965 1966 static u32 nvme_cmb_size(struct nvme_dev *dev) 1967 { 1968 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1969 } 1970 1971 static void nvme_map_cmb(struct nvme_dev *dev) 1972 { 1973 u64 size, offset; 1974 resource_size_t bar_size; 1975 struct pci_dev *pdev = to_pci_dev(dev->dev); 1976 int bar; 1977 1978 if (dev->cmb_size) 1979 return; 1980 1981 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1982 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1983 1984 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1985 if (!dev->cmbsz) 1986 return; 1987 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1988 1989 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1990 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1991 bar = NVME_CMB_BIR(dev->cmbloc); 1992 bar_size = pci_resource_len(pdev, bar); 1993 1994 if (offset > bar_size) 1995 return; 1996 1997 /* 1998 * Controllers may support a CMB size larger than their BAR, for 1999 * example, due to being behind a bridge. Reduce the CMB to the 2000 * reported size of the BAR 2001 */ 2002 size = min(size, bar_size - offset); 2003 2004 if (!IS_ALIGNED(size, memremap_compat_align()) || 2005 !IS_ALIGNED(pci_resource_start(pdev, bar), 2006 memremap_compat_align())) 2007 return; 2008 2009 /* 2010 * Tell the controller about the host side address mapping the CMB, 2011 * and enable CMB decoding for the NVMe 1.4+ scheme: 2012 */ 2013 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 2014 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 2015 (pci_bus_address(pdev, bar) + offset), 2016 dev->bar + NVME_REG_CMBMSC); 2017 } 2018 2019 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2020 dev_warn(dev->ctrl.device, 2021 "failed to register the CMB\n"); 2022 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); 2023 return; 2024 } 2025 2026 dev->cmb_size = size; 2027 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2028 2029 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2030 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2031 pci_p2pmem_publish(pdev, true); 2032 2033 nvme_update_attrs(dev); 2034 } 2035 2036 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2037 { 2038 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2039 u64 dma_addr = dev->host_mem_descs_dma; 2040 struct nvme_command c = { }; 2041 int ret; 2042 2043 c.features.opcode = nvme_admin_set_features; 2044 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2045 c.features.dword11 = cpu_to_le32(bits); 2046 c.features.dword12 = cpu_to_le32(host_mem_size); 2047 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2048 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2049 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2050 2051 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2052 if (ret) { 2053 dev_warn(dev->ctrl.device, 2054 "failed to set host mem (err %d, flags %#x).\n", 2055 ret, bits); 2056 } else 2057 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2058 2059 return ret; 2060 } 2061 2062 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2063 { 2064 int i; 2065 2066 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2067 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2068 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2069 2070 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2071 le64_to_cpu(desc->addr), 2072 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2073 } 2074 2075 kfree(dev->host_mem_desc_bufs); 2076 dev->host_mem_desc_bufs = NULL; 2077 } 2078 2079 static void nvme_free_host_mem(struct nvme_dev *dev) 2080 { 2081 if (dev->hmb_sgt) 2082 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2083 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2084 else 2085 nvme_free_host_mem_multi(dev); 2086 2087 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2088 dev->host_mem_descs, dev->host_mem_descs_dma); 2089 dev->host_mem_descs = NULL; 2090 dev->host_mem_descs_size = 0; 2091 dev->nr_host_mem_descs = 0; 2092 } 2093 2094 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2095 { 2096 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2097 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2098 if (!dev->hmb_sgt) 2099 return -ENOMEM; 2100 2101 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2102 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2103 GFP_KERNEL); 2104 if (!dev->host_mem_descs) { 2105 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, 2106 DMA_BIDIRECTIONAL); 2107 dev->hmb_sgt = NULL; 2108 return -ENOMEM; 2109 } 2110 dev->host_mem_size = size; 2111 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2112 dev->nr_host_mem_descs = 1; 2113 2114 dev->host_mem_descs[0].addr = 2115 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2116 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2117 return 0; 2118 } 2119 2120 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2121 u32 chunk_size) 2122 { 2123 struct nvme_host_mem_buf_desc *descs; 2124 u32 max_entries, len, descs_size; 2125 dma_addr_t descs_dma; 2126 int i = 0; 2127 void **bufs; 2128 u64 size, tmp; 2129 2130 tmp = (preferred + chunk_size - 1); 2131 do_div(tmp, chunk_size); 2132 max_entries = tmp; 2133 2134 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2135 max_entries = dev->ctrl.hmmaxd; 2136 2137 descs_size = max_entries * sizeof(*descs); 2138 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2139 GFP_KERNEL); 2140 if (!descs) 2141 goto out; 2142 2143 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2144 if (!bufs) 2145 goto out_free_descs; 2146 2147 for (size = 0; size < preferred && i < max_entries; size += len) { 2148 dma_addr_t dma_addr; 2149 2150 len = min_t(u64, chunk_size, preferred - size); 2151 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2152 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2153 if (!bufs[i]) 2154 break; 2155 2156 descs[i].addr = cpu_to_le64(dma_addr); 2157 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2158 i++; 2159 } 2160 2161 if (!size) 2162 goto out_free_bufs; 2163 2164 dev->nr_host_mem_descs = i; 2165 dev->host_mem_size = size; 2166 dev->host_mem_descs = descs; 2167 dev->host_mem_descs_dma = descs_dma; 2168 dev->host_mem_descs_size = descs_size; 2169 dev->host_mem_desc_bufs = bufs; 2170 return 0; 2171 2172 out_free_bufs: 2173 kfree(bufs); 2174 out_free_descs: 2175 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2176 out: 2177 dev->host_mem_descs = NULL; 2178 return -ENOMEM; 2179 } 2180 2181 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2182 { 2183 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); 2184 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2185 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2186 u64 chunk_size; 2187 2188 /* 2189 * If there is an IOMMU that can merge pages, try a virtually 2190 * non-contiguous allocation for a single segment first. 2191 */ 2192 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { 2193 if (!nvme_alloc_host_mem_single(dev, preferred)) 2194 return 0; 2195 } 2196 2197 /* start big and work our way down */ 2198 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2199 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2200 if (!min || dev->host_mem_size >= min) 2201 return 0; 2202 nvme_free_host_mem(dev); 2203 } 2204 } 2205 2206 return -ENOMEM; 2207 } 2208 2209 static int nvme_setup_host_mem(struct nvme_dev *dev) 2210 { 2211 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2212 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2213 u64 min = (u64)dev->ctrl.hmmin * 4096; 2214 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2215 int ret; 2216 2217 if (!dev->ctrl.hmpre) 2218 return 0; 2219 2220 preferred = min(preferred, max); 2221 if (min > max) { 2222 dev_warn(dev->ctrl.device, 2223 "min host memory (%lld MiB) above limit (%d MiB).\n", 2224 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2225 nvme_free_host_mem(dev); 2226 return 0; 2227 } 2228 2229 /* 2230 * If we already have a buffer allocated check if we can reuse it. 2231 */ 2232 if (dev->host_mem_descs) { 2233 if (dev->host_mem_size >= min) 2234 enable_bits |= NVME_HOST_MEM_RETURN; 2235 else 2236 nvme_free_host_mem(dev); 2237 } 2238 2239 if (!dev->host_mem_descs) { 2240 if (nvme_alloc_host_mem(dev, min, preferred)) { 2241 dev_warn(dev->ctrl.device, 2242 "failed to allocate host memory buffer.\n"); 2243 return 0; /* controller must work without HMB */ 2244 } 2245 2246 dev_info(dev->ctrl.device, 2247 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2248 dev->host_mem_size >> ilog2(SZ_1M), 2249 dev->nr_host_mem_descs, 2250 str_plural(dev->nr_host_mem_descs)); 2251 } 2252 2253 ret = nvme_set_host_mem(dev, enable_bits); 2254 if (ret) 2255 nvme_free_host_mem(dev); 2256 return ret; 2257 } 2258 2259 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2260 char *buf) 2261 { 2262 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2263 2264 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2265 ndev->cmbloc, ndev->cmbsz); 2266 } 2267 static DEVICE_ATTR_RO(cmb); 2268 2269 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2270 char *buf) 2271 { 2272 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2273 2274 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2275 } 2276 static DEVICE_ATTR_RO(cmbloc); 2277 2278 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2279 char *buf) 2280 { 2281 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2282 2283 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2284 } 2285 static DEVICE_ATTR_RO(cmbsz); 2286 2287 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2288 char *buf) 2289 { 2290 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2291 2292 return sysfs_emit(buf, "%d\n", ndev->hmb); 2293 } 2294 2295 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2296 const char *buf, size_t count) 2297 { 2298 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2299 bool new; 2300 int ret; 2301 2302 if (kstrtobool(buf, &new) < 0) 2303 return -EINVAL; 2304 2305 if (new == ndev->hmb) 2306 return count; 2307 2308 if (new) { 2309 ret = nvme_setup_host_mem(ndev); 2310 } else { 2311 ret = nvme_set_host_mem(ndev, 0); 2312 if (!ret) 2313 nvme_free_host_mem(ndev); 2314 } 2315 2316 if (ret < 0) 2317 return ret; 2318 2319 return count; 2320 } 2321 static DEVICE_ATTR_RW(hmb); 2322 2323 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2324 struct attribute *a, int n) 2325 { 2326 struct nvme_ctrl *ctrl = 2327 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2328 struct nvme_dev *dev = to_nvme_dev(ctrl); 2329 2330 if (a == &dev_attr_cmb.attr || 2331 a == &dev_attr_cmbloc.attr || 2332 a == &dev_attr_cmbsz.attr) { 2333 if (!dev->cmbsz) 2334 return 0; 2335 } 2336 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2337 return 0; 2338 2339 return a->mode; 2340 } 2341 2342 static struct attribute *nvme_pci_attrs[] = { 2343 &dev_attr_cmb.attr, 2344 &dev_attr_cmbloc.attr, 2345 &dev_attr_cmbsz.attr, 2346 &dev_attr_hmb.attr, 2347 NULL, 2348 }; 2349 2350 static const struct attribute_group nvme_pci_dev_attrs_group = { 2351 .attrs = nvme_pci_attrs, 2352 .is_visible = nvme_pci_attrs_are_visible, 2353 }; 2354 2355 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2356 &nvme_dev_attrs_group, 2357 &nvme_pci_dev_attrs_group, 2358 NULL, 2359 }; 2360 2361 static void nvme_update_attrs(struct nvme_dev *dev) 2362 { 2363 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2364 } 2365 2366 /* 2367 * nirqs is the number of interrupts available for write and read 2368 * queues. The core already reserved an interrupt for the admin queue. 2369 */ 2370 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2371 { 2372 struct nvme_dev *dev = affd->priv; 2373 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2374 2375 /* 2376 * If there is no interrupt available for queues, ensure that 2377 * the default queue is set to 1. The affinity set size is 2378 * also set to one, but the irq core ignores it for this case. 2379 * 2380 * If only one interrupt is available or 'write_queue' == 0, combine 2381 * write and read queues. 2382 * 2383 * If 'write_queues' > 0, ensure it leaves room for at least one read 2384 * queue. 2385 */ 2386 if (!nrirqs) { 2387 nrirqs = 1; 2388 nr_read_queues = 0; 2389 } else if (nrirqs == 1 || !nr_write_queues) { 2390 nr_read_queues = 0; 2391 } else if (nr_write_queues >= nrirqs) { 2392 nr_read_queues = 1; 2393 } else { 2394 nr_read_queues = nrirqs - nr_write_queues; 2395 } 2396 2397 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2398 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2399 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2400 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2401 affd->nr_sets = nr_read_queues ? 2 : 1; 2402 } 2403 2404 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2405 { 2406 struct pci_dev *pdev = to_pci_dev(dev->dev); 2407 struct irq_affinity affd = { 2408 .pre_vectors = 1, 2409 .calc_sets = nvme_calc_irq_sets, 2410 .priv = dev, 2411 }; 2412 unsigned int irq_queues, poll_queues; 2413 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2414 2415 /* 2416 * Poll queues don't need interrupts, but we need at least one I/O queue 2417 * left over for non-polled I/O. 2418 */ 2419 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2420 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2421 2422 /* 2423 * Initialize for the single interrupt case, will be updated in 2424 * nvme_calc_irq_sets(). 2425 */ 2426 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2427 dev->io_queues[HCTX_TYPE_READ] = 0; 2428 2429 /* 2430 * We need interrupts for the admin queue and each non-polled I/O queue, 2431 * but some Apple controllers require all queues to use the first 2432 * vector. 2433 */ 2434 irq_queues = 1; 2435 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2436 irq_queues += (nr_io_queues - poll_queues); 2437 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2438 flags &= ~PCI_IRQ_MSI; 2439 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2440 &affd); 2441 } 2442 2443 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2444 { 2445 /* 2446 * If tags are shared with admin queue (Apple bug), then 2447 * make sure we only use one IO queue. 2448 */ 2449 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2450 return 1; 2451 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2452 } 2453 2454 static int nvme_setup_io_queues(struct nvme_dev *dev) 2455 { 2456 struct nvme_queue *adminq = &dev->queues[0]; 2457 struct pci_dev *pdev = to_pci_dev(dev->dev); 2458 unsigned int nr_io_queues; 2459 unsigned long size; 2460 int result; 2461 2462 /* 2463 * Sample the module parameters once at reset time so that we have 2464 * stable values to work with. 2465 */ 2466 dev->nr_write_queues = write_queues; 2467 dev->nr_poll_queues = poll_queues; 2468 2469 nr_io_queues = dev->nr_allocated_queues - 1; 2470 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2471 if (result < 0) 2472 return result; 2473 2474 if (nr_io_queues == 0) 2475 return 0; 2476 2477 /* 2478 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2479 * from set to unset. If there is a window to it is truely freed, 2480 * pci_free_irq_vectors() jumping into this window will crash. 2481 * And take lock to avoid racing with pci_free_irq_vectors() in 2482 * nvme_dev_disable() path. 2483 */ 2484 result = nvme_setup_io_queues_trylock(dev); 2485 if (result) 2486 return result; 2487 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2488 pci_free_irq(pdev, 0, adminq); 2489 2490 if (dev->cmb_use_sqes) { 2491 result = nvme_cmb_qdepth(dev, nr_io_queues, 2492 sizeof(struct nvme_command)); 2493 if (result > 0) { 2494 dev->q_depth = result; 2495 dev->ctrl.sqsize = result - 1; 2496 } else { 2497 dev->cmb_use_sqes = false; 2498 } 2499 } 2500 2501 do { 2502 size = db_bar_size(dev, nr_io_queues); 2503 result = nvme_remap_bar(dev, size); 2504 if (!result) 2505 break; 2506 if (!--nr_io_queues) { 2507 result = -ENOMEM; 2508 goto out_unlock; 2509 } 2510 } while (1); 2511 adminq->q_db = dev->dbs; 2512 2513 retry: 2514 /* Deregister the admin queue's interrupt */ 2515 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2516 pci_free_irq(pdev, 0, adminq); 2517 2518 /* 2519 * If we enable msix early due to not intx, disable it again before 2520 * setting up the full range we need. 2521 */ 2522 pci_free_irq_vectors(pdev); 2523 2524 result = nvme_setup_irqs(dev, nr_io_queues); 2525 if (result <= 0) { 2526 result = -EIO; 2527 goto out_unlock; 2528 } 2529 2530 dev->num_vecs = result; 2531 result = max(result - 1, 1); 2532 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2533 2534 /* 2535 * Should investigate if there's a performance win from allocating 2536 * more queues than interrupt vectors; it might allow the submission 2537 * path to scale better, even if the receive path is limited by the 2538 * number of interrupts. 2539 */ 2540 result = queue_request_irq(adminq); 2541 if (result) 2542 goto out_unlock; 2543 set_bit(NVMEQ_ENABLED, &adminq->flags); 2544 mutex_unlock(&dev->shutdown_lock); 2545 2546 result = nvme_create_io_queues(dev); 2547 if (result || dev->online_queues < 2) 2548 return result; 2549 2550 if (dev->online_queues - 1 < dev->max_qid) { 2551 nr_io_queues = dev->online_queues - 1; 2552 nvme_delete_io_queues(dev); 2553 result = nvme_setup_io_queues_trylock(dev); 2554 if (result) 2555 return result; 2556 nvme_suspend_io_queues(dev); 2557 goto retry; 2558 } 2559 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2560 dev->io_queues[HCTX_TYPE_DEFAULT], 2561 dev->io_queues[HCTX_TYPE_READ], 2562 dev->io_queues[HCTX_TYPE_POLL]); 2563 return 0; 2564 out_unlock: 2565 mutex_unlock(&dev->shutdown_lock); 2566 return result; 2567 } 2568 2569 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2570 blk_status_t error) 2571 { 2572 struct nvme_queue *nvmeq = req->end_io_data; 2573 2574 blk_mq_free_request(req); 2575 complete(&nvmeq->delete_done); 2576 return RQ_END_IO_NONE; 2577 } 2578 2579 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2580 blk_status_t error) 2581 { 2582 struct nvme_queue *nvmeq = req->end_io_data; 2583 2584 if (error) 2585 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2586 2587 return nvme_del_queue_end(req, error); 2588 } 2589 2590 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2591 { 2592 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2593 struct request *req; 2594 struct nvme_command cmd = { }; 2595 2596 cmd.delete_queue.opcode = opcode; 2597 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2598 2599 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2600 if (IS_ERR(req)) 2601 return PTR_ERR(req); 2602 nvme_init_request(req, &cmd); 2603 2604 if (opcode == nvme_admin_delete_cq) 2605 req->end_io = nvme_del_cq_end; 2606 else 2607 req->end_io = nvme_del_queue_end; 2608 req->end_io_data = nvmeq; 2609 2610 init_completion(&nvmeq->delete_done); 2611 blk_execute_rq_nowait(req, false); 2612 return 0; 2613 } 2614 2615 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2616 { 2617 int nr_queues = dev->online_queues - 1, sent = 0; 2618 unsigned long timeout; 2619 2620 retry: 2621 timeout = NVME_ADMIN_TIMEOUT; 2622 while (nr_queues > 0) { 2623 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2624 break; 2625 nr_queues--; 2626 sent++; 2627 } 2628 while (sent) { 2629 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2630 2631 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2632 timeout); 2633 if (timeout == 0) 2634 return false; 2635 2636 sent--; 2637 if (nr_queues) 2638 goto retry; 2639 } 2640 return true; 2641 } 2642 2643 static void nvme_delete_io_queues(struct nvme_dev *dev) 2644 { 2645 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2646 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2647 } 2648 2649 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2650 { 2651 if (dev->io_queues[HCTX_TYPE_POLL]) 2652 return 3; 2653 if (dev->io_queues[HCTX_TYPE_READ]) 2654 return 2; 2655 return 1; 2656 } 2657 2658 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2659 { 2660 if (!dev->ctrl.tagset) { 2661 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2662 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2663 return true; 2664 } 2665 2666 /* Give up if we are racing with nvme_dev_disable() */ 2667 if (!mutex_trylock(&dev->shutdown_lock)) 2668 return false; 2669 2670 /* Check if nvme_dev_disable() has been executed already */ 2671 if (!dev->online_queues) { 2672 mutex_unlock(&dev->shutdown_lock); 2673 return false; 2674 } 2675 2676 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2677 /* free previously allocated queues that are no longer usable */ 2678 nvme_free_queues(dev, dev->online_queues); 2679 mutex_unlock(&dev->shutdown_lock); 2680 return true; 2681 } 2682 2683 static int nvme_pci_enable(struct nvme_dev *dev) 2684 { 2685 int result = -ENOMEM; 2686 struct pci_dev *pdev = to_pci_dev(dev->dev); 2687 unsigned int flags = PCI_IRQ_ALL_TYPES; 2688 2689 if (pci_enable_device_mem(pdev)) 2690 return result; 2691 2692 pci_set_master(pdev); 2693 2694 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2695 result = -ENODEV; 2696 goto disable; 2697 } 2698 2699 /* 2700 * Some devices and/or platforms don't advertise or work with INTx 2701 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2702 * adjust this later. 2703 */ 2704 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2705 flags &= ~PCI_IRQ_MSI; 2706 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2707 if (result < 0) 2708 goto disable; 2709 2710 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2711 2712 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2713 io_queue_depth); 2714 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2715 dev->dbs = dev->bar + 4096; 2716 2717 /* 2718 * Some Apple controllers require a non-standard SQE size. 2719 * Interestingly they also seem to ignore the CC:IOSQES register 2720 * so we don't bother updating it here. 2721 */ 2722 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2723 dev->io_sqes = 7; 2724 else 2725 dev->io_sqes = NVME_NVM_IOSQES; 2726 2727 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2728 dev->q_depth = 2; 2729 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2730 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2731 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2732 dev->q_depth = 64; 2733 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2734 "set queue depth=%u\n", dev->q_depth); 2735 } 2736 2737 /* 2738 * Controllers with the shared tags quirk need the IO queue to be 2739 * big enough so that we get 32 tags for the admin queue 2740 */ 2741 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2742 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2743 dev->q_depth = NVME_AQ_DEPTH + 2; 2744 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2745 dev->q_depth); 2746 } 2747 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2748 2749 nvme_map_cmb(dev); 2750 2751 pci_save_state(pdev); 2752 2753 result = nvme_pci_configure_admin_queue(dev); 2754 if (result) 2755 goto free_irq; 2756 return result; 2757 2758 free_irq: 2759 pci_free_irq_vectors(pdev); 2760 disable: 2761 pci_disable_device(pdev); 2762 return result; 2763 } 2764 2765 static void nvme_dev_unmap(struct nvme_dev *dev) 2766 { 2767 if (dev->bar) 2768 iounmap(dev->bar); 2769 pci_release_mem_regions(to_pci_dev(dev->dev)); 2770 } 2771 2772 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2773 { 2774 struct pci_dev *pdev = to_pci_dev(dev->dev); 2775 u32 csts; 2776 2777 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2778 return true; 2779 if (pdev->error_state != pci_channel_io_normal) 2780 return true; 2781 2782 csts = readl(dev->bar + NVME_REG_CSTS); 2783 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2784 } 2785 2786 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2787 { 2788 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2789 struct pci_dev *pdev = to_pci_dev(dev->dev); 2790 bool dead; 2791 2792 mutex_lock(&dev->shutdown_lock); 2793 dead = nvme_pci_ctrl_is_dead(dev); 2794 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2795 if (pci_is_enabled(pdev)) 2796 nvme_start_freeze(&dev->ctrl); 2797 /* 2798 * Give the controller a chance to complete all entered requests 2799 * if doing a safe shutdown. 2800 */ 2801 if (!dead && shutdown) 2802 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2803 } 2804 2805 nvme_quiesce_io_queues(&dev->ctrl); 2806 2807 if (!dead && dev->ctrl.queue_count > 0) { 2808 nvme_delete_io_queues(dev); 2809 nvme_disable_ctrl(&dev->ctrl, shutdown); 2810 nvme_poll_irqdisable(&dev->queues[0]); 2811 } 2812 nvme_suspend_io_queues(dev); 2813 nvme_suspend_queue(dev, 0); 2814 pci_free_irq_vectors(pdev); 2815 if (pci_is_enabled(pdev)) 2816 pci_disable_device(pdev); 2817 nvme_reap_pending_cqes(dev); 2818 2819 nvme_cancel_tagset(&dev->ctrl); 2820 nvme_cancel_admin_tagset(&dev->ctrl); 2821 2822 /* 2823 * The driver will not be starting up queues again if shutting down so 2824 * must flush all entered requests to their failed completion to avoid 2825 * deadlocking blk-mq hot-cpu notifier. 2826 */ 2827 if (shutdown) { 2828 nvme_unquiesce_io_queues(&dev->ctrl); 2829 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2830 nvme_unquiesce_admin_queue(&dev->ctrl); 2831 } 2832 mutex_unlock(&dev->shutdown_lock); 2833 } 2834 2835 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2836 { 2837 if (!nvme_wait_reset(&dev->ctrl)) 2838 return -EBUSY; 2839 nvme_dev_disable(dev, shutdown); 2840 return 0; 2841 } 2842 2843 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2844 { 2845 size_t small_align = 256; 2846 2847 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2848 NVME_CTRL_PAGE_SIZE, 2849 NVME_CTRL_PAGE_SIZE, 0); 2850 if (!dev->prp_page_pool) 2851 return -ENOMEM; 2852 2853 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) 2854 small_align = 512; 2855 2856 /* Optimisation for I/Os between 4k and 128k */ 2857 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2858 256, small_align, 0); 2859 if (!dev->prp_small_pool) { 2860 dma_pool_destroy(dev->prp_page_pool); 2861 return -ENOMEM; 2862 } 2863 return 0; 2864 } 2865 2866 static void nvme_release_prp_pools(struct nvme_dev *dev) 2867 { 2868 dma_pool_destroy(dev->prp_page_pool); 2869 dma_pool_destroy(dev->prp_small_pool); 2870 } 2871 2872 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2873 { 2874 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1); 2875 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2876 2877 dev->iod_mempool = mempool_create_node(1, 2878 mempool_kmalloc, mempool_kfree, 2879 (void *)alloc_size, GFP_KERNEL, 2880 dev_to_node(dev->dev)); 2881 if (!dev->iod_mempool) 2882 return -ENOMEM; 2883 2884 dev->iod_meta_mempool = mempool_create_node(1, 2885 mempool_kmalloc, mempool_kfree, 2886 (void *)meta_size, GFP_KERNEL, 2887 dev_to_node(dev->dev)); 2888 if (!dev->iod_meta_mempool) 2889 goto free; 2890 2891 return 0; 2892 free: 2893 mempool_destroy(dev->iod_mempool); 2894 return -ENOMEM; 2895 } 2896 2897 static void nvme_free_tagset(struct nvme_dev *dev) 2898 { 2899 if (dev->tagset.tags) 2900 nvme_remove_io_tag_set(&dev->ctrl); 2901 dev->ctrl.tagset = NULL; 2902 } 2903 2904 /* pairs with nvme_pci_alloc_dev */ 2905 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2906 { 2907 struct nvme_dev *dev = to_nvme_dev(ctrl); 2908 2909 nvme_free_tagset(dev); 2910 put_device(dev->dev); 2911 kfree(dev->queues); 2912 kfree(dev); 2913 } 2914 2915 static void nvme_reset_work(struct work_struct *work) 2916 { 2917 struct nvme_dev *dev = 2918 container_of(work, struct nvme_dev, ctrl.reset_work); 2919 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2920 int result; 2921 2922 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2923 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2924 dev->ctrl.state); 2925 result = -ENODEV; 2926 goto out; 2927 } 2928 2929 /* 2930 * If we're called to reset a live controller first shut it down before 2931 * moving on. 2932 */ 2933 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2934 nvme_dev_disable(dev, false); 2935 nvme_sync_queues(&dev->ctrl); 2936 2937 mutex_lock(&dev->shutdown_lock); 2938 result = nvme_pci_enable(dev); 2939 if (result) 2940 goto out_unlock; 2941 nvme_unquiesce_admin_queue(&dev->ctrl); 2942 mutex_unlock(&dev->shutdown_lock); 2943 2944 /* 2945 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2946 * initializing procedure here. 2947 */ 2948 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2949 dev_warn(dev->ctrl.device, 2950 "failed to mark controller CONNECTING\n"); 2951 result = -EBUSY; 2952 goto out; 2953 } 2954 2955 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2956 if (result) 2957 goto out; 2958 2959 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 2960 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 2961 else 2962 dev->ctrl.max_integrity_segments = 1; 2963 2964 nvme_dbbuf_dma_alloc(dev); 2965 2966 result = nvme_setup_host_mem(dev); 2967 if (result < 0) 2968 goto out; 2969 2970 result = nvme_setup_io_queues(dev); 2971 if (result) 2972 goto out; 2973 2974 /* 2975 * Freeze and update the number of I/O queues as thos might have 2976 * changed. If there are no I/O queues left after this reset, keep the 2977 * controller around but remove all namespaces. 2978 */ 2979 if (dev->online_queues > 1) { 2980 nvme_dbbuf_set(dev); 2981 nvme_unquiesce_io_queues(&dev->ctrl); 2982 nvme_wait_freeze(&dev->ctrl); 2983 if (!nvme_pci_update_nr_queues(dev)) 2984 goto out; 2985 nvme_unfreeze(&dev->ctrl); 2986 } else { 2987 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2988 nvme_mark_namespaces_dead(&dev->ctrl); 2989 nvme_unquiesce_io_queues(&dev->ctrl); 2990 nvme_remove_namespaces(&dev->ctrl); 2991 nvme_free_tagset(dev); 2992 } 2993 2994 /* 2995 * If only admin queue live, keep it to do further investigation or 2996 * recovery. 2997 */ 2998 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2999 dev_warn(dev->ctrl.device, 3000 "failed to mark controller live state\n"); 3001 result = -ENODEV; 3002 goto out; 3003 } 3004 3005 nvme_start_ctrl(&dev->ctrl); 3006 return; 3007 3008 out_unlock: 3009 mutex_unlock(&dev->shutdown_lock); 3010 out: 3011 /* 3012 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 3013 * may be holding this pci_dev's device lock. 3014 */ 3015 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3016 result); 3017 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3018 nvme_dev_disable(dev, true); 3019 nvme_sync_queues(&dev->ctrl); 3020 nvme_mark_namespaces_dead(&dev->ctrl); 3021 nvme_unquiesce_io_queues(&dev->ctrl); 3022 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3023 } 3024 3025 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3026 { 3027 *val = readl(to_nvme_dev(ctrl)->bar + off); 3028 return 0; 3029 } 3030 3031 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3032 { 3033 writel(val, to_nvme_dev(ctrl)->bar + off); 3034 return 0; 3035 } 3036 3037 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3038 { 3039 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3040 return 0; 3041 } 3042 3043 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3044 { 3045 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3046 3047 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3048 } 3049 3050 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3051 { 3052 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3053 struct nvme_subsystem *subsys = ctrl->subsys; 3054 3055 dev_err(ctrl->device, 3056 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3057 pdev->vendor, pdev->device, 3058 nvme_strlen(subsys->model, sizeof(subsys->model)), 3059 subsys->model, nvme_strlen(subsys->firmware_rev, 3060 sizeof(subsys->firmware_rev)), 3061 subsys->firmware_rev); 3062 } 3063 3064 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3065 { 3066 struct nvme_dev *dev = to_nvme_dev(ctrl); 3067 3068 return dma_pci_p2pdma_supported(dev->dev); 3069 } 3070 3071 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3072 .name = "pcie", 3073 .module = THIS_MODULE, 3074 .flags = NVME_F_METADATA_SUPPORTED, 3075 .dev_attr_groups = nvme_pci_dev_attr_groups, 3076 .reg_read32 = nvme_pci_reg_read32, 3077 .reg_write32 = nvme_pci_reg_write32, 3078 .reg_read64 = nvme_pci_reg_read64, 3079 .free_ctrl = nvme_pci_free_ctrl, 3080 .submit_async_event = nvme_pci_submit_async_event, 3081 .subsystem_reset = nvme_pci_subsystem_reset, 3082 .get_address = nvme_pci_get_address, 3083 .print_device_info = nvme_pci_print_device_info, 3084 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3085 }; 3086 3087 static int nvme_dev_map(struct nvme_dev *dev) 3088 { 3089 struct pci_dev *pdev = to_pci_dev(dev->dev); 3090 3091 if (pci_request_mem_regions(pdev, "nvme")) 3092 return -ENODEV; 3093 3094 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3095 goto release; 3096 3097 return 0; 3098 release: 3099 pci_release_mem_regions(pdev); 3100 return -ENODEV; 3101 } 3102 3103 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3104 { 3105 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3106 /* 3107 * Several Samsung devices seem to drop off the PCIe bus 3108 * randomly when APST is on and uses the deepest sleep state. 3109 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3110 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3111 * 950 PRO 256GB", but it seems to be restricted to two Dell 3112 * laptops. 3113 */ 3114 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3115 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3116 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3117 return NVME_QUIRK_NO_DEEPEST_PS; 3118 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3119 /* 3120 * Samsung SSD 960 EVO drops off the PCIe bus after system 3121 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3122 * within few minutes after bootup on a Coffee Lake board - 3123 * ASUS PRIME Z370-A 3124 */ 3125 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3126 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3127 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3128 return NVME_QUIRK_NO_APST; 3129 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3130 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3131 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3132 /* 3133 * Forcing to use host managed nvme power settings for 3134 * lowest idle power with quick resume latency on 3135 * Samsung and Toshiba SSDs based on suspend behavior 3136 * on Coffee Lake board for LENOVO C640 3137 */ 3138 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3139 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3140 return NVME_QUIRK_SIMPLE_SUSPEND; 3141 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3142 pdev->device == 0x500f)) { 3143 /* 3144 * Exclude some Kingston NV1 and A2000 devices from 3145 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3146 * lot fo energy with s2idle sleep on some TUXEDO platforms. 3147 */ 3148 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3149 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3150 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3151 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3152 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3153 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3154 /* 3155 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3156 * because of high power consumption (> 2 Watt) in s2idle 3157 * sleep. Only some boards with Intel CPU are affected. 3158 */ 3159 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || 3160 dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3161 dmi_match(DMI_BOARD_NAME, "GXxMRXx") || 3162 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3163 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3164 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3165 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3166 } 3167 3168 /* 3169 * NVMe SSD drops off the PCIe bus after system idle 3170 * for 10 hours on a Lenovo N60z board. 3171 */ 3172 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3173 return NVME_QUIRK_NO_APST; 3174 3175 return 0; 3176 } 3177 3178 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3179 const struct pci_device_id *id) 3180 { 3181 unsigned long quirks = id->driver_data; 3182 int node = dev_to_node(&pdev->dev); 3183 struct nvme_dev *dev; 3184 int ret = -ENOMEM; 3185 3186 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3187 if (!dev) 3188 return ERR_PTR(-ENOMEM); 3189 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3190 mutex_init(&dev->shutdown_lock); 3191 3192 dev->nr_write_queues = write_queues; 3193 dev->nr_poll_queues = poll_queues; 3194 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3195 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3196 sizeof(struct nvme_queue), GFP_KERNEL, node); 3197 if (!dev->queues) 3198 goto out_free_dev; 3199 3200 dev->dev = get_device(&pdev->dev); 3201 3202 quirks |= check_vendor_combination_bug(pdev); 3203 if (!noacpi && 3204 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3205 acpi_storage_d3(&pdev->dev)) { 3206 /* 3207 * Some systems use a bios work around to ask for D3 on 3208 * platforms that support kernel managed suspend. 3209 */ 3210 dev_info(&pdev->dev, 3211 "platform quirk: setting simple suspend\n"); 3212 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3213 } 3214 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3215 quirks); 3216 if (ret) 3217 goto out_put_device; 3218 3219 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3220 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3221 else 3222 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3223 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3224 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3225 3226 /* 3227 * Limit the max command size to prevent iod->sg allocations going 3228 * over a single page. 3229 */ 3230 dev->ctrl.max_hw_sectors = min_t(u32, 3231 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3232 dev->ctrl.max_segments = NVME_MAX_SEGS; 3233 dev->ctrl.max_integrity_segments = 1; 3234 return dev; 3235 3236 out_put_device: 3237 put_device(dev->dev); 3238 kfree(dev->queues); 3239 out_free_dev: 3240 kfree(dev); 3241 return ERR_PTR(ret); 3242 } 3243 3244 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3245 { 3246 struct nvme_dev *dev; 3247 int result = -ENOMEM; 3248 3249 dev = nvme_pci_alloc_dev(pdev, id); 3250 if (IS_ERR(dev)) 3251 return PTR_ERR(dev); 3252 3253 result = nvme_add_ctrl(&dev->ctrl); 3254 if (result) 3255 goto out_put_ctrl; 3256 3257 result = nvme_dev_map(dev); 3258 if (result) 3259 goto out_uninit_ctrl; 3260 3261 result = nvme_setup_prp_pools(dev); 3262 if (result) 3263 goto out_dev_unmap; 3264 3265 result = nvme_pci_alloc_iod_mempool(dev); 3266 if (result) 3267 goto out_release_prp_pools; 3268 3269 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3270 3271 result = nvme_pci_enable(dev); 3272 if (result) 3273 goto out_release_iod_mempool; 3274 3275 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3276 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3277 if (result) 3278 goto out_disable; 3279 3280 /* 3281 * Mark the controller as connecting before sending admin commands to 3282 * allow the timeout handler to do the right thing. 3283 */ 3284 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3285 dev_warn(dev->ctrl.device, 3286 "failed to mark controller CONNECTING\n"); 3287 result = -EBUSY; 3288 goto out_disable; 3289 } 3290 3291 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3292 if (result) 3293 goto out_disable; 3294 3295 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3296 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3297 else 3298 dev->ctrl.max_integrity_segments = 1; 3299 3300 nvme_dbbuf_dma_alloc(dev); 3301 3302 result = nvme_setup_host_mem(dev); 3303 if (result < 0) 3304 goto out_disable; 3305 3306 result = nvme_setup_io_queues(dev); 3307 if (result) 3308 goto out_disable; 3309 3310 if (dev->online_queues > 1) { 3311 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3312 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3313 nvme_dbbuf_set(dev); 3314 } 3315 3316 if (!dev->ctrl.tagset) 3317 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3318 3319 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3320 dev_warn(dev->ctrl.device, 3321 "failed to mark controller live state\n"); 3322 result = -ENODEV; 3323 goto out_disable; 3324 } 3325 3326 pci_set_drvdata(pdev, dev); 3327 3328 nvme_start_ctrl(&dev->ctrl); 3329 nvme_put_ctrl(&dev->ctrl); 3330 flush_work(&dev->ctrl.scan_work); 3331 return 0; 3332 3333 out_disable: 3334 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3335 nvme_dev_disable(dev, true); 3336 nvme_free_host_mem(dev); 3337 nvme_dev_remove_admin(dev); 3338 nvme_dbbuf_dma_free(dev); 3339 nvme_free_queues(dev, 0); 3340 out_release_iod_mempool: 3341 mempool_destroy(dev->iod_mempool); 3342 mempool_destroy(dev->iod_meta_mempool); 3343 out_release_prp_pools: 3344 nvme_release_prp_pools(dev); 3345 out_dev_unmap: 3346 nvme_dev_unmap(dev); 3347 out_uninit_ctrl: 3348 nvme_uninit_ctrl(&dev->ctrl); 3349 out_put_ctrl: 3350 nvme_put_ctrl(&dev->ctrl); 3351 return result; 3352 } 3353 3354 static void nvme_reset_prepare(struct pci_dev *pdev) 3355 { 3356 struct nvme_dev *dev = pci_get_drvdata(pdev); 3357 3358 /* 3359 * We don't need to check the return value from waiting for the reset 3360 * state as pci_dev device lock is held, making it impossible to race 3361 * with ->remove(). 3362 */ 3363 nvme_disable_prepare_reset(dev, false); 3364 nvme_sync_queues(&dev->ctrl); 3365 } 3366 3367 static void nvme_reset_done(struct pci_dev *pdev) 3368 { 3369 struct nvme_dev *dev = pci_get_drvdata(pdev); 3370 3371 if (!nvme_try_sched_reset(&dev->ctrl)) 3372 flush_work(&dev->ctrl.reset_work); 3373 } 3374 3375 static void nvme_shutdown(struct pci_dev *pdev) 3376 { 3377 struct nvme_dev *dev = pci_get_drvdata(pdev); 3378 3379 nvme_disable_prepare_reset(dev, true); 3380 } 3381 3382 /* 3383 * The driver's remove may be called on a device in a partially initialized 3384 * state. This function must not have any dependencies on the device state in 3385 * order to proceed. 3386 */ 3387 static void nvme_remove(struct pci_dev *pdev) 3388 { 3389 struct nvme_dev *dev = pci_get_drvdata(pdev); 3390 3391 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3392 pci_set_drvdata(pdev, NULL); 3393 3394 if (!pci_device_is_present(pdev)) { 3395 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3396 nvme_dev_disable(dev, true); 3397 } 3398 3399 flush_work(&dev->ctrl.reset_work); 3400 nvme_stop_ctrl(&dev->ctrl); 3401 nvme_remove_namespaces(&dev->ctrl); 3402 nvme_dev_disable(dev, true); 3403 nvme_free_host_mem(dev); 3404 nvme_dev_remove_admin(dev); 3405 nvme_dbbuf_dma_free(dev); 3406 nvme_free_queues(dev, 0); 3407 mempool_destroy(dev->iod_mempool); 3408 mempool_destroy(dev->iod_meta_mempool); 3409 nvme_release_prp_pools(dev); 3410 nvme_dev_unmap(dev); 3411 nvme_uninit_ctrl(&dev->ctrl); 3412 } 3413 3414 #ifdef CONFIG_PM_SLEEP 3415 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3416 { 3417 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3418 } 3419 3420 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3421 { 3422 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3423 } 3424 3425 static int nvme_resume(struct device *dev) 3426 { 3427 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3428 struct nvme_ctrl *ctrl = &ndev->ctrl; 3429 3430 if (ndev->last_ps == U32_MAX || 3431 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3432 goto reset; 3433 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3434 goto reset; 3435 3436 return 0; 3437 reset: 3438 return nvme_try_sched_reset(ctrl); 3439 } 3440 3441 static int nvme_suspend(struct device *dev) 3442 { 3443 struct pci_dev *pdev = to_pci_dev(dev); 3444 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3445 struct nvme_ctrl *ctrl = &ndev->ctrl; 3446 int ret = -EBUSY; 3447 3448 ndev->last_ps = U32_MAX; 3449 3450 /* 3451 * The platform does not remove power for a kernel managed suspend so 3452 * use host managed nvme power settings for lowest idle power if 3453 * possible. This should have quicker resume latency than a full device 3454 * shutdown. But if the firmware is involved after the suspend or the 3455 * device does not support any non-default power states, shut down the 3456 * device fully. 3457 * 3458 * If ASPM is not enabled for the device, shut down the device and allow 3459 * the PCI bus layer to put it into D3 in order to take the PCIe link 3460 * down, so as to allow the platform to achieve its minimum low-power 3461 * state (which may not be possible if the link is up). 3462 */ 3463 if (pm_suspend_via_firmware() || !ctrl->npss || 3464 !pcie_aspm_enabled(pdev) || 3465 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3466 return nvme_disable_prepare_reset(ndev, true); 3467 3468 nvme_start_freeze(ctrl); 3469 nvme_wait_freeze(ctrl); 3470 nvme_sync_queues(ctrl); 3471 3472 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3473 goto unfreeze; 3474 3475 /* 3476 * Host memory access may not be successful in a system suspend state, 3477 * but the specification allows the controller to access memory in a 3478 * non-operational power state. 3479 */ 3480 if (ndev->hmb) { 3481 ret = nvme_set_host_mem(ndev, 0); 3482 if (ret < 0) 3483 goto unfreeze; 3484 } 3485 3486 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3487 if (ret < 0) 3488 goto unfreeze; 3489 3490 /* 3491 * A saved state prevents pci pm from generically controlling the 3492 * device's power. If we're using protocol specific settings, we don't 3493 * want pci interfering. 3494 */ 3495 pci_save_state(pdev); 3496 3497 ret = nvme_set_power_state(ctrl, ctrl->npss); 3498 if (ret < 0) 3499 goto unfreeze; 3500 3501 if (ret) { 3502 /* discard the saved state */ 3503 pci_load_saved_state(pdev, NULL); 3504 3505 /* 3506 * Clearing npss forces a controller reset on resume. The 3507 * correct value will be rediscovered then. 3508 */ 3509 ret = nvme_disable_prepare_reset(ndev, true); 3510 ctrl->npss = 0; 3511 } 3512 unfreeze: 3513 nvme_unfreeze(ctrl); 3514 return ret; 3515 } 3516 3517 static int nvme_simple_suspend(struct device *dev) 3518 { 3519 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3520 3521 return nvme_disable_prepare_reset(ndev, true); 3522 } 3523 3524 static int nvme_simple_resume(struct device *dev) 3525 { 3526 struct pci_dev *pdev = to_pci_dev(dev); 3527 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3528 3529 return nvme_try_sched_reset(&ndev->ctrl); 3530 } 3531 3532 static const struct dev_pm_ops nvme_dev_pm_ops = { 3533 .suspend = nvme_suspend, 3534 .resume = nvme_resume, 3535 .freeze = nvme_simple_suspend, 3536 .thaw = nvme_simple_resume, 3537 .poweroff = nvme_simple_suspend, 3538 .restore = nvme_simple_resume, 3539 }; 3540 #endif /* CONFIG_PM_SLEEP */ 3541 3542 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3543 pci_channel_state_t state) 3544 { 3545 struct nvme_dev *dev = pci_get_drvdata(pdev); 3546 3547 /* 3548 * A frozen channel requires a reset. When detected, this method will 3549 * shutdown the controller to quiesce. The controller will be restarted 3550 * after the slot reset through driver's slot_reset callback. 3551 */ 3552 switch (state) { 3553 case pci_channel_io_normal: 3554 return PCI_ERS_RESULT_CAN_RECOVER; 3555 case pci_channel_io_frozen: 3556 dev_warn(dev->ctrl.device, 3557 "frozen state error detected, reset controller\n"); 3558 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3559 nvme_dev_disable(dev, true); 3560 return PCI_ERS_RESULT_DISCONNECT; 3561 } 3562 nvme_dev_disable(dev, false); 3563 return PCI_ERS_RESULT_NEED_RESET; 3564 case pci_channel_io_perm_failure: 3565 dev_warn(dev->ctrl.device, 3566 "failure state error detected, request disconnect\n"); 3567 return PCI_ERS_RESULT_DISCONNECT; 3568 } 3569 return PCI_ERS_RESULT_NEED_RESET; 3570 } 3571 3572 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3573 { 3574 struct nvme_dev *dev = pci_get_drvdata(pdev); 3575 3576 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3577 pci_restore_state(pdev); 3578 if (nvme_try_sched_reset(&dev->ctrl)) 3579 nvme_unquiesce_io_queues(&dev->ctrl); 3580 return PCI_ERS_RESULT_RECOVERED; 3581 } 3582 3583 static void nvme_error_resume(struct pci_dev *pdev) 3584 { 3585 struct nvme_dev *dev = pci_get_drvdata(pdev); 3586 3587 flush_work(&dev->ctrl.reset_work); 3588 } 3589 3590 static const struct pci_error_handlers nvme_err_handler = { 3591 .error_detected = nvme_error_detected, 3592 .slot_reset = nvme_slot_reset, 3593 .resume = nvme_error_resume, 3594 .reset_prepare = nvme_reset_prepare, 3595 .reset_done = nvme_reset_done, 3596 }; 3597 3598 static const struct pci_device_id nvme_id_table[] = { 3599 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3600 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3601 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3602 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3603 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3604 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3605 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3606 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3607 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3608 NVME_QUIRK_BOGUS_NID, }, 3609 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3610 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 3611 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3612 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3613 NVME_QUIRK_MEDIUM_PRIO_SQ | 3614 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3615 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3616 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3617 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3618 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3619 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3620 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3621 NVME_QUIRK_BOGUS_NID, }, 3622 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3623 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3624 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3625 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, 3626 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */ 3627 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3628 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3629 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3630 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3631 NVME_QUIRK_BOGUS_NID, }, 3632 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3633 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3634 NVME_QUIRK_BOGUS_NID, }, 3635 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3636 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3637 NVME_QUIRK_NO_NS_DESC_LIST, }, 3638 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3639 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3640 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3641 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3642 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3643 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3644 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3645 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3646 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3647 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3648 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3649 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3650 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3651 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3652 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */ 3653 .driver_data = NVME_QUIRK_BROKEN_MSI | 3654 NVME_QUIRK_NO_DEEPEST_PS }, 3655 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3656 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3657 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3658 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3659 NVME_QUIRK_BOGUS_NID, }, 3660 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3661 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3662 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3663 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3664 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3665 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3666 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3667 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3668 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3669 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3670 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3671 NVME_QUIRK_BOGUS_NID, }, 3672 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3673 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3674 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3675 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3676 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3677 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3678 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3679 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3680 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3681 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3682 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3683 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3684 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3685 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3686 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3687 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3688 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3689 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3690 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3691 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3692 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3693 NVME_QUIRK_BOGUS_NID, }, 3694 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3695 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3696 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3697 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3698 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3699 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3700 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3701 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3702 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3703 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3704 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3705 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3706 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3707 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3708 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3709 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3710 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3711 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3712 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3713 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3714 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3715 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3716 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3717 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3718 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3719 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3720 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3721 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3722 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3723 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3724 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3725 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3726 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3727 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3728 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3729 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3730 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3731 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3732 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ 3733 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3734 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3735 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3736 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3737 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3738 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3739 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3740 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3741 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3742 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3743 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3744 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3745 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3746 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3747 .driver_data = NVME_QUIRK_BOGUS_NID | 3748 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3749 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3750 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3751 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3752 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3753 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3754 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3755 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3756 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3757 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3758 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3759 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3760 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3761 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3762 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3763 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3764 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3765 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3766 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3767 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3768 /* 3769 * Fix for the Apple controller found in the MacBook8,1 and 3770 * some MacBook7,1 to avoid controller resets and data loss. 3771 */ 3772 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3773 NVME_QUIRK_QDEPTH_ONE }, 3774 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3775 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3776 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3777 NVME_QUIRK_128_BYTES_SQES | 3778 NVME_QUIRK_SHARED_TAGS | 3779 NVME_QUIRK_SKIP_CID_GEN | 3780 NVME_QUIRK_IDENTIFY_CNS }, 3781 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3782 { 0, } 3783 }; 3784 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3785 3786 static struct pci_driver nvme_driver = { 3787 .name = "nvme", 3788 .id_table = nvme_id_table, 3789 .probe = nvme_probe, 3790 .remove = nvme_remove, 3791 .shutdown = nvme_shutdown, 3792 .driver = { 3793 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3794 #ifdef CONFIG_PM_SLEEP 3795 .pm = &nvme_dev_pm_ops, 3796 #endif 3797 }, 3798 .sriov_configure = pci_sriov_configure_simple, 3799 .err_handler = &nvme_err_handler, 3800 }; 3801 3802 static int __init nvme_init(void) 3803 { 3804 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3805 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3806 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3807 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3808 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3809 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3810 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3811 3812 return pci_register_driver(&nvme_driver); 3813 } 3814 3815 static void __exit nvme_exit(void) 3816 { 3817 pci_unregister_driver(&nvme_driver); 3818 flush_workqueue(nvme_wq); 3819 } 3820 3821 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3822 MODULE_LICENSE("GPL"); 3823 MODULE_VERSION("1.0"); 3824 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3825 module_init(nvme_init); 3826 module_exit(nvme_exit); 3827