1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 /* Optimisation for I/Os between 4k and 128k */
39 #define NVME_SMALL_POOL_SIZE	256
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	8192
46 #define NVME_MAX_NR_DESCRIPTORS	5
47 
48 /*
49  * For data SGLs we support a single descriptors worth of SGL entries, but for
50  * now we also limit it to avoid an allocation larger than PAGE_SIZE for the
51  * scatterlist.
52  */
53 #define NVME_MAX_SEGS \
54 	min(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc), \
55 	    (PAGE_SIZE / sizeof(struct scatterlist)))
56 
57 /*
58  * For metadata SGLs, only the small descriptor is supported, and the first
59  * entry is the segment descriptor, which for the data pointer sits in the SQE.
60  */
61 #define NVME_MAX_META_SEGS \
62 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
63 
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0444);
66 
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0444);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70 
71 static unsigned int max_host_mem_size_mb = 128;
72 module_param(max_host_mem_size_mb, uint, 0444);
73 MODULE_PARM_DESC(max_host_mem_size_mb,
74 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
75 
76 static unsigned int sgl_threshold = SZ_32K;
77 module_param(sgl_threshold, uint, 0644);
78 MODULE_PARM_DESC(sgl_threshold,
79 		"Use SGLs when average request segment size is larger or equal to "
80 		"this size. Use 0 to disable SGLs.");
81 
82 #define NVME_PCI_MIN_QUEUE_SIZE 2
83 #define NVME_PCI_MAX_QUEUE_SIZE 4095
84 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
85 static const struct kernel_param_ops io_queue_depth_ops = {
86 	.set = io_queue_depth_set,
87 	.get = param_get_uint,
88 };
89 
90 static unsigned int io_queue_depth = 1024;
91 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
92 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
93 
94 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
95 {
96 	unsigned int n;
97 	int ret;
98 
99 	ret = kstrtouint(val, 10, &n);
100 	if (ret != 0 || n > num_possible_cpus())
101 		return -EINVAL;
102 	return param_set_uint(val, kp);
103 }
104 
105 static const struct kernel_param_ops io_queue_count_ops = {
106 	.set = io_queue_count_set,
107 	.get = param_get_uint,
108 };
109 
110 static unsigned int write_queues;
111 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
112 MODULE_PARM_DESC(write_queues,
113 	"Number of queues to use for writes. If not set, reads and writes "
114 	"will share a queue set.");
115 
116 static unsigned int poll_queues;
117 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
118 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
119 
120 static bool noacpi;
121 module_param(noacpi, bool, 0444);
122 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
123 
124 struct nvme_dev;
125 struct nvme_queue;
126 
127 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
128 static void nvme_delete_io_queues(struct nvme_dev *dev);
129 static void nvme_update_attrs(struct nvme_dev *dev);
130 
131 struct nvme_descriptor_pools {
132 	struct dma_pool *large;
133 	struct dma_pool *small;
134 };
135 
136 /*
137  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
138  */
139 struct nvme_dev {
140 	struct nvme_queue *queues;
141 	struct blk_mq_tag_set tagset;
142 	struct blk_mq_tag_set admin_tagset;
143 	u32 __iomem *dbs;
144 	struct device *dev;
145 	unsigned online_queues;
146 	unsigned max_qid;
147 	unsigned io_queues[HCTX_MAX_TYPES];
148 	unsigned int num_vecs;
149 	u32 q_depth;
150 	int io_sqes;
151 	u32 db_stride;
152 	void __iomem *bar;
153 	unsigned long bar_mapped_size;
154 	struct mutex shutdown_lock;
155 	bool subsystem;
156 	u64 cmb_size;
157 	bool cmb_use_sqes;
158 	u32 cmbsz;
159 	u32 cmbloc;
160 	struct nvme_ctrl ctrl;
161 	u32 last_ps;
162 	bool hmb;
163 	struct sg_table *hmb_sgt;
164 
165 	mempool_t *iod_mempool;
166 	mempool_t *iod_meta_mempool;
167 
168 	/* shadow doorbell buffer support: */
169 	__le32 *dbbuf_dbs;
170 	dma_addr_t dbbuf_dbs_dma_addr;
171 	__le32 *dbbuf_eis;
172 	dma_addr_t dbbuf_eis_dma_addr;
173 
174 	/* host memory buffer support: */
175 	u64 host_mem_size;
176 	u32 nr_host_mem_descs;
177 	u32 host_mem_descs_size;
178 	dma_addr_t host_mem_descs_dma;
179 	struct nvme_host_mem_buf_desc *host_mem_descs;
180 	void **host_mem_desc_bufs;
181 	unsigned int nr_allocated_queues;
182 	unsigned int nr_write_queues;
183 	unsigned int nr_poll_queues;
184 	struct nvme_descriptor_pools descriptor_pools[];
185 };
186 
187 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
188 {
189 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
190 			NVME_PCI_MAX_QUEUE_SIZE);
191 }
192 
193 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
194 {
195 	return qid * 2 * stride;
196 }
197 
198 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
199 {
200 	return (qid * 2 + 1) * stride;
201 }
202 
203 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
204 {
205 	return container_of(ctrl, struct nvme_dev, ctrl);
206 }
207 
208 /*
209  * An NVM Express queue.  Each device has at least two (one for admin
210  * commands and one for I/O commands).
211  */
212 struct nvme_queue {
213 	struct nvme_dev *dev;
214 	struct nvme_descriptor_pools descriptor_pools;
215 	spinlock_t sq_lock;
216 	void *sq_cmds;
217 	 /* only used for poll queues: */
218 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
219 	struct nvme_completion *cqes;
220 	dma_addr_t sq_dma_addr;
221 	dma_addr_t cq_dma_addr;
222 	u32 __iomem *q_db;
223 	u32 q_depth;
224 	u16 cq_vector;
225 	u16 sq_tail;
226 	u16 last_sq_tail;
227 	u16 cq_head;
228 	u16 qid;
229 	u8 cq_phase;
230 	u8 sqes;
231 	unsigned long flags;
232 #define NVMEQ_ENABLED		0
233 #define NVMEQ_SQ_CMB		1
234 #define NVMEQ_DELETE_ERROR	2
235 #define NVMEQ_POLLED		3
236 	__le32 *dbbuf_sq_db;
237 	__le32 *dbbuf_cq_db;
238 	__le32 *dbbuf_sq_ei;
239 	__le32 *dbbuf_cq_ei;
240 	struct completion delete_done;
241 };
242 
243 /* bits for iod->flags */
244 enum nvme_iod_flags {
245 	/* this command has been aborted by the timeout handler */
246 	IOD_ABORTED		= 1U << 0,
247 
248 	/* uses the small descriptor pool */
249 	IOD_SMALL_DESCRIPTOR		= 1U << 1,
250 };
251 
252 /*
253  * The nvme_iod describes the data in an I/O.
254  */
255 struct nvme_iod {
256 	struct nvme_request req;
257 	struct nvme_command cmd;
258 	u8 flags;
259 	u8 nr_descriptors;
260 	unsigned int dma_len;	/* length of single DMA segment mapping */
261 	dma_addr_t first_dma;
262 	dma_addr_t meta_dma;
263 	struct sg_table sgt;
264 	struct sg_table meta_sgt;
265 	struct nvme_sgl_desc *meta_descriptor;
266 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
267 };
268 
269 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
270 {
271 	return dev->nr_allocated_queues * 8 * dev->db_stride;
272 }
273 
274 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
275 {
276 	unsigned int mem_size = nvme_dbbuf_size(dev);
277 
278 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
279 		return;
280 
281 	if (dev->dbbuf_dbs) {
282 		/*
283 		 * Clear the dbbuf memory so the driver doesn't observe stale
284 		 * values from the previous instantiation.
285 		 */
286 		memset(dev->dbbuf_dbs, 0, mem_size);
287 		memset(dev->dbbuf_eis, 0, mem_size);
288 		return;
289 	}
290 
291 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
292 					    &dev->dbbuf_dbs_dma_addr,
293 					    GFP_KERNEL);
294 	if (!dev->dbbuf_dbs)
295 		goto fail;
296 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
297 					    &dev->dbbuf_eis_dma_addr,
298 					    GFP_KERNEL);
299 	if (!dev->dbbuf_eis)
300 		goto fail_free_dbbuf_dbs;
301 	return;
302 
303 fail_free_dbbuf_dbs:
304 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
305 			  dev->dbbuf_dbs_dma_addr);
306 	dev->dbbuf_dbs = NULL;
307 fail:
308 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
309 }
310 
311 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
312 {
313 	unsigned int mem_size = nvme_dbbuf_size(dev);
314 
315 	if (dev->dbbuf_dbs) {
316 		dma_free_coherent(dev->dev, mem_size,
317 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
318 		dev->dbbuf_dbs = NULL;
319 	}
320 	if (dev->dbbuf_eis) {
321 		dma_free_coherent(dev->dev, mem_size,
322 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
323 		dev->dbbuf_eis = NULL;
324 	}
325 }
326 
327 static void nvme_dbbuf_init(struct nvme_dev *dev,
328 			    struct nvme_queue *nvmeq, int qid)
329 {
330 	if (!dev->dbbuf_dbs || !qid)
331 		return;
332 
333 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
334 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
335 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
336 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
337 }
338 
339 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
340 {
341 	if (!nvmeq->qid)
342 		return;
343 
344 	nvmeq->dbbuf_sq_db = NULL;
345 	nvmeq->dbbuf_cq_db = NULL;
346 	nvmeq->dbbuf_sq_ei = NULL;
347 	nvmeq->dbbuf_cq_ei = NULL;
348 }
349 
350 static void nvme_dbbuf_set(struct nvme_dev *dev)
351 {
352 	struct nvme_command c = { };
353 	unsigned int i;
354 
355 	if (!dev->dbbuf_dbs)
356 		return;
357 
358 	c.dbbuf.opcode = nvme_admin_dbbuf;
359 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
360 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
361 
362 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
363 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
364 		/* Free memory and continue on */
365 		nvme_dbbuf_dma_free(dev);
366 
367 		for (i = 1; i <= dev->online_queues; i++)
368 			nvme_dbbuf_free(&dev->queues[i]);
369 	}
370 }
371 
372 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
373 {
374 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
375 }
376 
377 /* Update dbbuf and return true if an MMIO is required */
378 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
379 					      volatile __le32 *dbbuf_ei)
380 {
381 	if (dbbuf_db) {
382 		u16 old_value, event_idx;
383 
384 		/*
385 		 * Ensure that the queue is written before updating
386 		 * the doorbell in memory
387 		 */
388 		wmb();
389 
390 		old_value = le32_to_cpu(*dbbuf_db);
391 		*dbbuf_db = cpu_to_le32(value);
392 
393 		/*
394 		 * Ensure that the doorbell is updated before reading the event
395 		 * index from memory.  The controller needs to provide similar
396 		 * ordering to ensure the event index is updated before reading
397 		 * the doorbell.
398 		 */
399 		mb();
400 
401 		event_idx = le32_to_cpu(*dbbuf_ei);
402 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
403 			return false;
404 	}
405 
406 	return true;
407 }
408 
409 /*
410  * Will slightly overestimate the number of pages needed.  This is OK
411  * as it only leads to a small amount of wasted memory for the lifetime of
412  * the I/O.
413  */
414 static __always_inline int nvme_pci_npages_prp(void)
415 {
416 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
417 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
418 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
419 }
420 
421 static struct nvme_descriptor_pools *
422 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
423 {
424 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
425 	size_t small_align = NVME_SMALL_POOL_SIZE;
426 
427 	if (pools->small)
428 		return pools; /* already initialized */
429 
430 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
431 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
432 	if (!pools->large)
433 		return ERR_PTR(-ENOMEM);
434 
435 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
436 		small_align = 512;
437 
438 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
439 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
440 	if (!pools->small) {
441 		dma_pool_destroy(pools->large);
442 		pools->large = NULL;
443 		return ERR_PTR(-ENOMEM);
444 	}
445 
446 	return pools;
447 }
448 
449 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
450 {
451 	unsigned i;
452 
453 	for (i = 0; i < nr_node_ids; i++) {
454 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
455 
456 		dma_pool_destroy(pools->large);
457 		dma_pool_destroy(pools->small);
458 	}
459 }
460 
461 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
462 		unsigned qid)
463 {
464 	struct nvme_dev *dev = to_nvme_dev(data);
465 	struct nvme_queue *nvmeq = &dev->queues[qid];
466 	struct nvme_descriptor_pools *pools;
467 	struct blk_mq_tags *tags;
468 
469 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
470 	WARN_ON(tags != hctx->tags);
471 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
472 	if (IS_ERR(pools))
473 		return PTR_ERR(pools);
474 
475 	nvmeq->descriptor_pools = *pools;
476 	hctx->driver_data = nvmeq;
477 	return 0;
478 }
479 
480 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
481 				unsigned int hctx_idx)
482 {
483 	WARN_ON(hctx_idx != 0);
484 	return nvme_init_hctx_common(hctx, data, 0);
485 }
486 
487 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
488 			     unsigned int hctx_idx)
489 {
490 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
491 }
492 
493 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
494 		struct request *req, unsigned int hctx_idx,
495 		unsigned int numa_node)
496 {
497 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
498 
499 	nvme_req(req)->ctrl = set->driver_data;
500 	nvme_req(req)->cmd = &iod->cmd;
501 	return 0;
502 }
503 
504 static int queue_irq_offset(struct nvme_dev *dev)
505 {
506 	/* if we have more than 1 vec, admin queue offsets us by 1 */
507 	if (dev->num_vecs > 1)
508 		return 1;
509 
510 	return 0;
511 }
512 
513 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
514 {
515 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
516 	int i, qoff, offset;
517 
518 	offset = queue_irq_offset(dev);
519 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
520 		struct blk_mq_queue_map *map = &set->map[i];
521 
522 		map->nr_queues = dev->io_queues[i];
523 		if (!map->nr_queues) {
524 			BUG_ON(i == HCTX_TYPE_DEFAULT);
525 			continue;
526 		}
527 
528 		/*
529 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
530 		 * affinity), so use the regular blk-mq cpu mapping
531 		 */
532 		map->queue_offset = qoff;
533 		if (i != HCTX_TYPE_POLL && offset)
534 			blk_mq_map_hw_queues(map, dev->dev, offset);
535 		else
536 			blk_mq_map_queues(map);
537 		qoff += map->nr_queues;
538 		offset += map->nr_queues;
539 	}
540 }
541 
542 /*
543  * Write sq tail if we are asked to, or if the next command would wrap.
544  */
545 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
546 {
547 	if (!write_sq) {
548 		u16 next_tail = nvmeq->sq_tail + 1;
549 
550 		if (next_tail == nvmeq->q_depth)
551 			next_tail = 0;
552 		if (next_tail != nvmeq->last_sq_tail)
553 			return;
554 	}
555 
556 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
557 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
558 		writel(nvmeq->sq_tail, nvmeq->q_db);
559 	nvmeq->last_sq_tail = nvmeq->sq_tail;
560 }
561 
562 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
563 				    struct nvme_command *cmd)
564 {
565 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
566 		absolute_pointer(cmd), sizeof(*cmd));
567 	if (++nvmeq->sq_tail == nvmeq->q_depth)
568 		nvmeq->sq_tail = 0;
569 }
570 
571 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
572 {
573 	struct nvme_queue *nvmeq = hctx->driver_data;
574 
575 	spin_lock(&nvmeq->sq_lock);
576 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
577 		nvme_write_sq_db(nvmeq, true);
578 	spin_unlock(&nvmeq->sq_lock);
579 }
580 
581 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
582 					      struct request *req)
583 {
584 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
585 		return false;
586 	return req->nr_integrity_segments > 1 ||
587 		nvme_req(req)->flags & NVME_REQ_USERCMD;
588 }
589 
590 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
591 				     int nseg)
592 {
593 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
594 	unsigned int avg_seg_size;
595 
596 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
597 
598 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
599 		return false;
600 	if (!nvmeq->qid)
601 		return false;
602 	if (nvme_pci_metadata_use_sgls(dev, req))
603 		return true;
604 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
605 		return nvme_req(req)->flags & NVME_REQ_USERCMD;
606 	return true;
607 }
608 
609 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
610 		struct nvme_iod *iod)
611 {
612 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
613 		return nvmeq->descriptor_pools.small;
614 	return nvmeq->descriptor_pools.large;
615 }
616 
617 static void nvme_free_descriptors(struct nvme_queue *nvmeq, struct request *req)
618 {
619 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
620 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
621 	dma_addr_t dma_addr = iod->first_dma;
622 	int i;
623 
624 	if (iod->nr_descriptors == 1) {
625 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
626 				dma_addr);
627 		return;
628 	}
629 
630 	for (i = 0; i < iod->nr_descriptors; i++) {
631 		__le64 *prp_list = iod->descriptors[i];
632 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
633 
634 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
635 				dma_addr);
636 		dma_addr = next_dma_addr;
637 	}
638 }
639 
640 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_queue *nvmeq,
641 			    struct request *req)
642 {
643 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
644 
645 	if (iod->dma_len) {
646 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
647 			       rq_dma_dir(req));
648 		return;
649 	}
650 
651 	WARN_ON_ONCE(!iod->sgt.nents);
652 
653 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
654 	nvme_free_descriptors(nvmeq, req);
655 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
656 }
657 
658 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
659 {
660 	int i;
661 	struct scatterlist *sg;
662 
663 	for_each_sg(sgl, sg, nents, i) {
664 		dma_addr_t phys = sg_phys(sg);
665 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
666 			"dma_address:%pad dma_length:%d\n",
667 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
668 			sg_dma_len(sg));
669 	}
670 }
671 
672 static blk_status_t nvme_pci_setup_prps(struct nvme_queue *nvmeq,
673 		struct request *req, struct nvme_rw_command *cmnd)
674 {
675 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
676 	int length = blk_rq_payload_bytes(req);
677 	struct scatterlist *sg = iod->sgt.sgl;
678 	int dma_len = sg_dma_len(sg);
679 	u64 dma_addr = sg_dma_address(sg);
680 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
681 	__le64 *prp_list;
682 	dma_addr_t prp_dma;
683 	int i;
684 
685 	length -= (NVME_CTRL_PAGE_SIZE - offset);
686 	if (length <= 0) {
687 		iod->first_dma = 0;
688 		goto done;
689 	}
690 
691 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
692 	if (dma_len) {
693 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
694 	} else {
695 		sg = sg_next(sg);
696 		dma_addr = sg_dma_address(sg);
697 		dma_len = sg_dma_len(sg);
698 	}
699 
700 	if (length <= NVME_CTRL_PAGE_SIZE) {
701 		iod->first_dma = dma_addr;
702 		goto done;
703 	}
704 
705 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
706 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
707 		iod->flags |= IOD_SMALL_DESCRIPTOR;
708 
709 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
710 			&prp_dma);
711 	if (!prp_list)
712 		return BLK_STS_RESOURCE;
713 	iod->descriptors[iod->nr_descriptors++] = prp_list;
714 	iod->first_dma = prp_dma;
715 	i = 0;
716 	for (;;) {
717 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
718 			__le64 *old_prp_list = prp_list;
719 
720 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
721 					GFP_ATOMIC, &prp_dma);
722 			if (!prp_list)
723 				goto free_prps;
724 			iod->descriptors[iod->nr_descriptors++] = prp_list;
725 			prp_list[0] = old_prp_list[i - 1];
726 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
727 			i = 1;
728 		}
729 		prp_list[i++] = cpu_to_le64(dma_addr);
730 		dma_len -= NVME_CTRL_PAGE_SIZE;
731 		dma_addr += NVME_CTRL_PAGE_SIZE;
732 		length -= NVME_CTRL_PAGE_SIZE;
733 		if (length <= 0)
734 			break;
735 		if (dma_len > 0)
736 			continue;
737 		if (unlikely(dma_len < 0))
738 			goto bad_sgl;
739 		sg = sg_next(sg);
740 		dma_addr = sg_dma_address(sg);
741 		dma_len = sg_dma_len(sg);
742 	}
743 done:
744 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
745 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
746 	return BLK_STS_OK;
747 free_prps:
748 	nvme_free_descriptors(nvmeq, req);
749 	return BLK_STS_RESOURCE;
750 bad_sgl:
751 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
752 			"Invalid SGL for payload:%d nents:%d\n",
753 			blk_rq_payload_bytes(req), iod->sgt.nents);
754 	return BLK_STS_IOERR;
755 }
756 
757 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
758 		struct scatterlist *sg)
759 {
760 	sge->addr = cpu_to_le64(sg_dma_address(sg));
761 	sge->length = cpu_to_le32(sg_dma_len(sg));
762 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
763 }
764 
765 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
766 		dma_addr_t dma_addr, int entries)
767 {
768 	sge->addr = cpu_to_le64(dma_addr);
769 	sge->length = cpu_to_le32(entries * sizeof(*sge));
770 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
771 }
772 
773 static blk_status_t nvme_pci_setup_sgls(struct nvme_queue *nvmeq,
774 		struct request *req, struct nvme_rw_command *cmd)
775 {
776 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
777 	struct nvme_sgl_desc *sg_list;
778 	struct scatterlist *sg = iod->sgt.sgl;
779 	unsigned int entries = iod->sgt.nents;
780 	dma_addr_t sgl_dma;
781 	int i = 0;
782 
783 	/* setting the transfer type as SGL */
784 	cmd->flags = NVME_CMD_SGL_METABUF;
785 
786 	if (entries == 1) {
787 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
788 		return BLK_STS_OK;
789 	}
790 
791 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
792 		iod->flags |= IOD_SMALL_DESCRIPTOR;
793 
794 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
795 			&sgl_dma);
796 	if (!sg_list)
797 		return BLK_STS_RESOURCE;
798 	iod->descriptors[iod->nr_descriptors++] = sg_list;
799 	iod->first_dma = sgl_dma;
800 
801 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
802 	do {
803 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
804 		sg = sg_next(sg);
805 	} while (--entries > 0);
806 
807 	return BLK_STS_OK;
808 }
809 
810 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
811 		struct request *req, struct nvme_rw_command *cmnd,
812 		struct bio_vec *bv)
813 {
814 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
815 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
816 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
817 
818 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
819 	if (dma_mapping_error(dev->dev, iod->first_dma))
820 		return BLK_STS_RESOURCE;
821 	iod->dma_len = bv->bv_len;
822 
823 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
824 	if (bv->bv_len > first_prp_len)
825 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
826 	else
827 		cmnd->dptr.prp2 = 0;
828 	return BLK_STS_OK;
829 }
830 
831 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
832 		struct request *req, struct nvme_rw_command *cmnd,
833 		struct bio_vec *bv)
834 {
835 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 
837 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
838 	if (dma_mapping_error(dev->dev, iod->first_dma))
839 		return BLK_STS_RESOURCE;
840 	iod->dma_len = bv->bv_len;
841 
842 	cmnd->flags = NVME_CMD_SGL_METABUF;
843 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
844 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
845 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
846 	return BLK_STS_OK;
847 }
848 
849 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
850 		struct nvme_command *cmnd)
851 {
852 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
853 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
854 	blk_status_t ret = BLK_STS_RESOURCE;
855 	int rc;
856 
857 	if (blk_rq_nr_phys_segments(req) == 1) {
858 		struct bio_vec bv = req_bvec(req);
859 
860 		if (!is_pci_p2pdma_page(bv.bv_page)) {
861 			if (!nvme_pci_metadata_use_sgls(dev, req) &&
862 			    (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
863 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
864 				return nvme_setup_prp_simple(dev, req,
865 							     &cmnd->rw, &bv);
866 
867 			if (nvmeq->qid && sgl_threshold &&
868 			    nvme_ctrl_sgl_supported(&dev->ctrl))
869 				return nvme_setup_sgl_simple(dev, req,
870 							     &cmnd->rw, &bv);
871 		}
872 	}
873 
874 	iod->dma_len = 0;
875 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
876 	if (!iod->sgt.sgl)
877 		return BLK_STS_RESOURCE;
878 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
879 	iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl);
880 	if (!iod->sgt.orig_nents)
881 		goto out_free_sg;
882 
883 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
884 			     DMA_ATTR_NO_WARN);
885 	if (rc) {
886 		if (rc == -EREMOTEIO)
887 			ret = BLK_STS_TARGET;
888 		goto out_free_sg;
889 	}
890 
891 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
892 		ret = nvme_pci_setup_sgls(nvmeq, req, &cmnd->rw);
893 	else
894 		ret = nvme_pci_setup_prps(nvmeq, req, &cmnd->rw);
895 	if (ret != BLK_STS_OK)
896 		goto out_unmap_sg;
897 	return BLK_STS_OK;
898 
899 out_unmap_sg:
900 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
901 out_free_sg:
902 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
903 	return ret;
904 }
905 
906 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
907 					     struct request *req)
908 {
909 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
910 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 	struct nvme_rw_command *cmnd = &iod->cmd.rw;
912 	struct nvme_sgl_desc *sg_list;
913 	struct scatterlist *sgl, *sg;
914 	unsigned int entries;
915 	dma_addr_t sgl_dma;
916 	int rc, i;
917 
918 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
919 	if (!iod->meta_sgt.sgl)
920 		return BLK_STS_RESOURCE;
921 
922 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
923 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
924 							   iod->meta_sgt.sgl);
925 	if (!iod->meta_sgt.orig_nents)
926 		goto out_free_sg;
927 
928 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
929 			     DMA_ATTR_NO_WARN);
930 	if (rc)
931 		goto out_free_sg;
932 
933 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
934 			&sgl_dma);
935 	if (!sg_list)
936 		goto out_unmap_sg;
937 
938 	entries = iod->meta_sgt.nents;
939 	iod->meta_descriptor = sg_list;
940 	iod->meta_dma = sgl_dma;
941 
942 	cmnd->flags = NVME_CMD_SGL_METASEG;
943 	cmnd->metadata = cpu_to_le64(sgl_dma);
944 
945 	sgl = iod->meta_sgt.sgl;
946 	if (entries == 1) {
947 		nvme_pci_sgl_set_data(sg_list, sgl);
948 		return BLK_STS_OK;
949 	}
950 
951 	sgl_dma += sizeof(*sg_list);
952 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
953 	for_each_sg(sgl, sg, entries, i)
954 		nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
955 
956 	return BLK_STS_OK;
957 
958 out_unmap_sg:
959 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
960 out_free_sg:
961 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
962 	return BLK_STS_RESOURCE;
963 }
964 
965 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
966 					     struct request *req)
967 {
968 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
969 	struct bio_vec bv = rq_integrity_vec(req);
970 	struct nvme_command *cmnd = &iod->cmd;
971 
972 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
973 	if (dma_mapping_error(dev->dev, iod->meta_dma))
974 		return BLK_STS_IOERR;
975 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
976 	return BLK_STS_OK;
977 }
978 
979 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
980 {
981 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
982 
983 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
984 	    nvme_pci_metadata_use_sgls(dev, req))
985 		return nvme_pci_setup_meta_sgls(dev, req);
986 	return nvme_pci_setup_meta_mptr(dev, req);
987 }
988 
989 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
990 {
991 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 	blk_status_t ret;
993 
994 	iod->flags = 0;
995 	iod->nr_descriptors = 0;
996 	iod->sgt.nents = 0;
997 	iod->meta_sgt.nents = 0;
998 
999 	ret = nvme_setup_cmd(req->q->queuedata, req);
1000 	if (ret)
1001 		return ret;
1002 
1003 	if (blk_rq_nr_phys_segments(req)) {
1004 		ret = nvme_map_data(dev, req, &iod->cmd);
1005 		if (ret)
1006 			goto out_free_cmd;
1007 	}
1008 
1009 	if (blk_integrity_rq(req)) {
1010 		ret = nvme_map_metadata(dev, req);
1011 		if (ret)
1012 			goto out_unmap_data;
1013 	}
1014 
1015 	nvme_start_request(req);
1016 	return BLK_STS_OK;
1017 out_unmap_data:
1018 	if (blk_rq_nr_phys_segments(req))
1019 		nvme_unmap_data(dev, req->mq_hctx->driver_data, req);
1020 out_free_cmd:
1021 	nvme_cleanup_cmd(req);
1022 	return ret;
1023 }
1024 
1025 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1026 			 const struct blk_mq_queue_data *bd)
1027 {
1028 	struct nvme_queue *nvmeq = hctx->driver_data;
1029 	struct nvme_dev *dev = nvmeq->dev;
1030 	struct request *req = bd->rq;
1031 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1032 	blk_status_t ret;
1033 
1034 	/*
1035 	 * We should not need to do this, but we're still using this to
1036 	 * ensure we can drain requests on a dying queue.
1037 	 */
1038 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1039 		return BLK_STS_IOERR;
1040 
1041 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1042 		return nvme_fail_nonready_command(&dev->ctrl, req);
1043 
1044 	ret = nvme_prep_rq(dev, req);
1045 	if (unlikely(ret))
1046 		return ret;
1047 	spin_lock(&nvmeq->sq_lock);
1048 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1049 	nvme_write_sq_db(nvmeq, bd->last);
1050 	spin_unlock(&nvmeq->sq_lock);
1051 	return BLK_STS_OK;
1052 }
1053 
1054 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1055 {
1056 	struct request *req;
1057 
1058 	if (rq_list_empty(rqlist))
1059 		return;
1060 
1061 	spin_lock(&nvmeq->sq_lock);
1062 	while ((req = rq_list_pop(rqlist))) {
1063 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1064 
1065 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1066 	}
1067 	nvme_write_sq_db(nvmeq, true);
1068 	spin_unlock(&nvmeq->sq_lock);
1069 }
1070 
1071 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1072 {
1073 	/*
1074 	 * We should not need to do this, but we're still using this to
1075 	 * ensure we can drain requests on a dying queue.
1076 	 */
1077 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1078 		return false;
1079 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1080 		return false;
1081 
1082 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1083 }
1084 
1085 static void nvme_queue_rqs(struct rq_list *rqlist)
1086 {
1087 	struct rq_list submit_list = { };
1088 	struct rq_list requeue_list = { };
1089 	struct nvme_queue *nvmeq = NULL;
1090 	struct request *req;
1091 
1092 	while ((req = rq_list_pop(rqlist))) {
1093 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1094 			nvme_submit_cmds(nvmeq, &submit_list);
1095 		nvmeq = req->mq_hctx->driver_data;
1096 
1097 		if (nvme_prep_rq_batch(nvmeq, req))
1098 			rq_list_add_tail(&submit_list, req);
1099 		else
1100 			rq_list_add_tail(&requeue_list, req);
1101 	}
1102 
1103 	if (nvmeq)
1104 		nvme_submit_cmds(nvmeq, &submit_list);
1105 	*rqlist = requeue_list;
1106 }
1107 
1108 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1109 						struct nvme_queue *nvmeq,
1110 						struct request *req)
1111 {
1112 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1113 
1114 	if (!iod->meta_sgt.nents) {
1115 		dma_unmap_page(dev->dev, iod->meta_dma,
1116 			       rq_integrity_vec(req).bv_len,
1117 			       rq_dma_dir(req));
1118 		return;
1119 	}
1120 
1121 	dma_pool_free(nvmeq->descriptor_pools.small, iod->meta_descriptor,
1122 			iod->meta_dma);
1123 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1124 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1125 }
1126 
1127 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1128 {
1129 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1130 	struct nvme_dev *dev = nvmeq->dev;
1131 
1132 	if (blk_integrity_rq(req))
1133 		nvme_unmap_metadata(dev, nvmeq, req);
1134 
1135 	if (blk_rq_nr_phys_segments(req))
1136 		nvme_unmap_data(dev, nvmeq, req);
1137 }
1138 
1139 static void nvme_pci_complete_rq(struct request *req)
1140 {
1141 	nvme_pci_unmap_rq(req);
1142 	nvme_complete_rq(req);
1143 }
1144 
1145 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1146 {
1147 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1148 }
1149 
1150 /* We read the CQE phase first to check if the rest of the entry is valid */
1151 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1152 {
1153 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1154 
1155 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1156 }
1157 
1158 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1159 {
1160 	u16 head = nvmeq->cq_head;
1161 
1162 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1163 					      nvmeq->dbbuf_cq_ei))
1164 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1165 }
1166 
1167 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1168 {
1169 	if (!nvmeq->qid)
1170 		return nvmeq->dev->admin_tagset.tags[0];
1171 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1172 }
1173 
1174 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1175 				   struct io_comp_batch *iob, u16 idx)
1176 {
1177 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1178 	__u16 command_id = READ_ONCE(cqe->command_id);
1179 	struct request *req;
1180 
1181 	/*
1182 	 * AEN requests are special as they don't time out and can
1183 	 * survive any kind of queue freeze and often don't respond to
1184 	 * aborts.  We don't even bother to allocate a struct request
1185 	 * for them but rather special case them here.
1186 	 */
1187 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1188 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1189 				cqe->status, &cqe->result);
1190 		return;
1191 	}
1192 
1193 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1194 	if (unlikely(!req)) {
1195 		dev_warn(nvmeq->dev->ctrl.device,
1196 			"invalid id %d completed on queue %d\n",
1197 			command_id, le16_to_cpu(cqe->sq_id));
1198 		return;
1199 	}
1200 
1201 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1202 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1203 	    !blk_mq_add_to_batch(req, iob,
1204 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1205 				 nvme_pci_complete_batch))
1206 		nvme_pci_complete_rq(req);
1207 }
1208 
1209 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1210 {
1211 	u32 tmp = nvmeq->cq_head + 1;
1212 
1213 	if (tmp == nvmeq->q_depth) {
1214 		nvmeq->cq_head = 0;
1215 		nvmeq->cq_phase ^= 1;
1216 	} else {
1217 		nvmeq->cq_head = tmp;
1218 	}
1219 }
1220 
1221 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1222 			        struct io_comp_batch *iob)
1223 {
1224 	bool found = false;
1225 
1226 	while (nvme_cqe_pending(nvmeq)) {
1227 		found = true;
1228 		/*
1229 		 * load-load control dependency between phase and the rest of
1230 		 * the cqe requires a full read memory barrier
1231 		 */
1232 		dma_rmb();
1233 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1234 		nvme_update_cq_head(nvmeq);
1235 	}
1236 
1237 	if (found)
1238 		nvme_ring_cq_doorbell(nvmeq);
1239 	return found;
1240 }
1241 
1242 static irqreturn_t nvme_irq(int irq, void *data)
1243 {
1244 	struct nvme_queue *nvmeq = data;
1245 	DEFINE_IO_COMP_BATCH(iob);
1246 
1247 	if (nvme_poll_cq(nvmeq, &iob)) {
1248 		if (!rq_list_empty(&iob.req_list))
1249 			nvme_pci_complete_batch(&iob);
1250 		return IRQ_HANDLED;
1251 	}
1252 	return IRQ_NONE;
1253 }
1254 
1255 static irqreturn_t nvme_irq_check(int irq, void *data)
1256 {
1257 	struct nvme_queue *nvmeq = data;
1258 
1259 	if (nvme_cqe_pending(nvmeq))
1260 		return IRQ_WAKE_THREAD;
1261 	return IRQ_NONE;
1262 }
1263 
1264 /*
1265  * Poll for completions for any interrupt driven queue
1266  * Can be called from any context.
1267  */
1268 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1269 {
1270 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1271 
1272 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1273 
1274 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1275 	spin_lock(&nvmeq->cq_poll_lock);
1276 	nvme_poll_cq(nvmeq, NULL);
1277 	spin_unlock(&nvmeq->cq_poll_lock);
1278 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1279 }
1280 
1281 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1282 {
1283 	struct nvme_queue *nvmeq = hctx->driver_data;
1284 	bool found;
1285 
1286 	if (!nvme_cqe_pending(nvmeq))
1287 		return 0;
1288 
1289 	spin_lock(&nvmeq->cq_poll_lock);
1290 	found = nvme_poll_cq(nvmeq, iob);
1291 	spin_unlock(&nvmeq->cq_poll_lock);
1292 
1293 	return found;
1294 }
1295 
1296 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1297 {
1298 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1299 	struct nvme_queue *nvmeq = &dev->queues[0];
1300 	struct nvme_command c = { };
1301 
1302 	c.common.opcode = nvme_admin_async_event;
1303 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1304 
1305 	spin_lock(&nvmeq->sq_lock);
1306 	nvme_sq_copy_cmd(nvmeq, &c);
1307 	nvme_write_sq_db(nvmeq, true);
1308 	spin_unlock(&nvmeq->sq_lock);
1309 }
1310 
1311 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1312 {
1313 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1314 	int ret = 0;
1315 
1316 	/*
1317 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1318 	 * altered by reset_work. Holding this lock before the RESETTING state
1319 	 * change, if successful, also ensures nvme_remove won't be able to
1320 	 * proceed to iounmap until we're done.
1321 	 */
1322 	mutex_lock(&dev->shutdown_lock);
1323 	if (!dev->bar_mapped_size) {
1324 		ret = -ENODEV;
1325 		goto unlock;
1326 	}
1327 
1328 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1329 		ret = -EBUSY;
1330 		goto unlock;
1331 	}
1332 
1333 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1334 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1335 
1336 	/*
1337 	 * Read controller status to flush the previous write and trigger a
1338 	 * pcie read error.
1339 	 */
1340 	readl(dev->bar + NVME_REG_CSTS);
1341 unlock:
1342 	mutex_unlock(&dev->shutdown_lock);
1343 	return ret;
1344 }
1345 
1346 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1347 {
1348 	struct nvme_command c = { };
1349 
1350 	c.delete_queue.opcode = opcode;
1351 	c.delete_queue.qid = cpu_to_le16(id);
1352 
1353 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1354 }
1355 
1356 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1357 		struct nvme_queue *nvmeq, s16 vector)
1358 {
1359 	struct nvme_command c = { };
1360 	int flags = NVME_QUEUE_PHYS_CONTIG;
1361 
1362 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363 		flags |= NVME_CQ_IRQ_ENABLED;
1364 
1365 	/*
1366 	 * Note: we (ab)use the fact that the prp fields survive if no data
1367 	 * is attached to the request.
1368 	 */
1369 	c.create_cq.opcode = nvme_admin_create_cq;
1370 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1371 	c.create_cq.cqid = cpu_to_le16(qid);
1372 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1373 	c.create_cq.cq_flags = cpu_to_le16(flags);
1374 	c.create_cq.irq_vector = cpu_to_le16(vector);
1375 
1376 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1377 }
1378 
1379 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1380 						struct nvme_queue *nvmeq)
1381 {
1382 	struct nvme_ctrl *ctrl = &dev->ctrl;
1383 	struct nvme_command c = { };
1384 	int flags = NVME_QUEUE_PHYS_CONTIG;
1385 
1386 	/*
1387 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1388 	 * set. Since URGENT priority is zeroes, it makes all queues
1389 	 * URGENT.
1390 	 */
1391 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1392 		flags |= NVME_SQ_PRIO_MEDIUM;
1393 
1394 	/*
1395 	 * Note: we (ab)use the fact that the prp fields survive if no data
1396 	 * is attached to the request.
1397 	 */
1398 	c.create_sq.opcode = nvme_admin_create_sq;
1399 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1400 	c.create_sq.sqid = cpu_to_le16(qid);
1401 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1402 	c.create_sq.sq_flags = cpu_to_le16(flags);
1403 	c.create_sq.cqid = cpu_to_le16(qid);
1404 
1405 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1406 }
1407 
1408 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1409 {
1410 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1411 }
1412 
1413 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1414 {
1415 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1416 }
1417 
1418 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1419 {
1420 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1421 
1422 	dev_warn(nvmeq->dev->ctrl.device,
1423 		 "Abort status: 0x%x", nvme_req(req)->status);
1424 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1425 	blk_mq_free_request(req);
1426 	return RQ_END_IO_NONE;
1427 }
1428 
1429 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1430 {
1431 	/* If true, indicates loss of adapter communication, possibly by a
1432 	 * NVMe Subsystem reset.
1433 	 */
1434 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1435 
1436 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1437 	switch (nvme_ctrl_state(&dev->ctrl)) {
1438 	case NVME_CTRL_RESETTING:
1439 	case NVME_CTRL_CONNECTING:
1440 		return false;
1441 	default:
1442 		break;
1443 	}
1444 
1445 	/* We shouldn't reset unless the controller is on fatal error state
1446 	 * _or_ if we lost the communication with it.
1447 	 */
1448 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1449 		return false;
1450 
1451 	return true;
1452 }
1453 
1454 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1455 {
1456 	/* Read a config register to help see what died. */
1457 	u16 pci_status;
1458 	int result;
1459 
1460 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1461 				      &pci_status);
1462 	if (result == PCIBIOS_SUCCESSFUL)
1463 		dev_warn(dev->ctrl.device,
1464 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1465 			 csts, pci_status);
1466 	else
1467 		dev_warn(dev->ctrl.device,
1468 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1469 			 csts, result);
1470 
1471 	if (csts != ~0)
1472 		return;
1473 
1474 	dev_warn(dev->ctrl.device,
1475 		 "Does your device have a faulty power saving mode enabled?\n");
1476 	dev_warn(dev->ctrl.device,
1477 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1478 }
1479 
1480 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1481 {
1482 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1483 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1484 	struct nvme_dev *dev = nvmeq->dev;
1485 	struct request *abort_req;
1486 	struct nvme_command cmd = { };
1487 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1488 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1489 	u8 opcode;
1490 
1491 	/*
1492 	 * Shutdown the device immediately if we see it is disconnected. This
1493 	 * unblocks PCIe error handling if the nvme driver is waiting in
1494 	 * error_resume for a device that has been removed. We can't unbind the
1495 	 * driver while the driver's error callback is waiting to complete, so
1496 	 * we're relying on a timeout to break that deadlock if a removal
1497 	 * occurs while reset work is running.
1498 	 */
1499 	if (pci_dev_is_disconnected(pdev))
1500 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1501 	if (nvme_state_terminal(&dev->ctrl))
1502 		goto disable;
1503 
1504 	/* If PCI error recovery process is happening, we cannot reset or
1505 	 * the recovery mechanism will surely fail.
1506 	 */
1507 	mb();
1508 	if (pci_channel_offline(pdev))
1509 		return BLK_EH_RESET_TIMER;
1510 
1511 	/*
1512 	 * Reset immediately if the controller is failed
1513 	 */
1514 	if (nvme_should_reset(dev, csts)) {
1515 		nvme_warn_reset(dev, csts);
1516 		goto disable;
1517 	}
1518 
1519 	/*
1520 	 * Did we miss an interrupt?
1521 	 */
1522 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1523 		nvme_poll(req->mq_hctx, NULL);
1524 	else
1525 		nvme_poll_irqdisable(nvmeq);
1526 
1527 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1528 		dev_warn(dev->ctrl.device,
1529 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1530 			 req->tag, nvme_cid(req), nvmeq->qid);
1531 		return BLK_EH_DONE;
1532 	}
1533 
1534 	/*
1535 	 * Shutdown immediately if controller times out while starting. The
1536 	 * reset work will see the pci device disabled when it gets the forced
1537 	 * cancellation error. All outstanding requests are completed on
1538 	 * shutdown, so we return BLK_EH_DONE.
1539 	 */
1540 	switch (nvme_ctrl_state(&dev->ctrl)) {
1541 	case NVME_CTRL_CONNECTING:
1542 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1543 		fallthrough;
1544 	case NVME_CTRL_DELETING:
1545 		dev_warn_ratelimited(dev->ctrl.device,
1546 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1547 			 req->tag, nvme_cid(req), nvmeq->qid);
1548 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1549 		nvme_dev_disable(dev, true);
1550 		return BLK_EH_DONE;
1551 	case NVME_CTRL_RESETTING:
1552 		return BLK_EH_RESET_TIMER;
1553 	default:
1554 		break;
1555 	}
1556 
1557 	/*
1558 	 * Shutdown the controller immediately and schedule a reset if the
1559 	 * command was already aborted once before and still hasn't been
1560 	 * returned to the driver, or if this is the admin queue.
1561 	 */
1562 	opcode = nvme_req(req)->cmd->common.opcode;
1563 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1564 		dev_warn(dev->ctrl.device,
1565 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1566 			 req->tag, nvme_cid(req), opcode,
1567 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1568 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1569 		goto disable;
1570 	}
1571 
1572 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1573 		atomic_inc(&dev->ctrl.abort_limit);
1574 		return BLK_EH_RESET_TIMER;
1575 	}
1576 	iod->flags |= IOD_ABORTED;
1577 
1578 	cmd.abort.opcode = nvme_admin_abort_cmd;
1579 	cmd.abort.cid = nvme_cid(req);
1580 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1581 
1582 	dev_warn(nvmeq->dev->ctrl.device,
1583 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1584 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1585 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1586 		 blk_rq_bytes(req));
1587 
1588 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1589 					 BLK_MQ_REQ_NOWAIT);
1590 	if (IS_ERR(abort_req)) {
1591 		atomic_inc(&dev->ctrl.abort_limit);
1592 		return BLK_EH_RESET_TIMER;
1593 	}
1594 	nvme_init_request(abort_req, &cmd);
1595 
1596 	abort_req->end_io = abort_endio;
1597 	abort_req->end_io_data = NULL;
1598 	blk_execute_rq_nowait(abort_req, false);
1599 
1600 	/*
1601 	 * The aborted req will be completed on receiving the abort req.
1602 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1603 	 * as the device then is in a faulty state.
1604 	 */
1605 	return BLK_EH_RESET_TIMER;
1606 
1607 disable:
1608 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1609 		if (nvme_state_terminal(&dev->ctrl))
1610 			nvme_dev_disable(dev, true);
1611 		return BLK_EH_DONE;
1612 	}
1613 
1614 	nvme_dev_disable(dev, false);
1615 	if (nvme_try_sched_reset(&dev->ctrl))
1616 		nvme_unquiesce_io_queues(&dev->ctrl);
1617 	return BLK_EH_DONE;
1618 }
1619 
1620 static void nvme_free_queue(struct nvme_queue *nvmeq)
1621 {
1622 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1623 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1624 	if (!nvmeq->sq_cmds)
1625 		return;
1626 
1627 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1628 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1629 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1630 	} else {
1631 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1632 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1633 	}
1634 }
1635 
1636 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1637 {
1638 	int i;
1639 
1640 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1641 		dev->ctrl.queue_count--;
1642 		nvme_free_queue(&dev->queues[i]);
1643 	}
1644 }
1645 
1646 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1647 {
1648 	struct nvme_queue *nvmeq = &dev->queues[qid];
1649 
1650 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1651 		return;
1652 
1653 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1654 	mb();
1655 
1656 	nvmeq->dev->online_queues--;
1657 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1658 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1659 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1660 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1661 }
1662 
1663 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1664 {
1665 	int i;
1666 
1667 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1668 		nvme_suspend_queue(dev, i);
1669 }
1670 
1671 /*
1672  * Called only on a device that has been disabled and after all other threads
1673  * that can check this device's completion queues have synced, except
1674  * nvme_poll(). This is the last chance for the driver to see a natural
1675  * completion before nvme_cancel_request() terminates all incomplete requests.
1676  */
1677 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1678 {
1679 	int i;
1680 
1681 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1682 		spin_lock(&dev->queues[i].cq_poll_lock);
1683 		nvme_poll_cq(&dev->queues[i], NULL);
1684 		spin_unlock(&dev->queues[i].cq_poll_lock);
1685 	}
1686 }
1687 
1688 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1689 				int entry_size)
1690 {
1691 	int q_depth = dev->q_depth;
1692 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1693 					  NVME_CTRL_PAGE_SIZE);
1694 
1695 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1696 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1697 
1698 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1699 		q_depth = div_u64(mem_per_q, entry_size);
1700 
1701 		/*
1702 		 * Ensure the reduced q_depth is above some threshold where it
1703 		 * would be better to map queues in system memory with the
1704 		 * original depth
1705 		 */
1706 		if (q_depth < 64)
1707 			return -ENOMEM;
1708 	}
1709 
1710 	return q_depth;
1711 }
1712 
1713 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1714 				int qid)
1715 {
1716 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1717 
1718 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1719 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1720 		if (nvmeq->sq_cmds) {
1721 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1722 							nvmeq->sq_cmds);
1723 			if (nvmeq->sq_dma_addr) {
1724 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1725 				return 0;
1726 			}
1727 
1728 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1729 		}
1730 	}
1731 
1732 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1733 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1734 	if (!nvmeq->sq_cmds)
1735 		return -ENOMEM;
1736 	return 0;
1737 }
1738 
1739 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1740 {
1741 	struct nvme_queue *nvmeq = &dev->queues[qid];
1742 
1743 	if (dev->ctrl.queue_count > qid)
1744 		return 0;
1745 
1746 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1747 	nvmeq->q_depth = depth;
1748 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1749 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1750 	if (!nvmeq->cqes)
1751 		goto free_nvmeq;
1752 
1753 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1754 		goto free_cqdma;
1755 
1756 	nvmeq->dev = dev;
1757 	spin_lock_init(&nvmeq->sq_lock);
1758 	spin_lock_init(&nvmeq->cq_poll_lock);
1759 	nvmeq->cq_head = 0;
1760 	nvmeq->cq_phase = 1;
1761 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1762 	nvmeq->qid = qid;
1763 	dev->ctrl.queue_count++;
1764 
1765 	return 0;
1766 
1767  free_cqdma:
1768 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1769 			  nvmeq->cq_dma_addr);
1770  free_nvmeq:
1771 	return -ENOMEM;
1772 }
1773 
1774 static int queue_request_irq(struct nvme_queue *nvmeq)
1775 {
1776 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1777 	int nr = nvmeq->dev->ctrl.instance;
1778 
1779 	if (use_threaded_interrupts) {
1780 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1781 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1782 	} else {
1783 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1784 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1785 	}
1786 }
1787 
1788 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1789 {
1790 	struct nvme_dev *dev = nvmeq->dev;
1791 
1792 	nvmeq->sq_tail = 0;
1793 	nvmeq->last_sq_tail = 0;
1794 	nvmeq->cq_head = 0;
1795 	nvmeq->cq_phase = 1;
1796 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1797 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1798 	nvme_dbbuf_init(dev, nvmeq, qid);
1799 	dev->online_queues++;
1800 	wmb(); /* ensure the first interrupt sees the initialization */
1801 }
1802 
1803 /*
1804  * Try getting shutdown_lock while setting up IO queues.
1805  */
1806 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1807 {
1808 	/*
1809 	 * Give up if the lock is being held by nvme_dev_disable.
1810 	 */
1811 	if (!mutex_trylock(&dev->shutdown_lock))
1812 		return -ENODEV;
1813 
1814 	/*
1815 	 * Controller is in wrong state, fail early.
1816 	 */
1817 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1818 		mutex_unlock(&dev->shutdown_lock);
1819 		return -ENODEV;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1826 {
1827 	struct nvme_dev *dev = nvmeq->dev;
1828 	int result;
1829 	u16 vector = 0;
1830 
1831 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1832 
1833 	/*
1834 	 * A queue's vector matches the queue identifier unless the controller
1835 	 * has only one vector available.
1836 	 */
1837 	if (!polled)
1838 		vector = dev->num_vecs == 1 ? 0 : qid;
1839 	else
1840 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1841 
1842 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1843 	if (result)
1844 		return result;
1845 
1846 	result = adapter_alloc_sq(dev, qid, nvmeq);
1847 	if (result < 0)
1848 		return result;
1849 	if (result)
1850 		goto release_cq;
1851 
1852 	nvmeq->cq_vector = vector;
1853 
1854 	result = nvme_setup_io_queues_trylock(dev);
1855 	if (result)
1856 		return result;
1857 	nvme_init_queue(nvmeq, qid);
1858 	if (!polled) {
1859 		result = queue_request_irq(nvmeq);
1860 		if (result < 0)
1861 			goto release_sq;
1862 	}
1863 
1864 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1865 	mutex_unlock(&dev->shutdown_lock);
1866 	return result;
1867 
1868 release_sq:
1869 	dev->online_queues--;
1870 	mutex_unlock(&dev->shutdown_lock);
1871 	adapter_delete_sq(dev, qid);
1872 release_cq:
1873 	adapter_delete_cq(dev, qid);
1874 	return result;
1875 }
1876 
1877 static const struct blk_mq_ops nvme_mq_admin_ops = {
1878 	.queue_rq	= nvme_queue_rq,
1879 	.complete	= nvme_pci_complete_rq,
1880 	.init_hctx	= nvme_admin_init_hctx,
1881 	.init_request	= nvme_pci_init_request,
1882 	.timeout	= nvme_timeout,
1883 };
1884 
1885 static const struct blk_mq_ops nvme_mq_ops = {
1886 	.queue_rq	= nvme_queue_rq,
1887 	.queue_rqs	= nvme_queue_rqs,
1888 	.complete	= nvme_pci_complete_rq,
1889 	.commit_rqs	= nvme_commit_rqs,
1890 	.init_hctx	= nvme_init_hctx,
1891 	.init_request	= nvme_pci_init_request,
1892 	.map_queues	= nvme_pci_map_queues,
1893 	.timeout	= nvme_timeout,
1894 	.poll		= nvme_poll,
1895 };
1896 
1897 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1898 {
1899 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1900 		/*
1901 		 * If the controller was reset during removal, it's possible
1902 		 * user requests may be waiting on a stopped queue. Start the
1903 		 * queue to flush these to completion.
1904 		 */
1905 		nvme_unquiesce_admin_queue(&dev->ctrl);
1906 		nvme_remove_admin_tag_set(&dev->ctrl);
1907 	}
1908 }
1909 
1910 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1911 {
1912 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1913 }
1914 
1915 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1916 {
1917 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1918 
1919 	if (size <= dev->bar_mapped_size)
1920 		return 0;
1921 	if (size > pci_resource_len(pdev, 0))
1922 		return -ENOMEM;
1923 	if (dev->bar)
1924 		iounmap(dev->bar);
1925 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1926 	if (!dev->bar) {
1927 		dev->bar_mapped_size = 0;
1928 		return -ENOMEM;
1929 	}
1930 	dev->bar_mapped_size = size;
1931 	dev->dbs = dev->bar + NVME_REG_DBS;
1932 
1933 	return 0;
1934 }
1935 
1936 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1937 {
1938 	int result;
1939 	u32 aqa;
1940 	struct nvme_queue *nvmeq;
1941 
1942 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1943 	if (result < 0)
1944 		return result;
1945 
1946 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1947 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1948 
1949 	if (dev->subsystem &&
1950 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1951 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1952 
1953 	/*
1954 	 * If the device has been passed off to us in an enabled state, just
1955 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1956 	 * notification bits', but doing so may cause the device to complete
1957 	 * commands to the admin queue ... and we don't know what memory that
1958 	 * might be pointing at!
1959 	 */
1960 	result = nvme_disable_ctrl(&dev->ctrl, false);
1961 	if (result < 0)
1962 		return result;
1963 
1964 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1965 	if (result)
1966 		return result;
1967 
1968 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1969 
1970 	nvmeq = &dev->queues[0];
1971 	aqa = nvmeq->q_depth - 1;
1972 	aqa |= aqa << 16;
1973 
1974 	writel(aqa, dev->bar + NVME_REG_AQA);
1975 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1976 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1977 
1978 	result = nvme_enable_ctrl(&dev->ctrl);
1979 	if (result)
1980 		return result;
1981 
1982 	nvmeq->cq_vector = 0;
1983 	nvme_init_queue(nvmeq, 0);
1984 	result = queue_request_irq(nvmeq);
1985 	if (result) {
1986 		dev->online_queues--;
1987 		return result;
1988 	}
1989 
1990 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1991 	return result;
1992 }
1993 
1994 static int nvme_create_io_queues(struct nvme_dev *dev)
1995 {
1996 	unsigned i, max, rw_queues;
1997 	int ret = 0;
1998 
1999 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2000 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2001 			ret = -ENOMEM;
2002 			break;
2003 		}
2004 	}
2005 
2006 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2007 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2008 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2009 				dev->io_queues[HCTX_TYPE_READ];
2010 	} else {
2011 		rw_queues = max;
2012 	}
2013 
2014 	for (i = dev->online_queues; i <= max; i++) {
2015 		bool polled = i > rw_queues;
2016 
2017 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2018 		if (ret)
2019 			break;
2020 	}
2021 
2022 	/*
2023 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2024 	 * than the desired amount of queues, and even a controller without
2025 	 * I/O queues can still be used to issue admin commands.  This might
2026 	 * be useful to upgrade a buggy firmware for example.
2027 	 */
2028 	return ret >= 0 ? 0 : ret;
2029 }
2030 
2031 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2032 {
2033 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2034 
2035 	return 1ULL << (12 + 4 * szu);
2036 }
2037 
2038 static u32 nvme_cmb_size(struct nvme_dev *dev)
2039 {
2040 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2041 }
2042 
2043 static void nvme_map_cmb(struct nvme_dev *dev)
2044 {
2045 	u64 size, offset;
2046 	resource_size_t bar_size;
2047 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2048 	int bar;
2049 
2050 	if (dev->cmb_size)
2051 		return;
2052 
2053 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2054 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2055 
2056 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2057 	if (!dev->cmbsz)
2058 		return;
2059 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2060 
2061 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2062 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2063 	bar = NVME_CMB_BIR(dev->cmbloc);
2064 	bar_size = pci_resource_len(pdev, bar);
2065 
2066 	if (offset > bar_size)
2067 		return;
2068 
2069 	/*
2070 	 * Controllers may support a CMB size larger than their BAR, for
2071 	 * example, due to being behind a bridge. Reduce the CMB to the
2072 	 * reported size of the BAR
2073 	 */
2074 	size = min(size, bar_size - offset);
2075 
2076 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2077 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2078 			memremap_compat_align()))
2079 		return;
2080 
2081 	/*
2082 	 * Tell the controller about the host side address mapping the CMB,
2083 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2084 	 */
2085 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2086 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2087 			     (pci_bus_address(pdev, bar) + offset),
2088 			     dev->bar + NVME_REG_CMBMSC);
2089 	}
2090 
2091 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2092 		dev_warn(dev->ctrl.device,
2093 			 "failed to register the CMB\n");
2094 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2095 		return;
2096 	}
2097 
2098 	dev->cmb_size = size;
2099 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2100 
2101 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2102 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2103 		pci_p2pmem_publish(pdev, true);
2104 
2105 	nvme_update_attrs(dev);
2106 }
2107 
2108 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2109 {
2110 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2111 	u64 dma_addr = dev->host_mem_descs_dma;
2112 	struct nvme_command c = { };
2113 	int ret;
2114 
2115 	c.features.opcode	= nvme_admin_set_features;
2116 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2117 	c.features.dword11	= cpu_to_le32(bits);
2118 	c.features.dword12	= cpu_to_le32(host_mem_size);
2119 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2120 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2121 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2122 
2123 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2124 	if (ret) {
2125 		dev_warn(dev->ctrl.device,
2126 			 "failed to set host mem (err %d, flags %#x).\n",
2127 			 ret, bits);
2128 	} else
2129 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2130 
2131 	return ret;
2132 }
2133 
2134 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2135 {
2136 	int i;
2137 
2138 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2139 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2140 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2141 
2142 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2143 			       le64_to_cpu(desc->addr),
2144 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2145 	}
2146 
2147 	kfree(dev->host_mem_desc_bufs);
2148 	dev->host_mem_desc_bufs = NULL;
2149 }
2150 
2151 static void nvme_free_host_mem(struct nvme_dev *dev)
2152 {
2153 	if (dev->hmb_sgt)
2154 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2155 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2156 	else
2157 		nvme_free_host_mem_multi(dev);
2158 
2159 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2160 			dev->host_mem_descs, dev->host_mem_descs_dma);
2161 	dev->host_mem_descs = NULL;
2162 	dev->host_mem_descs_size = 0;
2163 	dev->nr_host_mem_descs = 0;
2164 }
2165 
2166 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2167 {
2168 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2169 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2170 	if (!dev->hmb_sgt)
2171 		return -ENOMEM;
2172 
2173 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2174 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2175 			GFP_KERNEL);
2176 	if (!dev->host_mem_descs) {
2177 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2178 				DMA_BIDIRECTIONAL);
2179 		dev->hmb_sgt = NULL;
2180 		return -ENOMEM;
2181 	}
2182 	dev->host_mem_size = size;
2183 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2184 	dev->nr_host_mem_descs = 1;
2185 
2186 	dev->host_mem_descs[0].addr =
2187 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2188 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2189 	return 0;
2190 }
2191 
2192 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2193 		u32 chunk_size)
2194 {
2195 	struct nvme_host_mem_buf_desc *descs;
2196 	u32 max_entries, len, descs_size;
2197 	dma_addr_t descs_dma;
2198 	int i = 0;
2199 	void **bufs;
2200 	u64 size, tmp;
2201 
2202 	tmp = (preferred + chunk_size - 1);
2203 	do_div(tmp, chunk_size);
2204 	max_entries = tmp;
2205 
2206 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2207 		max_entries = dev->ctrl.hmmaxd;
2208 
2209 	descs_size = max_entries * sizeof(*descs);
2210 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2211 			GFP_KERNEL);
2212 	if (!descs)
2213 		goto out;
2214 
2215 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2216 	if (!bufs)
2217 		goto out_free_descs;
2218 
2219 	for (size = 0; size < preferred && i < max_entries; size += len) {
2220 		dma_addr_t dma_addr;
2221 
2222 		len = min_t(u64, chunk_size, preferred - size);
2223 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2224 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2225 		if (!bufs[i])
2226 			break;
2227 
2228 		descs[i].addr = cpu_to_le64(dma_addr);
2229 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2230 		i++;
2231 	}
2232 
2233 	if (!size)
2234 		goto out_free_bufs;
2235 
2236 	dev->nr_host_mem_descs = i;
2237 	dev->host_mem_size = size;
2238 	dev->host_mem_descs = descs;
2239 	dev->host_mem_descs_dma = descs_dma;
2240 	dev->host_mem_descs_size = descs_size;
2241 	dev->host_mem_desc_bufs = bufs;
2242 	return 0;
2243 
2244 out_free_bufs:
2245 	kfree(bufs);
2246 out_free_descs:
2247 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2248 out:
2249 	dev->host_mem_descs = NULL;
2250 	return -ENOMEM;
2251 }
2252 
2253 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2254 {
2255 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2256 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2257 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2258 	u64 chunk_size;
2259 
2260 	/*
2261 	 * If there is an IOMMU that can merge pages, try a virtually
2262 	 * non-contiguous allocation for a single segment first.
2263 	 */
2264 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2265 		if (!nvme_alloc_host_mem_single(dev, preferred))
2266 			return 0;
2267 	}
2268 
2269 	/* start big and work our way down */
2270 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2271 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2272 			if (!min || dev->host_mem_size >= min)
2273 				return 0;
2274 			nvme_free_host_mem(dev);
2275 		}
2276 	}
2277 
2278 	return -ENOMEM;
2279 }
2280 
2281 static int nvme_setup_host_mem(struct nvme_dev *dev)
2282 {
2283 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2284 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2285 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2286 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2287 	int ret;
2288 
2289 	if (!dev->ctrl.hmpre)
2290 		return 0;
2291 
2292 	preferred = min(preferred, max);
2293 	if (min > max) {
2294 		dev_warn(dev->ctrl.device,
2295 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2296 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2297 		nvme_free_host_mem(dev);
2298 		return 0;
2299 	}
2300 
2301 	/*
2302 	 * If we already have a buffer allocated check if we can reuse it.
2303 	 */
2304 	if (dev->host_mem_descs) {
2305 		if (dev->host_mem_size >= min)
2306 			enable_bits |= NVME_HOST_MEM_RETURN;
2307 		else
2308 			nvme_free_host_mem(dev);
2309 	}
2310 
2311 	if (!dev->host_mem_descs) {
2312 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2313 			dev_warn(dev->ctrl.device,
2314 				"failed to allocate host memory buffer.\n");
2315 			return 0; /* controller must work without HMB */
2316 		}
2317 
2318 		dev_info(dev->ctrl.device,
2319 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2320 			dev->host_mem_size >> ilog2(SZ_1M),
2321 			dev->nr_host_mem_descs,
2322 			str_plural(dev->nr_host_mem_descs));
2323 	}
2324 
2325 	ret = nvme_set_host_mem(dev, enable_bits);
2326 	if (ret)
2327 		nvme_free_host_mem(dev);
2328 	return ret;
2329 }
2330 
2331 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2332 		char *buf)
2333 {
2334 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2335 
2336 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2337 		       ndev->cmbloc, ndev->cmbsz);
2338 }
2339 static DEVICE_ATTR_RO(cmb);
2340 
2341 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2342 		char *buf)
2343 {
2344 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2345 
2346 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2347 }
2348 static DEVICE_ATTR_RO(cmbloc);
2349 
2350 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2351 		char *buf)
2352 {
2353 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2354 
2355 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2356 }
2357 static DEVICE_ATTR_RO(cmbsz);
2358 
2359 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2360 			char *buf)
2361 {
2362 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2363 
2364 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2365 }
2366 
2367 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2368 			 const char *buf, size_t count)
2369 {
2370 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2371 	bool new;
2372 	int ret;
2373 
2374 	if (kstrtobool(buf, &new) < 0)
2375 		return -EINVAL;
2376 
2377 	if (new == ndev->hmb)
2378 		return count;
2379 
2380 	if (new) {
2381 		ret = nvme_setup_host_mem(ndev);
2382 	} else {
2383 		ret = nvme_set_host_mem(ndev, 0);
2384 		if (!ret)
2385 			nvme_free_host_mem(ndev);
2386 	}
2387 
2388 	if (ret < 0)
2389 		return ret;
2390 
2391 	return count;
2392 }
2393 static DEVICE_ATTR_RW(hmb);
2394 
2395 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2396 		struct attribute *a, int n)
2397 {
2398 	struct nvme_ctrl *ctrl =
2399 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2400 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2401 
2402 	if (a == &dev_attr_cmb.attr ||
2403 	    a == &dev_attr_cmbloc.attr ||
2404 	    a == &dev_attr_cmbsz.attr) {
2405 	    	if (!dev->cmbsz)
2406 			return 0;
2407 	}
2408 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2409 		return 0;
2410 
2411 	return a->mode;
2412 }
2413 
2414 static struct attribute *nvme_pci_attrs[] = {
2415 	&dev_attr_cmb.attr,
2416 	&dev_attr_cmbloc.attr,
2417 	&dev_attr_cmbsz.attr,
2418 	&dev_attr_hmb.attr,
2419 	NULL,
2420 };
2421 
2422 static const struct attribute_group nvme_pci_dev_attrs_group = {
2423 	.attrs		= nvme_pci_attrs,
2424 	.is_visible	= nvme_pci_attrs_are_visible,
2425 };
2426 
2427 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2428 	&nvme_dev_attrs_group,
2429 	&nvme_pci_dev_attrs_group,
2430 	NULL,
2431 };
2432 
2433 static void nvme_update_attrs(struct nvme_dev *dev)
2434 {
2435 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2436 }
2437 
2438 /*
2439  * nirqs is the number of interrupts available for write and read
2440  * queues. The core already reserved an interrupt for the admin queue.
2441  */
2442 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2443 {
2444 	struct nvme_dev *dev = affd->priv;
2445 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2446 
2447 	/*
2448 	 * If there is no interrupt available for queues, ensure that
2449 	 * the default queue is set to 1. The affinity set size is
2450 	 * also set to one, but the irq core ignores it for this case.
2451 	 *
2452 	 * If only one interrupt is available or 'write_queue' == 0, combine
2453 	 * write and read queues.
2454 	 *
2455 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2456 	 * queue.
2457 	 */
2458 	if (!nrirqs) {
2459 		nrirqs = 1;
2460 		nr_read_queues = 0;
2461 	} else if (nrirqs == 1 || !nr_write_queues) {
2462 		nr_read_queues = 0;
2463 	} else if (nr_write_queues >= nrirqs) {
2464 		nr_read_queues = 1;
2465 	} else {
2466 		nr_read_queues = nrirqs - nr_write_queues;
2467 	}
2468 
2469 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2470 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2471 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2472 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2473 	affd->nr_sets = nr_read_queues ? 2 : 1;
2474 }
2475 
2476 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2477 {
2478 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2479 	struct irq_affinity affd = {
2480 		.pre_vectors	= 1,
2481 		.calc_sets	= nvme_calc_irq_sets,
2482 		.priv		= dev,
2483 	};
2484 	unsigned int irq_queues, poll_queues;
2485 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2486 
2487 	/*
2488 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2489 	 * left over for non-polled I/O.
2490 	 */
2491 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2492 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2493 
2494 	/*
2495 	 * Initialize for the single interrupt case, will be updated in
2496 	 * nvme_calc_irq_sets().
2497 	 */
2498 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2499 	dev->io_queues[HCTX_TYPE_READ] = 0;
2500 
2501 	/*
2502 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2503 	 * but some Apple controllers require all queues to use the first
2504 	 * vector.
2505 	 */
2506 	irq_queues = 1;
2507 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2508 		irq_queues += (nr_io_queues - poll_queues);
2509 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2510 		flags &= ~PCI_IRQ_MSI;
2511 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2512 					      &affd);
2513 }
2514 
2515 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2516 {
2517 	/*
2518 	 * If tags are shared with admin queue (Apple bug), then
2519 	 * make sure we only use one IO queue.
2520 	 */
2521 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2522 		return 1;
2523 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2524 }
2525 
2526 static int nvme_setup_io_queues(struct nvme_dev *dev)
2527 {
2528 	struct nvme_queue *adminq = &dev->queues[0];
2529 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2530 	unsigned int nr_io_queues;
2531 	unsigned long size;
2532 	int result;
2533 
2534 	/*
2535 	 * Sample the module parameters once at reset time so that we have
2536 	 * stable values to work with.
2537 	 */
2538 	dev->nr_write_queues = write_queues;
2539 	dev->nr_poll_queues = poll_queues;
2540 
2541 	nr_io_queues = dev->nr_allocated_queues - 1;
2542 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2543 	if (result < 0)
2544 		return result;
2545 
2546 	if (nr_io_queues == 0)
2547 		return 0;
2548 
2549 	/*
2550 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2551 	 * from set to unset. If there is a window to it is truely freed,
2552 	 * pci_free_irq_vectors() jumping into this window will crash.
2553 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2554 	 * nvme_dev_disable() path.
2555 	 */
2556 	result = nvme_setup_io_queues_trylock(dev);
2557 	if (result)
2558 		return result;
2559 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2560 		pci_free_irq(pdev, 0, adminq);
2561 
2562 	if (dev->cmb_use_sqes) {
2563 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2564 				sizeof(struct nvme_command));
2565 		if (result > 0) {
2566 			dev->q_depth = result;
2567 			dev->ctrl.sqsize = result - 1;
2568 		} else {
2569 			dev->cmb_use_sqes = false;
2570 		}
2571 	}
2572 
2573 	do {
2574 		size = db_bar_size(dev, nr_io_queues);
2575 		result = nvme_remap_bar(dev, size);
2576 		if (!result)
2577 			break;
2578 		if (!--nr_io_queues) {
2579 			result = -ENOMEM;
2580 			goto out_unlock;
2581 		}
2582 	} while (1);
2583 	adminq->q_db = dev->dbs;
2584 
2585  retry:
2586 	/* Deregister the admin queue's interrupt */
2587 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2588 		pci_free_irq(pdev, 0, adminq);
2589 
2590 	/*
2591 	 * If we enable msix early due to not intx, disable it again before
2592 	 * setting up the full range we need.
2593 	 */
2594 	pci_free_irq_vectors(pdev);
2595 
2596 	result = nvme_setup_irqs(dev, nr_io_queues);
2597 	if (result <= 0) {
2598 		result = -EIO;
2599 		goto out_unlock;
2600 	}
2601 
2602 	dev->num_vecs = result;
2603 	result = max(result - 1, 1);
2604 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2605 
2606 	/*
2607 	 * Should investigate if there's a performance win from allocating
2608 	 * more queues than interrupt vectors; it might allow the submission
2609 	 * path to scale better, even if the receive path is limited by the
2610 	 * number of interrupts.
2611 	 */
2612 	result = queue_request_irq(adminq);
2613 	if (result)
2614 		goto out_unlock;
2615 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2616 	mutex_unlock(&dev->shutdown_lock);
2617 
2618 	result = nvme_create_io_queues(dev);
2619 	if (result || dev->online_queues < 2)
2620 		return result;
2621 
2622 	if (dev->online_queues - 1 < dev->max_qid) {
2623 		nr_io_queues = dev->online_queues - 1;
2624 		nvme_delete_io_queues(dev);
2625 		result = nvme_setup_io_queues_trylock(dev);
2626 		if (result)
2627 			return result;
2628 		nvme_suspend_io_queues(dev);
2629 		goto retry;
2630 	}
2631 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2632 					dev->io_queues[HCTX_TYPE_DEFAULT],
2633 					dev->io_queues[HCTX_TYPE_READ],
2634 					dev->io_queues[HCTX_TYPE_POLL]);
2635 	return 0;
2636 out_unlock:
2637 	mutex_unlock(&dev->shutdown_lock);
2638 	return result;
2639 }
2640 
2641 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2642 					     blk_status_t error)
2643 {
2644 	struct nvme_queue *nvmeq = req->end_io_data;
2645 
2646 	blk_mq_free_request(req);
2647 	complete(&nvmeq->delete_done);
2648 	return RQ_END_IO_NONE;
2649 }
2650 
2651 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2652 					  blk_status_t error)
2653 {
2654 	struct nvme_queue *nvmeq = req->end_io_data;
2655 
2656 	if (error)
2657 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2658 
2659 	return nvme_del_queue_end(req, error);
2660 }
2661 
2662 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2663 {
2664 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2665 	struct request *req;
2666 	struct nvme_command cmd = { };
2667 
2668 	cmd.delete_queue.opcode = opcode;
2669 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2670 
2671 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2672 	if (IS_ERR(req))
2673 		return PTR_ERR(req);
2674 	nvme_init_request(req, &cmd);
2675 
2676 	if (opcode == nvme_admin_delete_cq)
2677 		req->end_io = nvme_del_cq_end;
2678 	else
2679 		req->end_io = nvme_del_queue_end;
2680 	req->end_io_data = nvmeq;
2681 
2682 	init_completion(&nvmeq->delete_done);
2683 	blk_execute_rq_nowait(req, false);
2684 	return 0;
2685 }
2686 
2687 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2688 {
2689 	int nr_queues = dev->online_queues - 1, sent = 0;
2690 	unsigned long timeout;
2691 
2692  retry:
2693 	timeout = NVME_ADMIN_TIMEOUT;
2694 	while (nr_queues > 0) {
2695 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2696 			break;
2697 		nr_queues--;
2698 		sent++;
2699 	}
2700 	while (sent) {
2701 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2702 
2703 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2704 				timeout);
2705 		if (timeout == 0)
2706 			return false;
2707 
2708 		sent--;
2709 		if (nr_queues)
2710 			goto retry;
2711 	}
2712 	return true;
2713 }
2714 
2715 static void nvme_delete_io_queues(struct nvme_dev *dev)
2716 {
2717 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2718 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2719 }
2720 
2721 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2722 {
2723 	if (dev->io_queues[HCTX_TYPE_POLL])
2724 		return 3;
2725 	if (dev->io_queues[HCTX_TYPE_READ])
2726 		return 2;
2727 	return 1;
2728 }
2729 
2730 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2731 {
2732 	if (!dev->ctrl.tagset) {
2733 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2734 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2735 		return true;
2736 	}
2737 
2738 	/* Give up if we are racing with nvme_dev_disable() */
2739 	if (!mutex_trylock(&dev->shutdown_lock))
2740 		return false;
2741 
2742 	/* Check if nvme_dev_disable() has been executed already */
2743 	if (!dev->online_queues) {
2744 		mutex_unlock(&dev->shutdown_lock);
2745 		return false;
2746 	}
2747 
2748 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2749 	/* free previously allocated queues that are no longer usable */
2750 	nvme_free_queues(dev, dev->online_queues);
2751 	mutex_unlock(&dev->shutdown_lock);
2752 	return true;
2753 }
2754 
2755 static int nvme_pci_enable(struct nvme_dev *dev)
2756 {
2757 	int result = -ENOMEM;
2758 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2759 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2760 
2761 	if (pci_enable_device_mem(pdev))
2762 		return result;
2763 
2764 	pci_set_master(pdev);
2765 
2766 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2767 		result = -ENODEV;
2768 		goto disable;
2769 	}
2770 
2771 	/*
2772 	 * Some devices and/or platforms don't advertise or work with INTx
2773 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2774 	 * adjust this later.
2775 	 */
2776 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2777 		flags &= ~PCI_IRQ_MSI;
2778 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2779 	if (result < 0)
2780 		goto disable;
2781 
2782 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2783 
2784 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2785 				io_queue_depth);
2786 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2787 	dev->dbs = dev->bar + 4096;
2788 
2789 	/*
2790 	 * Some Apple controllers require a non-standard SQE size.
2791 	 * Interestingly they also seem to ignore the CC:IOSQES register
2792 	 * so we don't bother updating it here.
2793 	 */
2794 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2795 		dev->io_sqes = 7;
2796 	else
2797 		dev->io_sqes = NVME_NVM_IOSQES;
2798 
2799 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2800 		dev->q_depth = 2;
2801 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2802 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2803 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2804 		dev->q_depth = 64;
2805 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2806                         "set queue depth=%u\n", dev->q_depth);
2807 	}
2808 
2809 	/*
2810 	 * Controllers with the shared tags quirk need the IO queue to be
2811 	 * big enough so that we get 32 tags for the admin queue
2812 	 */
2813 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2814 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2815 		dev->q_depth = NVME_AQ_DEPTH + 2;
2816 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2817 			 dev->q_depth);
2818 	}
2819 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2820 
2821 	nvme_map_cmb(dev);
2822 
2823 	pci_save_state(pdev);
2824 
2825 	result = nvme_pci_configure_admin_queue(dev);
2826 	if (result)
2827 		goto free_irq;
2828 	return result;
2829 
2830  free_irq:
2831 	pci_free_irq_vectors(pdev);
2832  disable:
2833 	pci_disable_device(pdev);
2834 	return result;
2835 }
2836 
2837 static void nvme_dev_unmap(struct nvme_dev *dev)
2838 {
2839 	if (dev->bar)
2840 		iounmap(dev->bar);
2841 	pci_release_mem_regions(to_pci_dev(dev->dev));
2842 }
2843 
2844 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2845 {
2846 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2847 	u32 csts;
2848 
2849 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2850 		return true;
2851 	if (pdev->error_state != pci_channel_io_normal)
2852 		return true;
2853 
2854 	csts = readl(dev->bar + NVME_REG_CSTS);
2855 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2856 }
2857 
2858 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2859 {
2860 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2861 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2862 	bool dead;
2863 
2864 	mutex_lock(&dev->shutdown_lock);
2865 	dead = nvme_pci_ctrl_is_dead(dev);
2866 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2867 		if (pci_is_enabled(pdev))
2868 			nvme_start_freeze(&dev->ctrl);
2869 		/*
2870 		 * Give the controller a chance to complete all entered requests
2871 		 * if doing a safe shutdown.
2872 		 */
2873 		if (!dead && shutdown)
2874 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2875 	}
2876 
2877 	nvme_quiesce_io_queues(&dev->ctrl);
2878 
2879 	if (!dead && dev->ctrl.queue_count > 0) {
2880 		nvme_delete_io_queues(dev);
2881 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2882 		nvme_poll_irqdisable(&dev->queues[0]);
2883 	}
2884 	nvme_suspend_io_queues(dev);
2885 	nvme_suspend_queue(dev, 0);
2886 	pci_free_irq_vectors(pdev);
2887 	if (pci_is_enabled(pdev))
2888 		pci_disable_device(pdev);
2889 	nvme_reap_pending_cqes(dev);
2890 
2891 	nvme_cancel_tagset(&dev->ctrl);
2892 	nvme_cancel_admin_tagset(&dev->ctrl);
2893 
2894 	/*
2895 	 * The driver will not be starting up queues again if shutting down so
2896 	 * must flush all entered requests to their failed completion to avoid
2897 	 * deadlocking blk-mq hot-cpu notifier.
2898 	 */
2899 	if (shutdown) {
2900 		nvme_unquiesce_io_queues(&dev->ctrl);
2901 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2902 			nvme_unquiesce_admin_queue(&dev->ctrl);
2903 	}
2904 	mutex_unlock(&dev->shutdown_lock);
2905 }
2906 
2907 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2908 {
2909 	if (!nvme_wait_reset(&dev->ctrl))
2910 		return -EBUSY;
2911 	nvme_dev_disable(dev, shutdown);
2912 	return 0;
2913 }
2914 
2915 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2916 {
2917 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2918 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2919 
2920 	dev->iod_mempool = mempool_create_node(1,
2921 			mempool_kmalloc, mempool_kfree,
2922 			(void *)alloc_size, GFP_KERNEL,
2923 			dev_to_node(dev->dev));
2924 	if (!dev->iod_mempool)
2925 		return -ENOMEM;
2926 
2927 	dev->iod_meta_mempool = mempool_create_node(1,
2928 			mempool_kmalloc, mempool_kfree,
2929 			(void *)meta_size, GFP_KERNEL,
2930 			dev_to_node(dev->dev));
2931 	if (!dev->iod_meta_mempool)
2932 		goto free;
2933 
2934 	return 0;
2935 free:
2936 	mempool_destroy(dev->iod_mempool);
2937 	return -ENOMEM;
2938 }
2939 
2940 static void nvme_free_tagset(struct nvme_dev *dev)
2941 {
2942 	if (dev->tagset.tags)
2943 		nvme_remove_io_tag_set(&dev->ctrl);
2944 	dev->ctrl.tagset = NULL;
2945 }
2946 
2947 /* pairs with nvme_pci_alloc_dev */
2948 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2949 {
2950 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2951 
2952 	nvme_free_tagset(dev);
2953 	put_device(dev->dev);
2954 	kfree(dev->queues);
2955 	kfree(dev);
2956 }
2957 
2958 static void nvme_reset_work(struct work_struct *work)
2959 {
2960 	struct nvme_dev *dev =
2961 		container_of(work, struct nvme_dev, ctrl.reset_work);
2962 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2963 	int result;
2964 
2965 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2966 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2967 			 dev->ctrl.state);
2968 		result = -ENODEV;
2969 		goto out;
2970 	}
2971 
2972 	/*
2973 	 * If we're called to reset a live controller first shut it down before
2974 	 * moving on.
2975 	 */
2976 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2977 		nvme_dev_disable(dev, false);
2978 	nvme_sync_queues(&dev->ctrl);
2979 
2980 	mutex_lock(&dev->shutdown_lock);
2981 	result = nvme_pci_enable(dev);
2982 	if (result)
2983 		goto out_unlock;
2984 	nvme_unquiesce_admin_queue(&dev->ctrl);
2985 	mutex_unlock(&dev->shutdown_lock);
2986 
2987 	/*
2988 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2989 	 * initializing procedure here.
2990 	 */
2991 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2992 		dev_warn(dev->ctrl.device,
2993 			"failed to mark controller CONNECTING\n");
2994 		result = -EBUSY;
2995 		goto out;
2996 	}
2997 
2998 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2999 	if (result)
3000 		goto out;
3001 
3002 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3003 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3004 	else
3005 		dev->ctrl.max_integrity_segments = 1;
3006 
3007 	nvme_dbbuf_dma_alloc(dev);
3008 
3009 	result = nvme_setup_host_mem(dev);
3010 	if (result < 0)
3011 		goto out;
3012 
3013 	result = nvme_setup_io_queues(dev);
3014 	if (result)
3015 		goto out;
3016 
3017 	/*
3018 	 * Freeze and update the number of I/O queues as those might have
3019 	 * changed.  If there are no I/O queues left after this reset, keep the
3020 	 * controller around but remove all namespaces.
3021 	 */
3022 	if (dev->online_queues > 1) {
3023 		nvme_dbbuf_set(dev);
3024 		nvme_unquiesce_io_queues(&dev->ctrl);
3025 		nvme_wait_freeze(&dev->ctrl);
3026 		if (!nvme_pci_update_nr_queues(dev))
3027 			goto out;
3028 		nvme_unfreeze(&dev->ctrl);
3029 	} else {
3030 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3031 		nvme_mark_namespaces_dead(&dev->ctrl);
3032 		nvme_unquiesce_io_queues(&dev->ctrl);
3033 		nvme_remove_namespaces(&dev->ctrl);
3034 		nvme_free_tagset(dev);
3035 	}
3036 
3037 	/*
3038 	 * If only admin queue live, keep it to do further investigation or
3039 	 * recovery.
3040 	 */
3041 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3042 		dev_warn(dev->ctrl.device,
3043 			"failed to mark controller live state\n");
3044 		result = -ENODEV;
3045 		goto out;
3046 	}
3047 
3048 	nvme_start_ctrl(&dev->ctrl);
3049 	return;
3050 
3051  out_unlock:
3052 	mutex_unlock(&dev->shutdown_lock);
3053  out:
3054 	/*
3055 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3056 	 * may be holding this pci_dev's device lock.
3057 	 */
3058 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3059 		 result);
3060 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3061 	nvme_dev_disable(dev, true);
3062 	nvme_sync_queues(&dev->ctrl);
3063 	nvme_mark_namespaces_dead(&dev->ctrl);
3064 	nvme_unquiesce_io_queues(&dev->ctrl);
3065 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3066 }
3067 
3068 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3069 {
3070 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3071 	return 0;
3072 }
3073 
3074 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3075 {
3076 	writel(val, to_nvme_dev(ctrl)->bar + off);
3077 	return 0;
3078 }
3079 
3080 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3081 {
3082 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3083 	return 0;
3084 }
3085 
3086 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3087 {
3088 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3089 
3090 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3091 }
3092 
3093 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3094 {
3095 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3096 	struct nvme_subsystem *subsys = ctrl->subsys;
3097 
3098 	dev_err(ctrl->device,
3099 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3100 		pdev->vendor, pdev->device,
3101 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3102 		subsys->model, nvme_strlen(subsys->firmware_rev,
3103 					   sizeof(subsys->firmware_rev)),
3104 		subsys->firmware_rev);
3105 }
3106 
3107 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3108 {
3109 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3110 
3111 	return dma_pci_p2pdma_supported(dev->dev);
3112 }
3113 
3114 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3115 	.name			= "pcie",
3116 	.module			= THIS_MODULE,
3117 	.flags			= NVME_F_METADATA_SUPPORTED,
3118 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3119 	.reg_read32		= nvme_pci_reg_read32,
3120 	.reg_write32		= nvme_pci_reg_write32,
3121 	.reg_read64		= nvme_pci_reg_read64,
3122 	.free_ctrl		= nvme_pci_free_ctrl,
3123 	.submit_async_event	= nvme_pci_submit_async_event,
3124 	.subsystem_reset	= nvme_pci_subsystem_reset,
3125 	.get_address		= nvme_pci_get_address,
3126 	.print_device_info	= nvme_pci_print_device_info,
3127 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3128 };
3129 
3130 static int nvme_dev_map(struct nvme_dev *dev)
3131 {
3132 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3133 
3134 	if (pci_request_mem_regions(pdev, "nvme"))
3135 		return -ENODEV;
3136 
3137 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3138 		goto release;
3139 
3140 	return 0;
3141   release:
3142 	pci_release_mem_regions(pdev);
3143 	return -ENODEV;
3144 }
3145 
3146 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3147 {
3148 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3149 		/*
3150 		 * Several Samsung devices seem to drop off the PCIe bus
3151 		 * randomly when APST is on and uses the deepest sleep state.
3152 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3153 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3154 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3155 		 * laptops.
3156 		 */
3157 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3158 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3159 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3160 			return NVME_QUIRK_NO_DEEPEST_PS;
3161 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3162 		/*
3163 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3164 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3165 		 * within few minutes after bootup on a Coffee Lake board -
3166 		 * ASUS PRIME Z370-A
3167 		 */
3168 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3169 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3170 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3171 			return NVME_QUIRK_NO_APST;
3172 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3173 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3174 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3175 		/*
3176 		 * Forcing to use host managed nvme power settings for
3177 		 * lowest idle power with quick resume latency on
3178 		 * Samsung and Toshiba SSDs based on suspend behavior
3179 		 * on Coffee Lake board for LENOVO C640
3180 		 */
3181 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3182 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3183 			return NVME_QUIRK_SIMPLE_SUSPEND;
3184 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3185 		   pdev->device == 0x500f)) {
3186 		/*
3187 		 * Exclude some Kingston NV1 and A2000 devices from
3188 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3189 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3190 		 */
3191 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3192 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3193 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3194 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3195 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3196 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3197 		/*
3198 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3199 		 * because of high power consumption (> 2 Watt) in s2idle
3200 		 * sleep. Only some boards with Intel CPU are affected.
3201 		 */
3202 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3203 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3204 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3205 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3206 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3207 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3208 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3209 	}
3210 
3211 	/*
3212 	 * NVMe SSD drops off the PCIe bus after system idle
3213 	 * for 10 hours on a Lenovo N60z board.
3214 	 */
3215 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3216 		return NVME_QUIRK_NO_APST;
3217 
3218 	return 0;
3219 }
3220 
3221 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3222 		const struct pci_device_id *id)
3223 {
3224 	unsigned long quirks = id->driver_data;
3225 	int node = dev_to_node(&pdev->dev);
3226 	struct nvme_dev *dev;
3227 	int ret = -ENOMEM;
3228 
3229 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3230 			GFP_KERNEL, node);
3231 	if (!dev)
3232 		return ERR_PTR(-ENOMEM);
3233 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3234 	mutex_init(&dev->shutdown_lock);
3235 
3236 	dev->nr_write_queues = write_queues;
3237 	dev->nr_poll_queues = poll_queues;
3238 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3239 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3240 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3241 	if (!dev->queues)
3242 		goto out_free_dev;
3243 
3244 	dev->dev = get_device(&pdev->dev);
3245 
3246 	quirks |= check_vendor_combination_bug(pdev);
3247 	if (!noacpi &&
3248 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3249 	    acpi_storage_d3(&pdev->dev)) {
3250 		/*
3251 		 * Some systems use a bios work around to ask for D3 on
3252 		 * platforms that support kernel managed suspend.
3253 		 */
3254 		dev_info(&pdev->dev,
3255 			 "platform quirk: setting simple suspend\n");
3256 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3257 	}
3258 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3259 			     quirks);
3260 	if (ret)
3261 		goto out_put_device;
3262 
3263 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3264 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3265 	else
3266 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3267 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3268 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3269 
3270 	/*
3271 	 * Limit the max command size to prevent iod->sg allocations going
3272 	 * over a single page.
3273 	 */
3274 	dev->ctrl.max_hw_sectors = min_t(u32,
3275 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3276 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3277 	dev->ctrl.max_integrity_segments = 1;
3278 	return dev;
3279 
3280 out_put_device:
3281 	put_device(dev->dev);
3282 	kfree(dev->queues);
3283 out_free_dev:
3284 	kfree(dev);
3285 	return ERR_PTR(ret);
3286 }
3287 
3288 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3289 {
3290 	struct nvme_dev *dev;
3291 	int result = -ENOMEM;
3292 
3293 	dev = nvme_pci_alloc_dev(pdev, id);
3294 	if (IS_ERR(dev))
3295 		return PTR_ERR(dev);
3296 
3297 	result = nvme_add_ctrl(&dev->ctrl);
3298 	if (result)
3299 		goto out_put_ctrl;
3300 
3301 	result = nvme_dev_map(dev);
3302 	if (result)
3303 		goto out_uninit_ctrl;
3304 
3305 	result = nvme_pci_alloc_iod_mempool(dev);
3306 	if (result)
3307 		goto out_dev_unmap;
3308 
3309 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3310 
3311 	result = nvme_pci_enable(dev);
3312 	if (result)
3313 		goto out_release_iod_mempool;
3314 
3315 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3316 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3317 	if (result)
3318 		goto out_disable;
3319 
3320 	/*
3321 	 * Mark the controller as connecting before sending admin commands to
3322 	 * allow the timeout handler to do the right thing.
3323 	 */
3324 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3325 		dev_warn(dev->ctrl.device,
3326 			"failed to mark controller CONNECTING\n");
3327 		result = -EBUSY;
3328 		goto out_disable;
3329 	}
3330 
3331 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3332 	if (result)
3333 		goto out_disable;
3334 
3335 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3336 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3337 	else
3338 		dev->ctrl.max_integrity_segments = 1;
3339 
3340 	nvme_dbbuf_dma_alloc(dev);
3341 
3342 	result = nvme_setup_host_mem(dev);
3343 	if (result < 0)
3344 		goto out_disable;
3345 
3346 	result = nvme_setup_io_queues(dev);
3347 	if (result)
3348 		goto out_disable;
3349 
3350 	if (dev->online_queues > 1) {
3351 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3352 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3353 		nvme_dbbuf_set(dev);
3354 	}
3355 
3356 	if (!dev->ctrl.tagset)
3357 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3358 
3359 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3360 		dev_warn(dev->ctrl.device,
3361 			"failed to mark controller live state\n");
3362 		result = -ENODEV;
3363 		goto out_disable;
3364 	}
3365 
3366 	pci_set_drvdata(pdev, dev);
3367 
3368 	nvme_start_ctrl(&dev->ctrl);
3369 	nvme_put_ctrl(&dev->ctrl);
3370 	flush_work(&dev->ctrl.scan_work);
3371 	return 0;
3372 
3373 out_disable:
3374 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3375 	nvme_dev_disable(dev, true);
3376 	nvme_free_host_mem(dev);
3377 	nvme_dev_remove_admin(dev);
3378 	nvme_dbbuf_dma_free(dev);
3379 	nvme_free_queues(dev, 0);
3380 out_release_iod_mempool:
3381 	mempool_destroy(dev->iod_mempool);
3382 	mempool_destroy(dev->iod_meta_mempool);
3383 out_dev_unmap:
3384 	nvme_dev_unmap(dev);
3385 out_uninit_ctrl:
3386 	nvme_uninit_ctrl(&dev->ctrl);
3387 out_put_ctrl:
3388 	nvme_put_ctrl(&dev->ctrl);
3389 	return result;
3390 }
3391 
3392 static void nvme_reset_prepare(struct pci_dev *pdev)
3393 {
3394 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3395 
3396 	/*
3397 	 * We don't need to check the return value from waiting for the reset
3398 	 * state as pci_dev device lock is held, making it impossible to race
3399 	 * with ->remove().
3400 	 */
3401 	nvme_disable_prepare_reset(dev, false);
3402 	nvme_sync_queues(&dev->ctrl);
3403 }
3404 
3405 static void nvme_reset_done(struct pci_dev *pdev)
3406 {
3407 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3408 
3409 	if (!nvme_try_sched_reset(&dev->ctrl))
3410 		flush_work(&dev->ctrl.reset_work);
3411 }
3412 
3413 static void nvme_shutdown(struct pci_dev *pdev)
3414 {
3415 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3416 
3417 	nvme_disable_prepare_reset(dev, true);
3418 }
3419 
3420 /*
3421  * The driver's remove may be called on a device in a partially initialized
3422  * state. This function must not have any dependencies on the device state in
3423  * order to proceed.
3424  */
3425 static void nvme_remove(struct pci_dev *pdev)
3426 {
3427 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3428 
3429 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3430 	pci_set_drvdata(pdev, NULL);
3431 
3432 	if (!pci_device_is_present(pdev)) {
3433 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3434 		nvme_dev_disable(dev, true);
3435 	}
3436 
3437 	flush_work(&dev->ctrl.reset_work);
3438 	nvme_stop_ctrl(&dev->ctrl);
3439 	nvme_remove_namespaces(&dev->ctrl);
3440 	nvme_dev_disable(dev, true);
3441 	nvme_free_host_mem(dev);
3442 	nvme_dev_remove_admin(dev);
3443 	nvme_dbbuf_dma_free(dev);
3444 	nvme_free_queues(dev, 0);
3445 	mempool_destroy(dev->iod_mempool);
3446 	mempool_destroy(dev->iod_meta_mempool);
3447 	nvme_release_descriptor_pools(dev);
3448 	nvme_dev_unmap(dev);
3449 	nvme_uninit_ctrl(&dev->ctrl);
3450 }
3451 
3452 #ifdef CONFIG_PM_SLEEP
3453 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3454 {
3455 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3456 }
3457 
3458 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3459 {
3460 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3461 }
3462 
3463 static int nvme_resume(struct device *dev)
3464 {
3465 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3466 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3467 
3468 	if (ndev->last_ps == U32_MAX ||
3469 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3470 		goto reset;
3471 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3472 		goto reset;
3473 
3474 	return 0;
3475 reset:
3476 	return nvme_try_sched_reset(ctrl);
3477 }
3478 
3479 static int nvme_suspend(struct device *dev)
3480 {
3481 	struct pci_dev *pdev = to_pci_dev(dev);
3482 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3483 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3484 	int ret = -EBUSY;
3485 
3486 	ndev->last_ps = U32_MAX;
3487 
3488 	/*
3489 	 * The platform does not remove power for a kernel managed suspend so
3490 	 * use host managed nvme power settings for lowest idle power if
3491 	 * possible. This should have quicker resume latency than a full device
3492 	 * shutdown.  But if the firmware is involved after the suspend or the
3493 	 * device does not support any non-default power states, shut down the
3494 	 * device fully.
3495 	 *
3496 	 * If ASPM is not enabled for the device, shut down the device and allow
3497 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3498 	 * down, so as to allow the platform to achieve its minimum low-power
3499 	 * state (which may not be possible if the link is up).
3500 	 */
3501 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3502 	    !pcie_aspm_enabled(pdev) ||
3503 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3504 		return nvme_disable_prepare_reset(ndev, true);
3505 
3506 	nvme_start_freeze(ctrl);
3507 	nvme_wait_freeze(ctrl);
3508 	nvme_sync_queues(ctrl);
3509 
3510 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3511 		goto unfreeze;
3512 
3513 	/*
3514 	 * Host memory access may not be successful in a system suspend state,
3515 	 * but the specification allows the controller to access memory in a
3516 	 * non-operational power state.
3517 	 */
3518 	if (ndev->hmb) {
3519 		ret = nvme_set_host_mem(ndev, 0);
3520 		if (ret < 0)
3521 			goto unfreeze;
3522 	}
3523 
3524 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3525 	if (ret < 0)
3526 		goto unfreeze;
3527 
3528 	/*
3529 	 * A saved state prevents pci pm from generically controlling the
3530 	 * device's power. If we're using protocol specific settings, we don't
3531 	 * want pci interfering.
3532 	 */
3533 	pci_save_state(pdev);
3534 
3535 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3536 	if (ret < 0)
3537 		goto unfreeze;
3538 
3539 	if (ret) {
3540 		/* discard the saved state */
3541 		pci_load_saved_state(pdev, NULL);
3542 
3543 		/*
3544 		 * Clearing npss forces a controller reset on resume. The
3545 		 * correct value will be rediscovered then.
3546 		 */
3547 		ret = nvme_disable_prepare_reset(ndev, true);
3548 		ctrl->npss = 0;
3549 	}
3550 unfreeze:
3551 	nvme_unfreeze(ctrl);
3552 	return ret;
3553 }
3554 
3555 static int nvme_simple_suspend(struct device *dev)
3556 {
3557 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3558 
3559 	return nvme_disable_prepare_reset(ndev, true);
3560 }
3561 
3562 static int nvme_simple_resume(struct device *dev)
3563 {
3564 	struct pci_dev *pdev = to_pci_dev(dev);
3565 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3566 
3567 	return nvme_try_sched_reset(&ndev->ctrl);
3568 }
3569 
3570 static const struct dev_pm_ops nvme_dev_pm_ops = {
3571 	.suspend	= nvme_suspend,
3572 	.resume		= nvme_resume,
3573 	.freeze		= nvme_simple_suspend,
3574 	.thaw		= nvme_simple_resume,
3575 	.poweroff	= nvme_simple_suspend,
3576 	.restore	= nvme_simple_resume,
3577 };
3578 #endif /* CONFIG_PM_SLEEP */
3579 
3580 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3581 						pci_channel_state_t state)
3582 {
3583 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3584 
3585 	/*
3586 	 * A frozen channel requires a reset. When detected, this method will
3587 	 * shutdown the controller to quiesce. The controller will be restarted
3588 	 * after the slot reset through driver's slot_reset callback.
3589 	 */
3590 	switch (state) {
3591 	case pci_channel_io_normal:
3592 		return PCI_ERS_RESULT_CAN_RECOVER;
3593 	case pci_channel_io_frozen:
3594 		dev_warn(dev->ctrl.device,
3595 			"frozen state error detected, reset controller\n");
3596 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3597 			nvme_dev_disable(dev, true);
3598 			return PCI_ERS_RESULT_DISCONNECT;
3599 		}
3600 		nvme_dev_disable(dev, false);
3601 		return PCI_ERS_RESULT_NEED_RESET;
3602 	case pci_channel_io_perm_failure:
3603 		dev_warn(dev->ctrl.device,
3604 			"failure state error detected, request disconnect\n");
3605 		return PCI_ERS_RESULT_DISCONNECT;
3606 	}
3607 	return PCI_ERS_RESULT_NEED_RESET;
3608 }
3609 
3610 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3611 {
3612 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3613 
3614 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3615 	pci_restore_state(pdev);
3616 	if (nvme_try_sched_reset(&dev->ctrl))
3617 		nvme_unquiesce_io_queues(&dev->ctrl);
3618 	return PCI_ERS_RESULT_RECOVERED;
3619 }
3620 
3621 static void nvme_error_resume(struct pci_dev *pdev)
3622 {
3623 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3624 
3625 	flush_work(&dev->ctrl.reset_work);
3626 }
3627 
3628 static const struct pci_error_handlers nvme_err_handler = {
3629 	.error_detected	= nvme_error_detected,
3630 	.slot_reset	= nvme_slot_reset,
3631 	.resume		= nvme_error_resume,
3632 	.reset_prepare	= nvme_reset_prepare,
3633 	.reset_done	= nvme_reset_done,
3634 };
3635 
3636 static const struct pci_device_id nvme_id_table[] = {
3637 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3638 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3639 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3640 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3641 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3642 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3643 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3644 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3645 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3646 				NVME_QUIRK_BOGUS_NID, },
3647 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3648 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3649 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3650 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3651 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3652 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3653 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3654 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3655 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3656 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3657 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3658 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3659 				NVME_QUIRK_BOGUS_NID, },
3660 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3661 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3662 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3663 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3664 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3665 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3666 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3667 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3668 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3669 				NVME_QUIRK_BOGUS_NID, },
3670 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3671 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3672 				NVME_QUIRK_BOGUS_NID, },
3673 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3674 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3675 				NVME_QUIRK_NO_NS_DESC_LIST, },
3676 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3677 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3678 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3679 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3680 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3681 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3682 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3683 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3684 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3685 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3686 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3687 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3688 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3689 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3690 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3691 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3692 				NVME_QUIRK_NO_DEEPEST_PS },
3693 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3694 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3695 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3696 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3697 				NVME_QUIRK_BOGUS_NID, },
3698 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3699 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3700 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3701 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3702 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3703 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3704 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3705 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3706 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3707 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3708 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3709 				NVME_QUIRK_BOGUS_NID, },
3710 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3711 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3712 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3713 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3714 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3715 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3716 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3717 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3718 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3719 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3720 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3721 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3722 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3723 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3724 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3725 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3726 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3727 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3728 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3729 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3730 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3731 				NVME_QUIRK_BOGUS_NID, },
3732 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3733 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3734 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3735 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3736 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3737 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3738 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3739 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3740 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3741 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3742 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3743 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3744 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3745 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3746 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3747 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3748 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3749 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3750 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3751 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3752 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3753 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3754 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3755 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3756 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3757 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3758 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3759 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3760 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3761 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3762 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3763 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3764 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3765 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3766 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3767 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3768 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3769 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3770 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3771 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3772 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3773 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3774 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3775 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3776 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3777 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3778 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
3779 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3780 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3781 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3782 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3783 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3784 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3785 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3786 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3787 		.driver_data = NVME_QUIRK_BOGUS_NID |
3788 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3789 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3790 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3791 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3792 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3793 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3794 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3795 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3796 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3797 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3798 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3799 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3800 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3801 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3802 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3803 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3804 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3805 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3806 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3807 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3808 		/*
3809 		 * Fix for the Apple controller found in the MacBook8,1 and
3810 		 * some MacBook7,1 to avoid controller resets and data loss.
3811 		 */
3812 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3813 				NVME_QUIRK_QDEPTH_ONE },
3814 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3815 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3816 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3817 				NVME_QUIRK_128_BYTES_SQES |
3818 				NVME_QUIRK_SHARED_TAGS |
3819 				NVME_QUIRK_SKIP_CID_GEN |
3820 				NVME_QUIRK_IDENTIFY_CNS },
3821 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3822 	{ 0, }
3823 };
3824 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3825 
3826 static struct pci_driver nvme_driver = {
3827 	.name		= "nvme",
3828 	.id_table	= nvme_id_table,
3829 	.probe		= nvme_probe,
3830 	.remove		= nvme_remove,
3831 	.shutdown	= nvme_shutdown,
3832 	.driver		= {
3833 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3834 #ifdef CONFIG_PM_SLEEP
3835 		.pm		= &nvme_dev_pm_ops,
3836 #endif
3837 	},
3838 	.sriov_configure = pci_sriov_configure_simple,
3839 	.err_handler	= &nvme_err_handler,
3840 };
3841 
3842 static int __init nvme_init(void)
3843 {
3844 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3845 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3846 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3847 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3848 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_DESCRIPTORS);
3849 
3850 	return pci_register_driver(&nvme_driver);
3851 }
3852 
3853 static void __exit nvme_exit(void)
3854 {
3855 	pci_unregister_driver(&nvme_driver);
3856 	flush_workqueue(nvme_wq);
3857 }
3858 
3859 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3860 MODULE_LICENSE("GPL");
3861 MODULE_VERSION("1.0");
3862 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3863 module_init(nvme_init);
3864 module_exit(nvme_exit);
3865