1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 30 * when connected and a 31 * connection failure. 32 */ 33 34 struct nvme_fc_queue { 35 struct nvme_fc_ctrl *ctrl; 36 struct device *dev; 37 struct blk_mq_hw_ctx *hctx; 38 void *lldd_handle; 39 size_t cmnd_capsule_len; 40 u32 qnum; 41 u32 rqcnt; 42 u32 seqno; 43 44 u64 connection_id; 45 atomic_t csn; 46 47 unsigned long flags; 48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 49 50 enum nvme_fcop_flags { 51 FCOP_FLAGS_TERMIO = (1 << 0), 52 FCOP_FLAGS_AEN = (1 << 1), 53 }; 54 55 struct nvmefc_ls_req_op { 56 struct nvmefc_ls_req ls_req; 57 58 struct nvme_fc_rport *rport; 59 struct nvme_fc_queue *queue; 60 struct request *rq; 61 u32 flags; 62 63 int ls_error; 64 struct completion ls_done; 65 struct list_head lsreq_list; /* rport->ls_req_list */ 66 bool req_queued; 67 }; 68 69 struct nvmefc_ls_rcv_op { 70 struct nvme_fc_rport *rport; 71 struct nvmefc_ls_rsp *lsrsp; 72 union nvmefc_ls_requests *rqstbuf; 73 union nvmefc_ls_responses *rspbuf; 74 u16 rqstdatalen; 75 bool handled; 76 dma_addr_t rspdma; 77 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 79 80 enum nvme_fcpop_state { 81 FCPOP_STATE_UNINIT = 0, 82 FCPOP_STATE_IDLE = 1, 83 FCPOP_STATE_ACTIVE = 2, 84 FCPOP_STATE_ABORTED = 3, 85 FCPOP_STATE_COMPLETE = 4, 86 }; 87 88 struct nvme_fc_fcp_op { 89 struct nvme_request nreq; /* 90 * nvme/host/core.c 91 * requires this to be 92 * the 1st element in the 93 * private structure 94 * associated with the 95 * request. 96 */ 97 struct nvmefc_fcp_req fcp_req; 98 99 struct nvme_fc_ctrl *ctrl; 100 struct nvme_fc_queue *queue; 101 struct request *rq; 102 103 atomic_t state; 104 u32 flags; 105 u32 rqno; 106 u32 nents; 107 108 struct nvme_fc_cmd_iu cmd_iu; 109 struct nvme_fc_ersp_iu rsp_iu; 110 }; 111 112 struct nvme_fcp_op_w_sgl { 113 struct nvme_fc_fcp_op op; 114 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 115 uint8_t priv[]; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 atomic_t act_rport_cnt; 128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 129 130 struct nvme_fc_rport { 131 struct nvme_fc_remote_port remoteport; 132 133 struct list_head endp_list; /* for lport->endp_list */ 134 struct list_head ctrl_list; 135 struct list_head ls_req_list; 136 struct list_head ls_rcv_list; 137 struct list_head disc_list; 138 struct device *dev; /* physical device for dma */ 139 struct nvme_fc_lport *lport; 140 spinlock_t lock; 141 struct kref ref; 142 atomic_t act_ctrl_cnt; 143 unsigned long dev_loss_end; 144 struct work_struct lsrcv_work; 145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 146 147 /* fc_ctrl flags values - specified as bit positions */ 148 #define ASSOC_ACTIVE 0 149 #define ASSOC_FAILED 1 150 #define FCCTRL_TERMIO 2 151 152 struct nvme_fc_ctrl { 153 spinlock_t lock; 154 struct nvme_fc_queue *queues; 155 struct device *dev; 156 struct nvme_fc_lport *lport; 157 struct nvme_fc_rport *rport; 158 u32 cnum; 159 160 bool ioq_live; 161 u64 association_id; 162 struct nvmefc_ls_rcv_op *rcv_disconn; 163 164 struct list_head ctrl_list; /* rport->ctrl_list */ 165 166 struct blk_mq_tag_set admin_tag_set; 167 struct blk_mq_tag_set tag_set; 168 169 struct work_struct ioerr_work; 170 struct delayed_work connect_work; 171 172 struct kref ref; 173 unsigned long flags; 174 u32 iocnt; 175 wait_queue_head_t ioabort_wait; 176 177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 178 179 struct nvme_ctrl ctrl; 180 }; 181 182 static inline struct nvme_fc_ctrl * 183 to_fc_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 186 } 187 188 static inline struct nvme_fc_lport * 189 localport_to_lport(struct nvme_fc_local_port *portptr) 190 { 191 return container_of(portptr, struct nvme_fc_lport, localport); 192 } 193 194 static inline struct nvme_fc_rport * 195 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 196 { 197 return container_of(portptr, struct nvme_fc_rport, remoteport); 198 } 199 200 static inline struct nvmefc_ls_req_op * 201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 202 { 203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 204 } 205 206 static inline struct nvme_fc_fcp_op * 207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 208 { 209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 210 } 211 212 213 214 /* *************************** Globals **************************** */ 215 216 217 static DEFINE_SPINLOCK(nvme_fc_lock); 218 219 static LIST_HEAD(nvme_fc_lport_list); 220 static DEFINE_IDA(nvme_fc_local_port_cnt); 221 static DEFINE_IDA(nvme_fc_ctrl_cnt); 222 223 /* 224 * These items are short-term. They will eventually be moved into 225 * a generic FC class. See comments in module init. 226 */ 227 static struct device *fc_udev_device; 228 229 static void nvme_fc_complete_rq(struct request *rq); 230 231 /* *********************** FC-NVME Port Management ************************ */ 232 233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 234 struct nvme_fc_queue *, unsigned int); 235 236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 237 238 239 static void 240 nvme_fc_free_lport(struct kref *ref) 241 { 242 struct nvme_fc_lport *lport = 243 container_of(ref, struct nvme_fc_lport, ref); 244 unsigned long flags; 245 246 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 247 WARN_ON(!list_empty(&lport->endp_list)); 248 249 /* remove from transport list */ 250 spin_lock_irqsave(&nvme_fc_lock, flags); 251 list_del(&lport->port_list); 252 spin_unlock_irqrestore(&nvme_fc_lock, flags); 253 254 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 255 ida_destroy(&lport->endp_cnt); 256 257 put_device(lport->dev); 258 259 kfree(lport); 260 } 261 262 static void 263 nvme_fc_lport_put(struct nvme_fc_lport *lport) 264 { 265 kref_put(&lport->ref, nvme_fc_free_lport); 266 } 267 268 static int 269 nvme_fc_lport_get(struct nvme_fc_lport *lport) 270 { 271 return kref_get_unless_zero(&lport->ref); 272 } 273 274 275 static struct nvme_fc_lport * 276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 277 struct nvme_fc_port_template *ops, 278 struct device *dev) 279 { 280 struct nvme_fc_lport *lport; 281 unsigned long flags; 282 283 spin_lock_irqsave(&nvme_fc_lock, flags); 284 285 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 286 if (lport->localport.node_name != pinfo->node_name || 287 lport->localport.port_name != pinfo->port_name) 288 continue; 289 290 if (lport->dev != dev) { 291 lport = ERR_PTR(-EXDEV); 292 goto out_done; 293 } 294 295 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 296 lport = ERR_PTR(-EEXIST); 297 goto out_done; 298 } 299 300 if (!nvme_fc_lport_get(lport)) { 301 /* 302 * fails if ref cnt already 0. If so, 303 * act as if lport already deleted 304 */ 305 lport = NULL; 306 goto out_done; 307 } 308 309 /* resume the lport */ 310 311 lport->ops = ops; 312 lport->localport.port_role = pinfo->port_role; 313 lport->localport.port_id = pinfo->port_id; 314 lport->localport.port_state = FC_OBJSTATE_ONLINE; 315 316 spin_unlock_irqrestore(&nvme_fc_lock, flags); 317 318 return lport; 319 } 320 321 lport = NULL; 322 323 out_done: 324 spin_unlock_irqrestore(&nvme_fc_lock, flags); 325 326 return lport; 327 } 328 329 /** 330 * nvme_fc_register_localport - transport entry point called by an 331 * LLDD to register the existence of a NVME 332 * host FC port. 333 * @pinfo: pointer to information about the port to be registered 334 * @template: LLDD entrypoints and operational parameters for the port 335 * @dev: physical hardware device node port corresponds to. Will be 336 * used for DMA mappings 337 * @portptr: pointer to a local port pointer. Upon success, the routine 338 * will allocate a nvme_fc_local_port structure and place its 339 * address in the local port pointer. Upon failure, local port 340 * pointer will be set to 0. 341 * 342 * Returns: 343 * a completion status. Must be 0 upon success; a negative errno 344 * (ex: -ENXIO) upon failure. 345 */ 346 int 347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 348 struct nvme_fc_port_template *template, 349 struct device *dev, 350 struct nvme_fc_local_port **portptr) 351 { 352 struct nvme_fc_lport *newrec; 353 unsigned long flags; 354 int ret, idx; 355 356 if (!template->localport_delete || !template->remoteport_delete || 357 !template->ls_req || !template->fcp_io || 358 !template->ls_abort || !template->fcp_abort || 359 !template->max_hw_queues || !template->max_sgl_segments || 360 !template->max_dif_sgl_segments || !template->dma_boundary) { 361 ret = -EINVAL; 362 goto out_reghost_failed; 363 } 364 365 /* 366 * look to see if there is already a localport that had been 367 * deregistered and in the process of waiting for all the 368 * references to fully be removed. If the references haven't 369 * expired, we can simply re-enable the localport. Remoteports 370 * and controller reconnections should resume naturally. 371 */ 372 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 373 374 /* found an lport, but something about its state is bad */ 375 if (IS_ERR(newrec)) { 376 ret = PTR_ERR(newrec); 377 goto out_reghost_failed; 378 379 /* found existing lport, which was resumed */ 380 } else if (newrec) { 381 *portptr = &newrec->localport; 382 return 0; 383 } 384 385 /* nothing found - allocate a new localport struct */ 386 387 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 388 GFP_KERNEL); 389 if (!newrec) { 390 ret = -ENOMEM; 391 goto out_reghost_failed; 392 } 393 394 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 395 if (idx < 0) { 396 ret = -ENOSPC; 397 goto out_fail_kfree; 398 } 399 400 if (!get_device(dev) && dev) { 401 ret = -ENODEV; 402 goto out_ida_put; 403 } 404 405 INIT_LIST_HEAD(&newrec->port_list); 406 INIT_LIST_HEAD(&newrec->endp_list); 407 kref_init(&newrec->ref); 408 atomic_set(&newrec->act_rport_cnt, 0); 409 newrec->ops = template; 410 newrec->dev = dev; 411 ida_init(&newrec->endp_cnt); 412 if (template->local_priv_sz) 413 newrec->localport.private = &newrec[1]; 414 else 415 newrec->localport.private = NULL; 416 newrec->localport.node_name = pinfo->node_name; 417 newrec->localport.port_name = pinfo->port_name; 418 newrec->localport.port_role = pinfo->port_role; 419 newrec->localport.port_id = pinfo->port_id; 420 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 421 newrec->localport.port_num = idx; 422 423 spin_lock_irqsave(&nvme_fc_lock, flags); 424 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 425 spin_unlock_irqrestore(&nvme_fc_lock, flags); 426 427 if (dev) 428 dma_set_seg_boundary(dev, template->dma_boundary); 429 430 *portptr = &newrec->localport; 431 return 0; 432 433 out_ida_put: 434 ida_free(&nvme_fc_local_port_cnt, idx); 435 out_fail_kfree: 436 kfree(newrec); 437 out_reghost_failed: 438 *portptr = NULL; 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 443 444 /** 445 * nvme_fc_unregister_localport - transport entry point called by an 446 * LLDD to deregister/remove a previously 447 * registered a NVME host FC port. 448 * @portptr: pointer to the (registered) local port that is to be deregistered. 449 * 450 * Returns: 451 * a completion status. Must be 0 upon success; a negative errno 452 * (ex: -ENXIO) upon failure. 453 */ 454 int 455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 456 { 457 struct nvme_fc_lport *lport = localport_to_lport(portptr); 458 unsigned long flags; 459 460 if (!portptr) 461 return -EINVAL; 462 463 spin_lock_irqsave(&nvme_fc_lock, flags); 464 465 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 466 spin_unlock_irqrestore(&nvme_fc_lock, flags); 467 return -EINVAL; 468 } 469 portptr->port_state = FC_OBJSTATE_DELETED; 470 471 spin_unlock_irqrestore(&nvme_fc_lock, flags); 472 473 if (atomic_read(&lport->act_rport_cnt) == 0) 474 lport->ops->localport_delete(&lport->localport); 475 476 nvme_fc_lport_put(lport); 477 478 return 0; 479 } 480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 481 482 /* 483 * TRADDR strings, per FC-NVME are fixed format: 484 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 485 * udev event will only differ by prefix of what field is 486 * being specified: 487 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 488 * 19 + 43 + null_fudge = 64 characters 489 */ 490 #define FCNVME_TRADDR_LENGTH 64 491 492 static void 493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 494 struct nvme_fc_rport *rport) 495 { 496 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 497 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 498 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 499 500 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 501 return; 502 503 snprintf(hostaddr, sizeof(hostaddr), 504 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 505 lport->localport.node_name, lport->localport.port_name); 506 snprintf(tgtaddr, sizeof(tgtaddr), 507 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 508 rport->remoteport.node_name, rport->remoteport.port_name); 509 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 510 } 511 512 static void 513 nvme_fc_free_rport(struct kref *ref) 514 { 515 struct nvme_fc_rport *rport = 516 container_of(ref, struct nvme_fc_rport, ref); 517 struct nvme_fc_lport *lport = 518 localport_to_lport(rport->remoteport.localport); 519 unsigned long flags; 520 521 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 522 WARN_ON(!list_empty(&rport->ctrl_list)); 523 524 /* remove from lport list */ 525 spin_lock_irqsave(&nvme_fc_lock, flags); 526 list_del(&rport->endp_list); 527 spin_unlock_irqrestore(&nvme_fc_lock, flags); 528 529 WARN_ON(!list_empty(&rport->disc_list)); 530 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 531 532 kfree(rport); 533 534 nvme_fc_lport_put(lport); 535 } 536 537 static void 538 nvme_fc_rport_put(struct nvme_fc_rport *rport) 539 { 540 kref_put(&rport->ref, nvme_fc_free_rport); 541 } 542 543 static int 544 nvme_fc_rport_get(struct nvme_fc_rport *rport) 545 { 546 return kref_get_unless_zero(&rport->ref); 547 } 548 549 static void 550 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 551 { 552 switch (nvme_ctrl_state(&ctrl->ctrl)) { 553 case NVME_CTRL_NEW: 554 case NVME_CTRL_CONNECTING: 555 /* 556 * As all reconnects were suppressed, schedule a 557 * connect. 558 */ 559 dev_info(ctrl->ctrl.device, 560 "NVME-FC{%d}: connectivity re-established. " 561 "Attempting reconnect\n", ctrl->cnum); 562 563 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 564 break; 565 566 case NVME_CTRL_RESETTING: 567 /* 568 * Controller is already in the process of terminating the 569 * association. No need to do anything further. The reconnect 570 * step will naturally occur after the reset completes. 571 */ 572 break; 573 574 default: 575 /* no action to take - let it delete */ 576 break; 577 } 578 } 579 580 static struct nvme_fc_rport * 581 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 582 struct nvme_fc_port_info *pinfo) 583 { 584 struct nvme_fc_rport *rport; 585 struct nvme_fc_ctrl *ctrl; 586 unsigned long flags; 587 588 spin_lock_irqsave(&nvme_fc_lock, flags); 589 590 list_for_each_entry(rport, &lport->endp_list, endp_list) { 591 if (rport->remoteport.node_name != pinfo->node_name || 592 rport->remoteport.port_name != pinfo->port_name) 593 continue; 594 595 if (!nvme_fc_rport_get(rport)) { 596 rport = ERR_PTR(-ENOLCK); 597 goto out_done; 598 } 599 600 spin_unlock_irqrestore(&nvme_fc_lock, flags); 601 602 spin_lock_irqsave(&rport->lock, flags); 603 604 /* has it been unregistered */ 605 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 606 /* means lldd called us twice */ 607 spin_unlock_irqrestore(&rport->lock, flags); 608 nvme_fc_rport_put(rport); 609 return ERR_PTR(-ESTALE); 610 } 611 612 rport->remoteport.port_role = pinfo->port_role; 613 rport->remoteport.port_id = pinfo->port_id; 614 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 615 rport->dev_loss_end = 0; 616 617 /* 618 * kick off a reconnect attempt on all associations to the 619 * remote port. A successful reconnects will resume i/o. 620 */ 621 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 622 nvme_fc_resume_controller(ctrl); 623 624 spin_unlock_irqrestore(&rport->lock, flags); 625 626 return rport; 627 } 628 629 rport = NULL; 630 631 out_done: 632 spin_unlock_irqrestore(&nvme_fc_lock, flags); 633 634 return rport; 635 } 636 637 static inline void 638 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 639 struct nvme_fc_port_info *pinfo) 640 { 641 if (pinfo->dev_loss_tmo) 642 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 643 else 644 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 645 } 646 647 /** 648 * nvme_fc_register_remoteport - transport entry point called by an 649 * LLDD to register the existence of a NVME 650 * subsystem FC port on its fabric. 651 * @localport: pointer to the (registered) local port that the remote 652 * subsystem port is connected to. 653 * @pinfo: pointer to information about the port to be registered 654 * @portptr: pointer to a remote port pointer. Upon success, the routine 655 * will allocate a nvme_fc_remote_port structure and place its 656 * address in the remote port pointer. Upon failure, remote port 657 * pointer will be set to 0. 658 * 659 * Returns: 660 * a completion status. Must be 0 upon success; a negative errno 661 * (ex: -ENXIO) upon failure. 662 */ 663 int 664 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 665 struct nvme_fc_port_info *pinfo, 666 struct nvme_fc_remote_port **portptr) 667 { 668 struct nvme_fc_lport *lport = localport_to_lport(localport); 669 struct nvme_fc_rport *newrec; 670 unsigned long flags; 671 int ret, idx; 672 673 if (!nvme_fc_lport_get(lport)) { 674 ret = -ESHUTDOWN; 675 goto out_reghost_failed; 676 } 677 678 /* 679 * look to see if there is already a remoteport that is waiting 680 * for a reconnect (within dev_loss_tmo) with the same WWN's. 681 * If so, transition to it and reconnect. 682 */ 683 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 684 685 /* found an rport, but something about its state is bad */ 686 if (IS_ERR(newrec)) { 687 ret = PTR_ERR(newrec); 688 goto out_lport_put; 689 690 /* found existing rport, which was resumed */ 691 } else if (newrec) { 692 nvme_fc_lport_put(lport); 693 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 694 nvme_fc_signal_discovery_scan(lport, newrec); 695 *portptr = &newrec->remoteport; 696 return 0; 697 } 698 699 /* nothing found - allocate a new remoteport struct */ 700 701 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 702 GFP_KERNEL); 703 if (!newrec) { 704 ret = -ENOMEM; 705 goto out_lport_put; 706 } 707 708 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 709 if (idx < 0) { 710 ret = -ENOSPC; 711 goto out_kfree_rport; 712 } 713 714 INIT_LIST_HEAD(&newrec->endp_list); 715 INIT_LIST_HEAD(&newrec->ctrl_list); 716 INIT_LIST_HEAD(&newrec->ls_req_list); 717 INIT_LIST_HEAD(&newrec->disc_list); 718 kref_init(&newrec->ref); 719 atomic_set(&newrec->act_ctrl_cnt, 0); 720 spin_lock_init(&newrec->lock); 721 newrec->remoteport.localport = &lport->localport; 722 INIT_LIST_HEAD(&newrec->ls_rcv_list); 723 newrec->dev = lport->dev; 724 newrec->lport = lport; 725 if (lport->ops->remote_priv_sz) 726 newrec->remoteport.private = &newrec[1]; 727 else 728 newrec->remoteport.private = NULL; 729 newrec->remoteport.port_role = pinfo->port_role; 730 newrec->remoteport.node_name = pinfo->node_name; 731 newrec->remoteport.port_name = pinfo->port_name; 732 newrec->remoteport.port_id = pinfo->port_id; 733 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 734 newrec->remoteport.port_num = idx; 735 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 736 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 737 738 spin_lock_irqsave(&nvme_fc_lock, flags); 739 list_add_tail(&newrec->endp_list, &lport->endp_list); 740 spin_unlock_irqrestore(&nvme_fc_lock, flags); 741 742 nvme_fc_signal_discovery_scan(lport, newrec); 743 744 *portptr = &newrec->remoteport; 745 return 0; 746 747 out_kfree_rport: 748 kfree(newrec); 749 out_lport_put: 750 nvme_fc_lport_put(lport); 751 out_reghost_failed: 752 *portptr = NULL; 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 756 757 static int 758 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 759 { 760 struct nvmefc_ls_req_op *lsop; 761 unsigned long flags; 762 763 restart: 764 spin_lock_irqsave(&rport->lock, flags); 765 766 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 767 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 768 lsop->flags |= FCOP_FLAGS_TERMIO; 769 spin_unlock_irqrestore(&rport->lock, flags); 770 rport->lport->ops->ls_abort(&rport->lport->localport, 771 &rport->remoteport, 772 &lsop->ls_req); 773 goto restart; 774 } 775 } 776 spin_unlock_irqrestore(&rport->lock, flags); 777 778 return 0; 779 } 780 781 static void 782 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 783 { 784 dev_info(ctrl->ctrl.device, 785 "NVME-FC{%d}: controller connectivity lost. Awaiting " 786 "Reconnect", ctrl->cnum); 787 788 set_bit(ASSOC_FAILED, &ctrl->flags); 789 nvme_reset_ctrl(&ctrl->ctrl); 790 } 791 792 /** 793 * nvme_fc_unregister_remoteport - transport entry point called by an 794 * LLDD to deregister/remove a previously 795 * registered a NVME subsystem FC port. 796 * @portptr: pointer to the (registered) remote port that is to be 797 * deregistered. 798 * 799 * Returns: 800 * a completion status. Must be 0 upon success; a negative errno 801 * (ex: -ENXIO) upon failure. 802 */ 803 int 804 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 805 { 806 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 807 struct nvme_fc_ctrl *ctrl; 808 unsigned long flags; 809 810 if (!portptr) 811 return -EINVAL; 812 813 spin_lock_irqsave(&rport->lock, flags); 814 815 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 816 spin_unlock_irqrestore(&rport->lock, flags); 817 return -EINVAL; 818 } 819 portptr->port_state = FC_OBJSTATE_DELETED; 820 821 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 822 823 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 824 /* if dev_loss_tmo==0, dev loss is immediate */ 825 if (!portptr->dev_loss_tmo) { 826 dev_warn(ctrl->ctrl.device, 827 "NVME-FC{%d}: controller connectivity lost.\n", 828 ctrl->cnum); 829 nvme_delete_ctrl(&ctrl->ctrl); 830 } else 831 nvme_fc_ctrl_connectivity_loss(ctrl); 832 } 833 834 spin_unlock_irqrestore(&rport->lock, flags); 835 836 nvme_fc_abort_lsops(rport); 837 838 if (atomic_read(&rport->act_ctrl_cnt) == 0) 839 rport->lport->ops->remoteport_delete(portptr); 840 841 /* 842 * release the reference, which will allow, if all controllers 843 * go away, which should only occur after dev_loss_tmo occurs, 844 * for the rport to be torn down. 845 */ 846 nvme_fc_rport_put(rport); 847 848 return 0; 849 } 850 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 851 852 /** 853 * nvme_fc_rescan_remoteport - transport entry point called by an 854 * LLDD to request a nvme device rescan. 855 * @remoteport: pointer to the (registered) remote port that is to be 856 * rescanned. 857 * 858 * Returns: N/A 859 */ 860 void 861 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 862 { 863 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 864 865 nvme_fc_signal_discovery_scan(rport->lport, rport); 866 } 867 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 868 869 int 870 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 871 u32 dev_loss_tmo) 872 { 873 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 874 unsigned long flags; 875 876 spin_lock_irqsave(&rport->lock, flags); 877 878 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 879 spin_unlock_irqrestore(&rport->lock, flags); 880 return -EINVAL; 881 } 882 883 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 884 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 885 886 spin_unlock_irqrestore(&rport->lock, flags); 887 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 891 892 893 /* *********************** FC-NVME DMA Handling **************************** */ 894 895 /* 896 * The fcloop device passes in a NULL device pointer. Real LLD's will 897 * pass in a valid device pointer. If NULL is passed to the dma mapping 898 * routines, depending on the platform, it may or may not succeed, and 899 * may crash. 900 * 901 * As such: 902 * Wrapper all the dma routines and check the dev pointer. 903 * 904 * If simple mappings (return just a dma address, we'll noop them, 905 * returning a dma address of 0. 906 * 907 * On more complex mappings (dma_map_sg), a pseudo routine fills 908 * in the scatter list, setting all dma addresses to 0. 909 */ 910 911 static inline dma_addr_t 912 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 913 enum dma_data_direction dir) 914 { 915 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 916 } 917 918 static inline int 919 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 920 { 921 return dev ? dma_mapping_error(dev, dma_addr) : 0; 922 } 923 924 static inline void 925 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 926 enum dma_data_direction dir) 927 { 928 if (dev) 929 dma_unmap_single(dev, addr, size, dir); 930 } 931 932 static inline void 933 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 934 enum dma_data_direction dir) 935 { 936 if (dev) 937 dma_sync_single_for_cpu(dev, addr, size, dir); 938 } 939 940 static inline void 941 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 942 enum dma_data_direction dir) 943 { 944 if (dev) 945 dma_sync_single_for_device(dev, addr, size, dir); 946 } 947 948 /* pseudo dma_map_sg call */ 949 static int 950 fc_map_sg(struct scatterlist *sg, int nents) 951 { 952 struct scatterlist *s; 953 int i; 954 955 WARN_ON(nents == 0 || sg[0].length == 0); 956 957 for_each_sg(sg, s, nents, i) { 958 s->dma_address = 0L; 959 #ifdef CONFIG_NEED_SG_DMA_LENGTH 960 s->dma_length = s->length; 961 #endif 962 } 963 return nents; 964 } 965 966 static inline int 967 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 968 enum dma_data_direction dir) 969 { 970 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 971 } 972 973 static inline void 974 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 975 enum dma_data_direction dir) 976 { 977 if (dev) 978 dma_unmap_sg(dev, sg, nents, dir); 979 } 980 981 /* *********************** FC-NVME LS Handling **************************** */ 982 983 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 984 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 985 986 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 987 988 static void 989 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 990 { 991 struct nvme_fc_rport *rport = lsop->rport; 992 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 993 unsigned long flags; 994 995 spin_lock_irqsave(&rport->lock, flags); 996 997 if (!lsop->req_queued) { 998 spin_unlock_irqrestore(&rport->lock, flags); 999 return; 1000 } 1001 1002 list_del(&lsop->lsreq_list); 1003 1004 lsop->req_queued = false; 1005 1006 spin_unlock_irqrestore(&rport->lock, flags); 1007 1008 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1009 (lsreq->rqstlen + lsreq->rsplen), 1010 DMA_BIDIRECTIONAL); 1011 1012 nvme_fc_rport_put(rport); 1013 } 1014 1015 static int 1016 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1017 struct nvmefc_ls_req_op *lsop, 1018 void (*done)(struct nvmefc_ls_req *req, int status)) 1019 { 1020 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1021 unsigned long flags; 1022 int ret = 0; 1023 1024 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1025 return -ECONNREFUSED; 1026 1027 if (!nvme_fc_rport_get(rport)) 1028 return -ESHUTDOWN; 1029 1030 lsreq->done = done; 1031 lsop->rport = rport; 1032 lsop->req_queued = false; 1033 INIT_LIST_HEAD(&lsop->lsreq_list); 1034 init_completion(&lsop->ls_done); 1035 1036 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1037 lsreq->rqstlen + lsreq->rsplen, 1038 DMA_BIDIRECTIONAL); 1039 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1040 ret = -EFAULT; 1041 goto out_putrport; 1042 } 1043 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1044 1045 spin_lock_irqsave(&rport->lock, flags); 1046 1047 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1048 1049 lsop->req_queued = true; 1050 1051 spin_unlock_irqrestore(&rport->lock, flags); 1052 1053 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1054 &rport->remoteport, lsreq); 1055 if (ret) 1056 goto out_unlink; 1057 1058 return 0; 1059 1060 out_unlink: 1061 lsop->ls_error = ret; 1062 spin_lock_irqsave(&rport->lock, flags); 1063 lsop->req_queued = false; 1064 list_del(&lsop->lsreq_list); 1065 spin_unlock_irqrestore(&rport->lock, flags); 1066 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1067 (lsreq->rqstlen + lsreq->rsplen), 1068 DMA_BIDIRECTIONAL); 1069 out_putrport: 1070 nvme_fc_rport_put(rport); 1071 1072 return ret; 1073 } 1074 1075 static void 1076 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1077 { 1078 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1079 1080 lsop->ls_error = status; 1081 complete(&lsop->ls_done); 1082 } 1083 1084 static int 1085 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1086 { 1087 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1088 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1089 int ret; 1090 1091 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1092 1093 if (!ret) { 1094 /* 1095 * No timeout/not interruptible as we need the struct 1096 * to exist until the lldd calls us back. Thus mandate 1097 * wait until driver calls back. lldd responsible for 1098 * the timeout action 1099 */ 1100 wait_for_completion(&lsop->ls_done); 1101 1102 __nvme_fc_finish_ls_req(lsop); 1103 1104 ret = lsop->ls_error; 1105 } 1106 1107 if (ret) 1108 return ret; 1109 1110 /* ACC or RJT payload ? */ 1111 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1112 return -ENXIO; 1113 1114 return 0; 1115 } 1116 1117 static int 1118 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1119 struct nvmefc_ls_req_op *lsop, 1120 void (*done)(struct nvmefc_ls_req *req, int status)) 1121 { 1122 /* don't wait for completion */ 1123 1124 return __nvme_fc_send_ls_req(rport, lsop, done); 1125 } 1126 1127 static int 1128 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1129 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1130 { 1131 struct nvmefc_ls_req_op *lsop; 1132 struct nvmefc_ls_req *lsreq; 1133 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1134 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1135 unsigned long flags; 1136 int ret, fcret = 0; 1137 1138 lsop = kzalloc((sizeof(*lsop) + 1139 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1140 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1141 if (!lsop) { 1142 dev_info(ctrl->ctrl.device, 1143 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1144 ctrl->cnum); 1145 ret = -ENOMEM; 1146 goto out_no_memory; 1147 } 1148 1149 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1150 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1151 lsreq = &lsop->ls_req; 1152 if (ctrl->lport->ops->lsrqst_priv_sz) 1153 lsreq->private = &assoc_acc[1]; 1154 else 1155 lsreq->private = NULL; 1156 1157 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1158 assoc_rqst->desc_list_len = 1159 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1160 1161 assoc_rqst->assoc_cmd.desc_tag = 1162 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1163 assoc_rqst->assoc_cmd.desc_len = 1164 fcnvme_lsdesc_len( 1165 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1166 1167 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1168 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1169 /* Linux supports only Dynamic controllers */ 1170 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1171 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1172 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1173 sizeof(assoc_rqst->assoc_cmd.hostnqn)); 1174 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1175 sizeof(assoc_rqst->assoc_cmd.subnqn)); 1176 1177 lsop->queue = queue; 1178 lsreq->rqstaddr = assoc_rqst; 1179 lsreq->rqstlen = sizeof(*assoc_rqst); 1180 lsreq->rspaddr = assoc_acc; 1181 lsreq->rsplen = sizeof(*assoc_acc); 1182 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1183 1184 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1185 if (ret) 1186 goto out_free_buffer; 1187 1188 /* process connect LS completion */ 1189 1190 /* validate the ACC response */ 1191 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1192 fcret = VERR_LSACC; 1193 else if (assoc_acc->hdr.desc_list_len != 1194 fcnvme_lsdesc_len( 1195 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1196 fcret = VERR_CR_ASSOC_ACC_LEN; 1197 else if (assoc_acc->hdr.rqst.desc_tag != 1198 cpu_to_be32(FCNVME_LSDESC_RQST)) 1199 fcret = VERR_LSDESC_RQST; 1200 else if (assoc_acc->hdr.rqst.desc_len != 1201 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1202 fcret = VERR_LSDESC_RQST_LEN; 1203 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1204 fcret = VERR_CR_ASSOC; 1205 else if (assoc_acc->associd.desc_tag != 1206 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1207 fcret = VERR_ASSOC_ID; 1208 else if (assoc_acc->associd.desc_len != 1209 fcnvme_lsdesc_len( 1210 sizeof(struct fcnvme_lsdesc_assoc_id))) 1211 fcret = VERR_ASSOC_ID_LEN; 1212 else if (assoc_acc->connectid.desc_tag != 1213 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1214 fcret = VERR_CONN_ID; 1215 else if (assoc_acc->connectid.desc_len != 1216 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1217 fcret = VERR_CONN_ID_LEN; 1218 1219 if (fcret) { 1220 ret = -EBADF; 1221 dev_err(ctrl->dev, 1222 "q %d Create Association LS failed: %s\n", 1223 queue->qnum, validation_errors[fcret]); 1224 } else { 1225 spin_lock_irqsave(&ctrl->lock, flags); 1226 ctrl->association_id = 1227 be64_to_cpu(assoc_acc->associd.association_id); 1228 queue->connection_id = 1229 be64_to_cpu(assoc_acc->connectid.connection_id); 1230 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1231 spin_unlock_irqrestore(&ctrl->lock, flags); 1232 } 1233 1234 out_free_buffer: 1235 kfree(lsop); 1236 out_no_memory: 1237 if (ret) 1238 dev_err(ctrl->dev, 1239 "queue %d connect admin queue failed (%d).\n", 1240 queue->qnum, ret); 1241 return ret; 1242 } 1243 1244 static int 1245 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1246 u16 qsize, u16 ersp_ratio) 1247 { 1248 struct nvmefc_ls_req_op *lsop; 1249 struct nvmefc_ls_req *lsreq; 1250 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1251 struct fcnvme_ls_cr_conn_acc *conn_acc; 1252 int ret, fcret = 0; 1253 1254 lsop = kzalloc((sizeof(*lsop) + 1255 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1256 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1257 if (!lsop) { 1258 dev_info(ctrl->ctrl.device, 1259 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1260 ctrl->cnum); 1261 ret = -ENOMEM; 1262 goto out_no_memory; 1263 } 1264 1265 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1266 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1267 lsreq = &lsop->ls_req; 1268 if (ctrl->lport->ops->lsrqst_priv_sz) 1269 lsreq->private = (void *)&conn_acc[1]; 1270 else 1271 lsreq->private = NULL; 1272 1273 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1274 conn_rqst->desc_list_len = cpu_to_be32( 1275 sizeof(struct fcnvme_lsdesc_assoc_id) + 1276 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1277 1278 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1279 conn_rqst->associd.desc_len = 1280 fcnvme_lsdesc_len( 1281 sizeof(struct fcnvme_lsdesc_assoc_id)); 1282 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1283 conn_rqst->connect_cmd.desc_tag = 1284 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1285 conn_rqst->connect_cmd.desc_len = 1286 fcnvme_lsdesc_len( 1287 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1288 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1289 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1290 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1291 1292 lsop->queue = queue; 1293 lsreq->rqstaddr = conn_rqst; 1294 lsreq->rqstlen = sizeof(*conn_rqst); 1295 lsreq->rspaddr = conn_acc; 1296 lsreq->rsplen = sizeof(*conn_acc); 1297 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1298 1299 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1300 if (ret) 1301 goto out_free_buffer; 1302 1303 /* process connect LS completion */ 1304 1305 /* validate the ACC response */ 1306 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1307 fcret = VERR_LSACC; 1308 else if (conn_acc->hdr.desc_list_len != 1309 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1310 fcret = VERR_CR_CONN_ACC_LEN; 1311 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1312 fcret = VERR_LSDESC_RQST; 1313 else if (conn_acc->hdr.rqst.desc_len != 1314 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1315 fcret = VERR_LSDESC_RQST_LEN; 1316 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1317 fcret = VERR_CR_CONN; 1318 else if (conn_acc->connectid.desc_tag != 1319 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1320 fcret = VERR_CONN_ID; 1321 else if (conn_acc->connectid.desc_len != 1322 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1323 fcret = VERR_CONN_ID_LEN; 1324 1325 if (fcret) { 1326 ret = -EBADF; 1327 dev_err(ctrl->dev, 1328 "q %d Create I/O Connection LS failed: %s\n", 1329 queue->qnum, validation_errors[fcret]); 1330 } else { 1331 queue->connection_id = 1332 be64_to_cpu(conn_acc->connectid.connection_id); 1333 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1334 } 1335 1336 out_free_buffer: 1337 kfree(lsop); 1338 out_no_memory: 1339 if (ret) 1340 dev_err(ctrl->dev, 1341 "queue %d connect I/O queue failed (%d).\n", 1342 queue->qnum, ret); 1343 return ret; 1344 } 1345 1346 static void 1347 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1348 { 1349 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1350 1351 __nvme_fc_finish_ls_req(lsop); 1352 1353 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1354 1355 kfree(lsop); 1356 } 1357 1358 /* 1359 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1360 * the FC-NVME Association. Terminating the association also 1361 * terminates the FC-NVME connections (per queue, both admin and io 1362 * queues) that are part of the association. E.g. things are torn 1363 * down, and the related FC-NVME Association ID and Connection IDs 1364 * become invalid. 1365 * 1366 * The behavior of the fc-nvme initiator is such that it's 1367 * understanding of the association and connections will implicitly 1368 * be torn down. The action is implicit as it may be due to a loss of 1369 * connectivity with the fc-nvme target, so you may never get a 1370 * response even if you tried. As such, the action of this routine 1371 * is to asynchronously send the LS, ignore any results of the LS, and 1372 * continue on with terminating the association. If the fc-nvme target 1373 * is present and receives the LS, it too can tear down. 1374 */ 1375 static void 1376 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1377 { 1378 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1379 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1380 struct nvmefc_ls_req_op *lsop; 1381 struct nvmefc_ls_req *lsreq; 1382 int ret; 1383 1384 lsop = kzalloc((sizeof(*lsop) + 1385 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1386 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1387 if (!lsop) { 1388 dev_info(ctrl->ctrl.device, 1389 "NVME-FC{%d}: send Disconnect Association " 1390 "failed: ENOMEM\n", 1391 ctrl->cnum); 1392 return; 1393 } 1394 1395 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1396 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1397 lsreq = &lsop->ls_req; 1398 if (ctrl->lport->ops->lsrqst_priv_sz) 1399 lsreq->private = (void *)&discon_acc[1]; 1400 else 1401 lsreq->private = NULL; 1402 1403 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1404 ctrl->association_id); 1405 1406 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1407 nvme_fc_disconnect_assoc_done); 1408 if (ret) 1409 kfree(lsop); 1410 } 1411 1412 static void 1413 nvme_fc_xmt_ls_rsp_free(struct nvmefc_ls_rcv_op *lsop) 1414 { 1415 struct nvme_fc_rport *rport = lsop->rport; 1416 struct nvme_fc_lport *lport = rport->lport; 1417 unsigned long flags; 1418 1419 spin_lock_irqsave(&rport->lock, flags); 1420 list_del(&lsop->lsrcv_list); 1421 spin_unlock_irqrestore(&rport->lock, flags); 1422 1423 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1424 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1425 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1426 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1427 1428 kfree(lsop->rspbuf); 1429 kfree(lsop->rqstbuf); 1430 kfree(lsop); 1431 1432 nvme_fc_rport_put(rport); 1433 } 1434 1435 static void 1436 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1437 { 1438 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1439 1440 nvme_fc_xmt_ls_rsp_free(lsop); 1441 } 1442 1443 static void 1444 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1445 { 1446 struct nvme_fc_rport *rport = lsop->rport; 1447 struct nvme_fc_lport *lport = rport->lport; 1448 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1449 int ret; 1450 1451 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1452 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1453 1454 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1455 lsop->lsrsp); 1456 if (ret) { 1457 dev_warn(lport->dev, 1458 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1459 w0->ls_cmd, ret); 1460 nvme_fc_xmt_ls_rsp_free(lsop); 1461 return; 1462 } 1463 } 1464 1465 static struct nvme_fc_ctrl * 1466 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1467 struct nvmefc_ls_rcv_op *lsop) 1468 { 1469 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1470 &lsop->rqstbuf->rq_dis_assoc; 1471 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1472 struct nvmefc_ls_rcv_op *oldls = NULL; 1473 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1474 unsigned long flags; 1475 1476 spin_lock_irqsave(&rport->lock, flags); 1477 1478 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1479 if (!nvme_fc_ctrl_get(ctrl)) 1480 continue; 1481 spin_lock(&ctrl->lock); 1482 if (association_id == ctrl->association_id) { 1483 oldls = ctrl->rcv_disconn; 1484 ctrl->rcv_disconn = lsop; 1485 ret = ctrl; 1486 } 1487 spin_unlock(&ctrl->lock); 1488 if (ret) 1489 /* leave the ctrl get reference */ 1490 break; 1491 nvme_fc_ctrl_put(ctrl); 1492 } 1493 1494 spin_unlock_irqrestore(&rport->lock, flags); 1495 1496 /* transmit a response for anything that was pending */ 1497 if (oldls) { 1498 dev_info(rport->lport->dev, 1499 "NVME-FC{%d}: Multiple Disconnect Association " 1500 "LS's received\n", ctrl->cnum); 1501 /* overwrite good response with bogus failure */ 1502 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1503 sizeof(*oldls->rspbuf), 1504 rqst->w0.ls_cmd, 1505 FCNVME_RJT_RC_UNAB, 1506 FCNVME_RJT_EXP_NONE, 0); 1507 nvme_fc_xmt_ls_rsp(oldls); 1508 } 1509 1510 return ret; 1511 } 1512 1513 /* 1514 * returns true to mean LS handled and ls_rsp can be sent 1515 * returns false to defer ls_rsp xmt (will be done as part of 1516 * association termination) 1517 */ 1518 static bool 1519 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1520 { 1521 struct nvme_fc_rport *rport = lsop->rport; 1522 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1523 &lsop->rqstbuf->rq_dis_assoc; 1524 struct fcnvme_ls_disconnect_assoc_acc *acc = 1525 &lsop->rspbuf->rsp_dis_assoc; 1526 struct nvme_fc_ctrl *ctrl = NULL; 1527 int ret = 0; 1528 1529 memset(acc, 0, sizeof(*acc)); 1530 1531 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1532 if (!ret) { 1533 /* match an active association */ 1534 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1535 if (!ctrl) 1536 ret = VERR_NO_ASSOC; 1537 } 1538 1539 if (ret) { 1540 dev_info(rport->lport->dev, 1541 "Disconnect LS failed: %s\n", 1542 validation_errors[ret]); 1543 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1544 sizeof(*acc), rqst->w0.ls_cmd, 1545 (ret == VERR_NO_ASSOC) ? 1546 FCNVME_RJT_RC_INV_ASSOC : 1547 FCNVME_RJT_RC_LOGIC, 1548 FCNVME_RJT_EXP_NONE, 0); 1549 return true; 1550 } 1551 1552 /* format an ACCept response */ 1553 1554 lsop->lsrsp->rsplen = sizeof(*acc); 1555 1556 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1557 fcnvme_lsdesc_len( 1558 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1559 FCNVME_LS_DISCONNECT_ASSOC); 1560 1561 /* 1562 * the transmit of the response will occur after the exchanges 1563 * for the association have been ABTS'd by 1564 * nvme_fc_delete_association(). 1565 */ 1566 1567 /* fail the association */ 1568 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1569 1570 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1571 nvme_fc_ctrl_put(ctrl); 1572 1573 return false; 1574 } 1575 1576 /* 1577 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1578 * returns true if a response should be sent afterward, false if rsp will 1579 * be sent asynchronously. 1580 */ 1581 static bool 1582 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1583 { 1584 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1585 bool ret = true; 1586 1587 lsop->lsrsp->nvme_fc_private = lsop; 1588 lsop->lsrsp->rspbuf = lsop->rspbuf; 1589 lsop->lsrsp->rspdma = lsop->rspdma; 1590 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1591 /* Be preventative. handlers will later set to valid length */ 1592 lsop->lsrsp->rsplen = 0; 1593 1594 /* 1595 * handlers: 1596 * parse request input, execute the request, and format the 1597 * LS response 1598 */ 1599 switch (w0->ls_cmd) { 1600 case FCNVME_LS_DISCONNECT_ASSOC: 1601 ret = nvme_fc_ls_disconnect_assoc(lsop); 1602 break; 1603 case FCNVME_LS_DISCONNECT_CONN: 1604 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1605 sizeof(*lsop->rspbuf), w0->ls_cmd, 1606 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1607 break; 1608 case FCNVME_LS_CREATE_ASSOCIATION: 1609 case FCNVME_LS_CREATE_CONNECTION: 1610 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1611 sizeof(*lsop->rspbuf), w0->ls_cmd, 1612 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1613 break; 1614 default: 1615 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1616 sizeof(*lsop->rspbuf), w0->ls_cmd, 1617 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1618 break; 1619 } 1620 1621 return(ret); 1622 } 1623 1624 static void 1625 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1626 { 1627 struct nvme_fc_rport *rport = 1628 container_of(work, struct nvme_fc_rport, lsrcv_work); 1629 struct fcnvme_ls_rqst_w0 *w0; 1630 struct nvmefc_ls_rcv_op *lsop; 1631 unsigned long flags; 1632 bool sendrsp; 1633 1634 restart: 1635 sendrsp = true; 1636 spin_lock_irqsave(&rport->lock, flags); 1637 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1638 if (lsop->handled) 1639 continue; 1640 1641 lsop->handled = true; 1642 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1643 spin_unlock_irqrestore(&rport->lock, flags); 1644 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1645 } else { 1646 spin_unlock_irqrestore(&rport->lock, flags); 1647 w0 = &lsop->rqstbuf->w0; 1648 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1649 lsop->rspbuf, 1650 sizeof(*lsop->rspbuf), 1651 w0->ls_cmd, 1652 FCNVME_RJT_RC_UNAB, 1653 FCNVME_RJT_EXP_NONE, 0); 1654 } 1655 if (sendrsp) 1656 nvme_fc_xmt_ls_rsp(lsop); 1657 goto restart; 1658 } 1659 spin_unlock_irqrestore(&rport->lock, flags); 1660 } 1661 1662 static 1663 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport, 1664 struct fcnvme_ls_rqst_w0 *w0) 1665 { 1666 dev_info(lport->dev, "RCV %s LS failed: No memory\n", 1667 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1668 nvmefc_ls_names[w0->ls_cmd] : ""); 1669 } 1670 1671 /** 1672 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1673 * upon the reception of a NVME LS request. 1674 * 1675 * The nvme-fc layer will copy payload to an internal structure for 1676 * processing. As such, upon completion of the routine, the LLDD may 1677 * immediately free/reuse the LS request buffer passed in the call. 1678 * 1679 * If this routine returns error, the LLDD should abort the exchange. 1680 * 1681 * @portptr: pointer to the (registered) remote port that the LS 1682 * was received from. The remoteport is associated with 1683 * a specific localport. 1684 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1685 * used to reference the exchange corresponding to the LS 1686 * when issuing an ls response. 1687 * @lsreqbuf: pointer to the buffer containing the LS Request 1688 * @lsreqbuf_len: length, in bytes, of the received LS request 1689 */ 1690 int 1691 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1692 struct nvmefc_ls_rsp *lsrsp, 1693 void *lsreqbuf, u32 lsreqbuf_len) 1694 { 1695 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1696 struct nvme_fc_lport *lport = rport->lport; 1697 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1698 struct nvmefc_ls_rcv_op *lsop; 1699 unsigned long flags; 1700 int ret; 1701 1702 nvme_fc_rport_get(rport); 1703 1704 /* validate there's a routine to transmit a response */ 1705 if (!lport->ops->xmt_ls_rsp) { 1706 dev_info(lport->dev, 1707 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1708 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1709 nvmefc_ls_names[w0->ls_cmd] : ""); 1710 ret = -EINVAL; 1711 goto out_put; 1712 } 1713 1714 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1715 dev_info(lport->dev, 1716 "RCV %s LS failed: payload too large\n", 1717 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1718 nvmefc_ls_names[w0->ls_cmd] : ""); 1719 ret = -E2BIG; 1720 goto out_put; 1721 } 1722 1723 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL); 1724 if (!lsop) { 1725 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1726 ret = -ENOMEM; 1727 goto out_put; 1728 } 1729 1730 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL); 1731 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL); 1732 if (!lsop->rqstbuf || !lsop->rspbuf) { 1733 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1734 ret = -ENOMEM; 1735 goto out_free; 1736 } 1737 1738 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1739 sizeof(*lsop->rspbuf), 1740 DMA_TO_DEVICE); 1741 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1742 dev_info(lport->dev, 1743 "RCV %s LS failed: DMA mapping failure\n", 1744 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1745 nvmefc_ls_names[w0->ls_cmd] : ""); 1746 ret = -EFAULT; 1747 goto out_free; 1748 } 1749 1750 lsop->rport = rport; 1751 lsop->lsrsp = lsrsp; 1752 1753 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1754 lsop->rqstdatalen = lsreqbuf_len; 1755 1756 spin_lock_irqsave(&rport->lock, flags); 1757 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1758 spin_unlock_irqrestore(&rport->lock, flags); 1759 ret = -ENOTCONN; 1760 goto out_unmap; 1761 } 1762 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1763 spin_unlock_irqrestore(&rport->lock, flags); 1764 1765 schedule_work(&rport->lsrcv_work); 1766 1767 return 0; 1768 1769 out_unmap: 1770 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1771 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1772 out_free: 1773 kfree(lsop->rspbuf); 1774 kfree(lsop->rqstbuf); 1775 kfree(lsop); 1776 out_put: 1777 nvme_fc_rport_put(rport); 1778 return ret; 1779 } 1780 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1781 1782 1783 /* *********************** NVME Ctrl Routines **************************** */ 1784 1785 static void 1786 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1787 struct nvme_fc_fcp_op *op) 1788 { 1789 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1790 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1791 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1792 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1793 1794 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1795 } 1796 1797 static void 1798 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1799 unsigned int hctx_idx) 1800 { 1801 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1802 1803 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op); 1804 } 1805 1806 static int 1807 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1808 { 1809 unsigned long flags; 1810 int opstate; 1811 1812 spin_lock_irqsave(&ctrl->lock, flags); 1813 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1814 if (opstate != FCPOP_STATE_ACTIVE) 1815 atomic_set(&op->state, opstate); 1816 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1817 op->flags |= FCOP_FLAGS_TERMIO; 1818 ctrl->iocnt++; 1819 } 1820 spin_unlock_irqrestore(&ctrl->lock, flags); 1821 1822 if (opstate != FCPOP_STATE_ACTIVE) 1823 return -ECANCELED; 1824 1825 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1826 &ctrl->rport->remoteport, 1827 op->queue->lldd_handle, 1828 &op->fcp_req); 1829 1830 return 0; 1831 } 1832 1833 static void 1834 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1835 { 1836 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1837 int i; 1838 1839 /* ensure we've initialized the ops once */ 1840 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1841 return; 1842 1843 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1844 __nvme_fc_abort_op(ctrl, aen_op); 1845 } 1846 1847 static inline void 1848 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1849 struct nvme_fc_fcp_op *op, int opstate) 1850 { 1851 unsigned long flags; 1852 1853 if (opstate == FCPOP_STATE_ABORTED) { 1854 spin_lock_irqsave(&ctrl->lock, flags); 1855 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1856 op->flags & FCOP_FLAGS_TERMIO) { 1857 if (!--ctrl->iocnt) 1858 wake_up(&ctrl->ioabort_wait); 1859 } 1860 spin_unlock_irqrestore(&ctrl->lock, flags); 1861 } 1862 } 1863 1864 static void 1865 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1866 { 1867 struct nvme_fc_ctrl *ctrl = 1868 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1869 1870 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1871 } 1872 1873 /* 1874 * nvme_fc_io_getuuid - Routine called to get the appid field 1875 * associated with request by the lldd 1876 * @req:IO request from nvme fc to driver 1877 * Returns: UUID if there is an appid associated with VM or 1878 * NULL if the user/libvirt has not set the appid to VM 1879 */ 1880 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1881 { 1882 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1883 struct request *rq = op->rq; 1884 1885 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio) 1886 return NULL; 1887 return blkcg_get_fc_appid(rq->bio); 1888 } 1889 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1890 1891 static void 1892 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1893 { 1894 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1895 struct request *rq = op->rq; 1896 struct nvmefc_fcp_req *freq = &op->fcp_req; 1897 struct nvme_fc_ctrl *ctrl = op->ctrl; 1898 struct nvme_fc_queue *queue = op->queue; 1899 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1900 struct nvme_command *sqe = &op->cmd_iu.sqe; 1901 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1902 union nvme_result result; 1903 bool terminate_assoc = true; 1904 int opstate; 1905 1906 /* 1907 * WARNING: 1908 * The current linux implementation of a nvme controller 1909 * allocates a single tag set for all io queues and sizes 1910 * the io queues to fully hold all possible tags. Thus, the 1911 * implementation does not reference or care about the sqhd 1912 * value as it never needs to use the sqhd/sqtail pointers 1913 * for submission pacing. 1914 * 1915 * This affects the FC-NVME implementation in two ways: 1916 * 1) As the value doesn't matter, we don't need to waste 1917 * cycles extracting it from ERSPs and stamping it in the 1918 * cases where the transport fabricates CQEs on successful 1919 * completions. 1920 * 2) The FC-NVME implementation requires that delivery of 1921 * ERSP completions are to go back to the nvme layer in order 1922 * relative to the rsn, such that the sqhd value will always 1923 * be "in order" for the nvme layer. As the nvme layer in 1924 * linux doesn't care about sqhd, there's no need to return 1925 * them in order. 1926 * 1927 * Additionally: 1928 * As the core nvme layer in linux currently does not look at 1929 * every field in the cqe - in cases where the FC transport must 1930 * fabricate a CQE, the following fields will not be set as they 1931 * are not referenced: 1932 * cqe.sqid, cqe.sqhd, cqe.command_id 1933 * 1934 * Failure or error of an individual i/o, in a transport 1935 * detected fashion unrelated to the nvme completion status, 1936 * potentially cause the initiator and target sides to get out 1937 * of sync on SQ head/tail (aka outstanding io count allowed). 1938 * Per FC-NVME spec, failure of an individual command requires 1939 * the connection to be terminated, which in turn requires the 1940 * association to be terminated. 1941 */ 1942 1943 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1944 1945 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1946 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1947 1948 if (opstate == FCPOP_STATE_ABORTED) 1949 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1950 else if (freq->status) { 1951 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1952 dev_info(ctrl->ctrl.device, 1953 "NVME-FC{%d}: io failed due to lldd error %d\n", 1954 ctrl->cnum, freq->status); 1955 } 1956 1957 /* 1958 * For the linux implementation, if we have an unsucceesful 1959 * status, they blk-mq layer can typically be called with the 1960 * non-zero status and the content of the cqe isn't important. 1961 */ 1962 if (status) 1963 goto done; 1964 1965 /* 1966 * command completed successfully relative to the wire 1967 * protocol. However, validate anything received and 1968 * extract the status and result from the cqe (create it 1969 * where necessary). 1970 */ 1971 1972 switch (freq->rcv_rsplen) { 1973 1974 case 0: 1975 case NVME_FC_SIZEOF_ZEROS_RSP: 1976 /* 1977 * No response payload or 12 bytes of payload (which 1978 * should all be zeros) are considered successful and 1979 * no payload in the CQE by the transport. 1980 */ 1981 if (freq->transferred_length != 1982 be32_to_cpu(op->cmd_iu.data_len)) { 1983 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1984 dev_info(ctrl->ctrl.device, 1985 "NVME-FC{%d}: io failed due to bad transfer " 1986 "length: %d vs expected %d\n", 1987 ctrl->cnum, freq->transferred_length, 1988 be32_to_cpu(op->cmd_iu.data_len)); 1989 goto done; 1990 } 1991 result.u64 = 0; 1992 break; 1993 1994 case sizeof(struct nvme_fc_ersp_iu): 1995 /* 1996 * The ERSP IU contains a full completion with CQE. 1997 * Validate ERSP IU and look at cqe. 1998 */ 1999 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2000 (freq->rcv_rsplen / 4) || 2001 be32_to_cpu(op->rsp_iu.xfrd_len) != 2002 freq->transferred_length || 2003 op->rsp_iu.ersp_result || 2004 sqe->common.command_id != cqe->command_id)) { 2005 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2006 dev_info(ctrl->ctrl.device, 2007 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2008 "iu len %d, xfr len %d vs %d, status code " 2009 "%d, cmdid %d vs %d\n", 2010 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2011 be32_to_cpu(op->rsp_iu.xfrd_len), 2012 freq->transferred_length, 2013 op->rsp_iu.ersp_result, 2014 sqe->common.command_id, 2015 cqe->command_id); 2016 goto done; 2017 } 2018 result = cqe->result; 2019 status = cqe->status; 2020 break; 2021 2022 default: 2023 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2024 dev_info(ctrl->ctrl.device, 2025 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2026 "len %d\n", 2027 ctrl->cnum, freq->rcv_rsplen); 2028 goto done; 2029 } 2030 2031 terminate_assoc = false; 2032 2033 done: 2034 if (op->flags & FCOP_FLAGS_AEN) { 2035 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2036 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2037 atomic_set(&op->state, FCPOP_STATE_IDLE); 2038 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2039 nvme_fc_ctrl_put(ctrl); 2040 goto check_error; 2041 } 2042 2043 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2044 if (!nvme_try_complete_req(rq, status, result)) 2045 nvme_fc_complete_rq(rq); 2046 2047 check_error: 2048 if (terminate_assoc && 2049 nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING) 2050 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2051 } 2052 2053 static int 2054 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2055 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2056 struct request *rq, u32 rqno) 2057 { 2058 struct nvme_fcp_op_w_sgl *op_w_sgl = 2059 container_of(op, typeof(*op_w_sgl), op); 2060 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2061 int ret = 0; 2062 2063 memset(op, 0, sizeof(*op)); 2064 op->fcp_req.cmdaddr = &op->cmd_iu; 2065 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2066 op->fcp_req.rspaddr = &op->rsp_iu; 2067 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2068 op->fcp_req.done = nvme_fc_fcpio_done; 2069 op->ctrl = ctrl; 2070 op->queue = queue; 2071 op->rq = rq; 2072 op->rqno = rqno; 2073 2074 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2075 cmdiu->fc_id = NVME_CMD_FC_ID; 2076 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2077 if (queue->qnum) 2078 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2079 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2080 else 2081 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2082 2083 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2084 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2085 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2086 dev_err(ctrl->dev, 2087 "FCP Op failed - cmdiu dma mapping failed.\n"); 2088 ret = -EFAULT; 2089 goto out_on_error; 2090 } 2091 2092 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2093 &op->rsp_iu, sizeof(op->rsp_iu), 2094 DMA_FROM_DEVICE); 2095 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2096 dev_err(ctrl->dev, 2097 "FCP Op failed - rspiu dma mapping failed.\n"); 2098 ret = -EFAULT; 2099 } 2100 2101 atomic_set(&op->state, FCPOP_STATE_IDLE); 2102 out_on_error: 2103 return ret; 2104 } 2105 2106 static int 2107 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2108 unsigned int hctx_idx, unsigned int numa_node) 2109 { 2110 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2111 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2112 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2113 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2114 int res; 2115 2116 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2117 if (res) 2118 return res; 2119 op->op.fcp_req.first_sgl = op->sgl; 2120 op->op.fcp_req.private = &op->priv[0]; 2121 nvme_req(rq)->ctrl = &ctrl->ctrl; 2122 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2123 return res; 2124 } 2125 2126 static int 2127 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2128 { 2129 struct nvme_fc_fcp_op *aen_op; 2130 struct nvme_fc_cmd_iu *cmdiu; 2131 struct nvme_command *sqe; 2132 void *private = NULL; 2133 int i, ret; 2134 2135 aen_op = ctrl->aen_ops; 2136 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2137 if (ctrl->lport->ops->fcprqst_priv_sz) { 2138 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2139 GFP_KERNEL); 2140 if (!private) 2141 return -ENOMEM; 2142 } 2143 2144 cmdiu = &aen_op->cmd_iu; 2145 sqe = &cmdiu->sqe; 2146 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2147 aen_op, (struct request *)NULL, 2148 (NVME_AQ_BLK_MQ_DEPTH + i)); 2149 if (ret) { 2150 kfree(private); 2151 return ret; 2152 } 2153 2154 aen_op->flags = FCOP_FLAGS_AEN; 2155 aen_op->fcp_req.private = private; 2156 2157 memset(sqe, 0, sizeof(*sqe)); 2158 sqe->common.opcode = nvme_admin_async_event; 2159 /* Note: core layer may overwrite the sqe.command_id value */ 2160 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2161 } 2162 return 0; 2163 } 2164 2165 static void 2166 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2167 { 2168 struct nvme_fc_fcp_op *aen_op; 2169 int i; 2170 2171 cancel_work_sync(&ctrl->ctrl.async_event_work); 2172 aen_op = ctrl->aen_ops; 2173 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2174 __nvme_fc_exit_request(ctrl, aen_op); 2175 2176 kfree(aen_op->fcp_req.private); 2177 aen_op->fcp_req.private = NULL; 2178 } 2179 } 2180 2181 static inline int 2182 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx) 2183 { 2184 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data); 2185 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2186 2187 hctx->driver_data = queue; 2188 queue->hctx = hctx; 2189 return 0; 2190 } 2191 2192 static int 2193 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) 2194 { 2195 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1); 2196 } 2197 2198 static int 2199 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2200 unsigned int hctx_idx) 2201 { 2202 return __nvme_fc_init_hctx(hctx, data, hctx_idx); 2203 } 2204 2205 static void 2206 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2207 { 2208 struct nvme_fc_queue *queue; 2209 2210 queue = &ctrl->queues[idx]; 2211 memset(queue, 0, sizeof(*queue)); 2212 queue->ctrl = ctrl; 2213 queue->qnum = idx; 2214 atomic_set(&queue->csn, 0); 2215 queue->dev = ctrl->dev; 2216 2217 if (idx > 0) 2218 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2219 else 2220 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2221 2222 /* 2223 * Considered whether we should allocate buffers for all SQEs 2224 * and CQEs and dma map them - mapping their respective entries 2225 * into the request structures (kernel vm addr and dma address) 2226 * thus the driver could use the buffers/mappings directly. 2227 * It only makes sense if the LLDD would use them for its 2228 * messaging api. It's very unlikely most adapter api's would use 2229 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2230 * structures were used instead. 2231 */ 2232 } 2233 2234 /* 2235 * This routine terminates a queue at the transport level. 2236 * The transport has already ensured that all outstanding ios on 2237 * the queue have been terminated. 2238 * The transport will send a Disconnect LS request to terminate 2239 * the queue's connection. Termination of the admin queue will also 2240 * terminate the association at the target. 2241 */ 2242 static void 2243 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2244 { 2245 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2246 return; 2247 2248 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2249 /* 2250 * Current implementation never disconnects a single queue. 2251 * It always terminates a whole association. So there is never 2252 * a disconnect(queue) LS sent to the target. 2253 */ 2254 2255 queue->connection_id = 0; 2256 atomic_set(&queue->csn, 0); 2257 } 2258 2259 static void 2260 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2261 struct nvme_fc_queue *queue, unsigned int qidx) 2262 { 2263 if (ctrl->lport->ops->delete_queue) 2264 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2265 queue->lldd_handle); 2266 queue->lldd_handle = NULL; 2267 } 2268 2269 static void 2270 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2271 { 2272 int i; 2273 2274 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2275 nvme_fc_free_queue(&ctrl->queues[i]); 2276 } 2277 2278 static int 2279 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2280 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2281 { 2282 int ret = 0; 2283 2284 queue->lldd_handle = NULL; 2285 if (ctrl->lport->ops->create_queue) 2286 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2287 qidx, qsize, &queue->lldd_handle); 2288 2289 return ret; 2290 } 2291 2292 static void 2293 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2294 { 2295 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2296 int i; 2297 2298 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2299 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2300 } 2301 2302 static int 2303 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2304 { 2305 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2306 int i, ret; 2307 2308 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2309 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2310 if (ret) 2311 goto delete_queues; 2312 } 2313 2314 return 0; 2315 2316 delete_queues: 2317 for (; i > 0; i--) 2318 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2319 return ret; 2320 } 2321 2322 static int 2323 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2324 { 2325 int i, ret = 0; 2326 2327 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2328 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2329 (qsize / 5)); 2330 if (ret) 2331 break; 2332 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2333 if (ret) 2334 break; 2335 2336 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2337 } 2338 2339 return ret; 2340 } 2341 2342 static void 2343 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2344 { 2345 int i; 2346 2347 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2348 nvme_fc_init_queue(ctrl, i); 2349 } 2350 2351 static void 2352 nvme_fc_ctrl_free(struct kref *ref) 2353 { 2354 struct nvme_fc_ctrl *ctrl = 2355 container_of(ref, struct nvme_fc_ctrl, ref); 2356 unsigned long flags; 2357 2358 if (ctrl->ctrl.tagset) 2359 nvme_remove_io_tag_set(&ctrl->ctrl); 2360 2361 /* remove from rport list */ 2362 spin_lock_irqsave(&ctrl->rport->lock, flags); 2363 list_del(&ctrl->ctrl_list); 2364 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2365 2366 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2367 nvme_remove_admin_tag_set(&ctrl->ctrl); 2368 2369 kfree(ctrl->queues); 2370 2371 put_device(ctrl->dev); 2372 nvme_fc_rport_put(ctrl->rport); 2373 2374 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2375 if (ctrl->ctrl.opts) 2376 nvmf_free_options(ctrl->ctrl.opts); 2377 kfree(ctrl); 2378 } 2379 2380 static void 2381 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2382 { 2383 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2384 } 2385 2386 static int 2387 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2388 { 2389 return kref_get_unless_zero(&ctrl->ref); 2390 } 2391 2392 /* 2393 * All accesses from nvme core layer done - can now free the 2394 * controller. Called after last nvme_put_ctrl() call 2395 */ 2396 static void 2397 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl) 2398 { 2399 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2400 2401 WARN_ON(nctrl != &ctrl->ctrl); 2402 2403 nvme_fc_ctrl_put(ctrl); 2404 } 2405 2406 /* 2407 * This routine is used by the transport when it needs to find active 2408 * io on a queue that is to be terminated. The transport uses 2409 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2410 * this routine to kill them on a 1 by 1 basis. 2411 * 2412 * As FC allocates FC exchange for each io, the transport must contact 2413 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2414 * After terminating the exchange the LLDD will call the transport's 2415 * normal io done path for the request, but it will have an aborted 2416 * status. The done path will return the io request back to the block 2417 * layer with an error status. 2418 */ 2419 static bool nvme_fc_terminate_exchange(struct request *req, void *data) 2420 { 2421 struct nvme_ctrl *nctrl = data; 2422 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2423 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2424 2425 op->nreq.flags |= NVME_REQ_CANCELLED; 2426 __nvme_fc_abort_op(ctrl, op); 2427 return true; 2428 } 2429 2430 /* 2431 * This routine runs through all outstanding commands on the association 2432 * and aborts them. This routine is typically be called by the 2433 * delete_association routine. It is also called due to an error during 2434 * reconnect. In that scenario, it is most likely a command that initializes 2435 * the controller, including fabric Connect commands on io queues, that 2436 * may have timed out or failed thus the io must be killed for the connect 2437 * thread to see the error. 2438 */ 2439 static void 2440 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2441 { 2442 int q; 2443 2444 /* 2445 * if aborting io, the queues are no longer good, mark them 2446 * all as not live. 2447 */ 2448 if (ctrl->ctrl.queue_count > 1) { 2449 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2450 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2451 } 2452 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2453 2454 /* 2455 * If io queues are present, stop them and terminate all outstanding 2456 * ios on them. As FC allocates FC exchange for each io, the 2457 * transport must contact the LLDD to terminate the exchange, 2458 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2459 * to tell us what io's are busy and invoke a transport routine 2460 * to kill them with the LLDD. After terminating the exchange 2461 * the LLDD will call the transport's normal io done path, but it 2462 * will have an aborted status. The done path will return the 2463 * io requests back to the block layer as part of normal completions 2464 * (but with error status). 2465 */ 2466 if (ctrl->ctrl.queue_count > 1) { 2467 nvme_quiesce_io_queues(&ctrl->ctrl); 2468 nvme_sync_io_queues(&ctrl->ctrl); 2469 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2470 nvme_fc_terminate_exchange, &ctrl->ctrl); 2471 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2472 if (start_queues) 2473 nvme_unquiesce_io_queues(&ctrl->ctrl); 2474 } 2475 2476 /* 2477 * Other transports, which don't have link-level contexts bound 2478 * to sqe's, would try to gracefully shutdown the controller by 2479 * writing the registers for shutdown and polling (call 2480 * nvme_disable_ctrl()). Given a bunch of i/o was potentially 2481 * just aborted and we will wait on those contexts, and given 2482 * there was no indication of how live the controller is on the 2483 * link, don't send more io to create more contexts for the 2484 * shutdown. Let the controller fail via keepalive failure if 2485 * its still present. 2486 */ 2487 2488 /* 2489 * clean up the admin queue. Same thing as above. 2490 */ 2491 nvme_quiesce_admin_queue(&ctrl->ctrl); 2492 blk_sync_queue(ctrl->ctrl.admin_q); 2493 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2494 nvme_fc_terminate_exchange, &ctrl->ctrl); 2495 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2496 if (start_queues) 2497 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2498 } 2499 2500 static void 2501 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2502 { 2503 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); 2504 2505 /* 2506 * if an error (io timeout, etc) while (re)connecting, the remote 2507 * port requested terminating of the association (disconnect_ls) 2508 * or an error (timeout or abort) occurred on an io while creating 2509 * the controller. Abort any ios on the association and let the 2510 * create_association error path resolve things. 2511 */ 2512 if (state == NVME_CTRL_CONNECTING) { 2513 __nvme_fc_abort_outstanding_ios(ctrl, true); 2514 dev_warn(ctrl->ctrl.device, 2515 "NVME-FC{%d}: transport error during (re)connect\n", 2516 ctrl->cnum); 2517 return; 2518 } 2519 2520 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2521 if (state != NVME_CTRL_LIVE) 2522 return; 2523 2524 dev_warn(ctrl->ctrl.device, 2525 "NVME-FC{%d}: transport association event: %s\n", 2526 ctrl->cnum, errmsg); 2527 dev_warn(ctrl->ctrl.device, 2528 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2529 2530 nvme_reset_ctrl(&ctrl->ctrl); 2531 } 2532 2533 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq) 2534 { 2535 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2536 struct nvme_fc_ctrl *ctrl = op->ctrl; 2537 u16 qnum = op->queue->qnum; 2538 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2539 struct nvme_command *sqe = &cmdiu->sqe; 2540 2541 /* 2542 * Attempt to abort the offending command. Command completion 2543 * will detect the aborted io and will fail the connection. 2544 */ 2545 dev_info(ctrl->ctrl.device, 2546 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: " 2547 "x%08x/x%08x\n", 2548 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype, 2549 nvme_fabrics_opcode_str(qnum, sqe), 2550 sqe->common.cdw10, sqe->common.cdw11); 2551 if (__nvme_fc_abort_op(ctrl, op)) 2552 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2553 2554 /* 2555 * the io abort has been initiated. Have the reset timer 2556 * restarted and the abort completion will complete the io 2557 * shortly. Avoids a synchronous wait while the abort finishes. 2558 */ 2559 return BLK_EH_RESET_TIMER; 2560 } 2561 2562 static int 2563 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2564 struct nvme_fc_fcp_op *op) 2565 { 2566 struct nvmefc_fcp_req *freq = &op->fcp_req; 2567 int ret; 2568 2569 freq->sg_cnt = 0; 2570 2571 if (!blk_rq_nr_phys_segments(rq)) 2572 return 0; 2573 2574 freq->sg_table.sgl = freq->first_sgl; 2575 ret = sg_alloc_table_chained(&freq->sg_table, 2576 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2577 NVME_INLINE_SG_CNT); 2578 if (ret) 2579 return -ENOMEM; 2580 2581 op->nents = blk_rq_map_sg(rq, freq->sg_table.sgl); 2582 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2583 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2584 op->nents, rq_dma_dir(rq)); 2585 if (unlikely(freq->sg_cnt <= 0)) { 2586 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2587 freq->sg_cnt = 0; 2588 return -EFAULT; 2589 } 2590 2591 /* 2592 * TODO: blk_integrity_rq(rq) for DIF 2593 */ 2594 return 0; 2595 } 2596 2597 static void 2598 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2599 struct nvme_fc_fcp_op *op) 2600 { 2601 struct nvmefc_fcp_req *freq = &op->fcp_req; 2602 2603 if (!freq->sg_cnt) 2604 return; 2605 2606 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2607 rq_dma_dir(rq)); 2608 2609 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2610 2611 freq->sg_cnt = 0; 2612 } 2613 2614 /* 2615 * In FC, the queue is a logical thing. At transport connect, the target 2616 * creates its "queue" and returns a handle that is to be given to the 2617 * target whenever it posts something to the corresponding SQ. When an 2618 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2619 * command contained within the SQE, an io, and assigns a FC exchange 2620 * to it. The SQE and the associated SQ handle are sent in the initial 2621 * CMD IU sents on the exchange. All transfers relative to the io occur 2622 * as part of the exchange. The CQE is the last thing for the io, 2623 * which is transferred (explicitly or implicitly) with the RSP IU 2624 * sent on the exchange. After the CQE is received, the FC exchange is 2625 * terminaed and the Exchange may be used on a different io. 2626 * 2627 * The transport to LLDD api has the transport making a request for a 2628 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2629 * resource and transfers the command. The LLDD will then process all 2630 * steps to complete the io. Upon completion, the transport done routine 2631 * is called. 2632 * 2633 * So - while the operation is outstanding to the LLDD, there is a link 2634 * level FC exchange resource that is also outstanding. This must be 2635 * considered in all cleanup operations. 2636 */ 2637 static blk_status_t 2638 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2639 struct nvme_fc_fcp_op *op, u32 data_len, 2640 enum nvmefc_fcp_datadir io_dir) 2641 { 2642 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2643 struct nvme_command *sqe = &cmdiu->sqe; 2644 int ret, opstate; 2645 2646 /* 2647 * before attempting to send the io, check to see if we believe 2648 * the target device is present 2649 */ 2650 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2651 return BLK_STS_RESOURCE; 2652 2653 if (!nvme_fc_ctrl_get(ctrl)) 2654 return BLK_STS_IOERR; 2655 2656 /* format the FC-NVME CMD IU and fcp_req */ 2657 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2658 cmdiu->data_len = cpu_to_be32(data_len); 2659 switch (io_dir) { 2660 case NVMEFC_FCP_WRITE: 2661 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2662 break; 2663 case NVMEFC_FCP_READ: 2664 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2665 break; 2666 case NVMEFC_FCP_NODATA: 2667 cmdiu->flags = 0; 2668 break; 2669 } 2670 op->fcp_req.payload_length = data_len; 2671 op->fcp_req.io_dir = io_dir; 2672 op->fcp_req.transferred_length = 0; 2673 op->fcp_req.rcv_rsplen = 0; 2674 op->fcp_req.status = NVME_SC_SUCCESS; 2675 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2676 2677 /* 2678 * validate per fabric rules, set fields mandated by fabric spec 2679 * as well as those by FC-NVME spec. 2680 */ 2681 WARN_ON_ONCE(sqe->common.metadata); 2682 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2683 2684 /* 2685 * format SQE DPTR field per FC-NVME rules: 2686 * type=0x5 Transport SGL Data Block Descriptor 2687 * subtype=0xA Transport-specific value 2688 * address=0 2689 * length=length of the data series 2690 */ 2691 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2692 NVME_SGL_FMT_TRANSPORT_A; 2693 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2694 sqe->rw.dptr.sgl.addr = 0; 2695 2696 if (!(op->flags & FCOP_FLAGS_AEN)) { 2697 ret = nvme_fc_map_data(ctrl, op->rq, op); 2698 if (ret < 0) { 2699 nvme_cleanup_cmd(op->rq); 2700 nvme_fc_ctrl_put(ctrl); 2701 if (ret == -ENOMEM || ret == -EAGAIN) 2702 return BLK_STS_RESOURCE; 2703 return BLK_STS_IOERR; 2704 } 2705 } 2706 2707 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2708 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2709 2710 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2711 2712 if (!(op->flags & FCOP_FLAGS_AEN)) 2713 nvme_start_request(op->rq); 2714 2715 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2716 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2717 &ctrl->rport->remoteport, 2718 queue->lldd_handle, &op->fcp_req); 2719 2720 if (ret) { 2721 /* 2722 * If the lld fails to send the command is there an issue with 2723 * the csn value? If the command that fails is the Connect, 2724 * no - as the connection won't be live. If it is a command 2725 * post-connect, it's possible a gap in csn may be created. 2726 * Does this matter? As Linux initiators don't send fused 2727 * commands, no. The gap would exist, but as there's nothing 2728 * that depends on csn order to be delivered on the target 2729 * side, it shouldn't hurt. It would be difficult for a 2730 * target to even detect the csn gap as it has no idea when the 2731 * cmd with the csn was supposed to arrive. 2732 */ 2733 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2734 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2735 2736 if (!(op->flags & FCOP_FLAGS_AEN)) { 2737 nvme_fc_unmap_data(ctrl, op->rq, op); 2738 nvme_cleanup_cmd(op->rq); 2739 } 2740 2741 nvme_fc_ctrl_put(ctrl); 2742 2743 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2744 ret != -EBUSY) 2745 return BLK_STS_IOERR; 2746 2747 return BLK_STS_RESOURCE; 2748 } 2749 2750 return BLK_STS_OK; 2751 } 2752 2753 static blk_status_t 2754 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2755 const struct blk_mq_queue_data *bd) 2756 { 2757 struct nvme_ns *ns = hctx->queue->queuedata; 2758 struct nvme_fc_queue *queue = hctx->driver_data; 2759 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2760 struct request *rq = bd->rq; 2761 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2762 enum nvmefc_fcp_datadir io_dir; 2763 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2764 u32 data_len; 2765 blk_status_t ret; 2766 2767 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2768 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2769 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2770 2771 ret = nvme_setup_cmd(ns, rq); 2772 if (ret) 2773 return ret; 2774 2775 /* 2776 * nvme core doesn't quite treat the rq opaquely. Commands such 2777 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2778 * there is no actual payload to be transferred. 2779 * To get it right, key data transmission on there being 1 or 2780 * more physical segments in the sg list. If there is no 2781 * physical segments, there is no payload. 2782 */ 2783 if (blk_rq_nr_phys_segments(rq)) { 2784 data_len = blk_rq_payload_bytes(rq); 2785 io_dir = ((rq_data_dir(rq) == WRITE) ? 2786 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2787 } else { 2788 data_len = 0; 2789 io_dir = NVMEFC_FCP_NODATA; 2790 } 2791 2792 2793 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2794 } 2795 2796 static void 2797 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2798 { 2799 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2800 struct nvme_fc_fcp_op *aen_op; 2801 blk_status_t ret; 2802 2803 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2804 return; 2805 2806 aen_op = &ctrl->aen_ops[0]; 2807 2808 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2809 NVMEFC_FCP_NODATA); 2810 if (ret) 2811 dev_err(ctrl->ctrl.device, 2812 "failed async event work\n"); 2813 } 2814 2815 static void 2816 nvme_fc_complete_rq(struct request *rq) 2817 { 2818 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2819 struct nvme_fc_ctrl *ctrl = op->ctrl; 2820 2821 atomic_set(&op->state, FCPOP_STATE_IDLE); 2822 op->flags &= ~FCOP_FLAGS_TERMIO; 2823 2824 nvme_fc_unmap_data(ctrl, rq, op); 2825 nvme_complete_rq(rq); 2826 nvme_fc_ctrl_put(ctrl); 2827 } 2828 2829 static void nvme_fc_map_queues(struct blk_mq_tag_set *set) 2830 { 2831 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2832 int i; 2833 2834 for (i = 0; i < set->nr_maps; i++) { 2835 struct blk_mq_queue_map *map = &set->map[i]; 2836 2837 if (!map->nr_queues) { 2838 WARN_ON(i == HCTX_TYPE_DEFAULT); 2839 continue; 2840 } 2841 2842 /* Call LLDD map queue functionality if defined */ 2843 if (ctrl->lport->ops->map_queues) 2844 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2845 map); 2846 else 2847 blk_mq_map_queues(map); 2848 } 2849 } 2850 2851 static const struct blk_mq_ops nvme_fc_mq_ops = { 2852 .queue_rq = nvme_fc_queue_rq, 2853 .complete = nvme_fc_complete_rq, 2854 .init_request = nvme_fc_init_request, 2855 .exit_request = nvme_fc_exit_request, 2856 .init_hctx = nvme_fc_init_hctx, 2857 .timeout = nvme_fc_timeout, 2858 .map_queues = nvme_fc_map_queues, 2859 }; 2860 2861 static int 2862 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2863 { 2864 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2865 unsigned int nr_io_queues; 2866 int ret; 2867 2868 nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(), 2869 ctrl->lport->ops->max_hw_queues); 2870 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2871 if (ret) { 2872 dev_info(ctrl->ctrl.device, 2873 "set_queue_count failed: %d\n", ret); 2874 return ret; 2875 } 2876 2877 ctrl->ctrl.queue_count = nr_io_queues + 1; 2878 if (!nr_io_queues) 2879 return 0; 2880 2881 nvme_fc_init_io_queues(ctrl); 2882 2883 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set, 2884 &nvme_fc_mq_ops, 1, 2885 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 2886 ctrl->lport->ops->fcprqst_priv_sz)); 2887 if (ret) 2888 return ret; 2889 2890 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2891 if (ret) 2892 goto out_cleanup_tagset; 2893 2894 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2895 if (ret) 2896 goto out_delete_hw_queues; 2897 2898 ctrl->ioq_live = true; 2899 2900 return 0; 2901 2902 out_delete_hw_queues: 2903 nvme_fc_delete_hw_io_queues(ctrl); 2904 out_cleanup_tagset: 2905 nvme_remove_io_tag_set(&ctrl->ctrl); 2906 nvme_fc_free_io_queues(ctrl); 2907 2908 /* force put free routine to ignore io queues */ 2909 ctrl->ctrl.tagset = NULL; 2910 2911 return ret; 2912 } 2913 2914 static int 2915 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2916 { 2917 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2918 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2919 unsigned int nr_io_queues; 2920 int ret; 2921 2922 nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(), 2923 ctrl->lport->ops->max_hw_queues); 2924 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2925 if (ret) { 2926 dev_info(ctrl->ctrl.device, 2927 "set_queue_count failed: %d\n", ret); 2928 return ret; 2929 } 2930 2931 if (!nr_io_queues && prior_ioq_cnt) { 2932 dev_info(ctrl->ctrl.device, 2933 "Fail Reconnect: At least 1 io queue " 2934 "required (was %d)\n", prior_ioq_cnt); 2935 return -ENOSPC; 2936 } 2937 2938 ctrl->ctrl.queue_count = nr_io_queues + 1; 2939 /* check for io queues existing */ 2940 if (ctrl->ctrl.queue_count == 1) 2941 return 0; 2942 2943 if (prior_ioq_cnt != nr_io_queues) { 2944 dev_info(ctrl->ctrl.device, 2945 "reconnect: revising io queue count from %d to %d\n", 2946 prior_ioq_cnt, nr_io_queues); 2947 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2948 } 2949 2950 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2951 if (ret) 2952 goto out_free_io_queues; 2953 2954 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2955 if (ret) 2956 goto out_delete_hw_queues; 2957 2958 return 0; 2959 2960 out_delete_hw_queues: 2961 nvme_fc_delete_hw_io_queues(ctrl); 2962 out_free_io_queues: 2963 nvme_fc_free_io_queues(ctrl); 2964 return ret; 2965 } 2966 2967 static void 2968 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2969 { 2970 struct nvme_fc_lport *lport = rport->lport; 2971 2972 atomic_inc(&lport->act_rport_cnt); 2973 } 2974 2975 static void 2976 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2977 { 2978 struct nvme_fc_lport *lport = rport->lport; 2979 u32 cnt; 2980 2981 cnt = atomic_dec_return(&lport->act_rport_cnt); 2982 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2983 lport->ops->localport_delete(&lport->localport); 2984 } 2985 2986 static int 2987 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2988 { 2989 struct nvme_fc_rport *rport = ctrl->rport; 2990 u32 cnt; 2991 2992 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 2993 return 1; 2994 2995 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2996 if (cnt == 1) 2997 nvme_fc_rport_active_on_lport(rport); 2998 2999 return 0; 3000 } 3001 3002 static int 3003 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3004 { 3005 struct nvme_fc_rport *rport = ctrl->rport; 3006 struct nvme_fc_lport *lport = rport->lport; 3007 u32 cnt; 3008 3009 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3010 3011 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3012 if (cnt == 0) { 3013 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3014 lport->ops->remoteport_delete(&rport->remoteport); 3015 nvme_fc_rport_inactive_on_lport(rport); 3016 } 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * This routine restarts the controller on the host side, and 3023 * on the link side, recreates the controller association. 3024 */ 3025 static int 3026 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3027 { 3028 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3029 struct nvmefc_ls_rcv_op *disls = NULL; 3030 unsigned long flags; 3031 int ret; 3032 3033 ++ctrl->ctrl.nr_reconnects; 3034 3035 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3036 return -ENODEV; 3037 3038 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3039 return -ENOTUNIQ; 3040 3041 dev_info(ctrl->ctrl.device, 3042 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3043 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3044 ctrl->cnum, ctrl->lport->localport.port_name, 3045 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3046 3047 clear_bit(ASSOC_FAILED, &ctrl->flags); 3048 3049 /* 3050 * Create the admin queue 3051 */ 3052 3053 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3054 NVME_AQ_DEPTH); 3055 if (ret) 3056 goto out_free_queue; 3057 3058 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3059 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3060 if (ret) 3061 goto out_delete_hw_queue; 3062 3063 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3064 if (ret) 3065 goto out_disconnect_admin_queue; 3066 3067 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3068 3069 /* 3070 * Check controller capabilities 3071 * 3072 * todo:- add code to check if ctrl attributes changed from 3073 * prior connection values 3074 */ 3075 3076 ret = nvme_enable_ctrl(&ctrl->ctrl); 3077 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3078 ret = -EIO; 3079 if (ret) 3080 goto out_disconnect_admin_queue; 3081 3082 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3083 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3084 (ilog2(SZ_4K) - 9); 3085 3086 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3087 3088 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false); 3089 if (ret) 3090 goto out_disconnect_admin_queue; 3091 if (test_bit(ASSOC_FAILED, &ctrl->flags)) { 3092 ret = -EIO; 3093 goto out_stop_keep_alive; 3094 } 3095 /* sanity checks */ 3096 3097 /* FC-NVME does not have other data in the capsule */ 3098 if (ctrl->ctrl.icdoff) { 3099 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3100 ctrl->ctrl.icdoff); 3101 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3102 goto out_stop_keep_alive; 3103 } 3104 3105 /* FC-NVME supports normal SGL Data Block Descriptors */ 3106 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3107 dev_err(ctrl->ctrl.device, 3108 "Mandatory sgls are not supported!\n"); 3109 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3110 goto out_stop_keep_alive; 3111 } 3112 3113 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3114 /* warn if maxcmd is lower than queue_size */ 3115 dev_warn(ctrl->ctrl.device, 3116 "queue_size %zu > ctrl maxcmd %u, reducing " 3117 "to maxcmd\n", 3118 opts->queue_size, ctrl->ctrl.maxcmd); 3119 opts->queue_size = ctrl->ctrl.maxcmd; 3120 ctrl->ctrl.sqsize = opts->queue_size - 1; 3121 } 3122 3123 ret = nvme_fc_init_aen_ops(ctrl); 3124 if (ret) 3125 goto out_term_aen_ops; 3126 3127 /* 3128 * Create the io queues 3129 */ 3130 3131 if (ctrl->ctrl.queue_count > 1) { 3132 if (!ctrl->ioq_live) 3133 ret = nvme_fc_create_io_queues(ctrl); 3134 else 3135 ret = nvme_fc_recreate_io_queues(ctrl); 3136 } 3137 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3138 ret = -EIO; 3139 if (ret) 3140 goto out_term_aen_ops; 3141 3142 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) { 3143 ret = -EIO; 3144 goto out_term_aen_ops; 3145 } 3146 3147 ctrl->ctrl.nr_reconnects = 0; 3148 nvme_start_ctrl(&ctrl->ctrl); 3149 3150 return 0; /* Success */ 3151 3152 out_term_aen_ops: 3153 nvme_fc_term_aen_ops(ctrl); 3154 out_stop_keep_alive: 3155 nvme_stop_keep_alive(&ctrl->ctrl); 3156 out_disconnect_admin_queue: 3157 dev_warn(ctrl->ctrl.device, 3158 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n", 3159 ctrl->cnum, ctrl->association_id, ret); 3160 /* send a Disconnect(association) LS to fc-nvme target */ 3161 nvme_fc_xmt_disconnect_assoc(ctrl); 3162 spin_lock_irqsave(&ctrl->lock, flags); 3163 ctrl->association_id = 0; 3164 disls = ctrl->rcv_disconn; 3165 ctrl->rcv_disconn = NULL; 3166 spin_unlock_irqrestore(&ctrl->lock, flags); 3167 if (disls) 3168 nvme_fc_xmt_ls_rsp(disls); 3169 out_delete_hw_queue: 3170 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3171 out_free_queue: 3172 nvme_fc_free_queue(&ctrl->queues[0]); 3173 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3174 nvme_fc_ctlr_inactive_on_rport(ctrl); 3175 3176 return ret; 3177 } 3178 3179 3180 /* 3181 * This routine stops operation of the controller on the host side. 3182 * On the host os stack side: Admin and IO queues are stopped, 3183 * outstanding ios on them terminated via FC ABTS. 3184 * On the link side: the association is terminated. 3185 */ 3186 static void 3187 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3188 { 3189 struct nvmefc_ls_rcv_op *disls = NULL; 3190 unsigned long flags; 3191 3192 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3193 return; 3194 3195 spin_lock_irqsave(&ctrl->lock, flags); 3196 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3197 ctrl->iocnt = 0; 3198 spin_unlock_irqrestore(&ctrl->lock, flags); 3199 3200 __nvme_fc_abort_outstanding_ios(ctrl, false); 3201 3202 /* kill the aens as they are a separate path */ 3203 nvme_fc_abort_aen_ops(ctrl); 3204 3205 /* wait for all io that had to be aborted */ 3206 spin_lock_irq(&ctrl->lock); 3207 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3208 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3209 spin_unlock_irq(&ctrl->lock); 3210 3211 nvme_fc_term_aen_ops(ctrl); 3212 3213 /* 3214 * send a Disconnect(association) LS to fc-nvme target 3215 * Note: could have been sent at top of process, but 3216 * cleaner on link traffic if after the aborts complete. 3217 * Note: if association doesn't exist, association_id will be 0 3218 */ 3219 if (ctrl->association_id) 3220 nvme_fc_xmt_disconnect_assoc(ctrl); 3221 3222 spin_lock_irqsave(&ctrl->lock, flags); 3223 ctrl->association_id = 0; 3224 disls = ctrl->rcv_disconn; 3225 ctrl->rcv_disconn = NULL; 3226 spin_unlock_irqrestore(&ctrl->lock, flags); 3227 if (disls) 3228 /* 3229 * if a Disconnect Request was waiting for a response, send 3230 * now that all ABTS's have been issued (and are complete). 3231 */ 3232 nvme_fc_xmt_ls_rsp(disls); 3233 3234 if (ctrl->ctrl.tagset) { 3235 nvme_fc_delete_hw_io_queues(ctrl); 3236 nvme_fc_free_io_queues(ctrl); 3237 } 3238 3239 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3240 nvme_fc_free_queue(&ctrl->queues[0]); 3241 3242 /* re-enable the admin_q so anything new can fast fail */ 3243 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3244 3245 /* resume the io queues so that things will fast fail */ 3246 nvme_unquiesce_io_queues(&ctrl->ctrl); 3247 3248 nvme_fc_ctlr_inactive_on_rport(ctrl); 3249 } 3250 3251 static void 3252 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3253 { 3254 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3255 3256 cancel_work_sync(&ctrl->ioerr_work); 3257 cancel_delayed_work_sync(&ctrl->connect_work); 3258 /* 3259 * kill the association on the link side. this will block 3260 * waiting for io to terminate 3261 */ 3262 nvme_fc_delete_association(ctrl); 3263 } 3264 3265 static void 3266 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3267 { 3268 struct nvme_fc_rport *rport = ctrl->rport; 3269 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3270 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3271 bool recon = true; 3272 3273 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING) 3274 return; 3275 3276 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3277 dev_info(ctrl->ctrl.device, 3278 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3279 ctrl->cnum, status); 3280 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3281 recon = false; 3282 3283 if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) { 3284 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3285 dev_info(ctrl->ctrl.device, 3286 "NVME-FC{%d}: Reconnect attempt in %ld " 3287 "seconds\n", 3288 ctrl->cnum, recon_delay / HZ); 3289 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3290 recon_delay = rport->dev_loss_end - jiffies; 3291 3292 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3293 } else { 3294 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3295 if (status > 0 && (status & NVME_STATUS_DNR)) 3296 dev_warn(ctrl->ctrl.device, 3297 "NVME-FC{%d}: reconnect failure\n", 3298 ctrl->cnum); 3299 else 3300 dev_warn(ctrl->ctrl.device, 3301 "NVME-FC{%d}: Max reconnect attempts " 3302 "(%d) reached.\n", 3303 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3304 } else 3305 dev_warn(ctrl->ctrl.device, 3306 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3307 "while waiting for remoteport connectivity.\n", 3308 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3309 (ctrl->ctrl.opts->max_reconnects * 3310 ctrl->ctrl.opts->reconnect_delay))); 3311 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3312 } 3313 } 3314 3315 static void 3316 nvme_fc_reset_ctrl_work(struct work_struct *work) 3317 { 3318 struct nvme_fc_ctrl *ctrl = 3319 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3320 3321 nvme_stop_ctrl(&ctrl->ctrl); 3322 3323 /* will block will waiting for io to terminate */ 3324 nvme_fc_delete_association(ctrl); 3325 3326 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3327 dev_err(ctrl->ctrl.device, 3328 "NVME-FC{%d}: error_recovery: Couldn't change state " 3329 "to CONNECTING\n", ctrl->cnum); 3330 3331 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3332 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3333 dev_err(ctrl->ctrl.device, 3334 "NVME-FC{%d}: failed to schedule connect " 3335 "after reset\n", ctrl->cnum); 3336 } else { 3337 flush_delayed_work(&ctrl->connect_work); 3338 } 3339 } else { 3340 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3341 } 3342 } 3343 3344 3345 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3346 .name = "fc", 3347 .module = THIS_MODULE, 3348 .flags = NVME_F_FABRICS, 3349 .reg_read32 = nvmf_reg_read32, 3350 .reg_read64 = nvmf_reg_read64, 3351 .reg_write32 = nvmf_reg_write32, 3352 .subsystem_reset = nvmf_subsystem_reset, 3353 .free_ctrl = nvme_fc_free_ctrl, 3354 .submit_async_event = nvme_fc_submit_async_event, 3355 .delete_ctrl = nvme_fc_delete_ctrl, 3356 .get_address = nvmf_get_address, 3357 }; 3358 3359 static void 3360 nvme_fc_connect_ctrl_work(struct work_struct *work) 3361 { 3362 int ret; 3363 3364 struct nvme_fc_ctrl *ctrl = 3365 container_of(to_delayed_work(work), 3366 struct nvme_fc_ctrl, connect_work); 3367 3368 ret = nvme_fc_create_association(ctrl); 3369 if (ret) 3370 nvme_fc_reconnect_or_delete(ctrl, ret); 3371 else 3372 dev_info(ctrl->ctrl.device, 3373 "NVME-FC{%d}: controller connect complete\n", 3374 ctrl->cnum); 3375 } 3376 3377 3378 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3379 .queue_rq = nvme_fc_queue_rq, 3380 .complete = nvme_fc_complete_rq, 3381 .init_request = nvme_fc_init_request, 3382 .exit_request = nvme_fc_exit_request, 3383 .init_hctx = nvme_fc_init_admin_hctx, 3384 .timeout = nvme_fc_timeout, 3385 }; 3386 3387 3388 /* 3389 * Fails a controller request if it matches an existing controller 3390 * (association) with the same tuple: 3391 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3392 * 3393 * The ports don't need to be compared as they are intrinsically 3394 * already matched by the port pointers supplied. 3395 */ 3396 static bool 3397 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3398 struct nvmf_ctrl_options *opts) 3399 { 3400 struct nvme_fc_ctrl *ctrl; 3401 unsigned long flags; 3402 bool found = false; 3403 3404 spin_lock_irqsave(&rport->lock, flags); 3405 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3406 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3407 if (found) 3408 break; 3409 } 3410 spin_unlock_irqrestore(&rport->lock, flags); 3411 3412 return found; 3413 } 3414 3415 static struct nvme_fc_ctrl * 3416 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3417 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3418 { 3419 struct nvme_fc_ctrl *ctrl; 3420 int ret, idx, ctrl_loss_tmo; 3421 3422 if (!(rport->remoteport.port_role & 3423 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3424 ret = -EBADR; 3425 goto out_fail; 3426 } 3427 3428 if (!opts->duplicate_connect && 3429 nvme_fc_existing_controller(rport, opts)) { 3430 ret = -EALREADY; 3431 goto out_fail; 3432 } 3433 3434 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3435 if (!ctrl) { 3436 ret = -ENOMEM; 3437 goto out_fail; 3438 } 3439 3440 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3441 if (idx < 0) { 3442 ret = -ENOSPC; 3443 goto out_free_ctrl; 3444 } 3445 3446 /* 3447 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3448 * is being used, change to a shorter reconnect delay for FC. 3449 */ 3450 if (opts->max_reconnects != -1 && 3451 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3452 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3453 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3454 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3455 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3456 opts->reconnect_delay); 3457 } 3458 3459 ctrl->ctrl.opts = opts; 3460 ctrl->ctrl.nr_reconnects = 0; 3461 INIT_LIST_HEAD(&ctrl->ctrl_list); 3462 ctrl->lport = lport; 3463 ctrl->rport = rport; 3464 ctrl->dev = lport->dev; 3465 ctrl->cnum = idx; 3466 ctrl->ioq_live = false; 3467 init_waitqueue_head(&ctrl->ioabort_wait); 3468 3469 get_device(ctrl->dev); 3470 kref_init(&ctrl->ref); 3471 3472 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3473 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3474 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3475 spin_lock_init(&ctrl->lock); 3476 3477 /* io queue count */ 3478 ctrl->ctrl.queue_count = min_t(unsigned int, 3479 opts->nr_io_queues, 3480 lport->ops->max_hw_queues); 3481 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3482 3483 ctrl->ctrl.sqsize = opts->queue_size - 1; 3484 ctrl->ctrl.kato = opts->kato; 3485 ctrl->ctrl.cntlid = 0xffff; 3486 3487 ret = -ENOMEM; 3488 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3489 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3490 if (!ctrl->queues) 3491 goto out_free_ida; 3492 3493 nvme_fc_init_queue(ctrl, 0); 3494 3495 /* 3496 * Would have been nice to init io queues tag set as well. 3497 * However, we require interaction from the controller 3498 * for max io queue count before we can do so. 3499 * Defer this to the connect path. 3500 */ 3501 3502 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3503 if (ret) 3504 goto out_free_queues; 3505 if (lport->dev) 3506 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3507 3508 return ctrl; 3509 3510 out_free_queues: 3511 kfree(ctrl->queues); 3512 out_free_ida: 3513 put_device(ctrl->dev); 3514 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3515 out_free_ctrl: 3516 kfree(ctrl); 3517 out_fail: 3518 /* exit via here doesn't follow ctlr ref points */ 3519 return ERR_PTR(ret); 3520 } 3521 3522 static struct nvme_ctrl * 3523 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3524 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3525 { 3526 struct nvme_fc_ctrl *ctrl; 3527 unsigned long flags; 3528 int ret; 3529 3530 ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport); 3531 if (IS_ERR(ctrl)) 3532 return ERR_CAST(ctrl); 3533 3534 ret = nvme_add_ctrl(&ctrl->ctrl); 3535 if (ret) 3536 goto out_put_ctrl; 3537 3538 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, 3539 &nvme_fc_admin_mq_ops, 3540 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 3541 ctrl->lport->ops->fcprqst_priv_sz)); 3542 if (ret) 3543 goto fail_ctrl; 3544 3545 spin_lock_irqsave(&rport->lock, flags); 3546 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3547 spin_unlock_irqrestore(&rport->lock, flags); 3548 3549 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3550 dev_err(ctrl->ctrl.device, 3551 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3552 goto fail_ctrl; 3553 } 3554 3555 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3556 dev_err(ctrl->ctrl.device, 3557 "NVME-FC{%d}: failed to schedule initial connect\n", 3558 ctrl->cnum); 3559 goto fail_ctrl; 3560 } 3561 3562 flush_delayed_work(&ctrl->connect_work); 3563 3564 dev_info(ctrl->ctrl.device, 3565 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n", 3566 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn); 3567 3568 return &ctrl->ctrl; 3569 3570 fail_ctrl: 3571 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3572 cancel_work_sync(&ctrl->ioerr_work); 3573 cancel_work_sync(&ctrl->ctrl.reset_work); 3574 cancel_delayed_work_sync(&ctrl->connect_work); 3575 3576 ctrl->ctrl.opts = NULL; 3577 3578 /* initiate nvme ctrl ref counting teardown */ 3579 nvme_uninit_ctrl(&ctrl->ctrl); 3580 3581 out_put_ctrl: 3582 /* Remove core ctrl ref. */ 3583 nvme_put_ctrl(&ctrl->ctrl); 3584 3585 /* as we're past the point where we transition to the ref 3586 * counting teardown path, if we return a bad pointer here, 3587 * the calling routine, thinking it's prior to the 3588 * transition, will do an rport put. Since the teardown 3589 * path also does a rport put, we do an extra get here to 3590 * so proper order/teardown happens. 3591 */ 3592 nvme_fc_rport_get(rport); 3593 3594 return ERR_PTR(-EIO); 3595 } 3596 3597 struct nvmet_fc_traddr { 3598 u64 nn; 3599 u64 pn; 3600 }; 3601 3602 static int 3603 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3604 { 3605 u64 token64; 3606 3607 if (match_u64(sstr, &token64)) 3608 return -EINVAL; 3609 *val = token64; 3610 3611 return 0; 3612 } 3613 3614 /* 3615 * This routine validates and extracts the WWN's from the TRADDR string. 3616 * As kernel parsers need the 0x to determine number base, universally 3617 * build string to parse with 0x prefix before parsing name strings. 3618 */ 3619 static int 3620 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3621 { 3622 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3623 substring_t wwn = { name, &name[sizeof(name)-1] }; 3624 int nnoffset, pnoffset; 3625 3626 /* validate if string is one of the 2 allowed formats */ 3627 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3628 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3629 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3630 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3631 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3632 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3633 NVME_FC_TRADDR_OXNNLEN; 3634 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3635 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3636 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3637 "pn-", NVME_FC_TRADDR_NNLEN))) { 3638 nnoffset = NVME_FC_TRADDR_NNLEN; 3639 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3640 } else 3641 goto out_einval; 3642 3643 name[0] = '0'; 3644 name[1] = 'x'; 3645 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3646 3647 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3648 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3649 goto out_einval; 3650 3651 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3652 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3653 goto out_einval; 3654 3655 return 0; 3656 3657 out_einval: 3658 pr_warn("%s: bad traddr string\n", __func__); 3659 return -EINVAL; 3660 } 3661 3662 static struct nvme_ctrl * 3663 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3664 { 3665 struct nvme_fc_lport *lport; 3666 struct nvme_fc_rport *rport; 3667 struct nvme_ctrl *ctrl; 3668 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3669 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3670 unsigned long flags; 3671 int ret; 3672 3673 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3674 if (ret || !raddr.nn || !raddr.pn) 3675 return ERR_PTR(-EINVAL); 3676 3677 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3678 if (ret || !laddr.nn || !laddr.pn) 3679 return ERR_PTR(-EINVAL); 3680 3681 /* find the host and remote ports to connect together */ 3682 spin_lock_irqsave(&nvme_fc_lock, flags); 3683 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3684 if (lport->localport.node_name != laddr.nn || 3685 lport->localport.port_name != laddr.pn || 3686 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3687 continue; 3688 3689 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3690 if (rport->remoteport.node_name != raddr.nn || 3691 rport->remoteport.port_name != raddr.pn || 3692 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3693 continue; 3694 3695 /* if fail to get reference fall through. Will error */ 3696 if (!nvme_fc_rport_get(rport)) 3697 break; 3698 3699 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3700 3701 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3702 if (IS_ERR(ctrl)) 3703 nvme_fc_rport_put(rport); 3704 return ctrl; 3705 } 3706 } 3707 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3708 3709 pr_warn("%s: %s - %s combination not found\n", 3710 __func__, opts->traddr, opts->host_traddr); 3711 return ERR_PTR(-ENOENT); 3712 } 3713 3714 3715 static struct nvmf_transport_ops nvme_fc_transport = { 3716 .name = "fc", 3717 .module = THIS_MODULE, 3718 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3719 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3720 .create_ctrl = nvme_fc_create_ctrl, 3721 }; 3722 3723 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3724 #define DISCOVERY_MAX_FAIL 20 3725 3726 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3727 struct device_attribute *attr, const char *buf, size_t count) 3728 { 3729 unsigned long flags; 3730 LIST_HEAD(local_disc_list); 3731 struct nvme_fc_lport *lport; 3732 struct nvme_fc_rport *rport; 3733 int failcnt = 0; 3734 3735 spin_lock_irqsave(&nvme_fc_lock, flags); 3736 restart: 3737 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3738 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3739 if (!nvme_fc_lport_get(lport)) 3740 continue; 3741 if (!nvme_fc_rport_get(rport)) { 3742 /* 3743 * This is a temporary condition. Upon restart 3744 * this rport will be gone from the list. 3745 * 3746 * Revert the lport put and retry. Anything 3747 * added to the list already will be skipped (as 3748 * they are no longer list_empty). Loops should 3749 * resume at rports that were not yet seen. 3750 */ 3751 nvme_fc_lport_put(lport); 3752 3753 if (failcnt++ < DISCOVERY_MAX_FAIL) 3754 goto restart; 3755 3756 pr_err("nvme_discovery: too many reference " 3757 "failures\n"); 3758 goto process_local_list; 3759 } 3760 if (list_empty(&rport->disc_list)) 3761 list_add_tail(&rport->disc_list, 3762 &local_disc_list); 3763 } 3764 } 3765 3766 process_local_list: 3767 while (!list_empty(&local_disc_list)) { 3768 rport = list_first_entry(&local_disc_list, 3769 struct nvme_fc_rport, disc_list); 3770 list_del_init(&rport->disc_list); 3771 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3772 3773 lport = rport->lport; 3774 /* signal discovery. Won't hurt if it repeats */ 3775 nvme_fc_signal_discovery_scan(lport, rport); 3776 nvme_fc_rport_put(rport); 3777 nvme_fc_lport_put(lport); 3778 3779 spin_lock_irqsave(&nvme_fc_lock, flags); 3780 } 3781 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3782 3783 return count; 3784 } 3785 3786 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3787 3788 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3789 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3790 static int fc_parse_cgrpid(const char *buf, u64 *id) 3791 { 3792 char cgrp_id[16+1]; 3793 int cgrpid_len, j; 3794 3795 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3796 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3797 if (buf[cgrpid_len] != ':') 3798 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3799 else { 3800 j = 1; 3801 break; 3802 } 3803 } 3804 if (!j) 3805 return -EINVAL; 3806 if (kstrtou64(cgrp_id, 16, id) < 0) 3807 return -EINVAL; 3808 return cgrpid_len; 3809 } 3810 3811 /* 3812 * Parse and update the appid in the blkcg associated with the cgroupid. 3813 */ 3814 static ssize_t fc_appid_store(struct device *dev, 3815 struct device_attribute *attr, const char *buf, size_t count) 3816 { 3817 size_t orig_count = count; 3818 u64 cgrp_id; 3819 int appid_len = 0; 3820 int cgrpid_len = 0; 3821 char app_id[FC_APPID_LEN]; 3822 int ret = 0; 3823 3824 if (buf[count-1] == '\n') 3825 count--; 3826 3827 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3828 return -EINVAL; 3829 3830 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3831 if (cgrpid_len < 0) 3832 return -EINVAL; 3833 appid_len = count - cgrpid_len - 1; 3834 if (appid_len > FC_APPID_LEN) 3835 return -EINVAL; 3836 3837 memset(app_id, 0x0, sizeof(app_id)); 3838 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3839 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3840 if (ret < 0) 3841 return ret; 3842 return orig_count; 3843 } 3844 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3845 #endif /* CONFIG_BLK_CGROUP_FC_APPID */ 3846 3847 static struct attribute *nvme_fc_attrs[] = { 3848 &dev_attr_nvme_discovery.attr, 3849 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3850 &dev_attr_appid_store.attr, 3851 #endif 3852 NULL 3853 }; 3854 3855 static const struct attribute_group nvme_fc_attr_group = { 3856 .attrs = nvme_fc_attrs, 3857 }; 3858 3859 static const struct attribute_group *nvme_fc_attr_groups[] = { 3860 &nvme_fc_attr_group, 3861 NULL 3862 }; 3863 3864 static struct class fc_class = { 3865 .name = "fc", 3866 .dev_groups = nvme_fc_attr_groups, 3867 }; 3868 3869 static int __init nvme_fc_init_module(void) 3870 { 3871 int ret; 3872 3873 /* 3874 * NOTE: 3875 * It is expected that in the future the kernel will combine 3876 * the FC-isms that are currently under scsi and now being 3877 * added to by NVME into a new standalone FC class. The SCSI 3878 * and NVME protocols and their devices would be under this 3879 * new FC class. 3880 * 3881 * As we need something to post FC-specific udev events to, 3882 * specifically for nvme probe events, start by creating the 3883 * new device class. When the new standalone FC class is 3884 * put in place, this code will move to a more generic 3885 * location for the class. 3886 */ 3887 ret = class_register(&fc_class); 3888 if (ret) { 3889 pr_err("couldn't register class fc\n"); 3890 return ret; 3891 } 3892 3893 /* 3894 * Create a device for the FC-centric udev events 3895 */ 3896 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3897 "fc_udev_device"); 3898 if (IS_ERR(fc_udev_device)) { 3899 pr_err("couldn't create fc_udev device!\n"); 3900 ret = PTR_ERR(fc_udev_device); 3901 goto out_destroy_class; 3902 } 3903 3904 ret = nvmf_register_transport(&nvme_fc_transport); 3905 if (ret) 3906 goto out_destroy_device; 3907 3908 return 0; 3909 3910 out_destroy_device: 3911 device_destroy(&fc_class, MKDEV(0, 0)); 3912 out_destroy_class: 3913 class_unregister(&fc_class); 3914 3915 return ret; 3916 } 3917 3918 static void 3919 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3920 { 3921 struct nvme_fc_ctrl *ctrl; 3922 3923 spin_lock(&rport->lock); 3924 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3925 dev_warn(ctrl->ctrl.device, 3926 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3927 ctrl->cnum); 3928 nvme_delete_ctrl(&ctrl->ctrl); 3929 } 3930 spin_unlock(&rport->lock); 3931 } 3932 3933 static void __exit nvme_fc_exit_module(void) 3934 { 3935 struct nvme_fc_lport *lport; 3936 struct nvme_fc_rport *rport; 3937 unsigned long flags; 3938 3939 spin_lock_irqsave(&nvme_fc_lock, flags); 3940 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) 3941 list_for_each_entry(rport, &lport->endp_list, endp_list) 3942 nvme_fc_delete_controllers(rport); 3943 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3944 flush_workqueue(nvme_delete_wq); 3945 3946 nvmf_unregister_transport(&nvme_fc_transport); 3947 3948 device_destroy(&fc_class, MKDEV(0, 0)); 3949 class_unregister(&fc_class); 3950 } 3951 3952 module_init(nvme_fc_init_module); 3953 module_exit(nvme_fc_exit_module); 3954 3955 MODULE_DESCRIPTION("NVMe host FC transport driver"); 3956 MODULE_LICENSE("GPL v2"); 3957