1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_priv { 435 struct kszphy_ptp_priv ptp_priv; 436 const struct kszphy_type *type; 437 struct clk *clk; 438 int led_mode; 439 u16 vct_ctrl1000; 440 bool rmii_ref_clk_sel; 441 bool rmii_ref_clk_sel_val; 442 bool clk_enable; 443 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 444 }; 445 446 static const struct kszphy_type lan8814_type = { 447 .led_mode_reg = ~LAN8814_LED_CTRL_1, 448 .cable_diag_reg = LAN8814_CABLE_DIAG, 449 .pair_mask = LAN8814_WIRE_PAIR_MASK, 450 }; 451 452 static const struct kszphy_type ksz886x_type = { 453 .cable_diag_reg = KSZ8081_LMD, 454 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz8021_type = { 458 .led_mode_reg = MII_KSZPHY_CTRL_2, 459 .has_broadcast_disable = true, 460 .has_nand_tree_disable = true, 461 .has_rmii_ref_clk_sel = true, 462 }; 463 464 static const struct kszphy_type ksz8041_type = { 465 .led_mode_reg = MII_KSZPHY_CTRL_1, 466 }; 467 468 static const struct kszphy_type ksz8051_type = { 469 .led_mode_reg = MII_KSZPHY_CTRL_2, 470 .has_nand_tree_disable = true, 471 }; 472 473 static const struct kszphy_type ksz8081_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_broadcast_disable = true, 476 .has_nand_tree_disable = true, 477 .has_rmii_ref_clk_sel = true, 478 }; 479 480 static const struct kszphy_type ks8737_type = { 481 .interrupt_level_mask = BIT(14), 482 }; 483 484 static const struct kszphy_type ksz9021_type = { 485 .interrupt_level_mask = BIT(14), 486 }; 487 488 static const struct kszphy_type ksz9131_type = { 489 .interrupt_level_mask = BIT(14), 490 .disable_dll_tx_bit = BIT(12), 491 .disable_dll_rx_bit = BIT(12), 492 .disable_dll_mask = BIT_MASK(12), 493 }; 494 495 static const struct kszphy_type lan8841_type = { 496 .disable_dll_tx_bit = BIT(14), 497 .disable_dll_rx_bit = BIT(14), 498 .disable_dll_mask = BIT_MASK(14), 499 .cable_diag_reg = LAN8814_CABLE_DIAG, 500 .pair_mask = LAN8814_WIRE_PAIR_MASK, 501 }; 502 503 static int kszphy_extended_write(struct phy_device *phydev, 504 u32 regnum, u16 val) 505 { 506 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 507 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 508 } 509 510 static int kszphy_extended_read(struct phy_device *phydev, 511 u32 regnum) 512 { 513 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 514 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 515 } 516 517 static int kszphy_ack_interrupt(struct phy_device *phydev) 518 { 519 /* bit[7..0] int status, which is a read and clear register. */ 520 int rc; 521 522 rc = phy_read(phydev, MII_KSZPHY_INTCS); 523 524 return (rc < 0) ? rc : 0; 525 } 526 527 static int kszphy_config_intr(struct phy_device *phydev) 528 { 529 const struct kszphy_type *type = phydev->drv->driver_data; 530 int temp, err; 531 u16 mask; 532 533 if (type && type->interrupt_level_mask) 534 mask = type->interrupt_level_mask; 535 else 536 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 537 538 /* set the interrupt pin active low */ 539 temp = phy_read(phydev, MII_KSZPHY_CTRL); 540 if (temp < 0) 541 return temp; 542 temp &= ~mask; 543 phy_write(phydev, MII_KSZPHY_CTRL, temp); 544 545 /* enable / disable interrupts */ 546 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 547 err = kszphy_ack_interrupt(phydev); 548 if (err) 549 return err; 550 551 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 552 } else { 553 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 554 if (err) 555 return err; 556 557 err = kszphy_ack_interrupt(phydev); 558 } 559 560 return err; 561 } 562 563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 564 { 565 int irq_status; 566 567 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 568 if (irq_status < 0) { 569 phy_error(phydev); 570 return IRQ_NONE; 571 } 572 573 if (!(irq_status & KSZPHY_INTCS_STATUS)) 574 return IRQ_NONE; 575 576 phy_trigger_machine(phydev); 577 578 return IRQ_HANDLED; 579 } 580 581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 582 { 583 int ctrl; 584 585 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 586 if (ctrl < 0) 587 return ctrl; 588 589 if (val) 590 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 591 else 592 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 593 594 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 595 } 596 597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 598 { 599 int rc, temp, shift; 600 601 switch (reg) { 602 case MII_KSZPHY_CTRL_1: 603 shift = 14; 604 break; 605 case MII_KSZPHY_CTRL_2: 606 shift = 4; 607 break; 608 default: 609 return -EINVAL; 610 } 611 612 temp = phy_read(phydev, reg); 613 if (temp < 0) { 614 rc = temp; 615 goto out; 616 } 617 618 temp &= ~(3 << shift); 619 temp |= val << shift; 620 rc = phy_write(phydev, reg, temp); 621 out: 622 if (rc < 0) 623 phydev_err(phydev, "failed to set led mode\n"); 624 625 return rc; 626 } 627 628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 629 * unique (non-broadcast) address on a shared bus. 630 */ 631 static int kszphy_broadcast_disable(struct phy_device *phydev) 632 { 633 int ret; 634 635 ret = phy_read(phydev, MII_KSZPHY_OMSO); 636 if (ret < 0) 637 goto out; 638 639 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 640 out: 641 if (ret) 642 phydev_err(phydev, "failed to disable broadcast address\n"); 643 644 return ret; 645 } 646 647 static int kszphy_nand_tree_disable(struct phy_device *phydev) 648 { 649 int ret; 650 651 ret = phy_read(phydev, MII_KSZPHY_OMSO); 652 if (ret < 0) 653 goto out; 654 655 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 656 return 0; 657 658 ret = phy_write(phydev, MII_KSZPHY_OMSO, 659 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 660 out: 661 if (ret) 662 phydev_err(phydev, "failed to disable NAND tree mode\n"); 663 664 return ret; 665 } 666 667 /* Some config bits need to be set again on resume, handle them here. */ 668 static int kszphy_config_reset(struct phy_device *phydev) 669 { 670 struct kszphy_priv *priv = phydev->priv; 671 int ret; 672 673 if (priv->rmii_ref_clk_sel) { 674 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 675 if (ret) { 676 phydev_err(phydev, 677 "failed to set rmii reference clock\n"); 678 return ret; 679 } 680 } 681 682 if (priv->type && priv->led_mode >= 0) 683 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 684 685 return 0; 686 } 687 688 static int kszphy_config_init(struct phy_device *phydev) 689 { 690 struct kszphy_priv *priv = phydev->priv; 691 const struct kszphy_type *type; 692 693 if (!priv) 694 return 0; 695 696 type = priv->type; 697 698 if (type && type->has_broadcast_disable) 699 kszphy_broadcast_disable(phydev); 700 701 if (type && type->has_nand_tree_disable) 702 kszphy_nand_tree_disable(phydev); 703 704 return kszphy_config_reset(phydev); 705 } 706 707 static int ksz8041_fiber_mode(struct phy_device *phydev) 708 { 709 struct device_node *of_node = phydev->mdio.dev.of_node; 710 711 return of_property_read_bool(of_node, "micrel,fiber-mode"); 712 } 713 714 static int ksz8041_config_init(struct phy_device *phydev) 715 { 716 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 717 718 /* Limit supported and advertised modes in fiber mode */ 719 if (ksz8041_fiber_mode(phydev)) { 720 phydev->dev_flags |= MICREL_PHY_FXEN; 721 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 722 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 723 724 linkmode_and(phydev->supported, phydev->supported, mask); 725 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 726 phydev->supported); 727 linkmode_and(phydev->advertising, phydev->advertising, mask); 728 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 729 phydev->advertising); 730 phydev->autoneg = AUTONEG_DISABLE; 731 } 732 733 return kszphy_config_init(phydev); 734 } 735 736 static int ksz8041_config_aneg(struct phy_device *phydev) 737 { 738 /* Skip auto-negotiation in fiber mode */ 739 if (phydev->dev_flags & MICREL_PHY_FXEN) { 740 phydev->speed = SPEED_100; 741 return 0; 742 } 743 744 return genphy_config_aneg(phydev); 745 } 746 747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 748 const bool ksz_8051) 749 { 750 int ret; 751 752 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 753 return 0; 754 755 ret = phy_read(phydev, MII_BMSR); 756 if (ret < 0) 757 return ret; 758 759 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 760 * exact PHY ID. However, they can be told apart by the extended 761 * capability registers presence. The KSZ8051 PHY has them while 762 * the switch does not. 763 */ 764 ret &= BMSR_ERCAP; 765 if (ksz_8051) 766 return ret; 767 else 768 return !ret; 769 } 770 771 static int ksz8051_match_phy_device(struct phy_device *phydev, 772 const struct phy_driver *phydrv) 773 { 774 return ksz8051_ksz8795_match_phy_device(phydev, true); 775 } 776 777 static int ksz8081_config_init(struct phy_device *phydev) 778 { 779 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 780 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 781 * pull-down is missing, the factory test mode should be cleared by 782 * manually writing a 0. 783 */ 784 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 785 786 return kszphy_config_init(phydev); 787 } 788 789 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 790 { 791 u16 val; 792 793 switch (ctrl) { 794 case ETH_TP_MDI: 795 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 796 break; 797 case ETH_TP_MDI_X: 798 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 799 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 800 break; 801 case ETH_TP_MDI_AUTO: 802 val = 0; 803 break; 804 default: 805 return 0; 806 } 807 808 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 809 KSZ8081_CTRL2_HP_MDIX | 810 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 811 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 812 KSZ8081_CTRL2_HP_MDIX | val); 813 } 814 815 static int ksz8081_config_aneg(struct phy_device *phydev) 816 { 817 int ret; 818 819 ret = genphy_config_aneg(phydev); 820 if (ret) 821 return ret; 822 823 /* The MDI-X configuration is automatically changed by the PHY after 824 * switching from autoneg off to on. So, take MDI-X configuration under 825 * own control and set it after autoneg configuration was done. 826 */ 827 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 828 } 829 830 static int ksz8081_mdix_update(struct phy_device *phydev) 831 { 832 int ret; 833 834 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 835 if (ret < 0) 836 return ret; 837 838 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 839 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 840 phydev->mdix_ctrl = ETH_TP_MDI_X; 841 else 842 phydev->mdix_ctrl = ETH_TP_MDI; 843 } else { 844 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 845 } 846 847 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 848 if (ret < 0) 849 return ret; 850 851 if (ret & KSZ8081_CTRL1_MDIX_STAT) 852 phydev->mdix = ETH_TP_MDI; 853 else 854 phydev->mdix = ETH_TP_MDI_X; 855 856 return 0; 857 } 858 859 static int ksz8081_read_status(struct phy_device *phydev) 860 { 861 int ret; 862 863 ret = ksz8081_mdix_update(phydev); 864 if (ret < 0) 865 return ret; 866 867 return genphy_read_status(phydev); 868 } 869 870 static int ksz8061_config_init(struct phy_device *phydev) 871 { 872 int ret; 873 874 /* Chip can be powered down by the bootstrap code. */ 875 ret = phy_read(phydev, MII_BMCR); 876 if (ret < 0) 877 return ret; 878 if (ret & BMCR_PDOWN) { 879 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 880 if (ret < 0) 881 return ret; 882 usleep_range(1000, 2000); 883 } 884 885 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 886 if (ret) 887 return ret; 888 889 return kszphy_config_init(phydev); 890 } 891 892 static int ksz8795_match_phy_device(struct phy_device *phydev, 893 const struct phy_driver *phydrv) 894 { 895 return ksz8051_ksz8795_match_phy_device(phydev, false); 896 } 897 898 static int ksz9021_load_values_from_of(struct phy_device *phydev, 899 const struct device_node *of_node, 900 u16 reg, 901 const char *field1, const char *field2, 902 const char *field3, const char *field4) 903 { 904 int val1 = -1; 905 int val2 = -2; 906 int val3 = -3; 907 int val4 = -4; 908 int newval; 909 int matches = 0; 910 911 if (!of_property_read_u32(of_node, field1, &val1)) 912 matches++; 913 914 if (!of_property_read_u32(of_node, field2, &val2)) 915 matches++; 916 917 if (!of_property_read_u32(of_node, field3, &val3)) 918 matches++; 919 920 if (!of_property_read_u32(of_node, field4, &val4)) 921 matches++; 922 923 if (!matches) 924 return 0; 925 926 if (matches < 4) 927 newval = kszphy_extended_read(phydev, reg); 928 else 929 newval = 0; 930 931 if (val1 != -1) 932 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 933 934 if (val2 != -2) 935 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 936 937 if (val3 != -3) 938 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 939 940 if (val4 != -4) 941 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 942 943 return kszphy_extended_write(phydev, reg, newval); 944 } 945 946 static int ksz9021_config_init(struct phy_device *phydev) 947 { 948 const struct device_node *of_node; 949 const struct device *dev_walker; 950 951 /* The Micrel driver has a deprecated option to place phy OF 952 * properties in the MAC node. Walk up the tree of devices to 953 * find a device with an OF node. 954 */ 955 dev_walker = &phydev->mdio.dev; 956 do { 957 of_node = dev_walker->of_node; 958 dev_walker = dev_walker->parent; 959 960 } while (!of_node && dev_walker); 961 962 if (of_node) { 963 ksz9021_load_values_from_of(phydev, of_node, 964 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 965 "txen-skew-ps", "txc-skew-ps", 966 "rxdv-skew-ps", "rxc-skew-ps"); 967 ksz9021_load_values_from_of(phydev, of_node, 968 MII_KSZPHY_RX_DATA_PAD_SKEW, 969 "rxd0-skew-ps", "rxd1-skew-ps", 970 "rxd2-skew-ps", "rxd3-skew-ps"); 971 ksz9021_load_values_from_of(phydev, of_node, 972 MII_KSZPHY_TX_DATA_PAD_SKEW, 973 "txd0-skew-ps", "txd1-skew-ps", 974 "txd2-skew-ps", "txd3-skew-ps"); 975 } 976 return 0; 977 } 978 979 #define KSZ9031_PS_TO_REG 60 980 981 /* Extended registers */ 982 /* MMD Address 0x0 */ 983 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 984 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 985 986 /* MMD Address 0x2 */ 987 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 988 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 989 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 990 991 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 992 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 993 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 994 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 995 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 996 997 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 998 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 999 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1000 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1001 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1002 1003 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1004 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1005 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1006 1007 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1008 * provide different RGMII options we need to configure delay offset 1009 * for each pad relative to build in delay. 1010 */ 1011 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1012 * 1.80ns 1013 */ 1014 #define RX_ID 0x7 1015 #define RX_CLK_ID 0x19 1016 1017 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1018 * internal 1.2ns delay. 1019 */ 1020 #define RX_ND 0xc 1021 #define RX_CLK_ND 0x0 1022 1023 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1024 #define TX_ID 0x0 1025 #define TX_CLK_ID 0x1f 1026 1027 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1028 * dealy 1029 */ 1030 #define TX_ND 0x7 1031 #define TX_CLK_ND 0xf 1032 1033 /* MMD Address 0x1C */ 1034 #define MII_KSZ9031RN_EDPD 0x23 1035 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1036 1037 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1038 int speed) 1039 { 1040 u16 ctl = BMCR_LOOPBACK; 1041 int val; 1042 1043 if (!enable) 1044 return genphy_loopback(phydev, enable, 0); 1045 1046 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1047 phydev->speed = speed; 1048 else if (speed) 1049 return -EINVAL; 1050 phydev->duplex = DUPLEX_FULL; 1051 1052 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1053 1054 phy_write(phydev, MII_BMCR, ctl); 1055 1056 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1057 5000, 500000, true); 1058 } 1059 1060 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1061 const struct device_node *of_node, 1062 u16 reg, size_t field_sz, 1063 const char *field[], u8 numfields, 1064 bool *update) 1065 { 1066 int val[4] = {-1, -2, -3, -4}; 1067 int matches = 0; 1068 u16 mask; 1069 u16 maxval; 1070 u16 newval; 1071 int i; 1072 1073 for (i = 0; i < numfields; i++) 1074 if (!of_property_read_u32(of_node, field[i], val + i)) 1075 matches++; 1076 1077 if (!matches) 1078 return 0; 1079 1080 *update |= true; 1081 1082 if (matches < numfields) 1083 newval = phy_read_mmd(phydev, 2, reg); 1084 else 1085 newval = 0; 1086 1087 maxval = (field_sz == 4) ? 0xf : 0x1f; 1088 for (i = 0; i < numfields; i++) 1089 if (val[i] != -(i + 1)) { 1090 mask = 0xffff; 1091 mask ^= maxval << (field_sz * i); 1092 newval = (newval & mask) | 1093 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1094 << (field_sz * i)); 1095 } 1096 1097 return phy_write_mmd(phydev, 2, reg, newval); 1098 } 1099 1100 /* Center KSZ9031RNX FLP timing at 16ms. */ 1101 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1102 { 1103 int result; 1104 1105 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1106 0x0006); 1107 if (result) 1108 return result; 1109 1110 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1111 0x1A80); 1112 if (result) 1113 return result; 1114 1115 return genphy_restart_aneg(phydev); 1116 } 1117 1118 /* Enable energy-detect power-down mode */ 1119 static int ksz9031_enable_edpd(struct phy_device *phydev) 1120 { 1121 int reg; 1122 1123 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1124 if (reg < 0) 1125 return reg; 1126 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1127 reg | MII_KSZ9031RN_EDPD_ENABLE); 1128 } 1129 1130 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1131 { 1132 u16 rx, tx, rx_clk, tx_clk; 1133 int ret; 1134 1135 switch (phydev->interface) { 1136 case PHY_INTERFACE_MODE_RGMII: 1137 tx = TX_ND; 1138 tx_clk = TX_CLK_ND; 1139 rx = RX_ND; 1140 rx_clk = RX_CLK_ND; 1141 break; 1142 case PHY_INTERFACE_MODE_RGMII_ID: 1143 tx = TX_ID; 1144 tx_clk = TX_CLK_ID; 1145 rx = RX_ID; 1146 rx_clk = RX_CLK_ID; 1147 break; 1148 case PHY_INTERFACE_MODE_RGMII_RXID: 1149 tx = TX_ND; 1150 tx_clk = TX_CLK_ND; 1151 rx = RX_ID; 1152 rx_clk = RX_CLK_ID; 1153 break; 1154 case PHY_INTERFACE_MODE_RGMII_TXID: 1155 tx = TX_ID; 1156 tx_clk = TX_CLK_ID; 1157 rx = RX_ND; 1158 rx_clk = RX_CLK_ND; 1159 break; 1160 default: 1161 return 0; 1162 } 1163 1164 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1165 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1166 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1167 if (ret < 0) 1168 return ret; 1169 1170 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1171 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1172 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1173 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1174 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1175 if (ret < 0) 1176 return ret; 1177 1178 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1179 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1180 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1181 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1182 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1183 if (ret < 0) 1184 return ret; 1185 1186 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1187 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1188 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1189 } 1190 1191 static int ksz9031_config_init(struct phy_device *phydev) 1192 { 1193 const struct device_node *of_node; 1194 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1195 static const char *rx_data_skews[4] = { 1196 "rxd0-skew-ps", "rxd1-skew-ps", 1197 "rxd2-skew-ps", "rxd3-skew-ps" 1198 }; 1199 static const char *tx_data_skews[4] = { 1200 "txd0-skew-ps", "txd1-skew-ps", 1201 "txd2-skew-ps", "txd3-skew-ps" 1202 }; 1203 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1204 const struct device *dev_walker; 1205 int result; 1206 1207 result = ksz9031_enable_edpd(phydev); 1208 if (result < 0) 1209 return result; 1210 1211 /* The Micrel driver has a deprecated option to place phy OF 1212 * properties in the MAC node. Walk up the tree of devices to 1213 * find a device with an OF node. 1214 */ 1215 dev_walker = &phydev->mdio.dev; 1216 do { 1217 of_node = dev_walker->of_node; 1218 dev_walker = dev_walker->parent; 1219 } while (!of_node && dev_walker); 1220 1221 if (of_node) { 1222 bool update = false; 1223 1224 if (phy_interface_is_rgmii(phydev)) { 1225 result = ksz9031_config_rgmii_delay(phydev); 1226 if (result < 0) 1227 return result; 1228 } 1229 1230 ksz9031_of_load_skew_values(phydev, of_node, 1231 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1232 clk_skews, 2, &update); 1233 1234 ksz9031_of_load_skew_values(phydev, of_node, 1235 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1236 control_skews, 2, &update); 1237 1238 ksz9031_of_load_skew_values(phydev, of_node, 1239 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1240 rx_data_skews, 4, &update); 1241 1242 ksz9031_of_load_skew_values(phydev, of_node, 1243 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1244 tx_data_skews, 4, &update); 1245 1246 if (update && !phy_interface_is_rgmii(phydev)) 1247 phydev_warn(phydev, 1248 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1249 1250 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1251 * When the device links in the 1000BASE-T slave mode only, 1252 * the optional 125MHz reference output clock (CLK125_NDO) 1253 * has wide duty cycle variation. 1254 * 1255 * The optional CLK125_NDO clock does not meet the RGMII 1256 * 45/55 percent (min/max) duty cycle requirement and therefore 1257 * cannot be used directly by the MAC side for clocking 1258 * applications that have setup/hold time requirements on 1259 * rising and falling clock edges. 1260 * 1261 * Workaround: 1262 * Force the phy to be the master to receive a stable clock 1263 * which meets the duty cycle requirement. 1264 */ 1265 if (of_property_read_bool(of_node, "micrel,force-master")) { 1266 result = phy_read(phydev, MII_CTRL1000); 1267 if (result < 0) 1268 goto err_force_master; 1269 1270 /* enable master mode, config & prefer master */ 1271 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1272 result = phy_write(phydev, MII_CTRL1000, result); 1273 if (result < 0) 1274 goto err_force_master; 1275 } 1276 } 1277 1278 return ksz9031_center_flp_timing(phydev); 1279 1280 err_force_master: 1281 phydev_err(phydev, "failed to force the phy to master mode\n"); 1282 return result; 1283 } 1284 1285 #define KSZ9131_SKEW_5BIT_MAX 2400 1286 #define KSZ9131_SKEW_4BIT_MAX 800 1287 #define KSZ9131_OFFSET 700 1288 #define KSZ9131_STEP 100 1289 1290 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1291 struct device_node *of_node, 1292 u16 reg, size_t field_sz, 1293 char *field[], u8 numfields) 1294 { 1295 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1296 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1297 int skewval, skewmax = 0; 1298 int matches = 0; 1299 u16 maxval; 1300 u16 newval; 1301 u16 mask; 1302 int i; 1303 1304 /* psec properties in dts should mean x pico seconds */ 1305 if (field_sz == 5) 1306 skewmax = KSZ9131_SKEW_5BIT_MAX; 1307 else 1308 skewmax = KSZ9131_SKEW_4BIT_MAX; 1309 1310 for (i = 0; i < numfields; i++) 1311 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1312 if (skewval < -KSZ9131_OFFSET) 1313 skewval = -KSZ9131_OFFSET; 1314 else if (skewval > skewmax) 1315 skewval = skewmax; 1316 1317 val[i] = skewval + KSZ9131_OFFSET; 1318 matches++; 1319 } 1320 1321 if (!matches) 1322 return 0; 1323 1324 if (matches < numfields) 1325 newval = phy_read_mmd(phydev, 2, reg); 1326 else 1327 newval = 0; 1328 1329 maxval = (field_sz == 4) ? 0xf : 0x1f; 1330 for (i = 0; i < numfields; i++) 1331 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1332 mask = 0xffff; 1333 mask ^= maxval << (field_sz * i); 1334 newval = (newval & mask) | 1335 (((val[i] / KSZ9131_STEP) & maxval) 1336 << (field_sz * i)); 1337 } 1338 1339 return phy_write_mmd(phydev, 2, reg, newval); 1340 } 1341 1342 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1343 #define KSZ9131RN_RXC_DLL_CTRL 76 1344 #define KSZ9131RN_TXC_DLL_CTRL 77 1345 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1346 1347 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1348 { 1349 const struct kszphy_type *type = phydev->drv->driver_data; 1350 u16 rxcdll_val, txcdll_val; 1351 int ret; 1352 1353 switch (phydev->interface) { 1354 case PHY_INTERFACE_MODE_RGMII: 1355 rxcdll_val = type->disable_dll_rx_bit; 1356 txcdll_val = type->disable_dll_tx_bit; 1357 break; 1358 case PHY_INTERFACE_MODE_RGMII_ID: 1359 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1360 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1361 break; 1362 case PHY_INTERFACE_MODE_RGMII_RXID: 1363 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1364 txcdll_val = type->disable_dll_tx_bit; 1365 break; 1366 case PHY_INTERFACE_MODE_RGMII_TXID: 1367 rxcdll_val = type->disable_dll_rx_bit; 1368 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1375 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1376 rxcdll_val); 1377 if (ret < 0) 1378 return ret; 1379 1380 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1381 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1382 txcdll_val); 1383 } 1384 1385 /* Silicon Errata DS80000693B 1386 * 1387 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1388 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1389 * according to the datasheet (off if there is no link). 1390 */ 1391 static int ksz9131_led_errata(struct phy_device *phydev) 1392 { 1393 int reg; 1394 1395 reg = phy_read_mmd(phydev, 2, 0); 1396 if (reg < 0) 1397 return reg; 1398 1399 if (!(reg & BIT(4))) 1400 return 0; 1401 1402 return phy_set_bits(phydev, 0x1e, BIT(9)); 1403 } 1404 1405 static int ksz9131_config_init(struct phy_device *phydev) 1406 { 1407 struct device_node *of_node; 1408 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1409 char *rx_data_skews[4] = { 1410 "rxd0-skew-psec", "rxd1-skew-psec", 1411 "rxd2-skew-psec", "rxd3-skew-psec" 1412 }; 1413 char *tx_data_skews[4] = { 1414 "txd0-skew-psec", "txd1-skew-psec", 1415 "txd2-skew-psec", "txd3-skew-psec" 1416 }; 1417 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1418 const struct device *dev_walker; 1419 int ret; 1420 1421 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1422 1423 dev_walker = &phydev->mdio.dev; 1424 do { 1425 of_node = dev_walker->of_node; 1426 dev_walker = dev_walker->parent; 1427 } while (!of_node && dev_walker); 1428 1429 if (!of_node) 1430 return 0; 1431 1432 if (phy_interface_is_rgmii(phydev)) { 1433 ret = ksz9131_config_rgmii_delay(phydev); 1434 if (ret < 0) 1435 return ret; 1436 } 1437 1438 ret = ksz9131_of_load_skew_values(phydev, of_node, 1439 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1440 clk_skews, 2); 1441 if (ret < 0) 1442 return ret; 1443 1444 ret = ksz9131_of_load_skew_values(phydev, of_node, 1445 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1446 control_skews, 2); 1447 if (ret < 0) 1448 return ret; 1449 1450 ret = ksz9131_of_load_skew_values(phydev, of_node, 1451 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1452 rx_data_skews, 4); 1453 if (ret < 0) 1454 return ret; 1455 1456 ret = ksz9131_of_load_skew_values(phydev, of_node, 1457 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1458 tx_data_skews, 4); 1459 if (ret < 0) 1460 return ret; 1461 1462 ret = ksz9131_led_errata(phydev); 1463 if (ret < 0) 1464 return ret; 1465 1466 return 0; 1467 } 1468 1469 #define MII_KSZ9131_AUTO_MDIX 0x1C 1470 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1471 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1472 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1473 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1474 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1475 1476 static int ksz9131_mdix_update(struct phy_device *phydev) 1477 { 1478 int ret; 1479 1480 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1481 phydev->mdix = phydev->mdix_ctrl; 1482 } else { 1483 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1484 if (ret < 0) 1485 return ret; 1486 1487 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1488 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1489 phydev->mdix = ETH_TP_MDI; 1490 else 1491 phydev->mdix = ETH_TP_MDI_X; 1492 } else { 1493 phydev->mdix = ETH_TP_MDI_INVALID; 1494 } 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1501 { 1502 u16 val; 1503 1504 switch (ctrl) { 1505 case ETH_TP_MDI: 1506 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1507 MII_KSZ9131_AUTO_MDI_SET; 1508 break; 1509 case ETH_TP_MDI_X: 1510 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1511 break; 1512 case ETH_TP_MDI_AUTO: 1513 val = 0; 1514 break; 1515 default: 1516 return 0; 1517 } 1518 1519 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1520 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1521 MII_KSZ9131_AUTO_MDI_SET, val); 1522 } 1523 1524 static int ksz9131_read_status(struct phy_device *phydev) 1525 { 1526 int ret; 1527 1528 ret = ksz9131_mdix_update(phydev); 1529 if (ret < 0) 1530 return ret; 1531 1532 return genphy_read_status(phydev); 1533 } 1534 1535 static int ksz9131_config_aneg(struct phy_device *phydev) 1536 { 1537 int ret; 1538 1539 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1540 if (ret) 1541 return ret; 1542 1543 return genphy_config_aneg(phydev); 1544 } 1545 1546 static int ksz9477_get_features(struct phy_device *phydev) 1547 { 1548 int ret; 1549 1550 ret = genphy_read_abilities(phydev); 1551 if (ret) 1552 return ret; 1553 1554 /* The "EEE control and capability 1" (Register 3.20) seems to be 1555 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1556 * on the 7.60 will affect 3.20. So, we need to construct our own list 1557 * of caps. 1558 * KSZ8563R should have 100BaseTX/Full only. 1559 */ 1560 linkmode_and(phydev->supported_eee, phydev->supported, 1561 PHY_EEE_CAP1_FEATURES); 1562 1563 return 0; 1564 } 1565 1566 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1567 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1568 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1569 static int ksz8873mll_read_status(struct phy_device *phydev) 1570 { 1571 int regval; 1572 1573 /* dummy read */ 1574 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1575 1576 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1577 1578 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1579 phydev->duplex = DUPLEX_HALF; 1580 else 1581 phydev->duplex = DUPLEX_FULL; 1582 1583 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1584 phydev->speed = SPEED_10; 1585 else 1586 phydev->speed = SPEED_100; 1587 1588 phydev->link = 1; 1589 phydev->pause = phydev->asym_pause = 0; 1590 1591 return 0; 1592 } 1593 1594 static int ksz9031_get_features(struct phy_device *phydev) 1595 { 1596 int ret; 1597 1598 ret = genphy_read_abilities(phydev); 1599 if (ret < 0) 1600 return ret; 1601 1602 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1603 * Whenever the device's Asymmetric Pause capability is set to 1, 1604 * link-up may fail after a link-up to link-down transition. 1605 * 1606 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1607 * 1608 * Workaround: 1609 * Do not enable the Asymmetric Pause capability bit. 1610 */ 1611 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1612 1613 /* We force setting the Pause capability as the core will force the 1614 * Asymmetric Pause capability to 1 otherwise. 1615 */ 1616 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1617 1618 return 0; 1619 } 1620 1621 static int ksz9031_read_status(struct phy_device *phydev) 1622 { 1623 int err; 1624 int regval; 1625 1626 err = genphy_read_status(phydev); 1627 if (err) 1628 return err; 1629 1630 /* Make sure the PHY is not broken. Read idle error count, 1631 * and reset the PHY if it is maxed out. 1632 */ 1633 regval = phy_read(phydev, MII_STAT1000); 1634 if ((regval & 0xFF) == 0xFF) { 1635 phy_init_hw(phydev); 1636 phydev->link = 0; 1637 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1638 phydev->drv->config_intr(phydev); 1639 return genphy_config_aneg(phydev); 1640 } 1641 1642 return 0; 1643 } 1644 1645 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1646 { 1647 struct kszphy_priv *priv = phydev->priv; 1648 int ret; 1649 1650 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1651 * Prior to running the cable diagnostics, Auto-negotiation should 1652 * be disabled, full duplex set and the link speed set to 1000Mbps 1653 * via the Basic Control Register. 1654 */ 1655 ret = phy_modify(phydev, MII_BMCR, 1656 BMCR_SPEED1000 | BMCR_FULLDPLX | 1657 BMCR_ANENABLE | BMCR_SPEED100, 1658 BMCR_SPEED1000 | BMCR_FULLDPLX); 1659 if (ret) 1660 return ret; 1661 1662 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1663 * The Master-Slave configuration should be set to Slave by writing 1664 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1665 * Register. 1666 */ 1667 ret = phy_read(phydev, MII_CTRL1000); 1668 if (ret < 0) 1669 return ret; 1670 1671 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1672 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1673 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1674 ret |= CTL1000_ENABLE_MASTER; 1675 1676 return phy_write(phydev, MII_CTRL1000, ret); 1677 } 1678 1679 static int ksz9x31_cable_test_result_trans(u16 status) 1680 { 1681 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1682 case KSZ9x31_LMD_VCT_ST_NORMAL: 1683 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1684 case KSZ9x31_LMD_VCT_ST_OPEN: 1685 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1686 case KSZ9x31_LMD_VCT_ST_SHORT: 1687 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1688 case KSZ9x31_LMD_VCT_ST_FAIL: 1689 fallthrough; 1690 default: 1691 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1692 } 1693 } 1694 1695 static bool ksz9x31_cable_test_failed(u16 status) 1696 { 1697 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1698 1699 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1700 } 1701 1702 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1703 { 1704 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1705 case KSZ9x31_LMD_VCT_ST_OPEN: 1706 fallthrough; 1707 case KSZ9x31_LMD_VCT_ST_SHORT: 1708 return true; 1709 } 1710 return false; 1711 } 1712 1713 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1714 { 1715 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1716 1717 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1718 * 1719 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1720 */ 1721 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1722 dt = clamp(dt - 22, 0, 255); 1723 1724 return (dt * 400) / 10; 1725 } 1726 1727 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1728 { 1729 int val, ret; 1730 1731 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1732 !(val & KSZ9x31_LMD_VCT_EN), 1733 30000, 100000, true); 1734 1735 return ret < 0 ? ret : 0; 1736 } 1737 1738 static int ksz9x31_cable_test_get_pair(int pair) 1739 { 1740 static const int ethtool_pair[] = { 1741 ETHTOOL_A_CABLE_PAIR_A, 1742 ETHTOOL_A_CABLE_PAIR_B, 1743 ETHTOOL_A_CABLE_PAIR_C, 1744 ETHTOOL_A_CABLE_PAIR_D, 1745 }; 1746 1747 return ethtool_pair[pair]; 1748 } 1749 1750 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1751 { 1752 int ret, val; 1753 1754 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1755 * To test each individual cable pair, set the cable pair in the Cable 1756 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1757 * Diagnostic Register, along with setting the Cable Diagnostics Test 1758 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1759 * will self clear when the test is concluded. 1760 */ 1761 ret = phy_write(phydev, KSZ9x31_LMD, 1762 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1763 if (ret) 1764 return ret; 1765 1766 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1767 if (ret) 1768 return ret; 1769 1770 val = phy_read(phydev, KSZ9x31_LMD); 1771 if (val < 0) 1772 return val; 1773 1774 if (ksz9x31_cable_test_failed(val)) 1775 return -EAGAIN; 1776 1777 ret = ethnl_cable_test_result(phydev, 1778 ksz9x31_cable_test_get_pair(pair), 1779 ksz9x31_cable_test_result_trans(val)); 1780 if (ret) 1781 return ret; 1782 1783 if (!ksz9x31_cable_test_fault_length_valid(val)) 1784 return 0; 1785 1786 return ethnl_cable_test_fault_length(phydev, 1787 ksz9x31_cable_test_get_pair(pair), 1788 ksz9x31_cable_test_fault_length(phydev, val)); 1789 } 1790 1791 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1792 bool *finished) 1793 { 1794 struct kszphy_priv *priv = phydev->priv; 1795 unsigned long pair_mask = 0xf; 1796 int retries = 20; 1797 int pair, ret, rv; 1798 1799 *finished = false; 1800 1801 /* Try harder if link partner is active */ 1802 while (pair_mask && retries--) { 1803 for_each_set_bit(pair, &pair_mask, 4) { 1804 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1805 if (ret == -EAGAIN) 1806 continue; 1807 if (ret < 0) 1808 return ret; 1809 clear_bit(pair, &pair_mask); 1810 } 1811 /* If link partner is in autonegotiation mode it will send 2ms 1812 * of FLPs with at least 6ms of silence. 1813 * Add 2ms sleep to have better chances to hit this silence. 1814 */ 1815 if (pair_mask) 1816 usleep_range(2000, 3000); 1817 } 1818 1819 /* Report remaining unfinished pair result as unknown. */ 1820 for_each_set_bit(pair, &pair_mask, 4) { 1821 ret = ethnl_cable_test_result(phydev, 1822 ksz9x31_cable_test_get_pair(pair), 1823 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1824 } 1825 1826 *finished = true; 1827 1828 /* Restore cached bits from before LinkMD got started. */ 1829 rv = phy_modify(phydev, MII_CTRL1000, 1830 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1831 priv->vct_ctrl1000); 1832 if (rv) 1833 return rv; 1834 1835 return ret; 1836 } 1837 1838 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1839 { 1840 return 0; 1841 } 1842 1843 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1844 { 1845 u16 val; 1846 1847 switch (ctrl) { 1848 case ETH_TP_MDI: 1849 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1850 break; 1851 case ETH_TP_MDI_X: 1852 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1853 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1854 * sheet seems to be missing: 1855 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1856 * 0 = Normal operation (transmit on TX+/TX- pins) 1857 */ 1858 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1859 break; 1860 case ETH_TP_MDI_AUTO: 1861 val = 0; 1862 break; 1863 default: 1864 return 0; 1865 } 1866 1867 return phy_modify(phydev, MII_BMCR, 1868 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1869 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1870 KSZ886X_BMCR_HP_MDIX | val); 1871 } 1872 1873 static int ksz886x_config_aneg(struct phy_device *phydev) 1874 { 1875 int ret; 1876 1877 ret = genphy_config_aneg(phydev); 1878 if (ret) 1879 return ret; 1880 1881 if (phydev->autoneg != AUTONEG_ENABLE) { 1882 /* When autonegotation is disabled, we need to manually force 1883 * the link state. If we don't do this, the PHY will keep 1884 * sending Fast Link Pulses (FLPs) which are part of the 1885 * autonegotiation process. This is not desired when 1886 * autonegotiation is off. 1887 */ 1888 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1889 KSZ886X_CTRL_FORCE_LINK); 1890 if (ret) 1891 return ret; 1892 } else { 1893 /* If we had previously forced the link state, we need to 1894 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1895 * will not perform autonegotiation. 1896 */ 1897 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1898 KSZ886X_CTRL_FORCE_LINK); 1899 if (ret) 1900 return ret; 1901 } 1902 1903 /* The MDI-X configuration is automatically changed by the PHY after 1904 * switching from autoneg off to on. So, take MDI-X configuration under 1905 * own control and set it after autoneg configuration was done. 1906 */ 1907 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1908 } 1909 1910 static int ksz886x_mdix_update(struct phy_device *phydev) 1911 { 1912 int ret; 1913 1914 ret = phy_read(phydev, MII_BMCR); 1915 if (ret < 0) 1916 return ret; 1917 1918 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1919 if (ret & KSZ886X_BMCR_FORCE_MDI) 1920 phydev->mdix_ctrl = ETH_TP_MDI_X; 1921 else 1922 phydev->mdix_ctrl = ETH_TP_MDI; 1923 } else { 1924 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1925 } 1926 1927 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1928 if (ret < 0) 1929 return ret; 1930 1931 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1932 if (ret & KSZ886X_CTRL_MDIX_STAT) 1933 phydev->mdix = ETH_TP_MDI_X; 1934 else 1935 phydev->mdix = ETH_TP_MDI; 1936 1937 return 0; 1938 } 1939 1940 static int ksz886x_read_status(struct phy_device *phydev) 1941 { 1942 int ret; 1943 1944 ret = ksz886x_mdix_update(phydev); 1945 if (ret < 0) 1946 return ret; 1947 1948 return genphy_read_status(phydev); 1949 } 1950 1951 struct ksz9477_errata_write { 1952 u8 dev_addr; 1953 u8 reg_addr; 1954 u16 val; 1955 }; 1956 1957 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1958 /* Register settings are needed to improve PHY receive performance */ 1959 {0x01, 0x6f, 0xdd0b}, 1960 {0x01, 0x8f, 0x6032}, 1961 {0x01, 0x9d, 0x248c}, 1962 {0x01, 0x75, 0x0060}, 1963 {0x01, 0xd3, 0x7777}, 1964 {0x1c, 0x06, 0x3008}, 1965 {0x1c, 0x08, 0x2000}, 1966 1967 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1968 {0x1c, 0x04, 0x00d0}, 1969 1970 /* Register settings are required to meet data sheet supply current specifications */ 1971 {0x1c, 0x13, 0x6eff}, 1972 {0x1c, 0x14, 0xe6ff}, 1973 {0x1c, 0x15, 0x6eff}, 1974 {0x1c, 0x16, 0xe6ff}, 1975 {0x1c, 0x17, 0x00ff}, 1976 {0x1c, 0x18, 0x43ff}, 1977 {0x1c, 0x19, 0xc3ff}, 1978 {0x1c, 0x1a, 0x6fff}, 1979 {0x1c, 0x1b, 0x07ff}, 1980 {0x1c, 0x1c, 0x0fff}, 1981 {0x1c, 0x1d, 0xe7ff}, 1982 {0x1c, 0x1e, 0xefff}, 1983 {0x1c, 0x20, 0xeeee}, 1984 }; 1985 1986 static int ksz9477_phy_errata(struct phy_device *phydev) 1987 { 1988 int err; 1989 int i; 1990 1991 /* Apply PHY settings to address errata listed in 1992 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1993 * Silicon Errata and Data Sheet Clarification documents. 1994 * 1995 * Document notes: Before configuring the PHY MMD registers, it is 1996 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1997 * disabled by writing to register 0xN100-0xN101. After writing the 1998 * MMD registers, and after all errata workarounds that involve PHY 1999 * register settings, write register 0xN100-0xN101 again to enable 2000 * and restart auto-negotiation. 2001 */ 2002 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2003 if (err) 2004 return err; 2005 2006 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2007 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2008 2009 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2010 if (err) 2011 return err; 2012 } 2013 2014 err = genphy_restart_aneg(phydev); 2015 if (err) 2016 return err; 2017 2018 return err; 2019 } 2020 2021 static int ksz9477_config_init(struct phy_device *phydev) 2022 { 2023 int err; 2024 2025 /* Only KSZ9897 family of switches needs this fix. */ 2026 if ((phydev->phy_id & 0xf) == 1) { 2027 err = ksz9477_phy_errata(phydev); 2028 if (err) 2029 return err; 2030 } 2031 2032 return kszphy_config_init(phydev); 2033 } 2034 2035 static int kszphy_get_sset_count(struct phy_device *phydev) 2036 { 2037 return ARRAY_SIZE(kszphy_hw_stats); 2038 } 2039 2040 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2041 { 2042 int i; 2043 2044 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2045 ethtool_puts(&data, kszphy_hw_stats[i].string); 2046 } 2047 2048 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2049 { 2050 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2051 struct kszphy_priv *priv = phydev->priv; 2052 int val; 2053 u64 ret; 2054 2055 val = phy_read(phydev, stat.reg); 2056 if (val < 0) { 2057 ret = U64_MAX; 2058 } else { 2059 val = val & ((1 << stat.bits) - 1); 2060 priv->stats[i] += val; 2061 ret = priv->stats[i]; 2062 } 2063 2064 return ret; 2065 } 2066 2067 static void kszphy_get_stats(struct phy_device *phydev, 2068 struct ethtool_stats *stats, u64 *data) 2069 { 2070 int i; 2071 2072 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2073 data[i] = kszphy_get_stat(phydev, i); 2074 } 2075 2076 static void kszphy_enable_clk(struct phy_device *phydev) 2077 { 2078 struct kszphy_priv *priv = phydev->priv; 2079 2080 if (!priv->clk_enable && priv->clk) { 2081 clk_prepare_enable(priv->clk); 2082 priv->clk_enable = true; 2083 } 2084 } 2085 2086 static void kszphy_disable_clk(struct phy_device *phydev) 2087 { 2088 struct kszphy_priv *priv = phydev->priv; 2089 2090 if (priv->clk_enable && priv->clk) { 2091 clk_disable_unprepare(priv->clk); 2092 priv->clk_enable = false; 2093 } 2094 } 2095 2096 static int kszphy_generic_resume(struct phy_device *phydev) 2097 { 2098 kszphy_enable_clk(phydev); 2099 2100 return genphy_resume(phydev); 2101 } 2102 2103 static int kszphy_generic_suspend(struct phy_device *phydev) 2104 { 2105 int ret; 2106 2107 ret = genphy_suspend(phydev); 2108 if (ret) 2109 return ret; 2110 2111 kszphy_disable_clk(phydev); 2112 2113 return 0; 2114 } 2115 2116 static int kszphy_suspend(struct phy_device *phydev) 2117 { 2118 /* Disable PHY Interrupts */ 2119 if (phy_interrupt_is_valid(phydev)) { 2120 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2121 if (phydev->drv->config_intr) 2122 phydev->drv->config_intr(phydev); 2123 } 2124 2125 return kszphy_generic_suspend(phydev); 2126 } 2127 2128 static void kszphy_parse_led_mode(struct phy_device *phydev) 2129 { 2130 const struct kszphy_type *type = phydev->drv->driver_data; 2131 const struct device_node *np = phydev->mdio.dev.of_node; 2132 struct kszphy_priv *priv = phydev->priv; 2133 int ret; 2134 2135 if (type && type->led_mode_reg) { 2136 ret = of_property_read_u32(np, "micrel,led-mode", 2137 &priv->led_mode); 2138 2139 if (ret) 2140 priv->led_mode = -1; 2141 2142 if (priv->led_mode > 3) { 2143 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2144 priv->led_mode); 2145 priv->led_mode = -1; 2146 } 2147 } else { 2148 priv->led_mode = -1; 2149 } 2150 } 2151 2152 static int kszphy_resume(struct phy_device *phydev) 2153 { 2154 int ret; 2155 2156 ret = kszphy_generic_resume(phydev); 2157 if (ret) 2158 return ret; 2159 2160 /* After switching from power-down to normal mode, an internal global 2161 * reset is automatically generated. Wait a minimum of 1 ms before 2162 * read/write access to the PHY registers. 2163 */ 2164 usleep_range(1000, 2000); 2165 2166 ret = kszphy_config_reset(phydev); 2167 if (ret) 2168 return ret; 2169 2170 /* Enable PHY Interrupts */ 2171 if (phy_interrupt_is_valid(phydev)) { 2172 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2173 if (phydev->drv->config_intr) 2174 phydev->drv->config_intr(phydev); 2175 } 2176 2177 return 0; 2178 } 2179 2180 /* Because of errata DS80000700A, receiver error following software 2181 * power down. Suspend and resume callbacks only disable and enable 2182 * external rmii reference clock. 2183 */ 2184 static int ksz8041_resume(struct phy_device *phydev) 2185 { 2186 kszphy_enable_clk(phydev); 2187 2188 return 0; 2189 } 2190 2191 static int ksz8041_suspend(struct phy_device *phydev) 2192 { 2193 kszphy_disable_clk(phydev); 2194 2195 return 0; 2196 } 2197 2198 static int ksz9477_resume(struct phy_device *phydev) 2199 { 2200 int ret; 2201 2202 /* No need to initialize registers if not powered down. */ 2203 ret = phy_read(phydev, MII_BMCR); 2204 if (ret < 0) 2205 return ret; 2206 if (!(ret & BMCR_PDOWN)) 2207 return 0; 2208 2209 genphy_resume(phydev); 2210 2211 /* After switching from power-down to normal mode, an internal global 2212 * reset is automatically generated. Wait a minimum of 1 ms before 2213 * read/write access to the PHY registers. 2214 */ 2215 usleep_range(1000, 2000); 2216 2217 /* Only KSZ9897 family of switches needs this fix. */ 2218 if ((phydev->phy_id & 0xf) == 1) { 2219 ret = ksz9477_phy_errata(phydev); 2220 if (ret) 2221 return ret; 2222 } 2223 2224 /* Enable PHY Interrupts */ 2225 if (phy_interrupt_is_valid(phydev)) { 2226 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2227 if (phydev->drv->config_intr) 2228 phydev->drv->config_intr(phydev); 2229 } 2230 2231 return 0; 2232 } 2233 2234 static int ksz8061_resume(struct phy_device *phydev) 2235 { 2236 int ret; 2237 2238 /* This function can be called twice when the Ethernet device is on. */ 2239 ret = phy_read(phydev, MII_BMCR); 2240 if (ret < 0) 2241 return ret; 2242 if (!(ret & BMCR_PDOWN)) 2243 return 0; 2244 2245 ret = kszphy_generic_resume(phydev); 2246 if (ret) 2247 return ret; 2248 2249 usleep_range(1000, 2000); 2250 2251 /* Re-program the value after chip is reset. */ 2252 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2253 if (ret) 2254 return ret; 2255 2256 /* Enable PHY Interrupts */ 2257 if (phy_interrupt_is_valid(phydev)) { 2258 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2259 if (phydev->drv->config_intr) 2260 phydev->drv->config_intr(phydev); 2261 } 2262 2263 return 0; 2264 } 2265 2266 static int ksz8061_suspend(struct phy_device *phydev) 2267 { 2268 return kszphy_suspend(phydev); 2269 } 2270 2271 static int kszphy_probe(struct phy_device *phydev) 2272 { 2273 const struct kszphy_type *type = phydev->drv->driver_data; 2274 const struct device_node *np = phydev->mdio.dev.of_node; 2275 struct kszphy_priv *priv; 2276 struct clk *clk; 2277 2278 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2279 if (!priv) 2280 return -ENOMEM; 2281 2282 phydev->priv = priv; 2283 2284 priv->type = type; 2285 2286 kszphy_parse_led_mode(phydev); 2287 2288 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2289 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2290 if (!IS_ERR_OR_NULL(clk)) { 2291 unsigned long rate = clk_get_rate(clk); 2292 bool rmii_ref_clk_sel_25_mhz; 2293 2294 if (type) 2295 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2296 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2297 "micrel,rmii-reference-clock-select-25-mhz"); 2298 2299 if (rate > 24500000 && rate < 25500000) { 2300 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2301 } else if (rate > 49500000 && rate < 50500000) { 2302 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2303 } else { 2304 phydev_err(phydev, "Clock rate out of range: %ld\n", 2305 rate); 2306 return -EINVAL; 2307 } 2308 } else if (!clk) { 2309 /* unnamed clock from the generic ethernet-phy binding */ 2310 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2311 } 2312 2313 if (IS_ERR(clk)) 2314 return PTR_ERR(clk); 2315 2316 clk_disable_unprepare(clk); 2317 priv->clk = clk; 2318 2319 if (ksz8041_fiber_mode(phydev)) 2320 phydev->port = PORT_FIBRE; 2321 2322 /* Support legacy board-file configuration */ 2323 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2324 priv->rmii_ref_clk_sel = true; 2325 priv->rmii_ref_clk_sel_val = true; 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int lan8814_cable_test_start(struct phy_device *phydev) 2332 { 2333 /* If autoneg is enabled, we won't be able to test cross pair 2334 * short. In this case, the PHY will "detect" a link and 2335 * confuse the internal state machine - disable auto neg here. 2336 * Set the speed to 1000mbit and full duplex. 2337 */ 2338 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2339 BMCR_SPEED1000 | BMCR_FULLDPLX); 2340 } 2341 2342 static int ksz886x_cable_test_start(struct phy_device *phydev) 2343 { 2344 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2345 return -EOPNOTSUPP; 2346 2347 /* If autoneg is enabled, we won't be able to test cross pair 2348 * short. In this case, the PHY will "detect" a link and 2349 * confuse the internal state machine - disable auto neg here. 2350 * If autoneg is disabled, we should set the speed to 10mbit. 2351 */ 2352 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2353 } 2354 2355 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2356 { 2357 switch (FIELD_GET(mask, status)) { 2358 case KSZ8081_LMD_STAT_NORMAL: 2359 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2360 case KSZ8081_LMD_STAT_SHORT: 2361 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2362 case KSZ8081_LMD_STAT_OPEN: 2363 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2364 case KSZ8081_LMD_STAT_FAIL: 2365 fallthrough; 2366 default: 2367 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2368 } 2369 } 2370 2371 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2372 { 2373 return FIELD_GET(mask, status) == 2374 KSZ8081_LMD_STAT_FAIL; 2375 } 2376 2377 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2378 { 2379 switch (FIELD_GET(mask, status)) { 2380 case KSZ8081_LMD_STAT_OPEN: 2381 fallthrough; 2382 case KSZ8081_LMD_STAT_SHORT: 2383 return true; 2384 } 2385 return false; 2386 } 2387 2388 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2389 u16 status, u16 data_mask) 2390 { 2391 int dt; 2392 2393 /* According to the data sheet the distance to the fault is 2394 * DELTA_TIME * 0.4 meters for ksz phys. 2395 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2396 */ 2397 dt = FIELD_GET(data_mask, status); 2398 2399 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2400 return ((dt - 22) * 800) / 10; 2401 else 2402 return (dt * 400) / 10; 2403 } 2404 2405 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2406 { 2407 const struct kszphy_type *type = phydev->drv->driver_data; 2408 int val, ret; 2409 2410 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2411 !(val & KSZ8081_LMD_ENABLE_TEST), 2412 30000, 100000, true); 2413 2414 return ret < 0 ? ret : 0; 2415 } 2416 2417 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2418 { 2419 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2420 ETHTOOL_A_CABLE_PAIR_B, 2421 ETHTOOL_A_CABLE_PAIR_C, 2422 ETHTOOL_A_CABLE_PAIR_D, 2423 }; 2424 u32 fault_length; 2425 int ret; 2426 int val; 2427 2428 val = KSZ8081_LMD_ENABLE_TEST; 2429 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2430 2431 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2432 if (ret < 0) 2433 return ret; 2434 2435 ret = ksz886x_cable_test_wait_for_completion(phydev); 2436 if (ret) 2437 return ret; 2438 2439 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2440 if (val < 0) 2441 return val; 2442 2443 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2444 return -EAGAIN; 2445 2446 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2447 ksz886x_cable_test_result_trans(val, 2448 LAN8814_CABLE_DIAG_STAT_MASK 2449 )); 2450 if (ret) 2451 return ret; 2452 2453 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2454 return 0; 2455 2456 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2457 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2458 2459 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2460 } 2461 2462 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2463 { 2464 static const int ethtool_pair[] = { 2465 ETHTOOL_A_CABLE_PAIR_A, 2466 ETHTOOL_A_CABLE_PAIR_B, 2467 }; 2468 int ret, val, mdix; 2469 u32 fault_length; 2470 2471 /* There is no way to choice the pair, like we do one ksz9031. 2472 * We can workaround this limitation by using the MDI-X functionality. 2473 */ 2474 if (pair == 0) 2475 mdix = ETH_TP_MDI; 2476 else 2477 mdix = ETH_TP_MDI_X; 2478 2479 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2480 case PHY_ID_KSZ8081: 2481 ret = ksz8081_config_mdix(phydev, mdix); 2482 break; 2483 case PHY_ID_KSZ886X: 2484 ret = ksz886x_config_mdix(phydev, mdix); 2485 break; 2486 default: 2487 ret = -ENODEV; 2488 } 2489 2490 if (ret) 2491 return ret; 2492 2493 /* Now we are ready to fire. This command will send a 100ns pulse 2494 * to the pair. 2495 */ 2496 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2497 if (ret) 2498 return ret; 2499 2500 ret = ksz886x_cable_test_wait_for_completion(phydev); 2501 if (ret) 2502 return ret; 2503 2504 val = phy_read(phydev, KSZ8081_LMD); 2505 if (val < 0) 2506 return val; 2507 2508 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2509 return -EAGAIN; 2510 2511 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2512 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2513 if (ret) 2514 return ret; 2515 2516 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2517 return 0; 2518 2519 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2520 2521 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2522 } 2523 2524 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2525 bool *finished) 2526 { 2527 const struct kszphy_type *type = phydev->drv->driver_data; 2528 unsigned long pair_mask = type->pair_mask; 2529 int retries = 20; 2530 int ret = 0; 2531 int pair; 2532 2533 *finished = false; 2534 2535 /* Try harder if link partner is active */ 2536 while (pair_mask && retries--) { 2537 for_each_set_bit(pair, &pair_mask, 4) { 2538 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2539 ret = lan8814_cable_test_one_pair(phydev, pair); 2540 else 2541 ret = ksz886x_cable_test_one_pair(phydev, pair); 2542 if (ret == -EAGAIN) 2543 continue; 2544 if (ret < 0) 2545 return ret; 2546 clear_bit(pair, &pair_mask); 2547 } 2548 /* If link partner is in autonegotiation mode it will send 2ms 2549 * of FLPs with at least 6ms of silence. 2550 * Add 2ms sleep to have better chances to hit this silence. 2551 */ 2552 if (pair_mask) 2553 msleep(2); 2554 } 2555 2556 *finished = true; 2557 2558 return ret; 2559 } 2560 2561 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2562 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2563 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2564 2565 #define LAN8814_QSGMII_SOFT_RESET 0x43 2566 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2567 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2568 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2569 #define LAN8814_ALIGN_SWAP 0x4a 2570 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2571 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2572 2573 #define LAN8804_ALIGN_SWAP 0x4a 2574 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2575 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2576 #define LAN8814_CLOCK_MANAGEMENT 0xd 2577 #define LAN8814_LINK_QUALITY 0x8e 2578 2579 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2580 { 2581 int data; 2582 2583 phy_lock_mdio_bus(phydev); 2584 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2585 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2586 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2587 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2588 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2589 phy_unlock_mdio_bus(phydev); 2590 2591 return data; 2592 } 2593 2594 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2595 u16 val) 2596 { 2597 phy_lock_mdio_bus(phydev); 2598 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2599 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2600 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2601 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2602 2603 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2604 if (val != 0) 2605 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2606 val); 2607 phy_unlock_mdio_bus(phydev); 2608 return val; 2609 } 2610 2611 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2612 { 2613 u16 val = 0; 2614 2615 if (enable) 2616 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2617 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2618 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2619 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2620 2621 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2622 } 2623 2624 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2625 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2626 { 2627 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2628 *seconds = (*seconds << 16) | 2629 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2630 2631 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2632 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2633 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2634 2635 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2636 } 2637 2638 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2639 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2640 { 2641 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2642 *seconds = *seconds << 16 | 2643 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2644 2645 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2646 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2647 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2648 2649 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2650 } 2651 2652 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2653 { 2654 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2655 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2656 2657 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2658 SOF_TIMESTAMPING_RX_HARDWARE | 2659 SOF_TIMESTAMPING_RAW_HARDWARE; 2660 2661 info->phc_index = ptp_clock_index(shared->ptp_clock); 2662 2663 info->tx_types = 2664 (1 << HWTSTAMP_TX_OFF) | 2665 (1 << HWTSTAMP_TX_ON) | 2666 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2667 2668 info->rx_filters = 2669 (1 << HWTSTAMP_FILTER_NONE) | 2670 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2671 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2672 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2673 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2674 2675 return 0; 2676 } 2677 2678 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2679 { 2680 int i; 2681 2682 for (i = 0; i < FIFO_SIZE; ++i) 2683 lanphy_read_page_reg(phydev, 5, 2684 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2685 2686 /* Read to clear overflow status bit */ 2687 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2688 } 2689 2690 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2691 struct kernel_hwtstamp_config *config, 2692 struct netlink_ext_ack *extack) 2693 { 2694 struct kszphy_ptp_priv *ptp_priv = 2695 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2696 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2697 int txcfg = 0, rxcfg = 0; 2698 int pkt_ts_enable; 2699 int tx_mod; 2700 2701 ptp_priv->hwts_tx_type = config->tx_type; 2702 ptp_priv->rx_filter = config->rx_filter; 2703 2704 switch (config->rx_filter) { 2705 case HWTSTAMP_FILTER_NONE: 2706 ptp_priv->layer = 0; 2707 ptp_priv->version = 0; 2708 break; 2709 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2710 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2711 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2712 ptp_priv->layer = PTP_CLASS_L4; 2713 ptp_priv->version = PTP_CLASS_V2; 2714 break; 2715 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2716 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2717 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2718 ptp_priv->layer = PTP_CLASS_L2; 2719 ptp_priv->version = PTP_CLASS_V2; 2720 break; 2721 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2722 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2723 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2724 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2725 ptp_priv->version = PTP_CLASS_V2; 2726 break; 2727 default: 2728 return -ERANGE; 2729 } 2730 2731 if (ptp_priv->layer & PTP_CLASS_L2) { 2732 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2733 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2734 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2735 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2736 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2737 } 2738 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2739 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2740 2741 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2742 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2743 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2744 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2745 2746 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2747 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2748 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2749 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2750 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2751 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2752 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2753 } 2754 2755 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2756 lan8814_config_ts_intr(ptp_priv->phydev, true); 2757 else 2758 lan8814_config_ts_intr(ptp_priv->phydev, false); 2759 2760 /* In case of multiple starts and stops, these needs to be cleared */ 2761 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2762 list_del(&rx_ts->list); 2763 kfree(rx_ts); 2764 } 2765 skb_queue_purge(&ptp_priv->rx_queue); 2766 skb_queue_purge(&ptp_priv->tx_queue); 2767 2768 lan8814_flush_fifo(ptp_priv->phydev, false); 2769 lan8814_flush_fifo(ptp_priv->phydev, true); 2770 2771 return 0; 2772 } 2773 2774 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2775 struct sk_buff *skb, int type) 2776 { 2777 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2778 2779 switch (ptp_priv->hwts_tx_type) { 2780 case HWTSTAMP_TX_ONESTEP_SYNC: 2781 if (ptp_msg_is_sync(skb, type)) { 2782 kfree_skb(skb); 2783 return; 2784 } 2785 fallthrough; 2786 case HWTSTAMP_TX_ON: 2787 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2788 skb_queue_tail(&ptp_priv->tx_queue, skb); 2789 break; 2790 case HWTSTAMP_TX_OFF: 2791 default: 2792 kfree_skb(skb); 2793 break; 2794 } 2795 } 2796 2797 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2798 { 2799 struct ptp_header *ptp_header; 2800 u32 type; 2801 2802 skb_push(skb, ETH_HLEN); 2803 type = ptp_classify_raw(skb); 2804 ptp_header = ptp_parse_header(skb, type); 2805 skb_pull_inline(skb, ETH_HLEN); 2806 2807 if (!ptp_header) 2808 return false; 2809 2810 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2811 return true; 2812 } 2813 2814 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2815 struct sk_buff *skb) 2816 { 2817 struct skb_shared_hwtstamps *shhwtstamps; 2818 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2819 unsigned long flags; 2820 bool ret = false; 2821 u16 skb_sig; 2822 2823 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2824 return ret; 2825 2826 /* Iterate over all RX timestamps and match it with the received skbs */ 2827 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2828 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2829 /* Check if we found the signature we were looking for. */ 2830 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2831 continue; 2832 2833 shhwtstamps = skb_hwtstamps(skb); 2834 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2835 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2836 rx_ts->nsec); 2837 list_del(&rx_ts->list); 2838 kfree(rx_ts); 2839 2840 ret = true; 2841 break; 2842 } 2843 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2844 2845 if (ret) 2846 netif_rx(skb); 2847 return ret; 2848 } 2849 2850 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2851 { 2852 struct kszphy_ptp_priv *ptp_priv = 2853 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2854 2855 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2856 type == PTP_CLASS_NONE) 2857 return false; 2858 2859 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2860 return false; 2861 2862 /* If we failed to match then add it to the queue for when the timestamp 2863 * will come 2864 */ 2865 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2866 skb_queue_tail(&ptp_priv->rx_queue, skb); 2867 2868 return true; 2869 } 2870 2871 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2872 time64_t sec, u32 nsec) 2873 { 2874 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 2875 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 2876 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 2877 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 2878 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 2879 2880 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2881 } 2882 2883 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2884 time64_t *sec, u32 *nsec) 2885 { 2886 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2887 2888 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 2889 *sec <<= 16; 2890 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2891 *sec <<= 16; 2892 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2893 2894 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2895 *nsec <<= 16; 2896 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2897 } 2898 2899 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2900 struct timespec64 *ts) 2901 { 2902 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2903 ptp_clock_info); 2904 struct phy_device *phydev = shared->phydev; 2905 u32 nano_seconds; 2906 time64_t seconds; 2907 2908 mutex_lock(&shared->shared_lock); 2909 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2910 mutex_unlock(&shared->shared_lock); 2911 ts->tv_sec = seconds; 2912 ts->tv_nsec = nano_seconds; 2913 2914 return 0; 2915 } 2916 2917 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2918 const struct timespec64 *ts) 2919 { 2920 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2921 ptp_clock_info); 2922 struct phy_device *phydev = shared->phydev; 2923 2924 mutex_lock(&shared->shared_lock); 2925 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2926 mutex_unlock(&shared->shared_lock); 2927 2928 return 0; 2929 } 2930 2931 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 2932 s64 start_sec, u32 start_nsec) 2933 { 2934 /* Set the start time */ 2935 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 2936 lower_16_bits(start_sec)); 2937 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 2938 upper_16_bits(start_sec)); 2939 2940 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 2941 lower_16_bits(start_nsec)); 2942 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 2943 upper_16_bits(start_nsec) & 0x3fff); 2944 } 2945 2946 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 2947 { 2948 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 2949 sec + LAN8814_BUFFER_TIME, 0); 2950 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 2951 sec + LAN8814_BUFFER_TIME, 0); 2952 } 2953 2954 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2955 s64 time_step_ns) 2956 { 2957 u32 nano_seconds_step; 2958 u64 abs_time_step_ns; 2959 time64_t set_seconds; 2960 u32 nano_seconds; 2961 u32 remainder; 2962 s32 seconds; 2963 2964 if (time_step_ns > 15000000000LL) { 2965 /* convert to clock set */ 2966 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2967 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2968 &remainder); 2969 nano_seconds += remainder; 2970 if (nano_seconds >= 1000000000) { 2971 set_seconds++; 2972 nano_seconds -= 1000000000; 2973 } 2974 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2975 lan8814_ptp_update_target(phydev, set_seconds); 2976 return; 2977 } else if (time_step_ns < -15000000000LL) { 2978 /* convert to clock set */ 2979 time_step_ns = -time_step_ns; 2980 2981 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 2982 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2983 &remainder); 2984 nano_seconds_step = remainder; 2985 if (nano_seconds < nano_seconds_step) { 2986 set_seconds--; 2987 nano_seconds += 1000000000; 2988 } 2989 nano_seconds -= nano_seconds_step; 2990 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 2991 lan8814_ptp_update_target(phydev, set_seconds); 2992 return; 2993 } 2994 2995 /* do clock step */ 2996 if (time_step_ns >= 0) { 2997 abs_time_step_ns = (u64)time_step_ns; 2998 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2999 &remainder); 3000 nano_seconds = remainder; 3001 } else { 3002 abs_time_step_ns = (u64)(-time_step_ns); 3003 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3004 &remainder)); 3005 nano_seconds = remainder; 3006 if (nano_seconds > 0) { 3007 /* subtracting nano seconds is not allowed 3008 * convert to subtracting from seconds, 3009 * and adding to nanoseconds 3010 */ 3011 seconds--; 3012 nano_seconds = (1000000000 - nano_seconds); 3013 } 3014 } 3015 3016 if (nano_seconds > 0) { 3017 /* add 8 ns to cover the likely normal increment */ 3018 nano_seconds += 8; 3019 } 3020 3021 if (nano_seconds >= 1000000000) { 3022 /* carry into seconds */ 3023 seconds++; 3024 nano_seconds -= 1000000000; 3025 } 3026 3027 while (seconds) { 3028 u32 nsec; 3029 3030 if (seconds > 0) { 3031 u32 adjustment_value = (u32)seconds; 3032 u16 adjustment_value_lo, adjustment_value_hi; 3033 3034 if (adjustment_value > 0xF) 3035 adjustment_value = 0xF; 3036 3037 adjustment_value_lo = adjustment_value & 0xffff; 3038 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3039 3040 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3041 adjustment_value_lo); 3042 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3043 PTP_LTC_STEP_ADJ_DIR_ | 3044 adjustment_value_hi); 3045 seconds -= ((s32)adjustment_value); 3046 3047 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3048 set_seconds -= adjustment_value; 3049 lan8814_ptp_update_target(phydev, set_seconds); 3050 } else { 3051 u32 adjustment_value = (u32)(-seconds); 3052 u16 adjustment_value_lo, adjustment_value_hi; 3053 3054 if (adjustment_value > 0xF) 3055 adjustment_value = 0xF; 3056 3057 adjustment_value_lo = adjustment_value & 0xffff; 3058 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3059 3060 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3061 adjustment_value_lo); 3062 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3063 adjustment_value_hi); 3064 seconds += ((s32)adjustment_value); 3065 3066 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3067 set_seconds += adjustment_value; 3068 lan8814_ptp_update_target(phydev, set_seconds); 3069 } 3070 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3071 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3072 } 3073 if (nano_seconds) { 3074 u16 nano_seconds_lo; 3075 u16 nano_seconds_hi; 3076 3077 nano_seconds_lo = nano_seconds & 0xffff; 3078 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3079 3080 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3081 nano_seconds_lo); 3082 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3083 PTP_LTC_STEP_ADJ_DIR_ | 3084 nano_seconds_hi); 3085 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3086 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3087 } 3088 } 3089 3090 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3091 { 3092 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3093 ptp_clock_info); 3094 struct phy_device *phydev = shared->phydev; 3095 3096 mutex_lock(&shared->shared_lock); 3097 lan8814_ptp_clock_step(phydev, delta); 3098 mutex_unlock(&shared->shared_lock); 3099 3100 return 0; 3101 } 3102 3103 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3104 { 3105 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3106 ptp_clock_info); 3107 struct phy_device *phydev = shared->phydev; 3108 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3109 bool positive = true; 3110 u32 kszphy_rate_adj; 3111 3112 if (scaled_ppm < 0) { 3113 scaled_ppm = -scaled_ppm; 3114 positive = false; 3115 } 3116 3117 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3118 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3119 3120 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3121 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3122 3123 if (positive) 3124 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3125 3126 mutex_lock(&shared->shared_lock); 3127 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3128 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3129 mutex_unlock(&shared->shared_lock); 3130 3131 return 0; 3132 } 3133 3134 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3135 s64 period_sec, u32 period_nsec) 3136 { 3137 lanphy_write_page_reg(phydev, 4, 3138 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3139 lower_16_bits(period_sec)); 3140 lanphy_write_page_reg(phydev, 4, 3141 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3142 upper_16_bits(period_sec)); 3143 3144 lanphy_write_page_reg(phydev, 4, 3145 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3146 lower_16_bits(period_nsec)); 3147 lanphy_write_page_reg(phydev, 4, 3148 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3149 upper_16_bits(period_nsec) & 0x3fff); 3150 } 3151 3152 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3153 int pulse_width) 3154 { 3155 u16 val; 3156 3157 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3158 /* Set the pulse width of the event */ 3159 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3160 /* Make sure that the target clock will be incremented each time when 3161 * local time reaches or pass it 3162 */ 3163 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3164 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3165 /* Set the polarity high */ 3166 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3167 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3168 } 3169 3170 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3171 { 3172 u16 val; 3173 3174 /* Set target to too far in the future, effectively disabling it */ 3175 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3176 3177 /* And then reload once it recheas the target */ 3178 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3179 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3180 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3181 } 3182 3183 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3184 { 3185 u16 val; 3186 3187 /* Disable gpio alternate function, 3188 * 1: select as gpio, 3189 * 0: select alt func 3190 */ 3191 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3192 val |= LAN8814_GPIO_EN_BIT(pin); 3193 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3194 3195 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3196 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3197 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3198 3199 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3200 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3201 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3202 } 3203 3204 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3205 { 3206 int val; 3207 3208 /* Set as gpio output */ 3209 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3210 val |= LAN8814_GPIO_DIR_BIT(pin); 3211 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3212 3213 /* Enable gpio 0:for alternate function, 1:gpio */ 3214 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3215 val &= ~LAN8814_GPIO_EN_BIT(pin); 3216 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3217 3218 /* Set buffer type to push pull */ 3219 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3220 val |= LAN8814_GPIO_BUF_BIT(pin); 3221 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3222 } 3223 3224 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3225 struct ptp_clock_request *rq, int on) 3226 { 3227 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3228 ptp_clock_info); 3229 struct phy_device *phydev = shared->phydev; 3230 struct timespec64 ts_on, ts_period; 3231 s64 on_nsec, period_nsec; 3232 int pulse_width; 3233 int pin, event; 3234 3235 mutex_lock(&shared->shared_lock); 3236 event = rq->perout.index; 3237 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3238 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3239 mutex_unlock(&shared->shared_lock); 3240 return -EBUSY; 3241 } 3242 3243 if (!on) { 3244 lan8814_ptp_perout_off(phydev, pin); 3245 lan8814_ptp_disable_event(phydev, event); 3246 mutex_unlock(&shared->shared_lock); 3247 return 0; 3248 } 3249 3250 ts_on.tv_sec = rq->perout.on.sec; 3251 ts_on.tv_nsec = rq->perout.on.nsec; 3252 on_nsec = timespec64_to_ns(&ts_on); 3253 3254 ts_period.tv_sec = rq->perout.period.sec; 3255 ts_period.tv_nsec = rq->perout.period.nsec; 3256 period_nsec = timespec64_to_ns(&ts_period); 3257 3258 if (period_nsec < 200) { 3259 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3260 phydev_name(phydev)); 3261 mutex_unlock(&shared->shared_lock); 3262 return -EOPNOTSUPP; 3263 } 3264 3265 if (on_nsec >= period_nsec) { 3266 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3267 phydev_name(phydev)); 3268 mutex_unlock(&shared->shared_lock); 3269 return -EINVAL; 3270 } 3271 3272 switch (on_nsec) { 3273 case 200000000: 3274 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3275 break; 3276 case 100000000: 3277 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3278 break; 3279 case 50000000: 3280 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3281 break; 3282 case 10000000: 3283 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3284 break; 3285 case 5000000: 3286 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3287 break; 3288 case 1000000: 3289 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3290 break; 3291 case 500000: 3292 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3293 break; 3294 case 100000: 3295 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3296 break; 3297 case 50000: 3298 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3299 break; 3300 case 10000: 3301 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3302 break; 3303 case 5000: 3304 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3305 break; 3306 case 1000: 3307 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3308 break; 3309 case 500: 3310 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3311 break; 3312 case 100: 3313 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3314 break; 3315 default: 3316 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3317 phydev_name(phydev)); 3318 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3319 break; 3320 } 3321 3322 /* Configure to pulse every period */ 3323 lan8814_ptp_enable_event(phydev, event, pulse_width); 3324 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3325 rq->perout.start.nsec); 3326 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3327 rq->perout.period.nsec); 3328 lan8814_ptp_perout_on(phydev, pin); 3329 mutex_unlock(&shared->shared_lock); 3330 3331 return 0; 3332 } 3333 3334 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3335 { 3336 u16 tmp; 3337 3338 /* Set as gpio input */ 3339 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3340 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3341 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3342 3343 /* Map the pin to ltc pin 0 of the capture map registers */ 3344 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3345 tmp |= pin; 3346 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3347 3348 /* Enable capture on the edges of the ltc pin */ 3349 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3350 if (flags & PTP_RISING_EDGE) 3351 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3352 if (flags & PTP_FALLING_EDGE) 3353 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3354 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3355 3356 /* Enable interrupt top interrupt */ 3357 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3358 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3359 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3360 } 3361 3362 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3363 { 3364 u16 tmp; 3365 3366 /* Set as gpio out */ 3367 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3368 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3369 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3370 3371 /* Enable alternate, 0:for alternate function, 1:gpio */ 3372 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3373 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3374 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3375 3376 /* Clear the mapping of pin to registers 0 of the capture registers */ 3377 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3378 tmp &= ~GENMASK(3, 0); 3379 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3380 3381 /* Disable capture on both of the edges */ 3382 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3383 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3384 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3385 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3386 3387 /* Disable interrupt top interrupt */ 3388 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3389 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3390 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3391 } 3392 3393 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3394 struct ptp_clock_request *rq, int on) 3395 { 3396 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3397 ptp_clock_info); 3398 struct phy_device *phydev = shared->phydev; 3399 int pin; 3400 3401 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3402 rq->extts.index); 3403 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3404 return -EINVAL; 3405 3406 mutex_lock(&shared->shared_lock); 3407 if (on) 3408 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3409 else 3410 lan8814_ptp_extts_off(phydev, pin); 3411 3412 mutex_unlock(&shared->shared_lock); 3413 3414 return 0; 3415 } 3416 3417 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3418 struct ptp_clock_request *rq, int on) 3419 { 3420 switch (rq->type) { 3421 case PTP_CLK_REQ_PEROUT: 3422 return lan8814_ptp_perout(ptpci, rq, on); 3423 case PTP_CLK_REQ_EXTTS: 3424 return lan8814_ptp_extts(ptpci, rq, on); 3425 default: 3426 return -EINVAL; 3427 } 3428 } 3429 3430 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3431 enum ptp_pin_function func, unsigned int chan) 3432 { 3433 switch (func) { 3434 case PTP_PF_NONE: 3435 case PTP_PF_PEROUT: 3436 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3437 * there is only chan 0 (event A) and for pin 1 there is only 3438 * chan 1 (event B) 3439 */ 3440 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3441 return -1; 3442 break; 3443 case PTP_PF_EXTTS: 3444 if (pin != LAN8814_PTP_EXTTS_NUM) 3445 return -1; 3446 break; 3447 default: 3448 return -1; 3449 } 3450 3451 return 0; 3452 } 3453 3454 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3455 { 3456 struct ptp_header *ptp_header; 3457 u32 type; 3458 3459 type = ptp_classify_raw(skb); 3460 ptp_header = ptp_parse_header(skb, type); 3461 3462 if (!ptp_header) 3463 return false; 3464 3465 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3466 return true; 3467 } 3468 3469 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3470 u32 seconds, u32 nsec, u16 seq_id) 3471 { 3472 struct skb_shared_hwtstamps shhwtstamps; 3473 struct sk_buff *skb, *skb_tmp; 3474 unsigned long flags; 3475 bool ret = false; 3476 u16 skb_sig; 3477 3478 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3479 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3480 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3481 continue; 3482 3483 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3484 continue; 3485 3486 __skb_unlink(skb, &ptp_priv->tx_queue); 3487 ret = true; 3488 break; 3489 } 3490 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3491 3492 if (ret) { 3493 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3494 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3495 skb_complete_tx_timestamp(skb, &shhwtstamps); 3496 } 3497 } 3498 3499 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3500 { 3501 struct phy_device *phydev = ptp_priv->phydev; 3502 u32 seconds, nsec; 3503 u16 seq_id; 3504 3505 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3506 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3507 } 3508 3509 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3510 { 3511 struct phy_device *phydev = ptp_priv->phydev; 3512 u32 reg; 3513 3514 do { 3515 lan8814_dequeue_tx_skb(ptp_priv); 3516 3517 /* If other timestamps are available in the FIFO, 3518 * process them. 3519 */ 3520 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3521 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3522 } 3523 3524 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3525 struct lan8814_ptp_rx_ts *rx_ts) 3526 { 3527 struct skb_shared_hwtstamps *shhwtstamps; 3528 struct sk_buff *skb, *skb_tmp; 3529 unsigned long flags; 3530 bool ret = false; 3531 u16 skb_sig; 3532 3533 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3534 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3535 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3536 continue; 3537 3538 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3539 continue; 3540 3541 __skb_unlink(skb, &ptp_priv->rx_queue); 3542 3543 ret = true; 3544 break; 3545 } 3546 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3547 3548 if (ret) { 3549 shhwtstamps = skb_hwtstamps(skb); 3550 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3551 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3552 netif_rx(skb); 3553 } 3554 3555 return ret; 3556 } 3557 3558 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3559 struct lan8814_ptp_rx_ts *rx_ts) 3560 { 3561 unsigned long flags; 3562 3563 /* If we failed to match the skb add it to the queue for when 3564 * the frame will come 3565 */ 3566 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3567 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3568 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3569 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3570 } else { 3571 kfree(rx_ts); 3572 } 3573 } 3574 3575 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3576 { 3577 struct phy_device *phydev = ptp_priv->phydev; 3578 struct lan8814_ptp_rx_ts *rx_ts; 3579 u32 reg; 3580 3581 do { 3582 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3583 if (!rx_ts) 3584 return; 3585 3586 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3587 &rx_ts->seq_id); 3588 lan8814_match_rx_ts(ptp_priv, rx_ts); 3589 3590 /* If other timestamps are available in the FIFO, 3591 * process them. 3592 */ 3593 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3594 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3595 } 3596 3597 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3598 { 3599 struct kszphy_priv *priv = phydev->priv; 3600 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3601 3602 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3603 lan8814_get_tx_ts(ptp_priv); 3604 3605 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3606 lan8814_get_rx_ts(ptp_priv); 3607 3608 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3609 lan8814_flush_fifo(phydev, true); 3610 skb_queue_purge(&ptp_priv->tx_queue); 3611 } 3612 3613 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3614 lan8814_flush_fifo(phydev, false); 3615 skb_queue_purge(&ptp_priv->rx_queue); 3616 } 3617 } 3618 3619 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3620 { 3621 struct phy_device *phydev = shared->phydev; 3622 struct ptp_clock_event ptp_event = {0}; 3623 unsigned long nsec; 3624 s64 sec; 3625 u16 tmp; 3626 3627 /* This is 0 because whatever was the input pin it was mapped it to 3628 * ltc gpio pin 0 3629 */ 3630 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3631 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3632 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3633 3634 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3635 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3636 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3637 return -1; 3638 3639 if (tmp & BIT(0)) { 3640 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3641 sec <<= 16; 3642 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3643 3644 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3645 nsec <<= 16; 3646 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3647 } else { 3648 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3649 sec <<= 16; 3650 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3651 3652 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3653 nsec <<= 16; 3654 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3655 } 3656 3657 ptp_event.index = 0; 3658 ptp_event.timestamp = ktime_set(sec, nsec); 3659 ptp_event.type = PTP_CLOCK_EXTTS; 3660 ptp_clock_event(shared->ptp_clock, &ptp_event); 3661 3662 return 0; 3663 } 3664 3665 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3666 { 3667 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3668 int ret; 3669 3670 mutex_lock(&shared->shared_lock); 3671 ret = lan8814_gpio_process_cap(shared); 3672 mutex_unlock(&shared->shared_lock); 3673 3674 return ret; 3675 } 3676 3677 static int lan8804_config_init(struct phy_device *phydev) 3678 { 3679 int val; 3680 3681 /* MDI-X setting for swap A,B transmit */ 3682 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3683 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3684 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3685 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3686 3687 /* Make sure that the PHY will not stop generating the clock when the 3688 * link partner goes down 3689 */ 3690 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3691 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3692 3693 return 0; 3694 } 3695 3696 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3697 { 3698 int status; 3699 3700 status = phy_read(phydev, LAN8814_INTS); 3701 if (status < 0) { 3702 phy_error(phydev); 3703 return IRQ_NONE; 3704 } 3705 3706 if (status > 0) 3707 phy_trigger_machine(phydev); 3708 3709 return IRQ_HANDLED; 3710 } 3711 3712 #define LAN8804_OUTPUT_CONTROL 25 3713 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3714 #define LAN8804_CONTROL 31 3715 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3716 3717 static int lan8804_config_intr(struct phy_device *phydev) 3718 { 3719 int err; 3720 3721 /* This is an internal PHY of lan966x and is not possible to change the 3722 * polarity on the GIC found in lan966x, therefore change the polarity 3723 * of the interrupt in the PHY from being active low instead of active 3724 * high. 3725 */ 3726 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3727 3728 /* By default interrupt buffer is open-drain in which case the interrupt 3729 * can be active only low. Therefore change the interrupt buffer to be 3730 * push-pull to be able to change interrupt polarity 3731 */ 3732 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3733 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3734 3735 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3736 err = phy_read(phydev, LAN8814_INTS); 3737 if (err < 0) 3738 return err; 3739 3740 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3741 if (err) 3742 return err; 3743 } else { 3744 err = phy_write(phydev, LAN8814_INTC, 0); 3745 if (err) 3746 return err; 3747 3748 err = phy_read(phydev, LAN8814_INTS); 3749 if (err < 0) 3750 return err; 3751 } 3752 3753 return 0; 3754 } 3755 3756 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3757 { 3758 int ret = IRQ_NONE; 3759 int irq_status; 3760 3761 irq_status = phy_read(phydev, LAN8814_INTS); 3762 if (irq_status < 0) { 3763 phy_error(phydev); 3764 return IRQ_NONE; 3765 } 3766 3767 if (irq_status & LAN8814_INT_LINK) { 3768 phy_trigger_machine(phydev); 3769 ret = IRQ_HANDLED; 3770 } 3771 3772 while (true) { 3773 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3774 if (!irq_status) 3775 break; 3776 3777 lan8814_handle_ptp_interrupt(phydev, irq_status); 3778 ret = IRQ_HANDLED; 3779 } 3780 3781 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 3782 ret = IRQ_HANDLED; 3783 3784 return ret; 3785 } 3786 3787 static int lan8814_ack_interrupt(struct phy_device *phydev) 3788 { 3789 /* bit[12..0] int status, which is a read and clear register. */ 3790 int rc; 3791 3792 rc = phy_read(phydev, LAN8814_INTS); 3793 3794 return (rc < 0) ? rc : 0; 3795 } 3796 3797 static int lan8814_config_intr(struct phy_device *phydev) 3798 { 3799 int err; 3800 3801 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3802 LAN8814_INTR_CTRL_REG_POLARITY | 3803 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3804 3805 /* enable / disable interrupts */ 3806 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3807 err = lan8814_ack_interrupt(phydev); 3808 if (err) 3809 return err; 3810 3811 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3812 } else { 3813 err = phy_write(phydev, LAN8814_INTC, 0); 3814 if (err) 3815 return err; 3816 3817 err = lan8814_ack_interrupt(phydev); 3818 } 3819 3820 return err; 3821 } 3822 3823 static void lan8814_ptp_init(struct phy_device *phydev) 3824 { 3825 struct kszphy_priv *priv = phydev->priv; 3826 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3827 u32 temp; 3828 3829 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3830 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3831 return; 3832 3833 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3834 3835 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3836 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3837 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3838 3839 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3840 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3841 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3842 3843 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3844 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3845 3846 /* Removing default registers configs related to L2 and IP */ 3847 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3848 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3849 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3850 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3851 3852 /* Disable checking for minorVersionPTP field */ 3853 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 3854 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3855 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 3856 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3857 3858 skb_queue_head_init(&ptp_priv->tx_queue); 3859 skb_queue_head_init(&ptp_priv->rx_queue); 3860 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3861 spin_lock_init(&ptp_priv->rx_ts_lock); 3862 3863 ptp_priv->phydev = phydev; 3864 3865 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3866 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3867 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3868 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3869 3870 phydev->mii_ts = &ptp_priv->mii_ts; 3871 3872 /* Timestamp selected by default to keep legacy API */ 3873 phydev->default_timestamp = true; 3874 } 3875 3876 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3877 { 3878 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3879 3880 /* Initialise shared lock for clock*/ 3881 mutex_init(&shared->shared_lock); 3882 3883 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 3884 LAN8814_PTP_GPIO_NUM, 3885 sizeof(*shared->pin_config), 3886 GFP_KERNEL); 3887 if (!shared->pin_config) 3888 return -ENOMEM; 3889 3890 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 3891 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 3892 3893 memset(ptp_pin, 0, sizeof(*ptp_pin)); 3894 snprintf(ptp_pin->name, 3895 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 3896 ptp_pin->index = i; 3897 ptp_pin->func = PTP_PF_NONE; 3898 } 3899 3900 shared->ptp_clock_info.owner = THIS_MODULE; 3901 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3902 shared->ptp_clock_info.max_adj = 31249999; 3903 shared->ptp_clock_info.n_alarm = 0; 3904 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 3905 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 3906 shared->ptp_clock_info.pps = 0; 3907 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 3908 PTP_FALLING_EDGE | 3909 PTP_STRICT_FLAGS; 3910 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 3911 shared->ptp_clock_info.pin_config = shared->pin_config; 3912 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 3913 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3914 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3915 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3916 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3917 shared->ptp_clock_info.getcrosststamp = NULL; 3918 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 3919 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 3920 3921 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3922 &phydev->mdio.dev); 3923 if (IS_ERR(shared->ptp_clock)) { 3924 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3925 PTR_ERR(shared->ptp_clock)); 3926 return -EINVAL; 3927 } 3928 3929 /* Check if PHC support is missing at the configuration level */ 3930 if (!shared->ptp_clock) 3931 return 0; 3932 3933 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3934 3935 shared->phydev = phydev; 3936 3937 /* The EP.4 is shared between all the PHYs in the package and also it 3938 * can be accessed by any of the PHYs 3939 */ 3940 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3941 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3942 PTP_OPERATING_MODE_STANDALONE_); 3943 3944 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 3945 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 3946 3947 return 0; 3948 } 3949 3950 static void lan8814_setup_led(struct phy_device *phydev, int val) 3951 { 3952 int temp; 3953 3954 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3955 3956 if (val) 3957 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3958 else 3959 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3960 3961 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3962 } 3963 3964 static int lan8814_config_init(struct phy_device *phydev) 3965 { 3966 struct kszphy_priv *lan8814 = phydev->priv; 3967 int val; 3968 3969 /* Reset the PHY */ 3970 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3971 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3972 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3973 3974 /* Disable ANEG with QSGMII PCS Host side */ 3975 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3976 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3977 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3978 3979 /* MDI-X setting for swap A,B transmit */ 3980 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3981 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3982 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3983 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3984 3985 if (lan8814->led_mode >= 0) 3986 lan8814_setup_led(phydev, lan8814->led_mode); 3987 3988 return 0; 3989 } 3990 3991 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3992 * function called in suspend. Because the GPIO line can be shared, so if one of 3993 * the phys goes back in coma mode, then all the other PHYs will go, which is 3994 * wrong. 3995 */ 3996 static int lan8814_release_coma_mode(struct phy_device *phydev) 3997 { 3998 struct gpio_desc *gpiod; 3999 4000 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4001 GPIOD_OUT_HIGH_OPEN_DRAIN | 4002 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4003 if (IS_ERR(gpiod)) 4004 return PTR_ERR(gpiod); 4005 4006 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4007 gpiod_set_value_cansleep(gpiod, 0); 4008 4009 return 0; 4010 } 4011 4012 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4013 { 4014 u16 val; 4015 4016 /* It was noticed that when traffic is passing through the PHY and the 4017 * cable is removed then the LED was still one even though there is no 4018 * link 4019 */ 4020 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4021 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4022 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4023 } 4024 4025 static void lan8814_update_meas_time(struct phy_device *phydev) 4026 { 4027 u16 val; 4028 4029 /* By setting the measure time to a value of 0xb this will allow cables 4030 * longer than 100m to be used. This configuration can be used 4031 * regardless of the mode of operation of the PHY 4032 */ 4033 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4034 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4035 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4036 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4037 } 4038 4039 static int lan8814_probe(struct phy_device *phydev) 4040 { 4041 const struct kszphy_type *type = phydev->drv->driver_data; 4042 struct kszphy_priv *priv; 4043 u16 addr; 4044 int err; 4045 4046 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4047 if (!priv) 4048 return -ENOMEM; 4049 4050 phydev->priv = priv; 4051 4052 priv->type = type; 4053 4054 kszphy_parse_led_mode(phydev); 4055 4056 /* Strap-in value for PHY address, below register read gives starting 4057 * phy address value 4058 */ 4059 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4060 devm_phy_package_join(&phydev->mdio.dev, phydev, 4061 addr, sizeof(struct lan8814_shared_priv)); 4062 4063 if (phy_package_init_once(phydev)) { 4064 err = lan8814_release_coma_mode(phydev); 4065 if (err) 4066 return err; 4067 4068 err = lan8814_ptp_probe_once(phydev); 4069 if (err) 4070 return err; 4071 } 4072 4073 lan8814_ptp_init(phydev); 4074 4075 /* Errata workarounds */ 4076 lan8814_clear_2psp_bit(phydev); 4077 lan8814_update_meas_time(phydev); 4078 4079 return 0; 4080 } 4081 4082 #define LAN8841_MMD_TIMER_REG 0 4083 #define LAN8841_MMD0_REGISTER_17 17 4084 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4085 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4086 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4087 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4088 #define LAN8841_MMD_ANALOG_REG 28 4089 #define LAN8841_ANALOG_CONTROL_1 1 4090 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4091 #define LAN8841_ANALOG_CONTROL_10 13 4092 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4093 #define LAN8841_ANALOG_CONTROL_11 14 4094 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4095 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4096 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4097 #define LAN8841_BTRX_POWER_DOWN 70 4098 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4099 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4100 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4101 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4102 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4103 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4104 #define LAN8841_ADC_CHANNEL_MASK 198 4105 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4106 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4107 #define LAN8841_PTP_RX_VERSION 374 4108 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4109 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4110 #define LAN8841_PTP_TX_VERSION 438 4111 #define LAN8841_PTP_CMD_CTL 256 4112 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4113 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4114 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4115 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4116 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4117 #define LAN8841_PTP_RX_MODE 381 4118 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4119 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4120 4121 static int lan8841_config_init(struct phy_device *phydev) 4122 { 4123 int ret; 4124 4125 ret = ksz9131_config_init(phydev); 4126 if (ret) 4127 return ret; 4128 4129 /* Initialize the HW by resetting everything */ 4130 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4131 LAN8841_PTP_CMD_CTL, 4132 LAN8841_PTP_CMD_CTL_PTP_RESET, 4133 LAN8841_PTP_CMD_CTL_PTP_RESET); 4134 4135 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4136 LAN8841_PTP_CMD_CTL, 4137 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4138 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4139 4140 /* Don't process any frames */ 4141 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4142 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4143 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4144 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4145 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4146 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4147 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4148 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4149 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4150 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4151 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4152 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4153 4154 /* Disable checking for minorVersionPTP field */ 4155 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4156 LAN8841_PTP_RX_VERSION, 0xff00); 4157 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4158 LAN8841_PTP_TX_VERSION, 0xff00); 4159 4160 /* 100BT Clause 40 improvenent errata */ 4161 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4162 LAN8841_ANALOG_CONTROL_1, 4163 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4164 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4165 LAN8841_ANALOG_CONTROL_10, 4166 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4167 4168 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4169 * Magnetics 4170 */ 4171 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4172 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4173 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4174 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4175 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4176 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4177 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4178 LAN8841_BTRX_POWER_DOWN, 4179 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4180 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4181 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4182 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4183 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4184 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4185 } 4186 4187 /* LDO Adjustment errata */ 4188 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4189 LAN8841_ANALOG_CONTROL_11, 4190 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4191 4192 /* 100BT RGMII latency tuning errata */ 4193 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4194 LAN8841_ADC_CHANNEL_MASK, 0x0); 4195 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4196 LAN8841_MMD0_REGISTER_17, 4197 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4198 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4199 4200 return 0; 4201 } 4202 4203 #define LAN8841_OUTPUT_CTRL 25 4204 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4205 #define LAN8841_INT_PTP BIT(9) 4206 4207 static int lan8841_config_intr(struct phy_device *phydev) 4208 { 4209 int err; 4210 4211 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4212 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4213 4214 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4215 err = phy_read(phydev, LAN8814_INTS); 4216 if (err < 0) 4217 return err; 4218 4219 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4220 * even if it PTP is not enabled. Because the underneath blocks 4221 * will not enable the PTP so we will never get the PTP 4222 * interrupt. 4223 */ 4224 err = phy_write(phydev, LAN8814_INTC, 4225 LAN8814_INT_LINK | LAN8841_INT_PTP); 4226 } else { 4227 err = phy_write(phydev, LAN8814_INTC, 0); 4228 if (err) 4229 return err; 4230 4231 err = phy_read(phydev, LAN8814_INTS); 4232 if (err < 0) 4233 return err; 4234 4235 /* Getting a positive value doesn't mean that is an error, it 4236 * just indicates what was the status. Therefore make sure to 4237 * clear the value and say that there is no error. 4238 */ 4239 err = 0; 4240 } 4241 4242 return err; 4243 } 4244 4245 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4246 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4247 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4248 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4249 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4250 #define LAN8841_PTP_TX_MSG_HEADER2 455 4251 4252 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4253 u32 *sec, u32 *nsec, u16 *seq) 4254 { 4255 struct phy_device *phydev = ptp_priv->phydev; 4256 4257 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4258 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4259 return false; 4260 4261 *nsec = ((*nsec & 0x3fff) << 16); 4262 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4263 4264 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4265 *sec = *sec << 16; 4266 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4267 4268 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4269 4270 return true; 4271 } 4272 4273 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4274 { 4275 u32 sec, nsec; 4276 u16 seq; 4277 4278 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4279 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4280 } 4281 4282 #define LAN8841_PTP_INT_STS 259 4283 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4284 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4285 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4286 4287 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4288 { 4289 struct phy_device *phydev = ptp_priv->phydev; 4290 int i; 4291 4292 for (i = 0; i < FIFO_SIZE; ++i) 4293 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4294 4295 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4296 } 4297 4298 #define LAN8841_PTP_GPIO_CAP_STS 506 4299 #define LAN8841_PTP_GPIO_SEL 327 4300 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4301 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4302 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4303 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4304 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4305 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4306 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4307 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4308 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4309 4310 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4311 { 4312 struct phy_device *phydev = ptp_priv->phydev; 4313 struct ptp_clock_event ptp_event = {0}; 4314 int pin, ret, tmp; 4315 s32 sec, nsec; 4316 4317 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4318 if (pin == -1) 4319 return; 4320 4321 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4322 if (tmp < 0) 4323 return; 4324 4325 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4326 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4327 if (ret) 4328 return; 4329 4330 mutex_lock(&ptp_priv->ptp_lock); 4331 if (tmp & BIT(pin)) { 4332 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4333 sec <<= 16; 4334 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4335 4336 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4337 nsec <<= 16; 4338 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4339 } else { 4340 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4341 sec <<= 16; 4342 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4343 4344 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4345 nsec <<= 16; 4346 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4347 } 4348 mutex_unlock(&ptp_priv->ptp_lock); 4349 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4350 if (ret) 4351 return; 4352 4353 ptp_event.index = 0; 4354 ptp_event.timestamp = ktime_set(sec, nsec); 4355 ptp_event.type = PTP_CLOCK_EXTTS; 4356 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4357 } 4358 4359 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4360 { 4361 struct kszphy_priv *priv = phydev->priv; 4362 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4363 u16 status; 4364 4365 do { 4366 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4367 4368 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4369 lan8841_ptp_process_tx_ts(ptp_priv); 4370 4371 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4372 lan8841_gpio_process_cap(ptp_priv); 4373 4374 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4375 lan8841_ptp_flush_fifo(ptp_priv); 4376 skb_queue_purge(&ptp_priv->tx_queue); 4377 } 4378 4379 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4380 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4381 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4382 } 4383 4384 #define LAN8841_INTS_PTP BIT(9) 4385 4386 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4387 { 4388 irqreturn_t ret = IRQ_NONE; 4389 int irq_status; 4390 4391 irq_status = phy_read(phydev, LAN8814_INTS); 4392 if (irq_status < 0) { 4393 phy_error(phydev); 4394 return IRQ_NONE; 4395 } 4396 4397 if (irq_status & LAN8814_INT_LINK) { 4398 phy_trigger_machine(phydev); 4399 ret = IRQ_HANDLED; 4400 } 4401 4402 if (irq_status & LAN8841_INTS_PTP) { 4403 lan8841_handle_ptp_interrupt(phydev); 4404 ret = IRQ_HANDLED; 4405 } 4406 4407 return ret; 4408 } 4409 4410 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4411 struct kernel_ethtool_ts_info *info) 4412 { 4413 struct kszphy_ptp_priv *ptp_priv; 4414 4415 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4416 4417 info->phc_index = ptp_priv->ptp_clock ? 4418 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4419 if (info->phc_index == -1) 4420 return 0; 4421 4422 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4423 SOF_TIMESTAMPING_RX_HARDWARE | 4424 SOF_TIMESTAMPING_RAW_HARDWARE; 4425 4426 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4427 (1 << HWTSTAMP_TX_ON) | 4428 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4429 4430 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4431 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4432 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4433 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4434 4435 return 0; 4436 } 4437 4438 #define LAN8841_PTP_INT_EN 260 4439 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4440 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4441 4442 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4443 bool enable) 4444 { 4445 struct phy_device *phydev = ptp_priv->phydev; 4446 4447 if (enable) { 4448 /* Enable interrupts on the TX side */ 4449 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4450 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4451 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4452 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4453 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4454 4455 /* Enable the modification of the frame on RX side, 4456 * this will add the ns and 2 bits of sec in the reserved field 4457 * of the PTP header 4458 */ 4459 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4460 LAN8841_PTP_RX_MODE, 4461 LAN8841_PTP_INSERT_TS_EN | 4462 LAN8841_PTP_INSERT_TS_32BIT, 4463 LAN8841_PTP_INSERT_TS_EN | 4464 LAN8841_PTP_INSERT_TS_32BIT); 4465 4466 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4467 } else { 4468 /* Disable interrupts on the TX side */ 4469 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4470 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4471 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4472 4473 /* Disable modification of the RX frames */ 4474 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4475 LAN8841_PTP_RX_MODE, 4476 LAN8841_PTP_INSERT_TS_EN | 4477 LAN8841_PTP_INSERT_TS_32BIT, 0); 4478 4479 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4480 } 4481 } 4482 4483 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4484 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4485 #define LAN8841_PTP_TX_MOD 445 4486 4487 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4488 struct kernel_hwtstamp_config *config, 4489 struct netlink_ext_ack *extack) 4490 { 4491 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4492 struct phy_device *phydev = ptp_priv->phydev; 4493 int txcfg = 0, rxcfg = 0; 4494 int pkt_ts_enable; 4495 4496 ptp_priv->hwts_tx_type = config->tx_type; 4497 ptp_priv->rx_filter = config->rx_filter; 4498 4499 switch (config->rx_filter) { 4500 case HWTSTAMP_FILTER_NONE: 4501 ptp_priv->layer = 0; 4502 ptp_priv->version = 0; 4503 break; 4504 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4505 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4506 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4507 ptp_priv->layer = PTP_CLASS_L4; 4508 ptp_priv->version = PTP_CLASS_V2; 4509 break; 4510 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4511 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4512 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4513 ptp_priv->layer = PTP_CLASS_L2; 4514 ptp_priv->version = PTP_CLASS_V2; 4515 break; 4516 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4517 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4518 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4519 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4520 ptp_priv->version = PTP_CLASS_V2; 4521 break; 4522 default: 4523 return -ERANGE; 4524 } 4525 4526 /* Setup parsing of the frames and enable the timestamping for ptp 4527 * frames 4528 */ 4529 if (ptp_priv->layer & PTP_CLASS_L2) { 4530 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4531 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4532 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4533 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4534 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4535 } 4536 4537 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4538 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4539 4540 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4541 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4542 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4543 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4544 4545 /* Enable / disable of the TX timestamp in the SYNC frames */ 4546 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4547 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4548 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4549 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4550 4551 /* Now enable/disable the timestamping */ 4552 lan8841_ptp_enable_processing(ptp_priv, 4553 config->rx_filter != HWTSTAMP_FILTER_NONE); 4554 4555 skb_queue_purge(&ptp_priv->tx_queue); 4556 4557 lan8841_ptp_flush_fifo(ptp_priv); 4558 4559 return 0; 4560 } 4561 4562 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4563 struct sk_buff *skb, int type) 4564 { 4565 struct kszphy_ptp_priv *ptp_priv = 4566 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4567 struct ptp_header *header = ptp_parse_header(skb, type); 4568 struct skb_shared_hwtstamps *shhwtstamps; 4569 struct timespec64 ts; 4570 unsigned long flags; 4571 u32 ts_header; 4572 4573 if (!header) 4574 return false; 4575 4576 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4577 type == PTP_CLASS_NONE) 4578 return false; 4579 4580 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4581 return false; 4582 4583 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4584 ts.tv_sec = ptp_priv->seconds; 4585 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4586 ts_header = __be32_to_cpu(header->reserved2); 4587 4588 shhwtstamps = skb_hwtstamps(skb); 4589 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4590 4591 /* Check for any wrap arounds for the second part */ 4592 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4593 ts.tv_sec -= GENMASK(1, 0) + 1; 4594 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4595 ts.tv_sec += 1; 4596 4597 shhwtstamps->hwtstamp = 4598 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4599 ts_header & GENMASK(29, 0)); 4600 header->reserved2 = 0; 4601 4602 netif_rx(skb); 4603 4604 return true; 4605 } 4606 4607 #define LAN8841_EVENT_A 0 4608 #define LAN8841_EVENT_B 1 4609 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4610 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4611 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4612 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4613 4614 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4615 s64 sec, u32 nsec) 4616 { 4617 struct phy_device *phydev = ptp_priv->phydev; 4618 int ret; 4619 4620 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4621 upper_16_bits(sec)); 4622 if (ret) 4623 return ret; 4624 4625 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4626 lower_16_bits(sec)); 4627 if (ret) 4628 return ret; 4629 4630 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4631 upper_16_bits(nsec)); 4632 if (ret) 4633 return ret; 4634 4635 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4636 lower_16_bits(nsec)); 4637 } 4638 4639 #define LAN8841_BUFFER_TIME 2 4640 4641 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4642 const struct timespec64 *ts) 4643 { 4644 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4645 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4646 } 4647 4648 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4649 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4650 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4651 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4652 4653 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4654 s64 sec, u32 nsec) 4655 { 4656 struct phy_device *phydev = ptp_priv->phydev; 4657 int ret; 4658 4659 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4660 upper_16_bits(sec)); 4661 if (ret) 4662 return ret; 4663 4664 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4665 lower_16_bits(sec)); 4666 if (ret) 4667 return ret; 4668 4669 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4670 upper_16_bits(nsec)); 4671 if (ret) 4672 return ret; 4673 4674 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4675 lower_16_bits(nsec)); 4676 } 4677 4678 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4679 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4680 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4681 #define LAN8841_PTP_LTC_SET_NS_HI 265 4682 #define LAN8841_PTP_LTC_SET_NS_LO 266 4683 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4684 4685 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4686 const struct timespec64 *ts) 4687 { 4688 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4689 ptp_clock_info); 4690 struct phy_device *phydev = ptp_priv->phydev; 4691 unsigned long flags; 4692 int ret; 4693 4694 /* Set the value to be stored */ 4695 mutex_lock(&ptp_priv->ptp_lock); 4696 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4697 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4698 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4699 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4700 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4701 4702 /* Set the command to load the LTC */ 4703 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4704 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4705 ret = lan8841_ptp_update_target(ptp_priv, ts); 4706 mutex_unlock(&ptp_priv->ptp_lock); 4707 4708 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4709 ptp_priv->seconds = ts->tv_sec; 4710 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4711 4712 return ret; 4713 } 4714 4715 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4716 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4717 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4718 #define LAN8841_PTP_LTC_RD_NS_HI 361 4719 #define LAN8841_PTP_LTC_RD_NS_LO 362 4720 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4721 4722 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4723 struct timespec64 *ts) 4724 { 4725 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4726 ptp_clock_info); 4727 struct phy_device *phydev = ptp_priv->phydev; 4728 time64_t s; 4729 s64 ns; 4730 4731 mutex_lock(&ptp_priv->ptp_lock); 4732 /* Issue the command to read the LTC */ 4733 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4734 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4735 4736 /* Read the LTC */ 4737 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4738 s <<= 16; 4739 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4740 s <<= 16; 4741 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4742 4743 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4744 ns <<= 16; 4745 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4746 mutex_unlock(&ptp_priv->ptp_lock); 4747 4748 set_normalized_timespec64(ts, s, ns); 4749 return 0; 4750 } 4751 4752 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4753 struct timespec64 *ts) 4754 { 4755 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4756 ptp_clock_info); 4757 struct phy_device *phydev = ptp_priv->phydev; 4758 time64_t s; 4759 4760 mutex_lock(&ptp_priv->ptp_lock); 4761 /* Issue the command to read the LTC */ 4762 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4763 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4764 4765 /* Read the LTC */ 4766 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4767 s <<= 16; 4768 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4769 s <<= 16; 4770 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4771 mutex_unlock(&ptp_priv->ptp_lock); 4772 4773 set_normalized_timespec64(ts, s, 0); 4774 } 4775 4776 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4777 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4778 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4779 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4780 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4781 4782 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4783 { 4784 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4785 ptp_clock_info); 4786 struct phy_device *phydev = ptp_priv->phydev; 4787 struct timespec64 ts; 4788 bool add = true; 4789 u32 nsec; 4790 s32 sec; 4791 int ret; 4792 4793 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4794 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4795 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4796 * increment so the value can be bigger than 15 sec. Therefore limit the 4797 * possible adjustments so we will not have these corner cases 4798 */ 4799 if (delta > 10000000000LL || delta < -10000000000LL) { 4800 /* The timeadjustment is too big, so fall back using set time */ 4801 u64 now; 4802 4803 ptp->gettime64(ptp, &ts); 4804 4805 now = ktime_to_ns(timespec64_to_ktime(ts)); 4806 ts = ns_to_timespec64(now + delta); 4807 4808 ptp->settime64(ptp, &ts); 4809 return 0; 4810 } 4811 4812 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4813 if (delta < 0 && nsec != 0) { 4814 /* It is not allowed to adjust low the nsec part, therefore 4815 * subtract more from second part and add to nanosecond such 4816 * that would roll over, so the second part will increase 4817 */ 4818 sec--; 4819 nsec = NSEC_PER_SEC - nsec; 4820 } 4821 4822 /* Calculate the adjustments and the direction */ 4823 if (delta < 0) 4824 add = false; 4825 4826 if (nsec > 0) 4827 /* add 8 ns to cover the likely normal increment */ 4828 nsec += 8; 4829 4830 if (nsec >= NSEC_PER_SEC) { 4831 /* carry into seconds */ 4832 sec++; 4833 nsec -= NSEC_PER_SEC; 4834 } 4835 4836 mutex_lock(&ptp_priv->ptp_lock); 4837 if (sec) { 4838 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4839 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4840 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4841 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4842 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4843 } 4844 4845 if (nsec) { 4846 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4847 nsec & 0xffff); 4848 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4849 (nsec >> 16) & 0x3fff); 4850 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4851 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4852 } 4853 mutex_unlock(&ptp_priv->ptp_lock); 4854 4855 /* Update the target clock */ 4856 ptp->gettime64(ptp, &ts); 4857 mutex_lock(&ptp_priv->ptp_lock); 4858 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4859 mutex_unlock(&ptp_priv->ptp_lock); 4860 4861 return ret; 4862 } 4863 4864 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4865 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4866 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4867 4868 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4869 { 4870 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4871 ptp_clock_info); 4872 struct phy_device *phydev = ptp_priv->phydev; 4873 bool faster = true; 4874 u32 rate; 4875 4876 if (!scaled_ppm) 4877 return 0; 4878 4879 if (scaled_ppm < 0) { 4880 scaled_ppm = -scaled_ppm; 4881 faster = false; 4882 } 4883 4884 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4885 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4886 4887 mutex_lock(&ptp_priv->ptp_lock); 4888 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4889 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4890 : upper_16_bits(rate) & 0x3fff); 4891 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4892 mutex_unlock(&ptp_priv->ptp_lock); 4893 4894 return 0; 4895 } 4896 4897 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4898 enum ptp_pin_function func, unsigned int chan) 4899 { 4900 switch (func) { 4901 case PTP_PF_NONE: 4902 case PTP_PF_PEROUT: 4903 case PTP_PF_EXTTS: 4904 break; 4905 default: 4906 return -1; 4907 } 4908 4909 return 0; 4910 } 4911 4912 #define LAN8841_PTP_GPIO_NUM 10 4913 #define LAN8841_GPIO_EN 128 4914 #define LAN8841_GPIO_DIR 129 4915 #define LAN8841_GPIO_BUF 130 4916 4917 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4918 { 4919 struct phy_device *phydev = ptp_priv->phydev; 4920 int ret; 4921 4922 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4923 if (ret) 4924 return ret; 4925 4926 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4927 if (ret) 4928 return ret; 4929 4930 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4931 } 4932 4933 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4934 { 4935 struct phy_device *phydev = ptp_priv->phydev; 4936 int ret; 4937 4938 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4939 if (ret) 4940 return ret; 4941 4942 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4943 if (ret) 4944 return ret; 4945 4946 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4947 } 4948 4949 #define LAN8841_GPIO_DATA_SEL1 131 4950 #define LAN8841_GPIO_DATA_SEL2 132 4951 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4952 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4953 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4954 #define LAN8841_PTP_GENERAL_CONFIG 257 4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4961 4962 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4963 u8 event) 4964 { 4965 struct phy_device *phydev = ptp_priv->phydev; 4966 u16 tmp; 4967 int ret; 4968 4969 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4970 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4971 * depending on the pin, it requires to read a different register 4972 */ 4973 if (pin < 5) { 4974 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4975 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4976 } else { 4977 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4978 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4979 } 4980 if (ret) 4981 return ret; 4982 4983 /* Disable the event */ 4984 if (event == LAN8841_EVENT_A) 4985 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4986 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4987 else 4988 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4989 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4990 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4991 } 4992 4993 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4994 u8 event, int pulse_width) 4995 { 4996 struct phy_device *phydev = ptp_priv->phydev; 4997 u16 tmp; 4998 int ret; 4999 5000 /* Enable the event */ 5001 if (event == LAN8841_EVENT_A) 5002 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5003 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5004 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5005 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5006 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5007 else 5008 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5009 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5010 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5011 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5012 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5013 if (ret) 5014 return ret; 5015 5016 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5017 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5018 * depending on the pin, it requires to read a different register 5019 */ 5020 if (event == LAN8841_EVENT_A) 5021 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5022 else 5023 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5024 5025 if (pin < 5) 5026 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5027 tmp << (3 * pin)); 5028 else 5029 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5030 tmp << (3 * (pin - 5))); 5031 5032 return ret; 5033 } 5034 5035 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5036 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5037 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5038 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5039 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5040 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5041 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5042 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5043 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5049 5050 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5051 struct ptp_clock_request *rq, int on) 5052 { 5053 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5054 ptp_clock_info); 5055 struct phy_device *phydev = ptp_priv->phydev; 5056 struct timespec64 ts_on, ts_period; 5057 s64 on_nsec, period_nsec; 5058 int pulse_width; 5059 int pin; 5060 int ret; 5061 5062 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5063 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5064 return -EINVAL; 5065 5066 if (!on) { 5067 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5068 if (ret) 5069 return ret; 5070 5071 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5072 } 5073 5074 ts_on.tv_sec = rq->perout.on.sec; 5075 ts_on.tv_nsec = rq->perout.on.nsec; 5076 on_nsec = timespec64_to_ns(&ts_on); 5077 5078 ts_period.tv_sec = rq->perout.period.sec; 5079 ts_period.tv_nsec = rq->perout.period.nsec; 5080 period_nsec = timespec64_to_ns(&ts_period); 5081 5082 if (period_nsec < 200) { 5083 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5084 phydev_name(phydev)); 5085 return -EOPNOTSUPP; 5086 } 5087 5088 if (on_nsec >= period_nsec) { 5089 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5090 phydev_name(phydev)); 5091 return -EINVAL; 5092 } 5093 5094 switch (on_nsec) { 5095 case 200000000: 5096 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5097 break; 5098 case 100000000: 5099 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5100 break; 5101 case 50000000: 5102 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5103 break; 5104 case 10000000: 5105 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5106 break; 5107 case 5000000: 5108 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5109 break; 5110 case 1000000: 5111 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5112 break; 5113 case 500000: 5114 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5115 break; 5116 case 100000: 5117 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5118 break; 5119 case 50000: 5120 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5121 break; 5122 case 10000: 5123 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5124 break; 5125 case 5000: 5126 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5127 break; 5128 case 1000: 5129 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5130 break; 5131 case 500: 5132 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5133 break; 5134 case 100: 5135 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5136 break; 5137 default: 5138 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5139 phydev_name(phydev)); 5140 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5141 break; 5142 } 5143 5144 mutex_lock(&ptp_priv->ptp_lock); 5145 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5146 rq->perout.start.nsec); 5147 mutex_unlock(&ptp_priv->ptp_lock); 5148 if (ret) 5149 return ret; 5150 5151 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5152 rq->perout.period.nsec); 5153 if (ret) 5154 return ret; 5155 5156 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5157 pulse_width); 5158 if (ret) 5159 return ret; 5160 5161 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5162 if (ret) 5163 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5164 5165 return ret; 5166 } 5167 5168 #define LAN8841_PTP_GPIO_CAP_EN 496 5169 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5170 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5171 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5172 5173 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5174 u32 flags) 5175 { 5176 struct phy_device *phydev = ptp_priv->phydev; 5177 u16 tmp = 0; 5178 int ret; 5179 5180 /* Set GPIO to be intput */ 5181 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5182 if (ret) 5183 return ret; 5184 5185 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5186 if (ret) 5187 return ret; 5188 5189 /* Enable capture on the edges of the pin */ 5190 if (flags & PTP_RISING_EDGE) 5191 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5192 if (flags & PTP_FALLING_EDGE) 5193 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5194 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5195 if (ret) 5196 return ret; 5197 5198 /* Enable interrupt */ 5199 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5200 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5201 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5202 } 5203 5204 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5205 { 5206 struct phy_device *phydev = ptp_priv->phydev; 5207 int ret; 5208 5209 /* Set GPIO to be output */ 5210 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5211 if (ret) 5212 return ret; 5213 5214 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5215 if (ret) 5216 return ret; 5217 5218 /* Disable capture on both of the edges */ 5219 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5220 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5221 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5222 0); 5223 if (ret) 5224 return ret; 5225 5226 /* Disable interrupt */ 5227 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5228 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5229 0); 5230 } 5231 5232 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5233 struct ptp_clock_request *rq, int on) 5234 { 5235 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5236 ptp_clock_info); 5237 int pin; 5238 int ret; 5239 5240 /* Reject requests with unsupported flags */ 5241 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5242 PTP_EXTTS_EDGES | 5243 PTP_STRICT_FLAGS)) 5244 return -EOPNOTSUPP; 5245 5246 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5247 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5248 return -EINVAL; 5249 5250 mutex_lock(&ptp_priv->ptp_lock); 5251 if (on) 5252 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5253 else 5254 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5255 mutex_unlock(&ptp_priv->ptp_lock); 5256 5257 return ret; 5258 } 5259 5260 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5261 struct ptp_clock_request *rq, int on) 5262 { 5263 switch (rq->type) { 5264 case PTP_CLK_REQ_EXTTS: 5265 return lan8841_ptp_extts(ptp, rq, on); 5266 case PTP_CLK_REQ_PEROUT: 5267 return lan8841_ptp_perout(ptp, rq, on); 5268 default: 5269 return -EOPNOTSUPP; 5270 } 5271 5272 return 0; 5273 } 5274 5275 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5276 { 5277 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5278 ptp_clock_info); 5279 struct timespec64 ts; 5280 unsigned long flags; 5281 5282 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5283 5284 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5285 ptp_priv->seconds = ts.tv_sec; 5286 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5287 5288 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5289 } 5290 5291 static struct ptp_clock_info lan8841_ptp_clock_info = { 5292 .owner = THIS_MODULE, 5293 .name = "lan8841 ptp", 5294 .max_adj = 31249999, 5295 .gettime64 = lan8841_ptp_gettime64, 5296 .settime64 = lan8841_ptp_settime64, 5297 .adjtime = lan8841_ptp_adjtime, 5298 .adjfine = lan8841_ptp_adjfine, 5299 .verify = lan8841_ptp_verify, 5300 .enable = lan8841_ptp_enable, 5301 .do_aux_work = lan8841_ptp_do_aux_work, 5302 .n_per_out = LAN8841_PTP_GPIO_NUM, 5303 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5304 .n_pins = LAN8841_PTP_GPIO_NUM, 5305 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5306 }; 5307 5308 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5309 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5310 5311 static int lan8841_probe(struct phy_device *phydev) 5312 { 5313 struct kszphy_ptp_priv *ptp_priv; 5314 struct kszphy_priv *priv; 5315 int err; 5316 5317 err = kszphy_probe(phydev); 5318 if (err) 5319 return err; 5320 5321 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5322 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5323 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5324 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5325 5326 /* Register the clock */ 5327 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5328 return 0; 5329 5330 priv = phydev->priv; 5331 ptp_priv = &priv->ptp_priv; 5332 5333 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5334 LAN8841_PTP_GPIO_NUM, 5335 sizeof(*ptp_priv->pin_config), 5336 GFP_KERNEL); 5337 if (!ptp_priv->pin_config) 5338 return -ENOMEM; 5339 5340 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5341 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5342 5343 snprintf(p->name, sizeof(p->name), "pin%d", i); 5344 p->index = i; 5345 p->func = PTP_PF_NONE; 5346 } 5347 5348 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5349 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5350 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5351 &phydev->mdio.dev); 5352 if (IS_ERR(ptp_priv->ptp_clock)) { 5353 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5354 PTR_ERR(ptp_priv->ptp_clock)); 5355 return -EINVAL; 5356 } 5357 5358 if (!ptp_priv->ptp_clock) 5359 return 0; 5360 5361 /* Initialize the SW */ 5362 skb_queue_head_init(&ptp_priv->tx_queue); 5363 ptp_priv->phydev = phydev; 5364 mutex_init(&ptp_priv->ptp_lock); 5365 spin_lock_init(&ptp_priv->seconds_lock); 5366 5367 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5368 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5369 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5370 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5371 5372 phydev->mii_ts = &ptp_priv->mii_ts; 5373 5374 /* Timestamp selected by default to keep legacy API */ 5375 phydev->default_timestamp = true; 5376 5377 return 0; 5378 } 5379 5380 static int lan8804_resume(struct phy_device *phydev) 5381 { 5382 return kszphy_resume(phydev); 5383 } 5384 5385 static int lan8804_suspend(struct phy_device *phydev) 5386 { 5387 return kszphy_generic_suspend(phydev); 5388 } 5389 5390 static int lan8841_resume(struct phy_device *phydev) 5391 { 5392 return kszphy_generic_resume(phydev); 5393 } 5394 5395 static int lan8841_suspend(struct phy_device *phydev) 5396 { 5397 struct kszphy_priv *priv = phydev->priv; 5398 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5399 5400 if (ptp_priv->ptp_clock) 5401 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5402 5403 return kszphy_generic_suspend(phydev); 5404 } 5405 5406 static struct phy_driver ksphy_driver[] = { 5407 { 5408 .phy_id = PHY_ID_KS8737, 5409 .phy_id_mask = MICREL_PHY_ID_MASK, 5410 .name = "Micrel KS8737", 5411 /* PHY_BASIC_FEATURES */ 5412 .driver_data = &ks8737_type, 5413 .probe = kszphy_probe, 5414 .config_init = kszphy_config_init, 5415 .config_intr = kszphy_config_intr, 5416 .handle_interrupt = kszphy_handle_interrupt, 5417 .suspend = kszphy_suspend, 5418 .resume = kszphy_resume, 5419 }, { 5420 .phy_id = PHY_ID_KSZ8021, 5421 .phy_id_mask = 0x00ffffff, 5422 .name = "Micrel KSZ8021 or KSZ8031", 5423 /* PHY_BASIC_FEATURES */ 5424 .driver_data = &ksz8021_type, 5425 .probe = kszphy_probe, 5426 .config_init = kszphy_config_init, 5427 .config_intr = kszphy_config_intr, 5428 .handle_interrupt = kszphy_handle_interrupt, 5429 .get_sset_count = kszphy_get_sset_count, 5430 .get_strings = kszphy_get_strings, 5431 .get_stats = kszphy_get_stats, 5432 .suspend = kszphy_suspend, 5433 .resume = kszphy_resume, 5434 }, { 5435 .phy_id = PHY_ID_KSZ8031, 5436 .phy_id_mask = 0x00ffffff, 5437 .name = "Micrel KSZ8031", 5438 /* PHY_BASIC_FEATURES */ 5439 .driver_data = &ksz8021_type, 5440 .probe = kszphy_probe, 5441 .config_init = kszphy_config_init, 5442 .config_intr = kszphy_config_intr, 5443 .handle_interrupt = kszphy_handle_interrupt, 5444 .get_sset_count = kszphy_get_sset_count, 5445 .get_strings = kszphy_get_strings, 5446 .get_stats = kszphy_get_stats, 5447 .suspend = kszphy_suspend, 5448 .resume = kszphy_resume, 5449 }, { 5450 .phy_id = PHY_ID_KSZ8041, 5451 .phy_id_mask = MICREL_PHY_ID_MASK, 5452 .name = "Micrel KSZ8041", 5453 /* PHY_BASIC_FEATURES */ 5454 .driver_data = &ksz8041_type, 5455 .probe = kszphy_probe, 5456 .config_init = ksz8041_config_init, 5457 .config_aneg = ksz8041_config_aneg, 5458 .config_intr = kszphy_config_intr, 5459 .handle_interrupt = kszphy_handle_interrupt, 5460 .get_sset_count = kszphy_get_sset_count, 5461 .get_strings = kszphy_get_strings, 5462 .get_stats = kszphy_get_stats, 5463 .suspend = ksz8041_suspend, 5464 .resume = ksz8041_resume, 5465 }, { 5466 .phy_id = PHY_ID_KSZ8041RNLI, 5467 .phy_id_mask = MICREL_PHY_ID_MASK, 5468 .name = "Micrel KSZ8041RNLI", 5469 /* PHY_BASIC_FEATURES */ 5470 .driver_data = &ksz8041_type, 5471 .probe = kszphy_probe, 5472 .config_init = kszphy_config_init, 5473 .config_intr = kszphy_config_intr, 5474 .handle_interrupt = kszphy_handle_interrupt, 5475 .get_sset_count = kszphy_get_sset_count, 5476 .get_strings = kszphy_get_strings, 5477 .get_stats = kszphy_get_stats, 5478 .suspend = kszphy_suspend, 5479 .resume = kszphy_resume, 5480 }, { 5481 .name = "Micrel KSZ8051", 5482 /* PHY_BASIC_FEATURES */ 5483 .driver_data = &ksz8051_type, 5484 .probe = kszphy_probe, 5485 .config_init = kszphy_config_init, 5486 .config_intr = kszphy_config_intr, 5487 .handle_interrupt = kszphy_handle_interrupt, 5488 .get_sset_count = kszphy_get_sset_count, 5489 .get_strings = kszphy_get_strings, 5490 .get_stats = kszphy_get_stats, 5491 .match_phy_device = ksz8051_match_phy_device, 5492 .suspend = kszphy_suspend, 5493 .resume = kszphy_resume, 5494 }, { 5495 .phy_id = PHY_ID_KSZ8001, 5496 .name = "Micrel KSZ8001 or KS8721", 5497 .phy_id_mask = 0x00fffffc, 5498 /* PHY_BASIC_FEATURES */ 5499 .driver_data = &ksz8041_type, 5500 .probe = kszphy_probe, 5501 .config_init = kszphy_config_init, 5502 .config_intr = kszphy_config_intr, 5503 .handle_interrupt = kszphy_handle_interrupt, 5504 .get_sset_count = kszphy_get_sset_count, 5505 .get_strings = kszphy_get_strings, 5506 .get_stats = kszphy_get_stats, 5507 .suspend = kszphy_suspend, 5508 .resume = kszphy_resume, 5509 }, { 5510 .phy_id = PHY_ID_KSZ8081, 5511 .name = "Micrel KSZ8081 or KSZ8091", 5512 .phy_id_mask = MICREL_PHY_ID_MASK, 5513 .flags = PHY_POLL_CABLE_TEST, 5514 /* PHY_BASIC_FEATURES */ 5515 .driver_data = &ksz8081_type, 5516 .probe = kszphy_probe, 5517 .config_init = ksz8081_config_init, 5518 .soft_reset = genphy_soft_reset, 5519 .config_aneg = ksz8081_config_aneg, 5520 .read_status = ksz8081_read_status, 5521 .config_intr = kszphy_config_intr, 5522 .handle_interrupt = kszphy_handle_interrupt, 5523 .get_sset_count = kszphy_get_sset_count, 5524 .get_strings = kszphy_get_strings, 5525 .get_stats = kszphy_get_stats, 5526 .suspend = kszphy_suspend, 5527 .resume = kszphy_resume, 5528 .cable_test_start = ksz886x_cable_test_start, 5529 .cable_test_get_status = ksz886x_cable_test_get_status, 5530 }, { 5531 .phy_id = PHY_ID_KSZ8061, 5532 .name = "Micrel KSZ8061", 5533 .phy_id_mask = MICREL_PHY_ID_MASK, 5534 /* PHY_BASIC_FEATURES */ 5535 .probe = kszphy_probe, 5536 .config_init = ksz8061_config_init, 5537 .soft_reset = genphy_soft_reset, 5538 .config_intr = kszphy_config_intr, 5539 .handle_interrupt = kszphy_handle_interrupt, 5540 .suspend = ksz8061_suspend, 5541 .resume = ksz8061_resume, 5542 }, { 5543 .phy_id = PHY_ID_KSZ9021, 5544 .phy_id_mask = 0x000ffffe, 5545 .name = "Micrel KSZ9021 Gigabit PHY", 5546 /* PHY_GBIT_FEATURES */ 5547 .driver_data = &ksz9021_type, 5548 .probe = kszphy_probe, 5549 .get_features = ksz9031_get_features, 5550 .config_init = ksz9021_config_init, 5551 .config_intr = kszphy_config_intr, 5552 .handle_interrupt = kszphy_handle_interrupt, 5553 .get_sset_count = kszphy_get_sset_count, 5554 .get_strings = kszphy_get_strings, 5555 .get_stats = kszphy_get_stats, 5556 .suspend = kszphy_suspend, 5557 .resume = kszphy_resume, 5558 .read_mmd = genphy_read_mmd_unsupported, 5559 .write_mmd = genphy_write_mmd_unsupported, 5560 }, { 5561 .phy_id = PHY_ID_KSZ9031, 5562 .phy_id_mask = MICREL_PHY_ID_MASK, 5563 .name = "Micrel KSZ9031 Gigabit PHY", 5564 .flags = PHY_POLL_CABLE_TEST, 5565 .driver_data = &ksz9021_type, 5566 .probe = kszphy_probe, 5567 .get_features = ksz9031_get_features, 5568 .config_init = ksz9031_config_init, 5569 .soft_reset = genphy_soft_reset, 5570 .read_status = ksz9031_read_status, 5571 .config_intr = kszphy_config_intr, 5572 .handle_interrupt = kszphy_handle_interrupt, 5573 .get_sset_count = kszphy_get_sset_count, 5574 .get_strings = kszphy_get_strings, 5575 .get_stats = kszphy_get_stats, 5576 .suspend = kszphy_suspend, 5577 .resume = kszphy_resume, 5578 .cable_test_start = ksz9x31_cable_test_start, 5579 .cable_test_get_status = ksz9x31_cable_test_get_status, 5580 .set_loopback = ksz9031_set_loopback, 5581 }, { 5582 .phy_id = PHY_ID_LAN8814, 5583 .phy_id_mask = MICREL_PHY_ID_MASK, 5584 .name = "Microchip INDY Gigabit Quad PHY", 5585 .flags = PHY_POLL_CABLE_TEST, 5586 .config_init = lan8814_config_init, 5587 .driver_data = &lan8814_type, 5588 .probe = lan8814_probe, 5589 .soft_reset = genphy_soft_reset, 5590 .read_status = ksz9031_read_status, 5591 .get_sset_count = kszphy_get_sset_count, 5592 .get_strings = kszphy_get_strings, 5593 .get_stats = kszphy_get_stats, 5594 .suspend = genphy_suspend, 5595 .resume = kszphy_resume, 5596 .config_intr = lan8814_config_intr, 5597 .handle_interrupt = lan8814_handle_interrupt, 5598 .cable_test_start = lan8814_cable_test_start, 5599 .cable_test_get_status = ksz886x_cable_test_get_status, 5600 }, { 5601 .phy_id = PHY_ID_LAN8804, 5602 .phy_id_mask = MICREL_PHY_ID_MASK, 5603 .name = "Microchip LAN966X Gigabit PHY", 5604 .config_init = lan8804_config_init, 5605 .driver_data = &ksz9021_type, 5606 .probe = kszphy_probe, 5607 .soft_reset = genphy_soft_reset, 5608 .read_status = ksz9031_read_status, 5609 .get_sset_count = kszphy_get_sset_count, 5610 .get_strings = kszphy_get_strings, 5611 .get_stats = kszphy_get_stats, 5612 .suspend = lan8804_suspend, 5613 .resume = lan8804_resume, 5614 .config_intr = lan8804_config_intr, 5615 .handle_interrupt = lan8804_handle_interrupt, 5616 }, { 5617 .phy_id = PHY_ID_LAN8841, 5618 .phy_id_mask = MICREL_PHY_ID_MASK, 5619 .name = "Microchip LAN8841 Gigabit PHY", 5620 .flags = PHY_POLL_CABLE_TEST, 5621 .driver_data = &lan8841_type, 5622 .config_init = lan8841_config_init, 5623 .probe = lan8841_probe, 5624 .soft_reset = genphy_soft_reset, 5625 .config_intr = lan8841_config_intr, 5626 .handle_interrupt = lan8841_handle_interrupt, 5627 .get_sset_count = kszphy_get_sset_count, 5628 .get_strings = kszphy_get_strings, 5629 .get_stats = kszphy_get_stats, 5630 .suspend = lan8841_suspend, 5631 .resume = lan8841_resume, 5632 .cable_test_start = lan8814_cable_test_start, 5633 .cable_test_get_status = ksz886x_cable_test_get_status, 5634 }, { 5635 .phy_id = PHY_ID_KSZ9131, 5636 .phy_id_mask = MICREL_PHY_ID_MASK, 5637 .name = "Microchip KSZ9131 Gigabit PHY", 5638 /* PHY_GBIT_FEATURES */ 5639 .flags = PHY_POLL_CABLE_TEST, 5640 .driver_data = &ksz9131_type, 5641 .probe = kszphy_probe, 5642 .soft_reset = genphy_soft_reset, 5643 .config_init = ksz9131_config_init, 5644 .config_intr = kszphy_config_intr, 5645 .config_aneg = ksz9131_config_aneg, 5646 .read_status = ksz9131_read_status, 5647 .handle_interrupt = kszphy_handle_interrupt, 5648 .get_sset_count = kszphy_get_sset_count, 5649 .get_strings = kszphy_get_strings, 5650 .get_stats = kszphy_get_stats, 5651 .suspend = kszphy_suspend, 5652 .resume = kszphy_resume, 5653 .cable_test_start = ksz9x31_cable_test_start, 5654 .cable_test_get_status = ksz9x31_cable_test_get_status, 5655 .get_features = ksz9477_get_features, 5656 }, { 5657 .phy_id = PHY_ID_KSZ8873MLL, 5658 .phy_id_mask = MICREL_PHY_ID_MASK, 5659 .name = "Micrel KSZ8873MLL Switch", 5660 /* PHY_BASIC_FEATURES */ 5661 .config_init = kszphy_config_init, 5662 .config_aneg = ksz8873mll_config_aneg, 5663 .read_status = ksz8873mll_read_status, 5664 .suspend = genphy_suspend, 5665 .resume = genphy_resume, 5666 }, { 5667 .phy_id = PHY_ID_KSZ886X, 5668 .phy_id_mask = MICREL_PHY_ID_MASK, 5669 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5670 .driver_data = &ksz886x_type, 5671 /* PHY_BASIC_FEATURES */ 5672 .flags = PHY_POLL_CABLE_TEST, 5673 .config_init = kszphy_config_init, 5674 .config_aneg = ksz886x_config_aneg, 5675 .read_status = ksz886x_read_status, 5676 .suspend = genphy_suspend, 5677 .resume = genphy_resume, 5678 .cable_test_start = ksz886x_cable_test_start, 5679 .cable_test_get_status = ksz886x_cable_test_get_status, 5680 }, { 5681 .name = "Micrel KSZ87XX Switch", 5682 /* PHY_BASIC_FEATURES */ 5683 .config_init = kszphy_config_init, 5684 .match_phy_device = ksz8795_match_phy_device, 5685 .suspend = genphy_suspend, 5686 .resume = genphy_resume, 5687 }, { 5688 .phy_id = PHY_ID_KSZ9477, 5689 .phy_id_mask = MICREL_PHY_ID_MASK, 5690 .name = "Microchip KSZ9477", 5691 /* PHY_GBIT_FEATURES */ 5692 .config_init = ksz9477_config_init, 5693 .config_intr = kszphy_config_intr, 5694 .handle_interrupt = kszphy_handle_interrupt, 5695 .suspend = genphy_suspend, 5696 .resume = ksz9477_resume, 5697 } }; 5698 5699 module_phy_driver(ksphy_driver); 5700 5701 MODULE_DESCRIPTION("Micrel PHY driver"); 5702 MODULE_AUTHOR("David J. Choi"); 5703 MODULE_LICENSE("GPL"); 5704 5705 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5706 { PHY_ID_KSZ9021, 0x000ffffe }, 5707 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5708 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5709 { PHY_ID_KSZ8001, 0x00fffffc }, 5710 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5711 { PHY_ID_KSZ8021, 0x00ffffff }, 5712 { PHY_ID_KSZ8031, 0x00ffffff }, 5713 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5714 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5715 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5716 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5717 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5718 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5719 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5720 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5721 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5722 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5723 { } 5724 }; 5725 5726 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5727