1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/io.h> 9 #include <linux/clk.h> 10 #include <linux/platform_device.h> 11 #include <linux/timer.h> 12 #include <linux/module.h> 13 #include <linux/irqreturn.h> 14 #include <linux/interrupt.h> 15 #include <linux/if_ether.h> 16 #include <linux/etherdevice.h> 17 #include <linux/net_tstamp.h> 18 #include <linux/phy.h> 19 #include <linux/phy/phy.h> 20 #include <linux/delay.h> 21 #include <linux/pinctrl/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/of.h> 25 #include <linux/of_mdio.h> 26 #include <linux/of_net.h> 27 #include <linux/of_platform.h> 28 #include <linux/if_vlan.h> 29 #include <linux/kmemleak.h> 30 #include <linux/sys_soc.h> 31 32 #include <net/switchdev.h> 33 #include <net/page_pool/helpers.h> 34 #include <net/pkt_cls.h> 35 #include <net/devlink.h> 36 37 #include "cpsw.h" 38 #include "cpsw_ale.h" 39 #include "cpsw_priv.h" 40 #include "cpsw_sl.h" 41 #include "cpsw_switchdev.h" 42 #include "cpts.h" 43 #include "davinci_cpdma.h" 44 45 #include <net/pkt_sched.h> 46 47 static int debug_level; 48 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT; 49 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 50 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 51 52 struct cpsw_devlink { 53 struct cpsw_common *cpsw; 54 }; 55 56 enum cpsw_devlink_param_id { 57 CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, 58 CPSW_DL_PARAM_SWITCH_MODE, 59 CPSW_DL_PARAM_ALE_BYPASS, 60 }; 61 62 /* struct cpsw_common is not needed, kept here for compatibility 63 * reasons witrh the old driver 64 */ 65 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 66 struct cpsw_priv *priv) 67 { 68 if (priv->emac_port == HOST_PORT_NUM) 69 return -1; 70 71 return priv->emac_port - 1; 72 } 73 74 static bool cpsw_is_switch_en(struct cpsw_common *cpsw) 75 { 76 return !cpsw->data.dual_emac; 77 } 78 79 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 80 { 81 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 82 bool enable_uni = false; 83 int i; 84 85 if (cpsw_is_switch_en(cpsw)) 86 return; 87 88 /* Enabling promiscuous mode for one interface will be 89 * common for both the interface as the interface shares 90 * the same hardware resource. 91 */ 92 for (i = 0; i < cpsw->data.slaves; i++) 93 if (cpsw->slaves[i].ndev && 94 (cpsw->slaves[i].ndev->flags & IFF_PROMISC)) 95 enable_uni = true; 96 97 if (!enable && enable_uni) { 98 enable = enable_uni; 99 dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 100 } 101 102 if (enable) { 103 /* Enable unknown unicast, reg/unreg mcast */ 104 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 105 ALE_P0_UNI_FLOOD, 1); 106 107 dev_dbg(cpsw->dev, "promiscuity enabled\n"); 108 } else { 109 /* Disable unknown unicast */ 110 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 111 ALE_P0_UNI_FLOOD, 0); 112 dev_dbg(cpsw->dev, "promiscuity disabled\n"); 113 } 114 } 115 116 /** 117 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 118 * if it's not deleted 119 * @ndev: device to sync 120 * @addr: address to be added or deleted 121 * @vid: vlan id, if vid < 0 set/unset address for real device 122 * @add: add address if the flag is set or remove otherwise 123 */ 124 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 125 int vid, int add) 126 { 127 struct cpsw_priv *priv = netdev_priv(ndev); 128 struct cpsw_common *cpsw = priv->cpsw; 129 int mask, flags, ret, slave_no; 130 131 slave_no = cpsw_slave_index(cpsw, priv); 132 if (vid < 0) 133 vid = cpsw->slaves[slave_no].port_vlan; 134 135 mask = ALE_PORT_HOST; 136 flags = vid ? ALE_VLAN : 0; 137 138 if (add) 139 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 140 else 141 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 142 143 return ret; 144 } 145 146 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 147 { 148 struct addr_sync_ctx *sync_ctx = ctx; 149 struct netdev_hw_addr *ha; 150 int found = 0, ret = 0; 151 152 if (!vdev || !(vdev->flags & IFF_UP)) 153 return 0; 154 155 /* vlan address is relevant if its sync_cnt != 0 */ 156 netdev_for_each_mc_addr(ha, vdev) { 157 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 158 found = ha->sync_cnt; 159 break; 160 } 161 } 162 163 if (found) 164 sync_ctx->consumed++; 165 166 if (sync_ctx->flush) { 167 if (!found) 168 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 169 return 0; 170 } 171 172 if (found) 173 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 174 175 return ret; 176 } 177 178 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 179 { 180 struct addr_sync_ctx sync_ctx; 181 int ret; 182 183 sync_ctx.consumed = 0; 184 sync_ctx.addr = addr; 185 sync_ctx.ndev = ndev; 186 sync_ctx.flush = 0; 187 188 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 189 if (sync_ctx.consumed < num && !ret) 190 ret = cpsw_set_mc(ndev, addr, -1, 1); 191 192 return ret; 193 } 194 195 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 196 { 197 struct addr_sync_ctx sync_ctx; 198 199 sync_ctx.consumed = 0; 200 sync_ctx.addr = addr; 201 sync_ctx.ndev = ndev; 202 sync_ctx.flush = 1; 203 204 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 205 if (sync_ctx.consumed == num) 206 cpsw_set_mc(ndev, addr, -1, 0); 207 208 return 0; 209 } 210 211 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 212 { 213 struct addr_sync_ctx *sync_ctx = ctx; 214 struct netdev_hw_addr *ha; 215 int found = 0; 216 217 if (!vdev || !(vdev->flags & IFF_UP)) 218 return 0; 219 220 /* vlan address is relevant if its sync_cnt != 0 */ 221 netdev_for_each_mc_addr(ha, vdev) { 222 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 223 found = ha->sync_cnt; 224 break; 225 } 226 } 227 228 if (!found) 229 return 0; 230 231 sync_ctx->consumed++; 232 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 233 return 0; 234 } 235 236 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 237 { 238 struct addr_sync_ctx sync_ctx; 239 240 sync_ctx.addr = addr; 241 sync_ctx.ndev = ndev; 242 sync_ctx.consumed = 0; 243 244 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 245 if (sync_ctx.consumed < num) 246 cpsw_set_mc(ndev, addr, -1, 0); 247 248 return 0; 249 } 250 251 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 252 { 253 struct cpsw_priv *priv = netdev_priv(ndev); 254 struct cpsw_common *cpsw = priv->cpsw; 255 256 if (ndev->flags & IFF_PROMISC) { 257 /* Enable promiscuous mode */ 258 cpsw_set_promiscious(ndev, true); 259 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port); 260 return; 261 } 262 263 /* Disable promiscuous mode */ 264 cpsw_set_promiscious(ndev, false); 265 266 /* Restore allmulti on vlans if necessary */ 267 cpsw_ale_set_allmulti(cpsw->ale, 268 ndev->flags & IFF_ALLMULTI, priv->emac_port); 269 270 /* add/remove mcast address either for real netdev or for vlan */ 271 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 272 cpsw_del_mc_addr); 273 } 274 275 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 276 { 277 len += CPSW_HEADROOM_NA; 278 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 279 280 return SKB_DATA_ALIGN(len); 281 } 282 283 static void cpsw_rx_handler(void *token, int len, int status) 284 { 285 struct page *new_page, *page = token; 286 void *pa = page_address(page); 287 int headroom = CPSW_HEADROOM_NA; 288 struct cpsw_meta_xdp *xmeta; 289 struct cpsw_common *cpsw; 290 struct net_device *ndev; 291 int port, ch, pkt_size; 292 struct cpsw_priv *priv; 293 struct page_pool *pool; 294 struct sk_buff *skb; 295 struct xdp_buff xdp; 296 u32 metasize = 0; 297 int ret = 0; 298 dma_addr_t dma; 299 300 xmeta = pa + CPSW_XMETA_OFFSET; 301 cpsw = ndev_to_cpsw(xmeta->ndev); 302 ndev = xmeta->ndev; 303 pkt_size = cpsw->rx_packet_max; 304 ch = xmeta->ch; 305 306 if (status >= 0) { 307 port = CPDMA_RX_SOURCE_PORT(status); 308 if (port) 309 ndev = cpsw->slaves[--port].ndev; 310 } 311 312 priv = netdev_priv(ndev); 313 pool = cpsw->page_pool[ch]; 314 315 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 316 /* In dual emac mode check for all interfaces */ 317 if (cpsw->usage_count && status >= 0) { 318 /* The packet received is for the interface which 319 * is already down and the other interface is up 320 * and running, instead of freeing which results 321 * in reducing of the number of rx descriptor in 322 * DMA engine, requeue page back to cpdma. 323 */ 324 new_page = page; 325 goto requeue; 326 } 327 328 /* the interface is going down, pages are purged */ 329 page_pool_recycle_direct(pool, page); 330 return; 331 } 332 333 new_page = page_pool_dev_alloc_pages(pool); 334 if (unlikely(!new_page)) { 335 new_page = page; 336 ndev->stats.rx_dropped++; 337 goto requeue; 338 } 339 340 if (priv->xdp_prog) { 341 int size = len; 342 343 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 344 if (status & CPDMA_RX_VLAN_ENCAP) { 345 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 346 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 347 } 348 349 xdp_prepare_buff(&xdp, pa, headroom, size, true); 350 351 ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len); 352 if (ret != CPSW_XDP_PASS) 353 goto requeue; 354 355 headroom = xdp.data - xdp.data_hard_start; 356 metasize = xdp.data - xdp.data_meta; 357 358 /* XDP prog can modify vlan tag, so can't use encap header */ 359 status &= ~CPDMA_RX_VLAN_ENCAP; 360 } 361 362 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 363 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 364 if (!skb) { 365 ndev->stats.rx_dropped++; 366 page_pool_recycle_direct(pool, page); 367 goto requeue; 368 } 369 370 skb->offload_fwd_mark = priv->offload_fwd_mark; 371 skb_reserve(skb, headroom); 372 skb_put(skb, len); 373 if (metasize) 374 skb_metadata_set(skb, metasize); 375 skb->dev = ndev; 376 if (status & CPDMA_RX_VLAN_ENCAP) 377 cpsw_rx_vlan_encap(skb); 378 if (priv->rx_ts_enabled) 379 cpts_rx_timestamp(cpsw->cpts, skb); 380 skb->protocol = eth_type_trans(skb, ndev); 381 382 /* mark skb for recycling */ 383 skb_mark_for_recycle(skb); 384 netif_receive_skb(skb); 385 386 ndev->stats.rx_bytes += len; 387 ndev->stats.rx_packets++; 388 389 requeue: 390 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 391 xmeta->ndev = ndev; 392 xmeta->ch = ch; 393 394 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA; 395 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 396 pkt_size, 0); 397 if (ret < 0) { 398 WARN_ON(ret == -ENOMEM); 399 page_pool_recycle_direct(pool, new_page); 400 } 401 } 402 403 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 404 unsigned short vid) 405 { 406 struct cpsw_common *cpsw = priv->cpsw; 407 int unreg_mcast_mask = 0; 408 int mcast_mask; 409 u32 port_mask; 410 int ret; 411 412 port_mask = (1 << priv->emac_port) | ALE_PORT_HOST; 413 414 mcast_mask = ALE_PORT_HOST; 415 if (priv->ndev->flags & IFF_ALLMULTI) 416 unreg_mcast_mask = mcast_mask; 417 418 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 419 unreg_mcast_mask); 420 if (ret != 0) 421 return ret; 422 423 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 424 HOST_PORT_NUM, ALE_VLAN, vid); 425 if (ret != 0) 426 goto clean_vid; 427 428 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 429 mcast_mask, ALE_VLAN, vid, 0); 430 if (ret != 0) 431 goto clean_vlan_ucast; 432 return 0; 433 434 clean_vlan_ucast: 435 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 436 HOST_PORT_NUM, ALE_VLAN, vid); 437 clean_vid: 438 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 439 return ret; 440 } 441 442 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 443 __be16 proto, u16 vid) 444 { 445 struct cpsw_priv *priv = netdev_priv(ndev); 446 struct cpsw_common *cpsw = priv->cpsw; 447 int ret, i; 448 449 if (cpsw_is_switch_en(cpsw)) { 450 dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n"); 451 return 0; 452 } 453 454 if (vid == cpsw->data.default_vlan) 455 return 0; 456 457 ret = pm_runtime_resume_and_get(cpsw->dev); 458 if (ret < 0) 459 return ret; 460 461 /* In dual EMAC, reserved VLAN id should not be used for 462 * creating VLAN interfaces as this can break the dual 463 * EMAC port separation 464 */ 465 for (i = 0; i < cpsw->data.slaves; i++) { 466 if (cpsw->slaves[i].ndev && 467 vid == cpsw->slaves[i].port_vlan) { 468 ret = -EINVAL; 469 goto err; 470 } 471 } 472 473 dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 474 ret = cpsw_add_vlan_ale_entry(priv, vid); 475 err: 476 pm_runtime_put(cpsw->dev); 477 return ret; 478 } 479 480 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 481 { 482 struct cpsw_priv *priv = arg; 483 484 if (!vdev || !vid) 485 return 0; 486 487 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 488 return 0; 489 } 490 491 /* restore resources after port reset */ 492 static void cpsw_restore(struct cpsw_priv *priv) 493 { 494 struct cpsw_common *cpsw = priv->cpsw; 495 496 /* restore vlan configurations */ 497 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 498 499 /* restore MQPRIO offload */ 500 cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv); 501 502 /* restore CBS offload */ 503 cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv); 504 505 cpsw_qos_clsflower_resume(priv); 506 } 507 508 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw) 509 { 510 static const char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0}; 511 512 cpsw_ale_add_mcast(cpsw->ale, stpa, 513 ALE_PORT_HOST, ALE_SUPER, 0, 514 ALE_MCAST_BLOCK_LEARN_FWD); 515 } 516 517 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw) 518 { 519 int vlan = cpsw->data.default_vlan; 520 521 writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl); 522 523 writel(vlan, &cpsw->host_port_regs->port_vlan); 524 525 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 526 ALE_ALL_PORTS, ALE_ALL_PORTS, 527 ALE_PORT_1 | ALE_PORT_2); 528 529 cpsw_init_stp_ale_entry(cpsw); 530 531 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1); 532 dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n"); 533 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0); 534 } 535 536 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw) 537 { 538 int vlan = cpsw->data.default_vlan; 539 540 writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl); 541 542 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0); 543 dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n"); 544 545 writel(vlan, &cpsw->host_port_regs->port_vlan); 546 547 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 548 /* learning make no sense in dual_mac mode */ 549 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1); 550 } 551 552 static void cpsw_init_host_port(struct cpsw_priv *priv) 553 { 554 struct cpsw_common *cpsw = priv->cpsw; 555 u32 control_reg; 556 557 /* soft reset the controller and initialize ale */ 558 soft_reset("cpsw", &cpsw->regs->soft_reset); 559 cpsw_ale_start(cpsw->ale); 560 561 /* switch to vlan aware mode */ 562 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 563 CPSW_ALE_VLAN_AWARE); 564 control_reg = readl(&cpsw->regs->control); 565 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 566 writel(control_reg, &cpsw->regs->control); 567 568 /* setup host port priority mapping */ 569 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 570 &cpsw->host_port_regs->cpdma_tx_pri_map); 571 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 572 573 /* disable priority elevation */ 574 writel_relaxed(0, &cpsw->regs->ptype); 575 576 /* enable statistics collection only on all ports */ 577 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 578 579 /* Enable internal fifo flow control */ 580 writel(0x7, &cpsw->regs->flow_control); 581 582 if (cpsw_is_switch_en(cpsw)) 583 cpsw_init_host_port_switch(cpsw); 584 else 585 cpsw_init_host_port_dual_mac(cpsw); 586 587 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 588 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 589 } 590 591 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv, 592 struct cpsw_slave *slave) 593 { 594 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 595 struct cpsw_common *cpsw = priv->cpsw; 596 u32 reg; 597 598 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 599 CPSW2_PORT_VLAN; 600 slave_write(slave, slave->port_vlan, reg); 601 602 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 603 port_mask, port_mask, 0); 604 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 605 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 606 ALE_MCAST_FWD); 607 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 608 HOST_PORT_NUM, ALE_VLAN | 609 ALE_SECURE, slave->port_vlan); 610 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 611 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 612 /* learning make no sense in dual_mac mode */ 613 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 614 ALE_PORT_NOLEARN, 1); 615 } 616 617 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv, 618 struct cpsw_slave *slave) 619 { 620 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 621 struct cpsw_common *cpsw = priv->cpsw; 622 u32 reg; 623 624 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 625 ALE_PORT_DROP_UNKNOWN_VLAN, 0); 626 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 627 ALE_PORT_NOLEARN, 0); 628 /* disabling SA_UPDATE required to make stp work, without this setting 629 * Host MAC addresses will jump between ports. 630 * As per TRM MAC address can be defined as unicast supervisory (super) 631 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent 632 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE 633 * causes STP packets to be dropped due to ingress filter 634 * if (source address found) and (secure) and 635 * (receive port number != port_number)) 636 * then discard the packet 637 */ 638 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 639 ALE_PORT_NO_SA_UPDATE, 1); 640 641 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 642 port_mask, ALE_VLAN, slave->port_vlan, 643 ALE_MCAST_FWD_2); 644 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 645 HOST_PORT_NUM, ALE_VLAN, slave->port_vlan); 646 647 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 648 CPSW2_PORT_VLAN; 649 slave_write(slave, slave->port_vlan, reg); 650 } 651 652 static void cpsw_adjust_link(struct net_device *ndev) 653 { 654 struct cpsw_priv *priv = netdev_priv(ndev); 655 struct cpsw_common *cpsw = priv->cpsw; 656 struct cpsw_slave *slave; 657 struct phy_device *phy; 658 u32 mac_control = 0; 659 660 slave = &cpsw->slaves[priv->emac_port - 1]; 661 phy = slave->phy; 662 663 if (!phy) 664 return; 665 666 if (phy->link) { 667 mac_control = CPSW_SL_CTL_GMII_EN; 668 669 if (phy->speed == 1000) 670 mac_control |= CPSW_SL_CTL_GIG; 671 if (phy->duplex) 672 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 673 674 /* set speed_in input in case RMII mode is used in 100Mbps */ 675 if (phy->speed == 100) 676 mac_control |= CPSW_SL_CTL_IFCTL_A; 677 /* in band mode only works in 10Mbps RGMII mode */ 678 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 679 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 680 681 if (priv->rx_pause) 682 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 683 684 if (priv->tx_pause) 685 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 686 687 if (mac_control != slave->mac_control) 688 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 689 690 /* enable forwarding */ 691 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 692 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 693 694 netif_tx_wake_all_queues(ndev); 695 696 if (priv->shp_cfg_speed && 697 priv->shp_cfg_speed != slave->phy->speed && 698 !cpsw_shp_is_off(priv)) 699 dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); 700 } else { 701 netif_tx_stop_all_queues(ndev); 702 703 mac_control = 0; 704 /* disable forwarding */ 705 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 706 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 707 708 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 709 710 cpsw_sl_ctl_reset(slave->mac_sl); 711 } 712 713 if (mac_control != slave->mac_control) 714 phy_print_status(phy); 715 716 slave->mac_control = mac_control; 717 718 if (phy->link && cpsw_need_resplit(cpsw)) 719 cpsw_split_res(cpsw); 720 } 721 722 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 723 { 724 struct cpsw_common *cpsw = priv->cpsw; 725 struct phy_device *phy; 726 727 cpsw_sl_reset(slave->mac_sl, 100); 728 cpsw_sl_ctl_reset(slave->mac_sl); 729 730 /* setup priority mapping */ 731 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 732 RX_PRIORITY_MAPPING); 733 734 switch (cpsw->version) { 735 case CPSW_VERSION_1: 736 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 737 /* Increase RX FIFO size to 5 for supporting fullduplex 738 * flow control mode 739 */ 740 slave_write(slave, 741 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 742 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 743 break; 744 case CPSW_VERSION_2: 745 case CPSW_VERSION_3: 746 case CPSW_VERSION_4: 747 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 748 /* Increase RX FIFO size to 5 for supporting fullduplex 749 * flow control mode 750 */ 751 slave_write(slave, 752 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 753 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 754 break; 755 } 756 757 /* setup max packet size, and mac address */ 758 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 759 cpsw->rx_packet_max); 760 cpsw_set_slave_mac(slave, priv); 761 762 slave->mac_control = 0; /* no link yet */ 763 764 if (cpsw_is_switch_en(cpsw)) 765 cpsw_port_add_switch_def_ale_entries(priv, slave); 766 else 767 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 768 769 if (!slave->data->phy_node) 770 dev_err(priv->dev, "no phy found on slave %d\n", 771 slave->slave_num); 772 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 773 &cpsw_adjust_link, 0, slave->data->phy_if); 774 if (!phy) { 775 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 776 slave->data->phy_node, 777 slave->slave_num); 778 return; 779 } 780 781 phy->mac_managed_pm = true; 782 783 slave->phy = phy; 784 785 phy_disable_eee(slave->phy); 786 787 phy_attached_info(slave->phy); 788 789 phy_start(slave->phy); 790 791 /* Configure GMII_SEL register */ 792 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 793 slave->data->phy_if); 794 } 795 796 static int cpsw_ndo_stop(struct net_device *ndev) 797 { 798 struct cpsw_priv *priv = netdev_priv(ndev); 799 struct cpsw_common *cpsw = priv->cpsw; 800 struct cpsw_slave *slave; 801 802 cpsw_info(priv, ifdown, "shutting down ndev\n"); 803 slave = &cpsw->slaves[priv->emac_port - 1]; 804 if (slave->phy) 805 phy_stop(slave->phy); 806 807 netif_tx_stop_all_queues(priv->ndev); 808 809 if (slave->phy) { 810 phy_disconnect(slave->phy); 811 slave->phy = NULL; 812 } 813 814 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 815 816 if (cpsw->usage_count <= 1) { 817 napi_disable(&cpsw->napi_rx); 818 napi_disable(&cpsw->napi_tx); 819 cpts_unregister(cpsw->cpts); 820 cpsw_intr_disable(cpsw); 821 cpdma_ctlr_stop(cpsw->dma); 822 cpsw_ale_stop(cpsw->ale); 823 cpsw_destroy_xdp_rxqs(cpsw); 824 } 825 826 if (cpsw_need_resplit(cpsw)) 827 cpsw_split_res(cpsw); 828 829 cpsw->usage_count--; 830 pm_runtime_put_sync(cpsw->dev); 831 return 0; 832 } 833 834 static int cpsw_ndo_open(struct net_device *ndev) 835 { 836 struct cpsw_priv *priv = netdev_priv(ndev); 837 struct cpsw_common *cpsw = priv->cpsw; 838 int ret; 839 840 dev_info(priv->dev, "starting ndev. mode: %s\n", 841 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac"); 842 ret = pm_runtime_resume_and_get(cpsw->dev); 843 if (ret < 0) 844 return ret; 845 846 /* Notify the stack of the actual queue counts. */ 847 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 848 if (ret) { 849 dev_err(priv->dev, "cannot set real number of tx queues\n"); 850 goto pm_cleanup; 851 } 852 853 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 854 if (ret) { 855 dev_err(priv->dev, "cannot set real number of rx queues\n"); 856 goto pm_cleanup; 857 } 858 859 /* Initialize host and slave ports */ 860 if (!cpsw->usage_count) 861 cpsw_init_host_port(priv); 862 cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv); 863 864 /* initialize shared resources for every ndev */ 865 if (!cpsw->usage_count) { 866 /* create rxqs for both infs in dual mac as they use same pool 867 * and must be destroyed together when no users. 868 */ 869 ret = cpsw_create_xdp_rxqs(cpsw); 870 if (ret < 0) 871 goto err_cleanup; 872 873 ret = cpsw_fill_rx_channels(priv); 874 if (ret < 0) 875 goto err_cleanup; 876 877 if (cpsw->cpts) { 878 if (cpts_register(cpsw->cpts)) 879 dev_err(priv->dev, "error registering cpts device\n"); 880 else 881 writel(0x10, &cpsw->wr_regs->misc_en); 882 } 883 884 napi_enable(&cpsw->napi_rx); 885 napi_enable(&cpsw->napi_tx); 886 887 if (cpsw->tx_irq_disabled) { 888 cpsw->tx_irq_disabled = false; 889 enable_irq(cpsw->irqs_table[1]); 890 } 891 892 if (cpsw->rx_irq_disabled) { 893 cpsw->rx_irq_disabled = false; 894 enable_irq(cpsw->irqs_table[0]); 895 } 896 } 897 898 cpsw_restore(priv); 899 900 /* Enable Interrupt pacing if configured */ 901 if (cpsw->coal_intvl != 0) { 902 struct ethtool_coalesce coal; 903 904 coal.rx_coalesce_usecs = cpsw->coal_intvl; 905 cpsw_set_coalesce(ndev, &coal, NULL, NULL); 906 } 907 908 cpdma_ctlr_start(cpsw->dma); 909 cpsw_intr_enable(cpsw); 910 cpsw->usage_count++; 911 912 return 0; 913 914 err_cleanup: 915 cpsw_ndo_stop(ndev); 916 917 pm_cleanup: 918 pm_runtime_put_sync(cpsw->dev); 919 return ret; 920 } 921 922 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 923 struct net_device *ndev) 924 { 925 struct cpsw_priv *priv = netdev_priv(ndev); 926 struct cpsw_common *cpsw = priv->cpsw; 927 struct cpts *cpts = cpsw->cpts; 928 struct netdev_queue *txq; 929 struct cpdma_chan *txch; 930 int ret, q_idx; 931 932 if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) { 933 cpsw_err(priv, tx_err, "packet pad failed\n"); 934 ndev->stats.tx_dropped++; 935 return NET_XMIT_DROP; 936 } 937 938 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 939 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 940 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 941 942 q_idx = skb_get_queue_mapping(skb); 943 if (q_idx >= cpsw->tx_ch_num) 944 q_idx = q_idx % cpsw->tx_ch_num; 945 946 txch = cpsw->txv[q_idx].ch; 947 txq = netdev_get_tx_queue(ndev, q_idx); 948 skb_tx_timestamp(skb); 949 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 950 priv->emac_port); 951 if (unlikely(ret != 0)) { 952 cpsw_err(priv, tx_err, "desc submit failed\n"); 953 goto fail; 954 } 955 956 /* If there is no more tx desc left free then we need to 957 * tell the kernel to stop sending us tx frames. 958 */ 959 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 960 netif_tx_stop_queue(txq); 961 962 /* Barrier, so that stop_queue visible to other cpus */ 963 smp_mb__after_atomic(); 964 965 if (cpdma_check_free_tx_desc(txch)) 966 netif_tx_wake_queue(txq); 967 } 968 969 return NETDEV_TX_OK; 970 fail: 971 ndev->stats.tx_dropped++; 972 netif_tx_stop_queue(txq); 973 974 /* Barrier, so that stop_queue visible to other cpus */ 975 smp_mb__after_atomic(); 976 977 if (cpdma_check_free_tx_desc(txch)) 978 netif_tx_wake_queue(txq); 979 980 return NETDEV_TX_BUSY; 981 } 982 983 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 984 { 985 struct sockaddr *addr = (struct sockaddr *)p; 986 struct cpsw_priv *priv = netdev_priv(ndev); 987 struct cpsw_common *cpsw = priv->cpsw; 988 int ret, slave_no; 989 int flags = 0; 990 u16 vid = 0; 991 992 slave_no = cpsw_slave_index(cpsw, priv); 993 if (!is_valid_ether_addr(addr->sa_data)) 994 return -EADDRNOTAVAIL; 995 996 ret = pm_runtime_resume_and_get(cpsw->dev); 997 if (ret < 0) 998 return ret; 999 1000 vid = cpsw->slaves[slave_no].port_vlan; 1001 flags = ALE_VLAN | ALE_SECURE; 1002 1003 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1004 flags, vid); 1005 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1006 flags, vid); 1007 1008 ether_addr_copy(priv->mac_addr, addr->sa_data); 1009 eth_hw_addr_set(ndev, priv->mac_addr); 1010 cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv); 1011 1012 pm_runtime_put(cpsw->dev); 1013 1014 return 0; 1015 } 1016 1017 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1018 __be16 proto, u16 vid) 1019 { 1020 struct cpsw_priv *priv = netdev_priv(ndev); 1021 struct cpsw_common *cpsw = priv->cpsw; 1022 int ret; 1023 int i; 1024 1025 if (cpsw_is_switch_en(cpsw)) { 1026 dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n"); 1027 return 0; 1028 } 1029 1030 if (vid == cpsw->data.default_vlan) 1031 return 0; 1032 1033 ret = pm_runtime_resume_and_get(cpsw->dev); 1034 if (ret < 0) 1035 return ret; 1036 1037 /* reset the return code as pm_runtime_get_sync() can return 1038 * non zero values as well. 1039 */ 1040 ret = 0; 1041 for (i = 0; i < cpsw->data.slaves; i++) { 1042 if (cpsw->slaves[i].ndev && 1043 vid == cpsw->slaves[i].port_vlan) { 1044 ret = -EINVAL; 1045 goto err; 1046 } 1047 } 1048 1049 dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1050 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1051 if (ret) 1052 dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret); 1053 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1054 HOST_PORT_NUM, ALE_VLAN, vid); 1055 if (ret) 1056 dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n", 1057 ret); 1058 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1059 0, ALE_VLAN, vid); 1060 if (ret) 1061 dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n", 1062 ret); 1063 cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1064 ret = 0; 1065 err: 1066 pm_runtime_put(cpsw->dev); 1067 return ret; 1068 } 1069 1070 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name, 1071 size_t len) 1072 { 1073 struct cpsw_priv *priv = netdev_priv(ndev); 1074 int err; 1075 1076 err = snprintf(name, len, "p%d", priv->emac_port); 1077 1078 if (err >= len) 1079 return -EINVAL; 1080 1081 return 0; 1082 } 1083 1084 #ifdef CONFIG_NET_POLL_CONTROLLER 1085 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1086 { 1087 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1088 1089 cpsw_intr_disable(cpsw); 1090 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1091 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1092 cpsw_intr_enable(cpsw); 1093 } 1094 #endif 1095 1096 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1097 struct xdp_frame **frames, u32 flags) 1098 { 1099 struct cpsw_priv *priv = netdev_priv(ndev); 1100 struct xdp_frame *xdpf; 1101 int i, nxmit = 0; 1102 1103 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1104 return -EINVAL; 1105 1106 for (i = 0; i < n; i++) { 1107 xdpf = frames[i]; 1108 if (xdpf->len < READ_ONCE(priv->tx_packet_min)) 1109 break; 1110 1111 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port)) 1112 break; 1113 nxmit++; 1114 } 1115 1116 return nxmit; 1117 } 1118 1119 static int cpsw_get_port_parent_id(struct net_device *ndev, 1120 struct netdev_phys_item_id *ppid) 1121 { 1122 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1123 1124 ppid->id_len = sizeof(cpsw->base_mac); 1125 memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len); 1126 1127 return 0; 1128 } 1129 1130 static const struct net_device_ops cpsw_netdev_ops = { 1131 .ndo_open = cpsw_ndo_open, 1132 .ndo_stop = cpsw_ndo_stop, 1133 .ndo_start_xmit = cpsw_ndo_start_xmit, 1134 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1135 .ndo_eth_ioctl = phy_do_ioctl_running, 1136 .ndo_validate_addr = eth_validate_addr, 1137 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1138 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1139 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1140 #ifdef CONFIG_NET_POLL_CONTROLLER 1141 .ndo_poll_controller = cpsw_ndo_poll_controller, 1142 #endif 1143 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1144 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1145 .ndo_setup_tc = cpsw_ndo_setup_tc, 1146 .ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name, 1147 .ndo_bpf = cpsw_ndo_bpf, 1148 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1149 .ndo_get_port_parent_id = cpsw_get_port_parent_id, 1150 .ndo_hwtstamp_get = cpsw_hwtstamp_get, 1151 .ndo_hwtstamp_set = cpsw_hwtstamp_set, 1152 }; 1153 1154 static void cpsw_get_drvinfo(struct net_device *ndev, 1155 struct ethtool_drvinfo *info) 1156 { 1157 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1158 struct platform_device *pdev; 1159 1160 pdev = to_platform_device(cpsw->dev); 1161 strscpy(info->driver, "cpsw-switch", sizeof(info->driver)); 1162 strscpy(info->version, "2.0", sizeof(info->version)); 1163 strscpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1164 } 1165 1166 static int cpsw_set_pauseparam(struct net_device *ndev, 1167 struct ethtool_pauseparam *pause) 1168 { 1169 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1170 struct cpsw_priv *priv = netdev_priv(ndev); 1171 int slave_no; 1172 1173 slave_no = cpsw_slave_index(cpsw, priv); 1174 if (!cpsw->slaves[slave_no].phy) 1175 return -EINVAL; 1176 1177 if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause)) 1178 return -EINVAL; 1179 1180 priv->rx_pause = pause->rx_pause ? true : false; 1181 priv->tx_pause = pause->tx_pause ? true : false; 1182 1183 phy_set_asym_pause(cpsw->slaves[slave_no].phy, 1184 priv->rx_pause, priv->tx_pause); 1185 1186 return 0; 1187 } 1188 1189 static int cpsw_set_channels(struct net_device *ndev, 1190 struct ethtool_channels *chs) 1191 { 1192 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1193 } 1194 1195 static const struct ethtool_ops cpsw_ethtool_ops = { 1196 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1197 .get_drvinfo = cpsw_get_drvinfo, 1198 .get_msglevel = cpsw_get_msglevel, 1199 .set_msglevel = cpsw_set_msglevel, 1200 .get_link = ethtool_op_get_link, 1201 .get_ts_info = cpsw_get_ts_info, 1202 .get_coalesce = cpsw_get_coalesce, 1203 .set_coalesce = cpsw_set_coalesce, 1204 .get_sset_count = cpsw_get_sset_count, 1205 .get_strings = cpsw_get_strings, 1206 .get_ethtool_stats = cpsw_get_ethtool_stats, 1207 .get_pauseparam = cpsw_get_pauseparam, 1208 .set_pauseparam = cpsw_set_pauseparam, 1209 .get_wol = cpsw_get_wol, 1210 .set_wol = cpsw_set_wol, 1211 .get_regs_len = cpsw_get_regs_len, 1212 .get_regs = cpsw_get_regs, 1213 .begin = cpsw_ethtool_op_begin, 1214 .complete = cpsw_ethtool_op_complete, 1215 .get_channels = cpsw_get_channels, 1216 .set_channels = cpsw_set_channels, 1217 .get_link_ksettings = cpsw_get_link_ksettings, 1218 .set_link_ksettings = cpsw_set_link_ksettings, 1219 .get_eee = cpsw_get_eee, 1220 .nway_reset = cpsw_nway_reset, 1221 .get_ringparam = cpsw_get_ringparam, 1222 .set_ringparam = cpsw_set_ringparam, 1223 }; 1224 1225 static int cpsw_probe_dt(struct cpsw_common *cpsw) 1226 { 1227 struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np; 1228 struct cpsw_platform_data *data = &cpsw->data; 1229 struct device *dev = cpsw->dev; 1230 int ret; 1231 u32 prop; 1232 1233 if (!node) 1234 return -EINVAL; 1235 1236 tmp_node = of_get_child_by_name(node, "ethernet-ports"); 1237 if (!tmp_node) 1238 return -ENOENT; 1239 data->slaves = of_get_child_count(tmp_node); 1240 if (data->slaves != CPSW_SLAVE_PORTS_NUM) { 1241 of_node_put(tmp_node); 1242 return -ENOENT; 1243 } 1244 1245 data->active_slave = 0; 1246 data->channels = CPSW_MAX_QUEUES; 1247 data->dual_emac = true; 1248 data->bd_ram_size = CPSW_BD_RAM_SIZE; 1249 data->mac_control = 0; 1250 1251 data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM, 1252 sizeof(struct cpsw_slave_data), 1253 GFP_KERNEL); 1254 if (!data->slave_data) { 1255 of_node_put(tmp_node); 1256 return -ENOMEM; 1257 } 1258 1259 /* Populate all the child nodes here... 1260 */ 1261 ret = devm_of_platform_populate(dev); 1262 /* We do not want to force this, as in some cases may not have child */ 1263 if (ret) 1264 dev_warn(dev, "Doesn't have any child node\n"); 1265 1266 for_each_child_of_node(tmp_node, port_np) { 1267 struct cpsw_slave_data *slave_data; 1268 u32 port_id; 1269 1270 ret = of_property_read_u32(port_np, "reg", &port_id); 1271 if (ret < 0) { 1272 dev_err(dev, "%pOF error reading port_id %d\n", 1273 port_np, ret); 1274 goto err_node_put; 1275 } 1276 1277 if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) { 1278 dev_err(dev, "%pOF has invalid port_id %u\n", 1279 port_np, port_id); 1280 ret = -EINVAL; 1281 goto err_node_put; 1282 } 1283 1284 slave_data = &data->slave_data[port_id - 1]; 1285 1286 slave_data->disabled = !of_device_is_available(port_np); 1287 if (slave_data->disabled) 1288 continue; 1289 1290 slave_data->slave_node = port_np; 1291 slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL); 1292 if (IS_ERR(slave_data->ifphy)) { 1293 ret = PTR_ERR(slave_data->ifphy); 1294 dev_err(dev, "%pOF: Error retrieving port phy: %d\n", 1295 port_np, ret); 1296 goto err_node_put; 1297 } 1298 1299 if (of_phy_is_fixed_link(port_np)) { 1300 ret = of_phy_register_fixed_link(port_np); 1301 if (ret) { 1302 dev_err_probe(dev, ret, "%pOF failed to register fixed-link phy\n", 1303 port_np); 1304 goto err_node_put; 1305 } 1306 slave_data->phy_node = of_node_get(port_np); 1307 } else { 1308 slave_data->phy_node = 1309 of_parse_phandle(port_np, "phy-handle", 0); 1310 } 1311 1312 if (!slave_data->phy_node) { 1313 dev_err(dev, "%pOF no phy found\n", port_np); 1314 ret = -ENODEV; 1315 goto err_node_put; 1316 } 1317 1318 ret = of_get_phy_mode(port_np, &slave_data->phy_if); 1319 if (ret) { 1320 dev_err(dev, "%pOF read phy-mode err %d\n", 1321 port_np, ret); 1322 goto err_node_put; 1323 } 1324 1325 ret = of_get_mac_address(port_np, slave_data->mac_addr); 1326 if (ret) { 1327 ret = ti_cm_get_macid(dev, port_id - 1, 1328 slave_data->mac_addr); 1329 if (ret) 1330 goto err_node_put; 1331 } 1332 1333 if (of_property_read_u32(port_np, "ti,dual-emac-pvid", 1334 &prop)) { 1335 dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n", 1336 port_np); 1337 slave_data->dual_emac_res_vlan = port_id; 1338 dev_err(dev, "%pOF Using %d as Reserved VLAN\n", 1339 port_np, slave_data->dual_emac_res_vlan); 1340 } else { 1341 slave_data->dual_emac_res_vlan = prop; 1342 } 1343 } 1344 1345 of_node_put(tmp_node); 1346 return 0; 1347 1348 err_node_put: 1349 of_node_put(port_np); 1350 of_node_put(tmp_node); 1351 return ret; 1352 } 1353 1354 static void cpsw_remove_dt(struct cpsw_common *cpsw) 1355 { 1356 struct cpsw_platform_data *data = &cpsw->data; 1357 int i = 0; 1358 1359 for (i = 0; i < cpsw->data.slaves; i++) { 1360 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1361 struct device_node *port_np = slave_data->phy_node; 1362 1363 if (port_np) { 1364 if (of_phy_is_fixed_link(port_np)) 1365 of_phy_deregister_fixed_link(port_np); 1366 1367 of_node_put(port_np); 1368 } 1369 } 1370 } 1371 1372 static int cpsw_create_ports(struct cpsw_common *cpsw) 1373 { 1374 struct cpsw_platform_data *data = &cpsw->data; 1375 struct net_device *ndev, *napi_ndev = NULL; 1376 struct device *dev = cpsw->dev; 1377 struct cpsw_priv *priv; 1378 int ret = 0, i = 0; 1379 1380 for (i = 0; i < cpsw->data.slaves; i++) { 1381 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1382 1383 if (slave_data->disabled) 1384 continue; 1385 1386 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1387 CPSW_MAX_QUEUES, 1388 CPSW_MAX_QUEUES); 1389 if (!ndev) { 1390 dev_err(dev, "error allocating net_device\n"); 1391 return -ENOMEM; 1392 } 1393 1394 priv = netdev_priv(ndev); 1395 priv->cpsw = cpsw; 1396 priv->ndev = ndev; 1397 priv->dev = dev; 1398 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1399 priv->emac_port = i + 1; 1400 priv->tx_packet_min = CPSW_MIN_PACKET_SIZE; 1401 1402 if (is_valid_ether_addr(slave_data->mac_addr)) { 1403 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1404 dev_info(cpsw->dev, "Detected MACID = %pM\n", 1405 priv->mac_addr); 1406 } else { 1407 eth_random_addr(slave_data->mac_addr); 1408 dev_info(cpsw->dev, "Random MACID = %pM\n", 1409 priv->mac_addr); 1410 } 1411 eth_hw_addr_set(ndev, slave_data->mac_addr); 1412 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1413 1414 cpsw->slaves[i].ndev = ndev; 1415 1416 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 1417 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_TC; 1418 ndev->netns_immutable = true; 1419 1420 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 1421 NETDEV_XDP_ACT_REDIRECT | 1422 NETDEV_XDP_ACT_NDO_XMIT; 1423 1424 ndev->netdev_ops = &cpsw_netdev_ops; 1425 ndev->ethtool_ops = &cpsw_ethtool_ops; 1426 SET_NETDEV_DEV(ndev, dev); 1427 ndev->dev.of_node = slave_data->slave_node; 1428 1429 if (!napi_ndev) { 1430 /* CPSW Host port CPDMA interface is shared between 1431 * ports and there is only one TX and one RX IRQs 1432 * available for all possible TX and RX channels 1433 * accordingly. 1434 */ 1435 netif_napi_add(ndev, &cpsw->napi_rx, 1436 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll); 1437 netif_napi_add_tx(ndev, &cpsw->napi_tx, 1438 cpsw->quirk_irq ? 1439 cpsw_tx_poll : cpsw_tx_mq_poll); 1440 } 1441 1442 napi_ndev = ndev; 1443 } 1444 1445 return ret; 1446 } 1447 1448 static void cpsw_unregister_ports(struct cpsw_common *cpsw) 1449 { 1450 int i = 0; 1451 1452 for (i = 0; i < cpsw->data.slaves; i++) { 1453 if (!cpsw->slaves[i].ndev) 1454 continue; 1455 1456 unregister_netdev(cpsw->slaves[i].ndev); 1457 } 1458 } 1459 1460 static int cpsw_register_ports(struct cpsw_common *cpsw) 1461 { 1462 int ret = 0, i = 0; 1463 1464 for (i = 0; i < cpsw->data.slaves; i++) { 1465 if (!cpsw->slaves[i].ndev) 1466 continue; 1467 1468 /* register the network device */ 1469 ret = register_netdev(cpsw->slaves[i].ndev); 1470 if (ret) { 1471 dev_err(cpsw->dev, 1472 "cpsw: err registering net device%d\n", i); 1473 cpsw->slaves[i].ndev = NULL; 1474 break; 1475 } 1476 } 1477 1478 if (ret) 1479 cpsw_unregister_ports(cpsw); 1480 return ret; 1481 } 1482 1483 bool cpsw_port_dev_check(const struct net_device *ndev) 1484 { 1485 if (ndev->netdev_ops == &cpsw_netdev_ops) { 1486 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1487 1488 return !cpsw->data.dual_emac; 1489 } 1490 1491 return false; 1492 } 1493 1494 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw) 1495 { 1496 int set_val = 0; 1497 int i; 1498 1499 if (!cpsw->ale_bypass && 1500 (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2))) 1501 set_val = 1; 1502 1503 dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val); 1504 1505 for (i = 0; i < cpsw->data.slaves; i++) { 1506 struct net_device *sl_ndev = cpsw->slaves[i].ndev; 1507 struct cpsw_priv *priv = netdev_priv(sl_ndev); 1508 1509 priv->offload_fwd_mark = set_val; 1510 } 1511 } 1512 1513 static int cpsw_netdevice_port_link(struct net_device *ndev, 1514 struct net_device *br_ndev, 1515 struct netlink_ext_ack *extack) 1516 { 1517 struct cpsw_priv *priv = netdev_priv(ndev); 1518 struct cpsw_common *cpsw = priv->cpsw; 1519 int err; 1520 1521 if (!cpsw->br_members) { 1522 cpsw->hw_bridge_dev = br_ndev; 1523 } else { 1524 /* This is adding the port to a second bridge, this is 1525 * unsupported 1526 */ 1527 if (cpsw->hw_bridge_dev != br_ndev) 1528 return -EOPNOTSUPP; 1529 } 1530 1531 err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL, 1532 false, extack); 1533 if (err) 1534 return err; 1535 1536 cpsw->br_members |= BIT(priv->emac_port); 1537 1538 cpsw_port_offload_fwd_mark_update(cpsw); 1539 1540 return NOTIFY_DONE; 1541 } 1542 1543 static void cpsw_netdevice_port_unlink(struct net_device *ndev) 1544 { 1545 struct cpsw_priv *priv = netdev_priv(ndev); 1546 struct cpsw_common *cpsw = priv->cpsw; 1547 1548 switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL); 1549 1550 cpsw->br_members &= ~BIT(priv->emac_port); 1551 1552 cpsw_port_offload_fwd_mark_update(cpsw); 1553 1554 if (!cpsw->br_members) 1555 cpsw->hw_bridge_dev = NULL; 1556 } 1557 1558 /* netdev notifier */ 1559 static int cpsw_netdevice_event(struct notifier_block *unused, 1560 unsigned long event, void *ptr) 1561 { 1562 struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr); 1563 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 1564 struct netdev_notifier_changeupper_info *info; 1565 int ret = NOTIFY_DONE; 1566 1567 if (!cpsw_port_dev_check(ndev)) 1568 return NOTIFY_DONE; 1569 1570 switch (event) { 1571 case NETDEV_CHANGEUPPER: 1572 info = ptr; 1573 1574 if (netif_is_bridge_master(info->upper_dev)) { 1575 if (info->linking) 1576 ret = cpsw_netdevice_port_link(ndev, 1577 info->upper_dev, 1578 extack); 1579 else 1580 cpsw_netdevice_port_unlink(ndev); 1581 } 1582 break; 1583 default: 1584 return NOTIFY_DONE; 1585 } 1586 1587 return notifier_from_errno(ret); 1588 } 1589 1590 static struct notifier_block cpsw_netdevice_nb __read_mostly = { 1591 .notifier_call = cpsw_netdevice_event, 1592 }; 1593 1594 static int cpsw_register_notifiers(struct cpsw_common *cpsw) 1595 { 1596 int ret = 0; 1597 1598 ret = register_netdevice_notifier(&cpsw_netdevice_nb); 1599 if (ret) { 1600 dev_err(cpsw->dev, "can't register netdevice notifier\n"); 1601 return ret; 1602 } 1603 1604 ret = cpsw_switchdev_register_notifiers(cpsw); 1605 if (ret) 1606 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1607 1608 return ret; 1609 } 1610 1611 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw) 1612 { 1613 cpsw_switchdev_unregister_notifiers(cpsw); 1614 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1615 } 1616 1617 static const struct devlink_ops cpsw_devlink_ops = { 1618 }; 1619 1620 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id, 1621 struct devlink_param_gset_ctx *ctx) 1622 { 1623 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1624 struct cpsw_common *cpsw = dl_priv->cpsw; 1625 1626 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1627 1628 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1629 return -EOPNOTSUPP; 1630 1631 ctx->val.vbool = !cpsw->data.dual_emac; 1632 1633 return 0; 1634 } 1635 1636 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id, 1637 struct devlink_param_gset_ctx *ctx, 1638 struct netlink_ext_ack *extack) 1639 { 1640 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1641 struct cpsw_common *cpsw = dl_priv->cpsw; 1642 int vlan = cpsw->data.default_vlan; 1643 bool switch_en = ctx->val.vbool; 1644 bool if_running = false; 1645 int i; 1646 1647 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1648 1649 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1650 return -EOPNOTSUPP; 1651 1652 if (switch_en == !cpsw->data.dual_emac) 1653 return 0; 1654 1655 if (!switch_en && cpsw->br_members) { 1656 dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n"); 1657 return -EINVAL; 1658 } 1659 1660 rtnl_lock(); 1661 1662 for (i = 0; i < cpsw->data.slaves; i++) { 1663 struct cpsw_slave *slave = &cpsw->slaves[i]; 1664 struct net_device *sl_ndev = slave->ndev; 1665 1666 if (!sl_ndev || !netif_running(sl_ndev)) 1667 continue; 1668 1669 if_running = true; 1670 } 1671 1672 if (!if_running) { 1673 /* all ndevs are down */ 1674 cpsw->data.dual_emac = !switch_en; 1675 for (i = 0; i < cpsw->data.slaves; i++) { 1676 struct cpsw_slave *slave = &cpsw->slaves[i]; 1677 struct net_device *sl_ndev = slave->ndev; 1678 1679 if (!sl_ndev) 1680 continue; 1681 1682 if (switch_en) 1683 vlan = cpsw->data.default_vlan; 1684 else 1685 vlan = slave->data->dual_emac_res_vlan; 1686 slave->port_vlan = vlan; 1687 } 1688 goto exit; 1689 } 1690 1691 if (switch_en) { 1692 dev_info(cpsw->dev, "Enable switch mode\n"); 1693 1694 /* enable bypass - no forwarding; all traffic goes to Host */ 1695 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1696 1697 /* clean up ALE table */ 1698 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1699 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1700 1701 cpsw_init_host_port_switch(cpsw); 1702 1703 for (i = 0; i < cpsw->data.slaves; i++) { 1704 struct cpsw_slave *slave = &cpsw->slaves[i]; 1705 struct net_device *sl_ndev = slave->ndev; 1706 struct cpsw_priv *priv; 1707 1708 if (!sl_ndev) 1709 continue; 1710 1711 priv = netdev_priv(sl_ndev); 1712 slave->port_vlan = vlan; 1713 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN); 1714 if (netif_running(sl_ndev)) 1715 cpsw_port_add_switch_def_ale_entries(priv, 1716 slave); 1717 } 1718 1719 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1720 cpsw->data.dual_emac = false; 1721 } else { 1722 dev_info(cpsw->dev, "Disable switch mode\n"); 1723 1724 /* enable bypass - no forwarding; all traffic goes to Host */ 1725 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1726 1727 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1728 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1729 1730 cpsw_init_host_port_dual_mac(cpsw); 1731 1732 for (i = 0; i < cpsw->data.slaves; i++) { 1733 struct cpsw_slave *slave = &cpsw->slaves[i]; 1734 struct net_device *sl_ndev = slave->ndev; 1735 struct cpsw_priv *priv; 1736 1737 if (!sl_ndev) 1738 continue; 1739 1740 priv = netdev_priv(slave->ndev); 1741 slave->port_vlan = slave->data->dual_emac_res_vlan; 1742 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE); 1743 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 1744 } 1745 1746 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1747 cpsw->data.dual_emac = true; 1748 } 1749 exit: 1750 rtnl_unlock(); 1751 1752 return 0; 1753 } 1754 1755 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id, 1756 struct devlink_param_gset_ctx *ctx) 1757 { 1758 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1759 struct cpsw_common *cpsw = dl_priv->cpsw; 1760 1761 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1762 1763 switch (id) { 1764 case CPSW_DL_PARAM_ALE_BYPASS: 1765 ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS); 1766 break; 1767 default: 1768 return -EOPNOTSUPP; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id, 1775 struct devlink_param_gset_ctx *ctx, 1776 struct netlink_ext_ack *extack) 1777 { 1778 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1779 struct cpsw_common *cpsw = dl_priv->cpsw; 1780 int ret = -EOPNOTSUPP; 1781 1782 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1783 1784 switch (id) { 1785 case CPSW_DL_PARAM_ALE_BYPASS: 1786 ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1787 ctx->val.vbool); 1788 if (!ret) { 1789 cpsw->ale_bypass = ctx->val.vbool; 1790 cpsw_port_offload_fwd_mark_update(cpsw); 1791 } 1792 break; 1793 default: 1794 return -EOPNOTSUPP; 1795 } 1796 1797 return 0; 1798 } 1799 1800 static const struct devlink_param cpsw_devlink_params[] = { 1801 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE, 1802 "switch_mode", DEVLINK_PARAM_TYPE_BOOL, 1803 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1804 cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set, 1805 NULL), 1806 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS, 1807 "ale_bypass", DEVLINK_PARAM_TYPE_BOOL, 1808 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1809 cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL), 1810 }; 1811 1812 static int cpsw_register_devlink(struct cpsw_common *cpsw) 1813 { 1814 struct device *dev = cpsw->dev; 1815 struct cpsw_devlink *dl_priv; 1816 int ret = 0; 1817 1818 cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv), dev); 1819 if (!cpsw->devlink) 1820 return -ENOMEM; 1821 1822 dl_priv = devlink_priv(cpsw->devlink); 1823 dl_priv->cpsw = cpsw; 1824 1825 ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params, 1826 ARRAY_SIZE(cpsw_devlink_params)); 1827 if (ret) { 1828 dev_err(dev, "DL params reg fail ret:%d\n", ret); 1829 goto dl_unreg; 1830 } 1831 1832 devlink_register(cpsw->devlink); 1833 return ret; 1834 1835 dl_unreg: 1836 devlink_free(cpsw->devlink); 1837 return ret; 1838 } 1839 1840 static void cpsw_unregister_devlink(struct cpsw_common *cpsw) 1841 { 1842 devlink_unregister(cpsw->devlink); 1843 devlink_params_unregister(cpsw->devlink, cpsw_devlink_params, 1844 ARRAY_SIZE(cpsw_devlink_params)); 1845 devlink_free(cpsw->devlink); 1846 } 1847 1848 static const struct of_device_id cpsw_of_mtable[] = { 1849 { .compatible = "ti,cpsw-switch"}, 1850 { .compatible = "ti,am335x-cpsw-switch"}, 1851 { .compatible = "ti,am4372-cpsw-switch"}, 1852 { .compatible = "ti,dra7-cpsw-switch"}, 1853 { /* sentinel */ }, 1854 }; 1855 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1856 1857 static const struct soc_device_attribute cpsw_soc_devices[] = { 1858 { .family = "AM33xx", .revision = "ES1.0"}, 1859 { /* sentinel */ } 1860 }; 1861 1862 static int cpsw_probe(struct platform_device *pdev) 1863 { 1864 const struct soc_device_attribute *soc; 1865 struct device *dev = &pdev->dev; 1866 struct cpsw_common *cpsw; 1867 struct resource *ss_res; 1868 struct gpio_descs *mode; 1869 void __iomem *ss_regs; 1870 int ret = 0, ch; 1871 struct clk *clk; 1872 int irq; 1873 1874 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1875 if (!cpsw) 1876 return -ENOMEM; 1877 1878 cpsw_slave_index = cpsw_slave_index_priv; 1879 1880 cpsw->dev = dev; 1881 1882 cpsw->slaves = devm_kcalloc(dev, 1883 CPSW_SLAVE_PORTS_NUM, 1884 sizeof(struct cpsw_slave), 1885 GFP_KERNEL); 1886 if (!cpsw->slaves) 1887 return -ENOMEM; 1888 1889 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1890 if (IS_ERR(mode)) { 1891 ret = PTR_ERR(mode); 1892 dev_err(dev, "gpio request failed, ret %d\n", ret); 1893 return ret; 1894 } 1895 1896 clk = devm_clk_get(dev, "fck"); 1897 if (IS_ERR(clk)) { 1898 ret = PTR_ERR(clk); 1899 dev_err(dev, "fck is not found %d\n", ret); 1900 return ret; 1901 } 1902 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1903 1904 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1905 if (IS_ERR(ss_regs)) { 1906 ret = PTR_ERR(ss_regs); 1907 return ret; 1908 } 1909 cpsw->regs = ss_regs; 1910 1911 irq = platform_get_irq_byname(pdev, "rx"); 1912 if (irq < 0) 1913 return irq; 1914 cpsw->irqs_table[0] = irq; 1915 1916 irq = platform_get_irq_byname(pdev, "tx"); 1917 if (irq < 0) 1918 return irq; 1919 cpsw->irqs_table[1] = irq; 1920 1921 irq = platform_get_irq_byname(pdev, "misc"); 1922 if (irq <= 0) 1923 return irq; 1924 cpsw->misc_irq = irq; 1925 1926 platform_set_drvdata(pdev, cpsw); 1927 /* This may be required here for child devices. */ 1928 pm_runtime_enable(dev); 1929 1930 /* Need to enable clocks with runtime PM api to access module 1931 * registers 1932 */ 1933 ret = pm_runtime_resume_and_get(dev); 1934 if (ret < 0) { 1935 pm_runtime_disable(dev); 1936 return ret; 1937 } 1938 1939 ret = cpsw_probe_dt(cpsw); 1940 if (ret) 1941 goto clean_dt_ret; 1942 1943 soc = soc_device_match(cpsw_soc_devices); 1944 if (soc) 1945 cpsw->quirk_irq = true; 1946 1947 cpsw->rx_packet_max = rx_packet_max; 1948 cpsw->descs_pool_size = descs_pool_size; 1949 eth_random_addr(cpsw->base_mac); 1950 1951 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1952 (u32 __force)ss_res->start + CPSW2_BD_OFFSET, 1953 descs_pool_size); 1954 if (ret) 1955 goto clean_dt_ret; 1956 1957 cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ? 1958 ss_regs + CPSW1_WR_OFFSET : 1959 ss_regs + CPSW2_WR_OFFSET; 1960 1961 ch = cpsw->quirk_irq ? 0 : 7; 1962 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1963 if (IS_ERR(cpsw->txv[0].ch)) { 1964 dev_err(dev, "error initializing tx dma channel\n"); 1965 ret = PTR_ERR(cpsw->txv[0].ch); 1966 goto clean_cpts; 1967 } 1968 1969 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1970 if (IS_ERR(cpsw->rxv[0].ch)) { 1971 dev_err(dev, "error initializing rx dma channel\n"); 1972 ret = PTR_ERR(cpsw->rxv[0].ch); 1973 goto clean_cpts; 1974 } 1975 cpsw_split_res(cpsw); 1976 1977 /* setup netdevs */ 1978 ret = cpsw_create_ports(cpsw); 1979 if (ret) 1980 goto clean_unregister_netdev; 1981 1982 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1983 * MISC IRQs which are always kept disabled with this driver so 1984 * we will not request them. 1985 * 1986 * If anyone wants to implement support for those, make sure to 1987 * first request and append them to irqs_table array. 1988 */ 1989 1990 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1991 0, dev_name(dev), cpsw); 1992 if (ret < 0) { 1993 dev_err(dev, "error attaching irq (%d)\n", ret); 1994 goto clean_unregister_netdev; 1995 } 1996 1997 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1998 0, dev_name(dev), cpsw); 1999 if (ret < 0) { 2000 dev_err(dev, "error attaching irq (%d)\n", ret); 2001 goto clean_unregister_netdev; 2002 } 2003 2004 if (!cpsw->cpts) 2005 goto skip_cpts; 2006 2007 ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt, 2008 0, dev_name(&pdev->dev), cpsw); 2009 if (ret < 0) { 2010 dev_err(dev, "error attaching misc irq (%d)\n", ret); 2011 goto clean_unregister_netdev; 2012 } 2013 2014 /* Enable misc CPTS evnt_pend IRQ */ 2015 cpts_set_irqpoll(cpsw->cpts, false); 2016 2017 skip_cpts: 2018 ret = cpsw_register_notifiers(cpsw); 2019 if (ret) 2020 goto clean_unregister_netdev; 2021 2022 ret = cpsw_register_devlink(cpsw); 2023 if (ret) 2024 goto clean_unregister_notifiers; 2025 2026 ret = cpsw_register_ports(cpsw); 2027 if (ret) 2028 goto clean_unregister_notifiers; 2029 2030 dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n", 2031 &ss_res->start, descs_pool_size, 2032 cpsw->version, CPSW_MAJOR_VERSION(cpsw->version), 2033 CPSW_MINOR_VERSION(cpsw->version), 2034 CPSW_RTL_VERSION(cpsw->version)); 2035 2036 pm_runtime_put(dev); 2037 2038 return 0; 2039 2040 clean_unregister_notifiers: 2041 cpsw_unregister_notifiers(cpsw); 2042 clean_unregister_netdev: 2043 cpsw_unregister_ports(cpsw); 2044 clean_cpts: 2045 cpts_release(cpsw->cpts); 2046 cpdma_ctlr_destroy(cpsw->dma); 2047 clean_dt_ret: 2048 cpsw_remove_dt(cpsw); 2049 pm_runtime_put_sync(dev); 2050 pm_runtime_disable(dev); 2051 return ret; 2052 } 2053 2054 static void cpsw_remove(struct platform_device *pdev) 2055 { 2056 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2057 int ret; 2058 2059 ret = pm_runtime_resume_and_get(&pdev->dev); 2060 if (ret < 0) { 2061 /* Note, if this error path is taken, we're leaking some 2062 * resources. 2063 */ 2064 dev_err(&pdev->dev, "Failed to resume device (%pe)\n", 2065 ERR_PTR(ret)); 2066 return; 2067 } 2068 2069 cpsw_unregister_notifiers(cpsw); 2070 cpsw_unregister_devlink(cpsw); 2071 cpsw_unregister_ports(cpsw); 2072 2073 cpts_release(cpsw->cpts); 2074 cpdma_ctlr_destroy(cpsw->dma); 2075 cpsw_remove_dt(cpsw); 2076 pm_runtime_put_sync(&pdev->dev); 2077 pm_runtime_disable(&pdev->dev); 2078 } 2079 2080 static int __maybe_unused cpsw_suspend(struct device *dev) 2081 { 2082 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2083 int i; 2084 2085 rtnl_lock(); 2086 2087 for (i = 0; i < cpsw->data.slaves; i++) { 2088 struct net_device *ndev = cpsw->slaves[i].ndev; 2089 2090 if (!(ndev && netif_running(ndev))) 2091 continue; 2092 2093 cpsw_ndo_stop(ndev); 2094 } 2095 2096 rtnl_unlock(); 2097 2098 /* Select sleep pin state */ 2099 pinctrl_pm_select_sleep_state(dev); 2100 2101 return 0; 2102 } 2103 2104 static int __maybe_unused cpsw_resume(struct device *dev) 2105 { 2106 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2107 int i; 2108 2109 /* Select default pin state */ 2110 pinctrl_pm_select_default_state(dev); 2111 2112 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 2113 rtnl_lock(); 2114 2115 for (i = 0; i < cpsw->data.slaves; i++) { 2116 struct net_device *ndev = cpsw->slaves[i].ndev; 2117 2118 if (!(ndev && netif_running(ndev))) 2119 continue; 2120 2121 cpsw_ndo_open(ndev); 2122 } 2123 2124 rtnl_unlock(); 2125 2126 return 0; 2127 } 2128 2129 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2130 2131 static struct platform_driver cpsw_driver = { 2132 .driver = { 2133 .name = "cpsw-switch", 2134 .pm = &cpsw_pm_ops, 2135 .of_match_table = cpsw_of_mtable, 2136 }, 2137 .probe = cpsw_probe, 2138 .remove = cpsw_remove, 2139 }; 2140 2141 module_platform_driver(cpsw_driver); 2142 2143 MODULE_LICENSE("GPL"); 2144 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver"); 2145