xref: /linux/drivers/net/ethernet/microsoft/mana/gdma_main.c (revision 380a8891fdcb4e81bc30074c497e6892a827eb2a)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright (c) 2021, Microsoft Corporation. */
3 
4 #include <linux/debugfs.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/utsname.h>
8 #include <linux/version.h>
9 #include <linux/msi.h>
10 #include <linux/irqdomain.h>
11 
12 #include <net/mana/mana.h>
13 #include <net/mana/hw_channel.h>
14 
15 struct dentry *mana_debugfs_root;
16 
17 static u32 mana_gd_r32(struct gdma_context *g, u64 offset)
18 {
19 	return readl(g->bar0_va + offset);
20 }
21 
22 static u64 mana_gd_r64(struct gdma_context *g, u64 offset)
23 {
24 	return readq(g->bar0_va + offset);
25 }
26 
27 static void mana_gd_init_pf_regs(struct pci_dev *pdev)
28 {
29 	struct gdma_context *gc = pci_get_drvdata(pdev);
30 	void __iomem *sriov_base_va;
31 	u64 sriov_base_off;
32 
33 	gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF;
34 	gc->db_page_base = gc->bar0_va +
35 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
36 
37 	gc->phys_db_page_base = gc->bar0_pa +
38 				mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF);
39 
40 	sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF);
41 
42 	sriov_base_va = gc->bar0_va + sriov_base_off;
43 	gc->shm_base = sriov_base_va +
44 			mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF);
45 }
46 
47 static void mana_gd_init_vf_regs(struct pci_dev *pdev)
48 {
49 	struct gdma_context *gc = pci_get_drvdata(pdev);
50 
51 	gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
52 
53 	gc->db_page_base = gc->bar0_va +
54 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
55 
56 	gc->phys_db_page_base = gc->bar0_pa +
57 				mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET);
58 
59 	gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET);
60 }
61 
62 static void mana_gd_init_registers(struct pci_dev *pdev)
63 {
64 	struct gdma_context *gc = pci_get_drvdata(pdev);
65 
66 	if (gc->is_pf)
67 		mana_gd_init_pf_regs(pdev);
68 	else
69 		mana_gd_init_vf_regs(pdev);
70 }
71 
72 /* Suppress logging when we set timeout to zero */
73 bool mana_need_log(struct gdma_context *gc, int err)
74 {
75 	struct hw_channel_context *hwc;
76 
77 	if (err != -ETIMEDOUT)
78 		return true;
79 
80 	if (!gc)
81 		return true;
82 
83 	hwc = gc->hwc.driver_data;
84 	if (hwc && hwc->hwc_timeout == 0)
85 		return false;
86 
87 	return true;
88 }
89 
90 static int mana_gd_query_max_resources(struct pci_dev *pdev)
91 {
92 	struct gdma_context *gc = pci_get_drvdata(pdev);
93 	struct gdma_query_max_resources_resp resp = {};
94 	struct gdma_general_req req = {};
95 	int err;
96 
97 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
98 			     sizeof(req), sizeof(resp));
99 
100 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
101 	if (err || resp.hdr.status) {
102 		dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n",
103 			err, resp.hdr.status);
104 		return err ? err : -EPROTO;
105 	}
106 
107 	if (!pci_msix_can_alloc_dyn(pdev)) {
108 		if (gc->num_msix_usable > resp.max_msix)
109 			gc->num_msix_usable = resp.max_msix;
110 	} else {
111 		/* If dynamic allocation is enabled we have already allocated
112 		 * hwc msi
113 		 */
114 		gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1);
115 	}
116 
117 	if (gc->num_msix_usable <= 1)
118 		return -ENOSPC;
119 
120 	gc->max_num_queues = num_online_cpus();
121 	if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
122 		gc->max_num_queues = MANA_MAX_NUM_QUEUES;
123 
124 	if (gc->max_num_queues > resp.max_eq)
125 		gc->max_num_queues = resp.max_eq;
126 
127 	if (gc->max_num_queues > resp.max_cq)
128 		gc->max_num_queues = resp.max_cq;
129 
130 	if (gc->max_num_queues > resp.max_sq)
131 		gc->max_num_queues = resp.max_sq;
132 
133 	if (gc->max_num_queues > resp.max_rq)
134 		gc->max_num_queues = resp.max_rq;
135 
136 	/* The Hardware Channel (HWC) used 1 MSI-X */
137 	if (gc->max_num_queues > gc->num_msix_usable - 1)
138 		gc->max_num_queues = gc->num_msix_usable - 1;
139 
140 	return 0;
141 }
142 
143 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val)
144 {
145 	struct gdma_context *gc = pci_get_drvdata(pdev);
146 	struct gdma_query_hwc_timeout_resp resp = {};
147 	struct gdma_query_hwc_timeout_req req = {};
148 	int err;
149 
150 	mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT,
151 			     sizeof(req), sizeof(resp));
152 	req.timeout_ms = *timeout_val;
153 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
154 	if (err || resp.hdr.status)
155 		return err ? err : -EPROTO;
156 
157 	*timeout_val = resp.timeout_ms;
158 
159 	return 0;
160 }
161 
162 static int mana_gd_detect_devices(struct pci_dev *pdev)
163 {
164 	struct gdma_context *gc = pci_get_drvdata(pdev);
165 	struct gdma_list_devices_resp resp = {};
166 	struct gdma_general_req req = {};
167 	struct gdma_dev_id dev;
168 	int found_dev = 0;
169 	u16 dev_type;
170 	int err;
171 	u32 i;
172 
173 	mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
174 			     sizeof(resp));
175 
176 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
177 	if (err || resp.hdr.status) {
178 		dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err,
179 			resp.hdr.status);
180 		return err ? err : -EPROTO;
181 	}
182 
183 	for (i = 0; i < GDMA_DEV_LIST_SIZE &&
184 	     found_dev < resp.num_of_devs; i++) {
185 		dev = resp.devs[i];
186 		dev_type = dev.type;
187 
188 		/* Skip empty devices */
189 		if (dev.as_uint32 == 0)
190 			continue;
191 
192 		found_dev++;
193 
194 		/* HWC is already detected in mana_hwc_create_channel(). */
195 		if (dev_type == GDMA_DEVICE_HWC)
196 			continue;
197 
198 		if (dev_type == GDMA_DEVICE_MANA) {
199 			gc->mana.gdma_context = gc;
200 			gc->mana.dev_id = dev;
201 		} else if (dev_type == GDMA_DEVICE_MANA_IB) {
202 			gc->mana_ib.dev_id = dev;
203 			gc->mana_ib.gdma_context = gc;
204 		}
205 	}
206 
207 	return gc->mana.dev_id.type == 0 ? -ENODEV : 0;
208 }
209 
210 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req,
211 			 u32 resp_len, void *resp)
212 {
213 	struct hw_channel_context *hwc = gc->hwc.driver_data;
214 
215 	return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
216 }
217 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA");
218 
219 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
220 			 struct gdma_mem_info *gmi)
221 {
222 	dma_addr_t dma_handle;
223 	void *buf;
224 
225 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
226 		return -EINVAL;
227 
228 	gmi->dev = gc->dev;
229 	buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL);
230 	if (!buf)
231 		return -ENOMEM;
232 
233 	gmi->dma_handle = dma_handle;
234 	gmi->virt_addr = buf;
235 	gmi->length = length;
236 
237 	return 0;
238 }
239 
240 void mana_gd_free_memory(struct gdma_mem_info *gmi)
241 {
242 	dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr,
243 			  gmi->dma_handle);
244 }
245 
246 static int mana_gd_create_hw_eq(struct gdma_context *gc,
247 				struct gdma_queue *queue)
248 {
249 	struct gdma_create_queue_resp resp = {};
250 	struct gdma_create_queue_req req = {};
251 	int err;
252 
253 	if (queue->type != GDMA_EQ)
254 		return -EINVAL;
255 
256 	mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
257 			     sizeof(req), sizeof(resp));
258 
259 	req.hdr.dev_id = queue->gdma_dev->dev_id;
260 	req.type = queue->type;
261 	req.pdid = queue->gdma_dev->pdid;
262 	req.doolbell_id = queue->gdma_dev->doorbell;
263 	req.gdma_region = queue->mem_info.dma_region_handle;
264 	req.queue_size = queue->queue_size;
265 	req.log2_throttle_limit = queue->eq.log2_throttle_limit;
266 	req.eq_pci_msix_index = queue->eq.msix_index;
267 
268 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
269 	if (err || resp.hdr.status) {
270 		dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err,
271 			resp.hdr.status);
272 		return err ? err : -EPROTO;
273 	}
274 
275 	queue->id = resp.queue_index;
276 	queue->eq.disable_needed = true;
277 	queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
278 	return 0;
279 }
280 
281 static int mana_gd_disable_queue(struct gdma_queue *queue)
282 {
283 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
284 	struct gdma_disable_queue_req req = {};
285 	struct gdma_general_resp resp = {};
286 	int err;
287 
288 	WARN_ON(queue->type != GDMA_EQ);
289 
290 	mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
291 			     sizeof(req), sizeof(resp));
292 
293 	req.hdr.dev_id = queue->gdma_dev->dev_id;
294 	req.type = queue->type;
295 	req.queue_index =  queue->id;
296 	req.alloc_res_id_on_creation = 1;
297 
298 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
299 	if (err || resp.hdr.status) {
300 		if (mana_need_log(gc, err))
301 			dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err,
302 				resp.hdr.status);
303 		return err ? err : -EPROTO;
304 	}
305 
306 	return 0;
307 }
308 
309 #define DOORBELL_OFFSET_SQ	0x0
310 #define DOORBELL_OFFSET_RQ	0x400
311 #define DOORBELL_OFFSET_CQ	0x800
312 #define DOORBELL_OFFSET_EQ	0xFF8
313 
314 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index,
315 				  enum gdma_queue_type q_type, u32 qid,
316 				  u32 tail_ptr, u8 num_req)
317 {
318 	void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index;
319 	union gdma_doorbell_entry e = {};
320 
321 	switch (q_type) {
322 	case GDMA_EQ:
323 		e.eq.id = qid;
324 		e.eq.tail_ptr = tail_ptr;
325 		e.eq.arm = num_req;
326 
327 		addr += DOORBELL_OFFSET_EQ;
328 		break;
329 
330 	case GDMA_CQ:
331 		e.cq.id = qid;
332 		e.cq.tail_ptr = tail_ptr;
333 		e.cq.arm = num_req;
334 
335 		addr += DOORBELL_OFFSET_CQ;
336 		break;
337 
338 	case GDMA_RQ:
339 		e.rq.id = qid;
340 		e.rq.tail_ptr = tail_ptr;
341 		e.rq.wqe_cnt = num_req;
342 
343 		addr += DOORBELL_OFFSET_RQ;
344 		break;
345 
346 	case GDMA_SQ:
347 		e.sq.id = qid;
348 		e.sq.tail_ptr = tail_ptr;
349 
350 		addr += DOORBELL_OFFSET_SQ;
351 		break;
352 
353 	default:
354 		WARN_ON(1);
355 		return;
356 	}
357 
358 	/* Ensure all writes are done before ring doorbell */
359 	wmb();
360 
361 	writeq(e.as_uint64, addr);
362 }
363 
364 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
365 {
366 	/* Hardware Spec specifies that software client should set 0 for
367 	 * wqe_cnt for Receive Queues. This value is not used in Send Queues.
368 	 */
369 	mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
370 			      queue->id, queue->head * GDMA_WQE_BU_SIZE, 0);
371 }
372 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA");
373 
374 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit)
375 {
376 	struct gdma_context *gc = cq->gdma_dev->gdma_context;
377 
378 	u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE;
379 
380 	u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
381 
382 	mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
383 			      head, arm_bit);
384 }
385 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA");
386 
387 #define MANA_SERVICE_PERIOD 10
388 
389 static void mana_serv_fpga(struct pci_dev *pdev)
390 {
391 	struct pci_bus *bus, *parent;
392 
393 	pci_lock_rescan_remove();
394 
395 	bus = pdev->bus;
396 	if (!bus) {
397 		dev_err(&pdev->dev, "MANA service: no bus\n");
398 		goto out;
399 	}
400 
401 	parent = bus->parent;
402 	if (!parent) {
403 		dev_err(&pdev->dev, "MANA service: no parent bus\n");
404 		goto out;
405 	}
406 
407 	pci_stop_and_remove_bus_device(bus->self);
408 
409 	msleep(MANA_SERVICE_PERIOD * 1000);
410 
411 	pci_rescan_bus(parent);
412 
413 out:
414 	pci_unlock_rescan_remove();
415 }
416 
417 static void mana_serv_reset(struct pci_dev *pdev)
418 {
419 	struct gdma_context *gc = pci_get_drvdata(pdev);
420 	struct hw_channel_context *hwc;
421 
422 	if (!gc) {
423 		dev_err(&pdev->dev, "MANA service: no GC\n");
424 		return;
425 	}
426 
427 	hwc = gc->hwc.driver_data;
428 	if (!hwc) {
429 		dev_err(&pdev->dev, "MANA service: no HWC\n");
430 		goto out;
431 	}
432 
433 	/* HWC is not responding in this case, so don't wait */
434 	hwc->hwc_timeout = 0;
435 
436 	dev_info(&pdev->dev, "MANA reset cycle start\n");
437 
438 	mana_gd_suspend(pdev, PMSG_SUSPEND);
439 
440 	msleep(MANA_SERVICE_PERIOD * 1000);
441 
442 	mana_gd_resume(pdev);
443 
444 	dev_info(&pdev->dev, "MANA reset cycle completed\n");
445 
446 out:
447 	gc->in_service = false;
448 }
449 
450 struct mana_serv_work {
451 	struct work_struct serv_work;
452 	struct pci_dev *pdev;
453 	enum gdma_eqe_type type;
454 };
455 
456 static void mana_serv_func(struct work_struct *w)
457 {
458 	struct mana_serv_work *mns_wk;
459 	struct pci_dev *pdev;
460 
461 	mns_wk = container_of(w, struct mana_serv_work, serv_work);
462 	pdev = mns_wk->pdev;
463 
464 	if (!pdev)
465 		goto out;
466 
467 	switch (mns_wk->type) {
468 	case GDMA_EQE_HWC_FPGA_RECONFIG:
469 		mana_serv_fpga(pdev);
470 		break;
471 
472 	case GDMA_EQE_HWC_RESET_REQUEST:
473 		mana_serv_reset(pdev);
474 		break;
475 
476 	default:
477 		dev_err(&pdev->dev, "MANA service: unknown type %d\n",
478 			mns_wk->type);
479 		break;
480 	}
481 
482 out:
483 	pci_dev_put(pdev);
484 	kfree(mns_wk);
485 	module_put(THIS_MODULE);
486 }
487 
488 static void mana_gd_process_eqe(struct gdma_queue *eq)
489 {
490 	u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
491 	struct gdma_context *gc = eq->gdma_dev->gdma_context;
492 	struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
493 	struct mana_serv_work *mns_wk;
494 	union gdma_eqe_info eqe_info;
495 	enum gdma_eqe_type type;
496 	struct gdma_event event;
497 	struct gdma_queue *cq;
498 	struct gdma_eqe *eqe;
499 	u32 cq_id;
500 
501 	eqe = &eq_eqe_ptr[head];
502 	eqe_info.as_uint32 = eqe->eqe_info;
503 	type = eqe_info.type;
504 
505 	switch (type) {
506 	case GDMA_EQE_COMPLETION:
507 		cq_id = eqe->details[0] & 0xFFFFFF;
508 		if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs))
509 			break;
510 
511 		cq = gc->cq_table[cq_id];
512 		if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id))
513 			break;
514 
515 		if (cq->cq.callback)
516 			cq->cq.callback(cq->cq.context, cq);
517 
518 		break;
519 
520 	case GDMA_EQE_TEST_EVENT:
521 		gc->test_event_eq_id = eq->id;
522 		complete(&gc->eq_test_event);
523 		break;
524 
525 	case GDMA_EQE_HWC_INIT_EQ_ID_DB:
526 	case GDMA_EQE_HWC_INIT_DATA:
527 	case GDMA_EQE_HWC_INIT_DONE:
528 	case GDMA_EQE_HWC_SOC_SERVICE:
529 	case GDMA_EQE_RNIC_QP_FATAL:
530 		if (!eq->eq.callback)
531 			break;
532 
533 		event.type = type;
534 		memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
535 		eq->eq.callback(eq->eq.context, eq, &event);
536 		break;
537 
538 	case GDMA_EQE_HWC_FPGA_RECONFIG:
539 	case GDMA_EQE_HWC_RESET_REQUEST:
540 		dev_info(gc->dev, "Recv MANA service type:%d\n", type);
541 
542 		if (gc->in_service) {
543 			dev_info(gc->dev, "Already in service\n");
544 			break;
545 		}
546 
547 		if (!try_module_get(THIS_MODULE)) {
548 			dev_info(gc->dev, "Module is unloading\n");
549 			break;
550 		}
551 
552 		mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC);
553 		if (!mns_wk) {
554 			module_put(THIS_MODULE);
555 			break;
556 		}
557 
558 		dev_info(gc->dev, "Start MANA service type:%d\n", type);
559 		gc->in_service = true;
560 		mns_wk->pdev = to_pci_dev(gc->dev);
561 		mns_wk->type = type;
562 		pci_dev_get(mns_wk->pdev);
563 		INIT_WORK(&mns_wk->serv_work, mana_serv_func);
564 		schedule_work(&mns_wk->serv_work);
565 		break;
566 
567 	default:
568 		break;
569 	}
570 }
571 
572 static void mana_gd_process_eq_events(void *arg)
573 {
574 	u32 owner_bits, new_bits, old_bits;
575 	union gdma_eqe_info eqe_info;
576 	struct gdma_eqe *eq_eqe_ptr;
577 	struct gdma_queue *eq = arg;
578 	struct gdma_context *gc;
579 	struct gdma_eqe *eqe;
580 	u32 head, num_eqe;
581 	int i;
582 
583 	gc = eq->gdma_dev->gdma_context;
584 
585 	num_eqe = eq->queue_size / GDMA_EQE_SIZE;
586 	eq_eqe_ptr = eq->queue_mem_ptr;
587 
588 	/* Process up to 5 EQEs at a time, and update the HW head. */
589 	for (i = 0; i < 5; i++) {
590 		eqe = &eq_eqe_ptr[eq->head % num_eqe];
591 		eqe_info.as_uint32 = eqe->eqe_info;
592 		owner_bits = eqe_info.owner_bits;
593 
594 		old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
595 		/* No more entries */
596 		if (owner_bits == old_bits) {
597 			/* return here without ringing the doorbell */
598 			if (i == 0)
599 				return;
600 			break;
601 		}
602 
603 		new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
604 		if (owner_bits != new_bits) {
605 			dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id);
606 			break;
607 		}
608 
609 		/* Per GDMA spec, rmb is necessary after checking owner_bits, before
610 		 * reading eqe.
611 		 */
612 		rmb();
613 
614 		mana_gd_process_eqe(eq);
615 
616 		eq->head++;
617 	}
618 
619 	head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
620 
621 	mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
622 			      head, SET_ARM_BIT);
623 }
624 
625 static int mana_gd_register_irq(struct gdma_queue *queue,
626 				const struct gdma_queue_spec *spec)
627 {
628 	struct gdma_dev *gd = queue->gdma_dev;
629 	struct gdma_irq_context *gic;
630 	struct gdma_context *gc;
631 	unsigned int msi_index;
632 	unsigned long flags;
633 	struct device *dev;
634 	int err = 0;
635 
636 	gc = gd->gdma_context;
637 	dev = gc->dev;
638 	msi_index = spec->eq.msix_index;
639 
640 	if (msi_index >= gc->num_msix_usable) {
641 		err = -ENOSPC;
642 		dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u",
643 			err, msi_index, gc->num_msix_usable);
644 
645 		return err;
646 	}
647 
648 	queue->eq.msix_index = msi_index;
649 	gic = xa_load(&gc->irq_contexts, msi_index);
650 	if (WARN_ON(!gic))
651 		return -EINVAL;
652 
653 	spin_lock_irqsave(&gic->lock, flags);
654 	list_add_rcu(&queue->entry, &gic->eq_list);
655 	spin_unlock_irqrestore(&gic->lock, flags);
656 
657 	return 0;
658 }
659 
660 static void mana_gd_deregister_irq(struct gdma_queue *queue)
661 {
662 	struct gdma_dev *gd = queue->gdma_dev;
663 	struct gdma_irq_context *gic;
664 	struct gdma_context *gc;
665 	unsigned int msix_index;
666 	unsigned long flags;
667 	struct gdma_queue *eq;
668 
669 	gc = gd->gdma_context;
670 
671 	/* At most num_online_cpus() + 1 interrupts are used. */
672 	msix_index = queue->eq.msix_index;
673 	if (WARN_ON(msix_index >= gc->num_msix_usable))
674 		return;
675 
676 	gic = xa_load(&gc->irq_contexts, msix_index);
677 	if (WARN_ON(!gic))
678 		return;
679 
680 	spin_lock_irqsave(&gic->lock, flags);
681 	list_for_each_entry_rcu(eq, &gic->eq_list, entry) {
682 		if (queue == eq) {
683 			list_del_rcu(&eq->entry);
684 			break;
685 		}
686 	}
687 	spin_unlock_irqrestore(&gic->lock, flags);
688 
689 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
690 	synchronize_rcu();
691 }
692 
693 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
694 {
695 	struct gdma_generate_test_event_req req = {};
696 	struct gdma_general_resp resp = {};
697 	struct device *dev = gc->dev;
698 	int err;
699 
700 	mutex_lock(&gc->eq_test_event_mutex);
701 
702 	init_completion(&gc->eq_test_event);
703 	gc->test_event_eq_id = INVALID_QUEUE_ID;
704 
705 	mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
706 			     sizeof(req), sizeof(resp));
707 
708 	req.hdr.dev_id = eq->gdma_dev->dev_id;
709 	req.queue_index = eq->id;
710 
711 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
712 	if (err) {
713 		if (mana_need_log(gc, err))
714 			dev_err(dev, "test_eq failed: %d\n", err);
715 		goto out;
716 	}
717 
718 	err = -EPROTO;
719 
720 	if (resp.hdr.status) {
721 		dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status);
722 		goto out;
723 	}
724 
725 	if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) {
726 		dev_err(dev, "test_eq timed out on queue %d\n", eq->id);
727 		goto out;
728 	}
729 
730 	if (eq->id != gc->test_event_eq_id) {
731 		dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n",
732 			gc->test_event_eq_id, eq->id);
733 		goto out;
734 	}
735 
736 	err = 0;
737 out:
738 	mutex_unlock(&gc->eq_test_event_mutex);
739 	return err;
740 }
741 
742 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
743 			       struct gdma_queue *queue)
744 {
745 	int err;
746 
747 	if (flush_evenets) {
748 		err = mana_gd_test_eq(gc, queue);
749 		if (err && mana_need_log(gc, err))
750 			dev_warn(gc->dev, "Failed to flush EQ: %d\n", err);
751 	}
752 
753 	mana_gd_deregister_irq(queue);
754 
755 	if (queue->eq.disable_needed)
756 		mana_gd_disable_queue(queue);
757 }
758 
759 static int mana_gd_create_eq(struct gdma_dev *gd,
760 			     const struct gdma_queue_spec *spec,
761 			     bool create_hwq, struct gdma_queue *queue)
762 {
763 	struct gdma_context *gc = gd->gdma_context;
764 	struct device *dev = gc->dev;
765 	u32 log2_num_entries;
766 	int err;
767 
768 	queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
769 	queue->id = INVALID_QUEUE_ID;
770 
771 	log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
772 
773 	if (spec->eq.log2_throttle_limit > log2_num_entries) {
774 		dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n",
775 			spec->eq.log2_throttle_limit, log2_num_entries);
776 		return -EINVAL;
777 	}
778 
779 	err = mana_gd_register_irq(queue, spec);
780 	if (err) {
781 		dev_err(dev, "Failed to register irq: %d\n", err);
782 		return err;
783 	}
784 
785 	queue->eq.callback = spec->eq.callback;
786 	queue->eq.context = spec->eq.context;
787 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
788 	queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
789 
790 	if (create_hwq) {
791 		err = mana_gd_create_hw_eq(gc, queue);
792 		if (err)
793 			goto out;
794 
795 		err = mana_gd_test_eq(gc, queue);
796 		if (err)
797 			goto out;
798 	}
799 
800 	return 0;
801 out:
802 	dev_err(dev, "Failed to create EQ: %d\n", err);
803 	mana_gd_destroy_eq(gc, false, queue);
804 	return err;
805 }
806 
807 static void mana_gd_create_cq(const struct gdma_queue_spec *spec,
808 			      struct gdma_queue *queue)
809 {
810 	u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
811 
812 	queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
813 	queue->cq.parent = spec->cq.parent_eq;
814 	queue->cq.context = spec->cq.context;
815 	queue->cq.callback = spec->cq.callback;
816 }
817 
818 static void mana_gd_destroy_cq(struct gdma_context *gc,
819 			       struct gdma_queue *queue)
820 {
821 	u32 id = queue->id;
822 
823 	if (id >= gc->max_num_cqs)
824 		return;
825 
826 	if (!gc->cq_table[id])
827 		return;
828 
829 	gc->cq_table[id] = NULL;
830 }
831 
832 int mana_gd_create_hwc_queue(struct gdma_dev *gd,
833 			     const struct gdma_queue_spec *spec,
834 			     struct gdma_queue **queue_ptr)
835 {
836 	struct gdma_context *gc = gd->gdma_context;
837 	struct gdma_mem_info *gmi;
838 	struct gdma_queue *queue;
839 	int err;
840 
841 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
842 	if (!queue)
843 		return -ENOMEM;
844 
845 	gmi = &queue->mem_info;
846 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
847 	if (err) {
848 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
849 			spec->type, spec->queue_size, err);
850 		goto free_q;
851 	}
852 
853 	queue->head = 0;
854 	queue->tail = 0;
855 	queue->queue_mem_ptr = gmi->virt_addr;
856 	queue->queue_size = spec->queue_size;
857 	queue->monitor_avl_buf = spec->monitor_avl_buf;
858 	queue->type = spec->type;
859 	queue->gdma_dev = gd;
860 
861 	if (spec->type == GDMA_EQ)
862 		err = mana_gd_create_eq(gd, spec, false, queue);
863 	else if (spec->type == GDMA_CQ)
864 		mana_gd_create_cq(spec, queue);
865 
866 	if (err)
867 		goto out;
868 
869 	*queue_ptr = queue;
870 	return 0;
871 out:
872 	dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n",
873 		spec->type, spec->queue_size, err);
874 	mana_gd_free_memory(gmi);
875 free_q:
876 	kfree(queue);
877 	return err;
878 }
879 
880 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle)
881 {
882 	struct gdma_destroy_dma_region_req req = {};
883 	struct gdma_general_resp resp = {};
884 	int err;
885 
886 	if (dma_region_handle == GDMA_INVALID_DMA_REGION)
887 		return 0;
888 
889 	mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
890 			     sizeof(resp));
891 	req.dma_region_handle = dma_region_handle;
892 
893 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
894 	if (err || resp.hdr.status) {
895 		if (mana_need_log(gc, err))
896 			dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n",
897 				err, resp.hdr.status);
898 		return -EPROTO;
899 	}
900 
901 	return 0;
902 }
903 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA");
904 
905 static int mana_gd_create_dma_region(struct gdma_dev *gd,
906 				     struct gdma_mem_info *gmi)
907 {
908 	unsigned int num_page = gmi->length / MANA_PAGE_SIZE;
909 	struct gdma_create_dma_region_req *req = NULL;
910 	struct gdma_create_dma_region_resp resp = {};
911 	struct gdma_context *gc = gd->gdma_context;
912 	struct hw_channel_context *hwc;
913 	u32 length = gmi->length;
914 	size_t req_msg_size;
915 	int err;
916 	int i;
917 
918 	if (length < MANA_PAGE_SIZE || !is_power_of_2(length))
919 		return -EINVAL;
920 
921 	if (!MANA_PAGE_ALIGNED(gmi->virt_addr))
922 		return -EINVAL;
923 
924 	hwc = gc->hwc.driver_data;
925 	req_msg_size = struct_size(req, page_addr_list, num_page);
926 	if (req_msg_size > hwc->max_req_msg_size)
927 		return -EINVAL;
928 
929 	req = kzalloc(req_msg_size, GFP_KERNEL);
930 	if (!req)
931 		return -ENOMEM;
932 
933 	mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
934 			     req_msg_size, sizeof(resp));
935 	req->length = length;
936 	req->offset_in_page = 0;
937 	req->gdma_page_type = GDMA_PAGE_TYPE_4K;
938 	req->page_count = num_page;
939 	req->page_addr_list_len = num_page;
940 
941 	for (i = 0; i < num_page; i++)
942 		req->page_addr_list[i] = gmi->dma_handle +  i * MANA_PAGE_SIZE;
943 
944 	err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
945 	if (err)
946 		goto out;
947 
948 	if (resp.hdr.status ||
949 	    resp.dma_region_handle == GDMA_INVALID_DMA_REGION) {
950 		dev_err(gc->dev, "Failed to create DMA region: 0x%x\n",
951 			resp.hdr.status);
952 		err = -EPROTO;
953 		goto out;
954 	}
955 
956 	gmi->dma_region_handle = resp.dma_region_handle;
957 	dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n",
958 		gmi->dma_region_handle);
959 out:
960 	if (err)
961 		dev_dbg(gc->dev,
962 			"Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n",
963 			length, req->gdma_page_type, resp.hdr.status, err);
964 	kfree(req);
965 	return err;
966 }
967 
968 int mana_gd_create_mana_eq(struct gdma_dev *gd,
969 			   const struct gdma_queue_spec *spec,
970 			   struct gdma_queue **queue_ptr)
971 {
972 	struct gdma_context *gc = gd->gdma_context;
973 	struct gdma_mem_info *gmi;
974 	struct gdma_queue *queue;
975 	int err;
976 
977 	if (spec->type != GDMA_EQ)
978 		return -EINVAL;
979 
980 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
981 	if (!queue)
982 		return -ENOMEM;
983 
984 	gmi = &queue->mem_info;
985 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
986 	if (err) {
987 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n",
988 			spec->type, spec->queue_size, err);
989 		goto free_q;
990 	}
991 
992 	err = mana_gd_create_dma_region(gd, gmi);
993 	if (err)
994 		goto out;
995 
996 	queue->head = 0;
997 	queue->tail = 0;
998 	queue->queue_mem_ptr = gmi->virt_addr;
999 	queue->queue_size = spec->queue_size;
1000 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1001 	queue->type = spec->type;
1002 	queue->gdma_dev = gd;
1003 
1004 	err = mana_gd_create_eq(gd, spec, true, queue);
1005 	if (err)
1006 		goto out;
1007 
1008 	*queue_ptr = queue;
1009 	return 0;
1010 out:
1011 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1012 		spec->type, spec->queue_size, err);
1013 	mana_gd_free_memory(gmi);
1014 free_q:
1015 	kfree(queue);
1016 	return err;
1017 }
1018 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA");
1019 
1020 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
1021 			      const struct gdma_queue_spec *spec,
1022 			      struct gdma_queue **queue_ptr)
1023 {
1024 	struct gdma_context *gc = gd->gdma_context;
1025 	struct gdma_mem_info *gmi;
1026 	struct gdma_queue *queue;
1027 	int err;
1028 
1029 	if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
1030 	    spec->type != GDMA_RQ)
1031 		return -EINVAL;
1032 
1033 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1034 	if (!queue)
1035 		return -ENOMEM;
1036 
1037 	gmi = &queue->mem_info;
1038 	err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
1039 	if (err) {
1040 		dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n",
1041 			spec->type, spec->queue_size, err);
1042 		goto free_q;
1043 	}
1044 
1045 	err = mana_gd_create_dma_region(gd, gmi);
1046 	if (err)
1047 		goto out;
1048 
1049 	queue->head = 0;
1050 	queue->tail = 0;
1051 	queue->queue_mem_ptr = gmi->virt_addr;
1052 	queue->queue_size = spec->queue_size;
1053 	queue->monitor_avl_buf = spec->monitor_avl_buf;
1054 	queue->type = spec->type;
1055 	queue->gdma_dev = gd;
1056 
1057 	if (spec->type == GDMA_CQ)
1058 		mana_gd_create_cq(spec, queue);
1059 
1060 	*queue_ptr = queue;
1061 	return 0;
1062 out:
1063 	dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n",
1064 		spec->type, spec->queue_size, err);
1065 	mana_gd_free_memory(gmi);
1066 free_q:
1067 	kfree(queue);
1068 	return err;
1069 }
1070 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA");
1071 
1072 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
1073 {
1074 	struct gdma_mem_info *gmi = &queue->mem_info;
1075 
1076 	switch (queue->type) {
1077 	case GDMA_EQ:
1078 		mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
1079 		break;
1080 
1081 	case GDMA_CQ:
1082 		mana_gd_destroy_cq(gc, queue);
1083 		break;
1084 
1085 	case GDMA_RQ:
1086 		break;
1087 
1088 	case GDMA_SQ:
1089 		break;
1090 
1091 	default:
1092 		dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n",
1093 			queue->type);
1094 		return;
1095 	}
1096 
1097 	mana_gd_destroy_dma_region(gc, gmi->dma_region_handle);
1098 	mana_gd_free_memory(gmi);
1099 	kfree(queue);
1100 }
1101 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA");
1102 
1103 int mana_gd_verify_vf_version(struct pci_dev *pdev)
1104 {
1105 	struct gdma_context *gc = pci_get_drvdata(pdev);
1106 	struct gdma_verify_ver_resp resp = {};
1107 	struct gdma_verify_ver_req req = {};
1108 	struct hw_channel_context *hwc;
1109 	int err;
1110 
1111 	hwc = gc->hwc.driver_data;
1112 	mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
1113 			     sizeof(req), sizeof(resp));
1114 
1115 	req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
1116 	req.protocol_ver_max = GDMA_PROTOCOL_LAST;
1117 
1118 	req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1;
1119 	req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2;
1120 	req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3;
1121 	req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4;
1122 
1123 	req.drv_ver = 0;	/* Unused*/
1124 	req.os_type = 0x10;	/* Linux */
1125 	req.os_ver_major = LINUX_VERSION_MAJOR;
1126 	req.os_ver_minor = LINUX_VERSION_PATCHLEVEL;
1127 	req.os_ver_build = LINUX_VERSION_SUBLEVEL;
1128 	strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1));
1129 	strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2));
1130 	strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3));
1131 
1132 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1133 	if (err || resp.hdr.status) {
1134 		dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n",
1135 			err, resp.hdr.status);
1136 		return err ? err : -EPROTO;
1137 	}
1138 	gc->pf_cap_flags1 = resp.pf_cap_flags1;
1139 	if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) {
1140 		err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout);
1141 		if (err) {
1142 			dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err);
1143 			return err;
1144 		}
1145 		dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout);
1146 	}
1147 	return 0;
1148 }
1149 
1150 int mana_gd_register_device(struct gdma_dev *gd)
1151 {
1152 	struct gdma_context *gc = gd->gdma_context;
1153 	struct gdma_register_device_resp resp = {};
1154 	struct gdma_general_req req = {};
1155 	int err;
1156 
1157 	gd->pdid = INVALID_PDID;
1158 	gd->doorbell = INVALID_DOORBELL;
1159 	gd->gpa_mkey = INVALID_MEM_KEY;
1160 
1161 	mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
1162 			     sizeof(resp));
1163 
1164 	req.hdr.dev_id = gd->dev_id;
1165 
1166 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1167 	if (err || resp.hdr.status) {
1168 		dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n",
1169 			err, resp.hdr.status);
1170 		return err ? err : -EPROTO;
1171 	}
1172 
1173 	gd->pdid = resp.pdid;
1174 	gd->gpa_mkey = resp.gpa_mkey;
1175 	gd->doorbell = resp.db_id;
1176 
1177 	return 0;
1178 }
1179 
1180 int mana_gd_deregister_device(struct gdma_dev *gd)
1181 {
1182 	struct gdma_context *gc = gd->gdma_context;
1183 	struct gdma_general_resp resp = {};
1184 	struct gdma_general_req req = {};
1185 	int err;
1186 
1187 	if (gd->pdid == INVALID_PDID)
1188 		return -EINVAL;
1189 
1190 	mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
1191 			     sizeof(resp));
1192 
1193 	req.hdr.dev_id = gd->dev_id;
1194 
1195 	err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
1196 	if (err || resp.hdr.status) {
1197 		if (mana_need_log(gc, err))
1198 			dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n",
1199 				err, resp.hdr.status);
1200 		if (!err)
1201 			err = -EPROTO;
1202 	}
1203 
1204 	gd->pdid = INVALID_PDID;
1205 	gd->doorbell = INVALID_DOORBELL;
1206 	gd->gpa_mkey = INVALID_MEM_KEY;
1207 
1208 	return err;
1209 }
1210 
1211 u32 mana_gd_wq_avail_space(struct gdma_queue *wq)
1212 {
1213 	u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
1214 	u32 wq_size = wq->queue_size;
1215 
1216 	WARN_ON_ONCE(used_space > wq_size);
1217 
1218 	return wq_size - used_space;
1219 }
1220 
1221 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset)
1222 {
1223 	u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
1224 
1225 	WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size);
1226 
1227 	return wq->queue_mem_ptr + offset;
1228 }
1229 
1230 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
1231 				    enum gdma_queue_type q_type,
1232 				    u32 client_oob_size, u32 sgl_data_size,
1233 				    u8 *wqe_ptr)
1234 {
1235 	bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
1236 	bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
1237 	struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
1238 	u8 *ptr;
1239 
1240 	memset(header, 0, sizeof(struct gdma_wqe));
1241 	header->num_sge = wqe_req->num_sge;
1242 	header->inline_oob_size_div4 = client_oob_size / sizeof(u32);
1243 
1244 	if (oob_in_sgl) {
1245 		WARN_ON_ONCE(wqe_req->num_sge < 2);
1246 
1247 		header->client_oob_in_sgl = 1;
1248 
1249 		if (pad_data)
1250 			header->last_vbytes = wqe_req->sgl[0].size;
1251 	}
1252 
1253 	if (q_type == GDMA_SQ)
1254 		header->client_data_unit = wqe_req->client_data_unit;
1255 
1256 	/* The size of gdma_wqe + client_oob_size must be less than or equal
1257 	 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
1258 	 * the queue memory buffer boundary.
1259 	 */
1260 	ptr = wqe_ptr + sizeof(header);
1261 
1262 	if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
1263 		memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
1264 
1265 		if (client_oob_size > wqe_req->inline_oob_size)
1266 			memset(ptr + wqe_req->inline_oob_size, 0,
1267 			       client_oob_size - wqe_req->inline_oob_size);
1268 	}
1269 
1270 	return sizeof(header) + client_oob_size;
1271 }
1272 
1273 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr,
1274 			      const struct gdma_wqe_request *wqe_req)
1275 {
1276 	u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1277 	const u8 *address = (u8 *)wqe_req->sgl;
1278 	u8 *base_ptr, *end_ptr;
1279 	u32 size_to_end;
1280 
1281 	base_ptr = wq->queue_mem_ptr;
1282 	end_ptr = base_ptr + wq->queue_size;
1283 	size_to_end = (u32)(end_ptr - wqe_ptr);
1284 
1285 	if (size_to_end < sgl_size) {
1286 		memcpy(wqe_ptr, address, size_to_end);
1287 
1288 		wqe_ptr = base_ptr;
1289 		address += size_to_end;
1290 		sgl_size -= size_to_end;
1291 	}
1292 
1293 	memcpy(wqe_ptr, address, sgl_size);
1294 }
1295 
1296 int mana_gd_post_work_request(struct gdma_queue *wq,
1297 			      const struct gdma_wqe_request *wqe_req,
1298 			      struct gdma_posted_wqe_info *wqe_info)
1299 {
1300 	u32 client_oob_size = wqe_req->inline_oob_size;
1301 	struct gdma_context *gc;
1302 	u32 sgl_data_size;
1303 	u32 max_wqe_size;
1304 	u32 wqe_size;
1305 	u8 *wqe_ptr;
1306 
1307 	if (wqe_req->num_sge == 0)
1308 		return -EINVAL;
1309 
1310 	if (wq->type == GDMA_RQ) {
1311 		if (client_oob_size != 0)
1312 			return -EINVAL;
1313 
1314 		client_oob_size = INLINE_OOB_SMALL_SIZE;
1315 
1316 		max_wqe_size = GDMA_MAX_RQE_SIZE;
1317 	} else {
1318 		if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
1319 		    client_oob_size != INLINE_OOB_LARGE_SIZE)
1320 			return -EINVAL;
1321 
1322 		max_wqe_size = GDMA_MAX_SQE_SIZE;
1323 	}
1324 
1325 	sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
1326 	wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
1327 			 sgl_data_size, GDMA_WQE_BU_SIZE);
1328 	if (wqe_size > max_wqe_size)
1329 		return -EINVAL;
1330 
1331 	if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) {
1332 		gc = wq->gdma_dev->gdma_context;
1333 		dev_err(gc->dev, "unsuccessful flow control!\n");
1334 		return -ENOSPC;
1335 	}
1336 
1337 	if (wqe_info)
1338 		wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
1339 
1340 	wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
1341 	wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
1342 					    sgl_data_size, wqe_ptr);
1343 	if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size)
1344 		wqe_ptr -= wq->queue_size;
1345 
1346 	mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
1347 
1348 	wq->head += wqe_size / GDMA_WQE_BU_SIZE;
1349 
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA");
1353 
1354 int mana_gd_post_and_ring(struct gdma_queue *queue,
1355 			  const struct gdma_wqe_request *wqe_req,
1356 			  struct gdma_posted_wqe_info *wqe_info)
1357 {
1358 	struct gdma_context *gc = queue->gdma_dev->gdma_context;
1359 	int err;
1360 
1361 	err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
1362 	if (err) {
1363 		dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n",
1364 			queue->type, queue->queue_size, err);
1365 		return err;
1366 	}
1367 
1368 	mana_gd_wq_ring_doorbell(gc, queue);
1369 
1370 	return 0;
1371 }
1372 
1373 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
1374 {
1375 	unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
1376 	struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
1377 	u32 owner_bits, new_bits, old_bits;
1378 	struct gdma_cqe *cqe;
1379 
1380 	cqe = &cq_cqe[cq->head % num_cqe];
1381 	owner_bits = cqe->cqe_info.owner_bits;
1382 
1383 	old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
1384 	/* Return 0 if no more entries. */
1385 	if (owner_bits == old_bits)
1386 		return 0;
1387 
1388 	new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
1389 	/* Return -1 if overflow detected. */
1390 	if (WARN_ON_ONCE(owner_bits != new_bits))
1391 		return -1;
1392 
1393 	/* Per GDMA spec, rmb is necessary after checking owner_bits, before
1394 	 * reading completion info
1395 	 */
1396 	rmb();
1397 
1398 	comp->wq_num = cqe->cqe_info.wq_num;
1399 	comp->is_sq = cqe->cqe_info.is_sq;
1400 	memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
1401 
1402 	return 1;
1403 }
1404 
1405 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
1406 {
1407 	int cqe_idx;
1408 	int ret;
1409 
1410 	for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
1411 		ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
1412 
1413 		if (ret < 0) {
1414 			cq->head -= cqe_idx;
1415 			return ret;
1416 		}
1417 
1418 		if (ret == 0)
1419 			break;
1420 
1421 		cq->head++;
1422 	}
1423 
1424 	return cqe_idx;
1425 }
1426 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA");
1427 
1428 static irqreturn_t mana_gd_intr(int irq, void *arg)
1429 {
1430 	struct gdma_irq_context *gic = arg;
1431 	struct list_head *eq_list = &gic->eq_list;
1432 	struct gdma_queue *eq;
1433 
1434 	rcu_read_lock();
1435 	list_for_each_entry_rcu(eq, eq_list, entry) {
1436 		gic->handler(eq);
1437 	}
1438 	rcu_read_unlock();
1439 
1440 	return IRQ_HANDLED;
1441 }
1442 
1443 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r)
1444 {
1445 	r->map = bitmap_zalloc(res_avail, GFP_KERNEL);
1446 	if (!r->map)
1447 		return -ENOMEM;
1448 
1449 	r->size = res_avail;
1450 	spin_lock_init(&r->lock);
1451 
1452 	return 0;
1453 }
1454 
1455 void mana_gd_free_res_map(struct gdma_resource *r)
1456 {
1457 	bitmap_free(r->map);
1458 	r->map = NULL;
1459 	r->size = 0;
1460 }
1461 
1462 /*
1463  * Spread on CPUs with the following heuristics:
1464  *
1465  * 1. No more than one IRQ per CPU, if possible;
1466  * 2. NUMA locality is the second priority;
1467  * 3. Sibling dislocality is the last priority.
1468  *
1469  * Let's consider this topology:
1470  *
1471  * Node            0               1
1472  * Core        0       1       2       3
1473  * CPU       0   1   2   3   4   5   6   7
1474  *
1475  * The most performant IRQ distribution based on the above topology
1476  * and heuristics may look like this:
1477  *
1478  * IRQ     Nodes   Cores   CPUs
1479  * 0       1       0       0-1
1480  * 1       1       1       2-3
1481  * 2       1       0       0-1
1482  * 3       1       1       2-3
1483  * 4       2       2       4-5
1484  * 5       2       3       6-7
1485  * 6       2       2       4-5
1486  * 7       2       3       6-7
1487  *
1488  * The heuristics is implemented as follows.
1489  *
1490  * The outer for_each() loop resets the 'weight' to the actual number
1491  * of CPUs in the hop. Then inner for_each() loop decrements it by the
1492  * number of sibling groups (cores) while assigning first set of IRQs
1493  * to each group. IRQs 0 and 1 above are distributed this way.
1494  *
1495  * Now, because NUMA locality is more important, we should walk the
1496  * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's
1497  * implemented by the medium while() loop. We do like this unless the
1498  * number of IRQs assigned on this hop will not become equal to number
1499  * of CPUs in the hop (weight == 0). Then we switch to the next hop and
1500  * do the same thing.
1501  */
1502 
1503 static int irq_setup(unsigned int *irqs, unsigned int len, int node,
1504 		     bool skip_first_cpu)
1505 {
1506 	const struct cpumask *next, *prev = cpu_none_mask;
1507 	cpumask_var_t cpus __free(free_cpumask_var);
1508 	int cpu, weight;
1509 
1510 	if (!alloc_cpumask_var(&cpus, GFP_KERNEL))
1511 		return -ENOMEM;
1512 
1513 	rcu_read_lock();
1514 	for_each_numa_hop_mask(next, node) {
1515 		weight = cpumask_weight_andnot(next, prev);
1516 		while (weight > 0) {
1517 			cpumask_andnot(cpus, next, prev);
1518 			for_each_cpu(cpu, cpus) {
1519 				cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
1520 				--weight;
1521 
1522 				if (unlikely(skip_first_cpu)) {
1523 					skip_first_cpu = false;
1524 					continue;
1525 				}
1526 
1527 				if (len-- == 0)
1528 					goto done;
1529 
1530 				irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu));
1531 			}
1532 		}
1533 		prev = next;
1534 	}
1535 done:
1536 	rcu_read_unlock();
1537 	return 0;
1538 }
1539 
1540 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec)
1541 {
1542 	struct gdma_context *gc = pci_get_drvdata(pdev);
1543 	struct gdma_irq_context *gic;
1544 	bool skip_first_cpu = false;
1545 	int *irqs, irq, err, i;
1546 
1547 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1548 	if (!irqs)
1549 		return -ENOMEM;
1550 
1551 	/*
1552 	 * While processing the next pci irq vector, we start with index 1,
1553 	 * as IRQ vector at index 0 is already processed for HWC.
1554 	 * However, the population of irqs array starts with index 0, to be
1555 	 * further used in irq_setup()
1556 	 */
1557 	for (i = 1; i <= nvec; i++) {
1558 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1559 		if (!gic) {
1560 			err = -ENOMEM;
1561 			goto free_irq;
1562 		}
1563 		gic->handler = mana_gd_process_eq_events;
1564 		INIT_LIST_HEAD(&gic->eq_list);
1565 		spin_lock_init(&gic->lock);
1566 
1567 		snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1568 			 i - 1, pci_name(pdev));
1569 
1570 		/* one pci vector is already allocated for HWC */
1571 		irqs[i - 1] = pci_irq_vector(pdev, i);
1572 		if (irqs[i - 1] < 0) {
1573 			err = irqs[i - 1];
1574 			goto free_current_gic;
1575 		}
1576 
1577 		err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic);
1578 		if (err)
1579 			goto free_current_gic;
1580 
1581 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1582 	}
1583 
1584 	/*
1585 	 * When calling irq_setup() for dynamically added IRQs, if number of
1586 	 * CPUs is more than or equal to allocated MSI-X, we need to skip the
1587 	 * first CPU sibling group since they are already affinitized to HWC IRQ
1588 	 */
1589 	cpus_read_lock();
1590 	if (gc->num_msix_usable <= num_online_cpus())
1591 		skip_first_cpu = true;
1592 
1593 	err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu);
1594 	if (err) {
1595 		cpus_read_unlock();
1596 		goto free_irq;
1597 	}
1598 
1599 	cpus_read_unlock();
1600 	kfree(irqs);
1601 	return 0;
1602 
1603 free_current_gic:
1604 	kfree(gic);
1605 free_irq:
1606 	for (i -= 1; i > 0; i--) {
1607 		irq = pci_irq_vector(pdev, i);
1608 		gic = xa_load(&gc->irq_contexts, i);
1609 		if (WARN_ON(!gic))
1610 			continue;
1611 
1612 		irq_update_affinity_hint(irq, NULL);
1613 		free_irq(irq, gic);
1614 		xa_erase(&gc->irq_contexts, i);
1615 		kfree(gic);
1616 	}
1617 	kfree(irqs);
1618 	return err;
1619 }
1620 
1621 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec)
1622 {
1623 	struct gdma_context *gc = pci_get_drvdata(pdev);
1624 	struct gdma_irq_context *gic;
1625 	int *irqs, *start_irqs, irq;
1626 	unsigned int cpu;
1627 	int err, i;
1628 
1629 	irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL);
1630 	if (!irqs)
1631 		return -ENOMEM;
1632 
1633 	start_irqs = irqs;
1634 
1635 	for (i = 0; i < nvec; i++) {
1636 		gic = kzalloc(sizeof(*gic), GFP_KERNEL);
1637 		if (!gic) {
1638 			err = -ENOMEM;
1639 			goto free_irq;
1640 		}
1641 
1642 		gic->handler = mana_gd_process_eq_events;
1643 		INIT_LIST_HEAD(&gic->eq_list);
1644 		spin_lock_init(&gic->lock);
1645 
1646 		if (!i)
1647 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s",
1648 				 pci_name(pdev));
1649 		else
1650 			snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s",
1651 				 i - 1, pci_name(pdev));
1652 
1653 		irqs[i] = pci_irq_vector(pdev, i);
1654 		if (irqs[i] < 0) {
1655 			err = irqs[i];
1656 			goto free_current_gic;
1657 		}
1658 
1659 		err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic);
1660 		if (err)
1661 			goto free_current_gic;
1662 
1663 		xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL);
1664 	}
1665 
1666 	/* If number of IRQ is one extra than number of online CPUs,
1667 	 * then we need to assign IRQ0 (hwc irq) and IRQ1 to
1668 	 * same CPU.
1669 	 * Else we will use different CPUs for IRQ0 and IRQ1.
1670 	 * Also we are using cpumask_local_spread instead of
1671 	 * cpumask_first for the node, because the node can be
1672 	 * mem only.
1673 	 */
1674 	cpus_read_lock();
1675 	if (nvec > num_online_cpus()) {
1676 		cpu = cpumask_local_spread(0, gc->numa_node);
1677 		irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu));
1678 		irqs++;
1679 		nvec -= 1;
1680 	}
1681 
1682 	err = irq_setup(irqs, nvec, gc->numa_node, false);
1683 	if (err) {
1684 		cpus_read_unlock();
1685 		goto free_irq;
1686 	}
1687 
1688 	cpus_read_unlock();
1689 	kfree(start_irqs);
1690 	return 0;
1691 
1692 free_current_gic:
1693 	kfree(gic);
1694 free_irq:
1695 	for (i -= 1; i >= 0; i--) {
1696 		irq = pci_irq_vector(pdev, i);
1697 		gic = xa_load(&gc->irq_contexts, i);
1698 		if (WARN_ON(!gic))
1699 			continue;
1700 
1701 		irq_update_affinity_hint(irq, NULL);
1702 		free_irq(irq, gic);
1703 		xa_erase(&gc->irq_contexts, i);
1704 		kfree(gic);
1705 	}
1706 
1707 	kfree(start_irqs);
1708 	return err;
1709 }
1710 
1711 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev)
1712 {
1713 	struct gdma_context *gc = pci_get_drvdata(pdev);
1714 	unsigned int max_irqs, min_irqs;
1715 	int nvec, err;
1716 
1717 	if (pci_msix_can_alloc_dyn(pdev)) {
1718 		max_irqs = 1;
1719 		min_irqs = 1;
1720 	} else {
1721 		/* Need 1 interrupt for HWC */
1722 		max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1;
1723 		min_irqs = 2;
1724 	}
1725 
1726 	nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX);
1727 	if (nvec < 0)
1728 		return nvec;
1729 
1730 	err = mana_gd_setup_irqs(pdev, nvec);
1731 	if (err) {
1732 		pci_free_irq_vectors(pdev);
1733 		return err;
1734 	}
1735 
1736 	gc->num_msix_usable = nvec;
1737 	gc->max_num_msix = nvec;
1738 
1739 	return 0;
1740 }
1741 
1742 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev)
1743 {
1744 	struct gdma_context *gc = pci_get_drvdata(pdev);
1745 	struct msi_map irq_map;
1746 	int max_irqs, i, err;
1747 
1748 	if (!pci_msix_can_alloc_dyn(pdev))
1749 		/* remain irqs are already allocated with HWC IRQ */
1750 		return 0;
1751 
1752 	/* allocate only remaining IRQs*/
1753 	max_irqs = gc->num_msix_usable - 1;
1754 
1755 	for (i = 1; i <= max_irqs; i++) {
1756 		irq_map = pci_msix_alloc_irq_at(pdev, i, NULL);
1757 		if (!irq_map.virq) {
1758 			err = irq_map.index;
1759 			/* caller will handle cleaning up all allocated
1760 			 * irqs, after HWC is destroyed
1761 			 */
1762 			return err;
1763 		}
1764 	}
1765 
1766 	err = mana_gd_setup_dyn_irqs(pdev, max_irqs);
1767 	if (err)
1768 		return err;
1769 
1770 	gc->max_num_msix = gc->max_num_msix + max_irqs;
1771 
1772 	return 0;
1773 }
1774 
1775 static void mana_gd_remove_irqs(struct pci_dev *pdev)
1776 {
1777 	struct gdma_context *gc = pci_get_drvdata(pdev);
1778 	struct gdma_irq_context *gic;
1779 	int irq, i;
1780 
1781 	if (gc->max_num_msix < 1)
1782 		return;
1783 
1784 	for (i = 0; i < gc->max_num_msix; i++) {
1785 		irq = pci_irq_vector(pdev, i);
1786 		if (irq < 0)
1787 			continue;
1788 
1789 		gic = xa_load(&gc->irq_contexts, i);
1790 		if (WARN_ON(!gic))
1791 			continue;
1792 
1793 		/* Need to clear the hint before free_irq */
1794 		irq_update_affinity_hint(irq, NULL);
1795 		free_irq(irq, gic);
1796 		xa_erase(&gc->irq_contexts, i);
1797 		kfree(gic);
1798 	}
1799 
1800 	pci_free_irq_vectors(pdev);
1801 
1802 	gc->max_num_msix = 0;
1803 	gc->num_msix_usable = 0;
1804 }
1805 
1806 static int mana_gd_setup(struct pci_dev *pdev)
1807 {
1808 	struct gdma_context *gc = pci_get_drvdata(pdev);
1809 	int err;
1810 
1811 	mana_gd_init_registers(pdev);
1812 	mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
1813 
1814 	gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0);
1815 	if (!gc->service_wq)
1816 		return -ENOMEM;
1817 
1818 	err = mana_gd_setup_hwc_irqs(pdev);
1819 	if (err) {
1820 		dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n",
1821 			err);
1822 		goto free_workqueue;
1823 	}
1824 
1825 	err = mana_hwc_create_channel(gc);
1826 	if (err)
1827 		goto remove_irq;
1828 
1829 	err = mana_gd_verify_vf_version(pdev);
1830 	if (err)
1831 		goto destroy_hwc;
1832 
1833 	err = mana_gd_query_max_resources(pdev);
1834 	if (err)
1835 		goto destroy_hwc;
1836 
1837 	err = mana_gd_setup_remaining_irqs(pdev);
1838 	if (err) {
1839 		dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err);
1840 		goto destroy_hwc;
1841 	}
1842 
1843 	err = mana_gd_detect_devices(pdev);
1844 	if (err)
1845 		goto destroy_hwc;
1846 
1847 	dev_dbg(&pdev->dev, "mana gdma setup successful\n");
1848 	return 0;
1849 
1850 destroy_hwc:
1851 	mana_hwc_destroy_channel(gc);
1852 remove_irq:
1853 	mana_gd_remove_irqs(pdev);
1854 free_workqueue:
1855 	destroy_workqueue(gc->service_wq);
1856 	dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err);
1857 	return err;
1858 }
1859 
1860 static void mana_gd_cleanup(struct pci_dev *pdev)
1861 {
1862 	struct gdma_context *gc = pci_get_drvdata(pdev);
1863 
1864 	mana_hwc_destroy_channel(gc);
1865 
1866 	mana_gd_remove_irqs(pdev);
1867 
1868 	destroy_workqueue(gc->service_wq);
1869 	dev_dbg(&pdev->dev, "mana gdma cleanup successful\n");
1870 }
1871 
1872 static bool mana_is_pf(unsigned short dev_id)
1873 {
1874 	return dev_id == MANA_PF_DEVICE_ID;
1875 }
1876 
1877 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1878 {
1879 	struct gdma_context *gc;
1880 	void __iomem *bar0_va;
1881 	int bar = 0;
1882 	int err;
1883 
1884 	/* Each port has 2 CQs, each CQ has at most 1 EQE at a time */
1885 	BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE);
1886 
1887 	err = pci_enable_device(pdev);
1888 	if (err) {
1889 		dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err);
1890 		return -ENXIO;
1891 	}
1892 
1893 	pci_set_master(pdev);
1894 
1895 	err = pci_request_regions(pdev, "mana");
1896 	if (err)
1897 		goto disable_dev;
1898 
1899 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1900 	if (err) {
1901 		dev_err(&pdev->dev, "DMA set mask failed: %d\n", err);
1902 		goto release_region;
1903 	}
1904 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1905 
1906 	err = -ENOMEM;
1907 	gc = vzalloc(sizeof(*gc));
1908 	if (!gc)
1909 		goto release_region;
1910 
1911 	mutex_init(&gc->eq_test_event_mutex);
1912 	pci_set_drvdata(pdev, gc);
1913 	gc->bar0_pa = pci_resource_start(pdev, 0);
1914 
1915 	bar0_va = pci_iomap(pdev, bar, 0);
1916 	if (!bar0_va)
1917 		goto free_gc;
1918 
1919 	gc->numa_node = dev_to_node(&pdev->dev);
1920 	gc->is_pf = mana_is_pf(pdev->device);
1921 	gc->bar0_va = bar0_va;
1922 	gc->dev = &pdev->dev;
1923 	xa_init(&gc->irq_contexts);
1924 
1925 	if (gc->is_pf)
1926 		gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root);
1927 	else
1928 		gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot),
1929 							  mana_debugfs_root);
1930 
1931 	err = mana_gd_setup(pdev);
1932 	if (err)
1933 		goto unmap_bar;
1934 
1935 	err = mana_probe(&gc->mana, false);
1936 	if (err)
1937 		goto cleanup_gd;
1938 
1939 	err = mana_rdma_probe(&gc->mana_ib);
1940 	if (err)
1941 		goto cleanup_mana;
1942 
1943 	return 0;
1944 
1945 cleanup_mana:
1946 	mana_remove(&gc->mana, false);
1947 cleanup_gd:
1948 	mana_gd_cleanup(pdev);
1949 unmap_bar:
1950 	/*
1951 	 * at this point we know that the other debugfs child dir/files
1952 	 * are either not yet created or are already cleaned up.
1953 	 * The pci debugfs folder clean-up now, will only be cleaning up
1954 	 * adapter-MTU file and apc->mana_pci_debugfs folder.
1955 	 */
1956 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1957 	gc->mana_pci_debugfs = NULL;
1958 	xa_destroy(&gc->irq_contexts);
1959 	pci_iounmap(pdev, bar0_va);
1960 free_gc:
1961 	pci_set_drvdata(pdev, NULL);
1962 	vfree(gc);
1963 release_region:
1964 	pci_release_regions(pdev);
1965 disable_dev:
1966 	pci_disable_device(pdev);
1967 	dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err);
1968 	return err;
1969 }
1970 
1971 static void mana_gd_remove(struct pci_dev *pdev)
1972 {
1973 	struct gdma_context *gc = pci_get_drvdata(pdev);
1974 
1975 	mana_rdma_remove(&gc->mana_ib);
1976 	mana_remove(&gc->mana, false);
1977 
1978 	mana_gd_cleanup(pdev);
1979 
1980 	debugfs_remove_recursive(gc->mana_pci_debugfs);
1981 
1982 	gc->mana_pci_debugfs = NULL;
1983 
1984 	xa_destroy(&gc->irq_contexts);
1985 
1986 	pci_iounmap(pdev, gc->bar0_va);
1987 
1988 	vfree(gc);
1989 
1990 	pci_release_regions(pdev);
1991 	pci_disable_device(pdev);
1992 
1993 	dev_dbg(&pdev->dev, "mana gdma remove successful\n");
1994 }
1995 
1996 /* The 'state' parameter is not used. */
1997 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state)
1998 {
1999 	struct gdma_context *gc = pci_get_drvdata(pdev);
2000 
2001 	mana_rdma_remove(&gc->mana_ib);
2002 	mana_remove(&gc->mana, true);
2003 
2004 	mana_gd_cleanup(pdev);
2005 
2006 	return 0;
2007 }
2008 
2009 /* In case the NIC hardware stops working, the suspend and resume callbacks will
2010  * fail -- if this happens, it's safer to just report an error than try to undo
2011  * what has been done.
2012  */
2013 int mana_gd_resume(struct pci_dev *pdev)
2014 {
2015 	struct gdma_context *gc = pci_get_drvdata(pdev);
2016 	int err;
2017 
2018 	err = mana_gd_setup(pdev);
2019 	if (err)
2020 		return err;
2021 
2022 	err = mana_probe(&gc->mana, true);
2023 	if (err)
2024 		return err;
2025 
2026 	err = mana_rdma_probe(&gc->mana_ib);
2027 	if (err)
2028 		return err;
2029 
2030 	return 0;
2031 }
2032 
2033 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */
2034 static void mana_gd_shutdown(struct pci_dev *pdev)
2035 {
2036 	struct gdma_context *gc = pci_get_drvdata(pdev);
2037 
2038 	dev_info(&pdev->dev, "Shutdown was called\n");
2039 
2040 	mana_rdma_remove(&gc->mana_ib);
2041 	mana_remove(&gc->mana, true);
2042 
2043 	mana_gd_cleanup(pdev);
2044 
2045 	debugfs_remove_recursive(gc->mana_pci_debugfs);
2046 
2047 	gc->mana_pci_debugfs = NULL;
2048 
2049 	pci_disable_device(pdev);
2050 }
2051 
2052 static const struct pci_device_id mana_id_table[] = {
2053 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) },
2054 	{ PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) },
2055 	{ }
2056 };
2057 
2058 static struct pci_driver mana_driver = {
2059 	.name		= "mana",
2060 	.id_table	= mana_id_table,
2061 	.probe		= mana_gd_probe,
2062 	.remove		= mana_gd_remove,
2063 	.suspend	= mana_gd_suspend,
2064 	.resume		= mana_gd_resume,
2065 	.shutdown	= mana_gd_shutdown,
2066 };
2067 
2068 static int __init mana_driver_init(void)
2069 {
2070 	int err;
2071 
2072 	mana_debugfs_root = debugfs_create_dir("mana", NULL);
2073 
2074 	err = pci_register_driver(&mana_driver);
2075 	if (err) {
2076 		debugfs_remove(mana_debugfs_root);
2077 		mana_debugfs_root = NULL;
2078 	}
2079 
2080 	return err;
2081 }
2082 
2083 static void __exit mana_driver_exit(void)
2084 {
2085 	pci_unregister_driver(&mana_driver);
2086 
2087 	debugfs_remove(mana_debugfs_root);
2088 
2089 	mana_debugfs_root = NULL;
2090 }
2091 
2092 module_init(mana_driver_init);
2093 module_exit(mana_driver_exit);
2094 
2095 MODULE_DEVICE_TABLE(pci, mana_id_table);
2096 
2097 MODULE_LICENSE("Dual BSD/GPL");
2098 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver");
2099