1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright (c) 2021, Microsoft Corporation. */ 3 4 #include <linux/debugfs.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/utsname.h> 8 #include <linux/version.h> 9 #include <linux/msi.h> 10 #include <linux/irqdomain.h> 11 12 #include <net/mana/mana.h> 13 #include <net/mana/hw_channel.h> 14 15 struct dentry *mana_debugfs_root; 16 17 static u32 mana_gd_r32(struct gdma_context *g, u64 offset) 18 { 19 return readl(g->bar0_va + offset); 20 } 21 22 static u64 mana_gd_r64(struct gdma_context *g, u64 offset) 23 { 24 return readq(g->bar0_va + offset); 25 } 26 27 static void mana_gd_init_pf_regs(struct pci_dev *pdev) 28 { 29 struct gdma_context *gc = pci_get_drvdata(pdev); 30 void __iomem *sriov_base_va; 31 u64 sriov_base_off; 32 33 gc->db_page_size = mana_gd_r32(gc, GDMA_PF_REG_DB_PAGE_SIZE) & 0xFFFF; 34 gc->db_page_base = gc->bar0_va + 35 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 36 37 gc->phys_db_page_base = gc->bar0_pa + 38 mana_gd_r64(gc, GDMA_PF_REG_DB_PAGE_OFF); 39 40 sriov_base_off = mana_gd_r64(gc, GDMA_SRIOV_REG_CFG_BASE_OFF); 41 42 sriov_base_va = gc->bar0_va + sriov_base_off; 43 gc->shm_base = sriov_base_va + 44 mana_gd_r64(gc, sriov_base_off + GDMA_PF_REG_SHM_OFF); 45 } 46 47 static void mana_gd_init_vf_regs(struct pci_dev *pdev) 48 { 49 struct gdma_context *gc = pci_get_drvdata(pdev); 50 51 gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; 52 53 gc->db_page_base = gc->bar0_va + 54 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 55 56 gc->phys_db_page_base = gc->bar0_pa + 57 mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); 58 59 gc->shm_base = gc->bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET); 60 } 61 62 static void mana_gd_init_registers(struct pci_dev *pdev) 63 { 64 struct gdma_context *gc = pci_get_drvdata(pdev); 65 66 if (gc->is_pf) 67 mana_gd_init_pf_regs(pdev); 68 else 69 mana_gd_init_vf_regs(pdev); 70 } 71 72 /* Suppress logging when we set timeout to zero */ 73 bool mana_need_log(struct gdma_context *gc, int err) 74 { 75 struct hw_channel_context *hwc; 76 77 if (err != -ETIMEDOUT) 78 return true; 79 80 if (!gc) 81 return true; 82 83 hwc = gc->hwc.driver_data; 84 if (hwc && hwc->hwc_timeout == 0) 85 return false; 86 87 return true; 88 } 89 90 static int mana_gd_query_max_resources(struct pci_dev *pdev) 91 { 92 struct gdma_context *gc = pci_get_drvdata(pdev); 93 struct gdma_query_max_resources_resp resp = {}; 94 struct gdma_general_req req = {}; 95 int err; 96 97 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, 98 sizeof(req), sizeof(resp)); 99 100 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 101 if (err || resp.hdr.status) { 102 dev_err(gc->dev, "Failed to query resource info: %d, 0x%x\n", 103 err, resp.hdr.status); 104 return err ? err : -EPROTO; 105 } 106 107 if (!pci_msix_can_alloc_dyn(pdev)) { 108 if (gc->num_msix_usable > resp.max_msix) 109 gc->num_msix_usable = resp.max_msix; 110 } else { 111 /* If dynamic allocation is enabled we have already allocated 112 * hwc msi 113 */ 114 gc->num_msix_usable = min(resp.max_msix, num_online_cpus() + 1); 115 } 116 117 if (gc->num_msix_usable <= 1) 118 return -ENOSPC; 119 120 gc->max_num_queues = num_online_cpus(); 121 if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) 122 gc->max_num_queues = MANA_MAX_NUM_QUEUES; 123 124 if (gc->max_num_queues > resp.max_eq) 125 gc->max_num_queues = resp.max_eq; 126 127 if (gc->max_num_queues > resp.max_cq) 128 gc->max_num_queues = resp.max_cq; 129 130 if (gc->max_num_queues > resp.max_sq) 131 gc->max_num_queues = resp.max_sq; 132 133 if (gc->max_num_queues > resp.max_rq) 134 gc->max_num_queues = resp.max_rq; 135 136 /* The Hardware Channel (HWC) used 1 MSI-X */ 137 if (gc->max_num_queues > gc->num_msix_usable - 1) 138 gc->max_num_queues = gc->num_msix_usable - 1; 139 140 return 0; 141 } 142 143 static int mana_gd_query_hwc_timeout(struct pci_dev *pdev, u32 *timeout_val) 144 { 145 struct gdma_context *gc = pci_get_drvdata(pdev); 146 struct gdma_query_hwc_timeout_resp resp = {}; 147 struct gdma_query_hwc_timeout_req req = {}; 148 int err; 149 150 mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_HWC_TIMEOUT, 151 sizeof(req), sizeof(resp)); 152 req.timeout_ms = *timeout_val; 153 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 154 if (err || resp.hdr.status) 155 return err ? err : -EPROTO; 156 157 *timeout_val = resp.timeout_ms; 158 159 return 0; 160 } 161 162 static int mana_gd_detect_devices(struct pci_dev *pdev) 163 { 164 struct gdma_context *gc = pci_get_drvdata(pdev); 165 struct gdma_list_devices_resp resp = {}; 166 struct gdma_general_req req = {}; 167 struct gdma_dev_id dev; 168 int found_dev = 0; 169 u16 dev_type; 170 int err; 171 u32 i; 172 173 mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), 174 sizeof(resp)); 175 176 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 177 if (err || resp.hdr.status) { 178 dev_err(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, 179 resp.hdr.status); 180 return err ? err : -EPROTO; 181 } 182 183 for (i = 0; i < GDMA_DEV_LIST_SIZE && 184 found_dev < resp.num_of_devs; i++) { 185 dev = resp.devs[i]; 186 dev_type = dev.type; 187 188 /* Skip empty devices */ 189 if (dev.as_uint32 == 0) 190 continue; 191 192 found_dev++; 193 194 /* HWC is already detected in mana_hwc_create_channel(). */ 195 if (dev_type == GDMA_DEVICE_HWC) 196 continue; 197 198 if (dev_type == GDMA_DEVICE_MANA) { 199 gc->mana.gdma_context = gc; 200 gc->mana.dev_id = dev; 201 } else if (dev_type == GDMA_DEVICE_MANA_IB) { 202 gc->mana_ib.dev_id = dev; 203 gc->mana_ib.gdma_context = gc; 204 } 205 } 206 207 return gc->mana.dev_id.type == 0 ? -ENODEV : 0; 208 } 209 210 int mana_gd_send_request(struct gdma_context *gc, u32 req_len, const void *req, 211 u32 resp_len, void *resp) 212 { 213 struct hw_channel_context *hwc = gc->hwc.driver_data; 214 215 return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); 216 } 217 EXPORT_SYMBOL_NS(mana_gd_send_request, "NET_MANA"); 218 219 int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, 220 struct gdma_mem_info *gmi) 221 { 222 dma_addr_t dma_handle; 223 void *buf; 224 225 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 226 return -EINVAL; 227 228 gmi->dev = gc->dev; 229 buf = dma_alloc_coherent(gmi->dev, length, &dma_handle, GFP_KERNEL); 230 if (!buf) 231 return -ENOMEM; 232 233 gmi->dma_handle = dma_handle; 234 gmi->virt_addr = buf; 235 gmi->length = length; 236 237 return 0; 238 } 239 240 void mana_gd_free_memory(struct gdma_mem_info *gmi) 241 { 242 dma_free_coherent(gmi->dev, gmi->length, gmi->virt_addr, 243 gmi->dma_handle); 244 } 245 246 static int mana_gd_create_hw_eq(struct gdma_context *gc, 247 struct gdma_queue *queue) 248 { 249 struct gdma_create_queue_resp resp = {}; 250 struct gdma_create_queue_req req = {}; 251 int err; 252 253 if (queue->type != GDMA_EQ) 254 return -EINVAL; 255 256 mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, 257 sizeof(req), sizeof(resp)); 258 259 req.hdr.dev_id = queue->gdma_dev->dev_id; 260 req.type = queue->type; 261 req.pdid = queue->gdma_dev->pdid; 262 req.doolbell_id = queue->gdma_dev->doorbell; 263 req.gdma_region = queue->mem_info.dma_region_handle; 264 req.queue_size = queue->queue_size; 265 req.log2_throttle_limit = queue->eq.log2_throttle_limit; 266 req.eq_pci_msix_index = queue->eq.msix_index; 267 268 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 269 if (err || resp.hdr.status) { 270 dev_err(gc->dev, "Failed to create queue: %d, 0x%x\n", err, 271 resp.hdr.status); 272 return err ? err : -EPROTO; 273 } 274 275 queue->id = resp.queue_index; 276 queue->eq.disable_needed = true; 277 queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; 278 return 0; 279 } 280 281 static int mana_gd_disable_queue(struct gdma_queue *queue) 282 { 283 struct gdma_context *gc = queue->gdma_dev->gdma_context; 284 struct gdma_disable_queue_req req = {}; 285 struct gdma_general_resp resp = {}; 286 int err; 287 288 WARN_ON(queue->type != GDMA_EQ); 289 290 mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, 291 sizeof(req), sizeof(resp)); 292 293 req.hdr.dev_id = queue->gdma_dev->dev_id; 294 req.type = queue->type; 295 req.queue_index = queue->id; 296 req.alloc_res_id_on_creation = 1; 297 298 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 299 if (err || resp.hdr.status) { 300 if (mana_need_log(gc, err)) 301 dev_err(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, 302 resp.hdr.status); 303 return err ? err : -EPROTO; 304 } 305 306 return 0; 307 } 308 309 #define DOORBELL_OFFSET_SQ 0x0 310 #define DOORBELL_OFFSET_RQ 0x400 311 #define DOORBELL_OFFSET_CQ 0x800 312 #define DOORBELL_OFFSET_EQ 0xFF8 313 314 static void mana_gd_ring_doorbell(struct gdma_context *gc, u32 db_index, 315 enum gdma_queue_type q_type, u32 qid, 316 u32 tail_ptr, u8 num_req) 317 { 318 void __iomem *addr = gc->db_page_base + gc->db_page_size * db_index; 319 union gdma_doorbell_entry e = {}; 320 321 switch (q_type) { 322 case GDMA_EQ: 323 e.eq.id = qid; 324 e.eq.tail_ptr = tail_ptr; 325 e.eq.arm = num_req; 326 327 addr += DOORBELL_OFFSET_EQ; 328 break; 329 330 case GDMA_CQ: 331 e.cq.id = qid; 332 e.cq.tail_ptr = tail_ptr; 333 e.cq.arm = num_req; 334 335 addr += DOORBELL_OFFSET_CQ; 336 break; 337 338 case GDMA_RQ: 339 e.rq.id = qid; 340 e.rq.tail_ptr = tail_ptr; 341 e.rq.wqe_cnt = num_req; 342 343 addr += DOORBELL_OFFSET_RQ; 344 break; 345 346 case GDMA_SQ: 347 e.sq.id = qid; 348 e.sq.tail_ptr = tail_ptr; 349 350 addr += DOORBELL_OFFSET_SQ; 351 break; 352 353 default: 354 WARN_ON(1); 355 return; 356 } 357 358 /* Ensure all writes are done before ring doorbell */ 359 wmb(); 360 361 writeq(e.as_uint64, addr); 362 } 363 364 void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) 365 { 366 /* Hardware Spec specifies that software client should set 0 for 367 * wqe_cnt for Receive Queues. This value is not used in Send Queues. 368 */ 369 mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, 370 queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); 371 } 372 EXPORT_SYMBOL_NS(mana_gd_wq_ring_doorbell, "NET_MANA"); 373 374 void mana_gd_ring_cq(struct gdma_queue *cq, u8 arm_bit) 375 { 376 struct gdma_context *gc = cq->gdma_dev->gdma_context; 377 378 u32 num_cqe = cq->queue_size / GDMA_CQE_SIZE; 379 380 u32 head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); 381 382 mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, 383 head, arm_bit); 384 } 385 EXPORT_SYMBOL_NS(mana_gd_ring_cq, "NET_MANA"); 386 387 #define MANA_SERVICE_PERIOD 10 388 389 static void mana_serv_fpga(struct pci_dev *pdev) 390 { 391 struct pci_bus *bus, *parent; 392 393 pci_lock_rescan_remove(); 394 395 bus = pdev->bus; 396 if (!bus) { 397 dev_err(&pdev->dev, "MANA service: no bus\n"); 398 goto out; 399 } 400 401 parent = bus->parent; 402 if (!parent) { 403 dev_err(&pdev->dev, "MANA service: no parent bus\n"); 404 goto out; 405 } 406 407 pci_stop_and_remove_bus_device(bus->self); 408 409 msleep(MANA_SERVICE_PERIOD * 1000); 410 411 pci_rescan_bus(parent); 412 413 out: 414 pci_unlock_rescan_remove(); 415 } 416 417 static void mana_serv_reset(struct pci_dev *pdev) 418 { 419 struct gdma_context *gc = pci_get_drvdata(pdev); 420 struct hw_channel_context *hwc; 421 422 if (!gc) { 423 dev_err(&pdev->dev, "MANA service: no GC\n"); 424 return; 425 } 426 427 hwc = gc->hwc.driver_data; 428 if (!hwc) { 429 dev_err(&pdev->dev, "MANA service: no HWC\n"); 430 goto out; 431 } 432 433 /* HWC is not responding in this case, so don't wait */ 434 hwc->hwc_timeout = 0; 435 436 dev_info(&pdev->dev, "MANA reset cycle start\n"); 437 438 mana_gd_suspend(pdev, PMSG_SUSPEND); 439 440 msleep(MANA_SERVICE_PERIOD * 1000); 441 442 mana_gd_resume(pdev); 443 444 dev_info(&pdev->dev, "MANA reset cycle completed\n"); 445 446 out: 447 gc->in_service = false; 448 } 449 450 struct mana_serv_work { 451 struct work_struct serv_work; 452 struct pci_dev *pdev; 453 enum gdma_eqe_type type; 454 }; 455 456 static void mana_serv_func(struct work_struct *w) 457 { 458 struct mana_serv_work *mns_wk; 459 struct pci_dev *pdev; 460 461 mns_wk = container_of(w, struct mana_serv_work, serv_work); 462 pdev = mns_wk->pdev; 463 464 if (!pdev) 465 goto out; 466 467 switch (mns_wk->type) { 468 case GDMA_EQE_HWC_FPGA_RECONFIG: 469 mana_serv_fpga(pdev); 470 break; 471 472 case GDMA_EQE_HWC_RESET_REQUEST: 473 mana_serv_reset(pdev); 474 break; 475 476 default: 477 dev_err(&pdev->dev, "MANA service: unknown type %d\n", 478 mns_wk->type); 479 break; 480 } 481 482 out: 483 pci_dev_put(pdev); 484 kfree(mns_wk); 485 module_put(THIS_MODULE); 486 } 487 488 static void mana_gd_process_eqe(struct gdma_queue *eq) 489 { 490 u32 head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); 491 struct gdma_context *gc = eq->gdma_dev->gdma_context; 492 struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; 493 struct mana_serv_work *mns_wk; 494 union gdma_eqe_info eqe_info; 495 enum gdma_eqe_type type; 496 struct gdma_event event; 497 struct gdma_queue *cq; 498 struct gdma_eqe *eqe; 499 u32 cq_id; 500 501 eqe = &eq_eqe_ptr[head]; 502 eqe_info.as_uint32 = eqe->eqe_info; 503 type = eqe_info.type; 504 505 switch (type) { 506 case GDMA_EQE_COMPLETION: 507 cq_id = eqe->details[0] & 0xFFFFFF; 508 if (WARN_ON_ONCE(cq_id >= gc->max_num_cqs)) 509 break; 510 511 cq = gc->cq_table[cq_id]; 512 if (WARN_ON_ONCE(!cq || cq->type != GDMA_CQ || cq->id != cq_id)) 513 break; 514 515 if (cq->cq.callback) 516 cq->cq.callback(cq->cq.context, cq); 517 518 break; 519 520 case GDMA_EQE_TEST_EVENT: 521 gc->test_event_eq_id = eq->id; 522 complete(&gc->eq_test_event); 523 break; 524 525 case GDMA_EQE_HWC_INIT_EQ_ID_DB: 526 case GDMA_EQE_HWC_INIT_DATA: 527 case GDMA_EQE_HWC_INIT_DONE: 528 case GDMA_EQE_HWC_SOC_SERVICE: 529 case GDMA_EQE_RNIC_QP_FATAL: 530 if (!eq->eq.callback) 531 break; 532 533 event.type = type; 534 memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); 535 eq->eq.callback(eq->eq.context, eq, &event); 536 break; 537 538 case GDMA_EQE_HWC_FPGA_RECONFIG: 539 case GDMA_EQE_HWC_RESET_REQUEST: 540 dev_info(gc->dev, "Recv MANA service type:%d\n", type); 541 542 if (gc->in_service) { 543 dev_info(gc->dev, "Already in service\n"); 544 break; 545 } 546 547 if (!try_module_get(THIS_MODULE)) { 548 dev_info(gc->dev, "Module is unloading\n"); 549 break; 550 } 551 552 mns_wk = kzalloc(sizeof(*mns_wk), GFP_ATOMIC); 553 if (!mns_wk) { 554 module_put(THIS_MODULE); 555 break; 556 } 557 558 dev_info(gc->dev, "Start MANA service type:%d\n", type); 559 gc->in_service = true; 560 mns_wk->pdev = to_pci_dev(gc->dev); 561 mns_wk->type = type; 562 pci_dev_get(mns_wk->pdev); 563 INIT_WORK(&mns_wk->serv_work, mana_serv_func); 564 schedule_work(&mns_wk->serv_work); 565 break; 566 567 default: 568 break; 569 } 570 } 571 572 static void mana_gd_process_eq_events(void *arg) 573 { 574 u32 owner_bits, new_bits, old_bits; 575 union gdma_eqe_info eqe_info; 576 struct gdma_eqe *eq_eqe_ptr; 577 struct gdma_queue *eq = arg; 578 struct gdma_context *gc; 579 struct gdma_eqe *eqe; 580 u32 head, num_eqe; 581 int i; 582 583 gc = eq->gdma_dev->gdma_context; 584 585 num_eqe = eq->queue_size / GDMA_EQE_SIZE; 586 eq_eqe_ptr = eq->queue_mem_ptr; 587 588 /* Process up to 5 EQEs at a time, and update the HW head. */ 589 for (i = 0; i < 5; i++) { 590 eqe = &eq_eqe_ptr[eq->head % num_eqe]; 591 eqe_info.as_uint32 = eqe->eqe_info; 592 owner_bits = eqe_info.owner_bits; 593 594 old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; 595 /* No more entries */ 596 if (owner_bits == old_bits) { 597 /* return here without ringing the doorbell */ 598 if (i == 0) 599 return; 600 break; 601 } 602 603 new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; 604 if (owner_bits != new_bits) { 605 dev_err(gc->dev, "EQ %d: overflow detected\n", eq->id); 606 break; 607 } 608 609 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 610 * reading eqe. 611 */ 612 rmb(); 613 614 mana_gd_process_eqe(eq); 615 616 eq->head++; 617 } 618 619 head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); 620 621 mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, 622 head, SET_ARM_BIT); 623 } 624 625 static int mana_gd_register_irq(struct gdma_queue *queue, 626 const struct gdma_queue_spec *spec) 627 { 628 struct gdma_dev *gd = queue->gdma_dev; 629 struct gdma_irq_context *gic; 630 struct gdma_context *gc; 631 unsigned int msi_index; 632 unsigned long flags; 633 struct device *dev; 634 int err = 0; 635 636 gc = gd->gdma_context; 637 dev = gc->dev; 638 msi_index = spec->eq.msix_index; 639 640 if (msi_index >= gc->num_msix_usable) { 641 err = -ENOSPC; 642 dev_err(dev, "Register IRQ err:%d, msi:%u nMSI:%u", 643 err, msi_index, gc->num_msix_usable); 644 645 return err; 646 } 647 648 queue->eq.msix_index = msi_index; 649 gic = xa_load(&gc->irq_contexts, msi_index); 650 if (WARN_ON(!gic)) 651 return -EINVAL; 652 653 spin_lock_irqsave(&gic->lock, flags); 654 list_add_rcu(&queue->entry, &gic->eq_list); 655 spin_unlock_irqrestore(&gic->lock, flags); 656 657 return 0; 658 } 659 660 static void mana_gd_deregister_irq(struct gdma_queue *queue) 661 { 662 struct gdma_dev *gd = queue->gdma_dev; 663 struct gdma_irq_context *gic; 664 struct gdma_context *gc; 665 unsigned int msix_index; 666 unsigned long flags; 667 struct gdma_queue *eq; 668 669 gc = gd->gdma_context; 670 671 /* At most num_online_cpus() + 1 interrupts are used. */ 672 msix_index = queue->eq.msix_index; 673 if (WARN_ON(msix_index >= gc->num_msix_usable)) 674 return; 675 676 gic = xa_load(&gc->irq_contexts, msix_index); 677 if (WARN_ON(!gic)) 678 return; 679 680 spin_lock_irqsave(&gic->lock, flags); 681 list_for_each_entry_rcu(eq, &gic->eq_list, entry) { 682 if (queue == eq) { 683 list_del_rcu(&eq->entry); 684 break; 685 } 686 } 687 spin_unlock_irqrestore(&gic->lock, flags); 688 689 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 690 synchronize_rcu(); 691 } 692 693 int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) 694 { 695 struct gdma_generate_test_event_req req = {}; 696 struct gdma_general_resp resp = {}; 697 struct device *dev = gc->dev; 698 int err; 699 700 mutex_lock(&gc->eq_test_event_mutex); 701 702 init_completion(&gc->eq_test_event); 703 gc->test_event_eq_id = INVALID_QUEUE_ID; 704 705 mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, 706 sizeof(req), sizeof(resp)); 707 708 req.hdr.dev_id = eq->gdma_dev->dev_id; 709 req.queue_index = eq->id; 710 711 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 712 if (err) { 713 if (mana_need_log(gc, err)) 714 dev_err(dev, "test_eq failed: %d\n", err); 715 goto out; 716 } 717 718 err = -EPROTO; 719 720 if (resp.hdr.status) { 721 dev_err(dev, "test_eq failed: 0x%x\n", resp.hdr.status); 722 goto out; 723 } 724 725 if (!wait_for_completion_timeout(&gc->eq_test_event, 30 * HZ)) { 726 dev_err(dev, "test_eq timed out on queue %d\n", eq->id); 727 goto out; 728 } 729 730 if (eq->id != gc->test_event_eq_id) { 731 dev_err(dev, "test_eq got an event on wrong queue %d (%d)\n", 732 gc->test_event_eq_id, eq->id); 733 goto out; 734 } 735 736 err = 0; 737 out: 738 mutex_unlock(&gc->eq_test_event_mutex); 739 return err; 740 } 741 742 static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, 743 struct gdma_queue *queue) 744 { 745 int err; 746 747 if (flush_evenets) { 748 err = mana_gd_test_eq(gc, queue); 749 if (err && mana_need_log(gc, err)) 750 dev_warn(gc->dev, "Failed to flush EQ: %d\n", err); 751 } 752 753 mana_gd_deregister_irq(queue); 754 755 if (queue->eq.disable_needed) 756 mana_gd_disable_queue(queue); 757 } 758 759 static int mana_gd_create_eq(struct gdma_dev *gd, 760 const struct gdma_queue_spec *spec, 761 bool create_hwq, struct gdma_queue *queue) 762 { 763 struct gdma_context *gc = gd->gdma_context; 764 struct device *dev = gc->dev; 765 u32 log2_num_entries; 766 int err; 767 768 queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; 769 queue->id = INVALID_QUEUE_ID; 770 771 log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); 772 773 if (spec->eq.log2_throttle_limit > log2_num_entries) { 774 dev_err(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", 775 spec->eq.log2_throttle_limit, log2_num_entries); 776 return -EINVAL; 777 } 778 779 err = mana_gd_register_irq(queue, spec); 780 if (err) { 781 dev_err(dev, "Failed to register irq: %d\n", err); 782 return err; 783 } 784 785 queue->eq.callback = spec->eq.callback; 786 queue->eq.context = spec->eq.context; 787 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 788 queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; 789 790 if (create_hwq) { 791 err = mana_gd_create_hw_eq(gc, queue); 792 if (err) 793 goto out; 794 795 err = mana_gd_test_eq(gc, queue); 796 if (err) 797 goto out; 798 } 799 800 return 0; 801 out: 802 dev_err(dev, "Failed to create EQ: %d\n", err); 803 mana_gd_destroy_eq(gc, false, queue); 804 return err; 805 } 806 807 static void mana_gd_create_cq(const struct gdma_queue_spec *spec, 808 struct gdma_queue *queue) 809 { 810 u32 log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); 811 812 queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); 813 queue->cq.parent = spec->cq.parent_eq; 814 queue->cq.context = spec->cq.context; 815 queue->cq.callback = spec->cq.callback; 816 } 817 818 static void mana_gd_destroy_cq(struct gdma_context *gc, 819 struct gdma_queue *queue) 820 { 821 u32 id = queue->id; 822 823 if (id >= gc->max_num_cqs) 824 return; 825 826 if (!gc->cq_table[id]) 827 return; 828 829 gc->cq_table[id] = NULL; 830 } 831 832 int mana_gd_create_hwc_queue(struct gdma_dev *gd, 833 const struct gdma_queue_spec *spec, 834 struct gdma_queue **queue_ptr) 835 { 836 struct gdma_context *gc = gd->gdma_context; 837 struct gdma_mem_info *gmi; 838 struct gdma_queue *queue; 839 int err; 840 841 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 842 if (!queue) 843 return -ENOMEM; 844 845 gmi = &queue->mem_info; 846 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 847 if (err) { 848 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 849 spec->type, spec->queue_size, err); 850 goto free_q; 851 } 852 853 queue->head = 0; 854 queue->tail = 0; 855 queue->queue_mem_ptr = gmi->virt_addr; 856 queue->queue_size = spec->queue_size; 857 queue->monitor_avl_buf = spec->monitor_avl_buf; 858 queue->type = spec->type; 859 queue->gdma_dev = gd; 860 861 if (spec->type == GDMA_EQ) 862 err = mana_gd_create_eq(gd, spec, false, queue); 863 else if (spec->type == GDMA_CQ) 864 mana_gd_create_cq(spec, queue); 865 866 if (err) 867 goto out; 868 869 *queue_ptr = queue; 870 return 0; 871 out: 872 dev_err(gc->dev, "Failed to create queue type %d of size %u, err: %d\n", 873 spec->type, spec->queue_size, err); 874 mana_gd_free_memory(gmi); 875 free_q: 876 kfree(queue); 877 return err; 878 } 879 880 int mana_gd_destroy_dma_region(struct gdma_context *gc, u64 dma_region_handle) 881 { 882 struct gdma_destroy_dma_region_req req = {}; 883 struct gdma_general_resp resp = {}; 884 int err; 885 886 if (dma_region_handle == GDMA_INVALID_DMA_REGION) 887 return 0; 888 889 mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), 890 sizeof(resp)); 891 req.dma_region_handle = dma_region_handle; 892 893 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 894 if (err || resp.hdr.status) { 895 if (mana_need_log(gc, err)) 896 dev_err(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", 897 err, resp.hdr.status); 898 return -EPROTO; 899 } 900 901 return 0; 902 } 903 EXPORT_SYMBOL_NS(mana_gd_destroy_dma_region, "NET_MANA"); 904 905 static int mana_gd_create_dma_region(struct gdma_dev *gd, 906 struct gdma_mem_info *gmi) 907 { 908 unsigned int num_page = gmi->length / MANA_PAGE_SIZE; 909 struct gdma_create_dma_region_req *req = NULL; 910 struct gdma_create_dma_region_resp resp = {}; 911 struct gdma_context *gc = gd->gdma_context; 912 struct hw_channel_context *hwc; 913 u32 length = gmi->length; 914 size_t req_msg_size; 915 int err; 916 int i; 917 918 if (length < MANA_PAGE_SIZE || !is_power_of_2(length)) 919 return -EINVAL; 920 921 if (!MANA_PAGE_ALIGNED(gmi->virt_addr)) 922 return -EINVAL; 923 924 hwc = gc->hwc.driver_data; 925 req_msg_size = struct_size(req, page_addr_list, num_page); 926 if (req_msg_size > hwc->max_req_msg_size) 927 return -EINVAL; 928 929 req = kzalloc(req_msg_size, GFP_KERNEL); 930 if (!req) 931 return -ENOMEM; 932 933 mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, 934 req_msg_size, sizeof(resp)); 935 req->length = length; 936 req->offset_in_page = 0; 937 req->gdma_page_type = GDMA_PAGE_TYPE_4K; 938 req->page_count = num_page; 939 req->page_addr_list_len = num_page; 940 941 for (i = 0; i < num_page; i++) 942 req->page_addr_list[i] = gmi->dma_handle + i * MANA_PAGE_SIZE; 943 944 err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); 945 if (err) 946 goto out; 947 948 if (resp.hdr.status || 949 resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { 950 dev_err(gc->dev, "Failed to create DMA region: 0x%x\n", 951 resp.hdr.status); 952 err = -EPROTO; 953 goto out; 954 } 955 956 gmi->dma_region_handle = resp.dma_region_handle; 957 dev_dbg(gc->dev, "Created DMA region handle 0x%llx\n", 958 gmi->dma_region_handle); 959 out: 960 if (err) 961 dev_dbg(gc->dev, 962 "Failed to create DMA region of length: %u, page_type: %d, status: 0x%x, err: %d\n", 963 length, req->gdma_page_type, resp.hdr.status, err); 964 kfree(req); 965 return err; 966 } 967 968 int mana_gd_create_mana_eq(struct gdma_dev *gd, 969 const struct gdma_queue_spec *spec, 970 struct gdma_queue **queue_ptr) 971 { 972 struct gdma_context *gc = gd->gdma_context; 973 struct gdma_mem_info *gmi; 974 struct gdma_queue *queue; 975 int err; 976 977 if (spec->type != GDMA_EQ) 978 return -EINVAL; 979 980 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 981 if (!queue) 982 return -ENOMEM; 983 984 gmi = &queue->mem_info; 985 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 986 if (err) { 987 dev_err(gc->dev, "GDMA queue type: %d, size: %u, gdma memory allocation err: %d\n", 988 spec->type, spec->queue_size, err); 989 goto free_q; 990 } 991 992 err = mana_gd_create_dma_region(gd, gmi); 993 if (err) 994 goto out; 995 996 queue->head = 0; 997 queue->tail = 0; 998 queue->queue_mem_ptr = gmi->virt_addr; 999 queue->queue_size = spec->queue_size; 1000 queue->monitor_avl_buf = spec->monitor_avl_buf; 1001 queue->type = spec->type; 1002 queue->gdma_dev = gd; 1003 1004 err = mana_gd_create_eq(gd, spec, true, queue); 1005 if (err) 1006 goto out; 1007 1008 *queue_ptr = queue; 1009 return 0; 1010 out: 1011 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1012 spec->type, spec->queue_size, err); 1013 mana_gd_free_memory(gmi); 1014 free_q: 1015 kfree(queue); 1016 return err; 1017 } 1018 EXPORT_SYMBOL_NS(mana_gd_create_mana_eq, "NET_MANA"); 1019 1020 int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, 1021 const struct gdma_queue_spec *spec, 1022 struct gdma_queue **queue_ptr) 1023 { 1024 struct gdma_context *gc = gd->gdma_context; 1025 struct gdma_mem_info *gmi; 1026 struct gdma_queue *queue; 1027 int err; 1028 1029 if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && 1030 spec->type != GDMA_RQ) 1031 return -EINVAL; 1032 1033 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1034 if (!queue) 1035 return -ENOMEM; 1036 1037 gmi = &queue->mem_info; 1038 err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); 1039 if (err) { 1040 dev_err(gc->dev, "GDMA queue type: %d, size: %u, memory allocation err: %d\n", 1041 spec->type, spec->queue_size, err); 1042 goto free_q; 1043 } 1044 1045 err = mana_gd_create_dma_region(gd, gmi); 1046 if (err) 1047 goto out; 1048 1049 queue->head = 0; 1050 queue->tail = 0; 1051 queue->queue_mem_ptr = gmi->virt_addr; 1052 queue->queue_size = spec->queue_size; 1053 queue->monitor_avl_buf = spec->monitor_avl_buf; 1054 queue->type = spec->type; 1055 queue->gdma_dev = gd; 1056 1057 if (spec->type == GDMA_CQ) 1058 mana_gd_create_cq(spec, queue); 1059 1060 *queue_ptr = queue; 1061 return 0; 1062 out: 1063 dev_err(gc->dev, "Failed to create queue type %d of size: %u, err: %d\n", 1064 spec->type, spec->queue_size, err); 1065 mana_gd_free_memory(gmi); 1066 free_q: 1067 kfree(queue); 1068 return err; 1069 } 1070 EXPORT_SYMBOL_NS(mana_gd_create_mana_wq_cq, "NET_MANA"); 1071 1072 void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) 1073 { 1074 struct gdma_mem_info *gmi = &queue->mem_info; 1075 1076 switch (queue->type) { 1077 case GDMA_EQ: 1078 mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); 1079 break; 1080 1081 case GDMA_CQ: 1082 mana_gd_destroy_cq(gc, queue); 1083 break; 1084 1085 case GDMA_RQ: 1086 break; 1087 1088 case GDMA_SQ: 1089 break; 1090 1091 default: 1092 dev_err(gc->dev, "Can't destroy unknown queue: type=%d\n", 1093 queue->type); 1094 return; 1095 } 1096 1097 mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); 1098 mana_gd_free_memory(gmi); 1099 kfree(queue); 1100 } 1101 EXPORT_SYMBOL_NS(mana_gd_destroy_queue, "NET_MANA"); 1102 1103 int mana_gd_verify_vf_version(struct pci_dev *pdev) 1104 { 1105 struct gdma_context *gc = pci_get_drvdata(pdev); 1106 struct gdma_verify_ver_resp resp = {}; 1107 struct gdma_verify_ver_req req = {}; 1108 struct hw_channel_context *hwc; 1109 int err; 1110 1111 hwc = gc->hwc.driver_data; 1112 mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, 1113 sizeof(req), sizeof(resp)); 1114 1115 req.protocol_ver_min = GDMA_PROTOCOL_FIRST; 1116 req.protocol_ver_max = GDMA_PROTOCOL_LAST; 1117 1118 req.gd_drv_cap_flags1 = GDMA_DRV_CAP_FLAGS1; 1119 req.gd_drv_cap_flags2 = GDMA_DRV_CAP_FLAGS2; 1120 req.gd_drv_cap_flags3 = GDMA_DRV_CAP_FLAGS3; 1121 req.gd_drv_cap_flags4 = GDMA_DRV_CAP_FLAGS4; 1122 1123 req.drv_ver = 0; /* Unused*/ 1124 req.os_type = 0x10; /* Linux */ 1125 req.os_ver_major = LINUX_VERSION_MAJOR; 1126 req.os_ver_minor = LINUX_VERSION_PATCHLEVEL; 1127 req.os_ver_build = LINUX_VERSION_SUBLEVEL; 1128 strscpy(req.os_ver_str1, utsname()->sysname, sizeof(req.os_ver_str1)); 1129 strscpy(req.os_ver_str2, utsname()->release, sizeof(req.os_ver_str2)); 1130 strscpy(req.os_ver_str3, utsname()->version, sizeof(req.os_ver_str3)); 1131 1132 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1133 if (err || resp.hdr.status) { 1134 dev_err(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", 1135 err, resp.hdr.status); 1136 return err ? err : -EPROTO; 1137 } 1138 gc->pf_cap_flags1 = resp.pf_cap_flags1; 1139 if (resp.pf_cap_flags1 & GDMA_DRV_CAP_FLAG_1_HWC_TIMEOUT_RECONFIG) { 1140 err = mana_gd_query_hwc_timeout(pdev, &hwc->hwc_timeout); 1141 if (err) { 1142 dev_err(gc->dev, "Failed to set the hwc timeout %d\n", err); 1143 return err; 1144 } 1145 dev_dbg(gc->dev, "set the hwc timeout to %u\n", hwc->hwc_timeout); 1146 } 1147 return 0; 1148 } 1149 1150 int mana_gd_register_device(struct gdma_dev *gd) 1151 { 1152 struct gdma_context *gc = gd->gdma_context; 1153 struct gdma_register_device_resp resp = {}; 1154 struct gdma_general_req req = {}; 1155 int err; 1156 1157 gd->pdid = INVALID_PDID; 1158 gd->doorbell = INVALID_DOORBELL; 1159 gd->gpa_mkey = INVALID_MEM_KEY; 1160 1161 mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), 1162 sizeof(resp)); 1163 1164 req.hdr.dev_id = gd->dev_id; 1165 1166 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1167 if (err || resp.hdr.status) { 1168 dev_err(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", 1169 err, resp.hdr.status); 1170 return err ? err : -EPROTO; 1171 } 1172 1173 gd->pdid = resp.pdid; 1174 gd->gpa_mkey = resp.gpa_mkey; 1175 gd->doorbell = resp.db_id; 1176 1177 return 0; 1178 } 1179 1180 int mana_gd_deregister_device(struct gdma_dev *gd) 1181 { 1182 struct gdma_context *gc = gd->gdma_context; 1183 struct gdma_general_resp resp = {}; 1184 struct gdma_general_req req = {}; 1185 int err; 1186 1187 if (gd->pdid == INVALID_PDID) 1188 return -EINVAL; 1189 1190 mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), 1191 sizeof(resp)); 1192 1193 req.hdr.dev_id = gd->dev_id; 1194 1195 err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); 1196 if (err || resp.hdr.status) { 1197 if (mana_need_log(gc, err)) 1198 dev_err(gc->dev, "Failed to deregister device: %d, 0x%x\n", 1199 err, resp.hdr.status); 1200 if (!err) 1201 err = -EPROTO; 1202 } 1203 1204 gd->pdid = INVALID_PDID; 1205 gd->doorbell = INVALID_DOORBELL; 1206 gd->gpa_mkey = INVALID_MEM_KEY; 1207 1208 return err; 1209 } 1210 1211 u32 mana_gd_wq_avail_space(struct gdma_queue *wq) 1212 { 1213 u32 used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; 1214 u32 wq_size = wq->queue_size; 1215 1216 WARN_ON_ONCE(used_space > wq_size); 1217 1218 return wq_size - used_space; 1219 } 1220 1221 u8 *mana_gd_get_wqe_ptr(const struct gdma_queue *wq, u32 wqe_offset) 1222 { 1223 u32 offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); 1224 1225 WARN_ON_ONCE((offset + GDMA_WQE_BU_SIZE) > wq->queue_size); 1226 1227 return wq->queue_mem_ptr + offset; 1228 } 1229 1230 static u32 mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, 1231 enum gdma_queue_type q_type, 1232 u32 client_oob_size, u32 sgl_data_size, 1233 u8 *wqe_ptr) 1234 { 1235 bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); 1236 bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); 1237 struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; 1238 u8 *ptr; 1239 1240 memset(header, 0, sizeof(struct gdma_wqe)); 1241 header->num_sge = wqe_req->num_sge; 1242 header->inline_oob_size_div4 = client_oob_size / sizeof(u32); 1243 1244 if (oob_in_sgl) { 1245 WARN_ON_ONCE(wqe_req->num_sge < 2); 1246 1247 header->client_oob_in_sgl = 1; 1248 1249 if (pad_data) 1250 header->last_vbytes = wqe_req->sgl[0].size; 1251 } 1252 1253 if (q_type == GDMA_SQ) 1254 header->client_data_unit = wqe_req->client_data_unit; 1255 1256 /* The size of gdma_wqe + client_oob_size must be less than or equal 1257 * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond 1258 * the queue memory buffer boundary. 1259 */ 1260 ptr = wqe_ptr + sizeof(header); 1261 1262 if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { 1263 memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); 1264 1265 if (client_oob_size > wqe_req->inline_oob_size) 1266 memset(ptr + wqe_req->inline_oob_size, 0, 1267 client_oob_size - wqe_req->inline_oob_size); 1268 } 1269 1270 return sizeof(header) + client_oob_size; 1271 } 1272 1273 static void mana_gd_write_sgl(struct gdma_queue *wq, u8 *wqe_ptr, 1274 const struct gdma_wqe_request *wqe_req) 1275 { 1276 u32 sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1277 const u8 *address = (u8 *)wqe_req->sgl; 1278 u8 *base_ptr, *end_ptr; 1279 u32 size_to_end; 1280 1281 base_ptr = wq->queue_mem_ptr; 1282 end_ptr = base_ptr + wq->queue_size; 1283 size_to_end = (u32)(end_ptr - wqe_ptr); 1284 1285 if (size_to_end < sgl_size) { 1286 memcpy(wqe_ptr, address, size_to_end); 1287 1288 wqe_ptr = base_ptr; 1289 address += size_to_end; 1290 sgl_size -= size_to_end; 1291 } 1292 1293 memcpy(wqe_ptr, address, sgl_size); 1294 } 1295 1296 int mana_gd_post_work_request(struct gdma_queue *wq, 1297 const struct gdma_wqe_request *wqe_req, 1298 struct gdma_posted_wqe_info *wqe_info) 1299 { 1300 u32 client_oob_size = wqe_req->inline_oob_size; 1301 struct gdma_context *gc; 1302 u32 sgl_data_size; 1303 u32 max_wqe_size; 1304 u32 wqe_size; 1305 u8 *wqe_ptr; 1306 1307 if (wqe_req->num_sge == 0) 1308 return -EINVAL; 1309 1310 if (wq->type == GDMA_RQ) { 1311 if (client_oob_size != 0) 1312 return -EINVAL; 1313 1314 client_oob_size = INLINE_OOB_SMALL_SIZE; 1315 1316 max_wqe_size = GDMA_MAX_RQE_SIZE; 1317 } else { 1318 if (client_oob_size != INLINE_OOB_SMALL_SIZE && 1319 client_oob_size != INLINE_OOB_LARGE_SIZE) 1320 return -EINVAL; 1321 1322 max_wqe_size = GDMA_MAX_SQE_SIZE; 1323 } 1324 1325 sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; 1326 wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + 1327 sgl_data_size, GDMA_WQE_BU_SIZE); 1328 if (wqe_size > max_wqe_size) 1329 return -EINVAL; 1330 1331 if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) { 1332 gc = wq->gdma_dev->gdma_context; 1333 dev_err(gc->dev, "unsuccessful flow control!\n"); 1334 return -ENOSPC; 1335 } 1336 1337 if (wqe_info) 1338 wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; 1339 1340 wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); 1341 wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, 1342 sgl_data_size, wqe_ptr); 1343 if (wqe_ptr >= (u8 *)wq->queue_mem_ptr + wq->queue_size) 1344 wqe_ptr -= wq->queue_size; 1345 1346 mana_gd_write_sgl(wq, wqe_ptr, wqe_req); 1347 1348 wq->head += wqe_size / GDMA_WQE_BU_SIZE; 1349 1350 return 0; 1351 } 1352 EXPORT_SYMBOL_NS(mana_gd_post_work_request, "NET_MANA"); 1353 1354 int mana_gd_post_and_ring(struct gdma_queue *queue, 1355 const struct gdma_wqe_request *wqe_req, 1356 struct gdma_posted_wqe_info *wqe_info) 1357 { 1358 struct gdma_context *gc = queue->gdma_dev->gdma_context; 1359 int err; 1360 1361 err = mana_gd_post_work_request(queue, wqe_req, wqe_info); 1362 if (err) { 1363 dev_err(gc->dev, "Failed to post work req from queue type %d of size %u (err=%d)\n", 1364 queue->type, queue->queue_size, err); 1365 return err; 1366 } 1367 1368 mana_gd_wq_ring_doorbell(gc, queue); 1369 1370 return 0; 1371 } 1372 1373 static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) 1374 { 1375 unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); 1376 struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; 1377 u32 owner_bits, new_bits, old_bits; 1378 struct gdma_cqe *cqe; 1379 1380 cqe = &cq_cqe[cq->head % num_cqe]; 1381 owner_bits = cqe->cqe_info.owner_bits; 1382 1383 old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; 1384 /* Return 0 if no more entries. */ 1385 if (owner_bits == old_bits) 1386 return 0; 1387 1388 new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; 1389 /* Return -1 if overflow detected. */ 1390 if (WARN_ON_ONCE(owner_bits != new_bits)) 1391 return -1; 1392 1393 /* Per GDMA spec, rmb is necessary after checking owner_bits, before 1394 * reading completion info 1395 */ 1396 rmb(); 1397 1398 comp->wq_num = cqe->cqe_info.wq_num; 1399 comp->is_sq = cqe->cqe_info.is_sq; 1400 memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); 1401 1402 return 1; 1403 } 1404 1405 int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) 1406 { 1407 int cqe_idx; 1408 int ret; 1409 1410 for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { 1411 ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); 1412 1413 if (ret < 0) { 1414 cq->head -= cqe_idx; 1415 return ret; 1416 } 1417 1418 if (ret == 0) 1419 break; 1420 1421 cq->head++; 1422 } 1423 1424 return cqe_idx; 1425 } 1426 EXPORT_SYMBOL_NS(mana_gd_poll_cq, "NET_MANA"); 1427 1428 static irqreturn_t mana_gd_intr(int irq, void *arg) 1429 { 1430 struct gdma_irq_context *gic = arg; 1431 struct list_head *eq_list = &gic->eq_list; 1432 struct gdma_queue *eq; 1433 1434 rcu_read_lock(); 1435 list_for_each_entry_rcu(eq, eq_list, entry) { 1436 gic->handler(eq); 1437 } 1438 rcu_read_unlock(); 1439 1440 return IRQ_HANDLED; 1441 } 1442 1443 int mana_gd_alloc_res_map(u32 res_avail, struct gdma_resource *r) 1444 { 1445 r->map = bitmap_zalloc(res_avail, GFP_KERNEL); 1446 if (!r->map) 1447 return -ENOMEM; 1448 1449 r->size = res_avail; 1450 spin_lock_init(&r->lock); 1451 1452 return 0; 1453 } 1454 1455 void mana_gd_free_res_map(struct gdma_resource *r) 1456 { 1457 bitmap_free(r->map); 1458 r->map = NULL; 1459 r->size = 0; 1460 } 1461 1462 /* 1463 * Spread on CPUs with the following heuristics: 1464 * 1465 * 1. No more than one IRQ per CPU, if possible; 1466 * 2. NUMA locality is the second priority; 1467 * 3. Sibling dislocality is the last priority. 1468 * 1469 * Let's consider this topology: 1470 * 1471 * Node 0 1 1472 * Core 0 1 2 3 1473 * CPU 0 1 2 3 4 5 6 7 1474 * 1475 * The most performant IRQ distribution based on the above topology 1476 * and heuristics may look like this: 1477 * 1478 * IRQ Nodes Cores CPUs 1479 * 0 1 0 0-1 1480 * 1 1 1 2-3 1481 * 2 1 0 0-1 1482 * 3 1 1 2-3 1483 * 4 2 2 4-5 1484 * 5 2 3 6-7 1485 * 6 2 2 4-5 1486 * 7 2 3 6-7 1487 * 1488 * The heuristics is implemented as follows. 1489 * 1490 * The outer for_each() loop resets the 'weight' to the actual number 1491 * of CPUs in the hop. Then inner for_each() loop decrements it by the 1492 * number of sibling groups (cores) while assigning first set of IRQs 1493 * to each group. IRQs 0 and 1 above are distributed this way. 1494 * 1495 * Now, because NUMA locality is more important, we should walk the 1496 * same set of siblings and assign 2nd set of IRQs (2 and 3), and it's 1497 * implemented by the medium while() loop. We do like this unless the 1498 * number of IRQs assigned on this hop will not become equal to number 1499 * of CPUs in the hop (weight == 0). Then we switch to the next hop and 1500 * do the same thing. 1501 */ 1502 1503 static int irq_setup(unsigned int *irqs, unsigned int len, int node, 1504 bool skip_first_cpu) 1505 { 1506 const struct cpumask *next, *prev = cpu_none_mask; 1507 cpumask_var_t cpus __free(free_cpumask_var); 1508 int cpu, weight; 1509 1510 if (!alloc_cpumask_var(&cpus, GFP_KERNEL)) 1511 return -ENOMEM; 1512 1513 rcu_read_lock(); 1514 for_each_numa_hop_mask(next, node) { 1515 weight = cpumask_weight_andnot(next, prev); 1516 while (weight > 0) { 1517 cpumask_andnot(cpus, next, prev); 1518 for_each_cpu(cpu, cpus) { 1519 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 1520 --weight; 1521 1522 if (unlikely(skip_first_cpu)) { 1523 skip_first_cpu = false; 1524 continue; 1525 } 1526 1527 if (len-- == 0) 1528 goto done; 1529 1530 irq_set_affinity_and_hint(*irqs++, topology_sibling_cpumask(cpu)); 1531 } 1532 } 1533 prev = next; 1534 } 1535 done: 1536 rcu_read_unlock(); 1537 return 0; 1538 } 1539 1540 static int mana_gd_setup_dyn_irqs(struct pci_dev *pdev, int nvec) 1541 { 1542 struct gdma_context *gc = pci_get_drvdata(pdev); 1543 struct gdma_irq_context *gic; 1544 bool skip_first_cpu = false; 1545 int *irqs, irq, err, i; 1546 1547 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1548 if (!irqs) 1549 return -ENOMEM; 1550 1551 /* 1552 * While processing the next pci irq vector, we start with index 1, 1553 * as IRQ vector at index 0 is already processed for HWC. 1554 * However, the population of irqs array starts with index 0, to be 1555 * further used in irq_setup() 1556 */ 1557 for (i = 1; i <= nvec; i++) { 1558 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1559 if (!gic) { 1560 err = -ENOMEM; 1561 goto free_irq; 1562 } 1563 gic->handler = mana_gd_process_eq_events; 1564 INIT_LIST_HEAD(&gic->eq_list); 1565 spin_lock_init(&gic->lock); 1566 1567 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1568 i - 1, pci_name(pdev)); 1569 1570 /* one pci vector is already allocated for HWC */ 1571 irqs[i - 1] = pci_irq_vector(pdev, i); 1572 if (irqs[i - 1] < 0) { 1573 err = irqs[i - 1]; 1574 goto free_current_gic; 1575 } 1576 1577 err = request_irq(irqs[i - 1], mana_gd_intr, 0, gic->name, gic); 1578 if (err) 1579 goto free_current_gic; 1580 1581 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1582 } 1583 1584 /* 1585 * When calling irq_setup() for dynamically added IRQs, if number of 1586 * CPUs is more than or equal to allocated MSI-X, we need to skip the 1587 * first CPU sibling group since they are already affinitized to HWC IRQ 1588 */ 1589 cpus_read_lock(); 1590 if (gc->num_msix_usable <= num_online_cpus()) 1591 skip_first_cpu = true; 1592 1593 err = irq_setup(irqs, nvec, gc->numa_node, skip_first_cpu); 1594 if (err) { 1595 cpus_read_unlock(); 1596 goto free_irq; 1597 } 1598 1599 cpus_read_unlock(); 1600 kfree(irqs); 1601 return 0; 1602 1603 free_current_gic: 1604 kfree(gic); 1605 free_irq: 1606 for (i -= 1; i > 0; i--) { 1607 irq = pci_irq_vector(pdev, i); 1608 gic = xa_load(&gc->irq_contexts, i); 1609 if (WARN_ON(!gic)) 1610 continue; 1611 1612 irq_update_affinity_hint(irq, NULL); 1613 free_irq(irq, gic); 1614 xa_erase(&gc->irq_contexts, i); 1615 kfree(gic); 1616 } 1617 kfree(irqs); 1618 return err; 1619 } 1620 1621 static int mana_gd_setup_irqs(struct pci_dev *pdev, int nvec) 1622 { 1623 struct gdma_context *gc = pci_get_drvdata(pdev); 1624 struct gdma_irq_context *gic; 1625 int *irqs, *start_irqs, irq; 1626 unsigned int cpu; 1627 int err, i; 1628 1629 irqs = kmalloc_array(nvec, sizeof(int), GFP_KERNEL); 1630 if (!irqs) 1631 return -ENOMEM; 1632 1633 start_irqs = irqs; 1634 1635 for (i = 0; i < nvec; i++) { 1636 gic = kzalloc(sizeof(*gic), GFP_KERNEL); 1637 if (!gic) { 1638 err = -ENOMEM; 1639 goto free_irq; 1640 } 1641 1642 gic->handler = mana_gd_process_eq_events; 1643 INIT_LIST_HEAD(&gic->eq_list); 1644 spin_lock_init(&gic->lock); 1645 1646 if (!i) 1647 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_hwc@pci:%s", 1648 pci_name(pdev)); 1649 else 1650 snprintf(gic->name, MANA_IRQ_NAME_SZ, "mana_q%d@pci:%s", 1651 i - 1, pci_name(pdev)); 1652 1653 irqs[i] = pci_irq_vector(pdev, i); 1654 if (irqs[i] < 0) { 1655 err = irqs[i]; 1656 goto free_current_gic; 1657 } 1658 1659 err = request_irq(irqs[i], mana_gd_intr, 0, gic->name, gic); 1660 if (err) 1661 goto free_current_gic; 1662 1663 xa_store(&gc->irq_contexts, i, gic, GFP_KERNEL); 1664 } 1665 1666 /* If number of IRQ is one extra than number of online CPUs, 1667 * then we need to assign IRQ0 (hwc irq) and IRQ1 to 1668 * same CPU. 1669 * Else we will use different CPUs for IRQ0 and IRQ1. 1670 * Also we are using cpumask_local_spread instead of 1671 * cpumask_first for the node, because the node can be 1672 * mem only. 1673 */ 1674 cpus_read_lock(); 1675 if (nvec > num_online_cpus()) { 1676 cpu = cpumask_local_spread(0, gc->numa_node); 1677 irq_set_affinity_and_hint(irqs[0], cpumask_of(cpu)); 1678 irqs++; 1679 nvec -= 1; 1680 } 1681 1682 err = irq_setup(irqs, nvec, gc->numa_node, false); 1683 if (err) { 1684 cpus_read_unlock(); 1685 goto free_irq; 1686 } 1687 1688 cpus_read_unlock(); 1689 kfree(start_irqs); 1690 return 0; 1691 1692 free_current_gic: 1693 kfree(gic); 1694 free_irq: 1695 for (i -= 1; i >= 0; i--) { 1696 irq = pci_irq_vector(pdev, i); 1697 gic = xa_load(&gc->irq_contexts, i); 1698 if (WARN_ON(!gic)) 1699 continue; 1700 1701 irq_update_affinity_hint(irq, NULL); 1702 free_irq(irq, gic); 1703 xa_erase(&gc->irq_contexts, i); 1704 kfree(gic); 1705 } 1706 1707 kfree(start_irqs); 1708 return err; 1709 } 1710 1711 static int mana_gd_setup_hwc_irqs(struct pci_dev *pdev) 1712 { 1713 struct gdma_context *gc = pci_get_drvdata(pdev); 1714 unsigned int max_irqs, min_irqs; 1715 int nvec, err; 1716 1717 if (pci_msix_can_alloc_dyn(pdev)) { 1718 max_irqs = 1; 1719 min_irqs = 1; 1720 } else { 1721 /* Need 1 interrupt for HWC */ 1722 max_irqs = min(num_online_cpus(), MANA_MAX_NUM_QUEUES) + 1; 1723 min_irqs = 2; 1724 } 1725 1726 nvec = pci_alloc_irq_vectors(pdev, min_irqs, max_irqs, PCI_IRQ_MSIX); 1727 if (nvec < 0) 1728 return nvec; 1729 1730 err = mana_gd_setup_irqs(pdev, nvec); 1731 if (err) { 1732 pci_free_irq_vectors(pdev); 1733 return err; 1734 } 1735 1736 gc->num_msix_usable = nvec; 1737 gc->max_num_msix = nvec; 1738 1739 return 0; 1740 } 1741 1742 static int mana_gd_setup_remaining_irqs(struct pci_dev *pdev) 1743 { 1744 struct gdma_context *gc = pci_get_drvdata(pdev); 1745 struct msi_map irq_map; 1746 int max_irqs, i, err; 1747 1748 if (!pci_msix_can_alloc_dyn(pdev)) 1749 /* remain irqs are already allocated with HWC IRQ */ 1750 return 0; 1751 1752 /* allocate only remaining IRQs*/ 1753 max_irqs = gc->num_msix_usable - 1; 1754 1755 for (i = 1; i <= max_irqs; i++) { 1756 irq_map = pci_msix_alloc_irq_at(pdev, i, NULL); 1757 if (!irq_map.virq) { 1758 err = irq_map.index; 1759 /* caller will handle cleaning up all allocated 1760 * irqs, after HWC is destroyed 1761 */ 1762 return err; 1763 } 1764 } 1765 1766 err = mana_gd_setup_dyn_irqs(pdev, max_irqs); 1767 if (err) 1768 return err; 1769 1770 gc->max_num_msix = gc->max_num_msix + max_irqs; 1771 1772 return 0; 1773 } 1774 1775 static void mana_gd_remove_irqs(struct pci_dev *pdev) 1776 { 1777 struct gdma_context *gc = pci_get_drvdata(pdev); 1778 struct gdma_irq_context *gic; 1779 int irq, i; 1780 1781 if (gc->max_num_msix < 1) 1782 return; 1783 1784 for (i = 0; i < gc->max_num_msix; i++) { 1785 irq = pci_irq_vector(pdev, i); 1786 if (irq < 0) 1787 continue; 1788 1789 gic = xa_load(&gc->irq_contexts, i); 1790 if (WARN_ON(!gic)) 1791 continue; 1792 1793 /* Need to clear the hint before free_irq */ 1794 irq_update_affinity_hint(irq, NULL); 1795 free_irq(irq, gic); 1796 xa_erase(&gc->irq_contexts, i); 1797 kfree(gic); 1798 } 1799 1800 pci_free_irq_vectors(pdev); 1801 1802 gc->max_num_msix = 0; 1803 gc->num_msix_usable = 0; 1804 } 1805 1806 static int mana_gd_setup(struct pci_dev *pdev) 1807 { 1808 struct gdma_context *gc = pci_get_drvdata(pdev); 1809 int err; 1810 1811 mana_gd_init_registers(pdev); 1812 mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); 1813 1814 gc->service_wq = alloc_ordered_workqueue("gdma_service_wq", 0); 1815 if (!gc->service_wq) 1816 return -ENOMEM; 1817 1818 err = mana_gd_setup_hwc_irqs(pdev); 1819 if (err) { 1820 dev_err(gc->dev, "Failed to setup IRQs for HWC creation: %d\n", 1821 err); 1822 goto free_workqueue; 1823 } 1824 1825 err = mana_hwc_create_channel(gc); 1826 if (err) 1827 goto remove_irq; 1828 1829 err = mana_gd_verify_vf_version(pdev); 1830 if (err) 1831 goto destroy_hwc; 1832 1833 err = mana_gd_query_max_resources(pdev); 1834 if (err) 1835 goto destroy_hwc; 1836 1837 err = mana_gd_setup_remaining_irqs(pdev); 1838 if (err) { 1839 dev_err(gc->dev, "Failed to setup remaining IRQs: %d", err); 1840 goto destroy_hwc; 1841 } 1842 1843 err = mana_gd_detect_devices(pdev); 1844 if (err) 1845 goto destroy_hwc; 1846 1847 dev_dbg(&pdev->dev, "mana gdma setup successful\n"); 1848 return 0; 1849 1850 destroy_hwc: 1851 mana_hwc_destroy_channel(gc); 1852 remove_irq: 1853 mana_gd_remove_irqs(pdev); 1854 free_workqueue: 1855 destroy_workqueue(gc->service_wq); 1856 dev_err(&pdev->dev, "%s failed (error %d)\n", __func__, err); 1857 return err; 1858 } 1859 1860 static void mana_gd_cleanup(struct pci_dev *pdev) 1861 { 1862 struct gdma_context *gc = pci_get_drvdata(pdev); 1863 1864 mana_hwc_destroy_channel(gc); 1865 1866 mana_gd_remove_irqs(pdev); 1867 1868 destroy_workqueue(gc->service_wq); 1869 dev_dbg(&pdev->dev, "mana gdma cleanup successful\n"); 1870 } 1871 1872 static bool mana_is_pf(unsigned short dev_id) 1873 { 1874 return dev_id == MANA_PF_DEVICE_ID; 1875 } 1876 1877 static int mana_gd_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1878 { 1879 struct gdma_context *gc; 1880 void __iomem *bar0_va; 1881 int bar = 0; 1882 int err; 1883 1884 /* Each port has 2 CQs, each CQ has at most 1 EQE at a time */ 1885 BUILD_BUG_ON(2 * MAX_PORTS_IN_MANA_DEV * GDMA_EQE_SIZE > EQ_SIZE); 1886 1887 err = pci_enable_device(pdev); 1888 if (err) { 1889 dev_err(&pdev->dev, "Failed to enable pci device (err=%d)\n", err); 1890 return -ENXIO; 1891 } 1892 1893 pci_set_master(pdev); 1894 1895 err = pci_request_regions(pdev, "mana"); 1896 if (err) 1897 goto disable_dev; 1898 1899 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1900 if (err) { 1901 dev_err(&pdev->dev, "DMA set mask failed: %d\n", err); 1902 goto release_region; 1903 } 1904 dma_set_max_seg_size(&pdev->dev, UINT_MAX); 1905 1906 err = -ENOMEM; 1907 gc = vzalloc(sizeof(*gc)); 1908 if (!gc) 1909 goto release_region; 1910 1911 mutex_init(&gc->eq_test_event_mutex); 1912 pci_set_drvdata(pdev, gc); 1913 gc->bar0_pa = pci_resource_start(pdev, 0); 1914 1915 bar0_va = pci_iomap(pdev, bar, 0); 1916 if (!bar0_va) 1917 goto free_gc; 1918 1919 gc->numa_node = dev_to_node(&pdev->dev); 1920 gc->is_pf = mana_is_pf(pdev->device); 1921 gc->bar0_va = bar0_va; 1922 gc->dev = &pdev->dev; 1923 xa_init(&gc->irq_contexts); 1924 1925 if (gc->is_pf) 1926 gc->mana_pci_debugfs = debugfs_create_dir("0", mana_debugfs_root); 1927 else 1928 gc->mana_pci_debugfs = debugfs_create_dir(pci_slot_name(pdev->slot), 1929 mana_debugfs_root); 1930 1931 err = mana_gd_setup(pdev); 1932 if (err) 1933 goto unmap_bar; 1934 1935 err = mana_probe(&gc->mana, false); 1936 if (err) 1937 goto cleanup_gd; 1938 1939 err = mana_rdma_probe(&gc->mana_ib); 1940 if (err) 1941 goto cleanup_mana; 1942 1943 return 0; 1944 1945 cleanup_mana: 1946 mana_remove(&gc->mana, false); 1947 cleanup_gd: 1948 mana_gd_cleanup(pdev); 1949 unmap_bar: 1950 /* 1951 * at this point we know that the other debugfs child dir/files 1952 * are either not yet created or are already cleaned up. 1953 * The pci debugfs folder clean-up now, will only be cleaning up 1954 * adapter-MTU file and apc->mana_pci_debugfs folder. 1955 */ 1956 debugfs_remove_recursive(gc->mana_pci_debugfs); 1957 gc->mana_pci_debugfs = NULL; 1958 xa_destroy(&gc->irq_contexts); 1959 pci_iounmap(pdev, bar0_va); 1960 free_gc: 1961 pci_set_drvdata(pdev, NULL); 1962 vfree(gc); 1963 release_region: 1964 pci_release_regions(pdev); 1965 disable_dev: 1966 pci_disable_device(pdev); 1967 dev_err(&pdev->dev, "gdma probe failed: err = %d\n", err); 1968 return err; 1969 } 1970 1971 static void mana_gd_remove(struct pci_dev *pdev) 1972 { 1973 struct gdma_context *gc = pci_get_drvdata(pdev); 1974 1975 mana_rdma_remove(&gc->mana_ib); 1976 mana_remove(&gc->mana, false); 1977 1978 mana_gd_cleanup(pdev); 1979 1980 debugfs_remove_recursive(gc->mana_pci_debugfs); 1981 1982 gc->mana_pci_debugfs = NULL; 1983 1984 xa_destroy(&gc->irq_contexts); 1985 1986 pci_iounmap(pdev, gc->bar0_va); 1987 1988 vfree(gc); 1989 1990 pci_release_regions(pdev); 1991 pci_disable_device(pdev); 1992 1993 dev_dbg(&pdev->dev, "mana gdma remove successful\n"); 1994 } 1995 1996 /* The 'state' parameter is not used. */ 1997 int mana_gd_suspend(struct pci_dev *pdev, pm_message_t state) 1998 { 1999 struct gdma_context *gc = pci_get_drvdata(pdev); 2000 2001 mana_rdma_remove(&gc->mana_ib); 2002 mana_remove(&gc->mana, true); 2003 2004 mana_gd_cleanup(pdev); 2005 2006 return 0; 2007 } 2008 2009 /* In case the NIC hardware stops working, the suspend and resume callbacks will 2010 * fail -- if this happens, it's safer to just report an error than try to undo 2011 * what has been done. 2012 */ 2013 int mana_gd_resume(struct pci_dev *pdev) 2014 { 2015 struct gdma_context *gc = pci_get_drvdata(pdev); 2016 int err; 2017 2018 err = mana_gd_setup(pdev); 2019 if (err) 2020 return err; 2021 2022 err = mana_probe(&gc->mana, true); 2023 if (err) 2024 return err; 2025 2026 err = mana_rdma_probe(&gc->mana_ib); 2027 if (err) 2028 return err; 2029 2030 return 0; 2031 } 2032 2033 /* Quiesce the device for kexec. This is also called upon reboot/shutdown. */ 2034 static void mana_gd_shutdown(struct pci_dev *pdev) 2035 { 2036 struct gdma_context *gc = pci_get_drvdata(pdev); 2037 2038 dev_info(&pdev->dev, "Shutdown was called\n"); 2039 2040 mana_rdma_remove(&gc->mana_ib); 2041 mana_remove(&gc->mana, true); 2042 2043 mana_gd_cleanup(pdev); 2044 2045 debugfs_remove_recursive(gc->mana_pci_debugfs); 2046 2047 gc->mana_pci_debugfs = NULL; 2048 2049 pci_disable_device(pdev); 2050 } 2051 2052 static const struct pci_device_id mana_id_table[] = { 2053 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_PF_DEVICE_ID) }, 2054 { PCI_DEVICE(PCI_VENDOR_ID_MICROSOFT, MANA_VF_DEVICE_ID) }, 2055 { } 2056 }; 2057 2058 static struct pci_driver mana_driver = { 2059 .name = "mana", 2060 .id_table = mana_id_table, 2061 .probe = mana_gd_probe, 2062 .remove = mana_gd_remove, 2063 .suspend = mana_gd_suspend, 2064 .resume = mana_gd_resume, 2065 .shutdown = mana_gd_shutdown, 2066 }; 2067 2068 static int __init mana_driver_init(void) 2069 { 2070 int err; 2071 2072 mana_debugfs_root = debugfs_create_dir("mana", NULL); 2073 2074 err = pci_register_driver(&mana_driver); 2075 if (err) { 2076 debugfs_remove(mana_debugfs_root); 2077 mana_debugfs_root = NULL; 2078 } 2079 2080 return err; 2081 } 2082 2083 static void __exit mana_driver_exit(void) 2084 { 2085 pci_unregister_driver(&mana_driver); 2086 2087 debugfs_remove(mana_debugfs_root); 2088 2089 mana_debugfs_root = NULL; 2090 } 2091 2092 module_init(mana_driver_init); 2093 module_exit(mana_driver_exit); 2094 2095 MODULE_DEVICE_TABLE(pci, mana_id_table); 2096 2097 MODULE_LICENSE("Dual BSD/GPL"); 2098 MODULE_DESCRIPTION("Microsoft Azure Network Adapter driver"); 2099