1 // SPDX-License-Identifier: GPL-2.0
2 /* Microchip KSZ PTP Implementation
3  *
4  * Copyright (C) 2020 ARRI Lighting
5  * Copyright (C) 2022 Microchip Technology Inc.
6  */
7 
8 #include <linux/dsa/ksz_common.h>
9 #include <linux/irq.h>
10 #include <linux/irqdomain.h>
11 #include <linux/kernel.h>
12 #include <linux/ptp_classify.h>
13 #include <linux/ptp_clock_kernel.h>
14 
15 #include "ksz_common.h"
16 #include "ksz_ptp.h"
17 #include "ksz_ptp_reg.h"
18 
19 #define ptp_caps_to_data(d) container_of((d), struct ksz_ptp_data, caps)
20 #define ptp_data_to_ksz_dev(d) container_of((d), struct ksz_device, ptp_data)
21 #define work_to_xmit_work(w) \
22 		container_of((w), struct ksz_deferred_xmit_work, work)
23 
24 /* Sub-nanoseconds-adj,max * sub-nanoseconds / 40ns * 1ns
25  * = (2^30-1) * (2 ^ 32) / 40 ns * 1 ns = 6249999
26  */
27 #define KSZ_MAX_DRIFT_CORR 6249999
28 #define KSZ_MAX_PULSE_WIDTH 125000000LL
29 
30 #define KSZ_PTP_INC_NS 40ULL  /* HW clock is incremented every 40 ns (by 40) */
31 #define KSZ_PTP_SUBNS_BITS 32
32 
33 #define KSZ_PTP_INT_START 13
34 
35 static int ksz_ptp_tou_gpio(struct ksz_device *dev)
36 {
37 	int ret;
38 
39 	if (!is_lan937x(dev))
40 		return 0;
41 
42 	ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, GPIO_OUT,
43 			GPIO_OUT);
44 	if (ret)
45 		return ret;
46 
47 	ret = ksz_rmw32(dev, REG_SW_GLOBAL_LED_OVR__4, LED_OVR_1 | LED_OVR_2,
48 			LED_OVR_1 | LED_OVR_2);
49 	if (ret)
50 		return ret;
51 
52 	return ksz_rmw32(dev, REG_SW_GLOBAL_LED_SRC__4,
53 			 LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2,
54 			 LED_SRC_PTP_GPIO_1 | LED_SRC_PTP_GPIO_2);
55 }
56 
57 static int ksz_ptp_tou_reset(struct ksz_device *dev, u8 unit)
58 {
59 	u32 data;
60 	int ret;
61 
62 	/* Reset trigger unit (clears TRIGGER_EN, but not GPIOSTATx) */
63 	ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_RESET, TRIG_RESET);
64 
65 	data = FIELD_PREP(TRIG_DONE_M, BIT(unit));
66 	ret = ksz_write32(dev, REG_PTP_TRIG_STATUS__4, data);
67 	if (ret)
68 		return ret;
69 
70 	data = FIELD_PREP(TRIG_INT_M, BIT(unit));
71 	ret = ksz_write32(dev, REG_PTP_INT_STATUS__4, data);
72 	if (ret)
73 		return ret;
74 
75 	/* Clear reset and set GPIO direction */
76 	return ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, (TRIG_RESET | TRIG_ENABLE),
77 			 0);
78 }
79 
80 static int ksz_ptp_tou_pulse_verify(u64 pulse_ns)
81 {
82 	u32 data;
83 
84 	if (pulse_ns & 0x3)
85 		return -EINVAL;
86 
87 	data = (pulse_ns / 8);
88 	if (!FIELD_FIT(TRIG_PULSE_WIDTH_M, data))
89 		return -ERANGE;
90 
91 	return 0;
92 }
93 
94 static int ksz_ptp_tou_target_time_set(struct ksz_device *dev,
95 				       struct timespec64 const *ts)
96 {
97 	int ret;
98 
99 	/* Hardware has only 32 bit */
100 	if ((ts->tv_sec & 0xffffffff) != ts->tv_sec)
101 		return -EINVAL;
102 
103 	ret = ksz_write32(dev, REG_TRIG_TARGET_NANOSEC, ts->tv_nsec);
104 	if (ret)
105 		return ret;
106 
107 	ret = ksz_write32(dev, REG_TRIG_TARGET_SEC, ts->tv_sec);
108 	if (ret)
109 		return ret;
110 
111 	return 0;
112 }
113 
114 static int ksz_ptp_tou_start(struct ksz_device *dev, u8 unit)
115 {
116 	u32 data;
117 	int ret;
118 
119 	ret = ksz_rmw32(dev, REG_PTP_CTRL_STAT__4, TRIG_ENABLE, TRIG_ENABLE);
120 	if (ret)
121 		return ret;
122 
123 	/* Check error flag:
124 	 * - the ACTIVE flag is NOT cleared an error!
125 	 */
126 	ret = ksz_read32(dev, REG_PTP_TRIG_STATUS__4, &data);
127 	if (ret)
128 		return ret;
129 
130 	if (FIELD_GET(TRIG_ERROR_M, data) & (1 << unit)) {
131 		dev_err(dev->dev, "%s: Trigger unit%d error!\n", __func__,
132 			unit);
133 		ret = -EIO;
134 		/* Unit will be reset on next access */
135 		return ret;
136 	}
137 
138 	return 0;
139 }
140 
141 static int ksz_ptp_configure_perout(struct ksz_device *dev,
142 				    u32 cycle_width_ns, u32 pulse_width_ns,
143 				    struct timespec64 const *target_time,
144 				    u8 index)
145 {
146 	u32 data;
147 	int ret;
148 
149 	data = FIELD_PREP(TRIG_NOTIFY, 1) |
150 		FIELD_PREP(TRIG_GPO_M, index) |
151 		FIELD_PREP(TRIG_PATTERN_M, TRIG_POS_PERIOD);
152 	ret = ksz_write32(dev, REG_TRIG_CTRL__4, data);
153 	if (ret)
154 		return ret;
155 
156 	ret = ksz_write32(dev, REG_TRIG_CYCLE_WIDTH, cycle_width_ns);
157 	if (ret)
158 		return ret;
159 
160 	/* Set cycle count 0 - Infinite */
161 	ret = ksz_rmw32(dev, REG_TRIG_CYCLE_CNT, TRIG_CYCLE_CNT_M, 0);
162 	if (ret)
163 		return ret;
164 
165 	data = (pulse_width_ns / 8);
166 	ret = ksz_write32(dev, REG_TRIG_PULSE_WIDTH__4, data);
167 	if (ret)
168 		return ret;
169 
170 	ret = ksz_ptp_tou_target_time_set(dev, target_time);
171 	if (ret)
172 		return ret;
173 
174 	return 0;
175 }
176 
177 static int ksz_ptp_enable_perout(struct ksz_device *dev,
178 				 struct ptp_perout_request const *request,
179 				 int on)
180 {
181 	struct ksz_ptp_data *ptp_data = &dev->ptp_data;
182 	u64 req_pulse_width_ns;
183 	u64 cycle_width_ns;
184 	u64 pulse_width_ns;
185 	int pin = 0;
186 	u32 data32;
187 	int ret;
188 
189 	if (request->flags & ~PTP_PEROUT_DUTY_CYCLE)
190 		return -EOPNOTSUPP;
191 
192 	if (ptp_data->tou_mode != KSZ_PTP_TOU_PEROUT &&
193 	    ptp_data->tou_mode != KSZ_PTP_TOU_IDLE)
194 		return -EBUSY;
195 
196 	pin = ptp_find_pin(ptp_data->clock, PTP_PF_PEROUT, request->index);
197 	if (pin < 0)
198 		return -EINVAL;
199 
200 	data32 = FIELD_PREP(PTP_GPIO_INDEX, pin) |
201 		 FIELD_PREP(PTP_TOU_INDEX, request->index);
202 	ret = ksz_rmw32(dev, REG_PTP_UNIT_INDEX__4,
203 			PTP_GPIO_INDEX | PTP_TOU_INDEX, data32);
204 	if (ret)
205 		return ret;
206 
207 	ret = ksz_ptp_tou_reset(dev, request->index);
208 	if (ret)
209 		return ret;
210 
211 	if (!on) {
212 		ptp_data->tou_mode = KSZ_PTP_TOU_IDLE;
213 		return 0;
214 	}
215 
216 	ptp_data->perout_target_time_first.tv_sec  = request->start.sec;
217 	ptp_data->perout_target_time_first.tv_nsec = request->start.nsec;
218 
219 	ptp_data->perout_period.tv_sec = request->period.sec;
220 	ptp_data->perout_period.tv_nsec = request->period.nsec;
221 
222 	cycle_width_ns = timespec64_to_ns(&ptp_data->perout_period);
223 	if ((cycle_width_ns & TRIG_CYCLE_WIDTH_M) != cycle_width_ns)
224 		return -EINVAL;
225 
226 	if (request->flags & PTP_PEROUT_DUTY_CYCLE) {
227 		pulse_width_ns = request->on.sec * NSEC_PER_SEC +
228 			request->on.nsec;
229 	} else {
230 		/* Use a duty cycle of 50%. Maximum pulse width supported by the
231 		 * hardware is a little bit more than 125 ms.
232 		 */
233 		req_pulse_width_ns = (request->period.sec * NSEC_PER_SEC +
234 				      request->period.nsec) / 2;
235 		pulse_width_ns = min_t(u64, req_pulse_width_ns,
236 				       KSZ_MAX_PULSE_WIDTH);
237 	}
238 
239 	ret = ksz_ptp_tou_pulse_verify(pulse_width_ns);
240 	if (ret)
241 		return ret;
242 
243 	ret = ksz_ptp_configure_perout(dev, cycle_width_ns, pulse_width_ns,
244 				       &ptp_data->perout_target_time_first,
245 				       pin);
246 	if (ret)
247 		return ret;
248 
249 	ret = ksz_ptp_tou_gpio(dev);
250 	if (ret)
251 		return ret;
252 
253 	ret = ksz_ptp_tou_start(dev, request->index);
254 	if (ret)
255 		return ret;
256 
257 	ptp_data->tou_mode = KSZ_PTP_TOU_PEROUT;
258 
259 	return 0;
260 }
261 
262 static int ksz_ptp_enable_mode(struct ksz_device *dev)
263 {
264 	struct ksz_tagger_data *tagger_data = ksz_tagger_data(dev->ds);
265 	struct ksz_ptp_data *ptp_data = &dev->ptp_data;
266 	struct ksz_port *prt;
267 	struct dsa_port *dp;
268 	bool tag_en = false;
269 
270 	dsa_switch_for_each_user_port(dp, dev->ds) {
271 		prt = &dev->ports[dp->index];
272 		if (prt->hwts_tx_en || prt->hwts_rx_en) {
273 			tag_en = true;
274 			break;
275 		}
276 	}
277 
278 	if (tag_en) {
279 		ptp_schedule_worker(ptp_data->clock, 0);
280 	} else {
281 		ptp_cancel_worker_sync(ptp_data->clock);
282 	}
283 
284 	tagger_data->hwtstamp_set_state(dev->ds, tag_en);
285 
286 	return ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_ENABLE,
287 			 tag_en ? PTP_ENABLE : 0);
288 }
289 
290 /* The function is return back the capability of timestamping feature when
291  * requested through ethtool -T <interface> utility
292  */
293 int ksz_get_ts_info(struct dsa_switch *ds, int port, struct kernel_ethtool_ts_info *ts)
294 {
295 	struct ksz_device *dev = ds->priv;
296 	struct ksz_ptp_data *ptp_data;
297 
298 	ptp_data = &dev->ptp_data;
299 
300 	if (!ptp_data->clock)
301 		return -ENODEV;
302 
303 	ts->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
304 			      SOF_TIMESTAMPING_RX_HARDWARE |
305 			      SOF_TIMESTAMPING_RAW_HARDWARE;
306 
307 	ts->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ONESTEP_P2P);
308 
309 	if (is_lan937x(dev))
310 		ts->tx_types |= BIT(HWTSTAMP_TX_ON);
311 
312 	ts->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
313 			 BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
314 			 BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
315 			 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
316 
317 	ts->phc_index = ptp_clock_index(ptp_data->clock);
318 
319 	return 0;
320 }
321 
322 int ksz_hwtstamp_get(struct dsa_switch *ds, int port,
323 		     struct kernel_hwtstamp_config *config)
324 {
325 	struct ksz_device *dev = ds->priv;
326 	struct ksz_port *prt;
327 
328 	prt = &dev->ports[port];
329 	*config = prt->tstamp_config;
330 
331 	return 0;
332 }
333 
334 static int ksz_set_hwtstamp_config(struct ksz_device *dev,
335 				   struct ksz_port *prt,
336 				   struct kernel_hwtstamp_config *config)
337 {
338 	int ret;
339 
340 	if (config->flags)
341 		return -EINVAL;
342 
343 	switch (config->tx_type) {
344 	case HWTSTAMP_TX_OFF:
345 		prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en  = false;
346 		prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = false;
347 		prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false;
348 		prt->hwts_tx_en = false;
349 		break;
350 	case HWTSTAMP_TX_ONESTEP_P2P:
351 		prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en  = false;
352 		prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true;
353 		prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = false;
354 		prt->hwts_tx_en = true;
355 
356 		ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, PTP_1STEP);
357 		if (ret)
358 			return ret;
359 
360 		break;
361 	case HWTSTAMP_TX_ON:
362 		if (!is_lan937x(dev))
363 			return -ERANGE;
364 
365 		prt->ptpmsg_irq[KSZ_SYNC_MSG].ts_en  = true;
366 		prt->ptpmsg_irq[KSZ_XDREQ_MSG].ts_en = true;
367 		prt->ptpmsg_irq[KSZ_PDRES_MSG].ts_en = true;
368 		prt->hwts_tx_en = true;
369 
370 		ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_1STEP, 0);
371 		if (ret)
372 			return ret;
373 
374 		break;
375 	default:
376 		return -ERANGE;
377 	}
378 
379 	switch (config->rx_filter) {
380 	case HWTSTAMP_FILTER_NONE:
381 		prt->hwts_rx_en = false;
382 		break;
383 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
384 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
385 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
386 		prt->hwts_rx_en = true;
387 		break;
388 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
389 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
390 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
391 		prt->hwts_rx_en = true;
392 		break;
393 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
394 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
395 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
396 		prt->hwts_rx_en = true;
397 		break;
398 	default:
399 		config->rx_filter = HWTSTAMP_FILTER_NONE;
400 		return -ERANGE;
401 	}
402 
403 	return ksz_ptp_enable_mode(dev);
404 }
405 
406 int ksz_hwtstamp_set(struct dsa_switch *ds, int port,
407 		     struct kernel_hwtstamp_config *config,
408 		     struct netlink_ext_ack *extack)
409 {
410 	struct ksz_device *dev = ds->priv;
411 	struct ksz_port *prt;
412 	int ret;
413 
414 	prt = &dev->ports[port];
415 
416 	ret = ksz_set_hwtstamp_config(dev, prt, config);
417 	if (ret)
418 		return ret;
419 
420 	prt->tstamp_config = *config;
421 
422 	return 0;
423 }
424 
425 static ktime_t ksz_tstamp_reconstruct(struct ksz_device *dev, ktime_t tstamp)
426 {
427 	struct timespec64 ptp_clock_time;
428 	struct ksz_ptp_data *ptp_data;
429 	struct timespec64 diff;
430 	struct timespec64 ts;
431 
432 	ptp_data = &dev->ptp_data;
433 	ts = ktime_to_timespec64(tstamp);
434 
435 	spin_lock_bh(&ptp_data->clock_lock);
436 	ptp_clock_time = ptp_data->clock_time;
437 	spin_unlock_bh(&ptp_data->clock_lock);
438 
439 	/* calculate full time from partial time stamp */
440 	ts.tv_sec = (ptp_clock_time.tv_sec & ~3) | ts.tv_sec;
441 
442 	/* find nearest possible point in time */
443 	diff = timespec64_sub(ts, ptp_clock_time);
444 	if (diff.tv_sec > 2)
445 		ts.tv_sec -= 4;
446 	else if (diff.tv_sec < -2)
447 		ts.tv_sec += 4;
448 
449 	return timespec64_to_ktime(ts);
450 }
451 
452 bool ksz_port_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb,
453 		       unsigned int type)
454 {
455 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
456 	struct ksz_device *dev = ds->priv;
457 	struct ptp_header *ptp_hdr;
458 	struct ksz_port *prt;
459 	u8 ptp_msg_type;
460 	ktime_t tstamp;
461 	s64 correction;
462 
463 	prt = &dev->ports[port];
464 
465 	tstamp = KSZ_SKB_CB(skb)->tstamp;
466 	memset(hwtstamps, 0, sizeof(*hwtstamps));
467 	hwtstamps->hwtstamp = ksz_tstamp_reconstruct(dev, tstamp);
468 
469 	if (prt->tstamp_config.tx_type != HWTSTAMP_TX_ONESTEP_P2P)
470 		goto out;
471 
472 	ptp_hdr = ptp_parse_header(skb, type);
473 	if (!ptp_hdr)
474 		goto out;
475 
476 	ptp_msg_type = ptp_get_msgtype(ptp_hdr, type);
477 	if (ptp_msg_type != PTP_MSGTYPE_PDELAY_REQ)
478 		goto out;
479 
480 	/* Only subtract the partial time stamp from the correction field.  When
481 	 * the hardware adds the egress time stamp to the correction field of
482 	 * the PDelay_Resp message on tx, also only the partial time stamp will
483 	 * be added.
484 	 */
485 	correction = (s64)get_unaligned_be64(&ptp_hdr->correction);
486 	correction -= ktime_to_ns(tstamp) << 16;
487 
488 	ptp_header_update_correction(skb, type, ptp_hdr, correction);
489 
490 out:
491 	return false;
492 }
493 
494 void ksz_port_txtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb)
495 {
496 	struct ksz_device *dev = ds->priv;
497 	struct ptp_header *hdr;
498 	struct sk_buff *clone;
499 	struct ksz_port *prt;
500 	unsigned int type;
501 	u8 ptp_msg_type;
502 
503 	prt = &dev->ports[port];
504 
505 	if (!prt->hwts_tx_en)
506 		return;
507 
508 	type = ptp_classify_raw(skb);
509 	if (type == PTP_CLASS_NONE)
510 		return;
511 
512 	hdr = ptp_parse_header(skb, type);
513 	if (!hdr)
514 		return;
515 
516 	ptp_msg_type = ptp_get_msgtype(hdr, type);
517 
518 	switch (ptp_msg_type) {
519 	case PTP_MSGTYPE_SYNC:
520 		if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P)
521 			return;
522 		break;
523 	case PTP_MSGTYPE_PDELAY_REQ:
524 		break;
525 	case PTP_MSGTYPE_PDELAY_RESP:
526 		if (prt->tstamp_config.tx_type == HWTSTAMP_TX_ONESTEP_P2P) {
527 			KSZ_SKB_CB(skb)->ptp_type = type;
528 			KSZ_SKB_CB(skb)->update_correction = true;
529 			return;
530 		}
531 		break;
532 
533 	default:
534 		return;
535 	}
536 
537 	clone = skb_clone_sk(skb);
538 	if (!clone)
539 		return;
540 
541 	/* caching the value to be used in tag_ksz.c */
542 	KSZ_SKB_CB(skb)->clone = clone;
543 }
544 
545 static void ksz_ptp_txtstamp_skb(struct ksz_device *dev,
546 				 struct ksz_port *prt, struct sk_buff *skb)
547 {
548 	struct skb_shared_hwtstamps hwtstamps = {};
549 	int ret;
550 
551 	/* timeout must include DSA conduit to transmit data, tstamp latency,
552 	 * IRQ latency and time for reading the time stamp.
553 	 */
554 	ret = wait_for_completion_timeout(&prt->tstamp_msg_comp,
555 					  msecs_to_jiffies(100));
556 	if (!ret)
557 		return;
558 
559 	hwtstamps.hwtstamp = prt->tstamp_msg;
560 	skb_complete_tx_timestamp(skb, &hwtstamps);
561 }
562 
563 void ksz_port_deferred_xmit(struct kthread_work *work)
564 {
565 	struct ksz_deferred_xmit_work *xmit_work = work_to_xmit_work(work);
566 	struct sk_buff *clone, *skb = xmit_work->skb;
567 	struct dsa_switch *ds = xmit_work->dp->ds;
568 	struct ksz_device *dev = ds->priv;
569 	struct ksz_port *prt;
570 
571 	prt = &dev->ports[xmit_work->dp->index];
572 
573 	clone = KSZ_SKB_CB(skb)->clone;
574 
575 	skb_shinfo(clone)->tx_flags |= SKBTX_IN_PROGRESS;
576 
577 	reinit_completion(&prt->tstamp_msg_comp);
578 
579 	dsa_enqueue_skb(skb, skb->dev);
580 
581 	ksz_ptp_txtstamp_skb(dev, prt, clone);
582 
583 	kfree(xmit_work);
584 }
585 
586 static int _ksz_ptp_gettime(struct ksz_device *dev, struct timespec64 *ts)
587 {
588 	u32 nanoseconds;
589 	u32 seconds;
590 	u8 phase;
591 	int ret;
592 
593 	/* Copy current PTP clock into shadow registers and read */
594 	ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_READ_TIME, PTP_READ_TIME);
595 	if (ret)
596 		return ret;
597 
598 	ret = ksz_read8(dev, REG_PTP_RTC_SUB_NANOSEC__2, &phase);
599 	if (ret)
600 		return ret;
601 
602 	ret = ksz_read32(dev, REG_PTP_RTC_NANOSEC, &nanoseconds);
603 	if (ret)
604 		return ret;
605 
606 	ret = ksz_read32(dev, REG_PTP_RTC_SEC, &seconds);
607 	if (ret)
608 		return ret;
609 
610 	ts->tv_sec = seconds;
611 	ts->tv_nsec = nanoseconds + phase * 8;
612 
613 	return 0;
614 }
615 
616 static int ksz_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
617 {
618 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
619 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
620 	int ret;
621 
622 	mutex_lock(&ptp_data->lock);
623 	ret = _ksz_ptp_gettime(dev, ts);
624 	mutex_unlock(&ptp_data->lock);
625 
626 	return ret;
627 }
628 
629 static int ksz_ptp_restart_perout(struct ksz_device *dev)
630 {
631 	struct ksz_ptp_data *ptp_data = &dev->ptp_data;
632 	s64 now_ns, first_ns, period_ns, next_ns;
633 	struct ptp_perout_request request;
634 	struct timespec64 next;
635 	struct timespec64 now;
636 	unsigned int count;
637 	int ret;
638 
639 	dev_info(dev->dev, "Restarting periodic output signal\n");
640 
641 	ret = _ksz_ptp_gettime(dev, &now);
642 	if (ret)
643 		return ret;
644 
645 	now_ns = timespec64_to_ns(&now);
646 	first_ns = timespec64_to_ns(&ptp_data->perout_target_time_first);
647 
648 	/* Calculate next perout event based on start time and period */
649 	period_ns = timespec64_to_ns(&ptp_data->perout_period);
650 
651 	if (first_ns < now_ns) {
652 		count = div_u64(now_ns - first_ns, period_ns);
653 		next_ns = first_ns + count * period_ns;
654 	} else {
655 		next_ns = first_ns;
656 	}
657 
658 	/* Ensure 100 ms guard time prior next event */
659 	while (next_ns < now_ns + 100000000)
660 		next_ns += period_ns;
661 
662 	/* Restart periodic output signal */
663 	next = ns_to_timespec64(next_ns);
664 	request.start.sec  = next.tv_sec;
665 	request.start.nsec = next.tv_nsec;
666 	request.period.sec  = ptp_data->perout_period.tv_sec;
667 	request.period.nsec = ptp_data->perout_period.tv_nsec;
668 	request.index = 0;
669 	request.flags = 0;
670 
671 	return ksz_ptp_enable_perout(dev, &request, 1);
672 }
673 
674 static int ksz_ptp_settime(struct ptp_clock_info *ptp,
675 			   const struct timespec64 *ts)
676 {
677 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
678 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
679 	int ret;
680 
681 	mutex_lock(&ptp_data->lock);
682 
683 	/* Write to shadow registers and Load PTP clock */
684 	ret = ksz_write16(dev, REG_PTP_RTC_SUB_NANOSEC__2, PTP_RTC_0NS);
685 	if (ret)
686 		goto unlock;
687 
688 	ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, ts->tv_nsec);
689 	if (ret)
690 		goto unlock;
691 
692 	ret = ksz_write32(dev, REG_PTP_RTC_SEC, ts->tv_sec);
693 	if (ret)
694 		goto unlock;
695 
696 	ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_LOAD_TIME, PTP_LOAD_TIME);
697 	if (ret)
698 		goto unlock;
699 
700 	switch (ptp_data->tou_mode) {
701 	case KSZ_PTP_TOU_IDLE:
702 		break;
703 
704 	case KSZ_PTP_TOU_PEROUT:
705 		ret = ksz_ptp_restart_perout(dev);
706 		if (ret)
707 			goto unlock;
708 
709 		break;
710 	}
711 
712 	spin_lock_bh(&ptp_data->clock_lock);
713 	ptp_data->clock_time = *ts;
714 	spin_unlock_bh(&ptp_data->clock_lock);
715 
716 unlock:
717 	mutex_unlock(&ptp_data->lock);
718 
719 	return ret;
720 }
721 
722 static int ksz_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
723 {
724 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
725 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
726 	u64 base, adj;
727 	bool negative;
728 	u32 data32;
729 	int ret;
730 
731 	mutex_lock(&ptp_data->lock);
732 
733 	if (scaled_ppm) {
734 		base = KSZ_PTP_INC_NS << KSZ_PTP_SUBNS_BITS;
735 		negative = diff_by_scaled_ppm(base, scaled_ppm, &adj);
736 
737 		data32 = (u32)adj;
738 		data32 &= PTP_SUBNANOSEC_M;
739 		if (!negative)
740 			data32 |= PTP_RATE_DIR;
741 
742 		ret = ksz_write32(dev, REG_PTP_SUBNANOSEC_RATE, data32);
743 		if (ret)
744 			goto unlock;
745 
746 		ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE,
747 				PTP_CLK_ADJ_ENABLE);
748 		if (ret)
749 			goto unlock;
750 	} else {
751 		ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ADJ_ENABLE, 0);
752 		if (ret)
753 			goto unlock;
754 	}
755 
756 unlock:
757 	mutex_unlock(&ptp_data->lock);
758 	return ret;
759 }
760 
761 static int ksz_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
762 {
763 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
764 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
765 	struct timespec64 delta64 = ns_to_timespec64(delta);
766 	s32 sec, nsec;
767 	u16 data16;
768 	int ret;
769 
770 	mutex_lock(&ptp_data->lock);
771 
772 	/* do not use ns_to_timespec64(),
773 	 * both sec and nsec are subtracted by hw
774 	 */
775 	sec = div_s64_rem(delta, NSEC_PER_SEC, &nsec);
776 
777 	ret = ksz_write32(dev, REG_PTP_RTC_NANOSEC, abs(nsec));
778 	if (ret)
779 		goto unlock;
780 
781 	ret = ksz_write32(dev, REG_PTP_RTC_SEC, abs(sec));
782 	if (ret)
783 		goto unlock;
784 
785 	ret = ksz_read16(dev, REG_PTP_CLK_CTRL, &data16);
786 	if (ret)
787 		goto unlock;
788 
789 	data16 |= PTP_STEP_ADJ;
790 
791 	/* PTP_STEP_DIR -- 0: subtract, 1: add */
792 	if (delta < 0)
793 		data16 &= ~PTP_STEP_DIR;
794 	else
795 		data16 |= PTP_STEP_DIR;
796 
797 	ret = ksz_write16(dev, REG_PTP_CLK_CTRL, data16);
798 	if (ret)
799 		goto unlock;
800 
801 	switch (ptp_data->tou_mode) {
802 	case KSZ_PTP_TOU_IDLE:
803 		break;
804 
805 	case KSZ_PTP_TOU_PEROUT:
806 		ret = ksz_ptp_restart_perout(dev);
807 		if (ret)
808 			goto unlock;
809 
810 		break;
811 	}
812 
813 	spin_lock_bh(&ptp_data->clock_lock);
814 	ptp_data->clock_time = timespec64_add(ptp_data->clock_time, delta64);
815 	spin_unlock_bh(&ptp_data->clock_lock);
816 
817 unlock:
818 	mutex_unlock(&ptp_data->lock);
819 	return ret;
820 }
821 
822 static int ksz_ptp_enable(struct ptp_clock_info *ptp,
823 			  struct ptp_clock_request *req, int on)
824 {
825 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
826 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
827 	int ret;
828 
829 	switch (req->type) {
830 	case PTP_CLK_REQ_PEROUT:
831 		mutex_lock(&ptp_data->lock);
832 		ret = ksz_ptp_enable_perout(dev, &req->perout, on);
833 		mutex_unlock(&ptp_data->lock);
834 		break;
835 	default:
836 		return -EOPNOTSUPP;
837 	}
838 
839 	return ret;
840 }
841 
842 static int ksz_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
843 			      enum ptp_pin_function func, unsigned int chan)
844 {
845 	int ret = 0;
846 
847 	switch (func) {
848 	case PTP_PF_NONE:
849 	case PTP_PF_PEROUT:
850 		break;
851 	default:
852 		ret = -1;
853 		break;
854 	}
855 
856 	return ret;
857 }
858 
859 /*  Function is pointer to the do_aux_work in the ptp_clock capability */
860 static long ksz_ptp_do_aux_work(struct ptp_clock_info *ptp)
861 {
862 	struct ksz_ptp_data *ptp_data = ptp_caps_to_data(ptp);
863 	struct ksz_device *dev = ptp_data_to_ksz_dev(ptp_data);
864 	struct timespec64 ts;
865 	int ret;
866 
867 	mutex_lock(&ptp_data->lock);
868 	ret = _ksz_ptp_gettime(dev, &ts);
869 	if (ret)
870 		goto out;
871 
872 	spin_lock_bh(&ptp_data->clock_lock);
873 	ptp_data->clock_time = ts;
874 	spin_unlock_bh(&ptp_data->clock_lock);
875 
876 out:
877 	mutex_unlock(&ptp_data->lock);
878 
879 	return HZ;  /* reschedule in 1 second */
880 }
881 
882 static int ksz_ptp_start_clock(struct ksz_device *dev)
883 {
884 	struct ksz_ptp_data *ptp_data = &dev->ptp_data;
885 	int ret;
886 
887 	ret = ksz_rmw16(dev, REG_PTP_CLK_CTRL, PTP_CLK_ENABLE, PTP_CLK_ENABLE);
888 	if (ret)
889 		return ret;
890 
891 	ptp_data->clock_time.tv_sec = 0;
892 	ptp_data->clock_time.tv_nsec = 0;
893 
894 	return 0;
895 }
896 
897 int ksz_ptp_clock_register(struct dsa_switch *ds)
898 {
899 	struct ksz_device *dev = ds->priv;
900 	struct ksz_ptp_data *ptp_data;
901 	int ret;
902 	u8 i;
903 
904 	ptp_data = &dev->ptp_data;
905 	mutex_init(&ptp_data->lock);
906 	spin_lock_init(&ptp_data->clock_lock);
907 
908 	ptp_data->caps.owner		= THIS_MODULE;
909 	snprintf(ptp_data->caps.name, 16, "Microchip Clock");
910 	ptp_data->caps.max_adj		= KSZ_MAX_DRIFT_CORR;
911 	ptp_data->caps.gettime64	= ksz_ptp_gettime;
912 	ptp_data->caps.settime64	= ksz_ptp_settime;
913 	ptp_data->caps.adjfine		= ksz_ptp_adjfine;
914 	ptp_data->caps.adjtime		= ksz_ptp_adjtime;
915 	ptp_data->caps.do_aux_work	= ksz_ptp_do_aux_work;
916 	ptp_data->caps.enable		= ksz_ptp_enable;
917 	ptp_data->caps.verify		= ksz_ptp_verify_pin;
918 	ptp_data->caps.n_pins		= KSZ_PTP_N_GPIO;
919 	ptp_data->caps.n_per_out	= 3;
920 
921 	ret = ksz_ptp_start_clock(dev);
922 	if (ret)
923 		return ret;
924 
925 	for (i = 0; i < KSZ_PTP_N_GPIO; i++) {
926 		struct ptp_pin_desc *ptp_pin = &ptp_data->pin_config[i];
927 
928 		snprintf(ptp_pin->name,
929 			 sizeof(ptp_pin->name), "ksz_ptp_pin_%02d", i);
930 		ptp_pin->index = i;
931 		ptp_pin->func = PTP_PF_NONE;
932 	}
933 
934 	ptp_data->caps.pin_config = ptp_data->pin_config;
935 
936 	/* Currently only P2P mode is supported. When 802_1AS bit is set, it
937 	 * forwards all PTP packets to host port and none to other ports.
938 	 */
939 	ret = ksz_rmw16(dev, REG_PTP_MSG_CONF1, PTP_TC_P2P | PTP_802_1AS,
940 			PTP_TC_P2P | PTP_802_1AS);
941 	if (ret)
942 		return ret;
943 
944 	ptp_data->clock = ptp_clock_register(&ptp_data->caps, dev->dev);
945 	if (IS_ERR_OR_NULL(ptp_data->clock))
946 		return PTR_ERR(ptp_data->clock);
947 
948 	return 0;
949 }
950 
951 void ksz_ptp_clock_unregister(struct dsa_switch *ds)
952 {
953 	struct ksz_device *dev = ds->priv;
954 	struct ksz_ptp_data *ptp_data;
955 
956 	ptp_data = &dev->ptp_data;
957 
958 	if (ptp_data->clock)
959 		ptp_clock_unregister(ptp_data->clock);
960 }
961 
962 static irqreturn_t ksz_ptp_msg_thread_fn(int irq, void *dev_id)
963 {
964 	struct ksz_ptp_irq *ptpmsg_irq = dev_id;
965 	struct ksz_device *dev;
966 	struct ksz_port *port;
967 	u32 tstamp_raw;
968 	ktime_t tstamp;
969 	int ret;
970 
971 	port = ptpmsg_irq->port;
972 	dev = port->ksz_dev;
973 
974 	if (ptpmsg_irq->ts_en) {
975 		ret = ksz_read32(dev, ptpmsg_irq->ts_reg, &tstamp_raw);
976 		if (ret)
977 			return IRQ_NONE;
978 
979 		tstamp = ksz_decode_tstamp(tstamp_raw);
980 
981 		port->tstamp_msg = ksz_tstamp_reconstruct(dev, tstamp);
982 
983 		complete(&port->tstamp_msg_comp);
984 	}
985 
986 	return IRQ_HANDLED;
987 }
988 
989 static irqreturn_t ksz_ptp_irq_thread_fn(int irq, void *dev_id)
990 {
991 	struct ksz_irq *ptpirq = dev_id;
992 	unsigned int nhandled = 0;
993 	struct ksz_device *dev;
994 	unsigned int sub_irq;
995 	u16 data;
996 	int ret;
997 	u8 n;
998 
999 	dev = ptpirq->dev;
1000 
1001 	ret = ksz_read16(dev, ptpirq->reg_status, &data);
1002 	if (ret)
1003 		goto out;
1004 
1005 	/* Clear the interrupts W1C */
1006 	ret = ksz_write16(dev, ptpirq->reg_status, data);
1007 	if (ret)
1008 		return IRQ_NONE;
1009 
1010 	for (n = 0; n < ptpirq->nirqs; ++n) {
1011 		if (data & BIT(n + KSZ_PTP_INT_START)) {
1012 			sub_irq = irq_find_mapping(ptpirq->domain, n);
1013 			handle_nested_irq(sub_irq);
1014 			++nhandled;
1015 		}
1016 	}
1017 
1018 out:
1019 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
1020 }
1021 
1022 static void ksz_ptp_irq_mask(struct irq_data *d)
1023 {
1024 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
1025 
1026 	kirq->masked &= ~BIT(d->hwirq + KSZ_PTP_INT_START);
1027 }
1028 
1029 static void ksz_ptp_irq_unmask(struct irq_data *d)
1030 {
1031 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
1032 
1033 	kirq->masked |= BIT(d->hwirq + KSZ_PTP_INT_START);
1034 }
1035 
1036 static void ksz_ptp_irq_bus_lock(struct irq_data *d)
1037 {
1038 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
1039 
1040 	mutex_lock(&kirq->dev->lock_irq);
1041 }
1042 
1043 static void ksz_ptp_irq_bus_sync_unlock(struct irq_data *d)
1044 {
1045 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
1046 	struct ksz_device *dev = kirq->dev;
1047 	int ret;
1048 
1049 	ret = ksz_write16(dev, kirq->reg_mask, kirq->masked);
1050 	if (ret)
1051 		dev_err(dev->dev, "failed to change IRQ mask\n");
1052 
1053 	mutex_unlock(&dev->lock_irq);
1054 }
1055 
1056 static const struct irq_chip ksz_ptp_irq_chip = {
1057 	.name			= "ksz-irq",
1058 	.irq_mask		= ksz_ptp_irq_mask,
1059 	.irq_unmask		= ksz_ptp_irq_unmask,
1060 	.irq_bus_lock		= ksz_ptp_irq_bus_lock,
1061 	.irq_bus_sync_unlock	= ksz_ptp_irq_bus_sync_unlock,
1062 };
1063 
1064 static int ksz_ptp_irq_domain_map(struct irq_domain *d,
1065 				  unsigned int irq, irq_hw_number_t hwirq)
1066 {
1067 	irq_set_chip_data(irq, d->host_data);
1068 	irq_set_chip_and_handler(irq, &ksz_ptp_irq_chip, handle_level_irq);
1069 	irq_set_noprobe(irq);
1070 
1071 	return 0;
1072 }
1073 
1074 static const struct irq_domain_ops ksz_ptp_irq_domain_ops = {
1075 	.map	= ksz_ptp_irq_domain_map,
1076 	.xlate	= irq_domain_xlate_twocell,
1077 };
1078 
1079 static void ksz_ptp_msg_irq_free(struct ksz_port *port, u8 n)
1080 {
1081 	struct ksz_ptp_irq *ptpmsg_irq;
1082 
1083 	ptpmsg_irq = &port->ptpmsg_irq[n];
1084 
1085 	free_irq(ptpmsg_irq->num, ptpmsg_irq);
1086 	irq_dispose_mapping(ptpmsg_irq->num);
1087 }
1088 
1089 static int ksz_ptp_msg_irq_setup(struct ksz_port *port, u8 n)
1090 {
1091 	u16 ts_reg[] = {REG_PTP_PORT_PDRESP_TS, REG_PTP_PORT_XDELAY_TS,
1092 			REG_PTP_PORT_SYNC_TS};
1093 	static const char * const name[] = {"pdresp-msg", "xdreq-msg",
1094 					    "sync-msg"};
1095 	const struct ksz_dev_ops *ops = port->ksz_dev->dev_ops;
1096 	struct ksz_ptp_irq *ptpmsg_irq;
1097 
1098 	ptpmsg_irq = &port->ptpmsg_irq[n];
1099 
1100 	ptpmsg_irq->port = port;
1101 	ptpmsg_irq->ts_reg = ops->get_port_addr(port->num, ts_reg[n]);
1102 
1103 	strscpy(ptpmsg_irq->name, name[n]);
1104 
1105 	ptpmsg_irq->num = irq_find_mapping(port->ptpirq.domain, n);
1106 	if (ptpmsg_irq->num < 0)
1107 		return ptpmsg_irq->num;
1108 
1109 	return request_threaded_irq(ptpmsg_irq->num, NULL,
1110 				    ksz_ptp_msg_thread_fn, IRQF_ONESHOT,
1111 				    ptpmsg_irq->name, ptpmsg_irq);
1112 }
1113 
1114 int ksz_ptp_irq_setup(struct dsa_switch *ds, u8 p)
1115 {
1116 	struct ksz_device *dev = ds->priv;
1117 	const struct ksz_dev_ops *ops = dev->dev_ops;
1118 	struct ksz_port *port = &dev->ports[p];
1119 	struct ksz_irq *ptpirq = &port->ptpirq;
1120 	int irq;
1121 	int ret;
1122 
1123 	ptpirq->dev = dev;
1124 	ptpirq->masked = 0;
1125 	ptpirq->nirqs = 3;
1126 	ptpirq->reg_mask = ops->get_port_addr(p, REG_PTP_PORT_TX_INT_ENABLE__2);
1127 	ptpirq->reg_status = ops->get_port_addr(p,
1128 						REG_PTP_PORT_TX_INT_STATUS__2);
1129 	snprintf(ptpirq->name, sizeof(ptpirq->name), "ptp-irq-%d", p);
1130 
1131 	init_completion(&port->tstamp_msg_comp);
1132 
1133 	ptpirq->domain = irq_domain_create_linear(of_fwnode_handle(dev->dev->of_node),
1134 						  ptpirq->nirqs, &ksz_ptp_irq_domain_ops, ptpirq);
1135 	if (!ptpirq->domain)
1136 		return -ENOMEM;
1137 
1138 	for (irq = 0; irq < ptpirq->nirqs; irq++)
1139 		irq_create_mapping(ptpirq->domain, irq);
1140 
1141 	ptpirq->irq_num = irq_find_mapping(port->pirq.domain, PORT_SRC_PTP_INT);
1142 	if (ptpirq->irq_num < 0) {
1143 		ret = ptpirq->irq_num;
1144 		goto out;
1145 	}
1146 
1147 	ret = request_threaded_irq(ptpirq->irq_num, NULL, ksz_ptp_irq_thread_fn,
1148 				   IRQF_ONESHOT, ptpirq->name, ptpirq);
1149 	if (ret)
1150 		goto out;
1151 
1152 	for (irq = 0; irq < ptpirq->nirqs; irq++) {
1153 		ret = ksz_ptp_msg_irq_setup(port, irq);
1154 		if (ret)
1155 			goto out_ptp_msg;
1156 	}
1157 
1158 	return 0;
1159 
1160 out_ptp_msg:
1161 	free_irq(ptpirq->irq_num, ptpirq);
1162 	while (irq--)
1163 		free_irq(port->ptpmsg_irq[irq].num, &port->ptpmsg_irq[irq]);
1164 out:
1165 	for (irq = 0; irq < ptpirq->nirqs; irq++)
1166 		irq_dispose_mapping(port->ptpmsg_irq[irq].num);
1167 
1168 	irq_domain_remove(ptpirq->domain);
1169 
1170 	return ret;
1171 }
1172 
1173 void ksz_ptp_irq_free(struct dsa_switch *ds, u8 p)
1174 {
1175 	struct ksz_device *dev = ds->priv;
1176 	struct ksz_port *port = &dev->ports[p];
1177 	struct ksz_irq *ptpirq = &port->ptpirq;
1178 	u8 n;
1179 
1180 	for (n = 0; n < ptpirq->nirqs; n++)
1181 		ksz_ptp_msg_irq_free(port, n);
1182 
1183 	free_irq(ptpirq->irq_num, ptpirq);
1184 	irq_dispose_mapping(ptpirq->irq_num);
1185 
1186 	irq_domain_remove(ptpirq->domain);
1187 }
1188 
1189 MODULE_AUTHOR("Christian Eggers <ceggers@arri.de>");
1190 MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>");
1191 MODULE_DESCRIPTION("PTP support for KSZ switch");
1192 MODULE_LICENSE("GPL");
1193