1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 /**
269  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
270  * @config: phylink config structure
271  *
272  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
273  * a detailed explanation of EEE/LPI handling in KSZ switches.
274  */
275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
276 {
277 }
278 
279 /**
280  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
281  * @config: phylink config structure
282  * @timer: timer value before entering LPI (unused)
283  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
284  *
285  * This function signals to phylink that the driver architecture supports
286  * LPI management, enabling phylink to control EEE advertisement during
287  * negotiation according to IEEE Std 802.3 (Clause 78).
288  *
289  * Hardware Management of EEE/LPI State:
290  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
291  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
292  * state transitions are managed autonomously by the hardware based on
293  * the auto-negotiation results. (Note: While the datasheet describes EEE
294  * operation based on negotiation, it doesn't explicitly detail the internal
295  * MAC/PHY interaction, so autonomous hardware management of the MAC state
296  * for LPI is inferred from observed behavior).
297  * This hardware control, consistent with the switch's ability to operate
298  * autonomously via strapping, means MAC-level software intervention is not
299  * required or exposed for managing the LPI state once EEE is negotiated.
300  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
301  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
302  * Straps).
303  *
304  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
305  * lack documented MAC-level LPI control.
306  *
307  * Therefore, this callback performs no action and serves primarily to inform
308  * phylink of LPI awareness and to document the inferred hardware behavior.
309  *
310  * Returns: 0 (Always success)
311  */
312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
313 					 u32 timer, bool tx_clock_stop)
314 {
315 	return 0;
316 }
317 
318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
319 	.mac_config	= ksz88x3_phylink_mac_config,
320 	.mac_link_down	= ksz_phylink_mac_link_down,
321 	.mac_link_up	= ksz8_phylink_mac_link_up,
322 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
323 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
324 };
325 
326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
327 	.mac_config	= ksz_phylink_mac_config,
328 	.mac_link_down	= ksz_phylink_mac_link_down,
329 	.mac_link_up	= ksz8_phylink_mac_link_up,
330 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
331 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
332 };
333 
334 static const struct ksz_dev_ops ksz88xx_dev_ops = {
335 	.setup = ksz8_setup,
336 	.get_port_addr = ksz8_get_port_addr,
337 	.cfg_port_member = ksz8_cfg_port_member,
338 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
339 	.port_setup = ksz8_port_setup,
340 	.r_phy = ksz8_r_phy,
341 	.w_phy = ksz8_w_phy,
342 	.r_mib_cnt = ksz8_r_mib_cnt,
343 	.r_mib_pkt = ksz8_r_mib_pkt,
344 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
345 	.freeze_mib = ksz8_freeze_mib,
346 	.port_init_cnt = ksz8_port_init_cnt,
347 	.fdb_dump = ksz8_fdb_dump,
348 	.fdb_add = ksz8_fdb_add,
349 	.fdb_del = ksz8_fdb_del,
350 	.mdb_add = ksz8_mdb_add,
351 	.mdb_del = ksz8_mdb_del,
352 	.vlan_filtering = ksz8_port_vlan_filtering,
353 	.vlan_add = ksz8_port_vlan_add,
354 	.vlan_del = ksz8_port_vlan_del,
355 	.mirror_add = ksz8_port_mirror_add,
356 	.mirror_del = ksz8_port_mirror_del,
357 	.get_caps = ksz8_get_caps,
358 	.config_cpu_port = ksz8_config_cpu_port,
359 	.enable_stp_addr = ksz8_enable_stp_addr,
360 	.reset = ksz8_reset_switch,
361 	.init = ksz8_switch_init,
362 	.exit = ksz8_switch_exit,
363 	.change_mtu = ksz8_change_mtu,
364 	.pme_write8 = ksz8_pme_write8,
365 	.pme_pread8 = ksz8_pme_pread8,
366 	.pme_pwrite8 = ksz8_pme_pwrite8,
367 };
368 
369 static const struct ksz_dev_ops ksz87xx_dev_ops = {
370 	.setup = ksz8_setup,
371 	.get_port_addr = ksz8_get_port_addr,
372 	.cfg_port_member = ksz8_cfg_port_member,
373 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
374 	.port_setup = ksz8_port_setup,
375 	.r_phy = ksz8_r_phy,
376 	.w_phy = ksz8_w_phy,
377 	.r_mib_cnt = ksz8_r_mib_cnt,
378 	.r_mib_pkt = ksz8_r_mib_pkt,
379 	.r_mib_stat64 = ksz_r_mib_stats64,
380 	.freeze_mib = ksz8_freeze_mib,
381 	.port_init_cnt = ksz8_port_init_cnt,
382 	.fdb_dump = ksz8_fdb_dump,
383 	.fdb_add = ksz8_fdb_add,
384 	.fdb_del = ksz8_fdb_del,
385 	.mdb_add = ksz8_mdb_add,
386 	.mdb_del = ksz8_mdb_del,
387 	.vlan_filtering = ksz8_port_vlan_filtering,
388 	.vlan_add = ksz8_port_vlan_add,
389 	.vlan_del = ksz8_port_vlan_del,
390 	.mirror_add = ksz8_port_mirror_add,
391 	.mirror_del = ksz8_port_mirror_del,
392 	.get_caps = ksz8_get_caps,
393 	.config_cpu_port = ksz8_config_cpu_port,
394 	.enable_stp_addr = ksz8_enable_stp_addr,
395 	.reset = ksz8_reset_switch,
396 	.init = ksz8_switch_init,
397 	.exit = ksz8_switch_exit,
398 	.change_mtu = ksz8_change_mtu,
399 	.pme_write8 = ksz8_pme_write8,
400 	.pme_pread8 = ksz8_pme_pread8,
401 	.pme_pwrite8 = ksz8_pme_pwrite8,
402 };
403 
404 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
405 					struct phy_device *phydev,
406 					unsigned int mode,
407 					phy_interface_t interface,
408 					int speed, int duplex, bool tx_pause,
409 					bool rx_pause);
410 
411 static struct phylink_pcs *
412 ksz_phylink_mac_select_pcs(struct phylink_config *config,
413 			   phy_interface_t interface)
414 {
415 	struct dsa_port *dp = dsa_phylink_to_port(config);
416 	struct ksz_device *dev = dp->ds->priv;
417 	struct ksz_port *p = &dev->ports[dp->index];
418 
419 	if (ksz_is_sgmii_port(dev, dp->index) &&
420 	    (interface == PHY_INTERFACE_MODE_SGMII ||
421 	    interface == PHY_INTERFACE_MODE_1000BASEX))
422 		return p->pcs;
423 
424 	return NULL;
425 }
426 
427 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
428 	.mac_config	= ksz_phylink_mac_config,
429 	.mac_link_down	= ksz_phylink_mac_link_down,
430 	.mac_link_up	= ksz9477_phylink_mac_link_up,
431 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
432 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
433 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
434 };
435 
436 static const struct ksz_dev_ops ksz9477_dev_ops = {
437 	.setup = ksz9477_setup,
438 	.get_port_addr = ksz9477_get_port_addr,
439 	.cfg_port_member = ksz9477_cfg_port_member,
440 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
441 	.port_setup = ksz9477_port_setup,
442 	.set_ageing_time = ksz9477_set_ageing_time,
443 	.r_phy = ksz9477_r_phy,
444 	.w_phy = ksz9477_w_phy,
445 	.r_mib_cnt = ksz9477_r_mib_cnt,
446 	.r_mib_pkt = ksz9477_r_mib_pkt,
447 	.r_mib_stat64 = ksz_r_mib_stats64,
448 	.freeze_mib = ksz9477_freeze_mib,
449 	.port_init_cnt = ksz9477_port_init_cnt,
450 	.vlan_filtering = ksz9477_port_vlan_filtering,
451 	.vlan_add = ksz9477_port_vlan_add,
452 	.vlan_del = ksz9477_port_vlan_del,
453 	.mirror_add = ksz9477_port_mirror_add,
454 	.mirror_del = ksz9477_port_mirror_del,
455 	.get_caps = ksz9477_get_caps,
456 	.fdb_dump = ksz9477_fdb_dump,
457 	.fdb_add = ksz9477_fdb_add,
458 	.fdb_del = ksz9477_fdb_del,
459 	.mdb_add = ksz9477_mdb_add,
460 	.mdb_del = ksz9477_mdb_del,
461 	.change_mtu = ksz9477_change_mtu,
462 	.pme_write8 = ksz_write8,
463 	.pme_pread8 = ksz_pread8,
464 	.pme_pwrite8 = ksz_pwrite8,
465 	.config_cpu_port = ksz9477_config_cpu_port,
466 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
467 	.enable_stp_addr = ksz9477_enable_stp_addr,
468 	.reset = ksz9477_reset_switch,
469 	.init = ksz9477_switch_init,
470 	.exit = ksz9477_switch_exit,
471 	.pcs_create = ksz9477_pcs_create,
472 };
473 
474 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
475 	.mac_config	= ksz_phylink_mac_config,
476 	.mac_link_down	= ksz_phylink_mac_link_down,
477 	.mac_link_up	= ksz9477_phylink_mac_link_up,
478 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
479 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
480 };
481 
482 static const struct ksz_dev_ops lan937x_dev_ops = {
483 	.setup = lan937x_setup,
484 	.teardown = lan937x_teardown,
485 	.get_port_addr = ksz9477_get_port_addr,
486 	.cfg_port_member = ksz9477_cfg_port_member,
487 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
488 	.port_setup = lan937x_port_setup,
489 	.set_ageing_time = lan937x_set_ageing_time,
490 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
491 	.create_phy_addr_map = lan937x_create_phy_addr_map,
492 	.r_phy = lan937x_r_phy,
493 	.w_phy = lan937x_w_phy,
494 	.r_mib_cnt = ksz9477_r_mib_cnt,
495 	.r_mib_pkt = ksz9477_r_mib_pkt,
496 	.r_mib_stat64 = ksz_r_mib_stats64,
497 	.freeze_mib = ksz9477_freeze_mib,
498 	.port_init_cnt = ksz9477_port_init_cnt,
499 	.vlan_filtering = ksz9477_port_vlan_filtering,
500 	.vlan_add = ksz9477_port_vlan_add,
501 	.vlan_del = ksz9477_port_vlan_del,
502 	.mirror_add = ksz9477_port_mirror_add,
503 	.mirror_del = ksz9477_port_mirror_del,
504 	.get_caps = lan937x_phylink_get_caps,
505 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
506 	.fdb_dump = ksz9477_fdb_dump,
507 	.fdb_add = ksz9477_fdb_add,
508 	.fdb_del = ksz9477_fdb_del,
509 	.mdb_add = ksz9477_mdb_add,
510 	.mdb_del = ksz9477_mdb_del,
511 	.change_mtu = lan937x_change_mtu,
512 	.config_cpu_port = lan937x_config_cpu_port,
513 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
514 	.enable_stp_addr = ksz9477_enable_stp_addr,
515 	.reset = lan937x_reset_switch,
516 	.init = lan937x_switch_init,
517 	.exit = lan937x_switch_exit,
518 };
519 
520 static const u16 ksz8795_regs[] = {
521 	[REG_SW_MAC_ADDR]		= 0x68,
522 	[REG_IND_CTRL_0]		= 0x6E,
523 	[REG_IND_DATA_8]		= 0x70,
524 	[REG_IND_DATA_CHECK]		= 0x72,
525 	[REG_IND_DATA_HI]		= 0x71,
526 	[REG_IND_DATA_LO]		= 0x75,
527 	[REG_IND_MIB_CHECK]		= 0x74,
528 	[REG_IND_BYTE]			= 0xA0,
529 	[P_FORCE_CTRL]			= 0x0C,
530 	[P_LINK_STATUS]			= 0x0E,
531 	[P_LOCAL_CTRL]			= 0x07,
532 	[P_NEG_RESTART_CTRL]		= 0x0D,
533 	[P_REMOTE_STATUS]		= 0x08,
534 	[P_SPEED_STATUS]		= 0x09,
535 	[S_TAIL_TAG_CTRL]		= 0x0C,
536 	[P_STP_CTRL]			= 0x02,
537 	[S_START_CTRL]			= 0x01,
538 	[S_BROADCAST_CTRL]		= 0x06,
539 	[S_MULTICAST_CTRL]		= 0x04,
540 	[P_XMII_CTRL_0]			= 0x06,
541 	[P_XMII_CTRL_1]			= 0x06,
542 	[REG_SW_PME_CTRL]		= 0x8003,
543 	[REG_PORT_PME_STATUS]		= 0x8003,
544 	[REG_PORT_PME_CTRL]		= 0x8007,
545 };
546 
547 static const u32 ksz8795_masks[] = {
548 	[PORT_802_1P_REMAPPING]		= BIT(7),
549 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
550 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
551 	[MIB_COUNTER_VALID]		= BIT(5),
552 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
553 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
554 	[VLAN_TABLE_VALID]		= BIT(12),
555 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
556 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
557 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
558 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
559 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
560 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
561 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
562 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
563 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
564 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
565 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
566 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
567 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
568 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
569 };
570 
571 static const u8 ksz8795_xmii_ctrl0[] = {
572 	[P_MII_100MBIT]			= 0,
573 	[P_MII_10MBIT]			= 1,
574 	[P_MII_FULL_DUPLEX]		= 0,
575 	[P_MII_HALF_DUPLEX]		= 1,
576 };
577 
578 static const u8 ksz8795_xmii_ctrl1[] = {
579 	[P_RGMII_SEL]			= 3,
580 	[P_GMII_SEL]			= 2,
581 	[P_RMII_SEL]			= 1,
582 	[P_MII_SEL]			= 0,
583 	[P_GMII_1GBIT]			= 1,
584 	[P_GMII_NOT_1GBIT]		= 0,
585 };
586 
587 static const u8 ksz8795_shifts[] = {
588 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
589 	[VLAN_TABLE]			= 16,
590 	[STATIC_MAC_FWD_PORTS]		= 16,
591 	[STATIC_MAC_FID]		= 24,
592 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
593 	[DYNAMIC_MAC_ENTRIES]		= 29,
594 	[DYNAMIC_MAC_FID]		= 16,
595 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
596 	[DYNAMIC_MAC_SRC_PORT]		= 24,
597 };
598 
599 static const u16 ksz8863_regs[] = {
600 	[REG_SW_MAC_ADDR]		= 0x70,
601 	[REG_IND_CTRL_0]		= 0x79,
602 	[REG_IND_DATA_8]		= 0x7B,
603 	[REG_IND_DATA_CHECK]		= 0x7B,
604 	[REG_IND_DATA_HI]		= 0x7C,
605 	[REG_IND_DATA_LO]		= 0x80,
606 	[REG_IND_MIB_CHECK]		= 0x80,
607 	[P_FORCE_CTRL]			= 0x0C,
608 	[P_LINK_STATUS]			= 0x0E,
609 	[P_LOCAL_CTRL]			= 0x0C,
610 	[P_NEG_RESTART_CTRL]		= 0x0D,
611 	[P_REMOTE_STATUS]		= 0x0E,
612 	[P_SPEED_STATUS]		= 0x0F,
613 	[S_TAIL_TAG_CTRL]		= 0x03,
614 	[P_STP_CTRL]			= 0x02,
615 	[S_START_CTRL]			= 0x01,
616 	[S_BROADCAST_CTRL]		= 0x06,
617 	[S_MULTICAST_CTRL]		= 0x04,
618 };
619 
620 static const u32 ksz8863_masks[] = {
621 	[PORT_802_1P_REMAPPING]		= BIT(3),
622 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
623 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
624 	[MIB_COUNTER_VALID]		= BIT(6),
625 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
626 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
627 	[VLAN_TABLE_VALID]		= BIT(19),
628 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
629 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
630 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
631 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
632 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
633 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
634 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
635 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
636 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
637 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
638 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
639 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
640 };
641 
642 static u8 ksz8863_shifts[] = {
643 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
644 	[STATIC_MAC_FWD_PORTS]		= 16,
645 	[STATIC_MAC_FID]		= 22,
646 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
647 	[DYNAMIC_MAC_ENTRIES]		= 24,
648 	[DYNAMIC_MAC_FID]		= 16,
649 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
650 	[DYNAMIC_MAC_SRC_PORT]		= 20,
651 };
652 
653 static const u16 ksz8895_regs[] = {
654 	[REG_SW_MAC_ADDR]		= 0x68,
655 	[REG_IND_CTRL_0]		= 0x6E,
656 	[REG_IND_DATA_8]		= 0x70,
657 	[REG_IND_DATA_CHECK]		= 0x72,
658 	[REG_IND_DATA_HI]		= 0x71,
659 	[REG_IND_DATA_LO]		= 0x75,
660 	[REG_IND_MIB_CHECK]		= 0x75,
661 	[P_FORCE_CTRL]			= 0x0C,
662 	[P_LINK_STATUS]			= 0x0E,
663 	[P_LOCAL_CTRL]			= 0x0C,
664 	[P_NEG_RESTART_CTRL]		= 0x0D,
665 	[P_REMOTE_STATUS]		= 0x0E,
666 	[P_SPEED_STATUS]		= 0x09,
667 	[S_TAIL_TAG_CTRL]		= 0x0C,
668 	[P_STP_CTRL]			= 0x02,
669 	[S_START_CTRL]			= 0x01,
670 	[S_BROADCAST_CTRL]		= 0x06,
671 	[S_MULTICAST_CTRL]		= 0x04,
672 };
673 
674 static const u32 ksz8895_masks[] = {
675 	[PORT_802_1P_REMAPPING]		= BIT(7),
676 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
677 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
678 	[MIB_COUNTER_VALID]		= BIT(6),
679 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
680 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
681 	[VLAN_TABLE_VALID]		= BIT(12),
682 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
683 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
684 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
685 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
686 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
687 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
688 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
689 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
690 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
691 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
692 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
693 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
694 };
695 
696 static const u8 ksz8895_shifts[] = {
697 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
698 	[VLAN_TABLE]			= 13,
699 	[STATIC_MAC_FWD_PORTS]		= 16,
700 	[STATIC_MAC_FID]		= 24,
701 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
702 	[DYNAMIC_MAC_ENTRIES]		= 29,
703 	[DYNAMIC_MAC_FID]		= 16,
704 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
705 	[DYNAMIC_MAC_SRC_PORT]		= 24,
706 };
707 
708 static const u16 ksz9477_regs[] = {
709 	[REG_SW_MAC_ADDR]		= 0x0302,
710 	[P_STP_CTRL]			= 0x0B04,
711 	[S_START_CTRL]			= 0x0300,
712 	[S_BROADCAST_CTRL]		= 0x0332,
713 	[S_MULTICAST_CTRL]		= 0x0331,
714 	[P_XMII_CTRL_0]			= 0x0300,
715 	[P_XMII_CTRL_1]			= 0x0301,
716 	[REG_SW_PME_CTRL]		= 0x0006,
717 	[REG_PORT_PME_STATUS]		= 0x0013,
718 	[REG_PORT_PME_CTRL]		= 0x0017,
719 };
720 
721 static const u32 ksz9477_masks[] = {
722 	[ALU_STAT_WRITE]		= 0,
723 	[ALU_STAT_READ]			= 1,
724 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
725 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
726 };
727 
728 static const u8 ksz9477_shifts[] = {
729 	[ALU_STAT_INDEX]		= 16,
730 };
731 
732 static const u8 ksz9477_xmii_ctrl0[] = {
733 	[P_MII_100MBIT]			= 1,
734 	[P_MII_10MBIT]			= 0,
735 	[P_MII_FULL_DUPLEX]		= 1,
736 	[P_MII_HALF_DUPLEX]		= 0,
737 };
738 
739 static const u8 ksz9477_xmii_ctrl1[] = {
740 	[P_RGMII_SEL]			= 0,
741 	[P_RMII_SEL]			= 1,
742 	[P_GMII_SEL]			= 2,
743 	[P_MII_SEL]			= 3,
744 	[P_GMII_1GBIT]			= 0,
745 	[P_GMII_NOT_1GBIT]		= 1,
746 };
747 
748 static const u32 lan937x_masks[] = {
749 	[ALU_STAT_WRITE]		= 1,
750 	[ALU_STAT_READ]			= 2,
751 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
752 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
753 };
754 
755 static const u8 lan937x_shifts[] = {
756 	[ALU_STAT_INDEX]		= 8,
757 };
758 
759 static const struct regmap_range ksz8563_valid_regs[] = {
760 	regmap_reg_range(0x0000, 0x0003),
761 	regmap_reg_range(0x0006, 0x0006),
762 	regmap_reg_range(0x000f, 0x001f),
763 	regmap_reg_range(0x0100, 0x0100),
764 	regmap_reg_range(0x0104, 0x0107),
765 	regmap_reg_range(0x010d, 0x010d),
766 	regmap_reg_range(0x0110, 0x0113),
767 	regmap_reg_range(0x0120, 0x012b),
768 	regmap_reg_range(0x0201, 0x0201),
769 	regmap_reg_range(0x0210, 0x0213),
770 	regmap_reg_range(0x0300, 0x0300),
771 	regmap_reg_range(0x0302, 0x031b),
772 	regmap_reg_range(0x0320, 0x032b),
773 	regmap_reg_range(0x0330, 0x0336),
774 	regmap_reg_range(0x0338, 0x033e),
775 	regmap_reg_range(0x0340, 0x035f),
776 	regmap_reg_range(0x0370, 0x0370),
777 	regmap_reg_range(0x0378, 0x0378),
778 	regmap_reg_range(0x037c, 0x037d),
779 	regmap_reg_range(0x0390, 0x0393),
780 	regmap_reg_range(0x0400, 0x040e),
781 	regmap_reg_range(0x0410, 0x042f),
782 	regmap_reg_range(0x0500, 0x0519),
783 	regmap_reg_range(0x0520, 0x054b),
784 	regmap_reg_range(0x0550, 0x05b3),
785 
786 	/* port 1 */
787 	regmap_reg_range(0x1000, 0x1001),
788 	regmap_reg_range(0x1004, 0x100b),
789 	regmap_reg_range(0x1013, 0x1013),
790 	regmap_reg_range(0x1017, 0x1017),
791 	regmap_reg_range(0x101b, 0x101b),
792 	regmap_reg_range(0x101f, 0x1021),
793 	regmap_reg_range(0x1030, 0x1030),
794 	regmap_reg_range(0x1100, 0x1111),
795 	regmap_reg_range(0x111a, 0x111d),
796 	regmap_reg_range(0x1122, 0x1127),
797 	regmap_reg_range(0x112a, 0x112b),
798 	regmap_reg_range(0x1136, 0x1139),
799 	regmap_reg_range(0x113e, 0x113f),
800 	regmap_reg_range(0x1400, 0x1401),
801 	regmap_reg_range(0x1403, 0x1403),
802 	regmap_reg_range(0x1410, 0x1417),
803 	regmap_reg_range(0x1420, 0x1423),
804 	regmap_reg_range(0x1500, 0x1507),
805 	regmap_reg_range(0x1600, 0x1612),
806 	regmap_reg_range(0x1800, 0x180f),
807 	regmap_reg_range(0x1900, 0x1907),
808 	regmap_reg_range(0x1914, 0x191b),
809 	regmap_reg_range(0x1a00, 0x1a03),
810 	regmap_reg_range(0x1a04, 0x1a08),
811 	regmap_reg_range(0x1b00, 0x1b01),
812 	regmap_reg_range(0x1b04, 0x1b04),
813 	regmap_reg_range(0x1c00, 0x1c05),
814 	regmap_reg_range(0x1c08, 0x1c1b),
815 
816 	/* port 2 */
817 	regmap_reg_range(0x2000, 0x2001),
818 	regmap_reg_range(0x2004, 0x200b),
819 	regmap_reg_range(0x2013, 0x2013),
820 	regmap_reg_range(0x2017, 0x2017),
821 	regmap_reg_range(0x201b, 0x201b),
822 	regmap_reg_range(0x201f, 0x2021),
823 	regmap_reg_range(0x2030, 0x2030),
824 	regmap_reg_range(0x2100, 0x2111),
825 	regmap_reg_range(0x211a, 0x211d),
826 	regmap_reg_range(0x2122, 0x2127),
827 	regmap_reg_range(0x212a, 0x212b),
828 	regmap_reg_range(0x2136, 0x2139),
829 	regmap_reg_range(0x213e, 0x213f),
830 	regmap_reg_range(0x2400, 0x2401),
831 	regmap_reg_range(0x2403, 0x2403),
832 	regmap_reg_range(0x2410, 0x2417),
833 	regmap_reg_range(0x2420, 0x2423),
834 	regmap_reg_range(0x2500, 0x2507),
835 	regmap_reg_range(0x2600, 0x2612),
836 	regmap_reg_range(0x2800, 0x280f),
837 	regmap_reg_range(0x2900, 0x2907),
838 	regmap_reg_range(0x2914, 0x291b),
839 	regmap_reg_range(0x2a00, 0x2a03),
840 	regmap_reg_range(0x2a04, 0x2a08),
841 	regmap_reg_range(0x2b00, 0x2b01),
842 	regmap_reg_range(0x2b04, 0x2b04),
843 	regmap_reg_range(0x2c00, 0x2c05),
844 	regmap_reg_range(0x2c08, 0x2c1b),
845 
846 	/* port 3 */
847 	regmap_reg_range(0x3000, 0x3001),
848 	regmap_reg_range(0x3004, 0x300b),
849 	regmap_reg_range(0x3013, 0x3013),
850 	regmap_reg_range(0x3017, 0x3017),
851 	regmap_reg_range(0x301b, 0x301b),
852 	regmap_reg_range(0x301f, 0x3021),
853 	regmap_reg_range(0x3030, 0x3030),
854 	regmap_reg_range(0x3300, 0x3301),
855 	regmap_reg_range(0x3303, 0x3303),
856 	regmap_reg_range(0x3400, 0x3401),
857 	regmap_reg_range(0x3403, 0x3403),
858 	regmap_reg_range(0x3410, 0x3417),
859 	regmap_reg_range(0x3420, 0x3423),
860 	regmap_reg_range(0x3500, 0x3507),
861 	regmap_reg_range(0x3600, 0x3612),
862 	regmap_reg_range(0x3800, 0x380f),
863 	regmap_reg_range(0x3900, 0x3907),
864 	regmap_reg_range(0x3914, 0x391b),
865 	regmap_reg_range(0x3a00, 0x3a03),
866 	regmap_reg_range(0x3a04, 0x3a08),
867 	regmap_reg_range(0x3b00, 0x3b01),
868 	regmap_reg_range(0x3b04, 0x3b04),
869 	regmap_reg_range(0x3c00, 0x3c05),
870 	regmap_reg_range(0x3c08, 0x3c1b),
871 };
872 
873 static const struct regmap_access_table ksz8563_register_set = {
874 	.yes_ranges = ksz8563_valid_regs,
875 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
876 };
877 
878 static const struct regmap_range ksz9477_valid_regs[] = {
879 	regmap_reg_range(0x0000, 0x0003),
880 	regmap_reg_range(0x0006, 0x0006),
881 	regmap_reg_range(0x0010, 0x001f),
882 	regmap_reg_range(0x0100, 0x0100),
883 	regmap_reg_range(0x0103, 0x0107),
884 	regmap_reg_range(0x010d, 0x010d),
885 	regmap_reg_range(0x0110, 0x0113),
886 	regmap_reg_range(0x0120, 0x012b),
887 	regmap_reg_range(0x0201, 0x0201),
888 	regmap_reg_range(0x0210, 0x0213),
889 	regmap_reg_range(0x0300, 0x0300),
890 	regmap_reg_range(0x0302, 0x031b),
891 	regmap_reg_range(0x0320, 0x032b),
892 	regmap_reg_range(0x0330, 0x0336),
893 	regmap_reg_range(0x0338, 0x033b),
894 	regmap_reg_range(0x033e, 0x033e),
895 	regmap_reg_range(0x0340, 0x035f),
896 	regmap_reg_range(0x0370, 0x0370),
897 	regmap_reg_range(0x0378, 0x0378),
898 	regmap_reg_range(0x037c, 0x037d),
899 	regmap_reg_range(0x0390, 0x0393),
900 	regmap_reg_range(0x0400, 0x040e),
901 	regmap_reg_range(0x0410, 0x042f),
902 	regmap_reg_range(0x0444, 0x044b),
903 	regmap_reg_range(0x0450, 0x046f),
904 	regmap_reg_range(0x0500, 0x0519),
905 	regmap_reg_range(0x0520, 0x054b),
906 	regmap_reg_range(0x0550, 0x05b3),
907 	regmap_reg_range(0x0604, 0x060b),
908 	regmap_reg_range(0x0610, 0x0612),
909 	regmap_reg_range(0x0614, 0x062c),
910 	regmap_reg_range(0x0640, 0x0645),
911 	regmap_reg_range(0x0648, 0x064d),
912 
913 	/* port 1 */
914 	regmap_reg_range(0x1000, 0x1001),
915 	regmap_reg_range(0x1013, 0x1013),
916 	regmap_reg_range(0x1017, 0x1017),
917 	regmap_reg_range(0x101b, 0x101b),
918 	regmap_reg_range(0x101f, 0x1020),
919 	regmap_reg_range(0x1030, 0x1030),
920 	regmap_reg_range(0x1100, 0x1115),
921 	regmap_reg_range(0x111a, 0x111f),
922 	regmap_reg_range(0x1120, 0x112b),
923 	regmap_reg_range(0x1134, 0x113b),
924 	regmap_reg_range(0x113c, 0x113f),
925 	regmap_reg_range(0x1400, 0x1401),
926 	regmap_reg_range(0x1403, 0x1403),
927 	regmap_reg_range(0x1410, 0x1417),
928 	regmap_reg_range(0x1420, 0x1423),
929 	regmap_reg_range(0x1500, 0x1507),
930 	regmap_reg_range(0x1600, 0x1613),
931 	regmap_reg_range(0x1800, 0x180f),
932 	regmap_reg_range(0x1820, 0x1827),
933 	regmap_reg_range(0x1830, 0x1837),
934 	regmap_reg_range(0x1840, 0x184b),
935 	regmap_reg_range(0x1900, 0x1907),
936 	regmap_reg_range(0x1914, 0x191b),
937 	regmap_reg_range(0x1920, 0x1920),
938 	regmap_reg_range(0x1923, 0x1927),
939 	regmap_reg_range(0x1a00, 0x1a03),
940 	regmap_reg_range(0x1a04, 0x1a07),
941 	regmap_reg_range(0x1b00, 0x1b01),
942 	regmap_reg_range(0x1b04, 0x1b04),
943 	regmap_reg_range(0x1c00, 0x1c05),
944 	regmap_reg_range(0x1c08, 0x1c1b),
945 
946 	/* port 2 */
947 	regmap_reg_range(0x2000, 0x2001),
948 	regmap_reg_range(0x2013, 0x2013),
949 	regmap_reg_range(0x2017, 0x2017),
950 	regmap_reg_range(0x201b, 0x201b),
951 	regmap_reg_range(0x201f, 0x2020),
952 	regmap_reg_range(0x2030, 0x2030),
953 	regmap_reg_range(0x2100, 0x2115),
954 	regmap_reg_range(0x211a, 0x211f),
955 	regmap_reg_range(0x2120, 0x212b),
956 	regmap_reg_range(0x2134, 0x213b),
957 	regmap_reg_range(0x213c, 0x213f),
958 	regmap_reg_range(0x2400, 0x2401),
959 	regmap_reg_range(0x2403, 0x2403),
960 	regmap_reg_range(0x2410, 0x2417),
961 	regmap_reg_range(0x2420, 0x2423),
962 	regmap_reg_range(0x2500, 0x2507),
963 	regmap_reg_range(0x2600, 0x2613),
964 	regmap_reg_range(0x2800, 0x280f),
965 	regmap_reg_range(0x2820, 0x2827),
966 	regmap_reg_range(0x2830, 0x2837),
967 	regmap_reg_range(0x2840, 0x284b),
968 	regmap_reg_range(0x2900, 0x2907),
969 	regmap_reg_range(0x2914, 0x291b),
970 	regmap_reg_range(0x2920, 0x2920),
971 	regmap_reg_range(0x2923, 0x2927),
972 	regmap_reg_range(0x2a00, 0x2a03),
973 	regmap_reg_range(0x2a04, 0x2a07),
974 	regmap_reg_range(0x2b00, 0x2b01),
975 	regmap_reg_range(0x2b04, 0x2b04),
976 	regmap_reg_range(0x2c00, 0x2c05),
977 	regmap_reg_range(0x2c08, 0x2c1b),
978 
979 	/* port 3 */
980 	regmap_reg_range(0x3000, 0x3001),
981 	regmap_reg_range(0x3013, 0x3013),
982 	regmap_reg_range(0x3017, 0x3017),
983 	regmap_reg_range(0x301b, 0x301b),
984 	regmap_reg_range(0x301f, 0x3020),
985 	regmap_reg_range(0x3030, 0x3030),
986 	regmap_reg_range(0x3100, 0x3115),
987 	regmap_reg_range(0x311a, 0x311f),
988 	regmap_reg_range(0x3120, 0x312b),
989 	regmap_reg_range(0x3134, 0x313b),
990 	regmap_reg_range(0x313c, 0x313f),
991 	regmap_reg_range(0x3400, 0x3401),
992 	regmap_reg_range(0x3403, 0x3403),
993 	regmap_reg_range(0x3410, 0x3417),
994 	regmap_reg_range(0x3420, 0x3423),
995 	regmap_reg_range(0x3500, 0x3507),
996 	regmap_reg_range(0x3600, 0x3613),
997 	regmap_reg_range(0x3800, 0x380f),
998 	regmap_reg_range(0x3820, 0x3827),
999 	regmap_reg_range(0x3830, 0x3837),
1000 	regmap_reg_range(0x3840, 0x384b),
1001 	regmap_reg_range(0x3900, 0x3907),
1002 	regmap_reg_range(0x3914, 0x391b),
1003 	regmap_reg_range(0x3920, 0x3920),
1004 	regmap_reg_range(0x3923, 0x3927),
1005 	regmap_reg_range(0x3a00, 0x3a03),
1006 	regmap_reg_range(0x3a04, 0x3a07),
1007 	regmap_reg_range(0x3b00, 0x3b01),
1008 	regmap_reg_range(0x3b04, 0x3b04),
1009 	regmap_reg_range(0x3c00, 0x3c05),
1010 	regmap_reg_range(0x3c08, 0x3c1b),
1011 
1012 	/* port 4 */
1013 	regmap_reg_range(0x4000, 0x4001),
1014 	regmap_reg_range(0x4013, 0x4013),
1015 	regmap_reg_range(0x4017, 0x4017),
1016 	regmap_reg_range(0x401b, 0x401b),
1017 	regmap_reg_range(0x401f, 0x4020),
1018 	regmap_reg_range(0x4030, 0x4030),
1019 	regmap_reg_range(0x4100, 0x4115),
1020 	regmap_reg_range(0x411a, 0x411f),
1021 	regmap_reg_range(0x4120, 0x412b),
1022 	regmap_reg_range(0x4134, 0x413b),
1023 	regmap_reg_range(0x413c, 0x413f),
1024 	regmap_reg_range(0x4400, 0x4401),
1025 	regmap_reg_range(0x4403, 0x4403),
1026 	regmap_reg_range(0x4410, 0x4417),
1027 	regmap_reg_range(0x4420, 0x4423),
1028 	regmap_reg_range(0x4500, 0x4507),
1029 	regmap_reg_range(0x4600, 0x4613),
1030 	regmap_reg_range(0x4800, 0x480f),
1031 	regmap_reg_range(0x4820, 0x4827),
1032 	regmap_reg_range(0x4830, 0x4837),
1033 	regmap_reg_range(0x4840, 0x484b),
1034 	regmap_reg_range(0x4900, 0x4907),
1035 	regmap_reg_range(0x4914, 0x491b),
1036 	regmap_reg_range(0x4920, 0x4920),
1037 	regmap_reg_range(0x4923, 0x4927),
1038 	regmap_reg_range(0x4a00, 0x4a03),
1039 	regmap_reg_range(0x4a04, 0x4a07),
1040 	regmap_reg_range(0x4b00, 0x4b01),
1041 	regmap_reg_range(0x4b04, 0x4b04),
1042 	regmap_reg_range(0x4c00, 0x4c05),
1043 	regmap_reg_range(0x4c08, 0x4c1b),
1044 
1045 	/* port 5 */
1046 	regmap_reg_range(0x5000, 0x5001),
1047 	regmap_reg_range(0x5013, 0x5013),
1048 	regmap_reg_range(0x5017, 0x5017),
1049 	regmap_reg_range(0x501b, 0x501b),
1050 	regmap_reg_range(0x501f, 0x5020),
1051 	regmap_reg_range(0x5030, 0x5030),
1052 	regmap_reg_range(0x5100, 0x5115),
1053 	regmap_reg_range(0x511a, 0x511f),
1054 	regmap_reg_range(0x5120, 0x512b),
1055 	regmap_reg_range(0x5134, 0x513b),
1056 	regmap_reg_range(0x513c, 0x513f),
1057 	regmap_reg_range(0x5400, 0x5401),
1058 	regmap_reg_range(0x5403, 0x5403),
1059 	regmap_reg_range(0x5410, 0x5417),
1060 	regmap_reg_range(0x5420, 0x5423),
1061 	regmap_reg_range(0x5500, 0x5507),
1062 	regmap_reg_range(0x5600, 0x5613),
1063 	regmap_reg_range(0x5800, 0x580f),
1064 	regmap_reg_range(0x5820, 0x5827),
1065 	regmap_reg_range(0x5830, 0x5837),
1066 	regmap_reg_range(0x5840, 0x584b),
1067 	regmap_reg_range(0x5900, 0x5907),
1068 	regmap_reg_range(0x5914, 0x591b),
1069 	regmap_reg_range(0x5920, 0x5920),
1070 	regmap_reg_range(0x5923, 0x5927),
1071 	regmap_reg_range(0x5a00, 0x5a03),
1072 	regmap_reg_range(0x5a04, 0x5a07),
1073 	regmap_reg_range(0x5b00, 0x5b01),
1074 	regmap_reg_range(0x5b04, 0x5b04),
1075 	regmap_reg_range(0x5c00, 0x5c05),
1076 	regmap_reg_range(0x5c08, 0x5c1b),
1077 
1078 	/* port 6 */
1079 	regmap_reg_range(0x6000, 0x6001),
1080 	regmap_reg_range(0x6013, 0x6013),
1081 	regmap_reg_range(0x6017, 0x6017),
1082 	regmap_reg_range(0x601b, 0x601b),
1083 	regmap_reg_range(0x601f, 0x6020),
1084 	regmap_reg_range(0x6030, 0x6030),
1085 	regmap_reg_range(0x6300, 0x6301),
1086 	regmap_reg_range(0x6400, 0x6401),
1087 	regmap_reg_range(0x6403, 0x6403),
1088 	regmap_reg_range(0x6410, 0x6417),
1089 	regmap_reg_range(0x6420, 0x6423),
1090 	regmap_reg_range(0x6500, 0x6507),
1091 	regmap_reg_range(0x6600, 0x6613),
1092 	regmap_reg_range(0x6800, 0x680f),
1093 	regmap_reg_range(0x6820, 0x6827),
1094 	regmap_reg_range(0x6830, 0x6837),
1095 	regmap_reg_range(0x6840, 0x684b),
1096 	regmap_reg_range(0x6900, 0x6907),
1097 	regmap_reg_range(0x6914, 0x691b),
1098 	regmap_reg_range(0x6920, 0x6920),
1099 	regmap_reg_range(0x6923, 0x6927),
1100 	regmap_reg_range(0x6a00, 0x6a03),
1101 	regmap_reg_range(0x6a04, 0x6a07),
1102 	regmap_reg_range(0x6b00, 0x6b01),
1103 	regmap_reg_range(0x6b04, 0x6b04),
1104 	regmap_reg_range(0x6c00, 0x6c05),
1105 	regmap_reg_range(0x6c08, 0x6c1b),
1106 
1107 	/* port 7 */
1108 	regmap_reg_range(0x7000, 0x7001),
1109 	regmap_reg_range(0x7013, 0x7013),
1110 	regmap_reg_range(0x7017, 0x7017),
1111 	regmap_reg_range(0x701b, 0x701b),
1112 	regmap_reg_range(0x701f, 0x7020),
1113 	regmap_reg_range(0x7030, 0x7030),
1114 	regmap_reg_range(0x7200, 0x7207),
1115 	regmap_reg_range(0x7300, 0x7301),
1116 	regmap_reg_range(0x7400, 0x7401),
1117 	regmap_reg_range(0x7403, 0x7403),
1118 	regmap_reg_range(0x7410, 0x7417),
1119 	regmap_reg_range(0x7420, 0x7423),
1120 	regmap_reg_range(0x7500, 0x7507),
1121 	regmap_reg_range(0x7600, 0x7613),
1122 	regmap_reg_range(0x7800, 0x780f),
1123 	regmap_reg_range(0x7820, 0x7827),
1124 	regmap_reg_range(0x7830, 0x7837),
1125 	regmap_reg_range(0x7840, 0x784b),
1126 	regmap_reg_range(0x7900, 0x7907),
1127 	regmap_reg_range(0x7914, 0x791b),
1128 	regmap_reg_range(0x7920, 0x7920),
1129 	regmap_reg_range(0x7923, 0x7927),
1130 	regmap_reg_range(0x7a00, 0x7a03),
1131 	regmap_reg_range(0x7a04, 0x7a07),
1132 	regmap_reg_range(0x7b00, 0x7b01),
1133 	regmap_reg_range(0x7b04, 0x7b04),
1134 	regmap_reg_range(0x7c00, 0x7c05),
1135 	regmap_reg_range(0x7c08, 0x7c1b),
1136 };
1137 
1138 static const struct regmap_access_table ksz9477_register_set = {
1139 	.yes_ranges = ksz9477_valid_regs,
1140 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1141 };
1142 
1143 static const struct regmap_range ksz9896_valid_regs[] = {
1144 	regmap_reg_range(0x0000, 0x0003),
1145 	regmap_reg_range(0x0006, 0x0006),
1146 	regmap_reg_range(0x0010, 0x001f),
1147 	regmap_reg_range(0x0100, 0x0100),
1148 	regmap_reg_range(0x0103, 0x0107),
1149 	regmap_reg_range(0x010d, 0x010d),
1150 	regmap_reg_range(0x0110, 0x0113),
1151 	regmap_reg_range(0x0120, 0x0127),
1152 	regmap_reg_range(0x0201, 0x0201),
1153 	regmap_reg_range(0x0210, 0x0213),
1154 	regmap_reg_range(0x0300, 0x0300),
1155 	regmap_reg_range(0x0302, 0x030b),
1156 	regmap_reg_range(0x0310, 0x031b),
1157 	regmap_reg_range(0x0320, 0x032b),
1158 	regmap_reg_range(0x0330, 0x0336),
1159 	regmap_reg_range(0x0338, 0x033b),
1160 	regmap_reg_range(0x033e, 0x033e),
1161 	regmap_reg_range(0x0340, 0x035f),
1162 	regmap_reg_range(0x0370, 0x0370),
1163 	regmap_reg_range(0x0378, 0x0378),
1164 	regmap_reg_range(0x037c, 0x037d),
1165 	regmap_reg_range(0x0390, 0x0393),
1166 	regmap_reg_range(0x0400, 0x040e),
1167 	regmap_reg_range(0x0410, 0x042f),
1168 
1169 	/* port 1 */
1170 	regmap_reg_range(0x1000, 0x1001),
1171 	regmap_reg_range(0x1013, 0x1013),
1172 	regmap_reg_range(0x1017, 0x1017),
1173 	regmap_reg_range(0x101b, 0x101b),
1174 	regmap_reg_range(0x101f, 0x1020),
1175 	regmap_reg_range(0x1030, 0x1030),
1176 	regmap_reg_range(0x1100, 0x1115),
1177 	regmap_reg_range(0x111a, 0x111f),
1178 	regmap_reg_range(0x1120, 0x112b),
1179 	regmap_reg_range(0x1134, 0x113b),
1180 	regmap_reg_range(0x113c, 0x113f),
1181 	regmap_reg_range(0x1400, 0x1401),
1182 	regmap_reg_range(0x1403, 0x1403),
1183 	regmap_reg_range(0x1410, 0x1417),
1184 	regmap_reg_range(0x1420, 0x1423),
1185 	regmap_reg_range(0x1500, 0x1507),
1186 	regmap_reg_range(0x1600, 0x1612),
1187 	regmap_reg_range(0x1800, 0x180f),
1188 	regmap_reg_range(0x1820, 0x1827),
1189 	regmap_reg_range(0x1830, 0x1837),
1190 	regmap_reg_range(0x1840, 0x184b),
1191 	regmap_reg_range(0x1900, 0x1907),
1192 	regmap_reg_range(0x1914, 0x1915),
1193 	regmap_reg_range(0x1a00, 0x1a03),
1194 	regmap_reg_range(0x1a04, 0x1a07),
1195 	regmap_reg_range(0x1b00, 0x1b01),
1196 	regmap_reg_range(0x1b04, 0x1b04),
1197 
1198 	/* port 2 */
1199 	regmap_reg_range(0x2000, 0x2001),
1200 	regmap_reg_range(0x2013, 0x2013),
1201 	regmap_reg_range(0x2017, 0x2017),
1202 	regmap_reg_range(0x201b, 0x201b),
1203 	regmap_reg_range(0x201f, 0x2020),
1204 	regmap_reg_range(0x2030, 0x2030),
1205 	regmap_reg_range(0x2100, 0x2115),
1206 	regmap_reg_range(0x211a, 0x211f),
1207 	regmap_reg_range(0x2120, 0x212b),
1208 	regmap_reg_range(0x2134, 0x213b),
1209 	regmap_reg_range(0x213c, 0x213f),
1210 	regmap_reg_range(0x2400, 0x2401),
1211 	regmap_reg_range(0x2403, 0x2403),
1212 	regmap_reg_range(0x2410, 0x2417),
1213 	regmap_reg_range(0x2420, 0x2423),
1214 	regmap_reg_range(0x2500, 0x2507),
1215 	regmap_reg_range(0x2600, 0x2612),
1216 	regmap_reg_range(0x2800, 0x280f),
1217 	regmap_reg_range(0x2820, 0x2827),
1218 	regmap_reg_range(0x2830, 0x2837),
1219 	regmap_reg_range(0x2840, 0x284b),
1220 	regmap_reg_range(0x2900, 0x2907),
1221 	regmap_reg_range(0x2914, 0x2915),
1222 	regmap_reg_range(0x2a00, 0x2a03),
1223 	regmap_reg_range(0x2a04, 0x2a07),
1224 	regmap_reg_range(0x2b00, 0x2b01),
1225 	regmap_reg_range(0x2b04, 0x2b04),
1226 
1227 	/* port 3 */
1228 	regmap_reg_range(0x3000, 0x3001),
1229 	regmap_reg_range(0x3013, 0x3013),
1230 	regmap_reg_range(0x3017, 0x3017),
1231 	regmap_reg_range(0x301b, 0x301b),
1232 	regmap_reg_range(0x301f, 0x3020),
1233 	regmap_reg_range(0x3030, 0x3030),
1234 	regmap_reg_range(0x3100, 0x3115),
1235 	regmap_reg_range(0x311a, 0x311f),
1236 	regmap_reg_range(0x3120, 0x312b),
1237 	regmap_reg_range(0x3134, 0x313b),
1238 	regmap_reg_range(0x313c, 0x313f),
1239 	regmap_reg_range(0x3400, 0x3401),
1240 	regmap_reg_range(0x3403, 0x3403),
1241 	regmap_reg_range(0x3410, 0x3417),
1242 	regmap_reg_range(0x3420, 0x3423),
1243 	regmap_reg_range(0x3500, 0x3507),
1244 	regmap_reg_range(0x3600, 0x3612),
1245 	regmap_reg_range(0x3800, 0x380f),
1246 	regmap_reg_range(0x3820, 0x3827),
1247 	regmap_reg_range(0x3830, 0x3837),
1248 	regmap_reg_range(0x3840, 0x384b),
1249 	regmap_reg_range(0x3900, 0x3907),
1250 	regmap_reg_range(0x3914, 0x3915),
1251 	regmap_reg_range(0x3a00, 0x3a03),
1252 	regmap_reg_range(0x3a04, 0x3a07),
1253 	regmap_reg_range(0x3b00, 0x3b01),
1254 	regmap_reg_range(0x3b04, 0x3b04),
1255 
1256 	/* port 4 */
1257 	regmap_reg_range(0x4000, 0x4001),
1258 	regmap_reg_range(0x4013, 0x4013),
1259 	regmap_reg_range(0x4017, 0x4017),
1260 	regmap_reg_range(0x401b, 0x401b),
1261 	regmap_reg_range(0x401f, 0x4020),
1262 	regmap_reg_range(0x4030, 0x4030),
1263 	regmap_reg_range(0x4100, 0x4115),
1264 	regmap_reg_range(0x411a, 0x411f),
1265 	regmap_reg_range(0x4120, 0x412b),
1266 	regmap_reg_range(0x4134, 0x413b),
1267 	regmap_reg_range(0x413c, 0x413f),
1268 	regmap_reg_range(0x4400, 0x4401),
1269 	regmap_reg_range(0x4403, 0x4403),
1270 	regmap_reg_range(0x4410, 0x4417),
1271 	regmap_reg_range(0x4420, 0x4423),
1272 	regmap_reg_range(0x4500, 0x4507),
1273 	regmap_reg_range(0x4600, 0x4612),
1274 	regmap_reg_range(0x4800, 0x480f),
1275 	regmap_reg_range(0x4820, 0x4827),
1276 	regmap_reg_range(0x4830, 0x4837),
1277 	regmap_reg_range(0x4840, 0x484b),
1278 	regmap_reg_range(0x4900, 0x4907),
1279 	regmap_reg_range(0x4914, 0x4915),
1280 	regmap_reg_range(0x4a00, 0x4a03),
1281 	regmap_reg_range(0x4a04, 0x4a07),
1282 	regmap_reg_range(0x4b00, 0x4b01),
1283 	regmap_reg_range(0x4b04, 0x4b04),
1284 
1285 	/* port 5 */
1286 	regmap_reg_range(0x5000, 0x5001),
1287 	regmap_reg_range(0x5013, 0x5013),
1288 	regmap_reg_range(0x5017, 0x5017),
1289 	regmap_reg_range(0x501b, 0x501b),
1290 	regmap_reg_range(0x501f, 0x5020),
1291 	regmap_reg_range(0x5030, 0x5030),
1292 	regmap_reg_range(0x5100, 0x5115),
1293 	regmap_reg_range(0x511a, 0x511f),
1294 	regmap_reg_range(0x5120, 0x512b),
1295 	regmap_reg_range(0x5134, 0x513b),
1296 	regmap_reg_range(0x513c, 0x513f),
1297 	regmap_reg_range(0x5400, 0x5401),
1298 	regmap_reg_range(0x5403, 0x5403),
1299 	regmap_reg_range(0x5410, 0x5417),
1300 	regmap_reg_range(0x5420, 0x5423),
1301 	regmap_reg_range(0x5500, 0x5507),
1302 	regmap_reg_range(0x5600, 0x5612),
1303 	regmap_reg_range(0x5800, 0x580f),
1304 	regmap_reg_range(0x5820, 0x5827),
1305 	regmap_reg_range(0x5830, 0x5837),
1306 	regmap_reg_range(0x5840, 0x584b),
1307 	regmap_reg_range(0x5900, 0x5907),
1308 	regmap_reg_range(0x5914, 0x5915),
1309 	regmap_reg_range(0x5a00, 0x5a03),
1310 	regmap_reg_range(0x5a04, 0x5a07),
1311 	regmap_reg_range(0x5b00, 0x5b01),
1312 	regmap_reg_range(0x5b04, 0x5b04),
1313 
1314 	/* port 6 */
1315 	regmap_reg_range(0x6000, 0x6001),
1316 	regmap_reg_range(0x6013, 0x6013),
1317 	regmap_reg_range(0x6017, 0x6017),
1318 	regmap_reg_range(0x601b, 0x601b),
1319 	regmap_reg_range(0x601f, 0x6020),
1320 	regmap_reg_range(0x6030, 0x6030),
1321 	regmap_reg_range(0x6100, 0x6115),
1322 	regmap_reg_range(0x611a, 0x611f),
1323 	regmap_reg_range(0x6120, 0x612b),
1324 	regmap_reg_range(0x6134, 0x613b),
1325 	regmap_reg_range(0x613c, 0x613f),
1326 	regmap_reg_range(0x6300, 0x6301),
1327 	regmap_reg_range(0x6400, 0x6401),
1328 	regmap_reg_range(0x6403, 0x6403),
1329 	regmap_reg_range(0x6410, 0x6417),
1330 	regmap_reg_range(0x6420, 0x6423),
1331 	regmap_reg_range(0x6500, 0x6507),
1332 	regmap_reg_range(0x6600, 0x6612),
1333 	regmap_reg_range(0x6800, 0x680f),
1334 	regmap_reg_range(0x6820, 0x6827),
1335 	regmap_reg_range(0x6830, 0x6837),
1336 	regmap_reg_range(0x6840, 0x684b),
1337 	regmap_reg_range(0x6900, 0x6907),
1338 	regmap_reg_range(0x6914, 0x6915),
1339 	regmap_reg_range(0x6a00, 0x6a03),
1340 	regmap_reg_range(0x6a04, 0x6a07),
1341 	regmap_reg_range(0x6b00, 0x6b01),
1342 	regmap_reg_range(0x6b04, 0x6b04),
1343 };
1344 
1345 static const struct regmap_access_table ksz9896_register_set = {
1346 	.yes_ranges = ksz9896_valid_regs,
1347 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1348 };
1349 
1350 static const struct regmap_range ksz8873_valid_regs[] = {
1351 	regmap_reg_range(0x00, 0x01),
1352 	/* global control register */
1353 	regmap_reg_range(0x02, 0x0f),
1354 
1355 	/* port registers */
1356 	regmap_reg_range(0x10, 0x1d),
1357 	regmap_reg_range(0x1e, 0x1f),
1358 	regmap_reg_range(0x20, 0x2d),
1359 	regmap_reg_range(0x2e, 0x2f),
1360 	regmap_reg_range(0x30, 0x39),
1361 	regmap_reg_range(0x3f, 0x3f),
1362 
1363 	/* advanced control registers */
1364 	regmap_reg_range(0x60, 0x6f),
1365 	regmap_reg_range(0x70, 0x75),
1366 	regmap_reg_range(0x76, 0x78),
1367 	regmap_reg_range(0x79, 0x7a),
1368 	regmap_reg_range(0x7b, 0x83),
1369 	regmap_reg_range(0x8e, 0x99),
1370 	regmap_reg_range(0x9a, 0xa5),
1371 	regmap_reg_range(0xa6, 0xa6),
1372 	regmap_reg_range(0xa7, 0xaa),
1373 	regmap_reg_range(0xab, 0xae),
1374 	regmap_reg_range(0xaf, 0xba),
1375 	regmap_reg_range(0xbb, 0xbc),
1376 	regmap_reg_range(0xbd, 0xbd),
1377 	regmap_reg_range(0xc0, 0xc0),
1378 	regmap_reg_range(0xc2, 0xc2),
1379 	regmap_reg_range(0xc3, 0xc3),
1380 	regmap_reg_range(0xc4, 0xc4),
1381 	regmap_reg_range(0xc6, 0xc6),
1382 };
1383 
1384 static const struct regmap_access_table ksz8873_register_set = {
1385 	.yes_ranges = ksz8873_valid_regs,
1386 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1387 };
1388 
1389 const struct ksz_chip_data ksz_switch_chips[] = {
1390 	[KSZ8563] = {
1391 		.chip_id = KSZ8563_CHIP_ID,
1392 		.dev_name = "KSZ8563",
1393 		.num_vlans = 4096,
1394 		.num_alus = 4096,
1395 		.num_statics = 16,
1396 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1397 		.port_cnt = 3,		/* total port count */
1398 		.port_nirqs = 3,
1399 		.num_tx_queues = 4,
1400 		.num_ipms = 8,
1401 		.tc_cbs_supported = true,
1402 		.ops = &ksz9477_dev_ops,
1403 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1404 		.mib_names = ksz9477_mib_names,
1405 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1406 		.reg_mib_cnt = MIB_COUNTER_NUM,
1407 		.regs = ksz9477_regs,
1408 		.masks = ksz9477_masks,
1409 		.shifts = ksz9477_shifts,
1410 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1411 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1412 		.supports_mii = {false, false, true},
1413 		.supports_rmii = {false, false, true},
1414 		.supports_rgmii = {false, false, true},
1415 		.internal_phy = {true, true, false},
1416 		.gbit_capable = {false, false, true},
1417 		.ptp_capable = true,
1418 		.wr_table = &ksz8563_register_set,
1419 		.rd_table = &ksz8563_register_set,
1420 	},
1421 
1422 	[KSZ8795] = {
1423 		.chip_id = KSZ8795_CHIP_ID,
1424 		.dev_name = "KSZ8795",
1425 		.num_vlans = 4096,
1426 		.num_alus = 0,
1427 		.num_statics = 32,
1428 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1429 		.port_cnt = 5,		/* total cpu and user ports */
1430 		.num_tx_queues = 4,
1431 		.num_ipms = 4,
1432 		.ops = &ksz87xx_dev_ops,
1433 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1434 		.ksz87xx_eee_link_erratum = true,
1435 		.mib_names = ksz9477_mib_names,
1436 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1437 		.reg_mib_cnt = MIB_COUNTER_NUM,
1438 		.regs = ksz8795_regs,
1439 		.masks = ksz8795_masks,
1440 		.shifts = ksz8795_shifts,
1441 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1442 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1443 		.supports_mii = {false, false, false, false, true},
1444 		.supports_rmii = {false, false, false, false, true},
1445 		.supports_rgmii = {false, false, false, false, true},
1446 		.internal_phy = {true, true, true, true, false},
1447 	},
1448 
1449 	[KSZ8794] = {
1450 		/* WARNING
1451 		 * =======
1452 		 * KSZ8794 is similar to KSZ8795, except the port map
1453 		 * contains a gap between external and CPU ports, the
1454 		 * port map is NOT continuous. The per-port register
1455 		 * map is shifted accordingly too, i.e. registers at
1456 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1457 		 * used on KSZ8795 for external port 3.
1458 		 *           external  cpu
1459 		 * KSZ8794   0,1,2      4
1460 		 * KSZ8795   0,1,2,3    4
1461 		 * KSZ8765   0,1,2,3    4
1462 		 * port_cnt is configured as 5, even though it is 4
1463 		 */
1464 		.chip_id = KSZ8794_CHIP_ID,
1465 		.dev_name = "KSZ8794",
1466 		.num_vlans = 4096,
1467 		.num_alus = 0,
1468 		.num_statics = 32,
1469 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1470 		.port_cnt = 5,		/* total cpu and user ports */
1471 		.num_tx_queues = 4,
1472 		.num_ipms = 4,
1473 		.ops = &ksz87xx_dev_ops,
1474 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1475 		.ksz87xx_eee_link_erratum = true,
1476 		.mib_names = ksz9477_mib_names,
1477 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1478 		.reg_mib_cnt = MIB_COUNTER_NUM,
1479 		.regs = ksz8795_regs,
1480 		.masks = ksz8795_masks,
1481 		.shifts = ksz8795_shifts,
1482 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1483 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1484 		.supports_mii = {false, false, false, false, true},
1485 		.supports_rmii = {false, false, false, false, true},
1486 		.supports_rgmii = {false, false, false, false, true},
1487 		.internal_phy = {true, true, true, false, false},
1488 	},
1489 
1490 	[KSZ8765] = {
1491 		.chip_id = KSZ8765_CHIP_ID,
1492 		.dev_name = "KSZ8765",
1493 		.num_vlans = 4096,
1494 		.num_alus = 0,
1495 		.num_statics = 32,
1496 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1497 		.port_cnt = 5,		/* total cpu and user ports */
1498 		.num_tx_queues = 4,
1499 		.num_ipms = 4,
1500 		.ops = &ksz87xx_dev_ops,
1501 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1502 		.ksz87xx_eee_link_erratum = true,
1503 		.mib_names = ksz9477_mib_names,
1504 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1505 		.reg_mib_cnt = MIB_COUNTER_NUM,
1506 		.regs = ksz8795_regs,
1507 		.masks = ksz8795_masks,
1508 		.shifts = ksz8795_shifts,
1509 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1510 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1511 		.supports_mii = {false, false, false, false, true},
1512 		.supports_rmii = {false, false, false, false, true},
1513 		.supports_rgmii = {false, false, false, false, true},
1514 		.internal_phy = {true, true, true, true, false},
1515 	},
1516 
1517 	[KSZ88X3] = {
1518 		.chip_id = KSZ88X3_CHIP_ID,
1519 		.dev_name = "KSZ8863/KSZ8873",
1520 		.num_vlans = 16,
1521 		.num_alus = 0,
1522 		.num_statics = 8,
1523 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1524 		.port_cnt = 3,
1525 		.num_tx_queues = 4,
1526 		.num_ipms = 4,
1527 		.ops = &ksz88xx_dev_ops,
1528 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1529 		.mib_names = ksz88xx_mib_names,
1530 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1531 		.reg_mib_cnt = MIB_COUNTER_NUM,
1532 		.regs = ksz8863_regs,
1533 		.masks = ksz8863_masks,
1534 		.shifts = ksz8863_shifts,
1535 		.supports_mii = {false, false, true},
1536 		.supports_rmii = {false, false, true},
1537 		.internal_phy = {true, true, false},
1538 		.wr_table = &ksz8873_register_set,
1539 		.rd_table = &ksz8873_register_set,
1540 	},
1541 
1542 	[KSZ8864] = {
1543 		/* WARNING
1544 		 * =======
1545 		 * KSZ8864 is similar to KSZ8895, except the first port
1546 		 * does not exist.
1547 		 *           external  cpu
1548 		 * KSZ8864   1,2,3      4
1549 		 * KSZ8895   0,1,2,3    4
1550 		 * port_cnt is configured as 5, even though it is 4
1551 		 */
1552 		.chip_id = KSZ8864_CHIP_ID,
1553 		.dev_name = "KSZ8864",
1554 		.num_vlans = 4096,
1555 		.num_alus = 0,
1556 		.num_statics = 32,
1557 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1558 		.port_cnt = 5,		/* total cpu and user ports */
1559 		.num_tx_queues = 4,
1560 		.num_ipms = 4,
1561 		.ops = &ksz88xx_dev_ops,
1562 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1563 		.mib_names = ksz88xx_mib_names,
1564 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1565 		.reg_mib_cnt = MIB_COUNTER_NUM,
1566 		.regs = ksz8895_regs,
1567 		.masks = ksz8895_masks,
1568 		.shifts = ksz8895_shifts,
1569 		.supports_mii = {false, false, false, false, true},
1570 		.supports_rmii = {false, false, false, false, true},
1571 		.internal_phy = {false, true, true, true, false},
1572 	},
1573 
1574 	[KSZ8895] = {
1575 		.chip_id = KSZ8895_CHIP_ID,
1576 		.dev_name = "KSZ8895",
1577 		.num_vlans = 4096,
1578 		.num_alus = 0,
1579 		.num_statics = 32,
1580 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1581 		.port_cnt = 5,		/* total cpu and user ports */
1582 		.num_tx_queues = 4,
1583 		.num_ipms = 4,
1584 		.ops = &ksz88xx_dev_ops,
1585 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1586 		.mib_names = ksz88xx_mib_names,
1587 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1588 		.reg_mib_cnt = MIB_COUNTER_NUM,
1589 		.regs = ksz8895_regs,
1590 		.masks = ksz8895_masks,
1591 		.shifts = ksz8895_shifts,
1592 		.supports_mii = {false, false, false, false, true},
1593 		.supports_rmii = {false, false, false, false, true},
1594 		.internal_phy = {true, true, true, true, false},
1595 	},
1596 
1597 	[KSZ9477] = {
1598 		.chip_id = KSZ9477_CHIP_ID,
1599 		.dev_name = "KSZ9477",
1600 		.num_vlans = 4096,
1601 		.num_alus = 4096,
1602 		.num_statics = 16,
1603 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1604 		.port_cnt = 7,		/* total physical port count */
1605 		.port_nirqs = 4,
1606 		.num_tx_queues = 4,
1607 		.num_ipms = 8,
1608 		.tc_cbs_supported = true,
1609 		.ops = &ksz9477_dev_ops,
1610 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1611 		.phy_errata_9477 = true,
1612 		.mib_names = ksz9477_mib_names,
1613 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1614 		.reg_mib_cnt = MIB_COUNTER_NUM,
1615 		.regs = ksz9477_regs,
1616 		.masks = ksz9477_masks,
1617 		.shifts = ksz9477_shifts,
1618 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1619 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1620 		.supports_mii	= {false, false, false, false,
1621 				   false, true, false},
1622 		.supports_rmii	= {false, false, false, false,
1623 				   false, true, false},
1624 		.supports_rgmii = {false, false, false, false,
1625 				   false, true, false},
1626 		.internal_phy	= {true, true, true, true,
1627 				   true, false, false},
1628 		.gbit_capable	= {true, true, true, true, true, true, true},
1629 		.ptp_capable = true,
1630 		.sgmii_port = 7,
1631 		.wr_table = &ksz9477_register_set,
1632 		.rd_table = &ksz9477_register_set,
1633 	},
1634 
1635 	[KSZ9896] = {
1636 		.chip_id = KSZ9896_CHIP_ID,
1637 		.dev_name = "KSZ9896",
1638 		.num_vlans = 4096,
1639 		.num_alus = 4096,
1640 		.num_statics = 16,
1641 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1642 		.port_cnt = 6,		/* total physical port count */
1643 		.port_nirqs = 2,
1644 		.num_tx_queues = 4,
1645 		.num_ipms = 8,
1646 		.ops = &ksz9477_dev_ops,
1647 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1648 		.phy_errata_9477 = true,
1649 		.mib_names = ksz9477_mib_names,
1650 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1651 		.reg_mib_cnt = MIB_COUNTER_NUM,
1652 		.regs = ksz9477_regs,
1653 		.masks = ksz9477_masks,
1654 		.shifts = ksz9477_shifts,
1655 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1656 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1657 		.supports_mii	= {false, false, false, false,
1658 				   false, true},
1659 		.supports_rmii	= {false, false, false, false,
1660 				   false, true},
1661 		.supports_rgmii = {false, false, false, false,
1662 				   false, true},
1663 		.internal_phy	= {true, true, true, true,
1664 				   true, false},
1665 		.gbit_capable	= {true, true, true, true, true, true},
1666 		.wr_table = &ksz9896_register_set,
1667 		.rd_table = &ksz9896_register_set,
1668 	},
1669 
1670 	[KSZ9897] = {
1671 		.chip_id = KSZ9897_CHIP_ID,
1672 		.dev_name = "KSZ9897",
1673 		.num_vlans = 4096,
1674 		.num_alus = 4096,
1675 		.num_statics = 16,
1676 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1677 		.port_cnt = 7,		/* total physical port count */
1678 		.port_nirqs = 2,
1679 		.num_tx_queues = 4,
1680 		.num_ipms = 8,
1681 		.ops = &ksz9477_dev_ops,
1682 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1683 		.phy_errata_9477 = true,
1684 		.mib_names = ksz9477_mib_names,
1685 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1686 		.reg_mib_cnt = MIB_COUNTER_NUM,
1687 		.regs = ksz9477_regs,
1688 		.masks = ksz9477_masks,
1689 		.shifts = ksz9477_shifts,
1690 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1691 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1692 		.supports_mii	= {false, false, false, false,
1693 				   false, true, true},
1694 		.supports_rmii	= {false, false, false, false,
1695 				   false, true, true},
1696 		.supports_rgmii = {false, false, false, false,
1697 				   false, true, true},
1698 		.internal_phy	= {true, true, true, true,
1699 				   true, false, false},
1700 		.gbit_capable	= {true, true, true, true, true, true, true},
1701 	},
1702 
1703 	[KSZ9893] = {
1704 		.chip_id = KSZ9893_CHIP_ID,
1705 		.dev_name = "KSZ9893",
1706 		.num_vlans = 4096,
1707 		.num_alus = 4096,
1708 		.num_statics = 16,
1709 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1710 		.port_cnt = 3,		/* total port count */
1711 		.port_nirqs = 2,
1712 		.num_tx_queues = 4,
1713 		.num_ipms = 8,
1714 		.ops = &ksz9477_dev_ops,
1715 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1716 		.mib_names = ksz9477_mib_names,
1717 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1718 		.reg_mib_cnt = MIB_COUNTER_NUM,
1719 		.regs = ksz9477_regs,
1720 		.masks = ksz9477_masks,
1721 		.shifts = ksz9477_shifts,
1722 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1723 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1724 		.supports_mii = {false, false, true},
1725 		.supports_rmii = {false, false, true},
1726 		.supports_rgmii = {false, false, true},
1727 		.internal_phy = {true, true, false},
1728 		.gbit_capable = {true, true, true},
1729 	},
1730 
1731 	[KSZ9563] = {
1732 		.chip_id = KSZ9563_CHIP_ID,
1733 		.dev_name = "KSZ9563",
1734 		.num_vlans = 4096,
1735 		.num_alus = 4096,
1736 		.num_statics = 16,
1737 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1738 		.port_cnt = 3,		/* total port count */
1739 		.port_nirqs = 3,
1740 		.num_tx_queues = 4,
1741 		.num_ipms = 8,
1742 		.tc_cbs_supported = true,
1743 		.ops = &ksz9477_dev_ops,
1744 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1745 		.mib_names = ksz9477_mib_names,
1746 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1747 		.reg_mib_cnt = MIB_COUNTER_NUM,
1748 		.regs = ksz9477_regs,
1749 		.masks = ksz9477_masks,
1750 		.shifts = ksz9477_shifts,
1751 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1752 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1753 		.supports_mii = {false, false, true},
1754 		.supports_rmii = {false, false, true},
1755 		.supports_rgmii = {false, false, true},
1756 		.internal_phy = {true, true, false},
1757 		.gbit_capable = {true, true, true},
1758 		.ptp_capable = true,
1759 	},
1760 
1761 	[KSZ8567] = {
1762 		.chip_id = KSZ8567_CHIP_ID,
1763 		.dev_name = "KSZ8567",
1764 		.num_vlans = 4096,
1765 		.num_alus = 4096,
1766 		.num_statics = 16,
1767 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1768 		.port_cnt = 7,		/* total port count */
1769 		.port_nirqs = 3,
1770 		.num_tx_queues = 4,
1771 		.num_ipms = 8,
1772 		.tc_cbs_supported = true,
1773 		.ops = &ksz9477_dev_ops,
1774 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1775 		.phy_errata_9477 = true,
1776 		.mib_names = ksz9477_mib_names,
1777 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1778 		.reg_mib_cnt = MIB_COUNTER_NUM,
1779 		.regs = ksz9477_regs,
1780 		.masks = ksz9477_masks,
1781 		.shifts = ksz9477_shifts,
1782 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1783 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1784 		.supports_mii	= {false, false, false, false,
1785 				   false, true, true},
1786 		.supports_rmii	= {false, false, false, false,
1787 				   false, true, true},
1788 		.supports_rgmii = {false, false, false, false,
1789 				   false, true, true},
1790 		.internal_phy	= {true, true, true, true,
1791 				   true, false, false},
1792 		.gbit_capable	= {false, false, false, false, false,
1793 				   true, true},
1794 		.ptp_capable = true,
1795 	},
1796 
1797 	[KSZ9567] = {
1798 		.chip_id = KSZ9567_CHIP_ID,
1799 		.dev_name = "KSZ9567",
1800 		.num_vlans = 4096,
1801 		.num_alus = 4096,
1802 		.num_statics = 16,
1803 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1804 		.port_cnt = 7,		/* total physical port count */
1805 		.port_nirqs = 3,
1806 		.num_tx_queues = 4,
1807 		.num_ipms = 8,
1808 		.tc_cbs_supported = true,
1809 		.ops = &ksz9477_dev_ops,
1810 		.mib_names = ksz9477_mib_names,
1811 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1812 		.reg_mib_cnt = MIB_COUNTER_NUM,
1813 		.regs = ksz9477_regs,
1814 		.masks = ksz9477_masks,
1815 		.shifts = ksz9477_shifts,
1816 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1817 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1818 		.supports_mii	= {false, false, false, false,
1819 				   false, true, true},
1820 		.supports_rmii	= {false, false, false, false,
1821 				   false, true, true},
1822 		.supports_rgmii = {false, false, false, false,
1823 				   false, true, true},
1824 		.internal_phy	= {true, true, true, true,
1825 				   true, false, false},
1826 		.gbit_capable	= {true, true, true, true, true, true, true},
1827 		.ptp_capable = true,
1828 	},
1829 
1830 	[LAN9370] = {
1831 		.chip_id = LAN9370_CHIP_ID,
1832 		.dev_name = "LAN9370",
1833 		.num_vlans = 4096,
1834 		.num_alus = 1024,
1835 		.num_statics = 256,
1836 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1837 		.port_cnt = 5,		/* total physical port count */
1838 		.port_nirqs = 6,
1839 		.num_tx_queues = 8,
1840 		.num_ipms = 8,
1841 		.tc_cbs_supported = true,
1842 		.phy_side_mdio_supported = true,
1843 		.ops = &lan937x_dev_ops,
1844 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1845 		.mib_names = ksz9477_mib_names,
1846 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1847 		.reg_mib_cnt = MIB_COUNTER_NUM,
1848 		.regs = ksz9477_regs,
1849 		.masks = lan937x_masks,
1850 		.shifts = lan937x_shifts,
1851 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1852 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1853 		.supports_mii = {false, false, false, false, true},
1854 		.supports_rmii = {false, false, false, false, true},
1855 		.supports_rgmii = {false, false, false, false, true},
1856 		.internal_phy = {true, true, true, true, false},
1857 		.ptp_capable = true,
1858 	},
1859 
1860 	[LAN9371] = {
1861 		.chip_id = LAN9371_CHIP_ID,
1862 		.dev_name = "LAN9371",
1863 		.num_vlans = 4096,
1864 		.num_alus = 1024,
1865 		.num_statics = 256,
1866 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1867 		.port_cnt = 6,		/* total physical port count */
1868 		.port_nirqs = 6,
1869 		.num_tx_queues = 8,
1870 		.num_ipms = 8,
1871 		.tc_cbs_supported = true,
1872 		.phy_side_mdio_supported = true,
1873 		.ops = &lan937x_dev_ops,
1874 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1875 		.mib_names = ksz9477_mib_names,
1876 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1877 		.reg_mib_cnt = MIB_COUNTER_NUM,
1878 		.regs = ksz9477_regs,
1879 		.masks = lan937x_masks,
1880 		.shifts = lan937x_shifts,
1881 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1882 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1883 		.supports_mii = {false, false, false, false, true, true},
1884 		.supports_rmii = {false, false, false, false, true, true},
1885 		.supports_rgmii = {false, false, false, false, true, true},
1886 		.internal_phy = {true, true, true, true, false, false},
1887 		.ptp_capable = true,
1888 	},
1889 
1890 	[LAN9372] = {
1891 		.chip_id = LAN9372_CHIP_ID,
1892 		.dev_name = "LAN9372",
1893 		.num_vlans = 4096,
1894 		.num_alus = 1024,
1895 		.num_statics = 256,
1896 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1897 		.port_cnt = 8,		/* total physical port count */
1898 		.port_nirqs = 6,
1899 		.num_tx_queues = 8,
1900 		.num_ipms = 8,
1901 		.tc_cbs_supported = true,
1902 		.phy_side_mdio_supported = true,
1903 		.ops = &lan937x_dev_ops,
1904 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1905 		.mib_names = ksz9477_mib_names,
1906 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1907 		.reg_mib_cnt = MIB_COUNTER_NUM,
1908 		.regs = ksz9477_regs,
1909 		.masks = lan937x_masks,
1910 		.shifts = lan937x_shifts,
1911 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1912 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1913 		.supports_mii	= {false, false, false, false,
1914 				   true, true, false, false},
1915 		.supports_rmii	= {false, false, false, false,
1916 				   true, true, false, false},
1917 		.supports_rgmii = {false, false, false, false,
1918 				   true, true, false, false},
1919 		.internal_phy	= {true, true, true, true,
1920 				   false, false, true, true},
1921 		.ptp_capable = true,
1922 	},
1923 
1924 	[LAN9373] = {
1925 		.chip_id = LAN9373_CHIP_ID,
1926 		.dev_name = "LAN9373",
1927 		.num_vlans = 4096,
1928 		.num_alus = 1024,
1929 		.num_statics = 256,
1930 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1931 		.port_cnt = 5,		/* total physical port count */
1932 		.port_nirqs = 6,
1933 		.num_tx_queues = 8,
1934 		.num_ipms = 8,
1935 		.tc_cbs_supported = true,
1936 		.phy_side_mdio_supported = true,
1937 		.ops = &lan937x_dev_ops,
1938 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1939 		.mib_names = ksz9477_mib_names,
1940 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1941 		.reg_mib_cnt = MIB_COUNTER_NUM,
1942 		.regs = ksz9477_regs,
1943 		.masks = lan937x_masks,
1944 		.shifts = lan937x_shifts,
1945 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1946 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1947 		.supports_mii	= {false, false, false, false,
1948 				   true, true, false, false},
1949 		.supports_rmii	= {false, false, false, false,
1950 				   true, true, false, false},
1951 		.supports_rgmii = {false, false, false, false,
1952 				   true, true, false, false},
1953 		.internal_phy	= {true, true, true, false,
1954 				   false, false, true, true},
1955 		.ptp_capable = true,
1956 	},
1957 
1958 	[LAN9374] = {
1959 		.chip_id = LAN9374_CHIP_ID,
1960 		.dev_name = "LAN9374",
1961 		.num_vlans = 4096,
1962 		.num_alus = 1024,
1963 		.num_statics = 256,
1964 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1965 		.port_cnt = 8,		/* total physical port count */
1966 		.port_nirqs = 6,
1967 		.num_tx_queues = 8,
1968 		.num_ipms = 8,
1969 		.tc_cbs_supported = true,
1970 		.phy_side_mdio_supported = true,
1971 		.ops = &lan937x_dev_ops,
1972 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1973 		.mib_names = ksz9477_mib_names,
1974 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1975 		.reg_mib_cnt = MIB_COUNTER_NUM,
1976 		.regs = ksz9477_regs,
1977 		.masks = lan937x_masks,
1978 		.shifts = lan937x_shifts,
1979 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1980 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1981 		.supports_mii	= {false, false, false, false,
1982 				   true, true, false, false},
1983 		.supports_rmii	= {false, false, false, false,
1984 				   true, true, false, false},
1985 		.supports_rgmii = {false, false, false, false,
1986 				   true, true, false, false},
1987 		.internal_phy	= {true, true, true, true,
1988 				   false, false, true, true},
1989 		.ptp_capable = true,
1990 	},
1991 
1992 	[LAN9646] = {
1993 		.chip_id = LAN9646_CHIP_ID,
1994 		.dev_name = "LAN9646",
1995 		.num_vlans = 4096,
1996 		.num_alus = 4096,
1997 		.num_statics = 16,
1998 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1999 		.port_cnt = 7,		/* total physical port count */
2000 		.port_nirqs = 4,
2001 		.num_tx_queues = 4,
2002 		.num_ipms = 8,
2003 		.ops = &ksz9477_dev_ops,
2004 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2005 		.phy_errata_9477 = true,
2006 		.mib_names = ksz9477_mib_names,
2007 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2008 		.reg_mib_cnt = MIB_COUNTER_NUM,
2009 		.regs = ksz9477_regs,
2010 		.masks = ksz9477_masks,
2011 		.shifts = ksz9477_shifts,
2012 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2013 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2014 		.supports_mii	= {false, false, false, false,
2015 				   false, true, true},
2016 		.supports_rmii	= {false, false, false, false,
2017 				   false, true, true},
2018 		.supports_rgmii = {false, false, false, false,
2019 				   false, true, true},
2020 		.internal_phy	= {true, true, true, true,
2021 				   true, false, false},
2022 		.gbit_capable	= {true, true, true, true, true, true, true},
2023 		.sgmii_port = 7,
2024 		.wr_table = &ksz9477_register_set,
2025 		.rd_table = &ksz9477_register_set,
2026 	},
2027 };
2028 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2029 
2030 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2031 {
2032 	int i;
2033 
2034 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2035 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2036 
2037 		if (chip->chip_id == prod_num)
2038 			return chip;
2039 	}
2040 
2041 	return NULL;
2042 }
2043 
2044 static int ksz_check_device_id(struct ksz_device *dev)
2045 {
2046 	const struct ksz_chip_data *expected_chip_data;
2047 	u32 expected_chip_id;
2048 
2049 	if (dev->pdata) {
2050 		expected_chip_id = dev->pdata->chip_id;
2051 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2052 		if (WARN_ON(!expected_chip_data))
2053 			return -ENODEV;
2054 	} else {
2055 		expected_chip_data = of_device_get_match_data(dev->dev);
2056 		expected_chip_id = expected_chip_data->chip_id;
2057 	}
2058 
2059 	if (expected_chip_id != dev->chip_id) {
2060 		dev_err(dev->dev,
2061 			"Device tree specifies chip %s but found %s, please fix it!\n",
2062 			expected_chip_data->dev_name, dev->info->dev_name);
2063 		return -ENODEV;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2070 				 struct phylink_config *config)
2071 {
2072 	struct ksz_device *dev = ds->priv;
2073 
2074 	if (dev->info->supports_mii[port])
2075 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2076 
2077 	if (dev->info->supports_rmii[port])
2078 		__set_bit(PHY_INTERFACE_MODE_RMII,
2079 			  config->supported_interfaces);
2080 
2081 	if (dev->info->supports_rgmii[port])
2082 		phy_interface_set_rgmii(config->supported_interfaces);
2083 
2084 	if (dev->info->internal_phy[port]) {
2085 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2086 			  config->supported_interfaces);
2087 		/* Compatibility for phylib's default interface type when the
2088 		 * phy-mode property is absent
2089 		 */
2090 		__set_bit(PHY_INTERFACE_MODE_GMII,
2091 			  config->supported_interfaces);
2092 	}
2093 
2094 	if (dev->dev_ops->get_caps)
2095 		dev->dev_ops->get_caps(dev, port, config);
2096 
2097 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2098 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2099 		       sizeof(config->lpi_interfaces));
2100 
2101 		config->lpi_capabilities = MAC_100FD;
2102 		if (dev->info->gbit_capable[port])
2103 			config->lpi_capabilities |= MAC_1000FD;
2104 
2105 		/* EEE is fully operational */
2106 		config->eee_enabled_default = true;
2107 	}
2108 }
2109 
2110 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2111 {
2112 	struct ethtool_pause_stats *pstats;
2113 	struct rtnl_link_stats64 *stats;
2114 	struct ksz_stats_raw *raw;
2115 	struct ksz_port_mib *mib;
2116 	int ret;
2117 
2118 	mib = &dev->ports[port].mib;
2119 	stats = &mib->stats64;
2120 	pstats = &mib->pause_stats;
2121 	raw = (struct ksz_stats_raw *)mib->counters;
2122 
2123 	spin_lock(&mib->stats64_lock);
2124 
2125 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2126 		raw->rx_pause;
2127 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2128 		raw->tx_pause;
2129 
2130 	/* HW counters are counting bytes + FCS which is not acceptable
2131 	 * for rtnl_link_stats64 interface
2132 	 */
2133 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2134 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2135 
2136 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2137 		raw->rx_oversize;
2138 
2139 	stats->rx_crc_errors = raw->rx_crc_err;
2140 	stats->rx_frame_errors = raw->rx_align_err;
2141 	stats->rx_dropped = raw->rx_discards;
2142 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2143 		stats->rx_frame_errors  + stats->rx_dropped;
2144 
2145 	stats->tx_window_errors = raw->tx_late_col;
2146 	stats->tx_fifo_errors = raw->tx_discards;
2147 	stats->tx_aborted_errors = raw->tx_exc_col;
2148 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2149 		stats->tx_aborted_errors;
2150 
2151 	stats->multicast = raw->rx_mcast;
2152 	stats->collisions = raw->tx_total_col;
2153 
2154 	pstats->tx_pause_frames = raw->tx_pause;
2155 	pstats->rx_pause_frames = raw->rx_pause;
2156 
2157 	spin_unlock(&mib->stats64_lock);
2158 
2159 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2160 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2161 		if (ret)
2162 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2163 	}
2164 }
2165 
2166 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2167 {
2168 	struct ethtool_pause_stats *pstats;
2169 	struct rtnl_link_stats64 *stats;
2170 	struct ksz88xx_stats_raw *raw;
2171 	struct ksz_port_mib *mib;
2172 
2173 	mib = &dev->ports[port].mib;
2174 	stats = &mib->stats64;
2175 	pstats = &mib->pause_stats;
2176 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2177 
2178 	spin_lock(&mib->stats64_lock);
2179 
2180 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2181 		raw->rx_pause;
2182 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2183 		raw->tx_pause;
2184 
2185 	/* HW counters are counting bytes + FCS which is not acceptable
2186 	 * for rtnl_link_stats64 interface
2187 	 */
2188 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2189 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2190 
2191 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2192 		raw->rx_oversize;
2193 
2194 	stats->rx_crc_errors = raw->rx_crc_err;
2195 	stats->rx_frame_errors = raw->rx_align_err;
2196 	stats->rx_dropped = raw->rx_discards;
2197 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2198 		stats->rx_frame_errors  + stats->rx_dropped;
2199 
2200 	stats->tx_window_errors = raw->tx_late_col;
2201 	stats->tx_fifo_errors = raw->tx_discards;
2202 	stats->tx_aborted_errors = raw->tx_exc_col;
2203 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2204 		stats->tx_aborted_errors;
2205 
2206 	stats->multicast = raw->rx_mcast;
2207 	stats->collisions = raw->tx_total_col;
2208 
2209 	pstats->tx_pause_frames = raw->tx_pause;
2210 	pstats->rx_pause_frames = raw->rx_pause;
2211 
2212 	spin_unlock(&mib->stats64_lock);
2213 }
2214 
2215 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2216 			    struct rtnl_link_stats64 *s)
2217 {
2218 	struct ksz_device *dev = ds->priv;
2219 	struct ksz_port_mib *mib;
2220 
2221 	mib = &dev->ports[port].mib;
2222 
2223 	spin_lock(&mib->stats64_lock);
2224 	memcpy(s, &mib->stats64, sizeof(*s));
2225 	spin_unlock(&mib->stats64_lock);
2226 }
2227 
2228 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2229 				struct ethtool_pause_stats *pause_stats)
2230 {
2231 	struct ksz_device *dev = ds->priv;
2232 	struct ksz_port_mib *mib;
2233 
2234 	mib = &dev->ports[port].mib;
2235 
2236 	spin_lock(&mib->stats64_lock);
2237 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2238 	spin_unlock(&mib->stats64_lock);
2239 }
2240 
2241 static void ksz_get_strings(struct dsa_switch *ds, int port,
2242 			    u32 stringset, uint8_t *buf)
2243 {
2244 	struct ksz_device *dev = ds->priv;
2245 	int i;
2246 
2247 	if (stringset != ETH_SS_STATS)
2248 		return;
2249 
2250 	for (i = 0; i < dev->info->mib_cnt; i++)
2251 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2252 }
2253 
2254 /**
2255  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2256  *			    isolation settings.
2257  * @dev: A pointer to the struct ksz_device representing the device.
2258  * @port: The port number to adjust.
2259  *
2260  * This function dynamically adjusts the port membership configuration for a
2261  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2262  * states and port isolation settings. Each port, including the CPU port, has a
2263  * membership register, represented as a bitfield, where each bit corresponds
2264  * to a port number. A set bit indicates permission to forward frames to that
2265  * port. This function iterates over all ports, updating the membership register
2266  * to reflect current forwarding permissions:
2267  *
2268  * 1. Forwards frames only to ports that are part of the same bridge group and
2269  *    in the BR_STATE_FORWARDING state.
2270  * 2. Takes into account the isolation status of ports; ports in the
2271  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2272  *    frames to each other, even if they are in the same bridge group.
2273  * 3. Ensures that the CPU port is included in the membership based on its
2274  *    upstream port configuration, allowing for management and control traffic
2275  *    to flow as required.
2276  */
2277 static void ksz_update_port_member(struct ksz_device *dev, int port)
2278 {
2279 	struct ksz_port *p = &dev->ports[port];
2280 	struct dsa_switch *ds = dev->ds;
2281 	u8 port_member = 0, cpu_port;
2282 	const struct dsa_port *dp;
2283 	int i, j;
2284 
2285 	if (!dsa_is_user_port(ds, port))
2286 		return;
2287 
2288 	dp = dsa_to_port(ds, port);
2289 	cpu_port = BIT(dsa_upstream_port(ds, port));
2290 
2291 	for (i = 0; i < ds->num_ports; i++) {
2292 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2293 		struct ksz_port *other_p = &dev->ports[i];
2294 		u8 val = 0;
2295 
2296 		if (!dsa_is_user_port(ds, i))
2297 			continue;
2298 		if (port == i)
2299 			continue;
2300 		if (!dsa_port_bridge_same(dp, other_dp))
2301 			continue;
2302 		if (other_p->stp_state != BR_STATE_FORWARDING)
2303 			continue;
2304 
2305 		/* At this point we know that "port" and "other" port [i] are in
2306 		 * the same bridge group and that "other" port [i] is in
2307 		 * forwarding stp state. If "port" is also in forwarding stp
2308 		 * state, we can allow forwarding from port [port] to port [i].
2309 		 * Except if both ports are isolated.
2310 		 */
2311 		if (p->stp_state == BR_STATE_FORWARDING &&
2312 		    !(p->isolated && other_p->isolated)) {
2313 			val |= BIT(port);
2314 			port_member |= BIT(i);
2315 		}
2316 
2317 		/* Retain port [i]'s relationship to other ports than [port] */
2318 		for (j = 0; j < ds->num_ports; j++) {
2319 			const struct dsa_port *third_dp;
2320 			struct ksz_port *third_p;
2321 
2322 			if (j == i)
2323 				continue;
2324 			if (j == port)
2325 				continue;
2326 			if (!dsa_is_user_port(ds, j))
2327 				continue;
2328 			third_p = &dev->ports[j];
2329 			if (third_p->stp_state != BR_STATE_FORWARDING)
2330 				continue;
2331 
2332 			third_dp = dsa_to_port(ds, j);
2333 
2334 			/* Now we updating relation of the "other" port [i] to
2335 			 * the "third" port [j]. We already know that "other"
2336 			 * port [i] is in forwarding stp state and that "third"
2337 			 * port [j] is in forwarding stp state too.
2338 			 * We need to check if "other" port [i] and "third" port
2339 			 * [j] are in the same bridge group and not isolated
2340 			 * before allowing forwarding from port [i] to port [j].
2341 			 */
2342 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2343 			    !(other_p->isolated && third_p->isolated))
2344 				val |= BIT(j);
2345 		}
2346 
2347 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2348 	}
2349 
2350 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2351 }
2352 
2353 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2354 {
2355 	struct ksz_device *dev = bus->priv;
2356 	u16 val;
2357 	int ret;
2358 
2359 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2360 	if (ret < 0)
2361 		return ret;
2362 
2363 	return val;
2364 }
2365 
2366 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2367 			     u16 val)
2368 {
2369 	struct ksz_device *dev = bus->priv;
2370 
2371 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2372 }
2373 
2374 /**
2375  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2376  * @bus: MDIO bus structure.
2377  * @addr: PHY address on the parent MDIO bus.
2378  * @regnum: Register number to read.
2379  *
2380  * This function provides a direct read operation on the parent MDIO bus for
2381  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2382  * to retrieve data from the PHY registers at the specified address and register
2383  * number.
2384  *
2385  * Return: Value of the PHY register, or a negative error code on failure.
2386  */
2387 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2388 {
2389 	struct ksz_device *dev = bus->priv;
2390 
2391 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2392 }
2393 
2394 /**
2395  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2396  * @bus: MDIO bus structure.
2397  * @addr: PHY address on the parent MDIO bus.
2398  * @regnum: Register number to write to.
2399  * @val: Value to write to the PHY register.
2400  *
2401  * This function provides a direct write operation on the parent MDIO bus for
2402  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2403  * to modify the PHY register values at the specified address.
2404  *
2405  * Return: 0 on success, or a negative error code on failure.
2406  */
2407 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2408 				 u16 val)
2409 {
2410 	struct ksz_device *dev = bus->priv;
2411 
2412 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2413 }
2414 
2415 /**
2416  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2417  * @dev: Pointer to device structure.
2418  * @addr: PHY address to map to a port.
2419  *
2420  * This function finds the corresponding switch port for a given PHY address by
2421  * iterating over all user ports on the device. It checks if a port's PHY
2422  * address in `phy_addr_map` matches the specified address and if the port
2423  * contains an internal PHY. If a match is found, the index of the port is
2424  * returned.
2425  *
2426  * Return: Port index on success, or -EINVAL if no matching port is found.
2427  */
2428 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2429 {
2430 	struct dsa_switch *ds = dev->ds;
2431 	struct dsa_port *dp;
2432 
2433 	dsa_switch_for_each_user_port(dp, ds) {
2434 		if (dev->info->internal_phy[dp->index] &&
2435 		    dev->phy_addr_map[dp->index] == addr)
2436 			return dp->index;
2437 	}
2438 
2439 	return -EINVAL;
2440 }
2441 
2442 /**
2443  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2444  * @dev: Pointer to the KSZ device structure.
2445  *
2446  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2447  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2448  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2449  *
2450  * Return: 0 on success, or a negative error code on failure.
2451  */
2452 static int ksz_irq_phy_setup(struct ksz_device *dev)
2453 {
2454 	struct dsa_switch *ds = dev->ds;
2455 	int phy, port;
2456 	int irq;
2457 	int ret;
2458 
2459 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2460 		if (BIT(phy) & ds->phys_mii_mask) {
2461 			port = ksz_phy_addr_to_port(dev, phy);
2462 			if (port < 0) {
2463 				ret = port;
2464 				goto out;
2465 			}
2466 
2467 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2468 					       PORT_SRC_PHY_INT);
2469 			if (irq < 0) {
2470 				ret = irq;
2471 				goto out;
2472 			}
2473 			ds->user_mii_bus->irq[phy] = irq;
2474 		}
2475 	}
2476 	return 0;
2477 out:
2478 	while (phy--)
2479 		if (BIT(phy) & ds->phys_mii_mask)
2480 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2481 
2482 	return ret;
2483 }
2484 
2485 /**
2486  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2487  * @dev: Pointer to the KSZ device structure.
2488  *
2489  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2490  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2491  */
2492 static void ksz_irq_phy_free(struct ksz_device *dev)
2493 {
2494 	struct dsa_switch *ds = dev->ds;
2495 	int phy;
2496 
2497 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2498 		if (BIT(phy) & ds->phys_mii_mask)
2499 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2500 }
2501 
2502 /**
2503  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2504  * @dev: pointer to the KSZ device structure
2505  * @bus: pointer to the MII bus structure
2506  * @mdio_np: pointer to the MDIO node in the device tree
2507  *
2508  * This function parses and validates PHY configurations for each user port
2509  * defined in the device tree for a KSZ switch device. It verifies that the
2510  * `phy-handle` properties are correctly set and that the internal PHYs match
2511  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2512  * all validations pass. Logs error messages for any mismatches or missing data.
2513  *
2514  * Return: 0 on success, or a negative error code on failure.
2515  */
2516 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2517 				   struct device_node *mdio_np)
2518 {
2519 	struct device_node *phy_node, *phy_parent_node;
2520 	bool phys_are_valid = true;
2521 	struct dsa_port *dp;
2522 	u32 phy_addr;
2523 	int ret;
2524 
2525 	dsa_switch_for_each_user_port(dp, dev->ds) {
2526 		if (!dev->info->internal_phy[dp->index])
2527 			continue;
2528 
2529 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2530 		if (!phy_node) {
2531 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2532 				dp->index);
2533 			phys_are_valid = false;
2534 			continue;
2535 		}
2536 
2537 		phy_parent_node = of_get_parent(phy_node);
2538 		if (!phy_parent_node) {
2539 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2540 				dp->index);
2541 			phys_are_valid = false;
2542 		} else if (phy_parent_node != mdio_np) {
2543 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2544 				dp->index, mdio_np, phy_parent_node);
2545 			phys_are_valid = false;
2546 		} else {
2547 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2548 			if (ret < 0) {
2549 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2550 					dp->index, ret);
2551 				phys_are_valid = false;
2552 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2553 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2554 					dp->index, dev->phy_addr_map[dp->index],
2555 					phy_addr);
2556 				phys_are_valid = false;
2557 			} else {
2558 				bus->phy_mask |= BIT(phy_addr);
2559 			}
2560 		}
2561 
2562 		of_node_put(phy_node);
2563 		of_node_put(phy_parent_node);
2564 	}
2565 
2566 	if (!phys_are_valid)
2567 		return -EINVAL;
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2574  * @dev: Pointer to the KSZ device structure.
2575  *
2576  * This function sets up and registers an MDIO bus for the KSZ switch device,
2577  * allowing access to its internal PHYs. If the device supports side MDIO,
2578  * the function will configure the external MDIO controller specified by the
2579  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2580  * Otherwise, SPI or I2C access is set up for PHY access.
2581  *
2582  * Return: 0 on success, or a negative error code on failure.
2583  */
2584 static int ksz_mdio_register(struct ksz_device *dev)
2585 {
2586 	struct device_node *parent_bus_node;
2587 	struct mii_bus *parent_bus = NULL;
2588 	struct dsa_switch *ds = dev->ds;
2589 	struct device_node *mdio_np;
2590 	struct mii_bus *bus;
2591 	int ret, i;
2592 
2593 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2594 	if (!mdio_np)
2595 		return 0;
2596 
2597 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2598 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2599 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2600 		ret = -EINVAL;
2601 
2602 		goto put_mdio_node;
2603 	} else if (parent_bus_node) {
2604 		parent_bus = of_mdio_find_bus(parent_bus_node);
2605 		if (!parent_bus) {
2606 			ret = -EPROBE_DEFER;
2607 
2608 			goto put_mdio_node;
2609 		}
2610 
2611 		dev->parent_mdio_bus = parent_bus;
2612 	}
2613 
2614 	bus = devm_mdiobus_alloc(ds->dev);
2615 	if (!bus) {
2616 		ret = -ENOMEM;
2617 		goto put_mdio_node;
2618 	}
2619 
2620 	if (dev->dev_ops->mdio_bus_preinit) {
2621 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2622 		if (ret)
2623 			goto put_mdio_node;
2624 	}
2625 
2626 	if (dev->dev_ops->create_phy_addr_map) {
2627 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2628 		if (ret)
2629 			goto put_mdio_node;
2630 	} else {
2631 		for (i = 0; i < dev->info->port_cnt; i++)
2632 			dev->phy_addr_map[i] = i;
2633 	}
2634 
2635 	bus->priv = dev;
2636 	if (parent_bus) {
2637 		bus->read = ksz_parent_mdio_read;
2638 		bus->write = ksz_parent_mdio_write;
2639 		bus->name = "KSZ side MDIO";
2640 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2641 			 ds->index);
2642 	} else {
2643 		bus->read = ksz_sw_mdio_read;
2644 		bus->write = ksz_sw_mdio_write;
2645 		bus->name = "ksz user smi";
2646 		if (ds->dst->index != 0) {
2647 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2648 		} else {
2649 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2650 		}
2651 	}
2652 
2653 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2654 	if (ret)
2655 		goto put_mdio_node;
2656 
2657 	ds->phys_mii_mask = bus->phy_mask;
2658 	bus->parent = ds->dev;
2659 
2660 	ds->user_mii_bus = bus;
2661 
2662 	if (dev->irq > 0) {
2663 		ret = ksz_irq_phy_setup(dev);
2664 		if (ret)
2665 			goto put_mdio_node;
2666 	}
2667 
2668 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2669 	if (ret) {
2670 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2671 			bus->id);
2672 		if (dev->irq > 0)
2673 			ksz_irq_phy_free(dev);
2674 	}
2675 
2676 put_mdio_node:
2677 	of_node_put(mdio_np);
2678 	of_node_put(parent_bus_node);
2679 
2680 	return ret;
2681 }
2682 
2683 static void ksz_irq_mask(struct irq_data *d)
2684 {
2685 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2686 
2687 	kirq->masked |= BIT(d->hwirq);
2688 }
2689 
2690 static void ksz_irq_unmask(struct irq_data *d)
2691 {
2692 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2693 
2694 	kirq->masked &= ~BIT(d->hwirq);
2695 }
2696 
2697 static void ksz_irq_bus_lock(struct irq_data *d)
2698 {
2699 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2700 
2701 	mutex_lock(&kirq->dev->lock_irq);
2702 }
2703 
2704 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2705 {
2706 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2707 	struct ksz_device *dev = kirq->dev;
2708 	int ret;
2709 
2710 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2711 	if (ret)
2712 		dev_err(dev->dev, "failed to change IRQ mask\n");
2713 
2714 	mutex_unlock(&dev->lock_irq);
2715 }
2716 
2717 static const struct irq_chip ksz_irq_chip = {
2718 	.name			= "ksz-irq",
2719 	.irq_mask		= ksz_irq_mask,
2720 	.irq_unmask		= ksz_irq_unmask,
2721 	.irq_bus_lock		= ksz_irq_bus_lock,
2722 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2723 };
2724 
2725 static int ksz_irq_domain_map(struct irq_domain *d,
2726 			      unsigned int irq, irq_hw_number_t hwirq)
2727 {
2728 	irq_set_chip_data(irq, d->host_data);
2729 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2730 	irq_set_noprobe(irq);
2731 
2732 	return 0;
2733 }
2734 
2735 static const struct irq_domain_ops ksz_irq_domain_ops = {
2736 	.map	= ksz_irq_domain_map,
2737 	.xlate	= irq_domain_xlate_twocell,
2738 };
2739 
2740 static void ksz_irq_free(struct ksz_irq *kirq)
2741 {
2742 	int irq, virq;
2743 
2744 	free_irq(kirq->irq_num, kirq);
2745 
2746 	for (irq = 0; irq < kirq->nirqs; irq++) {
2747 		virq = irq_find_mapping(kirq->domain, irq);
2748 		irq_dispose_mapping(virq);
2749 	}
2750 
2751 	irq_domain_remove(kirq->domain);
2752 }
2753 
2754 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2755 {
2756 	struct ksz_irq *kirq = dev_id;
2757 	unsigned int nhandled = 0;
2758 	struct ksz_device *dev;
2759 	unsigned int sub_irq;
2760 	u8 data;
2761 	int ret;
2762 	u8 n;
2763 
2764 	dev = kirq->dev;
2765 
2766 	/* Read interrupt status register */
2767 	ret = ksz_read8(dev, kirq->reg_status, &data);
2768 	if (ret)
2769 		goto out;
2770 
2771 	for (n = 0; n < kirq->nirqs; ++n) {
2772 		if (data & BIT(n)) {
2773 			sub_irq = irq_find_mapping(kirq->domain, n);
2774 			handle_nested_irq(sub_irq);
2775 			++nhandled;
2776 		}
2777 	}
2778 out:
2779 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2780 }
2781 
2782 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2783 {
2784 	int ret, n;
2785 
2786 	kirq->dev = dev;
2787 	kirq->masked = ~0;
2788 
2789 	kirq->domain = irq_domain_create_simple(of_fwnode_handle(dev->dev->of_node),
2790 						kirq->nirqs, 0,
2791 						&ksz_irq_domain_ops, kirq);
2792 	if (!kirq->domain)
2793 		return -ENOMEM;
2794 
2795 	for (n = 0; n < kirq->nirqs; n++)
2796 		irq_create_mapping(kirq->domain, n);
2797 
2798 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2799 				   IRQF_ONESHOT, kirq->name, kirq);
2800 	if (ret)
2801 		goto out;
2802 
2803 	return 0;
2804 
2805 out:
2806 	ksz_irq_free(kirq);
2807 
2808 	return ret;
2809 }
2810 
2811 static int ksz_girq_setup(struct ksz_device *dev)
2812 {
2813 	struct ksz_irq *girq = &dev->girq;
2814 
2815 	girq->nirqs = dev->info->port_cnt;
2816 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2817 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2818 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2819 
2820 	girq->irq_num = dev->irq;
2821 
2822 	return ksz_irq_common_setup(dev, girq);
2823 }
2824 
2825 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2826 {
2827 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2828 
2829 	pirq->nirqs = dev->info->port_nirqs;
2830 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2831 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2832 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2833 
2834 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2835 	if (pirq->irq_num < 0)
2836 		return pirq->irq_num;
2837 
2838 	return ksz_irq_common_setup(dev, pirq);
2839 }
2840 
2841 static int ksz_parse_drive_strength(struct ksz_device *dev);
2842 
2843 static int ksz_setup(struct dsa_switch *ds)
2844 {
2845 	struct ksz_device *dev = ds->priv;
2846 	struct dsa_port *dp;
2847 	struct ksz_port *p;
2848 	const u16 *regs;
2849 	int ret;
2850 
2851 	regs = dev->info->regs;
2852 
2853 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2854 				       dev->info->num_vlans, GFP_KERNEL);
2855 	if (!dev->vlan_cache)
2856 		return -ENOMEM;
2857 
2858 	ret = dev->dev_ops->reset(dev);
2859 	if (ret) {
2860 		dev_err(ds->dev, "failed to reset switch\n");
2861 		return ret;
2862 	}
2863 
2864 	ret = ksz_parse_drive_strength(dev);
2865 	if (ret)
2866 		return ret;
2867 
2868 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
2869 		ret = dev->dev_ops->pcs_create(dev);
2870 		if (ret)
2871 			return ret;
2872 	}
2873 
2874 	/* set broadcast storm protection 10% rate */
2875 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2876 			   BROADCAST_STORM_RATE,
2877 			   (BROADCAST_STORM_VALUE *
2878 			   BROADCAST_STORM_PROT_RATE) / 100);
2879 
2880 	dev->dev_ops->config_cpu_port(ds);
2881 
2882 	dev->dev_ops->enable_stp_addr(dev);
2883 
2884 	ds->num_tx_queues = dev->info->num_tx_queues;
2885 
2886 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2887 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2888 
2889 	ksz_init_mib_timer(dev);
2890 
2891 	ds->configure_vlan_while_not_filtering = false;
2892 	ds->dscp_prio_mapping_is_global = true;
2893 
2894 	if (dev->dev_ops->setup) {
2895 		ret = dev->dev_ops->setup(ds);
2896 		if (ret)
2897 			return ret;
2898 	}
2899 
2900 	/* Start with learning disabled on standalone user ports, and enabled
2901 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2902 	 * CPU port will avoid flooding bridge local addresses on the network
2903 	 * in some cases.
2904 	 */
2905 	p = &dev->ports[dev->cpu_port];
2906 	p->learning = true;
2907 
2908 	if (dev->irq > 0) {
2909 		ret = ksz_girq_setup(dev);
2910 		if (ret)
2911 			return ret;
2912 
2913 		dsa_switch_for_each_user_port(dp, dev->ds) {
2914 			ret = ksz_pirq_setup(dev, dp->index);
2915 			if (ret)
2916 				goto out_girq;
2917 
2918 			if (dev->info->ptp_capable) {
2919 				ret = ksz_ptp_irq_setup(ds, dp->index);
2920 				if (ret)
2921 					goto out_pirq;
2922 			}
2923 		}
2924 	}
2925 
2926 	if (dev->info->ptp_capable) {
2927 		ret = ksz_ptp_clock_register(ds);
2928 		if (ret) {
2929 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
2930 				ret);
2931 			goto out_ptpirq;
2932 		}
2933 	}
2934 
2935 	ret = ksz_mdio_register(dev);
2936 	if (ret < 0) {
2937 		dev_err(dev->dev, "failed to register the mdio");
2938 		goto out_ptp_clock_unregister;
2939 	}
2940 
2941 	ret = ksz_dcb_init(dev);
2942 	if (ret)
2943 		goto out_ptp_clock_unregister;
2944 
2945 	/* start switch */
2946 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2947 			   SW_START, SW_START);
2948 
2949 	return 0;
2950 
2951 out_ptp_clock_unregister:
2952 	if (dev->info->ptp_capable)
2953 		ksz_ptp_clock_unregister(ds);
2954 out_ptpirq:
2955 	if (dev->irq > 0 && dev->info->ptp_capable)
2956 		dsa_switch_for_each_user_port(dp, dev->ds)
2957 			ksz_ptp_irq_free(ds, dp->index);
2958 out_pirq:
2959 	if (dev->irq > 0)
2960 		dsa_switch_for_each_user_port(dp, dev->ds)
2961 			ksz_irq_free(&dev->ports[dp->index].pirq);
2962 out_girq:
2963 	if (dev->irq > 0)
2964 		ksz_irq_free(&dev->girq);
2965 
2966 	return ret;
2967 }
2968 
2969 static void ksz_teardown(struct dsa_switch *ds)
2970 {
2971 	struct ksz_device *dev = ds->priv;
2972 	struct dsa_port *dp;
2973 
2974 	if (dev->info->ptp_capable)
2975 		ksz_ptp_clock_unregister(ds);
2976 
2977 	if (dev->irq > 0) {
2978 		dsa_switch_for_each_user_port(dp, dev->ds) {
2979 			if (dev->info->ptp_capable)
2980 				ksz_ptp_irq_free(ds, dp->index);
2981 
2982 			ksz_irq_free(&dev->ports[dp->index].pirq);
2983 		}
2984 
2985 		ksz_irq_free(&dev->girq);
2986 	}
2987 
2988 	if (dev->dev_ops->teardown)
2989 		dev->dev_ops->teardown(ds);
2990 }
2991 
2992 static void port_r_cnt(struct ksz_device *dev, int port)
2993 {
2994 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2995 	u64 *dropped;
2996 
2997 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2998 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2999 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3000 					&mib->counters[mib->cnt_ptr]);
3001 		++mib->cnt_ptr;
3002 	}
3003 
3004 	/* last one in storage */
3005 	dropped = &mib->counters[dev->info->mib_cnt];
3006 
3007 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3008 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3009 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3010 					dropped, &mib->counters[mib->cnt_ptr]);
3011 		++mib->cnt_ptr;
3012 	}
3013 	mib->cnt_ptr = 0;
3014 }
3015 
3016 static void ksz_mib_read_work(struct work_struct *work)
3017 {
3018 	struct ksz_device *dev = container_of(work, struct ksz_device,
3019 					      mib_read.work);
3020 	struct ksz_port_mib *mib;
3021 	struct ksz_port *p;
3022 	int i;
3023 
3024 	for (i = 0; i < dev->info->port_cnt; i++) {
3025 		if (dsa_is_unused_port(dev->ds, i))
3026 			continue;
3027 
3028 		p = &dev->ports[i];
3029 		mib = &p->mib;
3030 		mutex_lock(&mib->cnt_mutex);
3031 
3032 		/* Only read MIB counters when the port is told to do.
3033 		 * If not, read only dropped counters when link is not up.
3034 		 */
3035 		if (!p->read) {
3036 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3037 
3038 			if (!netif_carrier_ok(dp->user))
3039 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3040 		}
3041 		port_r_cnt(dev, i);
3042 		p->read = false;
3043 
3044 		if (dev->dev_ops->r_mib_stat64)
3045 			dev->dev_ops->r_mib_stat64(dev, i);
3046 
3047 		mutex_unlock(&mib->cnt_mutex);
3048 	}
3049 
3050 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3051 }
3052 
3053 void ksz_init_mib_timer(struct ksz_device *dev)
3054 {
3055 	int i;
3056 
3057 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3058 
3059 	for (i = 0; i < dev->info->port_cnt; i++) {
3060 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3061 
3062 		dev->dev_ops->port_init_cnt(dev, i);
3063 
3064 		mib->cnt_ptr = 0;
3065 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3066 	}
3067 }
3068 
3069 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3070 {
3071 	struct ksz_device *dev = ds->priv;
3072 	u16 val = 0xffff;
3073 	int ret;
3074 
3075 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3076 	if (ret)
3077 		return ret;
3078 
3079 	return val;
3080 }
3081 
3082 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3083 {
3084 	struct ksz_device *dev = ds->priv;
3085 	int ret;
3086 
3087 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3088 	if (ret)
3089 		return ret;
3090 
3091 	return 0;
3092 }
3093 
3094 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3095 {
3096 	struct ksz_device *dev = ds->priv;
3097 
3098 	switch (dev->chip_id) {
3099 	case KSZ88X3_CHIP_ID:
3100 		/* Silicon Errata Sheet (DS80000830A):
3101 		 * Port 1 does not work with LinkMD Cable-Testing.
3102 		 * Port 1 does not respond to received PAUSE control frames.
3103 		 */
3104 		if (!port)
3105 			return MICREL_KSZ8_P1_ERRATA;
3106 		break;
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3113 				      unsigned int mode,
3114 				      phy_interface_t interface)
3115 {
3116 	struct dsa_port *dp = dsa_phylink_to_port(config);
3117 	struct ksz_device *dev = dp->ds->priv;
3118 
3119 	/* Read all MIB counters when the link is going down. */
3120 	dev->ports[dp->index].read = true;
3121 	/* timer started */
3122 	if (dev->mib_read_interval)
3123 		schedule_delayed_work(&dev->mib_read, 0);
3124 }
3125 
3126 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3127 {
3128 	struct ksz_device *dev = ds->priv;
3129 
3130 	if (sset != ETH_SS_STATS)
3131 		return 0;
3132 
3133 	return dev->info->mib_cnt;
3134 }
3135 
3136 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3137 				  uint64_t *buf)
3138 {
3139 	const struct dsa_port *dp = dsa_to_port(ds, port);
3140 	struct ksz_device *dev = ds->priv;
3141 	struct ksz_port_mib *mib;
3142 
3143 	mib = &dev->ports[port].mib;
3144 	mutex_lock(&mib->cnt_mutex);
3145 
3146 	/* Only read dropped counters if no link. */
3147 	if (!netif_carrier_ok(dp->user))
3148 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3149 	port_r_cnt(dev, port);
3150 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3151 	mutex_unlock(&mib->cnt_mutex);
3152 }
3153 
3154 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3155 				struct dsa_bridge bridge,
3156 				bool *tx_fwd_offload,
3157 				struct netlink_ext_ack *extack)
3158 {
3159 	/* port_stp_state_set() will be called after to put the port in
3160 	 * appropriate state so there is no need to do anything.
3161 	 */
3162 
3163 	return 0;
3164 }
3165 
3166 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3167 				  struct dsa_bridge bridge)
3168 {
3169 	/* port_stp_state_set() will be called after to put the port in
3170 	 * forwarding state so there is no need to do anything.
3171 	 */
3172 }
3173 
3174 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3175 {
3176 	struct ksz_device *dev = ds->priv;
3177 
3178 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3179 }
3180 
3181 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3182 {
3183 	struct ksz_device *dev = ds->priv;
3184 
3185 	if (!dev->dev_ops->set_ageing_time)
3186 		return -EOPNOTSUPP;
3187 
3188 	return dev->dev_ops->set_ageing_time(dev, msecs);
3189 }
3190 
3191 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3192 			    const unsigned char *addr, u16 vid,
3193 			    struct dsa_db db)
3194 {
3195 	struct ksz_device *dev = ds->priv;
3196 
3197 	if (!dev->dev_ops->fdb_add)
3198 		return -EOPNOTSUPP;
3199 
3200 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3201 }
3202 
3203 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3204 			    const unsigned char *addr,
3205 			    u16 vid, struct dsa_db db)
3206 {
3207 	struct ksz_device *dev = ds->priv;
3208 
3209 	if (!dev->dev_ops->fdb_del)
3210 		return -EOPNOTSUPP;
3211 
3212 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3213 }
3214 
3215 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3216 			     dsa_fdb_dump_cb_t *cb, void *data)
3217 {
3218 	struct ksz_device *dev = ds->priv;
3219 
3220 	if (!dev->dev_ops->fdb_dump)
3221 		return -EOPNOTSUPP;
3222 
3223 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3224 }
3225 
3226 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3227 			    const struct switchdev_obj_port_mdb *mdb,
3228 			    struct dsa_db db)
3229 {
3230 	struct ksz_device *dev = ds->priv;
3231 
3232 	if (!dev->dev_ops->mdb_add)
3233 		return -EOPNOTSUPP;
3234 
3235 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3236 }
3237 
3238 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3239 			    const struct switchdev_obj_port_mdb *mdb,
3240 			    struct dsa_db db)
3241 {
3242 	struct ksz_device *dev = ds->priv;
3243 
3244 	if (!dev->dev_ops->mdb_del)
3245 		return -EOPNOTSUPP;
3246 
3247 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3248 }
3249 
3250 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3251 						  int port)
3252 {
3253 	u32 queue_map = 0;
3254 	int ipm;
3255 
3256 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3257 		int queue;
3258 
3259 		/* Traffic Type (TT) is corresponding to the Internal Priority
3260 		 * Map (IPM) in the switch. Traffic Class (TC) is
3261 		 * corresponding to the queue in the switch.
3262 		 */
3263 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3264 		if (queue < 0)
3265 			return queue;
3266 
3267 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3268 	}
3269 
3270 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3271 }
3272 
3273 static int ksz_port_setup(struct dsa_switch *ds, int port)
3274 {
3275 	struct ksz_device *dev = ds->priv;
3276 	int ret;
3277 
3278 	if (!dsa_is_user_port(ds, port))
3279 		return 0;
3280 
3281 	/* setup user port */
3282 	dev->dev_ops->port_setup(dev, port, false);
3283 
3284 	if (!is_ksz8(dev)) {
3285 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3286 		if (ret)
3287 			return ret;
3288 	}
3289 
3290 	/* port_stp_state_set() will be called after to enable the port so
3291 	 * there is no need to do anything.
3292 	 */
3293 
3294 	return ksz_dcb_init_port(dev, port);
3295 }
3296 
3297 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3298 {
3299 	struct ksz_device *dev = ds->priv;
3300 	struct ksz_port *p;
3301 	const u16 *regs;
3302 	u8 data;
3303 
3304 	regs = dev->info->regs;
3305 
3306 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3307 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3308 
3309 	p = &dev->ports[port];
3310 
3311 	switch (state) {
3312 	case BR_STATE_DISABLED:
3313 		data |= PORT_LEARN_DISABLE;
3314 		break;
3315 	case BR_STATE_LISTENING:
3316 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3317 		break;
3318 	case BR_STATE_LEARNING:
3319 		data |= PORT_RX_ENABLE;
3320 		if (!p->learning)
3321 			data |= PORT_LEARN_DISABLE;
3322 		break;
3323 	case BR_STATE_FORWARDING:
3324 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3325 		if (!p->learning)
3326 			data |= PORT_LEARN_DISABLE;
3327 		break;
3328 	case BR_STATE_BLOCKING:
3329 		data |= PORT_LEARN_DISABLE;
3330 		break;
3331 	default:
3332 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3333 		return;
3334 	}
3335 
3336 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3337 
3338 	p->stp_state = state;
3339 
3340 	ksz_update_port_member(dev, port);
3341 }
3342 
3343 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3344 {
3345 	struct ksz_device *dev = ds->priv;
3346 
3347 	switch (dev->chip_id) {
3348 	case KSZ8563_CHIP_ID:
3349 	case KSZ8567_CHIP_ID:
3350 	case KSZ9477_CHIP_ID:
3351 	case KSZ9563_CHIP_ID:
3352 	case KSZ9567_CHIP_ID:
3353 	case KSZ9893_CHIP_ID:
3354 	case KSZ9896_CHIP_ID:
3355 	case KSZ9897_CHIP_ID:
3356 	case LAN9646_CHIP_ID:
3357 		if (dsa_is_user_port(ds, port))
3358 			ksz9477_port_acl_free(dev, port);
3359 	}
3360 }
3361 
3362 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3363 				     struct switchdev_brport_flags flags,
3364 				     struct netlink_ext_ack *extack)
3365 {
3366 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3367 		return -EINVAL;
3368 
3369 	return 0;
3370 }
3371 
3372 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3373 				 struct switchdev_brport_flags flags,
3374 				 struct netlink_ext_ack *extack)
3375 {
3376 	struct ksz_device *dev = ds->priv;
3377 	struct ksz_port *p = &dev->ports[port];
3378 
3379 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3380 		if (flags.mask & BR_LEARNING)
3381 			p->learning = !!(flags.val & BR_LEARNING);
3382 
3383 		if (flags.mask & BR_ISOLATED)
3384 			p->isolated = !!(flags.val & BR_ISOLATED);
3385 
3386 		/* Make the change take effect immediately */
3387 		ksz_port_stp_state_set(ds, port, p->stp_state);
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3394 						  int port,
3395 						  enum dsa_tag_protocol mp)
3396 {
3397 	struct ksz_device *dev = ds->priv;
3398 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3399 
3400 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3401 		proto = DSA_TAG_PROTO_KSZ8795;
3402 
3403 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3404 	    dev->chip_id == KSZ8563_CHIP_ID ||
3405 	    dev->chip_id == KSZ9893_CHIP_ID ||
3406 	    dev->chip_id == KSZ9563_CHIP_ID)
3407 		proto = DSA_TAG_PROTO_KSZ9893;
3408 
3409 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3410 	    dev->chip_id == KSZ9477_CHIP_ID ||
3411 	    dev->chip_id == KSZ9896_CHIP_ID ||
3412 	    dev->chip_id == KSZ9897_CHIP_ID ||
3413 	    dev->chip_id == KSZ9567_CHIP_ID ||
3414 	    dev->chip_id == LAN9646_CHIP_ID)
3415 		proto = DSA_TAG_PROTO_KSZ9477;
3416 
3417 	if (is_lan937x(dev))
3418 		proto = DSA_TAG_PROTO_LAN937X;
3419 
3420 	return proto;
3421 }
3422 
3423 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3424 				    enum dsa_tag_protocol proto)
3425 {
3426 	struct ksz_tagger_data *tagger_data;
3427 
3428 	switch (proto) {
3429 	case DSA_TAG_PROTO_KSZ8795:
3430 		return 0;
3431 	case DSA_TAG_PROTO_KSZ9893:
3432 	case DSA_TAG_PROTO_KSZ9477:
3433 	case DSA_TAG_PROTO_LAN937X:
3434 		tagger_data = ksz_tagger_data(ds);
3435 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3436 		return 0;
3437 	default:
3438 		return -EPROTONOSUPPORT;
3439 	}
3440 }
3441 
3442 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3443 				   bool flag, struct netlink_ext_ack *extack)
3444 {
3445 	struct ksz_device *dev = ds->priv;
3446 
3447 	if (!dev->dev_ops->vlan_filtering)
3448 		return -EOPNOTSUPP;
3449 
3450 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3451 }
3452 
3453 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3454 			     const struct switchdev_obj_port_vlan *vlan,
3455 			     struct netlink_ext_ack *extack)
3456 {
3457 	struct ksz_device *dev = ds->priv;
3458 
3459 	if (!dev->dev_ops->vlan_add)
3460 		return -EOPNOTSUPP;
3461 
3462 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3463 }
3464 
3465 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3466 			     const struct switchdev_obj_port_vlan *vlan)
3467 {
3468 	struct ksz_device *dev = ds->priv;
3469 
3470 	if (!dev->dev_ops->vlan_del)
3471 		return -EOPNOTSUPP;
3472 
3473 	return dev->dev_ops->vlan_del(dev, port, vlan);
3474 }
3475 
3476 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3477 			       struct dsa_mall_mirror_tc_entry *mirror,
3478 			       bool ingress, struct netlink_ext_ack *extack)
3479 {
3480 	struct ksz_device *dev = ds->priv;
3481 
3482 	if (!dev->dev_ops->mirror_add)
3483 		return -EOPNOTSUPP;
3484 
3485 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3486 }
3487 
3488 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3489 				struct dsa_mall_mirror_tc_entry *mirror)
3490 {
3491 	struct ksz_device *dev = ds->priv;
3492 
3493 	if (dev->dev_ops->mirror_del)
3494 		dev->dev_ops->mirror_del(dev, port, mirror);
3495 }
3496 
3497 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3498 {
3499 	struct ksz_device *dev = ds->priv;
3500 
3501 	if (!dev->dev_ops->change_mtu)
3502 		return -EOPNOTSUPP;
3503 
3504 	return dev->dev_ops->change_mtu(dev, port, mtu);
3505 }
3506 
3507 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3508 {
3509 	struct ksz_device *dev = ds->priv;
3510 
3511 	switch (dev->chip_id) {
3512 	case KSZ8795_CHIP_ID:
3513 	case KSZ8794_CHIP_ID:
3514 	case KSZ8765_CHIP_ID:
3515 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3516 	case KSZ88X3_CHIP_ID:
3517 	case KSZ8864_CHIP_ID:
3518 	case KSZ8895_CHIP_ID:
3519 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3520 	case KSZ8563_CHIP_ID:
3521 	case KSZ8567_CHIP_ID:
3522 	case KSZ9477_CHIP_ID:
3523 	case KSZ9563_CHIP_ID:
3524 	case KSZ9567_CHIP_ID:
3525 	case KSZ9893_CHIP_ID:
3526 	case KSZ9896_CHIP_ID:
3527 	case KSZ9897_CHIP_ID:
3528 	case LAN9370_CHIP_ID:
3529 	case LAN9371_CHIP_ID:
3530 	case LAN9372_CHIP_ID:
3531 	case LAN9373_CHIP_ID:
3532 	case LAN9374_CHIP_ID:
3533 	case LAN9646_CHIP_ID:
3534 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3535 	}
3536 
3537 	return -EOPNOTSUPP;
3538 }
3539 
3540 /**
3541  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3542  *                   port
3543  * @ds: Pointer to the DSA switch structure
3544  * @port: Port number to check
3545  *
3546  * This function also documents devices where EEE was initially advertised but
3547  * later withdrawn due to reliability issues, as described in official errata
3548  * documents. These devices are explicitly listed to record known limitations,
3549  * even if there is no technical necessity for runtime checks.
3550  *
3551  * Returns: true if the internal PHY on the given port supports fully
3552  * operational EEE, false otherwise.
3553  */
3554 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3555 {
3556 	struct ksz_device *dev = ds->priv;
3557 
3558 	if (!dev->info->internal_phy[port])
3559 		return false;
3560 
3561 	switch (dev->chip_id) {
3562 	case KSZ8563_CHIP_ID:
3563 	case KSZ9563_CHIP_ID:
3564 	case KSZ9893_CHIP_ID:
3565 		return true;
3566 	case KSZ8567_CHIP_ID:
3567 		/* KSZ8567R Errata DS80000752C Module 4 */
3568 	case KSZ8765_CHIP_ID:
3569 	case KSZ8794_CHIP_ID:
3570 	case KSZ8795_CHIP_ID:
3571 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3572 	case KSZ9477_CHIP_ID:
3573 		/* KSZ9477S Errata DS80000754A Module 4 */
3574 	case KSZ9567_CHIP_ID:
3575 		/* KSZ9567S Errata DS80000756A Module 4 */
3576 	case KSZ9896_CHIP_ID:
3577 		/* KSZ9896C Errata DS80000757A Module 3 */
3578 	case KSZ9897_CHIP_ID:
3579 	case LAN9646_CHIP_ID:
3580 		/* KSZ9897R Errata DS80000758C Module 4 */
3581 		/* Energy Efficient Ethernet (EEE) feature select must be
3582 		 * manually disabled
3583 		 *   The EEE feature is enabled by default, but it is not fully
3584 		 *   operational. It must be manually disabled through register
3585 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3586 		 *   to enable EEE, and this feature can cause link drops when
3587 		 *   linked to another device supporting EEE.
3588 		 *
3589 		 * The same item appears in the errata for all switches above.
3590 		 */
3591 		break;
3592 	}
3593 
3594 	return false;
3595 }
3596 
3597 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3598 			   struct ethtool_keee *e)
3599 {
3600 	struct ksz_device *dev = ds->priv;
3601 
3602 	if (!e->tx_lpi_enabled) {
3603 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3604 		return -EINVAL;
3605 	}
3606 
3607 	if (e->tx_lpi_timer) {
3608 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3609 		return -EINVAL;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static void ksz_set_xmii(struct ksz_device *dev, int port,
3616 			 phy_interface_t interface)
3617 {
3618 	const u8 *bitval = dev->info->xmii_ctrl1;
3619 	struct ksz_port *p = &dev->ports[port];
3620 	const u16 *regs = dev->info->regs;
3621 	u8 data8;
3622 
3623 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3624 
3625 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3626 		   P_RGMII_ID_EG_ENABLE);
3627 
3628 	switch (interface) {
3629 	case PHY_INTERFACE_MODE_MII:
3630 		data8 |= bitval[P_MII_SEL];
3631 		break;
3632 	case PHY_INTERFACE_MODE_RMII:
3633 		data8 |= bitval[P_RMII_SEL];
3634 		break;
3635 	case PHY_INTERFACE_MODE_GMII:
3636 		data8 |= bitval[P_GMII_SEL];
3637 		break;
3638 	case PHY_INTERFACE_MODE_RGMII:
3639 	case PHY_INTERFACE_MODE_RGMII_ID:
3640 	case PHY_INTERFACE_MODE_RGMII_TXID:
3641 	case PHY_INTERFACE_MODE_RGMII_RXID:
3642 		data8 |= bitval[P_RGMII_SEL];
3643 		/* On KSZ9893, disable RGMII in-band status support */
3644 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3645 		    dev->chip_id == KSZ8563_CHIP_ID ||
3646 		    dev->chip_id == KSZ9563_CHIP_ID ||
3647 		    is_lan937x(dev))
3648 			data8 &= ~P_MII_MAC_MODE;
3649 		break;
3650 	default:
3651 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3652 			phy_modes(interface), port);
3653 		return;
3654 	}
3655 
3656 	if (p->rgmii_tx_val)
3657 		data8 |= P_RGMII_ID_EG_ENABLE;
3658 
3659 	if (p->rgmii_rx_val)
3660 		data8 |= P_RGMII_ID_IG_ENABLE;
3661 
3662 	/* Write the updated value */
3663 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3664 }
3665 
3666 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3667 {
3668 	const u8 *bitval = dev->info->xmii_ctrl1;
3669 	const u16 *regs = dev->info->regs;
3670 	phy_interface_t interface;
3671 	u8 data8;
3672 	u8 val;
3673 
3674 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3675 
3676 	val = FIELD_GET(P_MII_SEL_M, data8);
3677 
3678 	if (val == bitval[P_MII_SEL]) {
3679 		if (gbit)
3680 			interface = PHY_INTERFACE_MODE_GMII;
3681 		else
3682 			interface = PHY_INTERFACE_MODE_MII;
3683 	} else if (val == bitval[P_RMII_SEL]) {
3684 		interface = PHY_INTERFACE_MODE_RMII;
3685 	} else {
3686 		interface = PHY_INTERFACE_MODE_RGMII;
3687 		if (data8 & P_RGMII_ID_EG_ENABLE)
3688 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3689 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3690 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3691 			if (data8 & P_RGMII_ID_EG_ENABLE)
3692 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3693 		}
3694 	}
3695 
3696 	return interface;
3697 }
3698 
3699 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3700 				       unsigned int mode,
3701 				       const struct phylink_link_state *state)
3702 {
3703 	struct dsa_port *dp = dsa_phylink_to_port(config);
3704 	struct ksz_device *dev = dp->ds->priv;
3705 
3706 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3707 }
3708 
3709 static void ksz_phylink_mac_config(struct phylink_config *config,
3710 				   unsigned int mode,
3711 				   const struct phylink_link_state *state)
3712 {
3713 	struct dsa_port *dp = dsa_phylink_to_port(config);
3714 	struct ksz_device *dev = dp->ds->priv;
3715 	int port = dp->index;
3716 
3717 	/* Internal PHYs */
3718 	if (dev->info->internal_phy[port])
3719 		return;
3720 
3721 	/* No need to configure XMII control register when using SGMII. */
3722 	if (ksz_is_sgmii_port(dev, port))
3723 		return;
3724 
3725 	if (phylink_autoneg_inband(mode)) {
3726 		dev_err(dev->dev, "In-band AN not supported!\n");
3727 		return;
3728 	}
3729 
3730 	ksz_set_xmii(dev, port, state->interface);
3731 
3732 	if (dev->dev_ops->setup_rgmii_delay)
3733 		dev->dev_ops->setup_rgmii_delay(dev, port);
3734 }
3735 
3736 bool ksz_get_gbit(struct ksz_device *dev, int port)
3737 {
3738 	const u8 *bitval = dev->info->xmii_ctrl1;
3739 	const u16 *regs = dev->info->regs;
3740 	bool gbit = false;
3741 	u8 data8;
3742 	bool val;
3743 
3744 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3745 
3746 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3747 
3748 	if (val == bitval[P_GMII_1GBIT])
3749 		gbit = true;
3750 
3751 	return gbit;
3752 }
3753 
3754 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3755 {
3756 	const u8 *bitval = dev->info->xmii_ctrl1;
3757 	const u16 *regs = dev->info->regs;
3758 	u8 data8;
3759 
3760 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3761 
3762 	data8 &= ~P_GMII_1GBIT_M;
3763 
3764 	if (gbit)
3765 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3766 	else
3767 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3768 
3769 	/* Write the updated value */
3770 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3771 }
3772 
3773 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3774 {
3775 	const u8 *bitval = dev->info->xmii_ctrl0;
3776 	const u16 *regs = dev->info->regs;
3777 	u8 data8;
3778 
3779 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3780 
3781 	data8 &= ~P_MII_100MBIT_M;
3782 
3783 	if (speed == SPEED_100)
3784 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3785 	else
3786 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3787 
3788 	/* Write the updated value */
3789 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3790 }
3791 
3792 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3793 {
3794 	if (speed == SPEED_1000)
3795 		ksz_set_gbit(dev, port, true);
3796 	else
3797 		ksz_set_gbit(dev, port, false);
3798 
3799 	if (speed == SPEED_100 || speed == SPEED_10)
3800 		ksz_set_100_10mbit(dev, port, speed);
3801 }
3802 
3803 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3804 				bool tx_pause, bool rx_pause)
3805 {
3806 	const u8 *bitval = dev->info->xmii_ctrl0;
3807 	const u32 *masks = dev->info->masks;
3808 	const u16 *regs = dev->info->regs;
3809 	u8 mask;
3810 	u8 val;
3811 
3812 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3813 	       masks[P_MII_RX_FLOW_CTRL];
3814 
3815 	if (duplex == DUPLEX_FULL)
3816 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3817 	else
3818 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3819 
3820 	if (tx_pause)
3821 		val |= masks[P_MII_TX_FLOW_CTRL];
3822 
3823 	if (rx_pause)
3824 		val |= masks[P_MII_RX_FLOW_CTRL];
3825 
3826 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3827 }
3828 
3829 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3830 					struct phy_device *phydev,
3831 					unsigned int mode,
3832 					phy_interface_t interface,
3833 					int speed, int duplex, bool tx_pause,
3834 					bool rx_pause)
3835 {
3836 	struct dsa_port *dp = dsa_phylink_to_port(config);
3837 	struct ksz_device *dev = dp->ds->priv;
3838 	int port = dp->index;
3839 	struct ksz_port *p;
3840 
3841 	p = &dev->ports[port];
3842 
3843 	/* Internal PHYs */
3844 	if (dev->info->internal_phy[port])
3845 		return;
3846 
3847 	p->phydev.speed = speed;
3848 
3849 	ksz_port_set_xmii_speed(dev, port, speed);
3850 
3851 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3852 }
3853 
3854 static int ksz_switch_detect(struct ksz_device *dev)
3855 {
3856 	u8 id1, id2, id4;
3857 	u16 id16;
3858 	u32 id32;
3859 	int ret;
3860 
3861 	/* read chip id */
3862 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3863 	if (ret)
3864 		return ret;
3865 
3866 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3867 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3868 
3869 	switch (id1) {
3870 	case KSZ87_FAMILY_ID:
3871 		if (id2 == KSZ87_CHIP_ID_95) {
3872 			u8 val;
3873 
3874 			dev->chip_id = KSZ8795_CHIP_ID;
3875 
3876 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3877 			if (val & KSZ8_PORT_FIBER_MODE)
3878 				dev->chip_id = KSZ8765_CHIP_ID;
3879 		} else if (id2 == KSZ87_CHIP_ID_94) {
3880 			dev->chip_id = KSZ8794_CHIP_ID;
3881 		} else {
3882 			return -ENODEV;
3883 		}
3884 		break;
3885 	case KSZ88_FAMILY_ID:
3886 		if (id2 == KSZ88_CHIP_ID_63)
3887 			dev->chip_id = KSZ88X3_CHIP_ID;
3888 		else
3889 			return -ENODEV;
3890 		break;
3891 	case KSZ8895_FAMILY_ID:
3892 		if (id2 == KSZ8895_CHIP_ID_95 ||
3893 		    id2 == KSZ8895_CHIP_ID_95R)
3894 			dev->chip_id = KSZ8895_CHIP_ID;
3895 		else
3896 			return -ENODEV;
3897 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3898 		if (ret)
3899 			return ret;
3900 		if (id4 & SW_KSZ8864)
3901 			dev->chip_id = KSZ8864_CHIP_ID;
3902 		break;
3903 	default:
3904 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3905 		if (ret)
3906 			return ret;
3907 
3908 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3909 		id32 &= ~0xFF;
3910 
3911 		switch (id32) {
3912 		case KSZ9477_CHIP_ID:
3913 		case KSZ9896_CHIP_ID:
3914 		case KSZ9897_CHIP_ID:
3915 		case KSZ9567_CHIP_ID:
3916 		case KSZ8567_CHIP_ID:
3917 		case LAN9370_CHIP_ID:
3918 		case LAN9371_CHIP_ID:
3919 		case LAN9372_CHIP_ID:
3920 		case LAN9373_CHIP_ID:
3921 		case LAN9374_CHIP_ID:
3922 
3923 			/* LAN9646 does not have its own chip id. */
3924 			if (dev->chip_id != LAN9646_CHIP_ID)
3925 				dev->chip_id = id32;
3926 			break;
3927 		case KSZ9893_CHIP_ID:
3928 			ret = ksz_read8(dev, REG_CHIP_ID4,
3929 					&id4);
3930 			if (ret)
3931 				return ret;
3932 
3933 			if (id4 == SKU_ID_KSZ8563)
3934 				dev->chip_id = KSZ8563_CHIP_ID;
3935 			else if (id4 == SKU_ID_KSZ9563)
3936 				dev->chip_id = KSZ9563_CHIP_ID;
3937 			else
3938 				dev->chip_id = KSZ9893_CHIP_ID;
3939 
3940 			break;
3941 		default:
3942 			dev_err(dev->dev,
3943 				"unsupported switch detected %x)\n", id32);
3944 			return -ENODEV;
3945 		}
3946 	}
3947 	return 0;
3948 }
3949 
3950 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3951 			      struct flow_cls_offload *cls, bool ingress)
3952 {
3953 	struct ksz_device *dev = ds->priv;
3954 
3955 	switch (dev->chip_id) {
3956 	case KSZ8563_CHIP_ID:
3957 	case KSZ8567_CHIP_ID:
3958 	case KSZ9477_CHIP_ID:
3959 	case KSZ9563_CHIP_ID:
3960 	case KSZ9567_CHIP_ID:
3961 	case KSZ9893_CHIP_ID:
3962 	case KSZ9896_CHIP_ID:
3963 	case KSZ9897_CHIP_ID:
3964 	case LAN9646_CHIP_ID:
3965 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3966 	}
3967 
3968 	return -EOPNOTSUPP;
3969 }
3970 
3971 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3972 			      struct flow_cls_offload *cls, bool ingress)
3973 {
3974 	struct ksz_device *dev = ds->priv;
3975 
3976 	switch (dev->chip_id) {
3977 	case KSZ8563_CHIP_ID:
3978 	case KSZ8567_CHIP_ID:
3979 	case KSZ9477_CHIP_ID:
3980 	case KSZ9563_CHIP_ID:
3981 	case KSZ9567_CHIP_ID:
3982 	case KSZ9893_CHIP_ID:
3983 	case KSZ9896_CHIP_ID:
3984 	case KSZ9897_CHIP_ID:
3985 	case LAN9646_CHIP_ID:
3986 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3987 	}
3988 
3989 	return -EOPNOTSUPP;
3990 }
3991 
3992 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3993  * is converted to Hex-decimal using the successive multiplication method. On
3994  * every step, integer part is taken and decimal part is carry forwarded.
3995  */
3996 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3997 {
3998 	u32 cinc = 0;
3999 	u32 txrate;
4000 	u32 rate;
4001 	u8 temp;
4002 	u8 i;
4003 
4004 	txrate = idle_slope - send_slope;
4005 
4006 	if (!txrate)
4007 		return -EINVAL;
4008 
4009 	rate = idle_slope;
4010 
4011 	/* 24 bit register */
4012 	for (i = 0; i < 6; i++) {
4013 		rate = rate * 16;
4014 
4015 		temp = rate / txrate;
4016 
4017 		rate %= txrate;
4018 
4019 		cinc = ((cinc << 4) | temp);
4020 	}
4021 
4022 	*bw = cinc;
4023 
4024 	return 0;
4025 }
4026 
4027 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4028 			     u8 shaper)
4029 {
4030 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4031 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4032 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4033 }
4034 
4035 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4036 			    struct tc_cbs_qopt_offload *qopt)
4037 {
4038 	struct ksz_device *dev = ds->priv;
4039 	int ret;
4040 	u32 bw;
4041 
4042 	if (!dev->info->tc_cbs_supported)
4043 		return -EOPNOTSUPP;
4044 
4045 	if (qopt->queue > dev->info->num_tx_queues)
4046 		return -EINVAL;
4047 
4048 	/* Queue Selection */
4049 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4050 	if (ret)
4051 		return ret;
4052 
4053 	if (!qopt->enable)
4054 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4055 					 MTI_SHAPING_OFF);
4056 
4057 	/* High Credit */
4058 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4059 			   qopt->hicredit);
4060 	if (ret)
4061 		return ret;
4062 
4063 	/* Low Credit */
4064 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4065 			   qopt->locredit);
4066 	if (ret)
4067 		return ret;
4068 
4069 	/* Credit Increment Register */
4070 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4071 	if (ret)
4072 		return ret;
4073 
4074 	if (dev->dev_ops->tc_cbs_set_cinc) {
4075 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4076 		if (ret)
4077 			return ret;
4078 	}
4079 
4080 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4081 				 MTI_SHAPING_SRP);
4082 }
4083 
4084 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4085 {
4086 	int queue, ret;
4087 
4088 	/* Configuration will not take effect until the last Port Queue X
4089 	 * Egress Limit Control Register is written.
4090 	 */
4091 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4092 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4093 				  KSZ9477_OUT_RATE_NO_LIMIT);
4094 		if (ret)
4095 			return ret;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4102 				 int band)
4103 {
4104 	/* Compared to queues, bands prioritize packets differently. In strict
4105 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4106 	 * highest priority is given to Band 0.
4107 	 */
4108 	return p->bands - 1 - band;
4109 }
4110 
4111 /**
4112  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4113  *                      for a port on KSZ88x3 switch
4114  * @dev: Pointer to the KSZ switch device structure
4115  * @port: Port number to configure
4116  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4117  *
4118  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4119  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4120  *   - No configurable queue-to-priority mapping
4121  *   - No weight adjustment in WFQ mode
4122  *
4123  * This function configures the switch to use strict priority mode by
4124  * clearing the WFQ enable bit for all queues associated with ETS bands.
4125  * If strict priority is not explicitly requested, the switch will default
4126  * to WFQ mode.
4127  *
4128  * Return: 0 on success, or a negative error code on failure
4129  */
4130 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4131 			      struct tc_ets_qopt_offload_replace_params *p)
4132 {
4133 	int ret, band;
4134 
4135 	/* Only strict priority mode is supported for now.
4136 	 * WFQ is implicitly enabled when strict mode is disabled.
4137 	 */
4138 	for (band = 0; band < p->bands; band++) {
4139 		int queue = ksz_ets_band_to_queue(p, band);
4140 		u8 reg;
4141 
4142 		/* Calculate TXQ Split Control register address for this
4143 		 * port/queue
4144 		 */
4145 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4146 
4147 		/* Clear WFQ enable bit to select strict priority scheduling */
4148 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4149 		if (ret)
4150 			return ret;
4151 	}
4152 
4153 	return 0;
4154 }
4155 
4156 /**
4157  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4158  *                      for a port on KSZ88x3 switch
4159  * @dev: Pointer to the KSZ switch device structure
4160  * @port: Port number to reset
4161  *
4162  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4163  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4164  * queue mapping. This function resets the port’s scheduling mode to
4165  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4166  *
4167  * Return: 0 on success, or a negative error code on failure
4168  */
4169 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4170 {
4171 	int ret, queue;
4172 
4173 	/* Iterate over all transmit queues for this port */
4174 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4175 		u8 reg;
4176 
4177 		/* Calculate TXQ Split Control register address for this
4178 		 * port/queue
4179 		 */
4180 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4181 
4182 		/* Set WFQ enable bit to revert back to default scheduling
4183 		 * mode
4184 		 */
4185 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4186 			       KSZ8873_TXQ_WFQ_ENABLE);
4187 		if (ret)
4188 			return ret;
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4195 {
4196 	int ret;
4197 
4198 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4199 	if (ret)
4200 		return ret;
4201 
4202 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4203 				 MTI_SHAPING_OFF);
4204 }
4205 
4206 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4207 			     int weight)
4208 {
4209 	int ret;
4210 
4211 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4212 	if (ret)
4213 		return ret;
4214 
4215 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4216 				MTI_SHAPING_OFF);
4217 	if (ret)
4218 		return ret;
4219 
4220 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4221 }
4222 
4223 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4224 			  struct tc_ets_qopt_offload_replace_params *p)
4225 {
4226 	int ret, band, tc_prio;
4227 	u32 queue_map = 0;
4228 
4229 	/* In order to ensure proper prioritization, it is necessary to set the
4230 	 * rate limit for the related queue to zero. Otherwise strict priority
4231 	 * or WRR mode will not work. This is a hardware limitation.
4232 	 */
4233 	ret = ksz_disable_egress_rate_limit(dev, port);
4234 	if (ret)
4235 		return ret;
4236 
4237 	/* Configure queue scheduling mode for all bands. Currently only strict
4238 	 * prio mode is supported.
4239 	 */
4240 	for (band = 0; band < p->bands; band++) {
4241 		int queue = ksz_ets_band_to_queue(p, band);
4242 
4243 		ret = ksz_queue_set_strict(dev, port, queue);
4244 		if (ret)
4245 			return ret;
4246 	}
4247 
4248 	/* Configure the mapping between traffic classes and queues. Note:
4249 	 * priomap variable support 16 traffic classes, but the chip can handle
4250 	 * only 8 classes.
4251 	 */
4252 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4253 		int queue;
4254 
4255 		if (tc_prio >= dev->info->num_ipms)
4256 			break;
4257 
4258 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4259 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4260 	}
4261 
4262 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4263 }
4264 
4265 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4266 {
4267 	int ret, queue;
4268 
4269 	/* To restore the default chip configuration, set all queues to use the
4270 	 * WRR scheduler with a weight of 1.
4271 	 */
4272 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4273 		ret = ksz_queue_set_wrr(dev, port, queue,
4274 					KSZ9477_DEFAULT_WRR_WEIGHT);
4275 
4276 		if (ret)
4277 			return ret;
4278 	}
4279 
4280 	/* Revert the queue mapping for TC-priority to its default setting on
4281 	 * the chip.
4282 	 */
4283 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4284 }
4285 
4286 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4287 			       struct tc_ets_qopt_offload_replace_params *p)
4288 {
4289 	int band;
4290 
4291 	/* Since it is not feasible to share one port among multiple qdisc,
4292 	 * the user must configure all available queues appropriately.
4293 	 */
4294 	if (p->bands != dev->info->num_tx_queues) {
4295 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4296 			dev->info->num_tx_queues);
4297 		return -EOPNOTSUPP;
4298 	}
4299 
4300 	for (band = 0; band < p->bands; ++band) {
4301 		/* The KSZ switches utilize a weighted round robin configuration
4302 		 * where a certain number of packets can be transmitted from a
4303 		 * queue before the next queue is serviced. For more information
4304 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4305 		 * documentation on the Port Transmit Queue Control 1 Register.
4306 		 * However, the current ETS Qdisc implementation (as of February
4307 		 * 2023) assigns a weight to each queue based on the number of
4308 		 * bytes or extrapolated bandwidth in percentages. Since this
4309 		 * differs from the KSZ switches' method and we don't want to
4310 		 * fake support by converting bytes to packets, it is better to
4311 		 * return an error instead.
4312 		 */
4313 		if (p->quanta[band]) {
4314 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4315 			return -EOPNOTSUPP;
4316 		}
4317 	}
4318 
4319 	return 0;
4320 }
4321 
4322 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4323 				  struct tc_ets_qopt_offload *qopt)
4324 {
4325 	struct ksz_device *dev = ds->priv;
4326 	int ret;
4327 
4328 	if (is_ksz8(dev) && !ksz_is_ksz88x3(dev))
4329 		return -EOPNOTSUPP;
4330 
4331 	if (qopt->parent != TC_H_ROOT) {
4332 		dev_err(dev->dev, "Parent should be \"root\"\n");
4333 		return -EOPNOTSUPP;
4334 	}
4335 
4336 	switch (qopt->command) {
4337 	case TC_ETS_REPLACE:
4338 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4339 		if (ret)
4340 			return ret;
4341 
4342 		if (ksz_is_ksz88x3(dev))
4343 			return ksz88x3_tc_ets_add(dev, port,
4344 						  &qopt->replace_params);
4345 		else
4346 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4347 	case TC_ETS_DESTROY:
4348 		if (ksz_is_ksz88x3(dev))
4349 			return ksz88x3_tc_ets_del(dev, port);
4350 		else
4351 			return ksz_tc_ets_del(dev, port);
4352 	case TC_ETS_STATS:
4353 	case TC_ETS_GRAFT:
4354 		return -EOPNOTSUPP;
4355 	}
4356 
4357 	return -EOPNOTSUPP;
4358 }
4359 
4360 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4361 			enum tc_setup_type type, void *type_data)
4362 {
4363 	switch (type) {
4364 	case TC_SETUP_QDISC_CBS:
4365 		return ksz_setup_tc_cbs(ds, port, type_data);
4366 	case TC_SETUP_QDISC_ETS:
4367 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4368 	default:
4369 		return -EOPNOTSUPP;
4370 	}
4371 }
4372 
4373 /**
4374  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4375  * @dev: The device structure.
4376  * @port: The port number.
4377  *
4378  * This function reads the PME (Power Management Event) status register of a
4379  * specified port to determine the wake reason. If there is no wake event, it
4380  * returns early. Otherwise, it logs the wake reason which could be due to a
4381  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4382  * is then cleared to acknowledge the handling of the wake event.
4383  *
4384  * Return: 0 on success, or an error code on failure.
4385  */
4386 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4387 {
4388 	const struct ksz_dev_ops *ops = dev->dev_ops;
4389 	const u16 *regs = dev->info->regs;
4390 	u8 pme_status;
4391 	int ret;
4392 
4393 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4394 			      &pme_status);
4395 	if (ret)
4396 		return ret;
4397 
4398 	if (!pme_status)
4399 		return 0;
4400 
4401 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4402 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4403 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4404 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4405 
4406 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4407 				pme_status);
4408 }
4409 
4410 /**
4411  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4412  * @ds: The dsa_switch structure.
4413  * @port: The port number.
4414  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4415  *
4416  * This function checks the device PME wakeup_source flag and chip_id.
4417  * If enabled and supported, it sets the supported and active WoL
4418  * flags.
4419  */
4420 static void ksz_get_wol(struct dsa_switch *ds, int port,
4421 			struct ethtool_wolinfo *wol)
4422 {
4423 	struct ksz_device *dev = ds->priv;
4424 	const u16 *regs = dev->info->regs;
4425 	u8 pme_ctrl;
4426 	int ret;
4427 
4428 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4429 		return;
4430 
4431 	if (!dev->wakeup_source)
4432 		return;
4433 
4434 	wol->supported = WAKE_PHY;
4435 
4436 	/* Check if the current MAC address on this port can be set
4437 	 * as global for WAKE_MAGIC support. The result may vary
4438 	 * dynamically based on other ports configurations.
4439 	 */
4440 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4441 		wol->supported |= WAKE_MAGIC;
4442 
4443 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4444 				       &pme_ctrl);
4445 	if (ret)
4446 		return;
4447 
4448 	if (pme_ctrl & PME_WOL_MAGICPKT)
4449 		wol->wolopts |= WAKE_MAGIC;
4450 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4451 		wol->wolopts |= WAKE_PHY;
4452 }
4453 
4454 /**
4455  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4456  * @ds: The dsa_switch structure.
4457  * @port: The port number.
4458  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4459  *
4460  * This function configures Wake-on-LAN (WoL) settings for a specified
4461  * port. It validates the provided WoL options, checks if PME is
4462  * enabled and supported, clears any previous wake reasons, and sets
4463  * the Magic Packet flag in the port's PME control register if
4464  * specified.
4465  *
4466  * Return: 0 on success, or other error codes on failure.
4467  */
4468 static int ksz_set_wol(struct dsa_switch *ds, int port,
4469 		       struct ethtool_wolinfo *wol)
4470 {
4471 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4472 	struct ksz_device *dev = ds->priv;
4473 	const u16 *regs = dev->info->regs;
4474 	bool magic_switched_off;
4475 	bool magic_switched_on;
4476 	int ret;
4477 
4478 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4479 		return -EINVAL;
4480 
4481 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4482 		return -EOPNOTSUPP;
4483 
4484 	if (!dev->wakeup_source)
4485 		return -EOPNOTSUPP;
4486 
4487 	ret = ksz_handle_wake_reason(dev, port);
4488 	if (ret)
4489 		return ret;
4490 
4491 	if (wol->wolopts & WAKE_MAGIC)
4492 		pme_ctrl |= PME_WOL_MAGICPKT;
4493 	if (wol->wolopts & WAKE_PHY)
4494 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4495 
4496 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4497 				       &pme_ctrl_old);
4498 	if (ret)
4499 		return ret;
4500 
4501 	if (pme_ctrl_old == pme_ctrl)
4502 		return 0;
4503 
4504 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4505 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4506 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4507 			    (pme_ctrl & PME_WOL_MAGICPKT);
4508 
4509 	/* To keep reference count of MAC address, we should do this
4510 	 * operation only on change of WOL settings.
4511 	 */
4512 	if (magic_switched_on) {
4513 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4514 		if (ret)
4515 			return ret;
4516 	} else if (magic_switched_off) {
4517 		ksz_switch_macaddr_put(dev->ds);
4518 	}
4519 
4520 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4521 					pme_ctrl);
4522 	if (ret) {
4523 		if (magic_switched_on)
4524 			ksz_switch_macaddr_put(dev->ds);
4525 		return ret;
4526 	}
4527 
4528 	return 0;
4529 }
4530 
4531 /**
4532  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4533  *                        considering Wake-on-LAN (WoL) settings.
4534  * @dev: The switch device structure.
4535  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4536  *               enabled on any port.
4537  *
4538  * This function prepares the switch device for a safe shutdown while taking
4539  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4540  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4541  * port.
4542  */
4543 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4544 {
4545 	const struct ksz_dev_ops *ops = dev->dev_ops;
4546 	const u16 *regs = dev->info->regs;
4547 	u8 pme_pin_en = PME_ENABLE;
4548 	struct dsa_port *dp;
4549 	int ret;
4550 
4551 	*wol_enabled = false;
4552 
4553 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4554 		return;
4555 
4556 	if (!dev->wakeup_source)
4557 		return;
4558 
4559 	dsa_switch_for_each_user_port(dp, dev->ds) {
4560 		u8 pme_ctrl = 0;
4561 
4562 		ret = ops->pme_pread8(dev, dp->index,
4563 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4564 		if (!ret && pme_ctrl)
4565 			*wol_enabled = true;
4566 
4567 		/* make sure there are no pending wake events which would
4568 		 * prevent the device from going to sleep/shutdown.
4569 		 */
4570 		ksz_handle_wake_reason(dev, dp->index);
4571 	}
4572 
4573 	/* Now we are save to enable PME pin. */
4574 	if (*wol_enabled) {
4575 		if (dev->pme_active_high)
4576 			pme_pin_en |= PME_POLARITY;
4577 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4578 		if (ksz_is_ksz87xx(dev))
4579 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4580 	}
4581 }
4582 
4583 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4584 				    const unsigned char *addr)
4585 {
4586 	struct dsa_port *dp = dsa_to_port(ds, port);
4587 	struct ethtool_wolinfo wol;
4588 
4589 	if (dp->hsr_dev) {
4590 		dev_err(ds->dev,
4591 			"Cannot change MAC address on port %d with active HSR offload\n",
4592 			port);
4593 		return -EBUSY;
4594 	}
4595 
4596 	/* Need to initialize variable as the code to fill in settings may
4597 	 * not be executed.
4598 	 */
4599 	wol.wolopts = 0;
4600 
4601 	ksz_get_wol(ds, dp->index, &wol);
4602 	if (wol.wolopts & WAKE_MAGIC) {
4603 		dev_err(ds->dev,
4604 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4605 			port);
4606 		return -EBUSY;
4607 	}
4608 
4609 	return 0;
4610 }
4611 
4612 /**
4613  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4614  *                                 can be used as a global address.
4615  * @ds: Pointer to the DSA switch structure.
4616  * @port: The port number on which the MAC address is to be checked.
4617  *
4618  * This function examines the MAC address set on the specified port and
4619  * determines if it can be used as a global address for the switch.
4620  *
4621  * Return: true if the port's MAC address can be used as a global address, false
4622  * otherwise.
4623  */
4624 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4625 {
4626 	struct net_device *user = dsa_to_port(ds, port)->user;
4627 	const unsigned char *addr = user->dev_addr;
4628 	struct ksz_switch_macaddr *switch_macaddr;
4629 	struct ksz_device *dev = ds->priv;
4630 
4631 	ASSERT_RTNL();
4632 
4633 	switch_macaddr = dev->switch_macaddr;
4634 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4635 		return false;
4636 
4637 	return true;
4638 }
4639 
4640 /**
4641  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4642  * @ds: DSA switch instance.
4643  * @port: Port number.
4644  * @extack: Netlink extended acknowledgment.
4645  *
4646  * This function programs the switch's MAC address register with the MAC address
4647  * of the requesting user port. This single address is used by the switch for
4648  * multiple features like HSR self-address filtering and WoL. Other user ports
4649  * can share ownership of this address as long as their MAC address is the same.
4650  * The MAC addresses of user ports must not change while they have ownership of
4651  * the switch MAC address.
4652  *
4653  * Return: 0 on success, or other error codes on failure.
4654  */
4655 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4656 			   struct netlink_ext_ack *extack)
4657 {
4658 	struct net_device *user = dsa_to_port(ds, port)->user;
4659 	const unsigned char *addr = user->dev_addr;
4660 	struct ksz_switch_macaddr *switch_macaddr;
4661 	struct ksz_device *dev = ds->priv;
4662 	const u16 *regs = dev->info->regs;
4663 	int i, ret;
4664 
4665 	/* Make sure concurrent MAC address changes are blocked */
4666 	ASSERT_RTNL();
4667 
4668 	switch_macaddr = dev->switch_macaddr;
4669 	if (switch_macaddr) {
4670 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4671 			NL_SET_ERR_MSG_FMT_MOD(extack,
4672 					       "Switch already configured for MAC address %pM",
4673 					       switch_macaddr->addr);
4674 			return -EBUSY;
4675 		}
4676 
4677 		refcount_inc(&switch_macaddr->refcount);
4678 		return 0;
4679 	}
4680 
4681 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4682 	if (!switch_macaddr)
4683 		return -ENOMEM;
4684 
4685 	ether_addr_copy(switch_macaddr->addr, addr);
4686 	refcount_set(&switch_macaddr->refcount, 1);
4687 	dev->switch_macaddr = switch_macaddr;
4688 
4689 	/* Program the switch MAC address to hardware */
4690 	for (i = 0; i < ETH_ALEN; i++) {
4691 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4692 		if (ret)
4693 			goto macaddr_drop;
4694 	}
4695 
4696 	return 0;
4697 
4698 macaddr_drop:
4699 	dev->switch_macaddr = NULL;
4700 	refcount_set(&switch_macaddr->refcount, 0);
4701 	kfree(switch_macaddr);
4702 
4703 	return ret;
4704 }
4705 
4706 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4707 {
4708 	struct ksz_switch_macaddr *switch_macaddr;
4709 	struct ksz_device *dev = ds->priv;
4710 	const u16 *regs = dev->info->regs;
4711 	int i;
4712 
4713 	/* Make sure concurrent MAC address changes are blocked */
4714 	ASSERT_RTNL();
4715 
4716 	switch_macaddr = dev->switch_macaddr;
4717 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4718 		return;
4719 
4720 	for (i = 0; i < ETH_ALEN; i++)
4721 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4722 
4723 	dev->switch_macaddr = NULL;
4724 	kfree(switch_macaddr);
4725 }
4726 
4727 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4728 			struct netlink_ext_ack *extack)
4729 {
4730 	struct ksz_device *dev = ds->priv;
4731 	enum hsr_version ver;
4732 	int ret;
4733 
4734 	ret = hsr_get_version(hsr, &ver);
4735 	if (ret)
4736 		return ret;
4737 
4738 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4739 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4740 		return -EOPNOTSUPP;
4741 	}
4742 
4743 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4744 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4745 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4746 		return -EOPNOTSUPP;
4747 	}
4748 
4749 	/* KSZ9477 only supports HSR v0 and v1 */
4750 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4751 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4752 		return -EOPNOTSUPP;
4753 	}
4754 
4755 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4756 	if (hweight8(dev->hsr_ports) >= 2) {
4757 		NL_SET_ERR_MSG_MOD(extack,
4758 				   "Cannot offload more than two ports - using software HSR");
4759 		return -EOPNOTSUPP;
4760 	}
4761 
4762 	/* Self MAC address filtering, to avoid frames traversing
4763 	 * the HSR ring more than once.
4764 	 */
4765 	ret = ksz_switch_macaddr_get(ds, port, extack);
4766 	if (ret)
4767 		return ret;
4768 
4769 	ksz9477_hsr_join(ds, port, hsr);
4770 	dev->hsr_dev = hsr;
4771 	dev->hsr_ports |= BIT(port);
4772 
4773 	return 0;
4774 }
4775 
4776 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4777 			 struct net_device *hsr)
4778 {
4779 	struct ksz_device *dev = ds->priv;
4780 
4781 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4782 
4783 	ksz9477_hsr_leave(ds, port, hsr);
4784 	dev->hsr_ports &= ~BIT(port);
4785 	if (!dev->hsr_ports)
4786 		dev->hsr_dev = NULL;
4787 
4788 	ksz_switch_macaddr_put(ds);
4789 
4790 	return 0;
4791 }
4792 
4793 static int ksz_suspend(struct dsa_switch *ds)
4794 {
4795 	struct ksz_device *dev = ds->priv;
4796 
4797 	cancel_delayed_work_sync(&dev->mib_read);
4798 	return 0;
4799 }
4800 
4801 static int ksz_resume(struct dsa_switch *ds)
4802 {
4803 	struct ksz_device *dev = ds->priv;
4804 
4805 	if (dev->mib_read_interval)
4806 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4807 	return 0;
4808 }
4809 
4810 static const struct dsa_switch_ops ksz_switch_ops = {
4811 	.get_tag_protocol	= ksz_get_tag_protocol,
4812 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4813 	.get_phy_flags		= ksz_get_phy_flags,
4814 	.setup			= ksz_setup,
4815 	.teardown		= ksz_teardown,
4816 	.phy_read		= ksz_phy_read16,
4817 	.phy_write		= ksz_phy_write16,
4818 	.phylink_get_caps	= ksz_phylink_get_caps,
4819 	.port_setup		= ksz_port_setup,
4820 	.set_ageing_time	= ksz_set_ageing_time,
4821 	.get_strings		= ksz_get_strings,
4822 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4823 	.get_sset_count		= ksz_sset_count,
4824 	.port_bridge_join	= ksz_port_bridge_join,
4825 	.port_bridge_leave	= ksz_port_bridge_leave,
4826 	.port_hsr_join		= ksz_hsr_join,
4827 	.port_hsr_leave		= ksz_hsr_leave,
4828 	.port_set_mac_address	= ksz_port_set_mac_address,
4829 	.port_stp_state_set	= ksz_port_stp_state_set,
4830 	.port_teardown		= ksz_port_teardown,
4831 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4832 	.port_bridge_flags	= ksz_port_bridge_flags,
4833 	.port_fast_age		= ksz_port_fast_age,
4834 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4835 	.port_vlan_add		= ksz_port_vlan_add,
4836 	.port_vlan_del		= ksz_port_vlan_del,
4837 	.port_fdb_dump		= ksz_port_fdb_dump,
4838 	.port_fdb_add		= ksz_port_fdb_add,
4839 	.port_fdb_del		= ksz_port_fdb_del,
4840 	.port_mdb_add           = ksz_port_mdb_add,
4841 	.port_mdb_del           = ksz_port_mdb_del,
4842 	.port_mirror_add	= ksz_port_mirror_add,
4843 	.port_mirror_del	= ksz_port_mirror_del,
4844 	.get_stats64		= ksz_get_stats64,
4845 	.get_pause_stats	= ksz_get_pause_stats,
4846 	.port_change_mtu	= ksz_change_mtu,
4847 	.port_max_mtu		= ksz_max_mtu,
4848 	.get_wol		= ksz_get_wol,
4849 	.set_wol		= ksz_set_wol,
4850 	.suspend		= ksz_suspend,
4851 	.resume			= ksz_resume,
4852 	.get_ts_info		= ksz_get_ts_info,
4853 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4854 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4855 	.port_txtstamp		= ksz_port_txtstamp,
4856 	.port_rxtstamp		= ksz_port_rxtstamp,
4857 	.cls_flower_add		= ksz_cls_flower_add,
4858 	.cls_flower_del		= ksz_cls_flower_del,
4859 	.port_setup_tc		= ksz_setup_tc,
4860 	.support_eee		= ksz_support_eee,
4861 	.set_mac_eee		= ksz_set_mac_eee,
4862 	.port_get_default_prio	= ksz_port_get_default_prio,
4863 	.port_set_default_prio	= ksz_port_set_default_prio,
4864 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4865 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4866 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4867 	.port_get_apptrust	= ksz_port_get_apptrust,
4868 	.port_set_apptrust	= ksz_port_set_apptrust,
4869 };
4870 
4871 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4872 {
4873 	struct dsa_switch *ds;
4874 	struct ksz_device *swdev;
4875 
4876 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4877 	if (!ds)
4878 		return NULL;
4879 
4880 	ds->dev = base;
4881 	ds->num_ports = DSA_MAX_PORTS;
4882 	ds->ops = &ksz_switch_ops;
4883 
4884 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4885 	if (!swdev)
4886 		return NULL;
4887 
4888 	ds->priv = swdev;
4889 	swdev->dev = base;
4890 
4891 	swdev->ds = ds;
4892 	swdev->priv = priv;
4893 
4894 	return swdev;
4895 }
4896 EXPORT_SYMBOL(ksz_switch_alloc);
4897 
4898 /**
4899  * ksz_switch_shutdown - Shutdown routine for the switch device.
4900  * @dev: The switch device structure.
4901  *
4902  * This function is responsible for initiating a shutdown sequence for the
4903  * switch device. It invokes the reset operation defined in the device
4904  * operations, if available, to reset the switch. Subsequently, it calls the
4905  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4906  * switch.
4907  */
4908 void ksz_switch_shutdown(struct ksz_device *dev)
4909 {
4910 	bool wol_enabled = false;
4911 
4912 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4913 
4914 	if (dev->dev_ops->reset && !wol_enabled)
4915 		dev->dev_ops->reset(dev);
4916 
4917 	dsa_switch_shutdown(dev->ds);
4918 }
4919 EXPORT_SYMBOL(ksz_switch_shutdown);
4920 
4921 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4922 				  struct device_node *port_dn)
4923 {
4924 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4925 	int rx_delay = -1, tx_delay = -1;
4926 
4927 	if (!phy_interface_mode_is_rgmii(phy_mode))
4928 		return;
4929 
4930 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4931 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4932 
4933 	if (rx_delay == -1 && tx_delay == -1) {
4934 		dev_warn(dev->dev,
4935 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4936 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4937 			 "\"tx-internal-delay-ps\"",
4938 			 port_num);
4939 
4940 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4941 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4942 			rx_delay = 2000;
4943 
4944 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4945 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4946 			tx_delay = 2000;
4947 	}
4948 
4949 	if (rx_delay < 0)
4950 		rx_delay = 0;
4951 	if (tx_delay < 0)
4952 		tx_delay = 0;
4953 
4954 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4955 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4956 }
4957 
4958 /**
4959  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4960  *				 register value.
4961  * @array:	The array of drive strength values to search.
4962  * @array_size:	The size of the array.
4963  * @microamp:	The drive strength value in microamp to be converted.
4964  *
4965  * This function searches the array of drive strength values for the given
4966  * microamp value and returns the corresponding register value for that drive.
4967  *
4968  * Returns: If found, the corresponding register value for that drive strength
4969  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4970  */
4971 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4972 				     size_t array_size, int microamp)
4973 {
4974 	int i;
4975 
4976 	for (i = 0; i < array_size; i++) {
4977 		if (array[i].microamp == microamp)
4978 			return array[i].reg_val;
4979 	}
4980 
4981 	return -EINVAL;
4982 }
4983 
4984 /**
4985  * ksz_drive_strength_error() - Report invalid drive strength value
4986  * @dev:	ksz device
4987  * @array:	The array of drive strength values to search.
4988  * @array_size:	The size of the array.
4989  * @microamp:	Invalid drive strength value in microamp
4990  *
4991  * This function logs an error message when an unsupported drive strength value
4992  * is detected. It lists out all the supported drive strength values for
4993  * reference in the error message.
4994  */
4995 static void ksz_drive_strength_error(struct ksz_device *dev,
4996 				     const struct ksz_drive_strength *array,
4997 				     size_t array_size, int microamp)
4998 {
4999 	char supported_values[100];
5000 	size_t remaining_size;
5001 	int added_len;
5002 	char *ptr;
5003 	int i;
5004 
5005 	remaining_size = sizeof(supported_values);
5006 	ptr = supported_values;
5007 
5008 	for (i = 0; i < array_size; i++) {
5009 		added_len = snprintf(ptr, remaining_size,
5010 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5011 
5012 		if (added_len >= remaining_size)
5013 			break;
5014 
5015 		ptr += added_len;
5016 		remaining_size -= added_len;
5017 	}
5018 
5019 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5020 		microamp, supported_values);
5021 }
5022 
5023 /**
5024  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5025  *				    chip variants.
5026  * @dev:       ksz device
5027  * @props:     Array of drive strength properties to be applied
5028  * @num_props: Number of properties in the array
5029  *
5030  * This function configures the drive strength for various KSZ9477 chip variants
5031  * based on the provided properties. It handles chip-specific nuances and
5032  * ensures only valid drive strengths are written to the respective chip.
5033  *
5034  * Return: 0 on successful configuration, a negative error code on failure.
5035  */
5036 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5037 					struct ksz_driver_strength_prop *props,
5038 					int num_props)
5039 {
5040 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5041 	int i, ret, reg;
5042 	u8 mask = 0;
5043 	u8 val = 0;
5044 
5045 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5046 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5047 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5048 
5049 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5050 	    dev->chip_id == KSZ8794_CHIP_ID ||
5051 	    dev->chip_id == KSZ8765_CHIP_ID)
5052 		reg = KSZ8795_REG_SW_CTRL_20;
5053 	else
5054 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5055 
5056 	for (i = 0; i < num_props; i++) {
5057 		if (props[i].value == -1)
5058 			continue;
5059 
5060 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5061 						array_size, props[i].value);
5062 		if (ret < 0) {
5063 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5064 						 array_size, props[i].value);
5065 			return ret;
5066 		}
5067 
5068 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5069 		val |= ret << props[i].offset;
5070 	}
5071 
5072 	return ksz_rmw8(dev, reg, mask, val);
5073 }
5074 
5075 /**
5076  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5077  *				    KSZ8863 compatible chip variants.
5078  * @dev:       ksz device
5079  * @props:     Array of drive strength properties to be set
5080  * @num_props: Number of properties in the array
5081  *
5082  * This function applies the specified drive strength settings to KSZ88X3 chip
5083  * variants (KSZ8873, KSZ8863).
5084  * It ensures the configurations align with what the chip variant supports and
5085  * warns or errors out on unsupported settings.
5086  *
5087  * Return: 0 on success, error code otherwise
5088  */
5089 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5090 					struct ksz_driver_strength_prop *props,
5091 					int num_props)
5092 {
5093 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5094 	int microamp;
5095 	int i, ret;
5096 
5097 	for (i = 0; i < num_props; i++) {
5098 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5099 			continue;
5100 
5101 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5102 			 props[i].name);
5103 	}
5104 
5105 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5106 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5107 					microamp);
5108 	if (ret < 0) {
5109 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5110 					 array_size, microamp);
5111 		return ret;
5112 	}
5113 
5114 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5115 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5116 }
5117 
5118 /**
5119  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5120  *				from device tree properties.
5121  * @dev:	ksz device
5122  *
5123  * This function reads the specified drive strength properties from the
5124  * device tree, validates against the supported chip variants, and sets
5125  * them accordingly. An error should be critical here, as the drive strength
5126  * settings are crucial for EMI compliance.
5127  *
5128  * Return: 0 on success, error code otherwise
5129  */
5130 static int ksz_parse_drive_strength(struct ksz_device *dev)
5131 {
5132 	struct ksz_driver_strength_prop of_props[] = {
5133 		[KSZ_DRIVER_STRENGTH_HI] = {
5134 			.name = "microchip,hi-drive-strength-microamp",
5135 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5136 			.value = -1,
5137 		},
5138 		[KSZ_DRIVER_STRENGTH_LO] = {
5139 			.name = "microchip,lo-drive-strength-microamp",
5140 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5141 			.value = -1,
5142 		},
5143 		[KSZ_DRIVER_STRENGTH_IO] = {
5144 			.name = "microchip,io-drive-strength-microamp",
5145 			.offset = 0, /* don't care */
5146 			.value = -1,
5147 		},
5148 	};
5149 	struct device_node *np = dev->dev->of_node;
5150 	bool have_any_prop = false;
5151 	int i, ret;
5152 
5153 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5154 		ret = of_property_read_u32(np, of_props[i].name,
5155 					   &of_props[i].value);
5156 		if (ret && ret != -EINVAL)
5157 			dev_warn(dev->dev, "Failed to read %s\n",
5158 				 of_props[i].name);
5159 		if (ret)
5160 			continue;
5161 
5162 		have_any_prop = true;
5163 	}
5164 
5165 	if (!have_any_prop)
5166 		return 0;
5167 
5168 	switch (dev->chip_id) {
5169 	case KSZ88X3_CHIP_ID:
5170 		return ksz88x3_drive_strength_write(dev, of_props,
5171 						    ARRAY_SIZE(of_props));
5172 	case KSZ8795_CHIP_ID:
5173 	case KSZ8794_CHIP_ID:
5174 	case KSZ8765_CHIP_ID:
5175 	case KSZ8563_CHIP_ID:
5176 	case KSZ8567_CHIP_ID:
5177 	case KSZ9477_CHIP_ID:
5178 	case KSZ9563_CHIP_ID:
5179 	case KSZ9567_CHIP_ID:
5180 	case KSZ9893_CHIP_ID:
5181 	case KSZ9896_CHIP_ID:
5182 	case KSZ9897_CHIP_ID:
5183 	case LAN9646_CHIP_ID:
5184 		return ksz9477_drive_strength_write(dev, of_props,
5185 						    ARRAY_SIZE(of_props));
5186 	default:
5187 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5188 			if (of_props[i].value == -1)
5189 				continue;
5190 
5191 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5192 				 of_props[i].name);
5193 		}
5194 	}
5195 
5196 	return 0;
5197 }
5198 
5199 int ksz_switch_register(struct ksz_device *dev)
5200 {
5201 	const struct ksz_chip_data *info;
5202 	struct device_node *ports;
5203 	phy_interface_t interface;
5204 	unsigned int port_num;
5205 	int ret;
5206 	int i;
5207 
5208 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5209 						  GPIOD_OUT_LOW);
5210 	if (IS_ERR(dev->reset_gpio))
5211 		return PTR_ERR(dev->reset_gpio);
5212 
5213 	if (dev->reset_gpio) {
5214 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5215 		usleep_range(10000, 12000);
5216 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5217 		msleep(100);
5218 	}
5219 
5220 	mutex_init(&dev->dev_mutex);
5221 	mutex_init(&dev->regmap_mutex);
5222 	mutex_init(&dev->alu_mutex);
5223 	mutex_init(&dev->vlan_mutex);
5224 
5225 	ret = ksz_switch_detect(dev);
5226 	if (ret)
5227 		return ret;
5228 
5229 	info = ksz_lookup_info(dev->chip_id);
5230 	if (!info)
5231 		return -ENODEV;
5232 
5233 	/* Update the compatible info with the probed one */
5234 	dev->info = info;
5235 
5236 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5237 		 dev->info->dev_name, dev->chip_rev);
5238 
5239 	ret = ksz_check_device_id(dev);
5240 	if (ret)
5241 		return ret;
5242 
5243 	dev->dev_ops = dev->info->ops;
5244 
5245 	ret = dev->dev_ops->init(dev);
5246 	if (ret)
5247 		return ret;
5248 
5249 	dev->ports = devm_kzalloc(dev->dev,
5250 				  dev->info->port_cnt * sizeof(struct ksz_port),
5251 				  GFP_KERNEL);
5252 	if (!dev->ports)
5253 		return -ENOMEM;
5254 
5255 	for (i = 0; i < dev->info->port_cnt; i++) {
5256 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5257 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5258 		dev->ports[i].mib.counters =
5259 			devm_kzalloc(dev->dev,
5260 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5261 				     GFP_KERNEL);
5262 		if (!dev->ports[i].mib.counters)
5263 			return -ENOMEM;
5264 
5265 		dev->ports[i].ksz_dev = dev;
5266 		dev->ports[i].num = i;
5267 	}
5268 
5269 	/* set the real number of ports */
5270 	dev->ds->num_ports = dev->info->port_cnt;
5271 
5272 	/* set the phylink ops */
5273 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5274 
5275 	/* Host port interface will be self detected, or specifically set in
5276 	 * device tree.
5277 	 */
5278 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5279 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5280 	if (dev->dev->of_node) {
5281 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5282 		if (ret == 0)
5283 			dev->compat_interface = interface;
5284 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5285 		if (!ports)
5286 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5287 		if (ports) {
5288 			for_each_available_child_of_node_scoped(ports, port) {
5289 				if (of_property_read_u32(port, "reg",
5290 							 &port_num))
5291 					continue;
5292 				if (!(dev->port_mask & BIT(port_num))) {
5293 					of_node_put(ports);
5294 					return -EINVAL;
5295 				}
5296 				of_get_phy_mode(port,
5297 						&dev->ports[port_num].interface);
5298 
5299 				ksz_parse_rgmii_delay(dev, port_num, port);
5300 			}
5301 			of_node_put(ports);
5302 		}
5303 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5304 							 "microchip,synclko-125");
5305 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5306 							     "microchip,synclko-disable");
5307 		if (dev->synclko_125 && dev->synclko_disable) {
5308 			dev_err(dev->dev, "inconsistent synclko settings\n");
5309 			return -EINVAL;
5310 		}
5311 
5312 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5313 							   "wakeup-source");
5314 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5315 							     "microchip,pme-active-high");
5316 	}
5317 
5318 	ret = dsa_register_switch(dev->ds);
5319 	if (ret) {
5320 		dev->dev_ops->exit(dev);
5321 		return ret;
5322 	}
5323 
5324 	/* Read MIB counters every 30 seconds to avoid overflow. */
5325 	dev->mib_read_interval = msecs_to_jiffies(5000);
5326 
5327 	/* Start the MIB timer. */
5328 	schedule_delayed_work(&dev->mib_read, 0);
5329 
5330 	return ret;
5331 }
5332 EXPORT_SYMBOL(ksz_switch_register);
5333 
5334 void ksz_switch_remove(struct ksz_device *dev)
5335 {
5336 	/* timer started */
5337 	if (dev->mib_read_interval) {
5338 		dev->mib_read_interval = 0;
5339 		cancel_delayed_work_sync(&dev->mib_read);
5340 	}
5341 
5342 	dev->dev_ops->exit(dev);
5343 	dsa_unregister_switch(dev->ds);
5344 
5345 	if (dev->reset_gpio)
5346 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5347 
5348 }
5349 EXPORT_SYMBOL(ksz_switch_remove);
5350 
5351 #ifdef CONFIG_PM_SLEEP
5352 int ksz_switch_suspend(struct device *dev)
5353 {
5354 	struct ksz_device *priv = dev_get_drvdata(dev);
5355 
5356 	return dsa_switch_suspend(priv->ds);
5357 }
5358 EXPORT_SYMBOL(ksz_switch_suspend);
5359 
5360 int ksz_switch_resume(struct device *dev)
5361 {
5362 	struct ksz_device *priv = dev_get_drvdata(dev);
5363 
5364 	return dsa_switch_resume(priv->ds);
5365 }
5366 EXPORT_SYMBOL(ksz_switch_resume);
5367 #endif
5368 
5369 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5370 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5371 MODULE_LICENSE("GPL");
5372