1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Synopsys DesignWare Multimedia Card Interface driver 4 * (Based on NXP driver for lpc 31xx) 5 * 6 * Copyright (C) 2009 NXP Semiconductors 7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/iopoll.h> 19 #include <linux/ioport.h> 20 #include <linux/ktime.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/prandom.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/stat.h> 28 #include <linux/delay.h> 29 #include <linux/irq.h> 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 #include <linux/mmc/sdio.h> 35 #include <linux/bitops.h> 36 #include <linux/regulator/consumer.h> 37 #include <linux/of.h> 38 #include <linux/mmc/slot-gpio.h> 39 40 #include "dw_mmc.h" 41 42 /* Common flag combinations */ 43 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ 44 SDMMC_INT_HTO | SDMMC_INT_SBE | \ 45 SDMMC_INT_EBE | SDMMC_INT_HLE) 46 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ 47 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE) 48 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ 49 DW_MCI_CMD_ERROR_FLAGS) 50 #define DW_MCI_SEND_STATUS 1 51 #define DW_MCI_RECV_STATUS 2 52 #define DW_MCI_DMA_THRESHOLD 16 53 54 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ 55 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */ 56 57 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ 58 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ 59 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ 60 SDMMC_IDMAC_INT_TI) 61 62 #define DESC_RING_BUF_SZ PAGE_SIZE 63 64 struct idmac_desc_64addr { 65 u32 des0; /* Control Descriptor */ 66 #define IDMAC_OWN_CLR64(x) \ 67 !((x) & cpu_to_le32(IDMAC_DES0_OWN)) 68 69 u32 des1; /* Reserved */ 70 71 u32 des2; /*Buffer sizes */ 72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ 73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ 74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) 75 76 u32 des3; /* Reserved */ 77 78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ 79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ 80 81 u32 des6; /* Lower 32-bits of Next Descriptor Address */ 82 u32 des7; /* Upper 32-bits of Next Descriptor Address */ 83 }; 84 85 struct idmac_desc { 86 __le32 des0; /* Control Descriptor */ 87 #define IDMAC_DES0_DIC BIT(1) 88 #define IDMAC_DES0_LD BIT(2) 89 #define IDMAC_DES0_FD BIT(3) 90 #define IDMAC_DES0_CH BIT(4) 91 #define IDMAC_DES0_ER BIT(5) 92 #define IDMAC_DES0_CES BIT(30) 93 #define IDMAC_DES0_OWN BIT(31) 94 95 __le32 des1; /* Buffer sizes */ 96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \ 97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff))) 98 99 __le32 des2; /* buffer 1 physical address */ 100 101 __le32 des3; /* buffer 2 physical address */ 102 }; 103 104 /* Each descriptor can transfer up to 4KB of data in chained mode */ 105 #define DW_MCI_DESC_DATA_LENGTH 0x1000 106 107 #if defined(CONFIG_DEBUG_FS) 108 static int dw_mci_req_show(struct seq_file *s, void *v) 109 { 110 struct dw_mci_slot *slot = s->private; 111 struct mmc_request *mrq; 112 struct mmc_command *cmd; 113 struct mmc_command *stop; 114 struct mmc_data *data; 115 116 /* Make sure we get a consistent snapshot */ 117 spin_lock_bh(&slot->host->lock); 118 mrq = slot->mrq; 119 120 if (mrq) { 121 cmd = mrq->cmd; 122 data = mrq->data; 123 stop = mrq->stop; 124 125 if (cmd) 126 seq_printf(s, 127 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 128 cmd->opcode, cmd->arg, cmd->flags, 129 cmd->resp[0], cmd->resp[1], cmd->resp[2], 130 cmd->resp[2], cmd->error); 131 if (data) 132 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", 133 data->bytes_xfered, data->blocks, 134 data->blksz, data->flags, data->error); 135 if (stop) 136 seq_printf(s, 137 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 138 stop->opcode, stop->arg, stop->flags, 139 stop->resp[0], stop->resp[1], stop->resp[2], 140 stop->resp[2], stop->error); 141 } 142 143 spin_unlock_bh(&slot->host->lock); 144 145 return 0; 146 } 147 DEFINE_SHOW_ATTRIBUTE(dw_mci_req); 148 149 static int dw_mci_regs_show(struct seq_file *s, void *v) 150 { 151 struct dw_mci *host = s->private; 152 153 pm_runtime_get_sync(host->dev); 154 155 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS)); 156 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS)); 157 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD)); 158 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL)); 159 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK)); 160 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA)); 161 162 pm_runtime_put_autosuspend(host->dev); 163 164 return 0; 165 } 166 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs); 167 168 static void dw_mci_init_debugfs(struct dw_mci_slot *slot) 169 { 170 struct mmc_host *mmc = slot->mmc; 171 struct dw_mci *host = slot->host; 172 struct dentry *root; 173 174 root = mmc->debugfs_root; 175 if (!root) 176 return; 177 178 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops); 179 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops); 180 debugfs_create_u32("state", S_IRUSR, root, &host->state); 181 debugfs_create_xul("pending_events", S_IRUSR, root, 182 &host->pending_events); 183 debugfs_create_xul("completed_events", S_IRUSR, root, 184 &host->completed_events); 185 #ifdef CONFIG_FAULT_INJECTION 186 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc); 187 #endif 188 } 189 #endif /* defined(CONFIG_DEBUG_FS) */ 190 191 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) 192 { 193 u32 ctrl; 194 195 ctrl = mci_readl(host, CTRL); 196 ctrl |= reset; 197 mci_writel(host, CTRL, ctrl); 198 199 /* wait till resets clear */ 200 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl, 201 !(ctrl & reset), 202 1, 500 * USEC_PER_MSEC)) { 203 dev_err(host->dev, 204 "Timeout resetting block (ctrl reset %#x)\n", 205 ctrl & reset); 206 return false; 207 } 208 209 return true; 210 } 211 212 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) 213 { 214 u32 status; 215 216 /* 217 * Databook says that before issuing a new data transfer command 218 * we need to check to see if the card is busy. Data transfer commands 219 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. 220 * 221 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is 222 * expected. 223 */ 224 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && 225 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { 226 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 227 status, 228 !(status & SDMMC_STATUS_BUSY), 229 10, 500 * USEC_PER_MSEC)) 230 dev_err(host->dev, "Busy; trying anyway\n"); 231 } 232 } 233 234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) 235 { 236 struct dw_mci *host = slot->host; 237 unsigned int cmd_status = 0; 238 239 mci_writel(host, CMDARG, arg); 240 wmb(); /* drain writebuffer */ 241 dw_mci_wait_while_busy(host, cmd); 242 mci_writel(host, CMD, SDMMC_CMD_START | cmd); 243 244 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status, 245 !(cmd_status & SDMMC_CMD_START), 246 1, 500 * USEC_PER_MSEC)) 247 dev_err(&slot->mmc->class_dev, 248 "Timeout sending command (cmd %#x arg %#x status %#x)\n", 249 cmd, arg, cmd_status); 250 } 251 252 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) 253 { 254 struct dw_mci_slot *slot = mmc_priv(mmc); 255 struct dw_mci *host = slot->host; 256 u32 cmdr; 257 258 cmd->error = -EINPROGRESS; 259 cmdr = cmd->opcode; 260 261 if (cmd->opcode == MMC_STOP_TRANSMISSION || 262 cmd->opcode == MMC_GO_IDLE_STATE || 263 cmd->opcode == MMC_GO_INACTIVE_STATE || 264 (cmd->opcode == SD_IO_RW_DIRECT && 265 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) 266 cmdr |= SDMMC_CMD_STOP; 267 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) 268 cmdr |= SDMMC_CMD_PRV_DAT_WAIT; 269 270 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 271 u32 clk_en_a; 272 273 /* Special bit makes CMD11 not die */ 274 cmdr |= SDMMC_CMD_VOLT_SWITCH; 275 276 /* Change state to continue to handle CMD11 weirdness */ 277 WARN_ON(slot->host->state != STATE_SENDING_CMD); 278 slot->host->state = STATE_SENDING_CMD11; 279 280 /* 281 * We need to disable low power mode (automatic clock stop) 282 * while doing voltage switch so we don't confuse the card, 283 * since stopping the clock is a specific part of the UHS 284 * voltage change dance. 285 * 286 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be 287 * unconditionally turned back on in dw_mci_setup_bus() if it's 288 * ever called with a non-zero clock. That shouldn't happen 289 * until the voltage change is all done. 290 */ 291 clk_en_a = mci_readl(host, CLKENA); 292 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); 293 mci_writel(host, CLKENA, clk_en_a); 294 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 295 SDMMC_CMD_PRV_DAT_WAIT, 0); 296 } 297 298 if (cmd->flags & MMC_RSP_PRESENT) { 299 /* We expect a response, so set this bit */ 300 cmdr |= SDMMC_CMD_RESP_EXP; 301 if (cmd->flags & MMC_RSP_136) 302 cmdr |= SDMMC_CMD_RESP_LONG; 303 } 304 305 if (cmd->flags & MMC_RSP_CRC) 306 cmdr |= SDMMC_CMD_RESP_CRC; 307 308 if (cmd->data) { 309 cmdr |= SDMMC_CMD_DAT_EXP; 310 if (cmd->data->flags & MMC_DATA_WRITE) 311 cmdr |= SDMMC_CMD_DAT_WR; 312 } 313 314 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags)) 315 cmdr |= SDMMC_CMD_USE_HOLD_REG; 316 317 return cmdr; 318 } 319 320 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) 321 { 322 struct mmc_command *stop; 323 u32 cmdr; 324 325 if (!cmd->data) 326 return 0; 327 328 stop = &host->stop_abort; 329 cmdr = cmd->opcode; 330 memset(stop, 0, sizeof(struct mmc_command)); 331 332 if (cmdr == MMC_READ_SINGLE_BLOCK || 333 cmdr == MMC_READ_MULTIPLE_BLOCK || 334 cmdr == MMC_WRITE_BLOCK || 335 cmdr == MMC_WRITE_MULTIPLE_BLOCK || 336 mmc_op_tuning(cmdr) || 337 cmdr == MMC_GEN_CMD) { 338 stop->opcode = MMC_STOP_TRANSMISSION; 339 stop->arg = 0; 340 stop->flags = MMC_RSP_R1B | MMC_CMD_AC; 341 } else if (cmdr == SD_IO_RW_EXTENDED) { 342 stop->opcode = SD_IO_RW_DIRECT; 343 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 344 ((cmd->arg >> 28) & 0x7); 345 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; 346 } else { 347 return 0; 348 } 349 350 cmdr = stop->opcode | SDMMC_CMD_STOP | 351 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; 352 353 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags)) 354 cmdr |= SDMMC_CMD_USE_HOLD_REG; 355 356 return cmdr; 357 } 358 359 static inline void dw_mci_set_cto(struct dw_mci *host) 360 { 361 unsigned int cto_clks; 362 unsigned int cto_div; 363 unsigned int cto_ms; 364 unsigned long irqflags; 365 366 cto_clks = mci_readl(host, TMOUT) & 0xff; 367 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 368 if (cto_div == 0) 369 cto_div = 1; 370 371 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div, 372 host->bus_hz); 373 374 /* add a bit spare time */ 375 cto_ms += 10; 376 377 /* 378 * The durations we're working with are fairly short so we have to be 379 * extra careful about synchronization here. Specifically in hardware a 380 * command timeout is _at most_ 5.1 ms, so that means we expect an 381 * interrupt (either command done or timeout) to come rather quickly 382 * after the mci_writel. ...but just in case we have a long interrupt 383 * latency let's add a bit of paranoia. 384 * 385 * In general we'll assume that at least an interrupt will be asserted 386 * in hardware by the time the cto_timer runs. ...and if it hasn't 387 * been asserted in hardware by that time then we'll assume it'll never 388 * come. 389 */ 390 spin_lock_irqsave(&host->irq_lock, irqflags); 391 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 392 mod_timer(&host->cto_timer, 393 jiffies + msecs_to_jiffies(cto_ms) + 1); 394 spin_unlock_irqrestore(&host->irq_lock, irqflags); 395 } 396 397 static void dw_mci_start_command(struct dw_mci *host, 398 struct mmc_command *cmd, u32 cmd_flags) 399 { 400 host->cmd = cmd; 401 dev_vdbg(host->dev, 402 "start command: ARGR=0x%08x CMDR=0x%08x\n", 403 cmd->arg, cmd_flags); 404 405 mci_writel(host, CMDARG, cmd->arg); 406 wmb(); /* drain writebuffer */ 407 dw_mci_wait_while_busy(host, cmd_flags); 408 409 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); 410 411 /* response expected command only */ 412 if (cmd_flags & SDMMC_CMD_RESP_EXP) 413 dw_mci_set_cto(host); 414 } 415 416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) 417 { 418 struct mmc_command *stop = &host->stop_abort; 419 420 dw_mci_start_command(host, stop, host->stop_cmdr); 421 } 422 423 /* DMA interface functions */ 424 static void dw_mci_stop_dma(struct dw_mci *host) 425 { 426 if (host->using_dma) { 427 host->dma_ops->stop(host); 428 host->dma_ops->cleanup(host); 429 } 430 431 /* Data transfer was stopped by the interrupt handler */ 432 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 433 } 434 435 static void dw_mci_dma_cleanup(struct dw_mci *host) 436 { 437 struct mmc_data *data = host->data; 438 439 if (data && data->host_cookie == COOKIE_MAPPED) { 440 dma_unmap_sg(host->dev, 441 data->sg, 442 data->sg_len, 443 mmc_get_dma_dir(data)); 444 data->host_cookie = COOKIE_UNMAPPED; 445 } 446 } 447 448 static void dw_mci_idmac_reset(struct dw_mci *host) 449 { 450 u32 bmod = mci_readl(host, BMOD); 451 /* Software reset of DMA */ 452 bmod |= SDMMC_IDMAC_SWRESET; 453 mci_writel(host, BMOD, bmod); 454 } 455 456 static void dw_mci_idmac_stop_dma(struct dw_mci *host) 457 { 458 u32 temp; 459 460 /* Disable and reset the IDMAC interface */ 461 temp = mci_readl(host, CTRL); 462 temp &= ~SDMMC_CTRL_USE_IDMAC; 463 temp |= SDMMC_CTRL_DMA_RESET; 464 mci_writel(host, CTRL, temp); 465 466 /* Stop the IDMAC running */ 467 temp = mci_readl(host, BMOD); 468 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); 469 temp |= SDMMC_IDMAC_SWRESET; 470 mci_writel(host, BMOD, temp); 471 } 472 473 static void dw_mci_dmac_complete_dma(void *arg) 474 { 475 struct dw_mci *host = arg; 476 struct mmc_data *data = host->data; 477 478 dev_vdbg(host->dev, "DMA complete\n"); 479 480 if ((host->use_dma == TRANS_MODE_EDMAC) && 481 data && (data->flags & MMC_DATA_READ)) 482 /* Invalidate cache after read */ 483 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc), 484 data->sg, 485 data->sg_len, 486 DMA_FROM_DEVICE); 487 488 host->dma_ops->cleanup(host); 489 490 /* 491 * If the card was removed, data will be NULL. No point in trying to 492 * send the stop command or waiting for NBUSY in this case. 493 */ 494 if (data) { 495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 496 queue_work(system_bh_wq, &host->bh_work); 497 } 498 } 499 500 static int dw_mci_idmac_init(struct dw_mci *host) 501 { 502 int i; 503 504 if (host->dma_64bit_address == 1) { 505 struct idmac_desc_64addr *p; 506 /* Number of descriptors in the ring buffer */ 507 host->ring_size = 508 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr); 509 510 /* Forward link the descriptor list */ 511 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; 512 i++, p++) { 513 p->des6 = (host->sg_dma + 514 (sizeof(struct idmac_desc_64addr) * 515 (i + 1))) & 0xffffffff; 516 517 p->des7 = (u64)(host->sg_dma + 518 (sizeof(struct idmac_desc_64addr) * 519 (i + 1))) >> 32; 520 /* Initialize reserved and buffer size fields to "0" */ 521 p->des0 = 0; 522 p->des1 = 0; 523 p->des2 = 0; 524 p->des3 = 0; 525 } 526 527 /* Set the last descriptor as the end-of-ring descriptor */ 528 p->des6 = host->sg_dma & 0xffffffff; 529 p->des7 = (u64)host->sg_dma >> 32; 530 p->des0 = IDMAC_DES0_ER; 531 532 } else { 533 struct idmac_desc *p; 534 /* Number of descriptors in the ring buffer */ 535 host->ring_size = 536 DESC_RING_BUF_SZ / sizeof(struct idmac_desc); 537 538 /* Forward link the descriptor list */ 539 for (i = 0, p = host->sg_cpu; 540 i < host->ring_size - 1; 541 i++, p++) { 542 p->des3 = cpu_to_le32(host->sg_dma + 543 (sizeof(struct idmac_desc) * (i + 1))); 544 p->des0 = 0; 545 p->des1 = 0; 546 } 547 548 /* Set the last descriptor as the end-of-ring descriptor */ 549 p->des3 = cpu_to_le32(host->sg_dma); 550 p->des0 = cpu_to_le32(IDMAC_DES0_ER); 551 } 552 553 dw_mci_idmac_reset(host); 554 555 if (host->dma_64bit_address == 1) { 556 /* Mask out interrupts - get Tx & Rx complete only */ 557 mci_writel(host, IDSTS64, IDMAC_INT_CLR); 558 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | 559 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 560 561 /* Set the descriptor base address */ 562 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); 563 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); 564 565 } else { 566 /* Mask out interrupts - get Tx & Rx complete only */ 567 mci_writel(host, IDSTS, IDMAC_INT_CLR); 568 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | 569 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 570 571 /* Set the descriptor base address */ 572 mci_writel(host, DBADDR, host->sg_dma); 573 } 574 575 return 0; 576 } 577 578 static inline int dw_mci_prepare_desc64(struct dw_mci *host, 579 struct mmc_data *data, 580 unsigned int sg_len) 581 { 582 unsigned int desc_len; 583 struct idmac_desc_64addr *desc_first, *desc_last, *desc; 584 u32 val; 585 int i; 586 587 desc_first = desc_last = desc = host->sg_cpu; 588 589 for (i = 0; i < sg_len; i++) { 590 unsigned int length = sg_dma_len(&data->sg[i]); 591 592 u64 mem_addr = sg_dma_address(&data->sg[i]); 593 594 for ( ; length ; desc++) { 595 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 596 length : DW_MCI_DESC_DATA_LENGTH; 597 598 length -= desc_len; 599 600 /* 601 * Wait for the former clear OWN bit operation 602 * of IDMAC to make sure that this descriptor 603 * isn't still owned by IDMAC as IDMAC's write 604 * ops and CPU's read ops are asynchronous. 605 */ 606 if (readl_poll_timeout_atomic(&desc->des0, val, 607 !(val & IDMAC_DES0_OWN), 608 10, 100 * USEC_PER_MSEC)) 609 goto err_own_bit; 610 611 /* 612 * Set the OWN bit and disable interrupts 613 * for this descriptor 614 */ 615 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | 616 IDMAC_DES0_CH; 617 618 /* Buffer length */ 619 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len); 620 621 /* Physical address to DMA to/from */ 622 desc->des4 = mem_addr & 0xffffffff; 623 desc->des5 = mem_addr >> 32; 624 625 /* Update physical address for the next desc */ 626 mem_addr += desc_len; 627 628 /* Save pointer to the last descriptor */ 629 desc_last = desc; 630 } 631 } 632 633 /* Set first descriptor */ 634 desc_first->des0 |= IDMAC_DES0_FD; 635 636 /* Set last descriptor */ 637 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); 638 desc_last->des0 |= IDMAC_DES0_LD; 639 640 return 0; 641 err_own_bit: 642 /* restore the descriptor chain as it's polluted */ 643 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 644 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 645 dw_mci_idmac_init(host); 646 return -EINVAL; 647 } 648 649 650 static inline int dw_mci_prepare_desc32(struct dw_mci *host, 651 struct mmc_data *data, 652 unsigned int sg_len) 653 { 654 unsigned int desc_len; 655 struct idmac_desc *desc_first, *desc_last, *desc; 656 u32 val; 657 int i; 658 659 desc_first = desc_last = desc = host->sg_cpu; 660 661 for (i = 0; i < sg_len; i++) { 662 unsigned int length = sg_dma_len(&data->sg[i]); 663 664 u32 mem_addr = sg_dma_address(&data->sg[i]); 665 666 for ( ; length ; desc++) { 667 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 668 length : DW_MCI_DESC_DATA_LENGTH; 669 670 length -= desc_len; 671 672 /* 673 * Wait for the former clear OWN bit operation 674 * of IDMAC to make sure that this descriptor 675 * isn't still owned by IDMAC as IDMAC's write 676 * ops and CPU's read ops are asynchronous. 677 */ 678 if (readl_poll_timeout_atomic(&desc->des0, val, 679 IDMAC_OWN_CLR64(val), 680 10, 681 100 * USEC_PER_MSEC)) 682 goto err_own_bit; 683 684 /* 685 * Set the OWN bit and disable interrupts 686 * for this descriptor 687 */ 688 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | 689 IDMAC_DES0_DIC | 690 IDMAC_DES0_CH); 691 692 /* Buffer length */ 693 IDMAC_SET_BUFFER1_SIZE(desc, desc_len); 694 695 /* Physical address to DMA to/from */ 696 desc->des2 = cpu_to_le32(mem_addr); 697 698 /* Update physical address for the next desc */ 699 mem_addr += desc_len; 700 701 /* Save pointer to the last descriptor */ 702 desc_last = desc; 703 } 704 } 705 706 /* Set first descriptor */ 707 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD); 708 709 /* Set last descriptor */ 710 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | 711 IDMAC_DES0_DIC)); 712 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD); 713 714 return 0; 715 err_own_bit: 716 /* restore the descriptor chain as it's polluted */ 717 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 718 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 719 dw_mci_idmac_init(host); 720 return -EINVAL; 721 } 722 723 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) 724 { 725 u32 temp; 726 int ret; 727 728 if (host->dma_64bit_address == 1) 729 ret = dw_mci_prepare_desc64(host, host->data, sg_len); 730 else 731 ret = dw_mci_prepare_desc32(host, host->data, sg_len); 732 733 if (ret) 734 goto out; 735 736 /* drain writebuffer */ 737 wmb(); 738 739 /* Make sure to reset DMA in case we did PIO before this */ 740 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); 741 dw_mci_idmac_reset(host); 742 743 /* Select IDMAC interface */ 744 temp = mci_readl(host, CTRL); 745 temp |= SDMMC_CTRL_USE_IDMAC; 746 mci_writel(host, CTRL, temp); 747 748 /* drain writebuffer */ 749 wmb(); 750 751 /* Enable the IDMAC */ 752 temp = mci_readl(host, BMOD); 753 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; 754 mci_writel(host, BMOD, temp); 755 756 /* Start it running */ 757 mci_writel(host, PLDMND, 1); 758 759 out: 760 return ret; 761 } 762 763 static const struct dw_mci_dma_ops dw_mci_idmac_ops = { 764 .init = dw_mci_idmac_init, 765 .start = dw_mci_idmac_start_dma, 766 .stop = dw_mci_idmac_stop_dma, 767 .complete = dw_mci_dmac_complete_dma, 768 .cleanup = dw_mci_dma_cleanup, 769 }; 770 771 static void dw_mci_edmac_stop_dma(struct dw_mci *host) 772 { 773 dmaengine_terminate_async(host->dms->ch); 774 } 775 776 static int dw_mci_edmac_start_dma(struct dw_mci *host, 777 unsigned int sg_len) 778 { 779 struct dma_slave_config cfg; 780 struct dma_async_tx_descriptor *desc = NULL; 781 struct scatterlist *sgl = host->data->sg; 782 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 783 u32 sg_elems = host->data->sg_len; 784 u32 fifoth_val; 785 u32 fifo_offset = host->fifo_reg - host->regs; 786 int ret = 0; 787 788 /* Set external dma config: burst size, burst width */ 789 memset(&cfg, 0, sizeof(cfg)); 790 cfg.dst_addr = host->phy_regs + fifo_offset; 791 cfg.src_addr = cfg.dst_addr; 792 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 793 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 794 795 /* Match burst msize with external dma config */ 796 fifoth_val = mci_readl(host, FIFOTH); 797 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7]; 798 cfg.src_maxburst = cfg.dst_maxburst; 799 800 if (host->data->flags & MMC_DATA_WRITE) 801 cfg.direction = DMA_MEM_TO_DEV; 802 else 803 cfg.direction = DMA_DEV_TO_MEM; 804 805 ret = dmaengine_slave_config(host->dms->ch, &cfg); 806 if (ret) { 807 dev_err(host->dev, "Failed to config edmac.\n"); 808 return -EBUSY; 809 } 810 811 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl, 812 sg_len, cfg.direction, 813 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 814 if (!desc) { 815 dev_err(host->dev, "Can't prepare slave sg.\n"); 816 return -EBUSY; 817 } 818 819 /* Set dw_mci_dmac_complete_dma as callback */ 820 desc->callback = dw_mci_dmac_complete_dma; 821 desc->callback_param = (void *)host; 822 dmaengine_submit(desc); 823 824 /* Flush cache before write */ 825 if (host->data->flags & MMC_DATA_WRITE) 826 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl, 827 sg_elems, DMA_TO_DEVICE); 828 829 dma_async_issue_pending(host->dms->ch); 830 831 return 0; 832 } 833 834 static int dw_mci_edmac_init(struct dw_mci *host) 835 { 836 /* Request external dma channel */ 837 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL); 838 if (!host->dms) 839 return -ENOMEM; 840 841 host->dms->ch = dma_request_chan(host->dev, "rx-tx"); 842 if (IS_ERR(host->dms->ch)) { 843 int ret = PTR_ERR(host->dms->ch); 844 845 dev_err(host->dev, "Failed to get external DMA channel.\n"); 846 kfree(host->dms); 847 host->dms = NULL; 848 return ret; 849 } 850 851 return 0; 852 } 853 854 static void dw_mci_edmac_exit(struct dw_mci *host) 855 { 856 if (host->dms) { 857 if (host->dms->ch) { 858 dma_release_channel(host->dms->ch); 859 host->dms->ch = NULL; 860 } 861 kfree(host->dms); 862 host->dms = NULL; 863 } 864 } 865 866 static const struct dw_mci_dma_ops dw_mci_edmac_ops = { 867 .init = dw_mci_edmac_init, 868 .exit = dw_mci_edmac_exit, 869 .start = dw_mci_edmac_start_dma, 870 .stop = dw_mci_edmac_stop_dma, 871 .complete = dw_mci_dmac_complete_dma, 872 .cleanup = dw_mci_dma_cleanup, 873 }; 874 875 static int dw_mci_pre_dma_transfer(struct dw_mci *host, 876 struct mmc_data *data, 877 int cookie) 878 { 879 struct scatterlist *sg; 880 unsigned int i, sg_len; 881 882 if (data->host_cookie == COOKIE_PRE_MAPPED) 883 return data->sg_len; 884 885 /* 886 * We don't do DMA on "complex" transfers, i.e. with 887 * non-word-aligned buffers or lengths. Also, we don't bother 888 * with all the DMA setup overhead for short transfers. 889 */ 890 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) 891 return -EINVAL; 892 893 if (data->blksz & 3) 894 return -EINVAL; 895 896 for_each_sg(data->sg, sg, data->sg_len, i) { 897 if (sg->offset & 3 || sg->length & 3) 898 return -EINVAL; 899 } 900 901 sg_len = dma_map_sg(host->dev, 902 data->sg, 903 data->sg_len, 904 mmc_get_dma_dir(data)); 905 if (sg_len == 0) 906 return -EINVAL; 907 908 data->host_cookie = cookie; 909 910 return sg_len; 911 } 912 913 static void dw_mci_pre_req(struct mmc_host *mmc, 914 struct mmc_request *mrq) 915 { 916 struct dw_mci_slot *slot = mmc_priv(mmc); 917 struct mmc_data *data = mrq->data; 918 919 if (!slot->host->use_dma || !data) 920 return; 921 922 /* This data might be unmapped at this time */ 923 data->host_cookie = COOKIE_UNMAPPED; 924 925 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 926 COOKIE_PRE_MAPPED) < 0) 927 data->host_cookie = COOKIE_UNMAPPED; 928 } 929 930 static void dw_mci_post_req(struct mmc_host *mmc, 931 struct mmc_request *mrq, 932 int err) 933 { 934 struct dw_mci_slot *slot = mmc_priv(mmc); 935 struct mmc_data *data = mrq->data; 936 937 if (!slot->host->use_dma || !data) 938 return; 939 940 if (data->host_cookie != COOKIE_UNMAPPED) 941 dma_unmap_sg(slot->host->dev, 942 data->sg, 943 data->sg_len, 944 mmc_get_dma_dir(data)); 945 data->host_cookie = COOKIE_UNMAPPED; 946 } 947 948 static int dw_mci_get_cd(struct mmc_host *mmc) 949 { 950 int present; 951 struct dw_mci_slot *slot = mmc_priv(mmc); 952 struct dw_mci *host = slot->host; 953 int gpio_cd = mmc_gpio_get_cd(mmc); 954 955 /* Use platform get_cd function, else try onboard card detect */ 956 if (((mmc->caps & MMC_CAP_NEEDS_POLL) 957 || !mmc_card_is_removable(mmc))) { 958 present = 1; 959 960 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) { 961 if (mmc->caps & MMC_CAP_NEEDS_POLL) { 962 dev_info(&mmc->class_dev, 963 "card is polling.\n"); 964 } else { 965 dev_info(&mmc->class_dev, 966 "card is non-removable.\n"); 967 } 968 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 969 } 970 971 return present; 972 } else if (gpio_cd >= 0) 973 present = gpio_cd; 974 else 975 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) 976 == 0 ? 1 : 0; 977 978 spin_lock_bh(&host->lock); 979 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 980 dev_dbg(&mmc->class_dev, "card is present\n"); 981 else if (!present && 982 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 983 dev_dbg(&mmc->class_dev, "card is not present\n"); 984 spin_unlock_bh(&host->lock); 985 986 return present; 987 } 988 989 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) 990 { 991 unsigned int blksz = data->blksz; 992 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 993 u32 fifo_width = 1 << host->data_shift; 994 u32 blksz_depth = blksz / fifo_width, fifoth_val; 995 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; 996 int idx = ARRAY_SIZE(mszs) - 1; 997 998 /* pio should ship this scenario */ 999 if (!host->use_dma) 1000 return; 1001 1002 tx_wmark = (host->fifo_depth) / 2; 1003 tx_wmark_invers = host->fifo_depth - tx_wmark; 1004 1005 /* 1006 * MSIZE is '1', 1007 * if blksz is not a multiple of the FIFO width 1008 */ 1009 if (blksz % fifo_width) 1010 goto done; 1011 1012 do { 1013 if (!((blksz_depth % mszs[idx]) || 1014 (tx_wmark_invers % mszs[idx]))) { 1015 msize = idx; 1016 rx_wmark = mszs[idx] - 1; 1017 break; 1018 } 1019 } while (--idx > 0); 1020 /* 1021 * If idx is '0', it won't be tried 1022 * Thus, initial values are uesed 1023 */ 1024 done: 1025 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); 1026 mci_writel(host, FIFOTH, fifoth_val); 1027 } 1028 1029 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data) 1030 { 1031 unsigned int blksz = data->blksz; 1032 u32 blksz_depth, fifo_depth; 1033 u16 thld_size; 1034 u8 enable; 1035 1036 /* 1037 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is 1038 * in the FIFO region, so we really shouldn't access it). 1039 */ 1040 if (host->verid < DW_MMC_240A || 1041 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE)) 1042 return; 1043 1044 /* 1045 * Card write Threshold is introduced since 2.80a 1046 * It's used when HS400 mode is enabled. 1047 */ 1048 if (data->flags & MMC_DATA_WRITE && 1049 host->timing != MMC_TIMING_MMC_HS400) 1050 goto disable; 1051 1052 if (data->flags & MMC_DATA_WRITE) 1053 enable = SDMMC_CARD_WR_THR_EN; 1054 else 1055 enable = SDMMC_CARD_RD_THR_EN; 1056 1057 if (host->timing != MMC_TIMING_MMC_HS200 && 1058 host->timing != MMC_TIMING_UHS_SDR104 && 1059 host->timing != MMC_TIMING_MMC_HS400) 1060 goto disable; 1061 1062 blksz_depth = blksz / (1 << host->data_shift); 1063 fifo_depth = host->fifo_depth; 1064 1065 if (blksz_depth > fifo_depth) 1066 goto disable; 1067 1068 /* 1069 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' 1070 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz 1071 * Currently just choose blksz. 1072 */ 1073 thld_size = blksz; 1074 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable)); 1075 return; 1076 1077 disable: 1078 mci_writel(host, CDTHRCTL, 0); 1079 } 1080 1081 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) 1082 { 1083 unsigned long irqflags; 1084 int sg_len; 1085 u32 temp; 1086 1087 host->using_dma = 0; 1088 1089 /* If we don't have a channel, we can't do DMA */ 1090 if (!host->use_dma) 1091 return -ENODEV; 1092 1093 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED); 1094 if (sg_len < 0) { 1095 host->dma_ops->stop(host); 1096 return sg_len; 1097 } 1098 1099 host->using_dma = 1; 1100 1101 if (host->use_dma == TRANS_MODE_IDMAC) 1102 dev_vdbg(host->dev, 1103 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", 1104 (unsigned long)host->sg_cpu, 1105 (unsigned long)host->sg_dma, 1106 sg_len); 1107 1108 /* 1109 * Decide the MSIZE and RX/TX Watermark. 1110 * If current block size is same with previous size, 1111 * no need to update fifoth. 1112 */ 1113 if (host->prev_blksz != data->blksz) 1114 dw_mci_adjust_fifoth(host, data); 1115 1116 /* Enable the DMA interface */ 1117 temp = mci_readl(host, CTRL); 1118 temp |= SDMMC_CTRL_DMA_ENABLE; 1119 mci_writel(host, CTRL, temp); 1120 1121 /* Disable RX/TX IRQs, let DMA handle it */ 1122 spin_lock_irqsave(&host->irq_lock, irqflags); 1123 temp = mci_readl(host, INTMASK); 1124 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); 1125 mci_writel(host, INTMASK, temp); 1126 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1127 1128 if (host->dma_ops->start(host, sg_len)) { 1129 host->dma_ops->stop(host); 1130 /* We can't do DMA, try PIO for this one */ 1131 dev_dbg(host->dev, 1132 "%s: fall back to PIO mode for current transfer\n", 1133 __func__); 1134 return -ENODEV; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) 1141 { 1142 unsigned long irqflags; 1143 int flags = SG_MITER_ATOMIC; 1144 u32 temp; 1145 1146 data->error = -EINPROGRESS; 1147 1148 WARN_ON(host->data); 1149 host->sg = NULL; 1150 host->data = data; 1151 1152 if (data->flags & MMC_DATA_READ) 1153 host->dir_status = DW_MCI_RECV_STATUS; 1154 else 1155 host->dir_status = DW_MCI_SEND_STATUS; 1156 1157 dw_mci_ctrl_thld(host, data); 1158 1159 if (dw_mci_submit_data_dma(host, data)) { 1160 if (host->data->flags & MMC_DATA_READ) 1161 flags |= SG_MITER_TO_SG; 1162 else 1163 flags |= SG_MITER_FROM_SG; 1164 1165 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 1166 host->sg = data->sg; 1167 host->part_buf_start = 0; 1168 host->part_buf_count = 0; 1169 1170 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); 1171 1172 spin_lock_irqsave(&host->irq_lock, irqflags); 1173 temp = mci_readl(host, INTMASK); 1174 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; 1175 mci_writel(host, INTMASK, temp); 1176 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1177 1178 temp = mci_readl(host, CTRL); 1179 temp &= ~SDMMC_CTRL_DMA_ENABLE; 1180 mci_writel(host, CTRL, temp); 1181 1182 /* 1183 * Use the initial fifoth_val for PIO mode. If wm_algined 1184 * is set, we set watermark same as data size. 1185 * If next issued data may be transferred by DMA mode, 1186 * prev_blksz should be invalidated. 1187 */ 1188 if (host->wm_aligned) 1189 dw_mci_adjust_fifoth(host, data); 1190 else 1191 mci_writel(host, FIFOTH, host->fifoth_val); 1192 host->prev_blksz = 0; 1193 } else { 1194 /* 1195 * Keep the current block size. 1196 * It will be used to decide whether to update 1197 * fifoth register next time. 1198 */ 1199 host->prev_blksz = data->blksz; 1200 } 1201 } 1202 1203 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) 1204 { 1205 struct dw_mci *host = slot->host; 1206 unsigned int clock = slot->clock; 1207 u32 div; 1208 u32 clk_en_a; 1209 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; 1210 1211 /* We must continue to set bit 28 in CMD until the change is complete */ 1212 if (host->state == STATE_WAITING_CMD11_DONE) 1213 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; 1214 1215 slot->mmc->actual_clock = 0; 1216 1217 if (!clock) { 1218 mci_writel(host, CLKENA, 0); 1219 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1220 } else if (clock != host->current_speed || force_clkinit) { 1221 div = host->bus_hz / clock; 1222 if (host->bus_hz % clock && host->bus_hz > clock) 1223 /* 1224 * move the + 1 after the divide to prevent 1225 * over-clocking the card. 1226 */ 1227 div += 1; 1228 1229 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; 1230 1231 if ((clock != slot->__clk_old && 1232 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) || 1233 force_clkinit) { 1234 /* Silent the verbose log if calling from PM context */ 1235 if (!force_clkinit) 1236 dev_info(&slot->mmc->class_dev, 1237 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", 1238 slot->id, host->bus_hz, clock, 1239 div ? ((host->bus_hz / div) >> 1) : 1240 host->bus_hz, div); 1241 1242 /* 1243 * If card is polling, display the message only 1244 * one time at boot time. 1245 */ 1246 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL && 1247 slot->mmc->f_min == clock) 1248 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags); 1249 } 1250 1251 /* disable clock */ 1252 mci_writel(host, CLKENA, 0); 1253 mci_writel(host, CLKSRC, 0); 1254 1255 /* inform CIU */ 1256 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1257 1258 /* set clock to desired speed */ 1259 mci_writel(host, CLKDIV, div); 1260 1261 /* inform CIU */ 1262 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1263 1264 /* enable clock; only low power if no SDIO */ 1265 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; 1266 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) 1267 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; 1268 mci_writel(host, CLKENA, clk_en_a); 1269 1270 /* inform CIU */ 1271 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1272 1273 /* keep the last clock value that was requested from core */ 1274 slot->__clk_old = clock; 1275 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) : 1276 host->bus_hz; 1277 } 1278 1279 host->current_speed = clock; 1280 1281 /* Set the current slot bus width */ 1282 mci_writel(host, CTYPE, (slot->ctype << slot->id)); 1283 } 1284 1285 static void dw_mci_set_data_timeout(struct dw_mci *host, 1286 unsigned int timeout_ns) 1287 { 1288 const struct dw_mci_drv_data *drv_data = host->drv_data; 1289 u32 clk_div, tmout; 1290 u64 tmp; 1291 1292 if (drv_data && drv_data->set_data_timeout) 1293 return drv_data->set_data_timeout(host, timeout_ns); 1294 1295 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2; 1296 if (clk_div == 0) 1297 clk_div = 1; 1298 1299 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC); 1300 tmp = DIV_ROUND_UP_ULL(tmp, clk_div); 1301 1302 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */ 1303 tmout = 0xFF; /* Set maximum */ 1304 1305 /* TMOUT[31:8] (DATA_TIMEOUT) */ 1306 if (!tmp || tmp > 0xFFFFFF) 1307 tmout |= (0xFFFFFF << 8); 1308 else 1309 tmout |= (tmp & 0xFFFFFF) << 8; 1310 1311 mci_writel(host, TMOUT, tmout); 1312 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x", 1313 timeout_ns, tmout >> 8); 1314 } 1315 1316 static void __dw_mci_start_request(struct dw_mci *host, 1317 struct dw_mci_slot *slot, 1318 struct mmc_command *cmd) 1319 { 1320 struct mmc_request *mrq; 1321 struct mmc_data *data; 1322 u32 cmdflags; 1323 1324 mrq = slot->mrq; 1325 1326 host->mrq = mrq; 1327 1328 host->pending_events = 0; 1329 host->completed_events = 0; 1330 host->cmd_status = 0; 1331 host->data_status = 0; 1332 host->dir_status = 0; 1333 1334 data = cmd->data; 1335 if (data) { 1336 dw_mci_set_data_timeout(host, data->timeout_ns); 1337 mci_writel(host, BYTCNT, data->blksz*data->blocks); 1338 mci_writel(host, BLKSIZ, data->blksz); 1339 } 1340 1341 cmdflags = dw_mci_prepare_command(slot->mmc, cmd); 1342 1343 /* this is the first command, send the initialization clock */ 1344 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) 1345 cmdflags |= SDMMC_CMD_INIT; 1346 1347 if (data) { 1348 dw_mci_submit_data(host, data); 1349 wmb(); /* drain writebuffer */ 1350 } 1351 1352 dw_mci_start_command(host, cmd, cmdflags); 1353 1354 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 1355 unsigned long irqflags; 1356 1357 /* 1358 * Databook says to fail after 2ms w/ no response, but evidence 1359 * shows that sometimes the cmd11 interrupt takes over 130ms. 1360 * We'll set to 500ms, plus an extra jiffy just in case jiffies 1361 * is just about to roll over. 1362 * 1363 * We do this whole thing under spinlock and only if the 1364 * command hasn't already completed (indicating the irq 1365 * already ran so we don't want the timeout). 1366 */ 1367 spin_lock_irqsave(&host->irq_lock, irqflags); 1368 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 1369 mod_timer(&host->cmd11_timer, 1370 jiffies + msecs_to_jiffies(500) + 1); 1371 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1372 } 1373 1374 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); 1375 } 1376 1377 static void dw_mci_start_request(struct dw_mci *host, 1378 struct dw_mci_slot *slot) 1379 { 1380 struct mmc_request *mrq = slot->mrq; 1381 struct mmc_command *cmd; 1382 1383 cmd = mrq->sbc ? mrq->sbc : mrq->cmd; 1384 __dw_mci_start_request(host, slot, cmd); 1385 } 1386 1387 /* must be called with host->lock held */ 1388 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, 1389 struct mmc_request *mrq) 1390 { 1391 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", 1392 host->state); 1393 1394 slot->mrq = mrq; 1395 1396 if (host->state == STATE_WAITING_CMD11_DONE) { 1397 dev_warn(&slot->mmc->class_dev, 1398 "Voltage change didn't complete\n"); 1399 /* 1400 * this case isn't expected to happen, so we can 1401 * either crash here or just try to continue on 1402 * in the closest possible state 1403 */ 1404 host->state = STATE_IDLE; 1405 } 1406 1407 if (host->state == STATE_IDLE) { 1408 host->state = STATE_SENDING_CMD; 1409 dw_mci_start_request(host, slot); 1410 } else { 1411 list_add_tail(&slot->queue_node, &host->queue); 1412 } 1413 } 1414 1415 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1416 { 1417 struct dw_mci_slot *slot = mmc_priv(mmc); 1418 struct dw_mci *host = slot->host; 1419 1420 WARN_ON(slot->mrq); 1421 1422 /* 1423 * The check for card presence and queueing of the request must be 1424 * atomic, otherwise the card could be removed in between and the 1425 * request wouldn't fail until another card was inserted. 1426 */ 1427 1428 if (!dw_mci_get_cd(mmc)) { 1429 mrq->cmd->error = -ENOMEDIUM; 1430 mmc_request_done(mmc, mrq); 1431 return; 1432 } 1433 1434 spin_lock_bh(&host->lock); 1435 1436 dw_mci_queue_request(host, slot, mrq); 1437 1438 spin_unlock_bh(&host->lock); 1439 } 1440 1441 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1442 { 1443 struct dw_mci_slot *slot = mmc_priv(mmc); 1444 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 1445 u32 regs; 1446 int ret; 1447 1448 switch (ios->bus_width) { 1449 case MMC_BUS_WIDTH_4: 1450 slot->ctype = SDMMC_CTYPE_4BIT; 1451 break; 1452 case MMC_BUS_WIDTH_8: 1453 slot->ctype = SDMMC_CTYPE_8BIT; 1454 break; 1455 default: 1456 /* set default 1 bit mode */ 1457 slot->ctype = SDMMC_CTYPE_1BIT; 1458 } 1459 1460 regs = mci_readl(slot->host, UHS_REG); 1461 1462 /* DDR mode set */ 1463 if (ios->timing == MMC_TIMING_MMC_DDR52 || 1464 ios->timing == MMC_TIMING_UHS_DDR50 || 1465 ios->timing == MMC_TIMING_MMC_HS400) 1466 regs |= ((0x1 << slot->id) << 16); 1467 else 1468 regs &= ~((0x1 << slot->id) << 16); 1469 1470 mci_writel(slot->host, UHS_REG, regs); 1471 slot->host->timing = ios->timing; 1472 1473 /* 1474 * Use mirror of ios->clock to prevent race with mmc 1475 * core ios update when finding the minimum. 1476 */ 1477 slot->clock = ios->clock; 1478 1479 if (drv_data && drv_data->set_ios) 1480 drv_data->set_ios(slot->host, ios); 1481 1482 switch (ios->power_mode) { 1483 case MMC_POWER_UP: 1484 if (!IS_ERR(mmc->supply.vmmc)) { 1485 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 1486 ios->vdd); 1487 if (ret) { 1488 dev_err(slot->host->dev, 1489 "failed to enable vmmc regulator\n"); 1490 /*return, if failed turn on vmmc*/ 1491 return; 1492 } 1493 } 1494 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); 1495 regs = mci_readl(slot->host, PWREN); 1496 regs |= (1 << slot->id); 1497 mci_writel(slot->host, PWREN, regs); 1498 break; 1499 case MMC_POWER_ON: 1500 if (!slot->host->vqmmc_enabled) { 1501 if (!IS_ERR(mmc->supply.vqmmc)) { 1502 ret = regulator_enable(mmc->supply.vqmmc); 1503 if (ret < 0) 1504 dev_err(slot->host->dev, 1505 "failed to enable vqmmc\n"); 1506 else 1507 slot->host->vqmmc_enabled = true; 1508 1509 } else { 1510 /* Keep track so we don't reset again */ 1511 slot->host->vqmmc_enabled = true; 1512 } 1513 1514 /* Reset our state machine after powering on */ 1515 dw_mci_ctrl_reset(slot->host, 1516 SDMMC_CTRL_ALL_RESET_FLAGS); 1517 } 1518 1519 /* Adjust clock / bus width after power is up */ 1520 dw_mci_setup_bus(slot, false); 1521 1522 break; 1523 case MMC_POWER_OFF: 1524 /* Turn clock off before power goes down */ 1525 dw_mci_setup_bus(slot, false); 1526 1527 if (!IS_ERR(mmc->supply.vmmc)) 1528 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1529 1530 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) 1531 regulator_disable(mmc->supply.vqmmc); 1532 slot->host->vqmmc_enabled = false; 1533 1534 regs = mci_readl(slot->host, PWREN); 1535 regs &= ~(1 << slot->id); 1536 mci_writel(slot->host, PWREN, regs); 1537 break; 1538 default: 1539 break; 1540 } 1541 1542 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) 1543 slot->host->state = STATE_IDLE; 1544 } 1545 1546 static int dw_mci_card_busy(struct mmc_host *mmc) 1547 { 1548 struct dw_mci_slot *slot = mmc_priv(mmc); 1549 u32 status; 1550 1551 /* 1552 * Check the busy bit which is low when DAT[3:0] 1553 * (the data lines) are 0000 1554 */ 1555 status = mci_readl(slot->host, STATUS); 1556 1557 return !!(status & SDMMC_STATUS_BUSY); 1558 } 1559 1560 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) 1561 { 1562 struct dw_mci_slot *slot = mmc_priv(mmc); 1563 struct dw_mci *host = slot->host; 1564 const struct dw_mci_drv_data *drv_data = host->drv_data; 1565 u32 uhs; 1566 u32 v18 = SDMMC_UHS_18V << slot->id; 1567 int ret; 1568 1569 if (drv_data && drv_data->switch_voltage) 1570 return drv_data->switch_voltage(mmc, ios); 1571 1572 /* 1573 * Program the voltage. Note that some instances of dw_mmc may use 1574 * the UHS_REG for this. For other instances (like exynos) the UHS_REG 1575 * does no harm but you need to set the regulator directly. Try both. 1576 */ 1577 uhs = mci_readl(host, UHS_REG); 1578 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1579 uhs &= ~v18; 1580 else 1581 uhs |= v18; 1582 1583 if (!IS_ERR(mmc->supply.vqmmc)) { 1584 ret = mmc_regulator_set_vqmmc(mmc, ios); 1585 if (ret < 0) { 1586 dev_dbg(&mmc->class_dev, 1587 "Regulator set error %d - %s V\n", 1588 ret, uhs & v18 ? "1.8" : "3.3"); 1589 return ret; 1590 } 1591 } 1592 mci_writel(host, UHS_REG, uhs); 1593 1594 return 0; 1595 } 1596 1597 static int dw_mci_get_ro(struct mmc_host *mmc) 1598 { 1599 int read_only; 1600 struct dw_mci_slot *slot = mmc_priv(mmc); 1601 int gpio_ro = mmc_gpio_get_ro(mmc); 1602 1603 /* Use platform get_ro function, else try on board write protect */ 1604 if (gpio_ro >= 0) 1605 read_only = gpio_ro; 1606 else 1607 read_only = 1608 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; 1609 1610 dev_dbg(&mmc->class_dev, "card is %s\n", 1611 read_only ? "read-only" : "read-write"); 1612 1613 return read_only; 1614 } 1615 1616 static void dw_mci_hw_reset(struct mmc_host *mmc) 1617 { 1618 struct dw_mci_slot *slot = mmc_priv(mmc); 1619 struct dw_mci *host = slot->host; 1620 const struct dw_mci_drv_data *drv_data = host->drv_data; 1621 int reset; 1622 1623 if (host->use_dma == TRANS_MODE_IDMAC) 1624 dw_mci_idmac_reset(host); 1625 1626 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET | 1627 SDMMC_CTRL_FIFO_RESET)) 1628 return; 1629 1630 if (drv_data && drv_data->hw_reset) { 1631 drv_data->hw_reset(host); 1632 return; 1633 } 1634 1635 /* 1636 * According to eMMC spec, card reset procedure: 1637 * tRstW >= 1us: RST_n pulse width 1638 * tRSCA >= 200us: RST_n to Command time 1639 * tRSTH >= 1us: RST_n high period 1640 */ 1641 reset = mci_readl(host, RST_N); 1642 reset &= ~(SDMMC_RST_HWACTIVE << slot->id); 1643 mci_writel(host, RST_N, reset); 1644 usleep_range(1, 2); 1645 reset |= SDMMC_RST_HWACTIVE << slot->id; 1646 mci_writel(host, RST_N, reset); 1647 usleep_range(200, 300); 1648 } 1649 1650 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare) 1651 { 1652 struct dw_mci *host = slot->host; 1653 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; 1654 u32 clk_en_a_old; 1655 u32 clk_en_a; 1656 1657 /* 1658 * Low power mode will stop the card clock when idle. According to the 1659 * description of the CLKENA register we should disable low power mode 1660 * for SDIO cards if we need SDIO interrupts to work. 1661 */ 1662 1663 clk_en_a_old = mci_readl(host, CLKENA); 1664 if (prepare) { 1665 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1666 clk_en_a = clk_en_a_old & ~clken_low_pwr; 1667 } else { 1668 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1669 clk_en_a = clk_en_a_old | clken_low_pwr; 1670 } 1671 1672 if (clk_en_a != clk_en_a_old) { 1673 mci_writel(host, CLKENA, clk_en_a); 1674 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 1675 0); 1676 } 1677 } 1678 1679 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb) 1680 { 1681 struct dw_mci *host = slot->host; 1682 unsigned long irqflags; 1683 u32 int_mask; 1684 1685 spin_lock_irqsave(&host->irq_lock, irqflags); 1686 1687 /* Enable/disable Slot Specific SDIO interrupt */ 1688 int_mask = mci_readl(host, INTMASK); 1689 if (enb) 1690 int_mask |= SDMMC_INT_SDIO(slot->sdio_id); 1691 else 1692 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); 1693 mci_writel(host, INTMASK, int_mask); 1694 1695 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1696 } 1697 1698 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) 1699 { 1700 struct dw_mci_slot *slot = mmc_priv(mmc); 1701 struct dw_mci *host = slot->host; 1702 1703 dw_mci_prepare_sdio_irq(slot, enb); 1704 __dw_mci_enable_sdio_irq(slot, enb); 1705 1706 /* Avoid runtime suspending the device when SDIO IRQ is enabled */ 1707 if (enb) 1708 pm_runtime_get_noresume(host->dev); 1709 else 1710 pm_runtime_put_noidle(host->dev); 1711 } 1712 1713 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc) 1714 { 1715 struct dw_mci_slot *slot = mmc_priv(mmc); 1716 1717 __dw_mci_enable_sdio_irq(slot, 1); 1718 } 1719 1720 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) 1721 { 1722 struct dw_mci_slot *slot = mmc_priv(mmc); 1723 struct dw_mci *host = slot->host; 1724 const struct dw_mci_drv_data *drv_data = host->drv_data; 1725 int err = -EINVAL; 1726 1727 if (drv_data && drv_data->execute_tuning) 1728 err = drv_data->execute_tuning(slot, opcode); 1729 return err; 1730 } 1731 1732 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, 1733 struct mmc_ios *ios) 1734 { 1735 struct dw_mci_slot *slot = mmc_priv(mmc); 1736 struct dw_mci *host = slot->host; 1737 const struct dw_mci_drv_data *drv_data = host->drv_data; 1738 1739 if (drv_data && drv_data->prepare_hs400_tuning) 1740 return drv_data->prepare_hs400_tuning(host, ios); 1741 1742 return 0; 1743 } 1744 1745 static bool dw_mci_reset(struct dw_mci *host) 1746 { 1747 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; 1748 bool ret = false; 1749 u32 status = 0; 1750 1751 /* 1752 * Resetting generates a block interrupt, hence setting 1753 * the scatter-gather pointer to NULL. 1754 */ 1755 if (host->sg) { 1756 sg_miter_stop(&host->sg_miter); 1757 host->sg = NULL; 1758 } 1759 1760 if (host->use_dma) 1761 flags |= SDMMC_CTRL_DMA_RESET; 1762 1763 if (dw_mci_ctrl_reset(host, flags)) { 1764 /* 1765 * In all cases we clear the RAWINTS 1766 * register to clear any interrupts. 1767 */ 1768 mci_writel(host, RINTSTS, 0xFFFFFFFF); 1769 1770 if (!host->use_dma) { 1771 ret = true; 1772 goto ciu_out; 1773 } 1774 1775 /* Wait for dma_req to be cleared */ 1776 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 1777 status, 1778 !(status & SDMMC_STATUS_DMA_REQ), 1779 1, 500 * USEC_PER_MSEC)) { 1780 dev_err(host->dev, 1781 "%s: Timeout waiting for dma_req to be cleared\n", 1782 __func__); 1783 goto ciu_out; 1784 } 1785 1786 /* when using DMA next we reset the fifo again */ 1787 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) 1788 goto ciu_out; 1789 } else { 1790 /* if the controller reset bit did clear, then set clock regs */ 1791 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { 1792 dev_err(host->dev, 1793 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n", 1794 __func__); 1795 goto ciu_out; 1796 } 1797 } 1798 1799 if (host->use_dma == TRANS_MODE_IDMAC) 1800 /* It is also required that we reinit idmac */ 1801 dw_mci_idmac_init(host); 1802 1803 ret = true; 1804 1805 ciu_out: 1806 /* After a CTRL reset we need to have CIU set clock registers */ 1807 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0); 1808 1809 return ret; 1810 } 1811 1812 static const struct mmc_host_ops dw_mci_ops = { 1813 .request = dw_mci_request, 1814 .pre_req = dw_mci_pre_req, 1815 .post_req = dw_mci_post_req, 1816 .set_ios = dw_mci_set_ios, 1817 .get_ro = dw_mci_get_ro, 1818 .get_cd = dw_mci_get_cd, 1819 .card_hw_reset = dw_mci_hw_reset, 1820 .enable_sdio_irq = dw_mci_enable_sdio_irq, 1821 .ack_sdio_irq = dw_mci_ack_sdio_irq, 1822 .execute_tuning = dw_mci_execute_tuning, 1823 .card_busy = dw_mci_card_busy, 1824 .start_signal_voltage_switch = dw_mci_switch_voltage, 1825 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, 1826 }; 1827 1828 #ifdef CONFIG_FAULT_INJECTION 1829 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t) 1830 { 1831 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer); 1832 unsigned long flags; 1833 1834 spin_lock_irqsave(&host->irq_lock, flags); 1835 1836 /* 1837 * Only inject an error if we haven't already got an error or data over 1838 * interrupt. 1839 */ 1840 if (!host->data_status) { 1841 host->data_status = SDMMC_INT_DCRC; 1842 set_bit(EVENT_DATA_ERROR, &host->pending_events); 1843 queue_work(system_bh_wq, &host->bh_work); 1844 } 1845 1846 spin_unlock_irqrestore(&host->irq_lock, flags); 1847 1848 return HRTIMER_NORESTART; 1849 } 1850 1851 static void dw_mci_start_fault_timer(struct dw_mci *host) 1852 { 1853 struct mmc_data *data = host->data; 1854 1855 if (!data || data->blocks <= 1) 1856 return; 1857 1858 if (!should_fail(&host->fail_data_crc, 1)) 1859 return; 1860 1861 /* 1862 * Try to inject the error at random points during the data transfer. 1863 */ 1864 hrtimer_start(&host->fault_timer, 1865 ms_to_ktime(get_random_u32_below(25)), 1866 HRTIMER_MODE_REL); 1867 } 1868 1869 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1870 { 1871 hrtimer_cancel(&host->fault_timer); 1872 } 1873 1874 static void dw_mci_init_fault(struct dw_mci *host) 1875 { 1876 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER; 1877 1878 hrtimer_setup(&host->fault_timer, dw_mci_fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1879 } 1880 #else 1881 static void dw_mci_init_fault(struct dw_mci *host) 1882 { 1883 } 1884 1885 static void dw_mci_start_fault_timer(struct dw_mci *host) 1886 { 1887 } 1888 1889 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1890 { 1891 } 1892 #endif 1893 1894 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) 1895 __releases(&host->lock) 1896 __acquires(&host->lock) 1897 { 1898 struct dw_mci_slot *slot; 1899 struct mmc_host *prev_mmc = host->slot->mmc; 1900 1901 WARN_ON(host->cmd || host->data); 1902 1903 host->slot->mrq = NULL; 1904 host->mrq = NULL; 1905 if (!list_empty(&host->queue)) { 1906 slot = list_entry(host->queue.next, 1907 struct dw_mci_slot, queue_node); 1908 list_del(&slot->queue_node); 1909 dev_vdbg(host->dev, "list not empty: %s is next\n", 1910 mmc_hostname(slot->mmc)); 1911 host->state = STATE_SENDING_CMD; 1912 dw_mci_start_request(host, slot); 1913 } else { 1914 dev_vdbg(host->dev, "list empty\n"); 1915 1916 if (host->state == STATE_SENDING_CMD11) 1917 host->state = STATE_WAITING_CMD11_DONE; 1918 else 1919 host->state = STATE_IDLE; 1920 } 1921 1922 spin_unlock(&host->lock); 1923 mmc_request_done(prev_mmc, mrq); 1924 spin_lock(&host->lock); 1925 } 1926 1927 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) 1928 { 1929 u32 status = host->cmd_status; 1930 1931 host->cmd_status = 0; 1932 1933 /* Read the response from the card (up to 16 bytes) */ 1934 if (cmd->flags & MMC_RSP_PRESENT) { 1935 if (cmd->flags & MMC_RSP_136) { 1936 cmd->resp[3] = mci_readl(host, RESP0); 1937 cmd->resp[2] = mci_readl(host, RESP1); 1938 cmd->resp[1] = mci_readl(host, RESP2); 1939 cmd->resp[0] = mci_readl(host, RESP3); 1940 } else { 1941 cmd->resp[0] = mci_readl(host, RESP0); 1942 cmd->resp[1] = 0; 1943 cmd->resp[2] = 0; 1944 cmd->resp[3] = 0; 1945 } 1946 } 1947 1948 if (status & SDMMC_INT_RTO) 1949 cmd->error = -ETIMEDOUT; 1950 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) 1951 cmd->error = -EILSEQ; 1952 else if (status & SDMMC_INT_RESP_ERR) 1953 cmd->error = -EIO; 1954 else 1955 cmd->error = 0; 1956 1957 return cmd->error; 1958 } 1959 1960 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) 1961 { 1962 u32 status = host->data_status; 1963 1964 if (status & DW_MCI_DATA_ERROR_FLAGS) { 1965 if (status & SDMMC_INT_DRTO) { 1966 data->error = -ETIMEDOUT; 1967 } else if (status & SDMMC_INT_DCRC) { 1968 data->error = -EILSEQ; 1969 } else if (status & SDMMC_INT_EBE) { 1970 if (host->dir_status == 1971 DW_MCI_SEND_STATUS) { 1972 /* 1973 * No data CRC status was returned. 1974 * The number of bytes transferred 1975 * will be exaggerated in PIO mode. 1976 */ 1977 data->bytes_xfered = 0; 1978 data->error = -ETIMEDOUT; 1979 } else if (host->dir_status == 1980 DW_MCI_RECV_STATUS) { 1981 data->error = -EILSEQ; 1982 } 1983 } else { 1984 /* SDMMC_INT_SBE is included */ 1985 data->error = -EILSEQ; 1986 } 1987 1988 dev_dbg(host->dev, "data error, status 0x%08x\n", status); 1989 1990 /* 1991 * After an error, there may be data lingering 1992 * in the FIFO 1993 */ 1994 dw_mci_reset(host); 1995 } else { 1996 data->bytes_xfered = data->blocks * data->blksz; 1997 data->error = 0; 1998 } 1999 2000 return data->error; 2001 } 2002 2003 static void dw_mci_set_drto(struct dw_mci *host) 2004 { 2005 const struct dw_mci_drv_data *drv_data = host->drv_data; 2006 unsigned int drto_clks; 2007 unsigned int drto_div; 2008 unsigned int drto_ms; 2009 unsigned long irqflags; 2010 2011 if (drv_data && drv_data->get_drto_clks) 2012 drto_clks = drv_data->get_drto_clks(host); 2013 else 2014 drto_clks = mci_readl(host, TMOUT) >> 8; 2015 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 2016 if (drto_div == 0) 2017 drto_div = 1; 2018 2019 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div, 2020 host->bus_hz); 2021 2022 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms); 2023 2024 /* add a bit spare time */ 2025 drto_ms += 10; 2026 2027 spin_lock_irqsave(&host->irq_lock, irqflags); 2028 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2029 mod_timer(&host->dto_timer, 2030 jiffies + msecs_to_jiffies(drto_ms)); 2031 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2032 } 2033 2034 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host) 2035 { 2036 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 2037 return false; 2038 2039 /* 2040 * Really be certain that the timer has stopped. This is a bit of 2041 * paranoia and could only really happen if we had really bad 2042 * interrupt latency and the interrupt routine and timeout were 2043 * running concurrently so that the timer_delete() in the interrupt 2044 * handler couldn't run. 2045 */ 2046 WARN_ON(timer_delete_sync(&host->cto_timer)); 2047 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2048 2049 return true; 2050 } 2051 2052 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host) 2053 { 2054 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2055 return false; 2056 2057 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */ 2058 WARN_ON(timer_delete_sync(&host->dto_timer)); 2059 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2060 2061 return true; 2062 } 2063 2064 static void dw_mci_work_func(struct work_struct *t) 2065 { 2066 struct dw_mci *host = from_work(host, t, bh_work); 2067 struct mmc_data *data; 2068 struct mmc_command *cmd; 2069 struct mmc_request *mrq; 2070 enum dw_mci_state state; 2071 enum dw_mci_state prev_state; 2072 unsigned int err; 2073 2074 spin_lock(&host->lock); 2075 2076 state = host->state; 2077 data = host->data; 2078 mrq = host->mrq; 2079 2080 do { 2081 prev_state = state; 2082 2083 switch (state) { 2084 case STATE_IDLE: 2085 case STATE_WAITING_CMD11_DONE: 2086 break; 2087 2088 case STATE_SENDING_CMD11: 2089 case STATE_SENDING_CMD: 2090 if (!dw_mci_clear_pending_cmd_complete(host)) 2091 break; 2092 2093 cmd = host->cmd; 2094 host->cmd = NULL; 2095 set_bit(EVENT_CMD_COMPLETE, &host->completed_events); 2096 err = dw_mci_command_complete(host, cmd); 2097 if (cmd == mrq->sbc && !err) { 2098 __dw_mci_start_request(host, host->slot, 2099 mrq->cmd); 2100 goto unlock; 2101 } 2102 2103 if (cmd->data && err) { 2104 /* 2105 * During UHS tuning sequence, sending the stop 2106 * command after the response CRC error would 2107 * throw the system into a confused state 2108 * causing all future tuning phases to report 2109 * failure. 2110 * 2111 * In such case controller will move into a data 2112 * transfer state after a response error or 2113 * response CRC error. Let's let that finish 2114 * before trying to send a stop, so we'll go to 2115 * STATE_SENDING_DATA. 2116 * 2117 * Although letting the data transfer take place 2118 * will waste a bit of time (we already know 2119 * the command was bad), it can't cause any 2120 * errors since it's possible it would have 2121 * taken place anyway if this bh work got 2122 * delayed. Allowing the transfer to take place 2123 * avoids races and keeps things simple. 2124 */ 2125 if (err != -ETIMEDOUT && 2126 host->dir_status == DW_MCI_RECV_STATUS) { 2127 state = STATE_SENDING_DATA; 2128 continue; 2129 } 2130 2131 send_stop_abort(host, data); 2132 dw_mci_stop_dma(host); 2133 state = STATE_SENDING_STOP; 2134 break; 2135 } 2136 2137 if (!cmd->data || err) { 2138 dw_mci_request_end(host, mrq); 2139 goto unlock; 2140 } 2141 2142 prev_state = state = STATE_SENDING_DATA; 2143 fallthrough; 2144 2145 case STATE_SENDING_DATA: 2146 /* 2147 * We could get a data error and never a transfer 2148 * complete so we'd better check for it here. 2149 * 2150 * Note that we don't really care if we also got a 2151 * transfer complete; stopping the DMA and sending an 2152 * abort won't hurt. 2153 */ 2154 if (test_and_clear_bit(EVENT_DATA_ERROR, 2155 &host->pending_events)) { 2156 if (!(host->data_status & (SDMMC_INT_DRTO | 2157 SDMMC_INT_EBE))) 2158 send_stop_abort(host, data); 2159 dw_mci_stop_dma(host); 2160 state = STATE_DATA_ERROR; 2161 break; 2162 } 2163 2164 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2165 &host->pending_events)) { 2166 /* 2167 * If all data-related interrupts don't come 2168 * within the given time in reading data state. 2169 */ 2170 if (host->dir_status == DW_MCI_RECV_STATUS) 2171 dw_mci_set_drto(host); 2172 break; 2173 } 2174 2175 set_bit(EVENT_XFER_COMPLETE, &host->completed_events); 2176 2177 /* 2178 * Handle an EVENT_DATA_ERROR that might have shown up 2179 * before the transfer completed. This might not have 2180 * been caught by the check above because the interrupt 2181 * could have gone off between the previous check and 2182 * the check for transfer complete. 2183 * 2184 * Technically this ought not be needed assuming we 2185 * get a DATA_COMPLETE eventually (we'll notice the 2186 * error and end the request), but it shouldn't hurt. 2187 * 2188 * This has the advantage of sending the stop command. 2189 */ 2190 if (test_and_clear_bit(EVENT_DATA_ERROR, 2191 &host->pending_events)) { 2192 if (!(host->data_status & (SDMMC_INT_DRTO | 2193 SDMMC_INT_EBE))) 2194 send_stop_abort(host, data); 2195 dw_mci_stop_dma(host); 2196 state = STATE_DATA_ERROR; 2197 break; 2198 } 2199 prev_state = state = STATE_DATA_BUSY; 2200 2201 fallthrough; 2202 2203 case STATE_DATA_BUSY: 2204 if (!dw_mci_clear_pending_data_complete(host)) { 2205 /* 2206 * If data error interrupt comes but data over 2207 * interrupt doesn't come within the given time. 2208 * in reading data state. 2209 */ 2210 if (host->dir_status == DW_MCI_RECV_STATUS) 2211 dw_mci_set_drto(host); 2212 break; 2213 } 2214 2215 dw_mci_stop_fault_timer(host); 2216 host->data = NULL; 2217 set_bit(EVENT_DATA_COMPLETE, &host->completed_events); 2218 err = dw_mci_data_complete(host, data); 2219 2220 if (!err) { 2221 if (!data->stop || mrq->sbc) { 2222 if (mrq->sbc && data->stop) 2223 data->stop->error = 0; 2224 dw_mci_request_end(host, mrq); 2225 goto unlock; 2226 } 2227 2228 /* stop command for open-ended transfer*/ 2229 if (data->stop) 2230 send_stop_abort(host, data); 2231 } else { 2232 /* 2233 * If we don't have a command complete now we'll 2234 * never get one since we just reset everything; 2235 * better end the request. 2236 * 2237 * If we do have a command complete we'll fall 2238 * through to the SENDING_STOP command and 2239 * everything will be peachy keen. 2240 */ 2241 if (!test_bit(EVENT_CMD_COMPLETE, 2242 &host->pending_events)) { 2243 host->cmd = NULL; 2244 dw_mci_request_end(host, mrq); 2245 goto unlock; 2246 } 2247 } 2248 2249 /* 2250 * If err has non-zero, 2251 * stop-abort command has been already issued. 2252 */ 2253 prev_state = state = STATE_SENDING_STOP; 2254 2255 fallthrough; 2256 2257 case STATE_SENDING_STOP: 2258 if (!dw_mci_clear_pending_cmd_complete(host)) 2259 break; 2260 2261 /* CMD error in data command */ 2262 if (mrq->cmd->error && mrq->data) 2263 dw_mci_reset(host); 2264 2265 dw_mci_stop_fault_timer(host); 2266 host->cmd = NULL; 2267 host->data = NULL; 2268 2269 if (!mrq->sbc && mrq->stop) 2270 dw_mci_command_complete(host, mrq->stop); 2271 else 2272 host->cmd_status = 0; 2273 2274 dw_mci_request_end(host, mrq); 2275 goto unlock; 2276 2277 case STATE_DATA_ERROR: 2278 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2279 &host->pending_events)) 2280 break; 2281 2282 state = STATE_DATA_BUSY; 2283 break; 2284 } 2285 } while (state != prev_state); 2286 2287 host->state = state; 2288 unlock: 2289 spin_unlock(&host->lock); 2290 2291 } 2292 2293 /* push final bytes to part_buf, only use during push */ 2294 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) 2295 { 2296 memcpy((void *)&host->part_buf, buf, cnt); 2297 host->part_buf_count = cnt; 2298 } 2299 2300 /* append bytes to part_buf, only use during push */ 2301 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) 2302 { 2303 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); 2304 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); 2305 host->part_buf_count += cnt; 2306 return cnt; 2307 } 2308 2309 /* pull first bytes from part_buf, only use during pull */ 2310 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) 2311 { 2312 cnt = min_t(int, cnt, host->part_buf_count); 2313 if (cnt) { 2314 memcpy(buf, (void *)&host->part_buf + host->part_buf_start, 2315 cnt); 2316 host->part_buf_count -= cnt; 2317 host->part_buf_start += cnt; 2318 } 2319 return cnt; 2320 } 2321 2322 /* pull final bytes from the part_buf, assuming it's just been filled */ 2323 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) 2324 { 2325 memcpy(buf, &host->part_buf, cnt); 2326 host->part_buf_start = cnt; 2327 host->part_buf_count = (1 << host->data_shift) - cnt; 2328 } 2329 2330 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) 2331 { 2332 struct mmc_data *data = host->data; 2333 int init_cnt = cnt; 2334 2335 /* try and push anything in the part_buf */ 2336 if (unlikely(host->part_buf_count)) { 2337 int len = dw_mci_push_part_bytes(host, buf, cnt); 2338 2339 buf += len; 2340 cnt -= len; 2341 if (host->part_buf_count == 2) { 2342 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2343 host->part_buf_count = 0; 2344 } 2345 } 2346 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2347 if (unlikely((unsigned long)buf & 0x1)) { 2348 while (cnt >= 2) { 2349 u16 aligned_buf[64]; 2350 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2351 int items = len >> 1; 2352 int i; 2353 /* memcpy from input buffer into aligned buffer */ 2354 memcpy(aligned_buf, buf, len); 2355 buf += len; 2356 cnt -= len; 2357 /* push data from aligned buffer into fifo */ 2358 for (i = 0; i < items; ++i) 2359 mci_fifo_writew(host->fifo_reg, aligned_buf[i]); 2360 } 2361 } else 2362 #endif 2363 { 2364 u16 *pdata = buf; 2365 2366 for (; cnt >= 2; cnt -= 2) 2367 mci_fifo_writew(host->fifo_reg, *pdata++); 2368 buf = pdata; 2369 } 2370 /* put anything remaining in the part_buf */ 2371 if (cnt) { 2372 dw_mci_set_part_bytes(host, buf, cnt); 2373 /* Push data if we have reached the expected data length */ 2374 if ((data->bytes_xfered + init_cnt) == 2375 (data->blksz * data->blocks)) 2376 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2377 } 2378 } 2379 2380 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) 2381 { 2382 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2383 if (unlikely((unsigned long)buf & 0x1)) { 2384 while (cnt >= 2) { 2385 /* pull data from fifo into aligned buffer */ 2386 u16 aligned_buf[64]; 2387 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2388 int items = len >> 1; 2389 int i; 2390 2391 for (i = 0; i < items; ++i) 2392 aligned_buf[i] = mci_fifo_readw(host->fifo_reg); 2393 /* memcpy from aligned buffer into output buffer */ 2394 memcpy(buf, aligned_buf, len); 2395 buf += len; 2396 cnt -= len; 2397 } 2398 } else 2399 #endif 2400 { 2401 u16 *pdata = buf; 2402 2403 for (; cnt >= 2; cnt -= 2) 2404 *pdata++ = mci_fifo_readw(host->fifo_reg); 2405 buf = pdata; 2406 } 2407 if (cnt) { 2408 host->part_buf16 = mci_fifo_readw(host->fifo_reg); 2409 dw_mci_pull_final_bytes(host, buf, cnt); 2410 } 2411 } 2412 2413 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) 2414 { 2415 struct mmc_data *data = host->data; 2416 int init_cnt = cnt; 2417 2418 /* try and push anything in the part_buf */ 2419 if (unlikely(host->part_buf_count)) { 2420 int len = dw_mci_push_part_bytes(host, buf, cnt); 2421 2422 buf += len; 2423 cnt -= len; 2424 if (host->part_buf_count == 4) { 2425 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2426 host->part_buf_count = 0; 2427 } 2428 } 2429 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2430 if (unlikely((unsigned long)buf & 0x3)) { 2431 while (cnt >= 4) { 2432 u32 aligned_buf[32]; 2433 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2434 int items = len >> 2; 2435 int i; 2436 /* memcpy from input buffer into aligned buffer */ 2437 memcpy(aligned_buf, buf, len); 2438 buf += len; 2439 cnt -= len; 2440 /* push data from aligned buffer into fifo */ 2441 for (i = 0; i < items; ++i) 2442 mci_fifo_writel(host->fifo_reg, aligned_buf[i]); 2443 } 2444 } else 2445 #endif 2446 { 2447 u32 *pdata = buf; 2448 2449 for (; cnt >= 4; cnt -= 4) 2450 mci_fifo_writel(host->fifo_reg, *pdata++); 2451 buf = pdata; 2452 } 2453 /* put anything remaining in the part_buf */ 2454 if (cnt) { 2455 dw_mci_set_part_bytes(host, buf, cnt); 2456 /* Push data if we have reached the expected data length */ 2457 if ((data->bytes_xfered + init_cnt) == 2458 (data->blksz * data->blocks)) 2459 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2460 } 2461 } 2462 2463 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) 2464 { 2465 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2466 if (unlikely((unsigned long)buf & 0x3)) { 2467 while (cnt >= 4) { 2468 /* pull data from fifo into aligned buffer */ 2469 u32 aligned_buf[32]; 2470 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2471 int items = len >> 2; 2472 int i; 2473 2474 for (i = 0; i < items; ++i) 2475 aligned_buf[i] = mci_fifo_readl(host->fifo_reg); 2476 /* memcpy from aligned buffer into output buffer */ 2477 memcpy(buf, aligned_buf, len); 2478 buf += len; 2479 cnt -= len; 2480 } 2481 } else 2482 #endif 2483 { 2484 u32 *pdata = buf; 2485 2486 for (; cnt >= 4; cnt -= 4) 2487 *pdata++ = mci_fifo_readl(host->fifo_reg); 2488 buf = pdata; 2489 } 2490 if (cnt) { 2491 host->part_buf32 = mci_fifo_readl(host->fifo_reg); 2492 dw_mci_pull_final_bytes(host, buf, cnt); 2493 } 2494 } 2495 2496 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) 2497 { 2498 struct mmc_data *data = host->data; 2499 int init_cnt = cnt; 2500 2501 /* try and push anything in the part_buf */ 2502 if (unlikely(host->part_buf_count)) { 2503 int len = dw_mci_push_part_bytes(host, buf, cnt); 2504 2505 buf += len; 2506 cnt -= len; 2507 2508 if (host->part_buf_count == 8) { 2509 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2510 host->part_buf_count = 0; 2511 } 2512 } 2513 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2514 if (unlikely((unsigned long)buf & 0x7)) { 2515 while (cnt >= 8) { 2516 u64 aligned_buf[16]; 2517 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2518 int items = len >> 3; 2519 int i; 2520 /* memcpy from input buffer into aligned buffer */ 2521 memcpy(aligned_buf, buf, len); 2522 buf += len; 2523 cnt -= len; 2524 /* push data from aligned buffer into fifo */ 2525 for (i = 0; i < items; ++i) 2526 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); 2527 } 2528 } else 2529 #endif 2530 { 2531 u64 *pdata = buf; 2532 2533 for (; cnt >= 8; cnt -= 8) 2534 mci_fifo_writeq(host->fifo_reg, *pdata++); 2535 buf = pdata; 2536 } 2537 /* put anything remaining in the part_buf */ 2538 if (cnt) { 2539 dw_mci_set_part_bytes(host, buf, cnt); 2540 /* Push data if we have reached the expected data length */ 2541 if ((data->bytes_xfered + init_cnt) == 2542 (data->blksz * data->blocks)) 2543 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2544 } 2545 } 2546 2547 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) 2548 { 2549 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2550 if (unlikely((unsigned long)buf & 0x7)) { 2551 while (cnt >= 8) { 2552 /* pull data from fifo into aligned buffer */ 2553 u64 aligned_buf[16]; 2554 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2555 int items = len >> 3; 2556 int i; 2557 2558 for (i = 0; i < items; ++i) 2559 aligned_buf[i] = mci_fifo_readq(host->fifo_reg); 2560 2561 /* memcpy from aligned buffer into output buffer */ 2562 memcpy(buf, aligned_buf, len); 2563 buf += len; 2564 cnt -= len; 2565 } 2566 } else 2567 #endif 2568 { 2569 u64 *pdata = buf; 2570 2571 for (; cnt >= 8; cnt -= 8) 2572 *pdata++ = mci_fifo_readq(host->fifo_reg); 2573 buf = pdata; 2574 } 2575 if (cnt) { 2576 host->part_buf = mci_fifo_readq(host->fifo_reg); 2577 dw_mci_pull_final_bytes(host, buf, cnt); 2578 } 2579 } 2580 2581 static void dw_mci_push_data64_32(struct dw_mci *host, void *buf, int cnt) 2582 { 2583 struct mmc_data *data = host->data; 2584 int init_cnt = cnt; 2585 2586 /* try and push anything in the part_buf */ 2587 if (unlikely(host->part_buf_count)) { 2588 int len = dw_mci_push_part_bytes(host, buf, cnt); 2589 2590 buf += len; 2591 cnt -= len; 2592 2593 if (host->part_buf_count == 8) { 2594 mci_fifo_l_writeq(host->fifo_reg, host->part_buf); 2595 host->part_buf_count = 0; 2596 } 2597 } 2598 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2599 if (unlikely((unsigned long)buf & 0x7)) { 2600 while (cnt >= 8) { 2601 u64 aligned_buf[16]; 2602 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2603 int items = len >> 3; 2604 int i; 2605 /* memcpy from input buffer into aligned buffer */ 2606 memcpy(aligned_buf, buf, len); 2607 buf += len; 2608 cnt -= len; 2609 /* push data from aligned buffer into fifo */ 2610 for (i = 0; i < items; ++i) 2611 mci_fifo_l_writeq(host->fifo_reg, aligned_buf[i]); 2612 } 2613 } else 2614 #endif 2615 { 2616 u64 *pdata = buf; 2617 2618 for (; cnt >= 8; cnt -= 8) 2619 mci_fifo_l_writeq(host->fifo_reg, *pdata++); 2620 buf = pdata; 2621 } 2622 /* put anything remaining in the part_buf */ 2623 if (cnt) { 2624 dw_mci_set_part_bytes(host, buf, cnt); 2625 /* Push data if we have reached the expected data length */ 2626 if ((data->bytes_xfered + init_cnt) == 2627 (data->blksz * data->blocks)) 2628 mci_fifo_l_writeq(host->fifo_reg, host->part_buf); 2629 } 2630 } 2631 2632 static void dw_mci_pull_data64_32(struct dw_mci *host, void *buf, int cnt) 2633 { 2634 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2635 if (unlikely((unsigned long)buf & 0x7)) { 2636 while (cnt >= 8) { 2637 /* pull data from fifo into aligned buffer */ 2638 u64 aligned_buf[16]; 2639 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2640 int items = len >> 3; 2641 int i; 2642 2643 for (i = 0; i < items; ++i) 2644 aligned_buf[i] = mci_fifo_l_readq(host->fifo_reg); 2645 2646 /* memcpy from aligned buffer into output buffer */ 2647 memcpy(buf, aligned_buf, len); 2648 buf += len; 2649 cnt -= len; 2650 } 2651 } else 2652 #endif 2653 { 2654 u64 *pdata = buf; 2655 2656 for (; cnt >= 8; cnt -= 8) 2657 *pdata++ = mci_fifo_l_readq(host->fifo_reg); 2658 buf = pdata; 2659 } 2660 if (cnt) { 2661 host->part_buf = mci_fifo_l_readq(host->fifo_reg); 2662 dw_mci_pull_final_bytes(host, buf, cnt); 2663 } 2664 } 2665 2666 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) 2667 { 2668 int len; 2669 2670 /* get remaining partial bytes */ 2671 len = dw_mci_pull_part_bytes(host, buf, cnt); 2672 if (unlikely(len == cnt)) 2673 return; 2674 buf += len; 2675 cnt -= len; 2676 2677 /* get the rest of the data */ 2678 host->pull_data(host, buf, cnt); 2679 } 2680 2681 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) 2682 { 2683 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2684 void *buf; 2685 unsigned int offset; 2686 struct mmc_data *data = host->data; 2687 int shift = host->data_shift; 2688 u32 status; 2689 unsigned int len; 2690 unsigned int remain, fcnt; 2691 2692 do { 2693 if (!sg_miter_next(sg_miter)) 2694 goto done; 2695 2696 host->sg = sg_miter->piter.sg; 2697 buf = sg_miter->addr; 2698 remain = sg_miter->length; 2699 offset = 0; 2700 2701 do { 2702 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) 2703 << shift) + host->part_buf_count; 2704 len = min(remain, fcnt); 2705 if (!len) 2706 break; 2707 dw_mci_pull_data(host, (void *)(buf + offset), len); 2708 data->bytes_xfered += len; 2709 offset += len; 2710 remain -= len; 2711 } while (remain); 2712 2713 sg_miter->consumed = offset; 2714 status = mci_readl(host, MINTSTS); 2715 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2716 /* if the RXDR is ready read again */ 2717 } while ((status & SDMMC_INT_RXDR) || 2718 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); 2719 2720 if (!remain) { 2721 if (!sg_miter_next(sg_miter)) 2722 goto done; 2723 sg_miter->consumed = 0; 2724 } 2725 sg_miter_stop(sg_miter); 2726 return; 2727 2728 done: 2729 sg_miter_stop(sg_miter); 2730 host->sg = NULL; 2731 smp_wmb(); /* drain writebuffer */ 2732 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2733 } 2734 2735 static void dw_mci_write_data_pio(struct dw_mci *host) 2736 { 2737 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2738 void *buf; 2739 unsigned int offset; 2740 struct mmc_data *data = host->data; 2741 int shift = host->data_shift; 2742 u32 status; 2743 unsigned int len; 2744 unsigned int fifo_depth = host->fifo_depth; 2745 unsigned int remain, fcnt; 2746 2747 do { 2748 if (!sg_miter_next(sg_miter)) 2749 goto done; 2750 2751 host->sg = sg_miter->piter.sg; 2752 buf = sg_miter->addr; 2753 remain = sg_miter->length; 2754 offset = 0; 2755 2756 do { 2757 fcnt = ((fifo_depth - 2758 SDMMC_GET_FCNT(mci_readl(host, STATUS))) 2759 << shift) - host->part_buf_count; 2760 len = min(remain, fcnt); 2761 if (!len) 2762 break; 2763 host->push_data(host, (void *)(buf + offset), len); 2764 data->bytes_xfered += len; 2765 offset += len; 2766 remain -= len; 2767 } while (remain); 2768 2769 sg_miter->consumed = offset; 2770 status = mci_readl(host, MINTSTS); 2771 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2772 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ 2773 2774 if (!remain) { 2775 if (!sg_miter_next(sg_miter)) 2776 goto done; 2777 sg_miter->consumed = 0; 2778 } 2779 sg_miter_stop(sg_miter); 2780 return; 2781 2782 done: 2783 sg_miter_stop(sg_miter); 2784 host->sg = NULL; 2785 smp_wmb(); /* drain writebuffer */ 2786 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2787 } 2788 2789 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) 2790 { 2791 timer_delete(&host->cto_timer); 2792 2793 if (!host->cmd_status) 2794 host->cmd_status = status; 2795 2796 smp_wmb(); /* drain writebuffer */ 2797 2798 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2799 queue_work(system_bh_wq, &host->bh_work); 2800 2801 dw_mci_start_fault_timer(host); 2802 } 2803 2804 static void dw_mci_handle_cd(struct dw_mci *host) 2805 { 2806 struct dw_mci_slot *slot = host->slot; 2807 2808 mmc_detect_change(slot->mmc, 2809 msecs_to_jiffies(host->pdata->detect_delay_ms)); 2810 } 2811 2812 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) 2813 { 2814 struct dw_mci *host = dev_id; 2815 u32 pending; 2816 struct dw_mci_slot *slot = host->slot; 2817 2818 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 2819 2820 if (pending) { 2821 /* Check volt switch first, since it can look like an error */ 2822 if ((host->state == STATE_SENDING_CMD11) && 2823 (pending & SDMMC_INT_VOLT_SWITCH)) { 2824 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); 2825 pending &= ~SDMMC_INT_VOLT_SWITCH; 2826 2827 /* 2828 * Hold the lock; we know cmd11_timer can't be kicked 2829 * off after the lock is released, so safe to delete. 2830 */ 2831 spin_lock(&host->irq_lock); 2832 dw_mci_cmd_interrupt(host, pending); 2833 spin_unlock(&host->irq_lock); 2834 2835 timer_delete(&host->cmd11_timer); 2836 } 2837 2838 if (pending & DW_MCI_CMD_ERROR_FLAGS) { 2839 spin_lock(&host->irq_lock); 2840 2841 timer_delete(&host->cto_timer); 2842 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); 2843 host->cmd_status = pending; 2844 smp_wmb(); /* drain writebuffer */ 2845 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2846 2847 spin_unlock(&host->irq_lock); 2848 } 2849 2850 if (pending & DW_MCI_DATA_ERROR_FLAGS) { 2851 spin_lock(&host->irq_lock); 2852 2853 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2854 timer_delete(&host->dto_timer); 2855 2856 /* if there is an error report DATA_ERROR */ 2857 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); 2858 host->data_status = pending; 2859 smp_wmb(); /* drain writebuffer */ 2860 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2861 2862 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2863 /* In case of error, we cannot expect a DTO */ 2864 set_bit(EVENT_DATA_COMPLETE, 2865 &host->pending_events); 2866 2867 queue_work(system_bh_wq, &host->bh_work); 2868 2869 spin_unlock(&host->irq_lock); 2870 } 2871 2872 if (pending & SDMMC_INT_DATA_OVER) { 2873 spin_lock(&host->irq_lock); 2874 2875 timer_delete(&host->dto_timer); 2876 2877 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); 2878 if (!host->data_status) 2879 host->data_status = pending; 2880 smp_wmb(); /* drain writebuffer */ 2881 if (host->dir_status == DW_MCI_RECV_STATUS) { 2882 if (host->sg != NULL) 2883 dw_mci_read_data_pio(host, true); 2884 } 2885 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2886 queue_work(system_bh_wq, &host->bh_work); 2887 2888 spin_unlock(&host->irq_lock); 2889 } 2890 2891 if (pending & SDMMC_INT_RXDR) { 2892 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2893 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) 2894 dw_mci_read_data_pio(host, false); 2895 } 2896 2897 if (pending & SDMMC_INT_TXDR) { 2898 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2899 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) 2900 dw_mci_write_data_pio(host); 2901 } 2902 2903 if (pending & SDMMC_INT_CMD_DONE) { 2904 spin_lock(&host->irq_lock); 2905 2906 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); 2907 dw_mci_cmd_interrupt(host, pending); 2908 2909 spin_unlock(&host->irq_lock); 2910 } 2911 2912 if (pending & SDMMC_INT_CD) { 2913 mci_writel(host, RINTSTS, SDMMC_INT_CD); 2914 dw_mci_handle_cd(host); 2915 } 2916 2917 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { 2918 mci_writel(host, RINTSTS, 2919 SDMMC_INT_SDIO(slot->sdio_id)); 2920 __dw_mci_enable_sdio_irq(slot, 0); 2921 sdio_signal_irq(slot->mmc); 2922 } 2923 2924 } 2925 2926 if (host->use_dma != TRANS_MODE_IDMAC) 2927 return IRQ_HANDLED; 2928 2929 /* Handle IDMA interrupts */ 2930 if (host->dma_64bit_address == 1) { 2931 pending = mci_readl(host, IDSTS64); 2932 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2933 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | 2934 SDMMC_IDMAC_INT_RI); 2935 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); 2936 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2937 host->dma_ops->complete((void *)host); 2938 } 2939 } else { 2940 pending = mci_readl(host, IDSTS); 2941 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2942 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | 2943 SDMMC_IDMAC_INT_RI); 2944 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); 2945 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2946 host->dma_ops->complete((void *)host); 2947 } 2948 } 2949 2950 return IRQ_HANDLED; 2951 } 2952 2953 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot) 2954 { 2955 struct dw_mci *host = slot->host; 2956 const struct dw_mci_drv_data *drv_data = host->drv_data; 2957 struct mmc_host *mmc = slot->mmc; 2958 int ctrl_id; 2959 2960 if (host->pdata->caps) 2961 mmc->caps = host->pdata->caps; 2962 2963 if (host->pdata->pm_caps) 2964 mmc->pm_caps = host->pdata->pm_caps; 2965 2966 if (drv_data) 2967 mmc->caps |= drv_data->common_caps; 2968 2969 if (host->dev->of_node) { 2970 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); 2971 if (ctrl_id < 0) 2972 ctrl_id = 0; 2973 } else { 2974 ctrl_id = to_platform_device(host->dev)->id; 2975 } 2976 2977 if (drv_data && drv_data->caps) { 2978 if (ctrl_id >= drv_data->num_caps) { 2979 dev_err(host->dev, "invalid controller id %d\n", 2980 ctrl_id); 2981 return -EINVAL; 2982 } 2983 mmc->caps |= drv_data->caps[ctrl_id]; 2984 } 2985 2986 if (host->pdata->caps2) 2987 mmc->caps2 = host->pdata->caps2; 2988 2989 /* if host has set a minimum_freq, we should respect it */ 2990 if (host->minimum_speed) 2991 mmc->f_min = host->minimum_speed; 2992 else 2993 mmc->f_min = DW_MCI_FREQ_MIN; 2994 2995 if (!mmc->f_max) 2996 mmc->f_max = DW_MCI_FREQ_MAX; 2997 2998 /* Process SDIO IRQs through the sdio_irq_work. */ 2999 if (mmc->caps & MMC_CAP_SDIO_IRQ) 3000 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 3001 3002 return 0; 3003 } 3004 3005 static int dw_mci_init_slot(struct dw_mci *host) 3006 { 3007 struct mmc_host *mmc; 3008 struct dw_mci_slot *slot; 3009 int ret; 3010 3011 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); 3012 if (!mmc) 3013 return -ENOMEM; 3014 3015 slot = mmc_priv(mmc); 3016 slot->id = 0; 3017 slot->sdio_id = host->sdio_id0 + slot->id; 3018 slot->mmc = mmc; 3019 slot->host = host; 3020 host->slot = slot; 3021 3022 mmc->ops = &dw_mci_ops; 3023 3024 /*if there are external regulators, get them*/ 3025 ret = mmc_regulator_get_supply(mmc); 3026 if (ret) 3027 goto err_host_allocated; 3028 3029 if (!mmc->ocr_avail) 3030 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 3031 3032 ret = mmc_of_parse(mmc); 3033 if (ret) 3034 goto err_host_allocated; 3035 3036 ret = dw_mci_init_slot_caps(slot); 3037 if (ret) 3038 goto err_host_allocated; 3039 3040 /* Useful defaults if platform data is unset. */ 3041 if (host->use_dma == TRANS_MODE_IDMAC) { 3042 mmc->max_segs = host->ring_size; 3043 mmc->max_blk_size = 65535; 3044 mmc->max_seg_size = 0x1000; 3045 mmc->max_req_size = mmc->max_seg_size * host->ring_size; 3046 mmc->max_blk_count = mmc->max_req_size / 512; 3047 } else if (host->use_dma == TRANS_MODE_EDMAC) { 3048 mmc->max_segs = 64; 3049 mmc->max_blk_size = 65535; 3050 mmc->max_blk_count = 65535; 3051 mmc->max_req_size = 3052 mmc->max_blk_size * mmc->max_blk_count; 3053 mmc->max_seg_size = mmc->max_req_size; 3054 } else { 3055 /* TRANS_MODE_PIO */ 3056 mmc->max_segs = 64; 3057 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */ 3058 mmc->max_blk_count = 512; 3059 mmc->max_req_size = mmc->max_blk_size * 3060 mmc->max_blk_count; 3061 mmc->max_seg_size = mmc->max_req_size; 3062 } 3063 3064 dw_mci_get_cd(mmc); 3065 3066 ret = mmc_add_host(mmc); 3067 if (ret) 3068 goto err_host_allocated; 3069 3070 #if defined(CONFIG_DEBUG_FS) 3071 dw_mci_init_debugfs(slot); 3072 #endif 3073 3074 return 0; 3075 3076 err_host_allocated: 3077 mmc_free_host(mmc); 3078 return ret; 3079 } 3080 3081 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot) 3082 { 3083 /* Debugfs stuff is cleaned up by mmc core */ 3084 mmc_remove_host(slot->mmc); 3085 slot->host->slot = NULL; 3086 mmc_free_host(slot->mmc); 3087 } 3088 3089 static void dw_mci_init_dma(struct dw_mci *host) 3090 { 3091 int addr_config; 3092 struct device *dev = host->dev; 3093 3094 /* 3095 * Check tansfer mode from HCON[17:16] 3096 * Clear the ambiguous description of dw_mmc databook: 3097 * 2b'00: No DMA Interface -> Actually means using Internal DMA block 3098 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block 3099 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block 3100 * 2b'11: Non DW DMA Interface -> pio only 3101 * Compared to DesignWare DMA Interface, Generic DMA Interface has a 3102 * simpler request/acknowledge handshake mechanism and both of them 3103 * are regarded as external dma master for dw_mmc. 3104 */ 3105 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON)); 3106 if (host->use_dma == DMA_INTERFACE_IDMA) { 3107 host->use_dma = TRANS_MODE_IDMAC; 3108 } else if (host->use_dma == DMA_INTERFACE_DWDMA || 3109 host->use_dma == DMA_INTERFACE_GDMA) { 3110 host->use_dma = TRANS_MODE_EDMAC; 3111 } else { 3112 goto no_dma; 3113 } 3114 3115 /* Determine which DMA interface to use */ 3116 if (host->use_dma == TRANS_MODE_IDMAC) { 3117 /* 3118 * Check ADDR_CONFIG bit in HCON to find 3119 * IDMAC address bus width 3120 */ 3121 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON)); 3122 3123 if (addr_config == 1) { 3124 /* host supports IDMAC in 64-bit address mode */ 3125 host->dma_64bit_address = 1; 3126 dev_info(host->dev, 3127 "IDMAC supports 64-bit address mode.\n"); 3128 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) 3129 dma_set_coherent_mask(host->dev, 3130 DMA_BIT_MASK(64)); 3131 } else { 3132 /* host supports IDMAC in 32-bit address mode */ 3133 host->dma_64bit_address = 0; 3134 dev_info(host->dev, 3135 "IDMAC supports 32-bit address mode.\n"); 3136 } 3137 3138 /* Alloc memory for sg translation */ 3139 host->sg_cpu = dmam_alloc_coherent(host->dev, 3140 DESC_RING_BUF_SZ, 3141 &host->sg_dma, GFP_KERNEL); 3142 if (!host->sg_cpu) { 3143 dev_err(host->dev, 3144 "%s: could not alloc DMA memory\n", 3145 __func__); 3146 goto no_dma; 3147 } 3148 3149 host->dma_ops = &dw_mci_idmac_ops; 3150 dev_info(host->dev, "Using internal DMA controller.\n"); 3151 } else { 3152 /* TRANS_MODE_EDMAC: check dma bindings again */ 3153 if ((device_property_string_array_count(dev, "dma-names") < 0) || 3154 !device_property_present(dev, "dmas")) { 3155 goto no_dma; 3156 } 3157 host->dma_ops = &dw_mci_edmac_ops; 3158 dev_info(host->dev, "Using external DMA controller.\n"); 3159 } 3160 3161 if (host->dma_ops->init && host->dma_ops->start && 3162 host->dma_ops->stop && host->dma_ops->cleanup) { 3163 if (host->dma_ops->init(host)) { 3164 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n", 3165 __func__); 3166 goto no_dma; 3167 } 3168 } else { 3169 dev_err(host->dev, "DMA initialization not found.\n"); 3170 goto no_dma; 3171 } 3172 3173 return; 3174 3175 no_dma: 3176 dev_info(host->dev, "Using PIO mode.\n"); 3177 host->use_dma = TRANS_MODE_PIO; 3178 } 3179 3180 static void dw_mci_cmd11_timer(struct timer_list *t) 3181 { 3182 struct dw_mci *host = timer_container_of(host, t, cmd11_timer); 3183 3184 if (host->state != STATE_SENDING_CMD11) { 3185 dev_warn(host->dev, "Unexpected CMD11 timeout\n"); 3186 return; 3187 } 3188 3189 host->cmd_status = SDMMC_INT_RTO; 3190 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3191 queue_work(system_bh_wq, &host->bh_work); 3192 } 3193 3194 static void dw_mci_cto_timer(struct timer_list *t) 3195 { 3196 struct dw_mci *host = timer_container_of(host, t, cto_timer); 3197 unsigned long irqflags; 3198 u32 pending; 3199 3200 spin_lock_irqsave(&host->irq_lock, irqflags); 3201 3202 /* 3203 * If somehow we have very bad interrupt latency it's remotely possible 3204 * that the timer could fire while the interrupt is still pending or 3205 * while the interrupt is midway through running. Let's be paranoid 3206 * and detect those two cases. Note that this is paranoia is somewhat 3207 * justified because in this function we don't actually cancel the 3208 * pending command in the controller--we just assume it will never come. 3209 */ 3210 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3211 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) { 3212 /* The interrupt should fire; no need to act but we can warn */ 3213 dev_warn(host->dev, "Unexpected interrupt latency\n"); 3214 goto exit; 3215 } 3216 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) { 3217 /* Presumably interrupt handler couldn't delete the timer */ 3218 dev_warn(host->dev, "CTO timeout when already completed\n"); 3219 goto exit; 3220 } 3221 3222 /* 3223 * Continued paranoia to make sure we're in the state we expect. 3224 * This paranoia isn't really justified but it seems good to be safe. 3225 */ 3226 switch (host->state) { 3227 case STATE_SENDING_CMD11: 3228 case STATE_SENDING_CMD: 3229 case STATE_SENDING_STOP: 3230 /* 3231 * If CMD_DONE interrupt does NOT come in sending command 3232 * state, we should notify the driver to terminate current 3233 * transfer and report a command timeout to the core. 3234 */ 3235 host->cmd_status = SDMMC_INT_RTO; 3236 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3237 queue_work(system_bh_wq, &host->bh_work); 3238 break; 3239 default: 3240 dev_warn(host->dev, "Unexpected command timeout, state %d\n", 3241 host->state); 3242 break; 3243 } 3244 3245 exit: 3246 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3247 } 3248 3249 static void dw_mci_dto_timer(struct timer_list *t) 3250 { 3251 struct dw_mci *host = timer_container_of(host, t, dto_timer); 3252 unsigned long irqflags; 3253 u32 pending; 3254 3255 spin_lock_irqsave(&host->irq_lock, irqflags); 3256 3257 /* 3258 * The DTO timer is much longer than the CTO timer, so it's even less 3259 * likely that we'll these cases, but it pays to be paranoid. 3260 */ 3261 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3262 if (pending & SDMMC_INT_DATA_OVER) { 3263 /* The interrupt should fire; no need to act but we can warn */ 3264 dev_warn(host->dev, "Unexpected data interrupt latency\n"); 3265 goto exit; 3266 } 3267 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) { 3268 /* Presumably interrupt handler couldn't delete the timer */ 3269 dev_warn(host->dev, "DTO timeout when already completed\n"); 3270 goto exit; 3271 } 3272 3273 /* 3274 * Continued paranoia to make sure we're in the state we expect. 3275 * This paranoia isn't really justified but it seems good to be safe. 3276 */ 3277 switch (host->state) { 3278 case STATE_SENDING_DATA: 3279 case STATE_DATA_BUSY: 3280 /* 3281 * If DTO interrupt does NOT come in sending data state, 3282 * we should notify the driver to terminate current transfer 3283 * and report a data timeout to the core. 3284 */ 3285 host->data_status = SDMMC_INT_DRTO; 3286 set_bit(EVENT_DATA_ERROR, &host->pending_events); 3287 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 3288 queue_work(system_bh_wq, &host->bh_work); 3289 break; 3290 default: 3291 dev_warn(host->dev, "Unexpected data timeout, state %d\n", 3292 host->state); 3293 break; 3294 } 3295 3296 exit: 3297 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3298 } 3299 3300 #ifdef CONFIG_OF 3301 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3302 { 3303 struct dw_mci_board *pdata; 3304 struct device *dev = host->dev; 3305 const struct dw_mci_drv_data *drv_data = host->drv_data; 3306 int ret; 3307 u32 clock_frequency; 3308 3309 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3310 if (!pdata) 3311 return ERR_PTR(-ENOMEM); 3312 3313 /* find reset controller when exist */ 3314 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset"); 3315 if (IS_ERR(pdata->rstc)) 3316 return ERR_CAST(pdata->rstc); 3317 3318 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth)) 3319 dev_info(dev, 3320 "fifo-depth property not found, using value of FIFOTH register as default\n"); 3321 3322 device_property_read_u32(dev, "card-detect-delay", 3323 &pdata->detect_delay_ms); 3324 3325 device_property_read_u32(dev, "data-addr", &host->data_addr_override); 3326 3327 if (device_property_present(dev, "fifo-watermark-aligned")) 3328 host->wm_aligned = true; 3329 3330 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency)) 3331 pdata->bus_hz = clock_frequency; 3332 3333 if (drv_data && drv_data->parse_dt) { 3334 ret = drv_data->parse_dt(host); 3335 if (ret) 3336 return ERR_PTR(ret); 3337 } 3338 3339 return pdata; 3340 } 3341 3342 #else /* CONFIG_OF */ 3343 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3344 { 3345 return ERR_PTR(-EINVAL); 3346 } 3347 #endif /* CONFIG_OF */ 3348 3349 static void dw_mci_enable_cd(struct dw_mci *host) 3350 { 3351 unsigned long irqflags; 3352 u32 temp; 3353 3354 /* 3355 * No need for CD if all slots have a non-error GPIO 3356 * as well as broken card detection is found. 3357 */ 3358 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL) 3359 return; 3360 3361 if (mmc_gpio_get_cd(host->slot->mmc) < 0) { 3362 spin_lock_irqsave(&host->irq_lock, irqflags); 3363 temp = mci_readl(host, INTMASK); 3364 temp |= SDMMC_INT_CD; 3365 mci_writel(host, INTMASK, temp); 3366 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3367 } 3368 } 3369 3370 int dw_mci_probe(struct dw_mci *host) 3371 { 3372 const struct dw_mci_drv_data *drv_data = host->drv_data; 3373 int width, i, ret = 0; 3374 u32 fifo_size; 3375 3376 if (!host->pdata) { 3377 host->pdata = dw_mci_parse_dt(host); 3378 if (IS_ERR(host->pdata)) 3379 return dev_err_probe(host->dev, PTR_ERR(host->pdata), 3380 "platform data not available\n"); 3381 } 3382 3383 host->biu_clk = devm_clk_get(host->dev, "biu"); 3384 if (IS_ERR(host->biu_clk)) { 3385 dev_dbg(host->dev, "biu clock not available\n"); 3386 ret = PTR_ERR(host->biu_clk); 3387 if (ret == -EPROBE_DEFER) 3388 return ret; 3389 3390 } else { 3391 ret = clk_prepare_enable(host->biu_clk); 3392 if (ret) { 3393 dev_err(host->dev, "failed to enable biu clock\n"); 3394 return ret; 3395 } 3396 } 3397 3398 host->ciu_clk = devm_clk_get(host->dev, "ciu"); 3399 if (IS_ERR(host->ciu_clk)) { 3400 dev_dbg(host->dev, "ciu clock not available\n"); 3401 ret = PTR_ERR(host->ciu_clk); 3402 if (ret == -EPROBE_DEFER) 3403 goto err_clk_biu; 3404 3405 host->bus_hz = host->pdata->bus_hz; 3406 } else { 3407 ret = clk_prepare_enable(host->ciu_clk); 3408 if (ret) { 3409 dev_err(host->dev, "failed to enable ciu clock\n"); 3410 goto err_clk_biu; 3411 } 3412 3413 if (host->pdata->bus_hz) { 3414 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); 3415 if (ret) 3416 dev_warn(host->dev, 3417 "Unable to set bus rate to %uHz\n", 3418 host->pdata->bus_hz); 3419 } 3420 host->bus_hz = clk_get_rate(host->ciu_clk); 3421 } 3422 3423 if (!host->bus_hz) { 3424 dev_err(host->dev, 3425 "Platform data must supply bus speed\n"); 3426 ret = -ENODEV; 3427 goto err_clk_ciu; 3428 } 3429 3430 if (host->pdata->rstc) { 3431 reset_control_assert(host->pdata->rstc); 3432 usleep_range(10, 50); 3433 reset_control_deassert(host->pdata->rstc); 3434 } 3435 3436 if (drv_data && drv_data->init) { 3437 ret = drv_data->init(host); 3438 if (ret) { 3439 dev_err(host->dev, 3440 "implementation specific init failed\n"); 3441 goto err_clk_ciu; 3442 } 3443 } 3444 3445 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0); 3446 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0); 3447 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0); 3448 3449 spin_lock_init(&host->lock); 3450 spin_lock_init(&host->irq_lock); 3451 INIT_LIST_HEAD(&host->queue); 3452 3453 dw_mci_init_fault(host); 3454 3455 /* 3456 * Get the host data width - this assumes that HCON has been set with 3457 * the correct values. 3458 */ 3459 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON)); 3460 if (!i) { 3461 host->push_data = dw_mci_push_data16; 3462 host->pull_data = dw_mci_pull_data16; 3463 width = 16; 3464 host->data_shift = 1; 3465 } else if (i == 2) { 3466 if ((host->quirks & DW_MMC_QUIRK_FIFO64_32)) { 3467 host->push_data = dw_mci_push_data64_32; 3468 host->pull_data = dw_mci_pull_data64_32; 3469 } else { 3470 host->push_data = dw_mci_push_data64; 3471 host->pull_data = dw_mci_pull_data64; 3472 } 3473 width = 64; 3474 host->data_shift = 3; 3475 } else { 3476 /* Check for a reserved value, and warn if it is */ 3477 WARN((i != 1), 3478 "HCON reports a reserved host data width!\n" 3479 "Defaulting to 32-bit access.\n"); 3480 host->push_data = dw_mci_push_data32; 3481 host->pull_data = dw_mci_pull_data32; 3482 width = 32; 3483 host->data_shift = 2; 3484 } 3485 3486 /* Reset all blocks */ 3487 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3488 ret = -ENODEV; 3489 goto err_clk_ciu; 3490 } 3491 3492 host->dma_ops = host->pdata->dma_ops; 3493 dw_mci_init_dma(host); 3494 3495 /* Clear the interrupts for the host controller */ 3496 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3497 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3498 3499 /* Put in max timeout */ 3500 mci_writel(host, TMOUT, 0xFFFFFFFF); 3501 3502 /* 3503 * FIFO threshold settings RxMark = fifo_size / 2 - 1, 3504 * Tx Mark = fifo_size / 2 DMA Size = 8 3505 */ 3506 if (!host->pdata->fifo_depth) { 3507 /* 3508 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may 3509 * have been overwritten by the bootloader, just like we're 3510 * about to do, so if you know the value for your hardware, you 3511 * should put it in the platform data. 3512 */ 3513 fifo_size = mci_readl(host, FIFOTH); 3514 fifo_size = 1 + ((fifo_size >> 16) & 0xfff); 3515 } else { 3516 fifo_size = host->pdata->fifo_depth; 3517 } 3518 host->fifo_depth = fifo_size; 3519 host->fifoth_val = 3520 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); 3521 mci_writel(host, FIFOTH, host->fifoth_val); 3522 3523 /* disable clock to CIU */ 3524 mci_writel(host, CLKENA, 0); 3525 mci_writel(host, CLKSRC, 0); 3526 3527 /* 3528 * In 2.40a spec, Data offset is changed. 3529 * Need to check the version-id and set data-offset for DATA register. 3530 */ 3531 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); 3532 dev_info(host->dev, "Version ID is %04x\n", host->verid); 3533 3534 if (host->data_addr_override) 3535 host->fifo_reg = host->regs + host->data_addr_override; 3536 else if (host->verid < DW_MMC_240A) 3537 host->fifo_reg = host->regs + DATA_OFFSET; 3538 else 3539 host->fifo_reg = host->regs + DATA_240A_OFFSET; 3540 3541 INIT_WORK(&host->bh_work, dw_mci_work_func); 3542 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, 3543 host->irq_flags, "dw-mci", host); 3544 if (ret) 3545 goto err_dmaunmap; 3546 3547 /* 3548 * Enable interrupts for command done, data over, data empty, 3549 * receive ready and error such as transmit, receive timeout, crc error 3550 */ 3551 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3552 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3553 DW_MCI_ERROR_FLAGS); 3554 /* Enable mci interrupt */ 3555 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3556 3557 dev_info(host->dev, 3558 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n", 3559 host->irq, width, fifo_size); 3560 3561 /* We need at least one slot to succeed */ 3562 ret = dw_mci_init_slot(host); 3563 if (ret) { 3564 dev_dbg(host->dev, "slot %d init failed\n", i); 3565 goto err_dmaunmap; 3566 } 3567 3568 /* Now that slots are all setup, we can enable card detect */ 3569 dw_mci_enable_cd(host); 3570 3571 return 0; 3572 3573 err_dmaunmap: 3574 if (host->use_dma && host->dma_ops->exit) 3575 host->dma_ops->exit(host); 3576 3577 reset_control_assert(host->pdata->rstc); 3578 3579 err_clk_ciu: 3580 clk_disable_unprepare(host->ciu_clk); 3581 3582 err_clk_biu: 3583 clk_disable_unprepare(host->biu_clk); 3584 3585 return ret; 3586 } 3587 EXPORT_SYMBOL(dw_mci_probe); 3588 3589 void dw_mci_remove(struct dw_mci *host) 3590 { 3591 dev_dbg(host->dev, "remove slot\n"); 3592 if (host->slot) 3593 dw_mci_cleanup_slot(host->slot); 3594 3595 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3596 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3597 3598 /* disable clock to CIU */ 3599 mci_writel(host, CLKENA, 0); 3600 mci_writel(host, CLKSRC, 0); 3601 3602 if (host->use_dma && host->dma_ops->exit) 3603 host->dma_ops->exit(host); 3604 3605 reset_control_assert(host->pdata->rstc); 3606 3607 clk_disable_unprepare(host->ciu_clk); 3608 clk_disable_unprepare(host->biu_clk); 3609 } 3610 EXPORT_SYMBOL(dw_mci_remove); 3611 3612 3613 3614 #ifdef CONFIG_PM 3615 int dw_mci_runtime_suspend(struct device *dev) 3616 { 3617 struct dw_mci *host = dev_get_drvdata(dev); 3618 3619 if (host->use_dma && host->dma_ops->exit) 3620 host->dma_ops->exit(host); 3621 3622 clk_disable_unprepare(host->ciu_clk); 3623 3624 if (host->slot && 3625 (mmc_host_can_gpio_cd(host->slot->mmc) || 3626 !mmc_card_is_removable(host->slot->mmc))) 3627 clk_disable_unprepare(host->biu_clk); 3628 3629 return 0; 3630 } 3631 EXPORT_SYMBOL(dw_mci_runtime_suspend); 3632 3633 int dw_mci_runtime_resume(struct device *dev) 3634 { 3635 int ret = 0; 3636 struct dw_mci *host = dev_get_drvdata(dev); 3637 3638 if (host->slot && 3639 (mmc_host_can_gpio_cd(host->slot->mmc) || 3640 !mmc_card_is_removable(host->slot->mmc))) { 3641 ret = clk_prepare_enable(host->biu_clk); 3642 if (ret) 3643 return ret; 3644 } 3645 3646 ret = clk_prepare_enable(host->ciu_clk); 3647 if (ret) 3648 goto err; 3649 3650 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3651 clk_disable_unprepare(host->ciu_clk); 3652 ret = -ENODEV; 3653 goto err; 3654 } 3655 3656 if (host->use_dma && host->dma_ops->init) 3657 host->dma_ops->init(host); 3658 3659 /* 3660 * Restore the initial value at FIFOTH register 3661 * And Invalidate the prev_blksz with zero 3662 */ 3663 mci_writel(host, FIFOTH, host->fifoth_val); 3664 host->prev_blksz = 0; 3665 3666 /* Put in max timeout */ 3667 mci_writel(host, TMOUT, 0xFFFFFFFF); 3668 3669 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3670 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3671 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3672 DW_MCI_ERROR_FLAGS); 3673 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3674 3675 3676 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER) 3677 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios); 3678 3679 /* Force setup bus to guarantee available clock output */ 3680 dw_mci_setup_bus(host->slot, true); 3681 3682 /* Re-enable SDIO interrupts. */ 3683 if (sdio_irq_claimed(host->slot->mmc)) 3684 __dw_mci_enable_sdio_irq(host->slot, 1); 3685 3686 /* Now that slots are all setup, we can enable card detect */ 3687 dw_mci_enable_cd(host); 3688 3689 return 0; 3690 3691 err: 3692 if (host->slot && 3693 (mmc_host_can_gpio_cd(host->slot->mmc) || 3694 !mmc_card_is_removable(host->slot->mmc))) 3695 clk_disable_unprepare(host->biu_clk); 3696 3697 return ret; 3698 } 3699 EXPORT_SYMBOL(dw_mci_runtime_resume); 3700 #endif /* CONFIG_PM */ 3701 3702 static int __init dw_mci_init(void) 3703 { 3704 pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); 3705 return 0; 3706 } 3707 3708 static void __exit dw_mci_exit(void) 3709 { 3710 } 3711 3712 module_init(dw_mci_init); 3713 module_exit(dw_mci_exit); 3714 3715 MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); 3716 MODULE_AUTHOR("NXP Semiconductor VietNam"); 3717 MODULE_AUTHOR("Imagination Technologies Ltd"); 3718 MODULE_LICENSE("GPL v2"); 3719