1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/sd.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sysfs.h>
19 
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/mmc.h>
23 #include <linux/mmc/sd.h>
24 
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 #include "mmc_ops.h"
30 #include "quirks.h"
31 #include "sd.h"
32 #include "sd_ops.h"
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 static const unsigned int sd_au_size[] = {
54 	0,		SZ_16K / 512,		SZ_32K / 512,	SZ_64K / 512,
55 	SZ_128K / 512,	SZ_256K / 512,		SZ_512K / 512,	SZ_1M / 512,
56 	SZ_2M / 512,	SZ_4M / 512,		SZ_8M / 512,	(SZ_8M + SZ_4M) / 512,
57 	SZ_16M / 512,	(SZ_16M + SZ_8M) / 512,	SZ_32M / 512,	SZ_64M / 512,
58 };
59 
60 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
61 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
62 
63 struct sd_busy_data {
64 	struct mmc_card *card;
65 	u8 *reg_buf;
66 };
67 
68 /*
69  * Given the decoded CSD structure, decode the raw CID to our CID structure.
70  */
71 void mmc_decode_cid(struct mmc_card *card)
72 {
73 	u32 *resp = card->raw_cid;
74 
75 	/*
76 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 	 * matter that not all of it is unique, it's just bonus entropy.
78 	 */
79 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80 
81 	/*
82 	 * SD doesn't currently have a version field so we will
83 	 * have to assume we can parse this.
84 	 */
85 	card->cid.manfid		= unstuff_bits(resp, 120, 8);
86 	card->cid.oemid			= unstuff_bits(resp, 104, 16);
87 	card->cid.prod_name[0]		= unstuff_bits(resp, 96, 8);
88 	card->cid.prod_name[1]		= unstuff_bits(resp, 88, 8);
89 	card->cid.prod_name[2]		= unstuff_bits(resp, 80, 8);
90 	card->cid.prod_name[3]		= unstuff_bits(resp, 72, 8);
91 	card->cid.prod_name[4]		= unstuff_bits(resp, 64, 8);
92 	card->cid.hwrev			= unstuff_bits(resp, 60, 4);
93 	card->cid.fwrev			= unstuff_bits(resp, 56, 4);
94 	card->cid.serial		= unstuff_bits(resp, 24, 32);
95 	card->cid.year			= unstuff_bits(resp, 12, 8);
96 	card->cid.month			= unstuff_bits(resp, 8, 4);
97 
98 	card->cid.year += 2000; /* SD cards year offset */
99 
100 	/* some product names may include trailing whitespace */
101 	strim(card->cid.prod_name);
102 }
103 
104 /*
105  * Given a 128-bit response, decode to our card CSD structure.
106  */
107 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
108 {
109 	struct mmc_csd *csd = &card->csd;
110 	unsigned int e, m, csd_struct;
111 	u32 *resp = card->raw_csd;
112 
113 	csd_struct = unstuff_bits(resp, 126, 2);
114 
115 	switch (csd_struct) {
116 	case 0:
117 		m = unstuff_bits(resp, 115, 4);
118 		e = unstuff_bits(resp, 112, 3);
119 		csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 		csd->taac_clks	 = unstuff_bits(resp, 104, 8) * 100;
121 
122 		m = unstuff_bits(resp, 99, 4);
123 		e = unstuff_bits(resp, 96, 3);
124 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
125 		csd->cmdclass	  = unstuff_bits(resp, 84, 12);
126 
127 		e = unstuff_bits(resp, 47, 3);
128 		m = unstuff_bits(resp, 62, 12);
129 		csd->capacity	  = (1 + m) << (e + 2);
130 
131 		csd->read_blkbits = unstuff_bits(resp, 80, 4);
132 		csd->read_partial = unstuff_bits(resp, 79, 1);
133 		csd->write_misalign = unstuff_bits(resp, 78, 1);
134 		csd->read_misalign = unstuff_bits(resp, 77, 1);
135 		csd->dsr_imp = unstuff_bits(resp, 76, 1);
136 		csd->r2w_factor = unstuff_bits(resp, 26, 3);
137 		csd->write_blkbits = unstuff_bits(resp, 22, 4);
138 		csd->write_partial = unstuff_bits(resp, 21, 1);
139 
140 		if (unstuff_bits(resp, 46, 1)) {
141 			csd->erase_size = 1;
142 		} else if (csd->write_blkbits >= 9) {
143 			csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
144 			csd->erase_size <<= csd->write_blkbits - 9;
145 		}
146 
147 		if (unstuff_bits(resp, 13, 1))
148 			mmc_card_set_readonly(card);
149 		break;
150 	case 1:
151 	case 2:
152 		/*
153 		 * This is a block-addressed SDHC, SDXC or SDUC card.
154 		 * Most interesting fields are unused and have fixed
155 		 * values. To avoid getting tripped by buggy cards,
156 		 * we assume those fixed values ourselves.
157 		 */
158 		mmc_card_set_blockaddr(card);
159 
160 		csd->taac_ns	 = 0; /* Unused */
161 		csd->taac_clks	 = 0; /* Unused */
162 
163 		m = unstuff_bits(resp, 99, 4);
164 		e = unstuff_bits(resp, 96, 3);
165 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
166 		csd->cmdclass	  = unstuff_bits(resp, 84, 12);
167 
168 		if (csd_struct == 1)
169 			m = unstuff_bits(resp, 48, 22);
170 		else
171 			m = unstuff_bits(resp, 48, 28);
172 		csd->c_size = m;
173 
174 		if (csd->c_size >= 0x400000 && is_sduc)
175 			mmc_card_set_ult_capacity(card);
176 		else if (csd->c_size >= 0xFFFF)
177 			mmc_card_set_ext_capacity(card);
178 
179 		csd->capacity     = (1 + (typeof(sector_t))m) << 10;
180 
181 		csd->read_blkbits = 9;
182 		csd->read_partial = 0;
183 		csd->write_misalign = 0;
184 		csd->read_misalign = 0;
185 		csd->r2w_factor = 4; /* Unused */
186 		csd->write_blkbits = 9;
187 		csd->write_partial = 0;
188 		csd->erase_size = 1;
189 
190 		if (unstuff_bits(resp, 13, 1))
191 			mmc_card_set_readonly(card);
192 		break;
193 	default:
194 		pr_err("%s: unrecognised CSD structure version %d\n",
195 			mmc_hostname(card->host), csd_struct);
196 		return -EINVAL;
197 	}
198 
199 	card->erase_size = csd->erase_size;
200 
201 	return 0;
202 }
203 
204 /*
205  * Given a 64-bit response, decode to our card SCR structure.
206  */
207 int mmc_decode_scr(struct mmc_card *card)
208 {
209 	struct sd_scr *scr = &card->scr;
210 	unsigned int scr_struct;
211 	u32 resp[4];
212 
213 	resp[3] = card->raw_scr[1];
214 	resp[2] = card->raw_scr[0];
215 
216 	scr_struct = unstuff_bits(resp, 60, 4);
217 	if (scr_struct != 0) {
218 		pr_err("%s: unrecognised SCR structure version %d\n",
219 			mmc_hostname(card->host), scr_struct);
220 		return -EINVAL;
221 	}
222 
223 	scr->sda_vsn = unstuff_bits(resp, 56, 4);
224 	scr->bus_widths = unstuff_bits(resp, 48, 4);
225 	if (scr->sda_vsn == SCR_SPEC_VER_2)
226 		/* Check if Physical Layer Spec v3.0 is supported */
227 		scr->sda_spec3 = unstuff_bits(resp, 47, 1);
228 
229 	if (scr->sda_spec3) {
230 		scr->sda_spec4 = unstuff_bits(resp, 42, 1);
231 		scr->sda_specx = unstuff_bits(resp, 38, 4);
232 	}
233 
234 	if (unstuff_bits(resp, 55, 1))
235 		card->erased_byte = 0xFF;
236 	else
237 		card->erased_byte = 0x0;
238 
239 	if (scr->sda_spec4)
240 		scr->cmds = unstuff_bits(resp, 32, 4);
241 	else if (scr->sda_spec3)
242 		scr->cmds = unstuff_bits(resp, 32, 2);
243 
244 	/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
245 	if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
246 	    !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
247 		pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /*
255  * Fetch and process SD Status register.
256  */
257 static int mmc_read_ssr(struct mmc_card *card)
258 {
259 	unsigned int au, es, et, eo;
260 	__be32 *raw_ssr;
261 	u32 resp[4] = {};
262 	u8 discard_support;
263 	int i;
264 
265 	if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
266 		pr_warn("%s: card lacks mandatory SD Status function\n",
267 			mmc_hostname(card->host));
268 		return 0;
269 	}
270 
271 	raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
272 	if (!raw_ssr)
273 		return -ENOMEM;
274 
275 	if (mmc_app_sd_status(card, raw_ssr)) {
276 		pr_warn("%s: problem reading SD Status register\n",
277 			mmc_hostname(card->host));
278 		kfree(raw_ssr);
279 		return 0;
280 	}
281 
282 	for (i = 0; i < 16; i++)
283 		card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
284 
285 	kfree(raw_ssr);
286 
287 	/*
288 	 * unstuff_bits only works with four u32s so we have to offset the
289 	 * bitfield positions accordingly.
290 	 */
291 	au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
292 	if (au) {
293 		if (au <= 9 || card->scr.sda_spec3) {
294 			card->ssr.au = sd_au_size[au];
295 			es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
296 			et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
297 			if (es && et) {
298 				eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
299 				card->ssr.erase_timeout = (et * 1000) / es;
300 				card->ssr.erase_offset = eo * 1000;
301 			}
302 		} else {
303 			pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
304 				mmc_hostname(card->host));
305 		}
306 	}
307 
308 	/*
309 	 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
310 	 */
311 	resp[3] = card->raw_ssr[6];
312 	discard_support = unstuff_bits(resp, 313 - 288, 1);
313 	card->erase_arg = (card->scr.sda_specx && discard_support) ?
314 			    SD_DISCARD_ARG : SD_ERASE_ARG;
315 
316 	return 0;
317 }
318 
319 /*
320  * Fetches and decodes switch information
321  */
322 static int mmc_read_switch(struct mmc_card *card)
323 {
324 	int err;
325 	u8 *status;
326 
327 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
328 		return 0;
329 
330 	if (!(card->csd.cmdclass & CCC_SWITCH)) {
331 		pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
332 			mmc_hostname(card->host));
333 		return 0;
334 	}
335 
336 	status = kmalloc(64, GFP_KERNEL);
337 	if (!status)
338 		return -ENOMEM;
339 
340 	/*
341 	 * Find out the card's support bits with a mode 0 operation.
342 	 * The argument does not matter, as the support bits do not
343 	 * change with the arguments.
344 	 */
345 	err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
346 	if (err) {
347 		/*
348 		 * If the host or the card can't do the switch,
349 		 * fail more gracefully.
350 		 */
351 		if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
352 			goto out;
353 
354 		pr_warn("%s: problem reading Bus Speed modes\n",
355 			mmc_hostname(card->host));
356 		err = 0;
357 
358 		goto out;
359 	}
360 
361 	if (status[13] & SD_MODE_HIGH_SPEED)
362 		card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
363 
364 	if (card->scr.sda_spec3) {
365 		card->sw_caps.sd3_bus_mode = status[13];
366 		/* Driver Strengths supported by the card */
367 		card->sw_caps.sd3_drv_type = status[9];
368 		card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
369 	}
370 
371 out:
372 	kfree(status);
373 
374 	return err;
375 }
376 
377 /*
378  * Test if the card supports high-speed mode and, if so, switch to it.
379  */
380 int mmc_sd_switch_hs(struct mmc_card *card)
381 {
382 	int err;
383 	u8 *status;
384 
385 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
386 		return 0;
387 
388 	if (!(card->csd.cmdclass & CCC_SWITCH))
389 		return 0;
390 
391 	if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
392 		return 0;
393 
394 	if (card->sw_caps.hs_max_dtr == 0)
395 		return 0;
396 
397 	status = kmalloc(64, GFP_KERNEL);
398 	if (!status)
399 		return -ENOMEM;
400 
401 	err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
402 			HIGH_SPEED_BUS_SPEED, status);
403 	if (err)
404 		goto out;
405 
406 	if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
407 		pr_warn("%s: Problem switching card into high-speed mode!\n",
408 			mmc_hostname(card->host));
409 		err = 0;
410 	} else {
411 		err = 1;
412 	}
413 
414 out:
415 	kfree(status);
416 
417 	return err;
418 }
419 
420 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
421 {
422 	int card_drv_type, drive_strength, drv_type;
423 	int err;
424 
425 	card->drive_strength = 0;
426 
427 	card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
428 
429 	drive_strength = mmc_select_drive_strength(card,
430 						   card->sw_caps.uhs_max_dtr,
431 						   card_drv_type, &drv_type);
432 
433 	if (drive_strength) {
434 		err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
435 				drive_strength, status);
436 		if (err)
437 			return err;
438 		if ((status[15] & 0xF) != drive_strength) {
439 			pr_warn("%s: Problem setting drive strength!\n",
440 				mmc_hostname(card->host));
441 			return 0;
442 		}
443 		card->drive_strength = drive_strength;
444 	}
445 
446 	if (drv_type)
447 		mmc_set_driver_type(card->host, drv_type);
448 
449 	return 0;
450 }
451 
452 static void sd_update_bus_speed_mode(struct mmc_card *card)
453 {
454 	/*
455 	 * If the host doesn't support any of the UHS-I modes, fallback on
456 	 * default speed.
457 	 */
458 	if (!mmc_host_can_uhs(card->host)) {
459 		card->sd_bus_speed = 0;
460 		return;
461 	}
462 
463 	if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
464 	    (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
465 			card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
466 	} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
467 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
468 			card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
469 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 		    MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
471 		    SD_MODE_UHS_SDR50)) {
472 			card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
473 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
475 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
476 			card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
477 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
478 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
479 		    MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
480 		    SD_MODE_UHS_SDR12)) {
481 			card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
482 	}
483 }
484 
485 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
486 {
487 	int err;
488 	unsigned int timing = 0;
489 
490 	switch (card->sd_bus_speed) {
491 	case UHS_SDR104_BUS_SPEED:
492 		timing = MMC_TIMING_UHS_SDR104;
493 		card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
494 		break;
495 	case UHS_DDR50_BUS_SPEED:
496 		timing = MMC_TIMING_UHS_DDR50;
497 		card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
498 		break;
499 	case UHS_SDR50_BUS_SPEED:
500 		timing = MMC_TIMING_UHS_SDR50;
501 		card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
502 		break;
503 	case UHS_SDR25_BUS_SPEED:
504 		timing = MMC_TIMING_UHS_SDR25;
505 		card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
506 		break;
507 	case UHS_SDR12_BUS_SPEED:
508 		timing = MMC_TIMING_UHS_SDR12;
509 		card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
510 		break;
511 	default:
512 		return 0;
513 	}
514 
515 	err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
516 	if (err)
517 		return err;
518 
519 	if ((status[16] & 0xF) != card->sd_bus_speed)
520 		pr_warn("%s: Problem setting bus speed mode!\n",
521 			mmc_hostname(card->host));
522 	else {
523 		mmc_set_timing(card->host, timing);
524 		mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
525 	}
526 
527 	return 0;
528 }
529 
530 /* Get host's max current setting at its current voltage */
531 static u32 sd_get_host_max_current(struct mmc_host *host)
532 {
533 	u32 voltage, max_current;
534 
535 	voltage = 1 << host->ios.vdd;
536 	switch (voltage) {
537 	case MMC_VDD_165_195:
538 		max_current = host->max_current_180;
539 		break;
540 	case MMC_VDD_29_30:
541 	case MMC_VDD_30_31:
542 		max_current = host->max_current_300;
543 		break;
544 	case MMC_VDD_32_33:
545 	case MMC_VDD_33_34:
546 		max_current = host->max_current_330;
547 		break;
548 	default:
549 		max_current = 0;
550 	}
551 
552 	return max_current;
553 }
554 
555 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
556 {
557 	int current_limit = SD_SET_CURRENT_NO_CHANGE;
558 	int err;
559 	u32 max_current;
560 
561 	/*
562 	 * Current limit switch is only defined for SDR50, SDR104, and DDR50
563 	 * bus speed modes. For other bus speed modes, we do not change the
564 	 * current limit.
565 	 */
566 	if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
567 	    (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
568 	    (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
569 		return 0;
570 
571 	/*
572 	 * Host has different current capabilities when operating at
573 	 * different voltages, so find out its max current first.
574 	 */
575 	max_current = sd_get_host_max_current(card->host);
576 
577 	/*
578 	 * We only check host's capability here, if we set a limit that is
579 	 * higher than the card's maximum current, the card will be using its
580 	 * maximum current, e.g. if the card's maximum current is 300ma, and
581 	 * when we set current limit to 200ma, the card will draw 200ma, and
582 	 * when we set current limit to 400/600/800ma, the card will draw its
583 	 * maximum 300ma from the host.
584 	 *
585 	 * The above is incorrect: if we try to set a current limit that is
586 	 * not supported by the card, the card can rightfully error out the
587 	 * attempt, and remain at the default current limit.  This results
588 	 * in a 300mA card being limited to 200mA even though the host
589 	 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
590 	 * an iMX6 host. --rmk
591 	 */
592 	if (max_current >= 800 &&
593 	    card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
594 		current_limit = SD_SET_CURRENT_LIMIT_800;
595 	else if (max_current >= 600 &&
596 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
597 		current_limit = SD_SET_CURRENT_LIMIT_600;
598 	else if (max_current >= 400 &&
599 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
600 		current_limit = SD_SET_CURRENT_LIMIT_400;
601 	else if (max_current >= 200 &&
602 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
603 		current_limit = SD_SET_CURRENT_LIMIT_200;
604 
605 	if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
606 		err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
607 				current_limit, status);
608 		if (err)
609 			return err;
610 
611 		if (((status[15] >> 4) & 0x0F) != current_limit)
612 			pr_warn("%s: Problem setting current limit!\n",
613 				mmc_hostname(card->host));
614 
615 	}
616 
617 	return 0;
618 }
619 
620 /*
621  * Determine if the card should tune or not.
622  */
623 static bool mmc_sd_use_tuning(struct mmc_card *card)
624 {
625 	/*
626 	 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
627 	 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
628 	 */
629 	if (mmc_host_is_spi(card->host))
630 		return false;
631 
632 	switch (card->host->ios.timing) {
633 	case MMC_TIMING_UHS_SDR50:
634 	case MMC_TIMING_UHS_SDR104:
635 		return true;
636 	case MMC_TIMING_UHS_DDR50:
637 		return !mmc_card_no_uhs_ddr50_tuning(card);
638 	}
639 
640 	return false;
641 }
642 
643 /*
644  * UHS-I specific initialization procedure
645  */
646 static int mmc_sd_init_uhs_card(struct mmc_card *card)
647 {
648 	int err;
649 	u8 *status;
650 
651 	if (!(card->csd.cmdclass & CCC_SWITCH))
652 		return 0;
653 
654 	status = kmalloc(64, GFP_KERNEL);
655 	if (!status)
656 		return -ENOMEM;
657 
658 	/* Set 4-bit bus width */
659 	err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
660 	if (err)
661 		goto out;
662 
663 	mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
664 
665 	/*
666 	 * Select the bus speed mode depending on host
667 	 * and card capability.
668 	 */
669 	sd_update_bus_speed_mode(card);
670 
671 	/* Set the driver strength for the card */
672 	err = sd_select_driver_type(card, status);
673 	if (err)
674 		goto out;
675 
676 	/* Set current limit for the card */
677 	err = sd_set_current_limit(card, status);
678 	if (err)
679 		goto out;
680 
681 	/* Set bus speed mode of the card */
682 	err = sd_set_bus_speed_mode(card, status);
683 	if (err)
684 		goto out;
685 
686 	if (mmc_sd_use_tuning(card)) {
687 		err = mmc_execute_tuning(card);
688 
689 		/*
690 		 * As SD Specifications Part1 Physical Layer Specification
691 		 * Version 3.01 says, CMD19 tuning is available for unlocked
692 		 * cards in transfer state of 1.8V signaling mode. The small
693 		 * difference between v3.00 and 3.01 spec means that CMD19
694 		 * tuning is also available for DDR50 mode.
695 		 */
696 		if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
697 			pr_warn("%s: ddr50 tuning failed\n",
698 				mmc_hostname(card->host));
699 			err = 0;
700 		}
701 	}
702 
703 out:
704 	kfree(status);
705 
706 	return err;
707 }
708 
709 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
710 	card->raw_cid[2], card->raw_cid[3]);
711 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
712 	card->raw_csd[2], card->raw_csd[3]);
713 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
714 MMC_DEV_ATTR(ssr,
715 	"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
716 		card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
717 		card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
718 		card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
719 		card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
720 		card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
721 		card->raw_ssr[15]);
722 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
723 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
724 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
725 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
726 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
727 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
728 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
729 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
730 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
731 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
732 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
733 
734 
735 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
736 			    char *buf)
737 {
738 	struct mmc_card *card = mmc_dev_to_card(dev);
739 	struct mmc_host *host = card->host;
740 
741 	if (card->csd.dsr_imp && host->dsr_req)
742 		return sysfs_emit(buf, "0x%x\n", host->dsr);
743 	/* return default DSR value */
744 	return sysfs_emit(buf, "0x%x\n", 0x404);
745 }
746 
747 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
748 
749 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
750 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
751 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
752 
753 #define sdio_info_attr(num)									\
754 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf)	\
755 {												\
756 	struct mmc_card *card = mmc_dev_to_card(dev);						\
757 												\
758 	if (num > card->num_info)								\
759 		return -ENODATA;								\
760 	if (!card->info[num - 1][0])								\
761 		return 0;									\
762 	return sysfs_emit(buf, "%s\n", card->info[num - 1]);					\
763 }												\
764 static DEVICE_ATTR_RO(info##num)
765 
766 sdio_info_attr(1);
767 sdio_info_attr(2);
768 sdio_info_attr(3);
769 sdio_info_attr(4);
770 
771 static struct attribute *sd_std_attrs[] = {
772 	&dev_attr_vendor.attr,
773 	&dev_attr_device.attr,
774 	&dev_attr_revision.attr,
775 	&dev_attr_info1.attr,
776 	&dev_attr_info2.attr,
777 	&dev_attr_info3.attr,
778 	&dev_attr_info4.attr,
779 	&dev_attr_cid.attr,
780 	&dev_attr_csd.attr,
781 	&dev_attr_scr.attr,
782 	&dev_attr_ssr.attr,
783 	&dev_attr_date.attr,
784 	&dev_attr_erase_size.attr,
785 	&dev_attr_preferred_erase_size.attr,
786 	&dev_attr_fwrev.attr,
787 	&dev_attr_hwrev.attr,
788 	&dev_attr_manfid.attr,
789 	&dev_attr_name.attr,
790 	&dev_attr_oemid.attr,
791 	&dev_attr_serial.attr,
792 	&dev_attr_ocr.attr,
793 	&dev_attr_rca.attr,
794 	&dev_attr_dsr.attr,
795 	NULL,
796 };
797 
798 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
799 				 int index)
800 {
801 	struct device *dev = kobj_to_dev(kobj);
802 	struct mmc_card *card = mmc_dev_to_card(dev);
803 
804 	/* CIS vendor and device ids, revision and info string are available only for Combo cards */
805 	if ((attr == &dev_attr_vendor.attr ||
806 	     attr == &dev_attr_device.attr ||
807 	     attr == &dev_attr_revision.attr ||
808 	     attr == &dev_attr_info1.attr ||
809 	     attr == &dev_attr_info2.attr ||
810 	     attr == &dev_attr_info3.attr ||
811 	     attr == &dev_attr_info4.attr
812 	    ) &&!mmc_card_sd_combo(card))
813 		return 0;
814 
815 	return attr->mode;
816 }
817 
818 static const struct attribute_group sd_std_group = {
819 	.attrs = sd_std_attrs,
820 	.is_visible = sd_std_is_visible,
821 };
822 __ATTRIBUTE_GROUPS(sd_std);
823 
824 const struct device_type sd_type = {
825 	.groups = sd_std_groups,
826 };
827 
828 /*
829  * Fetch CID from card.
830  */
831 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
832 {
833 	int err;
834 	u32 max_current;
835 	int retries = 10;
836 	u32 pocr = ocr;
837 
838 try_again:
839 	if (!retries) {
840 		ocr &= ~SD_OCR_S18R;
841 		pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
842 	}
843 
844 	/*
845 	 * Since we're changing the OCR value, we seem to
846 	 * need to tell some cards to go back to the idle
847 	 * state.  We wait 1ms to give cards time to
848 	 * respond.
849 	 */
850 	mmc_go_idle(host);
851 
852 	/*
853 	 * If SD_SEND_IF_COND indicates an SD 2.0
854 	 * compliant card and we should set bit 30
855 	 * of the ocr to indicate that we can handle
856 	 * block-addressed SDHC cards.
857 	 */
858 	err = mmc_send_if_cond(host, ocr);
859 	if (!err) {
860 		ocr |= SD_OCR_CCS;
861 		/* Set HO2T as well - SDUC card won't respond otherwise */
862 		ocr |= SD_OCR_2T;
863 	}
864 
865 	/*
866 	 * If the host supports one of UHS-I modes, request the card
867 	 * to switch to 1.8V signaling level. If the card has failed
868 	 * repeatedly to switch however, skip this.
869 	 */
870 	if (retries && mmc_host_can_uhs(host))
871 		ocr |= SD_OCR_S18R;
872 
873 	/*
874 	 * If the host can supply more than 150mA at current voltage,
875 	 * XPC should be set to 1.
876 	 */
877 	max_current = sd_get_host_max_current(host);
878 	if (max_current > 150)
879 		ocr |= SD_OCR_XPC;
880 
881 	err = mmc_send_app_op_cond(host, ocr, rocr);
882 	if (err)
883 		return err;
884 
885 	/*
886 	 * In case the S18A bit is set in the response, let's start the signal
887 	 * voltage switch procedure. SPI mode doesn't support CMD11.
888 	 * Note that, according to the spec, the S18A bit is not valid unless
889 	 * the CCS bit is set as well. We deliberately deviate from the spec in
890 	 * regards to this, which allows UHS-I to be supported for SDSC cards.
891 	 */
892 	if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
893 	    rocr && (*rocr & SD_ROCR_S18A)) {
894 		err = mmc_set_uhs_voltage(host, pocr);
895 		if (err == -EAGAIN) {
896 			retries--;
897 			goto try_again;
898 		} else if (err) {
899 			retries = 0;
900 			goto try_again;
901 		}
902 	}
903 
904 	err = mmc_send_cid(host, cid);
905 	return err;
906 }
907 
908 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
909 {
910 	int err;
911 
912 	/*
913 	 * Fetch CSD from card.
914 	 */
915 	err = mmc_send_csd(card, card->raw_csd);
916 	if (err)
917 		return err;
918 
919 	err = mmc_decode_csd(card, is_sduc);
920 	if (err)
921 		return err;
922 
923 	return 0;
924 }
925 
926 int mmc_sd_get_ro(struct mmc_host *host)
927 {
928 	int ro;
929 
930 	/*
931 	 * Some systems don't feature a write-protect pin and don't need one.
932 	 * E.g. because they only have micro-SD card slot. For those systems
933 	 * assume that the SD card is always read-write.
934 	 */
935 	if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
936 		return 0;
937 
938 	if (!host->ops->get_ro)
939 		return -1;
940 
941 	ro = host->ops->get_ro(host);
942 
943 	return ro;
944 }
945 
946 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
947 	bool reinit)
948 {
949 	int err;
950 
951 	if (!reinit) {
952 		/*
953 		 * Fetch SCR from card.
954 		 */
955 		err = mmc_app_send_scr(card);
956 		if (err)
957 			return err;
958 
959 		err = mmc_decode_scr(card);
960 		if (err)
961 			return err;
962 
963 		/*
964 		 * Fetch and process SD Status register.
965 		 */
966 		err = mmc_read_ssr(card);
967 		if (err)
968 			return err;
969 
970 		/* Erase init depends on CSD and SSR */
971 		mmc_init_erase(card);
972 	}
973 
974 	/*
975 	 * Fetch switch information from card. Note, sd3_bus_mode can change if
976 	 * voltage switch outcome changes, so do this always.
977 	 */
978 	err = mmc_read_switch(card);
979 	if (err)
980 		return err;
981 
982 	/*
983 	 * For SPI, enable CRC as appropriate.
984 	 * This CRC enable is located AFTER the reading of the
985 	 * card registers because some SDHC cards are not able
986 	 * to provide valid CRCs for non-512-byte blocks.
987 	 */
988 	if (mmc_host_is_spi(host)) {
989 		err = mmc_spi_set_crc(host, use_spi_crc);
990 		if (err)
991 			return err;
992 	}
993 
994 	/*
995 	 * Check if read-only switch is active.
996 	 */
997 	if (!reinit) {
998 		int ro = mmc_sd_get_ro(host);
999 
1000 		if (ro < 0) {
1001 			pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
1002 				mmc_hostname(host));
1003 		} else if (ro > 0) {
1004 			mmc_card_set_readonly(card);
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
1012 {
1013 	unsigned max_dtr = (unsigned int)-1;
1014 
1015 	if (mmc_card_hs(card)) {
1016 		if (max_dtr > card->sw_caps.hs_max_dtr)
1017 			max_dtr = card->sw_caps.hs_max_dtr;
1018 	} else if (max_dtr > card->csd.max_dtr) {
1019 		max_dtr = card->csd.max_dtr;
1020 	}
1021 
1022 	return max_dtr;
1023 }
1024 
1025 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1026 {
1027 	/*
1028 	 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1029 	 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1030 	 * they can be used to determine if the card has already switched to
1031 	 * 1.8V signaling.
1032 	 */
1033 	return card->sw_caps.sd3_bus_mode &
1034 	       (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1035 }
1036 
1037 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1038 			    u8 reg_data)
1039 {
1040 	struct mmc_host *host = card->host;
1041 	struct mmc_request mrq = {};
1042 	struct mmc_command cmd = {};
1043 	struct mmc_data data = {};
1044 	struct scatterlist sg;
1045 	u8 *reg_buf;
1046 
1047 	reg_buf = kzalloc(512, GFP_KERNEL);
1048 	if (!reg_buf)
1049 		return -ENOMEM;
1050 
1051 	mrq.cmd = &cmd;
1052 	mrq.data = &data;
1053 
1054 	/*
1055 	 * Arguments of CMD49:
1056 	 * [31:31] MIO (0 = memory).
1057 	 * [30:27] FNO (function number).
1058 	 * [26:26] MW - mask write mode (0 = disable).
1059 	 * [25:18] page number.
1060 	 * [17:9] offset address.
1061 	 * [8:0] length (0 = 1 byte).
1062 	 */
1063 	cmd.arg = fno << 27 | page << 18 | offset << 9;
1064 
1065 	/* The first byte in the buffer is the data to be written. */
1066 	reg_buf[0] = reg_data;
1067 
1068 	data.flags = MMC_DATA_WRITE;
1069 	data.blksz = 512;
1070 	data.blocks = 1;
1071 	data.sg = &sg;
1072 	data.sg_len = 1;
1073 	sg_init_one(&sg, reg_buf, 512);
1074 
1075 	cmd.opcode = SD_WRITE_EXTR_SINGLE;
1076 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1077 
1078 	mmc_set_data_timeout(&data, card);
1079 	mmc_wait_for_req(host, &mrq);
1080 
1081 	kfree(reg_buf);
1082 
1083 	/*
1084 	 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1085 	 * after the CMD49. Although, let's leave this to be managed by the
1086 	 * caller.
1087 	 */
1088 
1089 	if (cmd.error)
1090 		return cmd.error;
1091 	if (data.error)
1092 		return data.error;
1093 
1094 	return 0;
1095 }
1096 
1097 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1098 			   u16 offset, u16 len, u8 *reg_buf)
1099 {
1100 	u32 cmd_args;
1101 
1102 	/*
1103 	 * Command arguments of CMD48:
1104 	 * [31:31] MIO (0 = memory).
1105 	 * [30:27] FNO (function number).
1106 	 * [26:26] reserved (0).
1107 	 * [25:18] page number.
1108 	 * [17:9] offset address.
1109 	 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1110 	 */
1111 	cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1112 
1113 	return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1114 				  cmd_args, reg_buf, 512);
1115 }
1116 
1117 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1118 				  u16 offset)
1119 {
1120 	int err;
1121 	u8 *reg_buf;
1122 
1123 	reg_buf = kzalloc(512, GFP_KERNEL);
1124 	if (!reg_buf)
1125 		return -ENOMEM;
1126 
1127 	/* Read the extension register for power management function. */
1128 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1129 	if (err) {
1130 		pr_warn("%s: error %d reading PM func of ext reg\n",
1131 			mmc_hostname(card->host), err);
1132 		goto out;
1133 	}
1134 
1135 	/* PM revision consists of 4 bits. */
1136 	card->ext_power.rev = reg_buf[0] & 0xf;
1137 
1138 	/* Power Off Notification support at bit 4. */
1139 	if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1140 		card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1141 
1142 	/* Power Sustenance support at bit 5. */
1143 	if (reg_buf[1] & BIT(5))
1144 		card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1145 
1146 	/* Power Down Mode support at bit 6. */
1147 	if (reg_buf[1] & BIT(6))
1148 		card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1149 
1150 	card->ext_power.fno = fno;
1151 	card->ext_power.page = page;
1152 	card->ext_power.offset = offset;
1153 
1154 out:
1155 	kfree(reg_buf);
1156 	return err;
1157 }
1158 
1159 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1160 				 u16 offset)
1161 {
1162 	int err;
1163 	u8 *reg_buf;
1164 
1165 	reg_buf = kzalloc(512, GFP_KERNEL);
1166 	if (!reg_buf)
1167 		return -ENOMEM;
1168 
1169 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1170 	if (err) {
1171 		pr_warn("%s: error %d reading PERF func of ext reg\n",
1172 			mmc_hostname(card->host), err);
1173 		goto out;
1174 	}
1175 
1176 	/* PERF revision. */
1177 	card->ext_perf.rev = reg_buf[0];
1178 
1179 	/* FX_EVENT support at bit 0. */
1180 	if (reg_buf[1] & BIT(0))
1181 		card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1182 
1183 	/* Card initiated self-maintenance support at bit 0. */
1184 	if (reg_buf[2] & BIT(0))
1185 		card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1186 
1187 	/* Host initiated self-maintenance support at bit 1. */
1188 	if (reg_buf[2] & BIT(1))
1189 		card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1190 
1191 	/* Cache support at bit 0. */
1192 	if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1193 		card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1194 
1195 	/* Command queue support indicated via queue depth bits (0 to 4). */
1196 	if (reg_buf[6] & 0x1f)
1197 		card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1198 
1199 	card->ext_perf.fno = fno;
1200 	card->ext_perf.page = page;
1201 	card->ext_perf.offset = offset;
1202 
1203 out:
1204 	kfree(reg_buf);
1205 	return err;
1206 }
1207 
1208 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1209 			    u16 *next_ext_addr)
1210 {
1211 	u8 num_regs, fno, page;
1212 	u16 sfc, offset, ext = *next_ext_addr;
1213 	u32 reg_addr;
1214 
1215 	/*
1216 	 * Parse only one register set per extension, as that is sufficient to
1217 	 * support the standard functions. This means another 48 bytes in the
1218 	 * buffer must be available.
1219 	 */
1220 	if (ext + 48 > 512)
1221 		return -EFAULT;
1222 
1223 	/* Standard Function Code */
1224 	memcpy(&sfc, &gen_info_buf[ext], 2);
1225 
1226 	/* Address to the next extension. */
1227 	memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1228 
1229 	/* Number of registers for this extension. */
1230 	num_regs = gen_info_buf[ext + 42];
1231 
1232 	/* We support only one register per extension. */
1233 	if (num_regs != 1)
1234 		return 0;
1235 
1236 	/* Extension register address. */
1237 	memcpy(&reg_addr, &gen_info_buf[ext + 44], 4);
1238 
1239 	/* 9 bits (0 to 8) contains the offset address. */
1240 	offset = reg_addr & 0x1ff;
1241 
1242 	/* 8 bits (9 to 16) contains the page number. */
1243 	page = reg_addr >> 9 & 0xff ;
1244 
1245 	/* 4 bits (18 to 21) contains the function number. */
1246 	fno = reg_addr >> 18 & 0xf;
1247 
1248 	/* Standard Function Code for power management. */
1249 	if (sfc == 0x1)
1250 		return sd_parse_ext_reg_power(card, fno, page, offset);
1251 
1252 	/* Standard Function Code for performance enhancement. */
1253 	if (sfc == 0x2)
1254 		return sd_parse_ext_reg_perf(card, fno, page, offset);
1255 
1256 	return 0;
1257 }
1258 
1259 static int sd_read_ext_regs(struct mmc_card *card)
1260 {
1261 	int err, i;
1262 	u8 num_ext, *gen_info_buf;
1263 	u16 rev, len, next_ext_addr;
1264 
1265 	if (mmc_host_is_spi(card->host))
1266 		return 0;
1267 
1268 	if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1269 		return 0;
1270 
1271 	gen_info_buf = kzalloc(512, GFP_KERNEL);
1272 	if (!gen_info_buf)
1273 		return -ENOMEM;
1274 
1275 	/*
1276 	 * Read 512 bytes of general info, which is found at function number 0,
1277 	 * at page 0 and with no offset.
1278 	 */
1279 	err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1280 	if (err) {
1281 		pr_err("%s: error %d reading general info of SD ext reg\n",
1282 			mmc_hostname(card->host), err);
1283 		goto out;
1284 	}
1285 
1286 	/* General info structure revision. */
1287 	memcpy(&rev, &gen_info_buf[0], 2);
1288 
1289 	/* Length of general info in bytes. */
1290 	memcpy(&len, &gen_info_buf[2], 2);
1291 
1292 	/* Number of extensions to be find. */
1293 	num_ext = gen_info_buf[4];
1294 
1295 	/*
1296 	 * We only support revision 0 and limit it to 512 bytes for simplicity.
1297 	 * No matter what, let's return zero to allow us to continue using the
1298 	 * card, even if we can't support the features from the SD function
1299 	 * extensions registers.
1300 	 */
1301 	if (rev != 0 || len > 512) {
1302 		pr_warn("%s: non-supported SD ext reg layout\n",
1303 			mmc_hostname(card->host));
1304 		goto out;
1305 	}
1306 
1307 	/*
1308 	 * Parse the extension registers. The first extension should start
1309 	 * immediately after the general info header (16 bytes).
1310 	 */
1311 	next_ext_addr = 16;
1312 	for (i = 0; i < num_ext; i++) {
1313 		err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1314 		if (err) {
1315 			pr_err("%s: error %d parsing SD ext reg\n",
1316 				mmc_hostname(card->host), err);
1317 			goto out;
1318 		}
1319 	}
1320 
1321 out:
1322 	kfree(gen_info_buf);
1323 	return err;
1324 }
1325 
1326 static bool sd_cache_enabled(struct mmc_host *host)
1327 {
1328 	return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1329 }
1330 
1331 static int sd_flush_cache(struct mmc_host *host)
1332 {
1333 	struct mmc_card *card = host->card;
1334 	u8 *reg_buf, fno, page;
1335 	u16 offset;
1336 	int err;
1337 
1338 	if (!sd_cache_enabled(host))
1339 		return 0;
1340 
1341 	reg_buf = kzalloc(512, GFP_KERNEL);
1342 	if (!reg_buf)
1343 		return -ENOMEM;
1344 
1345 	/*
1346 	 * Set Flush Cache at bit 0 in the performance enhancement register at
1347 	 * 261 bytes offset.
1348 	 */
1349 	fno = card->ext_perf.fno;
1350 	page = card->ext_perf.page;
1351 	offset = card->ext_perf.offset + 261;
1352 
1353 	err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1354 	if (err) {
1355 		pr_warn("%s: error %d writing Cache Flush bit\n",
1356 			mmc_hostname(host), err);
1357 		goto out;
1358 	}
1359 
1360 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1361 				MMC_BUSY_EXTR_SINGLE);
1362 	if (err)
1363 		goto out;
1364 
1365 	/*
1366 	 * Read the Flush Cache bit. The card shall reset it, to confirm that
1367 	 * it's has completed the flushing of the cache.
1368 	 */
1369 	err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1370 	if (err) {
1371 		pr_warn("%s: error %d reading Cache Flush bit\n",
1372 			mmc_hostname(host), err);
1373 		goto out;
1374 	}
1375 
1376 	if (reg_buf[0] & BIT(0))
1377 		err = -ETIMEDOUT;
1378 out:
1379 	kfree(reg_buf);
1380 	return err;
1381 }
1382 
1383 static int sd_enable_cache(struct mmc_card *card)
1384 {
1385 	u8 *reg_buf;
1386 	int err;
1387 
1388 	card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1389 
1390 	reg_buf = kzalloc(512, GFP_KERNEL);
1391 	if (!reg_buf)
1392 		return -ENOMEM;
1393 
1394 	/*
1395 	 * Set Cache Enable at bit 0 in the performance enhancement register at
1396 	 * 260 bytes offset.
1397 	 */
1398 	err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1399 			       card->ext_perf.offset + 260, BIT(0));
1400 	if (err) {
1401 		pr_warn("%s: error %d writing Cache Enable bit\n",
1402 			mmc_hostname(card->host), err);
1403 		goto out;
1404 	}
1405 
1406 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1407 				MMC_BUSY_EXTR_SINGLE);
1408 	if (!err)
1409 		card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1410 
1411 out:
1412 	kfree(reg_buf);
1413 	return err;
1414 }
1415 
1416 /*
1417  * Handle the detection and initialisation of a card.
1418  *
1419  * In the case of a resume, "oldcard" will contain the card
1420  * we're trying to reinitialise.
1421  */
1422 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1423 	struct mmc_card *oldcard)
1424 {
1425 	struct mmc_card *card;
1426 	int err;
1427 	u32 cid[4];
1428 	u32 rocr = 0;
1429 	bool v18_fixup_failed = false;
1430 
1431 	WARN_ON(!host->claimed);
1432 retry:
1433 	err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1434 	if (err)
1435 		return err;
1436 
1437 	if (oldcard) {
1438 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1439 			pr_debug("%s: Perhaps the card was replaced\n",
1440 				mmc_hostname(host));
1441 			return -ENOENT;
1442 		}
1443 
1444 		card = oldcard;
1445 	} else {
1446 		/*
1447 		 * Allocate card structure.
1448 		 */
1449 		card = mmc_alloc_card(host, &sd_type);
1450 		if (IS_ERR(card))
1451 			return PTR_ERR(card);
1452 
1453 		card->ocr = ocr;
1454 		card->type = MMC_TYPE_SD;
1455 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1456 	}
1457 
1458 	/*
1459 	 * Call the optional HC's init_card function to handle quirks.
1460 	 */
1461 	if (host->ops->init_card)
1462 		host->ops->init_card(host, card);
1463 
1464 	/*
1465 	 * For native busses:  get card RCA and quit open drain mode.
1466 	 */
1467 	if (!mmc_host_is_spi(host)) {
1468 		err = mmc_send_relative_addr(host, &card->rca);
1469 		if (err)
1470 			goto free_card;
1471 	}
1472 
1473 	if (!oldcard) {
1474 		u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1475 		bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1476 
1477 		err = mmc_sd_get_csd(card, is_sduc);
1478 		if (err)
1479 			goto free_card;
1480 
1481 		mmc_decode_cid(card);
1482 	}
1483 
1484 	/*
1485 	 * handling only for cards supporting DSR and hosts requesting
1486 	 * DSR configuration
1487 	 */
1488 	if (card->csd.dsr_imp && host->dsr_req)
1489 		mmc_set_dsr(host);
1490 
1491 	/*
1492 	 * Select card, as all following commands rely on that.
1493 	 */
1494 	if (!mmc_host_is_spi(host)) {
1495 		err = mmc_select_card(card);
1496 		if (err)
1497 			goto free_card;
1498 	}
1499 
1500 	/* Apply quirks prior to card setup */
1501 	mmc_fixup_device(card, mmc_sd_fixups);
1502 
1503 	err = mmc_sd_setup_card(host, card, oldcard != NULL);
1504 	if (err)
1505 		goto free_card;
1506 
1507 	/*
1508 	 * If the card has not been power cycled, it may still be using 1.8V
1509 	 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1510 	 * transfer mode.
1511 	 */
1512 	if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_can_uhs(host) &&
1513 	    mmc_sd_card_using_v18(card) &&
1514 	    host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1515 		if (mmc_host_set_uhs_voltage(host) ||
1516 		    mmc_sd_init_uhs_card(card)) {
1517 			v18_fixup_failed = true;
1518 			mmc_power_cycle(host, ocr);
1519 			if (!oldcard)
1520 				mmc_remove_card(card);
1521 			goto retry;
1522 		}
1523 		goto cont;
1524 	}
1525 
1526 	/* Initialization sequence for UHS-I cards */
1527 	if (rocr & SD_ROCR_S18A && mmc_host_can_uhs(host)) {
1528 		err = mmc_sd_init_uhs_card(card);
1529 		if (err)
1530 			goto free_card;
1531 	} else {
1532 		/*
1533 		 * Attempt to change to high-speed (if supported)
1534 		 */
1535 		err = mmc_sd_switch_hs(card);
1536 		if (err > 0)
1537 			mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1538 		else if (err)
1539 			goto free_card;
1540 
1541 		/*
1542 		 * Set bus speed.
1543 		 */
1544 		mmc_set_clock(host, mmc_sd_get_max_clock(card));
1545 
1546 		if (host->ios.timing == MMC_TIMING_SD_HS &&
1547 			host->ops->prepare_sd_hs_tuning) {
1548 			err = host->ops->prepare_sd_hs_tuning(host, card);
1549 			if (err)
1550 				goto free_card;
1551 		}
1552 
1553 		/*
1554 		 * Switch to wider bus (if supported).
1555 		 */
1556 		if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1557 			(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1558 			err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1559 			if (err)
1560 				goto free_card;
1561 
1562 			mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1563 		}
1564 
1565 		if (host->ios.timing == MMC_TIMING_SD_HS &&
1566 			host->ops->execute_sd_hs_tuning) {
1567 			err = host->ops->execute_sd_hs_tuning(host, card);
1568 			if (err)
1569 				goto free_card;
1570 		}
1571 	}
1572 cont:
1573 	if (!oldcard) {
1574 		/* Read/parse the extension registers. */
1575 		err = sd_read_ext_regs(card);
1576 		if (err)
1577 			goto free_card;
1578 	}
1579 
1580 	/* Enable internal SD cache if supported. */
1581 	if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1582 		err = sd_enable_cache(card);
1583 		if (err)
1584 			goto free_card;
1585 	}
1586 
1587 	if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1588 		err = host->cqe_ops->cqe_enable(host, card);
1589 		if (!err) {
1590 			host->cqe_enabled = true;
1591 			host->hsq_enabled = true;
1592 			pr_info("%s: Host Software Queue enabled\n",
1593 				mmc_hostname(host));
1594 		}
1595 	}
1596 
1597 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1598 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1599 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1600 			mmc_hostname(host));
1601 		err = -EINVAL;
1602 		goto free_card;
1603 	}
1604 
1605 	host->card = card;
1606 	return 0;
1607 
1608 free_card:
1609 	if (!oldcard)
1610 		mmc_remove_card(card);
1611 
1612 	return err;
1613 }
1614 
1615 /*
1616  * Card detection - card is alive.
1617  */
1618 static int mmc_sd_alive(struct mmc_host *host)
1619 {
1620 	return mmc_send_status(host->card, NULL);
1621 }
1622 
1623 /*
1624  * Card detection callback from host.
1625  */
1626 static void mmc_sd_detect(struct mmc_host *host)
1627 {
1628 	int err;
1629 
1630 	mmc_get_card(host->card, NULL);
1631 
1632 	/*
1633 	 * Just check if our card has been removed.
1634 	 */
1635 	err = _mmc_detect_card_removed(host);
1636 
1637 	mmc_put_card(host->card, NULL);
1638 
1639 	if (err) {
1640 		mmc_remove_card(host->card);
1641 		host->card = NULL;
1642 
1643 		mmc_claim_host(host);
1644 		mmc_detach_bus(host);
1645 		mmc_power_off(host);
1646 		mmc_release_host(host);
1647 	}
1648 }
1649 
1650 static int sd_can_poweroff_notify(struct mmc_card *card)
1651 {
1652 	return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1653 }
1654 
1655 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1656 {
1657 	struct sd_busy_data *data = cb_data;
1658 	struct mmc_card *card = data->card;
1659 	int err;
1660 
1661 	/*
1662 	 * Read the status register for the power management function. It's at
1663 	 * one byte offset and is one byte long. The Power Off Notification
1664 	 * Ready is bit 0.
1665 	 */
1666 	err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1667 			      card->ext_power.offset + 1, 1, data->reg_buf);
1668 	if (err) {
1669 		pr_warn("%s: error %d reading status reg of PM func\n",
1670 			mmc_hostname(card->host), err);
1671 		return err;
1672 	}
1673 
1674 	*busy = !(data->reg_buf[0] & BIT(0));
1675 	return 0;
1676 }
1677 
1678 static int sd_poweroff_notify(struct mmc_card *card)
1679 {
1680 	struct sd_busy_data cb_data;
1681 	u8 *reg_buf;
1682 	int err;
1683 
1684 	reg_buf = kzalloc(512, GFP_KERNEL);
1685 	if (!reg_buf)
1686 		return -ENOMEM;
1687 
1688 	/*
1689 	 * Set the Power Off Notification bit in the power management settings
1690 	 * register at 2 bytes offset.
1691 	 */
1692 	err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1693 			       card->ext_power.offset + 2, BIT(0));
1694 	if (err) {
1695 		pr_warn("%s: error %d writing Power Off Notify bit\n",
1696 			mmc_hostname(card->host), err);
1697 		goto out;
1698 	}
1699 
1700 	/* Find out when the command is completed. */
1701 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1702 				MMC_BUSY_EXTR_SINGLE);
1703 	if (err)
1704 		goto out;
1705 
1706 	cb_data.card = card;
1707 	cb_data.reg_buf = reg_buf;
1708 	err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1709 				  &sd_busy_poweroff_notify_cb, &cb_data);
1710 
1711 out:
1712 	kfree(reg_buf);
1713 	return err;
1714 }
1715 
1716 static int _mmc_sd_suspend(struct mmc_host *host)
1717 {
1718 	struct mmc_card *card = host->card;
1719 	int err = 0;
1720 
1721 	mmc_claim_host(host);
1722 
1723 	if (mmc_card_suspended(card))
1724 		goto out;
1725 
1726 	if (sd_can_poweroff_notify(card))
1727 		err = sd_poweroff_notify(card);
1728 	else if (!mmc_host_is_spi(host))
1729 		err = mmc_deselect_cards(host);
1730 
1731 	if (!err) {
1732 		mmc_power_off(host);
1733 		mmc_card_set_suspended(card);
1734 	}
1735 
1736 out:
1737 	mmc_release_host(host);
1738 	return err;
1739 }
1740 
1741 /*
1742  * Host is being removed. Free up the current card and do a graceful power-off.
1743  */
1744 static void mmc_sd_remove(struct mmc_host *host)
1745 {
1746 	get_device(&host->card->dev);
1747 	mmc_remove_card(host->card);
1748 
1749 	_mmc_sd_suspend(host);
1750 
1751 	put_device(&host->card->dev);
1752 	host->card = NULL;
1753 }
1754 /*
1755  * Callback for suspend
1756  */
1757 static int mmc_sd_suspend(struct mmc_host *host)
1758 {
1759 	int err;
1760 
1761 	err = _mmc_sd_suspend(host);
1762 	if (!err) {
1763 		pm_runtime_disable(&host->card->dev);
1764 		pm_runtime_set_suspended(&host->card->dev);
1765 	}
1766 
1767 	return err;
1768 }
1769 
1770 /*
1771  * This function tries to determine if the same card is still present
1772  * and, if so, restore all state to it.
1773  */
1774 static int _mmc_sd_resume(struct mmc_host *host)
1775 {
1776 	int err = 0;
1777 
1778 	mmc_claim_host(host);
1779 
1780 	if (!mmc_card_suspended(host->card))
1781 		goto out;
1782 
1783 	mmc_power_up(host, host->card->ocr);
1784 	err = mmc_sd_init_card(host, host->card->ocr, host->card);
1785 	mmc_card_clr_suspended(host->card);
1786 
1787 out:
1788 	mmc_release_host(host);
1789 	return err;
1790 }
1791 
1792 /*
1793  * Callback for resume
1794  */
1795 static int mmc_sd_resume(struct mmc_host *host)
1796 {
1797 	pm_runtime_enable(&host->card->dev);
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Callback for runtime_suspend.
1803  */
1804 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1805 {
1806 	int err;
1807 
1808 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1809 		return 0;
1810 
1811 	err = _mmc_sd_suspend(host);
1812 	if (err)
1813 		pr_err("%s: error %d doing aggressive suspend\n",
1814 			mmc_hostname(host), err);
1815 
1816 	return err;
1817 }
1818 
1819 /*
1820  * Callback for runtime_resume.
1821  */
1822 static int mmc_sd_runtime_resume(struct mmc_host *host)
1823 {
1824 	int err;
1825 
1826 	err = _mmc_sd_resume(host);
1827 	if (err && err != -ENOMEDIUM)
1828 		pr_err("%s: error %d doing runtime resume\n",
1829 			mmc_hostname(host), err);
1830 
1831 	return 0;
1832 }
1833 
1834 static int mmc_sd_hw_reset(struct mmc_host *host)
1835 {
1836 	mmc_power_cycle(host, host->card->ocr);
1837 	return mmc_sd_init_card(host, host->card->ocr, host->card);
1838 }
1839 
1840 static const struct mmc_bus_ops mmc_sd_ops = {
1841 	.remove = mmc_sd_remove,
1842 	.detect = mmc_sd_detect,
1843 	.runtime_suspend = mmc_sd_runtime_suspend,
1844 	.runtime_resume = mmc_sd_runtime_resume,
1845 	.suspend = mmc_sd_suspend,
1846 	.resume = mmc_sd_resume,
1847 	.alive = mmc_sd_alive,
1848 	.shutdown = mmc_sd_suspend,
1849 	.hw_reset = mmc_sd_hw_reset,
1850 	.cache_enabled = sd_cache_enabled,
1851 	.flush_cache = sd_flush_cache,
1852 };
1853 
1854 /*
1855  * Starting point for SD card init.
1856  */
1857 int mmc_attach_sd(struct mmc_host *host)
1858 {
1859 	int err;
1860 	u32 ocr, rocr;
1861 
1862 	WARN_ON(!host->claimed);
1863 
1864 	err = mmc_send_app_op_cond(host, 0, &ocr);
1865 	if (err)
1866 		return err;
1867 
1868 	mmc_attach_bus(host, &mmc_sd_ops);
1869 	if (host->ocr_avail_sd)
1870 		host->ocr_avail = host->ocr_avail_sd;
1871 
1872 	/*
1873 	 * We need to get OCR a different way for SPI.
1874 	 */
1875 	if (mmc_host_is_spi(host)) {
1876 		mmc_go_idle(host);
1877 
1878 		err = mmc_spi_read_ocr(host, 0, &ocr);
1879 		if (err)
1880 			goto err;
1881 	}
1882 
1883 	/*
1884 	 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1885 	 * these bits as being in-valid and especially also bit7.
1886 	 */
1887 	ocr &= ~0x7FFF;
1888 
1889 	rocr = mmc_select_voltage(host, ocr);
1890 
1891 	/*
1892 	 * Can we support the voltage(s) of the card(s)?
1893 	 */
1894 	if (!rocr) {
1895 		err = -EINVAL;
1896 		goto err;
1897 	}
1898 
1899 	/*
1900 	 * Detect and init the card.
1901 	 */
1902 	err = mmc_sd_init_card(host, rocr, NULL);
1903 	if (err)
1904 		goto err;
1905 
1906 	mmc_release_host(host);
1907 	err = mmc_add_card(host->card);
1908 	if (err)
1909 		goto remove_card;
1910 
1911 	mmc_claim_host(host);
1912 	return 0;
1913 
1914 remove_card:
1915 	mmc_remove_card(host->card);
1916 	host->card = NULL;
1917 	mmc_claim_host(host);
1918 err:
1919 	mmc_detach_bus(host);
1920 
1921 	pr_err("%s: error %d whilst initialising SD card\n",
1922 		mmc_hostname(host), err);
1923 
1924 	return err;
1925 }
1926